diagnostic.c: Don't include tm.h, tree.h, tm_p.h, langhooks.h or langhooks-def.h.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "perm_tree_lists",
140 "temp_tree_lists",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472 }
473
474 /* Basic consistency checks for attributes used in fold. */
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
478 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
505 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
507 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
508 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
509 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
511 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
514 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
515 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
516
517 #undef MARK_TS_BASE
518 #undef MARK_TS_COMMON
519 #undef MARK_TS_DECL_MINIMAL
520 #undef MARK_TS_DECL_COMMON
521 #undef MARK_TS_DECL_WRTL
522 #undef MARK_TS_DECL_WITH_VIS
523 #undef MARK_TS_DECL_NON_COMMON
524 }
525
526
527 /* Init tree.c. */
528
529 void
530 init_ttree (void)
531 {
532 /* Initialize the hash table of types. */
533 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
534 type_hash_eq, 0);
535
536 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
537 tree_map_eq, 0);
538
539 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
540 tree_map_eq, 0);
541 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
542 tree_priority_map_eq, 0);
543
544 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
545 int_cst_hash_eq, NULL);
546
547 int_cst_node = make_node (INTEGER_CST);
548
549 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
550 cl_option_hash_eq, NULL);
551
552 cl_optimization_node = make_node (OPTIMIZATION_NODE);
553 cl_target_option_node = make_node (TARGET_OPTION_NODE);
554
555 /* Initialize the tree_contains_struct array. */
556 initialize_tree_contains_struct ();
557 lang_hooks.init_ts ();
558 }
559
560 \f
561 /* The name of the object as the assembler will see it (but before any
562 translations made by ASM_OUTPUT_LABELREF). Often this is the same
563 as DECL_NAME. It is an IDENTIFIER_NODE. */
564 tree
565 decl_assembler_name (tree decl)
566 {
567 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
568 lang_hooks.set_decl_assembler_name (decl);
569 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
570 }
571
572 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
573
574 bool
575 decl_assembler_name_equal (tree decl, const_tree asmname)
576 {
577 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
578 const char *decl_str;
579 const char *asmname_str;
580 bool test = false;
581
582 if (decl_asmname == asmname)
583 return true;
584
585 decl_str = IDENTIFIER_POINTER (decl_asmname);
586 asmname_str = IDENTIFIER_POINTER (asmname);
587
588
589 /* If the target assembler name was set by the user, things are trickier.
590 We have a leading '*' to begin with. After that, it's arguable what
591 is the correct thing to do with -fleading-underscore. Arguably, we've
592 historically been doing the wrong thing in assemble_alias by always
593 printing the leading underscore. Since we're not changing that, make
594 sure user_label_prefix follows the '*' before matching. */
595 if (decl_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 decl_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
604 decl_str += ulp_len, test=true;
605 else
606 decl_str --;
607 }
608 if (asmname_str[0] == '*')
609 {
610 size_t ulp_len = strlen (user_label_prefix);
611
612 asmname_str ++;
613
614 if (ulp_len == 0)
615 test = true;
616 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
617 asmname_str += ulp_len, test=true;
618 else
619 asmname_str --;
620 }
621
622 if (!test)
623 return false;
624 return strcmp (decl_str, asmname_str) == 0;
625 }
626
627 /* Hash asmnames ignoring the user specified marks. */
628
629 hashval_t
630 decl_assembler_name_hash (const_tree asmname)
631 {
632 if (IDENTIFIER_POINTER (asmname)[0] == '*')
633 {
634 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
635 size_t ulp_len = strlen (user_label_prefix);
636
637 if (ulp_len == 0)
638 ;
639 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
640 decl_str += ulp_len;
641
642 return htab_hash_string (decl_str);
643 }
644
645 return htab_hash_string (IDENTIFIER_POINTER (asmname));
646 }
647
648 /* Compute the number of bytes occupied by a tree with code CODE.
649 This function cannot be used for nodes that have variable sizes,
650 including TREE_VEC, STRING_CST, and CALL_EXPR. */
651 size_t
652 tree_code_size (enum tree_code code)
653 {
654 switch (TREE_CODE_CLASS (code))
655 {
656 case tcc_declaration: /* A decl node */
657 {
658 switch (code)
659 {
660 case FIELD_DECL:
661 return sizeof (struct tree_field_decl);
662 case PARM_DECL:
663 return sizeof (struct tree_parm_decl);
664 case VAR_DECL:
665 return sizeof (struct tree_var_decl);
666 case LABEL_DECL:
667 return sizeof (struct tree_label_decl);
668 case RESULT_DECL:
669 return sizeof (struct tree_result_decl);
670 case CONST_DECL:
671 return sizeof (struct tree_const_decl);
672 case TYPE_DECL:
673 return sizeof (struct tree_type_decl);
674 case FUNCTION_DECL:
675 return sizeof (struct tree_function_decl);
676 case DEBUG_EXPR_DECL:
677 return sizeof (struct tree_decl_with_rtl);
678 default:
679 return sizeof (struct tree_decl_non_common);
680 }
681 }
682
683 case tcc_type: /* a type node */
684 return sizeof (struct tree_type);
685
686 case tcc_reference: /* a reference */
687 case tcc_expression: /* an expression */
688 case tcc_statement: /* an expression with side effects */
689 case tcc_comparison: /* a comparison expression */
690 case tcc_unary: /* a unary arithmetic expression */
691 case tcc_binary: /* a binary arithmetic expression */
692 return (sizeof (struct tree_exp)
693 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
694
695 case tcc_constant: /* a constant */
696 switch (code)
697 {
698 case INTEGER_CST: return sizeof (struct tree_int_cst);
699 case REAL_CST: return sizeof (struct tree_real_cst);
700 case FIXED_CST: return sizeof (struct tree_fixed_cst);
701 case COMPLEX_CST: return sizeof (struct tree_complex);
702 case VECTOR_CST: return sizeof (struct tree_vector);
703 case STRING_CST: gcc_unreachable ();
704 default:
705 return lang_hooks.tree_size (code);
706 }
707
708 case tcc_exceptional: /* something random, like an identifier. */
709 switch (code)
710 {
711 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
712 case TREE_LIST: return sizeof (struct tree_list);
713
714 case ERROR_MARK:
715 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
716
717 case TREE_VEC:
718 case OMP_CLAUSE: gcc_unreachable ();
719
720 case SSA_NAME: return sizeof (struct tree_ssa_name);
721
722 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
723 case BLOCK: return sizeof (struct tree_block);
724 case CONSTRUCTOR: return sizeof (struct tree_constructor);
725 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
726 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
727
728 default:
729 return lang_hooks.tree_size (code);
730 }
731
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Compute the number of bytes occupied by NODE. This routine only
738 looks at TREE_CODE, except for those nodes that have variable sizes. */
739 size_t
740 tree_size (const_tree node)
741 {
742 const enum tree_code code = TREE_CODE (node);
743 switch (code)
744 {
745 case TREE_BINFO:
746 return (offsetof (struct tree_binfo, base_binfos)
747 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
748
749 case TREE_VEC:
750 return (sizeof (struct tree_vec)
751 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
752
753 case STRING_CST:
754 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
755
756 case OMP_CLAUSE:
757 return (sizeof (struct tree_omp_clause)
758 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
759 * sizeof (tree));
760
761 default:
762 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
763 return (sizeof (struct tree_exp)
764 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
765 else
766 return tree_code_size (code);
767 }
768 }
769
770 /* Return a newly allocated node of code CODE. For decl and type
771 nodes, some other fields are initialized. The rest of the node is
772 initialized to zero. This function cannot be used for TREE_VEC or
773 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
774
775 Achoo! I got a code in the node. */
776
777 tree
778 make_node_stat (enum tree_code code MEM_STAT_DECL)
779 {
780 tree t;
781 enum tree_code_class type = TREE_CODE_CLASS (code);
782 size_t length = tree_code_size (code);
783 #ifdef GATHER_STATISTICS
784 tree_node_kind kind;
785
786 switch (type)
787 {
788 case tcc_declaration: /* A decl node */
789 kind = d_kind;
790 break;
791
792 case tcc_type: /* a type node */
793 kind = t_kind;
794 break;
795
796 case tcc_statement: /* an expression with side effects */
797 kind = s_kind;
798 break;
799
800 case tcc_reference: /* a reference */
801 kind = r_kind;
802 break;
803
804 case tcc_expression: /* an expression */
805 case tcc_comparison: /* a comparison expression */
806 case tcc_unary: /* a unary arithmetic expression */
807 case tcc_binary: /* a binary arithmetic expression */
808 kind = e_kind;
809 break;
810
811 case tcc_constant: /* a constant */
812 kind = c_kind;
813 break;
814
815 case tcc_exceptional: /* something random, like an identifier. */
816 switch (code)
817 {
818 case IDENTIFIER_NODE:
819 kind = id_kind;
820 break;
821
822 case TREE_VEC:
823 kind = vec_kind;
824 break;
825
826 case TREE_BINFO:
827 kind = binfo_kind;
828 break;
829
830 case SSA_NAME:
831 kind = ssa_name_kind;
832 break;
833
834 case BLOCK:
835 kind = b_kind;
836 break;
837
838 case CONSTRUCTOR:
839 kind = constr_kind;
840 break;
841
842 default:
843 kind = x_kind;
844 break;
845 }
846 break;
847
848 default:
849 gcc_unreachable ();
850 }
851
852 tree_node_counts[(int) kind]++;
853 tree_node_sizes[(int) kind] += length;
854 #endif
855
856 if (code == IDENTIFIER_NODE)
857 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
858 else
859 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
860
861 memset (t, 0, length);
862
863 TREE_SET_CODE (t, code);
864
865 switch (type)
866 {
867 case tcc_statement:
868 TREE_SIDE_EFFECTS (t) = 1;
869 break;
870
871 case tcc_declaration:
872 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
873 {
874 if (code == FUNCTION_DECL)
875 {
876 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
877 DECL_MODE (t) = FUNCTION_MODE;
878 }
879 else
880 DECL_ALIGN (t) = 1;
881 }
882 DECL_SOURCE_LOCATION (t) = input_location;
883 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
884 DECL_UID (t) = --next_debug_decl_uid;
885 else
886 {
887 DECL_UID (t) = next_decl_uid++;
888 SET_DECL_PT_UID (t, -1);
889 }
890 if (TREE_CODE (t) == LABEL_DECL)
891 LABEL_DECL_UID (t) = -1;
892
893 break;
894
895 case tcc_type:
896 TYPE_UID (t) = next_type_uid++;
897 TYPE_ALIGN (t) = BITS_PER_UNIT;
898 TYPE_USER_ALIGN (t) = 0;
899 TYPE_MAIN_VARIANT (t) = t;
900 TYPE_CANONICAL (t) = t;
901
902 /* Default to no attributes for type, but let target change that. */
903 TYPE_ATTRIBUTES (t) = NULL_TREE;
904 targetm.set_default_type_attributes (t);
905
906 /* We have not yet computed the alias set for this type. */
907 TYPE_ALIAS_SET (t) = -1;
908 break;
909
910 case tcc_constant:
911 TREE_CONSTANT (t) = 1;
912 break;
913
914 case tcc_expression:
915 switch (code)
916 {
917 case INIT_EXPR:
918 case MODIFY_EXPR:
919 case VA_ARG_EXPR:
920 case PREDECREMENT_EXPR:
921 case PREINCREMENT_EXPR:
922 case POSTDECREMENT_EXPR:
923 case POSTINCREMENT_EXPR:
924 /* All of these have side-effects, no matter what their
925 operands are. */
926 TREE_SIDE_EFFECTS (t) = 1;
927 break;
928
929 default:
930 break;
931 }
932 break;
933
934 default:
935 /* Other classes need no special treatment. */
936 break;
937 }
938
939 return t;
940 }
941 \f
942 /* Return a new node with the same contents as NODE except that its
943 TREE_CHAIN is zero and it has a fresh uid. */
944
945 tree
946 copy_node_stat (tree node MEM_STAT_DECL)
947 {
948 tree t;
949 enum tree_code code = TREE_CODE (node);
950 size_t length;
951
952 gcc_assert (code != STATEMENT_LIST);
953
954 length = tree_size (node);
955 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
956 memcpy (t, node, length);
957
958 TREE_CHAIN (t) = 0;
959 TREE_ASM_WRITTEN (t) = 0;
960 TREE_VISITED (t) = 0;
961 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
962 *DECL_VAR_ANN_PTR (t) = 0;
963
964 if (TREE_CODE_CLASS (code) == tcc_declaration)
965 {
966 if (code == DEBUG_EXPR_DECL)
967 DECL_UID (t) = --next_debug_decl_uid;
968 else
969 {
970 DECL_UID (t) = next_decl_uid++;
971 if (DECL_PT_UID_SET_P (node))
972 SET_DECL_PT_UID (t, DECL_PT_UID (node));
973 }
974 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
975 && DECL_HAS_VALUE_EXPR_P (node))
976 {
977 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
978 DECL_HAS_VALUE_EXPR_P (t) = 1;
979 }
980 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
981 {
982 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
983 DECL_HAS_INIT_PRIORITY_P (t) = 1;
984 }
985 }
986 else if (TREE_CODE_CLASS (code) == tcc_type)
987 {
988 TYPE_UID (t) = next_type_uid++;
989 /* The following is so that the debug code for
990 the copy is different from the original type.
991 The two statements usually duplicate each other
992 (because they clear fields of the same union),
993 but the optimizer should catch that. */
994 TYPE_SYMTAB_POINTER (t) = 0;
995 TYPE_SYMTAB_ADDRESS (t) = 0;
996
997 /* Do not copy the values cache. */
998 if (TYPE_CACHED_VALUES_P(t))
999 {
1000 TYPE_CACHED_VALUES_P (t) = 0;
1001 TYPE_CACHED_VALUES (t) = NULL_TREE;
1002 }
1003 }
1004
1005 return t;
1006 }
1007
1008 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1009 For example, this can copy a list made of TREE_LIST nodes. */
1010
1011 tree
1012 copy_list (tree list)
1013 {
1014 tree head;
1015 tree prev, next;
1016
1017 if (list == 0)
1018 return 0;
1019
1020 head = prev = copy_node (list);
1021 next = TREE_CHAIN (list);
1022 while (next)
1023 {
1024 TREE_CHAIN (prev) = copy_node (next);
1025 prev = TREE_CHAIN (prev);
1026 next = TREE_CHAIN (next);
1027 }
1028 return head;
1029 }
1030
1031 \f
1032 /* Create an INT_CST node with a LOW value sign extended. */
1033
1034 tree
1035 build_int_cst (tree type, HOST_WIDE_INT low)
1036 {
1037 /* Support legacy code. */
1038 if (!type)
1039 type = integer_type_node;
1040
1041 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1042 }
1043
1044 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1045 if it is negative. This function is similar to build_int_cst, but
1046 the extra bits outside of the type precision are cleared. Constants
1047 with these extra bits may confuse the fold so that it detects overflows
1048 even in cases when they do not occur, and in general should be avoided.
1049 We cannot however make this a default behavior of build_int_cst without
1050 more intrusive changes, since there are parts of gcc that rely on the extra
1051 precision of the integer constants. */
1052
1053 tree
1054 build_int_cst_type (tree type, HOST_WIDE_INT low)
1055 {
1056 unsigned HOST_WIDE_INT low1;
1057 HOST_WIDE_INT hi;
1058
1059 gcc_assert (type);
1060
1061 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1062
1063 return build_int_cst_wide (type, low1, hi);
1064 }
1065
1066 /* Constructs tree in type TYPE from with value given by CST. Signedness
1067 of CST is assumed to be the same as the signedness of TYPE. */
1068
1069 tree
1070 double_int_to_tree (tree type, double_int cst)
1071 {
1072 /* Size types *are* sign extended. */
1073 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1074 || (TREE_CODE (type) == INTEGER_TYPE
1075 && TYPE_IS_SIZETYPE (type)));
1076
1077 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1078
1079 return build_int_cst_wide (type, cst.low, cst.high);
1080 }
1081
1082 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1083 to be the same as the signedness of TYPE. */
1084
1085 bool
1086 double_int_fits_to_tree_p (const_tree type, double_int cst)
1087 {
1088 /* Size types *are* sign extended. */
1089 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1090 || (TREE_CODE (type) == INTEGER_TYPE
1091 && TYPE_IS_SIZETYPE (type)));
1092
1093 double_int ext
1094 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1095
1096 return double_int_equal_p (cst, ext);
1097 }
1098
1099 /* These are the hash table functions for the hash table of INTEGER_CST
1100 nodes of a sizetype. */
1101
1102 /* Return the hash code code X, an INTEGER_CST. */
1103
1104 static hashval_t
1105 int_cst_hash_hash (const void *x)
1106 {
1107 const_tree const t = (const_tree) x;
1108
1109 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1110 ^ htab_hash_pointer (TREE_TYPE (t)));
1111 }
1112
1113 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1114 is the same as that given by *Y, which is the same. */
1115
1116 static int
1117 int_cst_hash_eq (const void *x, const void *y)
1118 {
1119 const_tree const xt = (const_tree) x;
1120 const_tree const yt = (const_tree) y;
1121
1122 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1123 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1124 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1125 }
1126
1127 /* Create an INT_CST node of TYPE and value HI:LOW.
1128 The returned node is always shared. For small integers we use a
1129 per-type vector cache, for larger ones we use a single hash table. */
1130
1131 tree
1132 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1133 {
1134 tree t;
1135 int ix = -1;
1136 int limit = 0;
1137
1138 gcc_assert (type);
1139
1140 switch (TREE_CODE (type))
1141 {
1142 case POINTER_TYPE:
1143 case REFERENCE_TYPE:
1144 /* Cache NULL pointer. */
1145 if (!hi && !low)
1146 {
1147 limit = 1;
1148 ix = 0;
1149 }
1150 break;
1151
1152 case BOOLEAN_TYPE:
1153 /* Cache false or true. */
1154 limit = 2;
1155 if (!hi && low < 2)
1156 ix = low;
1157 break;
1158
1159 case INTEGER_TYPE:
1160 case OFFSET_TYPE:
1161 if (TYPE_UNSIGNED (type))
1162 {
1163 /* Cache 0..N */
1164 limit = INTEGER_SHARE_LIMIT;
1165 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1166 ix = low;
1167 }
1168 else
1169 {
1170 /* Cache -1..N */
1171 limit = INTEGER_SHARE_LIMIT + 1;
1172 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1173 ix = low + 1;
1174 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1175 ix = 0;
1176 }
1177 break;
1178
1179 case ENUMERAL_TYPE:
1180 break;
1181
1182 default:
1183 gcc_unreachable ();
1184 }
1185
1186 if (ix >= 0)
1187 {
1188 /* Look for it in the type's vector of small shared ints. */
1189 if (!TYPE_CACHED_VALUES_P (type))
1190 {
1191 TYPE_CACHED_VALUES_P (type) = 1;
1192 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1193 }
1194
1195 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1196 if (t)
1197 {
1198 /* Make sure no one is clobbering the shared constant. */
1199 gcc_assert (TREE_TYPE (t) == type);
1200 gcc_assert (TREE_INT_CST_LOW (t) == low);
1201 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1202 }
1203 else
1204 {
1205 /* Create a new shared int. */
1206 t = make_node (INTEGER_CST);
1207
1208 TREE_INT_CST_LOW (t) = low;
1209 TREE_INT_CST_HIGH (t) = hi;
1210 TREE_TYPE (t) = type;
1211
1212 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1213 }
1214 }
1215 else
1216 {
1217 /* Use the cache of larger shared ints. */
1218 void **slot;
1219
1220 TREE_INT_CST_LOW (int_cst_node) = low;
1221 TREE_INT_CST_HIGH (int_cst_node) = hi;
1222 TREE_TYPE (int_cst_node) = type;
1223
1224 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1225 t = (tree) *slot;
1226 if (!t)
1227 {
1228 /* Insert this one into the hash table. */
1229 t = int_cst_node;
1230 *slot = t;
1231 /* Make a new node for next time round. */
1232 int_cst_node = make_node (INTEGER_CST);
1233 }
1234 }
1235
1236 return t;
1237 }
1238
1239 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1240 and the rest are zeros. */
1241
1242 tree
1243 build_low_bits_mask (tree type, unsigned bits)
1244 {
1245 double_int mask;
1246
1247 gcc_assert (bits <= TYPE_PRECISION (type));
1248
1249 if (bits == TYPE_PRECISION (type)
1250 && !TYPE_UNSIGNED (type))
1251 /* Sign extended all-ones mask. */
1252 mask = double_int_minus_one;
1253 else
1254 mask = double_int_mask (bits);
1255
1256 return build_int_cst_wide (type, mask.low, mask.high);
1257 }
1258
1259 /* Checks that X is integer constant that can be expressed in (unsigned)
1260 HOST_WIDE_INT without loss of precision. */
1261
1262 bool
1263 cst_and_fits_in_hwi (const_tree x)
1264 {
1265 if (TREE_CODE (x) != INTEGER_CST)
1266 return false;
1267
1268 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1269 return false;
1270
1271 return (TREE_INT_CST_HIGH (x) == 0
1272 || TREE_INT_CST_HIGH (x) == -1);
1273 }
1274
1275 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1276 are in a list pointed to by VALS. */
1277
1278 tree
1279 build_vector (tree type, tree vals)
1280 {
1281 tree v = make_node (VECTOR_CST);
1282 int over = 0;
1283 tree link;
1284
1285 TREE_VECTOR_CST_ELTS (v) = vals;
1286 TREE_TYPE (v) = type;
1287
1288 /* Iterate through elements and check for overflow. */
1289 for (link = vals; link; link = TREE_CHAIN (link))
1290 {
1291 tree value = TREE_VALUE (link);
1292
1293 /* Don't crash if we get an address constant. */
1294 if (!CONSTANT_CLASS_P (value))
1295 continue;
1296
1297 over |= TREE_OVERFLOW (value);
1298 }
1299
1300 TREE_OVERFLOW (v) = over;
1301 return v;
1302 }
1303
1304 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1305 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1306
1307 tree
1308 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1309 {
1310 tree list = NULL_TREE;
1311 unsigned HOST_WIDE_INT idx;
1312 tree value;
1313
1314 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1315 list = tree_cons (NULL_TREE, value, list);
1316 return build_vector (type, nreverse (list));
1317 }
1318
1319 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1320 are in the VEC pointed to by VALS. */
1321 tree
1322 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1323 {
1324 tree c = make_node (CONSTRUCTOR);
1325 unsigned int i;
1326 constructor_elt *elt;
1327 bool constant_p = true;
1328
1329 TREE_TYPE (c) = type;
1330 CONSTRUCTOR_ELTS (c) = vals;
1331
1332 for (i = 0; VEC_iterate (constructor_elt, vals, i, elt); i++)
1333 if (!TREE_CONSTANT (elt->value))
1334 {
1335 constant_p = false;
1336 break;
1337 }
1338
1339 TREE_CONSTANT (c) = constant_p;
1340
1341 return c;
1342 }
1343
1344 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1345 INDEX and VALUE. */
1346 tree
1347 build_constructor_single (tree type, tree index, tree value)
1348 {
1349 VEC(constructor_elt,gc) *v;
1350 constructor_elt *elt;
1351
1352 v = VEC_alloc (constructor_elt, gc, 1);
1353 elt = VEC_quick_push (constructor_elt, v, NULL);
1354 elt->index = index;
1355 elt->value = value;
1356
1357 return build_constructor (type, v);
1358 }
1359
1360
1361 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1362 are in a list pointed to by VALS. */
1363 tree
1364 build_constructor_from_list (tree type, tree vals)
1365 {
1366 tree t;
1367 VEC(constructor_elt,gc) *v = NULL;
1368
1369 if (vals)
1370 {
1371 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1372 for (t = vals; t; t = TREE_CHAIN (t))
1373 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1374 }
1375
1376 return build_constructor (type, v);
1377 }
1378
1379 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1380
1381 tree
1382 build_fixed (tree type, FIXED_VALUE_TYPE f)
1383 {
1384 tree v;
1385 FIXED_VALUE_TYPE *fp;
1386
1387 v = make_node (FIXED_CST);
1388 fp = GGC_NEW (FIXED_VALUE_TYPE);
1389 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1390
1391 TREE_TYPE (v) = type;
1392 TREE_FIXED_CST_PTR (v) = fp;
1393 return v;
1394 }
1395
1396 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1397
1398 tree
1399 build_real (tree type, REAL_VALUE_TYPE d)
1400 {
1401 tree v;
1402 REAL_VALUE_TYPE *dp;
1403 int overflow = 0;
1404
1405 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1406 Consider doing it via real_convert now. */
1407
1408 v = make_node (REAL_CST);
1409 dp = GGC_NEW (REAL_VALUE_TYPE);
1410 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1411
1412 TREE_TYPE (v) = type;
1413 TREE_REAL_CST_PTR (v) = dp;
1414 TREE_OVERFLOW (v) = overflow;
1415 return v;
1416 }
1417
1418 /* Return a new REAL_CST node whose type is TYPE
1419 and whose value is the integer value of the INTEGER_CST node I. */
1420
1421 REAL_VALUE_TYPE
1422 real_value_from_int_cst (const_tree type, const_tree i)
1423 {
1424 REAL_VALUE_TYPE d;
1425
1426 /* Clear all bits of the real value type so that we can later do
1427 bitwise comparisons to see if two values are the same. */
1428 memset (&d, 0, sizeof d);
1429
1430 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1431 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1432 TYPE_UNSIGNED (TREE_TYPE (i)));
1433 return d;
1434 }
1435
1436 /* Given a tree representing an integer constant I, return a tree
1437 representing the same value as a floating-point constant of type TYPE. */
1438
1439 tree
1440 build_real_from_int_cst (tree type, const_tree i)
1441 {
1442 tree v;
1443 int overflow = TREE_OVERFLOW (i);
1444
1445 v = build_real (type, real_value_from_int_cst (type, i));
1446
1447 TREE_OVERFLOW (v) |= overflow;
1448 return v;
1449 }
1450
1451 /* Return a newly constructed STRING_CST node whose value is
1452 the LEN characters at STR.
1453 The TREE_TYPE is not initialized. */
1454
1455 tree
1456 build_string (int len, const char *str)
1457 {
1458 tree s;
1459 size_t length;
1460
1461 /* Do not waste bytes provided by padding of struct tree_string. */
1462 length = len + offsetof (struct tree_string, str) + 1;
1463
1464 #ifdef GATHER_STATISTICS
1465 tree_node_counts[(int) c_kind]++;
1466 tree_node_sizes[(int) c_kind] += length;
1467 #endif
1468
1469 s = ggc_alloc_tree (length);
1470
1471 memset (s, 0, sizeof (struct tree_common));
1472 TREE_SET_CODE (s, STRING_CST);
1473 TREE_CONSTANT (s) = 1;
1474 TREE_STRING_LENGTH (s) = len;
1475 memcpy (s->string.str, str, len);
1476 s->string.str[len] = '\0';
1477
1478 return s;
1479 }
1480
1481 /* Return a newly constructed COMPLEX_CST node whose value is
1482 specified by the real and imaginary parts REAL and IMAG.
1483 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1484 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1485
1486 tree
1487 build_complex (tree type, tree real, tree imag)
1488 {
1489 tree t = make_node (COMPLEX_CST);
1490
1491 TREE_REALPART (t) = real;
1492 TREE_IMAGPART (t) = imag;
1493 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1494 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1495 return t;
1496 }
1497
1498 /* Return a constant of arithmetic type TYPE which is the
1499 multiplicative identity of the set TYPE. */
1500
1501 tree
1502 build_one_cst (tree type)
1503 {
1504 switch (TREE_CODE (type))
1505 {
1506 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1507 case POINTER_TYPE: case REFERENCE_TYPE:
1508 case OFFSET_TYPE:
1509 return build_int_cst (type, 1);
1510
1511 case REAL_TYPE:
1512 return build_real (type, dconst1);
1513
1514 case FIXED_POINT_TYPE:
1515 /* We can only generate 1 for accum types. */
1516 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1517 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1518
1519 case VECTOR_TYPE:
1520 {
1521 tree scalar, cst;
1522 int i;
1523
1524 scalar = build_one_cst (TREE_TYPE (type));
1525
1526 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1527 cst = NULL_TREE;
1528 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1529 cst = tree_cons (NULL_TREE, scalar, cst);
1530
1531 return build_vector (type, cst);
1532 }
1533
1534 case COMPLEX_TYPE:
1535 return build_complex (type,
1536 build_one_cst (TREE_TYPE (type)),
1537 fold_convert (TREE_TYPE (type), integer_zero_node));
1538
1539 default:
1540 gcc_unreachable ();
1541 }
1542 }
1543
1544 /* Build a BINFO with LEN language slots. */
1545
1546 tree
1547 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1548 {
1549 tree t;
1550 size_t length = (offsetof (struct tree_binfo, base_binfos)
1551 + VEC_embedded_size (tree, base_binfos));
1552
1553 #ifdef GATHER_STATISTICS
1554 tree_node_counts[(int) binfo_kind]++;
1555 tree_node_sizes[(int) binfo_kind] += length;
1556 #endif
1557
1558 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1559
1560 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1561
1562 TREE_SET_CODE (t, TREE_BINFO);
1563
1564 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1565
1566 return t;
1567 }
1568
1569
1570 /* Build a newly constructed TREE_VEC node of length LEN. */
1571
1572 tree
1573 make_tree_vec_stat (int len MEM_STAT_DECL)
1574 {
1575 tree t;
1576 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1577
1578 #ifdef GATHER_STATISTICS
1579 tree_node_counts[(int) vec_kind]++;
1580 tree_node_sizes[(int) vec_kind] += length;
1581 #endif
1582
1583 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1584
1585 memset (t, 0, length);
1586
1587 TREE_SET_CODE (t, TREE_VEC);
1588 TREE_VEC_LENGTH (t) = len;
1589
1590 return t;
1591 }
1592 \f
1593 /* Return 1 if EXPR is the integer constant zero or a complex constant
1594 of zero. */
1595
1596 int
1597 integer_zerop (const_tree expr)
1598 {
1599 STRIP_NOPS (expr);
1600
1601 return ((TREE_CODE (expr) == INTEGER_CST
1602 && TREE_INT_CST_LOW (expr) == 0
1603 && TREE_INT_CST_HIGH (expr) == 0)
1604 || (TREE_CODE (expr) == COMPLEX_CST
1605 && integer_zerop (TREE_REALPART (expr))
1606 && integer_zerop (TREE_IMAGPART (expr))));
1607 }
1608
1609 /* Return 1 if EXPR is the integer constant one or the corresponding
1610 complex constant. */
1611
1612 int
1613 integer_onep (const_tree expr)
1614 {
1615 STRIP_NOPS (expr);
1616
1617 return ((TREE_CODE (expr) == INTEGER_CST
1618 && TREE_INT_CST_LOW (expr) == 1
1619 && TREE_INT_CST_HIGH (expr) == 0)
1620 || (TREE_CODE (expr) == COMPLEX_CST
1621 && integer_onep (TREE_REALPART (expr))
1622 && integer_zerop (TREE_IMAGPART (expr))));
1623 }
1624
1625 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1626 it contains. Likewise for the corresponding complex constant. */
1627
1628 int
1629 integer_all_onesp (const_tree expr)
1630 {
1631 int prec;
1632 int uns;
1633
1634 STRIP_NOPS (expr);
1635
1636 if (TREE_CODE (expr) == COMPLEX_CST
1637 && integer_all_onesp (TREE_REALPART (expr))
1638 && integer_zerop (TREE_IMAGPART (expr)))
1639 return 1;
1640
1641 else if (TREE_CODE (expr) != INTEGER_CST)
1642 return 0;
1643
1644 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1645 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1646 && TREE_INT_CST_HIGH (expr) == -1)
1647 return 1;
1648 if (!uns)
1649 return 0;
1650
1651 /* Note that using TYPE_PRECISION here is wrong. We care about the
1652 actual bits, not the (arbitrary) range of the type. */
1653 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1654 if (prec >= HOST_BITS_PER_WIDE_INT)
1655 {
1656 HOST_WIDE_INT high_value;
1657 int shift_amount;
1658
1659 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1660
1661 /* Can not handle precisions greater than twice the host int size. */
1662 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1663 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1664 /* Shifting by the host word size is undefined according to the ANSI
1665 standard, so we must handle this as a special case. */
1666 high_value = -1;
1667 else
1668 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1669
1670 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1671 && TREE_INT_CST_HIGH (expr) == high_value);
1672 }
1673 else
1674 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1675 }
1676
1677 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1678 one bit on). */
1679
1680 int
1681 integer_pow2p (const_tree expr)
1682 {
1683 int prec;
1684 HOST_WIDE_INT high, low;
1685
1686 STRIP_NOPS (expr);
1687
1688 if (TREE_CODE (expr) == COMPLEX_CST
1689 && integer_pow2p (TREE_REALPART (expr))
1690 && integer_zerop (TREE_IMAGPART (expr)))
1691 return 1;
1692
1693 if (TREE_CODE (expr) != INTEGER_CST)
1694 return 0;
1695
1696 prec = TYPE_PRECISION (TREE_TYPE (expr));
1697 high = TREE_INT_CST_HIGH (expr);
1698 low = TREE_INT_CST_LOW (expr);
1699
1700 /* First clear all bits that are beyond the type's precision in case
1701 we've been sign extended. */
1702
1703 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1704 ;
1705 else if (prec > HOST_BITS_PER_WIDE_INT)
1706 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1707 else
1708 {
1709 high = 0;
1710 if (prec < HOST_BITS_PER_WIDE_INT)
1711 low &= ~((HOST_WIDE_INT) (-1) << prec);
1712 }
1713
1714 if (high == 0 && low == 0)
1715 return 0;
1716
1717 return ((high == 0 && (low & (low - 1)) == 0)
1718 || (low == 0 && (high & (high - 1)) == 0));
1719 }
1720
1721 /* Return 1 if EXPR is an integer constant other than zero or a
1722 complex constant other than zero. */
1723
1724 int
1725 integer_nonzerop (const_tree expr)
1726 {
1727 STRIP_NOPS (expr);
1728
1729 return ((TREE_CODE (expr) == INTEGER_CST
1730 && (TREE_INT_CST_LOW (expr) != 0
1731 || TREE_INT_CST_HIGH (expr) != 0))
1732 || (TREE_CODE (expr) == COMPLEX_CST
1733 && (integer_nonzerop (TREE_REALPART (expr))
1734 || integer_nonzerop (TREE_IMAGPART (expr)))));
1735 }
1736
1737 /* Return 1 if EXPR is the fixed-point constant zero. */
1738
1739 int
1740 fixed_zerop (const_tree expr)
1741 {
1742 return (TREE_CODE (expr) == FIXED_CST
1743 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1744 }
1745
1746 /* Return the power of two represented by a tree node known to be a
1747 power of two. */
1748
1749 int
1750 tree_log2 (const_tree expr)
1751 {
1752 int prec;
1753 HOST_WIDE_INT high, low;
1754
1755 STRIP_NOPS (expr);
1756
1757 if (TREE_CODE (expr) == COMPLEX_CST)
1758 return tree_log2 (TREE_REALPART (expr));
1759
1760 prec = TYPE_PRECISION (TREE_TYPE (expr));
1761 high = TREE_INT_CST_HIGH (expr);
1762 low = TREE_INT_CST_LOW (expr);
1763
1764 /* First clear all bits that are beyond the type's precision in case
1765 we've been sign extended. */
1766
1767 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1768 ;
1769 else if (prec > HOST_BITS_PER_WIDE_INT)
1770 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1771 else
1772 {
1773 high = 0;
1774 if (prec < HOST_BITS_PER_WIDE_INT)
1775 low &= ~((HOST_WIDE_INT) (-1) << prec);
1776 }
1777
1778 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1779 : exact_log2 (low));
1780 }
1781
1782 /* Similar, but return the largest integer Y such that 2 ** Y is less
1783 than or equal to EXPR. */
1784
1785 int
1786 tree_floor_log2 (const_tree expr)
1787 {
1788 int prec;
1789 HOST_WIDE_INT high, low;
1790
1791 STRIP_NOPS (expr);
1792
1793 if (TREE_CODE (expr) == COMPLEX_CST)
1794 return tree_log2 (TREE_REALPART (expr));
1795
1796 prec = TYPE_PRECISION (TREE_TYPE (expr));
1797 high = TREE_INT_CST_HIGH (expr);
1798 low = TREE_INT_CST_LOW (expr);
1799
1800 /* First clear all bits that are beyond the type's precision in case
1801 we've been sign extended. Ignore if type's precision hasn't been set
1802 since what we are doing is setting it. */
1803
1804 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1805 ;
1806 else if (prec > HOST_BITS_PER_WIDE_INT)
1807 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1808 else
1809 {
1810 high = 0;
1811 if (prec < HOST_BITS_PER_WIDE_INT)
1812 low &= ~((HOST_WIDE_INT) (-1) << prec);
1813 }
1814
1815 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1816 : floor_log2 (low));
1817 }
1818
1819 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1820 decimal float constants, so don't return 1 for them. */
1821
1822 int
1823 real_zerop (const_tree expr)
1824 {
1825 STRIP_NOPS (expr);
1826
1827 return ((TREE_CODE (expr) == REAL_CST
1828 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1829 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1830 || (TREE_CODE (expr) == COMPLEX_CST
1831 && real_zerop (TREE_REALPART (expr))
1832 && real_zerop (TREE_IMAGPART (expr))));
1833 }
1834
1835 /* Return 1 if EXPR is the real constant one in real or complex form.
1836 Trailing zeroes matter for decimal float constants, so don't return
1837 1 for them. */
1838
1839 int
1840 real_onep (const_tree expr)
1841 {
1842 STRIP_NOPS (expr);
1843
1844 return ((TREE_CODE (expr) == REAL_CST
1845 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1846 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1847 || (TREE_CODE (expr) == COMPLEX_CST
1848 && real_onep (TREE_REALPART (expr))
1849 && real_zerop (TREE_IMAGPART (expr))));
1850 }
1851
1852 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1853 for decimal float constants, so don't return 1 for them. */
1854
1855 int
1856 real_twop (const_tree expr)
1857 {
1858 STRIP_NOPS (expr);
1859
1860 return ((TREE_CODE (expr) == REAL_CST
1861 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1862 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1863 || (TREE_CODE (expr) == COMPLEX_CST
1864 && real_twop (TREE_REALPART (expr))
1865 && real_zerop (TREE_IMAGPART (expr))));
1866 }
1867
1868 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1869 matter for decimal float constants, so don't return 1 for them. */
1870
1871 int
1872 real_minus_onep (const_tree expr)
1873 {
1874 STRIP_NOPS (expr);
1875
1876 return ((TREE_CODE (expr) == REAL_CST
1877 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1878 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1879 || (TREE_CODE (expr) == COMPLEX_CST
1880 && real_minus_onep (TREE_REALPART (expr))
1881 && real_zerop (TREE_IMAGPART (expr))));
1882 }
1883
1884 /* Nonzero if EXP is a constant or a cast of a constant. */
1885
1886 int
1887 really_constant_p (const_tree exp)
1888 {
1889 /* This is not quite the same as STRIP_NOPS. It does more. */
1890 while (CONVERT_EXPR_P (exp)
1891 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1892 exp = TREE_OPERAND (exp, 0);
1893 return TREE_CONSTANT (exp);
1894 }
1895 \f
1896 /* Return first list element whose TREE_VALUE is ELEM.
1897 Return 0 if ELEM is not in LIST. */
1898
1899 tree
1900 value_member (tree elem, tree list)
1901 {
1902 while (list)
1903 {
1904 if (elem == TREE_VALUE (list))
1905 return list;
1906 list = TREE_CHAIN (list);
1907 }
1908 return NULL_TREE;
1909 }
1910
1911 /* Return first list element whose TREE_PURPOSE is ELEM.
1912 Return 0 if ELEM is not in LIST. */
1913
1914 tree
1915 purpose_member (const_tree elem, tree list)
1916 {
1917 while (list)
1918 {
1919 if (elem == TREE_PURPOSE (list))
1920 return list;
1921 list = TREE_CHAIN (list);
1922 }
1923 return NULL_TREE;
1924 }
1925
1926 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1927 NULL_TREE. */
1928
1929 tree
1930 chain_index (int idx, tree chain)
1931 {
1932 for (; chain && idx > 0; --idx)
1933 chain = TREE_CHAIN (chain);
1934 return chain;
1935 }
1936
1937 /* Return nonzero if ELEM is part of the chain CHAIN. */
1938
1939 int
1940 chain_member (const_tree elem, const_tree chain)
1941 {
1942 while (chain)
1943 {
1944 if (elem == chain)
1945 return 1;
1946 chain = TREE_CHAIN (chain);
1947 }
1948
1949 return 0;
1950 }
1951
1952 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1953 We expect a null pointer to mark the end of the chain.
1954 This is the Lisp primitive `length'. */
1955
1956 int
1957 list_length (const_tree t)
1958 {
1959 const_tree p = t;
1960 #ifdef ENABLE_TREE_CHECKING
1961 const_tree q = t;
1962 #endif
1963 int len = 0;
1964
1965 while (p)
1966 {
1967 p = TREE_CHAIN (p);
1968 #ifdef ENABLE_TREE_CHECKING
1969 if (len % 2)
1970 q = TREE_CHAIN (q);
1971 gcc_assert (p != q);
1972 #endif
1973 len++;
1974 }
1975
1976 return len;
1977 }
1978
1979 /* Returns the number of FIELD_DECLs in TYPE. */
1980
1981 int
1982 fields_length (const_tree type)
1983 {
1984 tree t = TYPE_FIELDS (type);
1985 int count = 0;
1986
1987 for (; t; t = TREE_CHAIN (t))
1988 if (TREE_CODE (t) == FIELD_DECL)
1989 ++count;
1990
1991 return count;
1992 }
1993
1994 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
1995 UNION_TYPE TYPE, or NULL_TREE if none. */
1996
1997 tree
1998 first_field (const_tree type)
1999 {
2000 tree t = TYPE_FIELDS (type);
2001 while (t && TREE_CODE (t) != FIELD_DECL)
2002 t = TREE_CHAIN (t);
2003 return t;
2004 }
2005
2006 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2007 by modifying the last node in chain 1 to point to chain 2.
2008 This is the Lisp primitive `nconc'. */
2009
2010 tree
2011 chainon (tree op1, tree op2)
2012 {
2013 tree t1;
2014
2015 if (!op1)
2016 return op2;
2017 if (!op2)
2018 return op1;
2019
2020 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2021 continue;
2022 TREE_CHAIN (t1) = op2;
2023
2024 #ifdef ENABLE_TREE_CHECKING
2025 {
2026 tree t2;
2027 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2028 gcc_assert (t2 != t1);
2029 }
2030 #endif
2031
2032 return op1;
2033 }
2034
2035 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2036
2037 tree
2038 tree_last (tree chain)
2039 {
2040 tree next;
2041 if (chain)
2042 while ((next = TREE_CHAIN (chain)))
2043 chain = next;
2044 return chain;
2045 }
2046
2047 /* Reverse the order of elements in the chain T,
2048 and return the new head of the chain (old last element). */
2049
2050 tree
2051 nreverse (tree t)
2052 {
2053 tree prev = 0, decl, next;
2054 for (decl = t; decl; decl = next)
2055 {
2056 next = TREE_CHAIN (decl);
2057 TREE_CHAIN (decl) = prev;
2058 prev = decl;
2059 }
2060 return prev;
2061 }
2062 \f
2063 /* Return a newly created TREE_LIST node whose
2064 purpose and value fields are PARM and VALUE. */
2065
2066 tree
2067 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2068 {
2069 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2070 TREE_PURPOSE (t) = parm;
2071 TREE_VALUE (t) = value;
2072 return t;
2073 }
2074
2075 /* Build a chain of TREE_LIST nodes from a vector. */
2076
2077 tree
2078 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2079 {
2080 tree ret = NULL_TREE;
2081 tree *pp = &ret;
2082 unsigned int i;
2083 tree t;
2084 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2085 {
2086 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2087 pp = &TREE_CHAIN (*pp);
2088 }
2089 return ret;
2090 }
2091
2092 /* Return a newly created TREE_LIST node whose
2093 purpose and value fields are PURPOSE and VALUE
2094 and whose TREE_CHAIN is CHAIN. */
2095
2096 tree
2097 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2098 {
2099 tree node;
2100
2101 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2102
2103 memset (node, 0, sizeof (struct tree_common));
2104
2105 #ifdef GATHER_STATISTICS
2106 tree_node_counts[(int) x_kind]++;
2107 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2108 #endif
2109
2110 TREE_SET_CODE (node, TREE_LIST);
2111 TREE_CHAIN (node) = chain;
2112 TREE_PURPOSE (node) = purpose;
2113 TREE_VALUE (node) = value;
2114 return node;
2115 }
2116
2117 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2118 trees. */
2119
2120 VEC(tree,gc) *
2121 ctor_to_vec (tree ctor)
2122 {
2123 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2124 unsigned int ix;
2125 tree val;
2126
2127 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2128 VEC_quick_push (tree, vec, val);
2129
2130 return vec;
2131 }
2132 \f
2133 /* Return the size nominally occupied by an object of type TYPE
2134 when it resides in memory. The value is measured in units of bytes,
2135 and its data type is that normally used for type sizes
2136 (which is the first type created by make_signed_type or
2137 make_unsigned_type). */
2138
2139 tree
2140 size_in_bytes (const_tree type)
2141 {
2142 tree t;
2143
2144 if (type == error_mark_node)
2145 return integer_zero_node;
2146
2147 type = TYPE_MAIN_VARIANT (type);
2148 t = TYPE_SIZE_UNIT (type);
2149
2150 if (t == 0)
2151 {
2152 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2153 return size_zero_node;
2154 }
2155
2156 return t;
2157 }
2158
2159 /* Return the size of TYPE (in bytes) as a wide integer
2160 or return -1 if the size can vary or is larger than an integer. */
2161
2162 HOST_WIDE_INT
2163 int_size_in_bytes (const_tree type)
2164 {
2165 tree t;
2166
2167 if (type == error_mark_node)
2168 return 0;
2169
2170 type = TYPE_MAIN_VARIANT (type);
2171 t = TYPE_SIZE_UNIT (type);
2172 if (t == 0
2173 || TREE_CODE (t) != INTEGER_CST
2174 || TREE_INT_CST_HIGH (t) != 0
2175 /* If the result would appear negative, it's too big to represent. */
2176 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2177 return -1;
2178
2179 return TREE_INT_CST_LOW (t);
2180 }
2181
2182 /* Return the maximum size of TYPE (in bytes) as a wide integer
2183 or return -1 if the size can vary or is larger than an integer. */
2184
2185 HOST_WIDE_INT
2186 max_int_size_in_bytes (const_tree type)
2187 {
2188 HOST_WIDE_INT size = -1;
2189 tree size_tree;
2190
2191 /* If this is an array type, check for a possible MAX_SIZE attached. */
2192
2193 if (TREE_CODE (type) == ARRAY_TYPE)
2194 {
2195 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2196
2197 if (size_tree && host_integerp (size_tree, 1))
2198 size = tree_low_cst (size_tree, 1);
2199 }
2200
2201 /* If we still haven't been able to get a size, see if the language
2202 can compute a maximum size. */
2203
2204 if (size == -1)
2205 {
2206 size_tree = lang_hooks.types.max_size (type);
2207
2208 if (size_tree && host_integerp (size_tree, 1))
2209 size = tree_low_cst (size_tree, 1);
2210 }
2211
2212 return size;
2213 }
2214
2215 /* Returns a tree for the size of EXP in bytes. */
2216
2217 tree
2218 tree_expr_size (const_tree exp)
2219 {
2220 if (DECL_P (exp)
2221 && DECL_SIZE_UNIT (exp) != 0)
2222 return DECL_SIZE_UNIT (exp);
2223 else
2224 return size_in_bytes (TREE_TYPE (exp));
2225 }
2226 \f
2227 /* Return the bit position of FIELD, in bits from the start of the record.
2228 This is a tree of type bitsizetype. */
2229
2230 tree
2231 bit_position (const_tree field)
2232 {
2233 return bit_from_pos (DECL_FIELD_OFFSET (field),
2234 DECL_FIELD_BIT_OFFSET (field));
2235 }
2236
2237 /* Likewise, but return as an integer. It must be representable in
2238 that way (since it could be a signed value, we don't have the
2239 option of returning -1 like int_size_in_byte can. */
2240
2241 HOST_WIDE_INT
2242 int_bit_position (const_tree field)
2243 {
2244 return tree_low_cst (bit_position (field), 0);
2245 }
2246 \f
2247 /* Return the byte position of FIELD, in bytes from the start of the record.
2248 This is a tree of type sizetype. */
2249
2250 tree
2251 byte_position (const_tree field)
2252 {
2253 return byte_from_pos (DECL_FIELD_OFFSET (field),
2254 DECL_FIELD_BIT_OFFSET (field));
2255 }
2256
2257 /* Likewise, but return as an integer. It must be representable in
2258 that way (since it could be a signed value, we don't have the
2259 option of returning -1 like int_size_in_byte can. */
2260
2261 HOST_WIDE_INT
2262 int_byte_position (const_tree field)
2263 {
2264 return tree_low_cst (byte_position (field), 0);
2265 }
2266 \f
2267 /* Return the strictest alignment, in bits, that T is known to have. */
2268
2269 unsigned int
2270 expr_align (const_tree t)
2271 {
2272 unsigned int align0, align1;
2273
2274 switch (TREE_CODE (t))
2275 {
2276 CASE_CONVERT: case NON_LVALUE_EXPR:
2277 /* If we have conversions, we know that the alignment of the
2278 object must meet each of the alignments of the types. */
2279 align0 = expr_align (TREE_OPERAND (t, 0));
2280 align1 = TYPE_ALIGN (TREE_TYPE (t));
2281 return MAX (align0, align1);
2282
2283 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2284 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2285 case CLEANUP_POINT_EXPR:
2286 /* These don't change the alignment of an object. */
2287 return expr_align (TREE_OPERAND (t, 0));
2288
2289 case COND_EXPR:
2290 /* The best we can do is say that the alignment is the least aligned
2291 of the two arms. */
2292 align0 = expr_align (TREE_OPERAND (t, 1));
2293 align1 = expr_align (TREE_OPERAND (t, 2));
2294 return MIN (align0, align1);
2295
2296 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2297 meaningfully, it's always 1. */
2298 case LABEL_DECL: case CONST_DECL:
2299 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2300 case FUNCTION_DECL:
2301 gcc_assert (DECL_ALIGN (t) != 0);
2302 return DECL_ALIGN (t);
2303
2304 default:
2305 break;
2306 }
2307
2308 /* Otherwise take the alignment from that of the type. */
2309 return TYPE_ALIGN (TREE_TYPE (t));
2310 }
2311 \f
2312 /* Return, as a tree node, the number of elements for TYPE (which is an
2313 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2314
2315 tree
2316 array_type_nelts (const_tree type)
2317 {
2318 tree index_type, min, max;
2319
2320 /* If they did it with unspecified bounds, then we should have already
2321 given an error about it before we got here. */
2322 if (! TYPE_DOMAIN (type))
2323 return error_mark_node;
2324
2325 index_type = TYPE_DOMAIN (type);
2326 min = TYPE_MIN_VALUE (index_type);
2327 max = TYPE_MAX_VALUE (index_type);
2328
2329 return (integer_zerop (min)
2330 ? max
2331 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2332 }
2333 \f
2334 /* If arg is static -- a reference to an object in static storage -- then
2335 return the object. This is not the same as the C meaning of `static'.
2336 If arg isn't static, return NULL. */
2337
2338 tree
2339 staticp (tree arg)
2340 {
2341 switch (TREE_CODE (arg))
2342 {
2343 case FUNCTION_DECL:
2344 /* Nested functions are static, even though taking their address will
2345 involve a trampoline as we unnest the nested function and create
2346 the trampoline on the tree level. */
2347 return arg;
2348
2349 case VAR_DECL:
2350 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2351 && ! DECL_THREAD_LOCAL_P (arg)
2352 && ! DECL_DLLIMPORT_P (arg)
2353 ? arg : NULL);
2354
2355 case CONST_DECL:
2356 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2357 ? arg : NULL);
2358
2359 case CONSTRUCTOR:
2360 return TREE_STATIC (arg) ? arg : NULL;
2361
2362 case LABEL_DECL:
2363 case STRING_CST:
2364 return arg;
2365
2366 case COMPONENT_REF:
2367 /* If the thing being referenced is not a field, then it is
2368 something language specific. */
2369 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2370
2371 /* If we are referencing a bitfield, we can't evaluate an
2372 ADDR_EXPR at compile time and so it isn't a constant. */
2373 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2374 return NULL;
2375
2376 return staticp (TREE_OPERAND (arg, 0));
2377
2378 case BIT_FIELD_REF:
2379 return NULL;
2380
2381 case MISALIGNED_INDIRECT_REF:
2382 case ALIGN_INDIRECT_REF:
2383 case INDIRECT_REF:
2384 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2385
2386 case ARRAY_REF:
2387 case ARRAY_RANGE_REF:
2388 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2389 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2390 return staticp (TREE_OPERAND (arg, 0));
2391 else
2392 return NULL;
2393
2394 case COMPOUND_LITERAL_EXPR:
2395 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2396
2397 default:
2398 return NULL;
2399 }
2400 }
2401
2402 \f
2403
2404
2405 /* Return whether OP is a DECL whose address is function-invariant. */
2406
2407 bool
2408 decl_address_invariant_p (const_tree op)
2409 {
2410 /* The conditions below are slightly less strict than the one in
2411 staticp. */
2412
2413 switch (TREE_CODE (op))
2414 {
2415 case PARM_DECL:
2416 case RESULT_DECL:
2417 case LABEL_DECL:
2418 case FUNCTION_DECL:
2419 return true;
2420
2421 case VAR_DECL:
2422 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2423 && !DECL_DLLIMPORT_P (op))
2424 || DECL_THREAD_LOCAL_P (op)
2425 || DECL_CONTEXT (op) == current_function_decl
2426 || decl_function_context (op) == current_function_decl)
2427 return true;
2428 break;
2429
2430 case CONST_DECL:
2431 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2432 || decl_function_context (op) == current_function_decl)
2433 return true;
2434 break;
2435
2436 default:
2437 break;
2438 }
2439
2440 return false;
2441 }
2442
2443 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2444
2445 bool
2446 decl_address_ip_invariant_p (const_tree op)
2447 {
2448 /* The conditions below are slightly less strict than the one in
2449 staticp. */
2450
2451 switch (TREE_CODE (op))
2452 {
2453 case LABEL_DECL:
2454 case FUNCTION_DECL:
2455 case STRING_CST:
2456 return true;
2457
2458 case VAR_DECL:
2459 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2460 && !DECL_DLLIMPORT_P (op))
2461 || DECL_THREAD_LOCAL_P (op))
2462 return true;
2463 break;
2464
2465 case CONST_DECL:
2466 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2467 return true;
2468 break;
2469
2470 default:
2471 break;
2472 }
2473
2474 return false;
2475 }
2476
2477
2478 /* Return true if T is function-invariant (internal function, does
2479 not handle arithmetic; that's handled in skip_simple_arithmetic and
2480 tree_invariant_p). */
2481
2482 static bool tree_invariant_p (tree t);
2483
2484 static bool
2485 tree_invariant_p_1 (tree t)
2486 {
2487 tree op;
2488
2489 if (TREE_CONSTANT (t)
2490 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2491 return true;
2492
2493 switch (TREE_CODE (t))
2494 {
2495 case SAVE_EXPR:
2496 return true;
2497
2498 case ADDR_EXPR:
2499 op = TREE_OPERAND (t, 0);
2500 while (handled_component_p (op))
2501 {
2502 switch (TREE_CODE (op))
2503 {
2504 case ARRAY_REF:
2505 case ARRAY_RANGE_REF:
2506 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2507 || TREE_OPERAND (op, 2) != NULL_TREE
2508 || TREE_OPERAND (op, 3) != NULL_TREE)
2509 return false;
2510 break;
2511
2512 case COMPONENT_REF:
2513 if (TREE_OPERAND (op, 2) != NULL_TREE)
2514 return false;
2515 break;
2516
2517 default:;
2518 }
2519 op = TREE_OPERAND (op, 0);
2520 }
2521
2522 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2523
2524 default:
2525 break;
2526 }
2527
2528 return false;
2529 }
2530
2531 /* Return true if T is function-invariant. */
2532
2533 static bool
2534 tree_invariant_p (tree t)
2535 {
2536 tree inner = skip_simple_arithmetic (t);
2537 return tree_invariant_p_1 (inner);
2538 }
2539
2540 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2541 Do this to any expression which may be used in more than one place,
2542 but must be evaluated only once.
2543
2544 Normally, expand_expr would reevaluate the expression each time.
2545 Calling save_expr produces something that is evaluated and recorded
2546 the first time expand_expr is called on it. Subsequent calls to
2547 expand_expr just reuse the recorded value.
2548
2549 The call to expand_expr that generates code that actually computes
2550 the value is the first call *at compile time*. Subsequent calls
2551 *at compile time* generate code to use the saved value.
2552 This produces correct result provided that *at run time* control
2553 always flows through the insns made by the first expand_expr
2554 before reaching the other places where the save_expr was evaluated.
2555 You, the caller of save_expr, must make sure this is so.
2556
2557 Constants, and certain read-only nodes, are returned with no
2558 SAVE_EXPR because that is safe. Expressions containing placeholders
2559 are not touched; see tree.def for an explanation of what these
2560 are used for. */
2561
2562 tree
2563 save_expr (tree expr)
2564 {
2565 tree t = fold (expr);
2566 tree inner;
2567
2568 /* If the tree evaluates to a constant, then we don't want to hide that
2569 fact (i.e. this allows further folding, and direct checks for constants).
2570 However, a read-only object that has side effects cannot be bypassed.
2571 Since it is no problem to reevaluate literals, we just return the
2572 literal node. */
2573 inner = skip_simple_arithmetic (t);
2574 if (TREE_CODE (inner) == ERROR_MARK)
2575 return inner;
2576
2577 if (tree_invariant_p_1 (inner))
2578 return t;
2579
2580 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2581 it means that the size or offset of some field of an object depends on
2582 the value within another field.
2583
2584 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2585 and some variable since it would then need to be both evaluated once and
2586 evaluated more than once. Front-ends must assure this case cannot
2587 happen by surrounding any such subexpressions in their own SAVE_EXPR
2588 and forcing evaluation at the proper time. */
2589 if (contains_placeholder_p (inner))
2590 return t;
2591
2592 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2593 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2594
2595 /* This expression might be placed ahead of a jump to ensure that the
2596 value was computed on both sides of the jump. So make sure it isn't
2597 eliminated as dead. */
2598 TREE_SIDE_EFFECTS (t) = 1;
2599 return t;
2600 }
2601
2602 /* Look inside EXPR and into any simple arithmetic operations. Return
2603 the innermost non-arithmetic node. */
2604
2605 tree
2606 skip_simple_arithmetic (tree expr)
2607 {
2608 tree inner;
2609
2610 /* We don't care about whether this can be used as an lvalue in this
2611 context. */
2612 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2613 expr = TREE_OPERAND (expr, 0);
2614
2615 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2616 a constant, it will be more efficient to not make another SAVE_EXPR since
2617 it will allow better simplification and GCSE will be able to merge the
2618 computations if they actually occur. */
2619 inner = expr;
2620 while (1)
2621 {
2622 if (UNARY_CLASS_P (inner))
2623 inner = TREE_OPERAND (inner, 0);
2624 else if (BINARY_CLASS_P (inner))
2625 {
2626 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2627 inner = TREE_OPERAND (inner, 0);
2628 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2629 inner = TREE_OPERAND (inner, 1);
2630 else
2631 break;
2632 }
2633 else
2634 break;
2635 }
2636
2637 return inner;
2638 }
2639
2640
2641 /* Return which tree structure is used by T. */
2642
2643 enum tree_node_structure_enum
2644 tree_node_structure (const_tree t)
2645 {
2646 const enum tree_code code = TREE_CODE (t);
2647 return tree_node_structure_for_code (code);
2648 }
2649
2650 /* Set various status flags when building a CALL_EXPR object T. */
2651
2652 static void
2653 process_call_operands (tree t)
2654 {
2655 bool side_effects = TREE_SIDE_EFFECTS (t);
2656 bool read_only = false;
2657 int i = call_expr_flags (t);
2658
2659 /* Calls have side-effects, except those to const or pure functions. */
2660 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2661 side_effects = true;
2662 /* Propagate TREE_READONLY of arguments for const functions. */
2663 if (i & ECF_CONST)
2664 read_only = true;
2665
2666 if (!side_effects || read_only)
2667 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2668 {
2669 tree op = TREE_OPERAND (t, i);
2670 if (op && TREE_SIDE_EFFECTS (op))
2671 side_effects = true;
2672 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2673 read_only = false;
2674 }
2675
2676 TREE_SIDE_EFFECTS (t) = side_effects;
2677 TREE_READONLY (t) = read_only;
2678 }
2679 \f
2680 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2681 or offset that depends on a field within a record. */
2682
2683 bool
2684 contains_placeholder_p (const_tree exp)
2685 {
2686 enum tree_code code;
2687
2688 if (!exp)
2689 return 0;
2690
2691 code = TREE_CODE (exp);
2692 if (code == PLACEHOLDER_EXPR)
2693 return 1;
2694
2695 switch (TREE_CODE_CLASS (code))
2696 {
2697 case tcc_reference:
2698 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2699 position computations since they will be converted into a
2700 WITH_RECORD_EXPR involving the reference, which will assume
2701 here will be valid. */
2702 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2703
2704 case tcc_exceptional:
2705 if (code == TREE_LIST)
2706 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2707 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2708 break;
2709
2710 case tcc_unary:
2711 case tcc_binary:
2712 case tcc_comparison:
2713 case tcc_expression:
2714 switch (code)
2715 {
2716 case COMPOUND_EXPR:
2717 /* Ignoring the first operand isn't quite right, but works best. */
2718 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2719
2720 case COND_EXPR:
2721 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2722 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2723 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2724
2725 case SAVE_EXPR:
2726 /* The save_expr function never wraps anything containing
2727 a PLACEHOLDER_EXPR. */
2728 return 0;
2729
2730 default:
2731 break;
2732 }
2733
2734 switch (TREE_CODE_LENGTH (code))
2735 {
2736 case 1:
2737 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2738 case 2:
2739 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2740 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2741 default:
2742 return 0;
2743 }
2744
2745 case tcc_vl_exp:
2746 switch (code)
2747 {
2748 case CALL_EXPR:
2749 {
2750 const_tree arg;
2751 const_call_expr_arg_iterator iter;
2752 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2753 if (CONTAINS_PLACEHOLDER_P (arg))
2754 return 1;
2755 return 0;
2756 }
2757 default:
2758 return 0;
2759 }
2760
2761 default:
2762 return 0;
2763 }
2764 return 0;
2765 }
2766
2767 /* Return true if any part of the computation of TYPE involves a
2768 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2769 (for QUAL_UNION_TYPE) and field positions. */
2770
2771 static bool
2772 type_contains_placeholder_1 (const_tree type)
2773 {
2774 /* If the size contains a placeholder or the parent type (component type in
2775 the case of arrays) type involves a placeholder, this type does. */
2776 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2777 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2778 || (TREE_TYPE (type) != 0
2779 && type_contains_placeholder_p (TREE_TYPE (type))))
2780 return true;
2781
2782 /* Now do type-specific checks. Note that the last part of the check above
2783 greatly limits what we have to do below. */
2784 switch (TREE_CODE (type))
2785 {
2786 case VOID_TYPE:
2787 case COMPLEX_TYPE:
2788 case ENUMERAL_TYPE:
2789 case BOOLEAN_TYPE:
2790 case POINTER_TYPE:
2791 case OFFSET_TYPE:
2792 case REFERENCE_TYPE:
2793 case METHOD_TYPE:
2794 case FUNCTION_TYPE:
2795 case VECTOR_TYPE:
2796 return false;
2797
2798 case INTEGER_TYPE:
2799 case REAL_TYPE:
2800 case FIXED_POINT_TYPE:
2801 /* Here we just check the bounds. */
2802 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2803 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2804
2805 case ARRAY_TYPE:
2806 /* We're already checked the component type (TREE_TYPE), so just check
2807 the index type. */
2808 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2809
2810 case RECORD_TYPE:
2811 case UNION_TYPE:
2812 case QUAL_UNION_TYPE:
2813 {
2814 tree field;
2815
2816 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2817 if (TREE_CODE (field) == FIELD_DECL
2818 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2819 || (TREE_CODE (type) == QUAL_UNION_TYPE
2820 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2821 || type_contains_placeholder_p (TREE_TYPE (field))))
2822 return true;
2823
2824 return false;
2825 }
2826
2827 default:
2828 gcc_unreachable ();
2829 }
2830 }
2831
2832 bool
2833 type_contains_placeholder_p (tree type)
2834 {
2835 bool result;
2836
2837 /* If the contains_placeholder_bits field has been initialized,
2838 then we know the answer. */
2839 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2840 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2841
2842 /* Indicate that we've seen this type node, and the answer is false.
2843 This is what we want to return if we run into recursion via fields. */
2844 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2845
2846 /* Compute the real value. */
2847 result = type_contains_placeholder_1 (type);
2848
2849 /* Store the real value. */
2850 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2851
2852 return result;
2853 }
2854 \f
2855 /* Push tree EXP onto vector QUEUE if it is not already present. */
2856
2857 static void
2858 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2859 {
2860 unsigned int i;
2861 tree iter;
2862
2863 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2864 if (simple_cst_equal (iter, exp) == 1)
2865 break;
2866
2867 if (!iter)
2868 VEC_safe_push (tree, heap, *queue, exp);
2869 }
2870
2871 /* Given a tree EXP, find all occurences of references to fields
2872 in a PLACEHOLDER_EXPR and place them in vector REFS without
2873 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2874 we assume here that EXP contains only arithmetic expressions
2875 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2876 argument list. */
2877
2878 void
2879 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2880 {
2881 enum tree_code code = TREE_CODE (exp);
2882 tree inner;
2883 int i;
2884
2885 /* We handle TREE_LIST and COMPONENT_REF separately. */
2886 if (code == TREE_LIST)
2887 {
2888 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2889 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2890 }
2891 else if (code == COMPONENT_REF)
2892 {
2893 for (inner = TREE_OPERAND (exp, 0);
2894 REFERENCE_CLASS_P (inner);
2895 inner = TREE_OPERAND (inner, 0))
2896 ;
2897
2898 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2899 push_without_duplicates (exp, refs);
2900 else
2901 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2902 }
2903 else
2904 switch (TREE_CODE_CLASS (code))
2905 {
2906 case tcc_constant:
2907 break;
2908
2909 case tcc_declaration:
2910 /* Variables allocated to static storage can stay. */
2911 if (!TREE_STATIC (exp))
2912 push_without_duplicates (exp, refs);
2913 break;
2914
2915 case tcc_expression:
2916 /* This is the pattern built in ada/make_aligning_type. */
2917 if (code == ADDR_EXPR
2918 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2919 {
2920 push_without_duplicates (exp, refs);
2921 break;
2922 }
2923
2924 /* Fall through... */
2925
2926 case tcc_exceptional:
2927 case tcc_unary:
2928 case tcc_binary:
2929 case tcc_comparison:
2930 case tcc_reference:
2931 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2932 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2933 break;
2934
2935 case tcc_vl_exp:
2936 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2937 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2938 break;
2939
2940 default:
2941 gcc_unreachable ();
2942 }
2943 }
2944
2945 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2946 return a tree with all occurrences of references to F in a
2947 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2948 CONST_DECLs. Note that we assume here that EXP contains only
2949 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2950 occurring only in their argument list. */
2951
2952 tree
2953 substitute_in_expr (tree exp, tree f, tree r)
2954 {
2955 enum tree_code code = TREE_CODE (exp);
2956 tree op0, op1, op2, op3;
2957 tree new_tree;
2958
2959 /* We handle TREE_LIST and COMPONENT_REF separately. */
2960 if (code == TREE_LIST)
2961 {
2962 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2963 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2964 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2965 return exp;
2966
2967 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2968 }
2969 else if (code == COMPONENT_REF)
2970 {
2971 tree inner;
2972
2973 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2974 and it is the right field, replace it with R. */
2975 for (inner = TREE_OPERAND (exp, 0);
2976 REFERENCE_CLASS_P (inner);
2977 inner = TREE_OPERAND (inner, 0))
2978 ;
2979
2980 /* The field. */
2981 op1 = TREE_OPERAND (exp, 1);
2982
2983 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2984 return r;
2985
2986 /* If this expression hasn't been completed let, leave it alone. */
2987 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2988 return exp;
2989
2990 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2991 if (op0 == TREE_OPERAND (exp, 0))
2992 return exp;
2993
2994 new_tree
2995 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
2996 }
2997 else
2998 switch (TREE_CODE_CLASS (code))
2999 {
3000 case tcc_constant:
3001 return exp;
3002
3003 case tcc_declaration:
3004 if (exp == f)
3005 return r;
3006 else
3007 return exp;
3008
3009 case tcc_expression:
3010 if (exp == f)
3011 return r;
3012
3013 /* Fall through... */
3014
3015 case tcc_exceptional:
3016 case tcc_unary:
3017 case tcc_binary:
3018 case tcc_comparison:
3019 case tcc_reference:
3020 switch (TREE_CODE_LENGTH (code))
3021 {
3022 case 0:
3023 return exp;
3024
3025 case 1:
3026 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3027 if (op0 == TREE_OPERAND (exp, 0))
3028 return exp;
3029
3030 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3031 break;
3032
3033 case 2:
3034 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3035 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3036
3037 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3038 return exp;
3039
3040 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3041 break;
3042
3043 case 3:
3044 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3045 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3046 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3047
3048 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3049 && op2 == TREE_OPERAND (exp, 2))
3050 return exp;
3051
3052 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3053 break;
3054
3055 case 4:
3056 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3057 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3058 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3059 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3060
3061 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3062 && op2 == TREE_OPERAND (exp, 2)
3063 && op3 == TREE_OPERAND (exp, 3))
3064 return exp;
3065
3066 new_tree
3067 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3068 break;
3069
3070 default:
3071 gcc_unreachable ();
3072 }
3073 break;
3074
3075 case tcc_vl_exp:
3076 {
3077 int i;
3078
3079 new_tree = NULL_TREE;
3080
3081 /* If we are trying to replace F with a constant, inline back
3082 functions which do nothing else than computing a value from
3083 the arguments they are passed. This makes it possible to
3084 fold partially or entirely the replacement expression. */
3085 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3086 {
3087 tree t = maybe_inline_call_in_expr (exp);
3088 if (t)
3089 return SUBSTITUTE_IN_EXPR (t, f, r);
3090 }
3091
3092 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3093 {
3094 tree op = TREE_OPERAND (exp, i);
3095 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3096 if (new_op != op)
3097 {
3098 if (!new_tree)
3099 new_tree = copy_node (exp);
3100 TREE_OPERAND (new_tree, i) = new_op;
3101 }
3102 }
3103
3104 if (new_tree)
3105 {
3106 new_tree = fold (new_tree);
3107 if (TREE_CODE (new_tree) == CALL_EXPR)
3108 process_call_operands (new_tree);
3109 }
3110 else
3111 return exp;
3112 }
3113 break;
3114
3115 default:
3116 gcc_unreachable ();
3117 }
3118
3119 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3120 return new_tree;
3121 }
3122
3123 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3124 for it within OBJ, a tree that is an object or a chain of references. */
3125
3126 tree
3127 substitute_placeholder_in_expr (tree exp, tree obj)
3128 {
3129 enum tree_code code = TREE_CODE (exp);
3130 tree op0, op1, op2, op3;
3131 tree new_tree;
3132
3133 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3134 in the chain of OBJ. */
3135 if (code == PLACEHOLDER_EXPR)
3136 {
3137 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3138 tree elt;
3139
3140 for (elt = obj; elt != 0;
3141 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3142 || TREE_CODE (elt) == COND_EXPR)
3143 ? TREE_OPERAND (elt, 1)
3144 : (REFERENCE_CLASS_P (elt)
3145 || UNARY_CLASS_P (elt)
3146 || BINARY_CLASS_P (elt)
3147 || VL_EXP_CLASS_P (elt)
3148 || EXPRESSION_CLASS_P (elt))
3149 ? TREE_OPERAND (elt, 0) : 0))
3150 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3151 return elt;
3152
3153 for (elt = obj; elt != 0;
3154 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3155 || TREE_CODE (elt) == COND_EXPR)
3156 ? TREE_OPERAND (elt, 1)
3157 : (REFERENCE_CLASS_P (elt)
3158 || UNARY_CLASS_P (elt)
3159 || BINARY_CLASS_P (elt)
3160 || VL_EXP_CLASS_P (elt)
3161 || EXPRESSION_CLASS_P (elt))
3162 ? TREE_OPERAND (elt, 0) : 0))
3163 if (POINTER_TYPE_P (TREE_TYPE (elt))
3164 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3165 == need_type))
3166 return fold_build1 (INDIRECT_REF, need_type, elt);
3167
3168 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3169 survives until RTL generation, there will be an error. */
3170 return exp;
3171 }
3172
3173 /* TREE_LIST is special because we need to look at TREE_VALUE
3174 and TREE_CHAIN, not TREE_OPERANDS. */
3175 else if (code == TREE_LIST)
3176 {
3177 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3178 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3179 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3180 return exp;
3181
3182 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3183 }
3184 else
3185 switch (TREE_CODE_CLASS (code))
3186 {
3187 case tcc_constant:
3188 case tcc_declaration:
3189 return exp;
3190
3191 case tcc_exceptional:
3192 case tcc_unary:
3193 case tcc_binary:
3194 case tcc_comparison:
3195 case tcc_expression:
3196 case tcc_reference:
3197 case tcc_statement:
3198 switch (TREE_CODE_LENGTH (code))
3199 {
3200 case 0:
3201 return exp;
3202
3203 case 1:
3204 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3205 if (op0 == TREE_OPERAND (exp, 0))
3206 return exp;
3207
3208 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3209 break;
3210
3211 case 2:
3212 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3213 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3214
3215 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3216 return exp;
3217
3218 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3219 break;
3220
3221 case 3:
3222 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3223 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3224 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3225
3226 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3227 && op2 == TREE_OPERAND (exp, 2))
3228 return exp;
3229
3230 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3231 break;
3232
3233 case 4:
3234 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3235 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3236 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3237 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3238
3239 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3240 && op2 == TREE_OPERAND (exp, 2)
3241 && op3 == TREE_OPERAND (exp, 3))
3242 return exp;
3243
3244 new_tree
3245 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3246 break;
3247
3248 default:
3249 gcc_unreachable ();
3250 }
3251 break;
3252
3253 case tcc_vl_exp:
3254 {
3255 int i;
3256
3257 new_tree = NULL_TREE;
3258
3259 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3260 {
3261 tree op = TREE_OPERAND (exp, i);
3262 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3263 if (new_op != op)
3264 {
3265 if (!new_tree)
3266 new_tree = copy_node (exp);
3267 TREE_OPERAND (new_tree, i) = new_op;
3268 }
3269 }
3270
3271 if (new_tree)
3272 {
3273 new_tree = fold (new_tree);
3274 if (TREE_CODE (new_tree) == CALL_EXPR)
3275 process_call_operands (new_tree);
3276 }
3277 else
3278 return exp;
3279 }
3280 break;
3281
3282 default:
3283 gcc_unreachable ();
3284 }
3285
3286 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3287 return new_tree;
3288 }
3289 \f
3290 /* Stabilize a reference so that we can use it any number of times
3291 without causing its operands to be evaluated more than once.
3292 Returns the stabilized reference. This works by means of save_expr,
3293 so see the caveats in the comments about save_expr.
3294
3295 Also allows conversion expressions whose operands are references.
3296 Any other kind of expression is returned unchanged. */
3297
3298 tree
3299 stabilize_reference (tree ref)
3300 {
3301 tree result;
3302 enum tree_code code = TREE_CODE (ref);
3303
3304 switch (code)
3305 {
3306 case VAR_DECL:
3307 case PARM_DECL:
3308 case RESULT_DECL:
3309 /* No action is needed in this case. */
3310 return ref;
3311
3312 CASE_CONVERT:
3313 case FLOAT_EXPR:
3314 case FIX_TRUNC_EXPR:
3315 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3316 break;
3317
3318 case INDIRECT_REF:
3319 result = build_nt (INDIRECT_REF,
3320 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3321 break;
3322
3323 case COMPONENT_REF:
3324 result = build_nt (COMPONENT_REF,
3325 stabilize_reference (TREE_OPERAND (ref, 0)),
3326 TREE_OPERAND (ref, 1), NULL_TREE);
3327 break;
3328
3329 case BIT_FIELD_REF:
3330 result = build_nt (BIT_FIELD_REF,
3331 stabilize_reference (TREE_OPERAND (ref, 0)),
3332 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3333 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3334 break;
3335
3336 case ARRAY_REF:
3337 result = build_nt (ARRAY_REF,
3338 stabilize_reference (TREE_OPERAND (ref, 0)),
3339 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3340 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3341 break;
3342
3343 case ARRAY_RANGE_REF:
3344 result = build_nt (ARRAY_RANGE_REF,
3345 stabilize_reference (TREE_OPERAND (ref, 0)),
3346 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3347 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3348 break;
3349
3350 case COMPOUND_EXPR:
3351 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3352 it wouldn't be ignored. This matters when dealing with
3353 volatiles. */
3354 return stabilize_reference_1 (ref);
3355
3356 /* If arg isn't a kind of lvalue we recognize, make no change.
3357 Caller should recognize the error for an invalid lvalue. */
3358 default:
3359 return ref;
3360
3361 case ERROR_MARK:
3362 return error_mark_node;
3363 }
3364
3365 TREE_TYPE (result) = TREE_TYPE (ref);
3366 TREE_READONLY (result) = TREE_READONLY (ref);
3367 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3368 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3369
3370 return result;
3371 }
3372
3373 /* Subroutine of stabilize_reference; this is called for subtrees of
3374 references. Any expression with side-effects must be put in a SAVE_EXPR
3375 to ensure that it is only evaluated once.
3376
3377 We don't put SAVE_EXPR nodes around everything, because assigning very
3378 simple expressions to temporaries causes us to miss good opportunities
3379 for optimizations. Among other things, the opportunity to fold in the
3380 addition of a constant into an addressing mode often gets lost, e.g.
3381 "y[i+1] += x;". In general, we take the approach that we should not make
3382 an assignment unless we are forced into it - i.e., that any non-side effect
3383 operator should be allowed, and that cse should take care of coalescing
3384 multiple utterances of the same expression should that prove fruitful. */
3385
3386 tree
3387 stabilize_reference_1 (tree e)
3388 {
3389 tree result;
3390 enum tree_code code = TREE_CODE (e);
3391
3392 /* We cannot ignore const expressions because it might be a reference
3393 to a const array but whose index contains side-effects. But we can
3394 ignore things that are actual constant or that already have been
3395 handled by this function. */
3396
3397 if (tree_invariant_p (e))
3398 return e;
3399
3400 switch (TREE_CODE_CLASS (code))
3401 {
3402 case tcc_exceptional:
3403 case tcc_type:
3404 case tcc_declaration:
3405 case tcc_comparison:
3406 case tcc_statement:
3407 case tcc_expression:
3408 case tcc_reference:
3409 case tcc_vl_exp:
3410 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3411 so that it will only be evaluated once. */
3412 /* The reference (r) and comparison (<) classes could be handled as
3413 below, but it is generally faster to only evaluate them once. */
3414 if (TREE_SIDE_EFFECTS (e))
3415 return save_expr (e);
3416 return e;
3417
3418 case tcc_constant:
3419 /* Constants need no processing. In fact, we should never reach
3420 here. */
3421 return e;
3422
3423 case tcc_binary:
3424 /* Division is slow and tends to be compiled with jumps,
3425 especially the division by powers of 2 that is often
3426 found inside of an array reference. So do it just once. */
3427 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3428 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3429 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3430 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3431 return save_expr (e);
3432 /* Recursively stabilize each operand. */
3433 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3434 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3435 break;
3436
3437 case tcc_unary:
3438 /* Recursively stabilize each operand. */
3439 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3440 break;
3441
3442 default:
3443 gcc_unreachable ();
3444 }
3445
3446 TREE_TYPE (result) = TREE_TYPE (e);
3447 TREE_READONLY (result) = TREE_READONLY (e);
3448 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3449 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3450
3451 return result;
3452 }
3453 \f
3454 /* Low-level constructors for expressions. */
3455
3456 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3457 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3458
3459 void
3460 recompute_tree_invariant_for_addr_expr (tree t)
3461 {
3462 tree node;
3463 bool tc = true, se = false;
3464
3465 /* We started out assuming this address is both invariant and constant, but
3466 does not have side effects. Now go down any handled components and see if
3467 any of them involve offsets that are either non-constant or non-invariant.
3468 Also check for side-effects.
3469
3470 ??? Note that this code makes no attempt to deal with the case where
3471 taking the address of something causes a copy due to misalignment. */
3472
3473 #define UPDATE_FLAGS(NODE) \
3474 do { tree _node = (NODE); \
3475 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3476 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3477
3478 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3479 node = TREE_OPERAND (node, 0))
3480 {
3481 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3482 array reference (probably made temporarily by the G++ front end),
3483 so ignore all the operands. */
3484 if ((TREE_CODE (node) == ARRAY_REF
3485 || TREE_CODE (node) == ARRAY_RANGE_REF)
3486 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3487 {
3488 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3489 if (TREE_OPERAND (node, 2))
3490 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3491 if (TREE_OPERAND (node, 3))
3492 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3493 }
3494 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3495 FIELD_DECL, apparently. The G++ front end can put something else
3496 there, at least temporarily. */
3497 else if (TREE_CODE (node) == COMPONENT_REF
3498 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3499 {
3500 if (TREE_OPERAND (node, 2))
3501 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3502 }
3503 else if (TREE_CODE (node) == BIT_FIELD_REF)
3504 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3505 }
3506
3507 node = lang_hooks.expr_to_decl (node, &tc, &se);
3508
3509 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3510 the address, since &(*a)->b is a form of addition. If it's a constant, the
3511 address is constant too. If it's a decl, its address is constant if the
3512 decl is static. Everything else is not constant and, furthermore,
3513 taking the address of a volatile variable is not volatile. */
3514 if (TREE_CODE (node) == INDIRECT_REF)
3515 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3516 else if (CONSTANT_CLASS_P (node))
3517 ;
3518 else if (DECL_P (node))
3519 tc &= (staticp (node) != NULL_TREE);
3520 else
3521 {
3522 tc = false;
3523 se |= TREE_SIDE_EFFECTS (node);
3524 }
3525
3526
3527 TREE_CONSTANT (t) = tc;
3528 TREE_SIDE_EFFECTS (t) = se;
3529 #undef UPDATE_FLAGS
3530 }
3531
3532 /* Build an expression of code CODE, data type TYPE, and operands as
3533 specified. Expressions and reference nodes can be created this way.
3534 Constants, decls, types and misc nodes cannot be.
3535
3536 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3537 enough for all extant tree codes. */
3538
3539 tree
3540 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3541 {
3542 tree t;
3543
3544 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3545
3546 t = make_node_stat (code PASS_MEM_STAT);
3547 TREE_TYPE (t) = tt;
3548
3549 return t;
3550 }
3551
3552 tree
3553 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3554 {
3555 int length = sizeof (struct tree_exp);
3556 #ifdef GATHER_STATISTICS
3557 tree_node_kind kind;
3558 #endif
3559 tree t;
3560
3561 #ifdef GATHER_STATISTICS
3562 switch (TREE_CODE_CLASS (code))
3563 {
3564 case tcc_statement: /* an expression with side effects */
3565 kind = s_kind;
3566 break;
3567 case tcc_reference: /* a reference */
3568 kind = r_kind;
3569 break;
3570 default:
3571 kind = e_kind;
3572 break;
3573 }
3574
3575 tree_node_counts[(int) kind]++;
3576 tree_node_sizes[(int) kind] += length;
3577 #endif
3578
3579 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3580
3581 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3582
3583 memset (t, 0, sizeof (struct tree_common));
3584
3585 TREE_SET_CODE (t, code);
3586
3587 TREE_TYPE (t) = type;
3588 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3589 TREE_OPERAND (t, 0) = node;
3590 TREE_BLOCK (t) = NULL_TREE;
3591 if (node && !TYPE_P (node))
3592 {
3593 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3594 TREE_READONLY (t) = TREE_READONLY (node);
3595 }
3596
3597 if (TREE_CODE_CLASS (code) == tcc_statement)
3598 TREE_SIDE_EFFECTS (t) = 1;
3599 else switch (code)
3600 {
3601 case VA_ARG_EXPR:
3602 /* All of these have side-effects, no matter what their
3603 operands are. */
3604 TREE_SIDE_EFFECTS (t) = 1;
3605 TREE_READONLY (t) = 0;
3606 break;
3607
3608 case MISALIGNED_INDIRECT_REF:
3609 case ALIGN_INDIRECT_REF:
3610 case INDIRECT_REF:
3611 /* Whether a dereference is readonly has nothing to do with whether
3612 its operand is readonly. */
3613 TREE_READONLY (t) = 0;
3614 break;
3615
3616 case ADDR_EXPR:
3617 if (node)
3618 recompute_tree_invariant_for_addr_expr (t);
3619 break;
3620
3621 default:
3622 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3623 && node && !TYPE_P (node)
3624 && TREE_CONSTANT (node))
3625 TREE_CONSTANT (t) = 1;
3626 if (TREE_CODE_CLASS (code) == tcc_reference
3627 && node && TREE_THIS_VOLATILE (node))
3628 TREE_THIS_VOLATILE (t) = 1;
3629 break;
3630 }
3631
3632 return t;
3633 }
3634
3635 #define PROCESS_ARG(N) \
3636 do { \
3637 TREE_OPERAND (t, N) = arg##N; \
3638 if (arg##N &&!TYPE_P (arg##N)) \
3639 { \
3640 if (TREE_SIDE_EFFECTS (arg##N)) \
3641 side_effects = 1; \
3642 if (!TREE_READONLY (arg##N) \
3643 && !CONSTANT_CLASS_P (arg##N)) \
3644 (void) (read_only = 0); \
3645 if (!TREE_CONSTANT (arg##N)) \
3646 (void) (constant = 0); \
3647 } \
3648 } while (0)
3649
3650 tree
3651 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3652 {
3653 bool constant, read_only, side_effects;
3654 tree t;
3655
3656 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3657
3658 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3659 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3660 /* When sizetype precision doesn't match that of pointers
3661 we need to be able to build explicit extensions or truncations
3662 of the offset argument. */
3663 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3664 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3665 && TREE_CODE (arg1) == INTEGER_CST);
3666
3667 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3668 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3669 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3670 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3671
3672 t = make_node_stat (code PASS_MEM_STAT);
3673 TREE_TYPE (t) = tt;
3674
3675 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3676 result based on those same flags for the arguments. But if the
3677 arguments aren't really even `tree' expressions, we shouldn't be trying
3678 to do this. */
3679
3680 /* Expressions without side effects may be constant if their
3681 arguments are as well. */
3682 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3683 || TREE_CODE_CLASS (code) == tcc_binary);
3684 read_only = 1;
3685 side_effects = TREE_SIDE_EFFECTS (t);
3686
3687 PROCESS_ARG(0);
3688 PROCESS_ARG(1);
3689
3690 TREE_READONLY (t) = read_only;
3691 TREE_CONSTANT (t) = constant;
3692 TREE_SIDE_EFFECTS (t) = side_effects;
3693 TREE_THIS_VOLATILE (t)
3694 = (TREE_CODE_CLASS (code) == tcc_reference
3695 && arg0 && TREE_THIS_VOLATILE (arg0));
3696
3697 return t;
3698 }
3699
3700
3701 tree
3702 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3703 tree arg2 MEM_STAT_DECL)
3704 {
3705 bool constant, read_only, side_effects;
3706 tree t;
3707
3708 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3709 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3710
3711 t = make_node_stat (code PASS_MEM_STAT);
3712 TREE_TYPE (t) = tt;
3713
3714 read_only = 1;
3715
3716 /* As a special exception, if COND_EXPR has NULL branches, we
3717 assume that it is a gimple statement and always consider
3718 it to have side effects. */
3719 if (code == COND_EXPR
3720 && tt == void_type_node
3721 && arg1 == NULL_TREE
3722 && arg2 == NULL_TREE)
3723 side_effects = true;
3724 else
3725 side_effects = TREE_SIDE_EFFECTS (t);
3726
3727 PROCESS_ARG(0);
3728 PROCESS_ARG(1);
3729 PROCESS_ARG(2);
3730
3731 if (code == COND_EXPR)
3732 TREE_READONLY (t) = read_only;
3733
3734 TREE_SIDE_EFFECTS (t) = side_effects;
3735 TREE_THIS_VOLATILE (t)
3736 = (TREE_CODE_CLASS (code) == tcc_reference
3737 && arg0 && TREE_THIS_VOLATILE (arg0));
3738
3739 return t;
3740 }
3741
3742 tree
3743 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3744 tree arg2, tree arg3 MEM_STAT_DECL)
3745 {
3746 bool constant, read_only, side_effects;
3747 tree t;
3748
3749 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3750
3751 t = make_node_stat (code PASS_MEM_STAT);
3752 TREE_TYPE (t) = tt;
3753
3754 side_effects = TREE_SIDE_EFFECTS (t);
3755
3756 PROCESS_ARG(0);
3757 PROCESS_ARG(1);
3758 PROCESS_ARG(2);
3759 PROCESS_ARG(3);
3760
3761 TREE_SIDE_EFFECTS (t) = side_effects;
3762 TREE_THIS_VOLATILE (t)
3763 = (TREE_CODE_CLASS (code) == tcc_reference
3764 && arg0 && TREE_THIS_VOLATILE (arg0));
3765
3766 return t;
3767 }
3768
3769 tree
3770 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3771 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3772 {
3773 bool constant, read_only, side_effects;
3774 tree t;
3775
3776 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3777
3778 t = make_node_stat (code PASS_MEM_STAT);
3779 TREE_TYPE (t) = tt;
3780
3781 side_effects = TREE_SIDE_EFFECTS (t);
3782
3783 PROCESS_ARG(0);
3784 PROCESS_ARG(1);
3785 PROCESS_ARG(2);
3786 PROCESS_ARG(3);
3787 PROCESS_ARG(4);
3788
3789 TREE_SIDE_EFFECTS (t) = side_effects;
3790 TREE_THIS_VOLATILE (t)
3791 = (TREE_CODE_CLASS (code) == tcc_reference
3792 && arg0 && TREE_THIS_VOLATILE (arg0));
3793
3794 return t;
3795 }
3796
3797 tree
3798 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3799 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3800 {
3801 bool constant, read_only, side_effects;
3802 tree t;
3803
3804 gcc_assert (code == TARGET_MEM_REF);
3805
3806 t = make_node_stat (code PASS_MEM_STAT);
3807 TREE_TYPE (t) = tt;
3808
3809 side_effects = TREE_SIDE_EFFECTS (t);
3810
3811 PROCESS_ARG(0);
3812 PROCESS_ARG(1);
3813 PROCESS_ARG(2);
3814 PROCESS_ARG(3);
3815 PROCESS_ARG(4);
3816 if (code == TARGET_MEM_REF)
3817 side_effects = 0;
3818 PROCESS_ARG(5);
3819
3820 TREE_SIDE_EFFECTS (t) = side_effects;
3821 TREE_THIS_VOLATILE (t)
3822 = (code == TARGET_MEM_REF
3823 && arg5 && TREE_THIS_VOLATILE (arg5));
3824
3825 return t;
3826 }
3827
3828 /* Similar except don't specify the TREE_TYPE
3829 and leave the TREE_SIDE_EFFECTS as 0.
3830 It is permissible for arguments to be null,
3831 or even garbage if their values do not matter. */
3832
3833 tree
3834 build_nt (enum tree_code code, ...)
3835 {
3836 tree t;
3837 int length;
3838 int i;
3839 va_list p;
3840
3841 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3842
3843 va_start (p, code);
3844
3845 t = make_node (code);
3846 length = TREE_CODE_LENGTH (code);
3847
3848 for (i = 0; i < length; i++)
3849 TREE_OPERAND (t, i) = va_arg (p, tree);
3850
3851 va_end (p);
3852 return t;
3853 }
3854
3855 /* Similar to build_nt, but for creating a CALL_EXPR object with
3856 ARGLIST passed as a list. */
3857
3858 tree
3859 build_nt_call_list (tree fn, tree arglist)
3860 {
3861 tree t;
3862 int i;
3863
3864 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3865 CALL_EXPR_FN (t) = fn;
3866 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3867 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3868 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3869 return t;
3870 }
3871
3872 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3873 tree VEC. */
3874
3875 tree
3876 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3877 {
3878 tree ret, t;
3879 unsigned int ix;
3880
3881 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3882 CALL_EXPR_FN (ret) = fn;
3883 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3884 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3885 CALL_EXPR_ARG (ret, ix) = t;
3886 return ret;
3887 }
3888 \f
3889 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3890 We do NOT enter this node in any sort of symbol table.
3891
3892 LOC is the location of the decl.
3893
3894 layout_decl is used to set up the decl's storage layout.
3895 Other slots are initialized to 0 or null pointers. */
3896
3897 tree
3898 build_decl_stat (location_t loc, enum tree_code code, tree name,
3899 tree type MEM_STAT_DECL)
3900 {
3901 tree t;
3902
3903 t = make_node_stat (code PASS_MEM_STAT);
3904 DECL_SOURCE_LOCATION (t) = loc;
3905
3906 /* if (type == error_mark_node)
3907 type = integer_type_node; */
3908 /* That is not done, deliberately, so that having error_mark_node
3909 as the type can suppress useless errors in the use of this variable. */
3910
3911 DECL_NAME (t) = name;
3912 TREE_TYPE (t) = type;
3913
3914 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3915 layout_decl (t, 0);
3916
3917 return t;
3918 }
3919
3920 /* Builds and returns function declaration with NAME and TYPE. */
3921
3922 tree
3923 build_fn_decl (const char *name, tree type)
3924 {
3925 tree id = get_identifier (name);
3926 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3927
3928 DECL_EXTERNAL (decl) = 1;
3929 TREE_PUBLIC (decl) = 1;
3930 DECL_ARTIFICIAL (decl) = 1;
3931 TREE_NOTHROW (decl) = 1;
3932
3933 return decl;
3934 }
3935
3936 \f
3937 /* BLOCK nodes are used to represent the structure of binding contours
3938 and declarations, once those contours have been exited and their contents
3939 compiled. This information is used for outputting debugging info. */
3940
3941 tree
3942 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3943 {
3944 tree block = make_node (BLOCK);
3945
3946 BLOCK_VARS (block) = vars;
3947 BLOCK_SUBBLOCKS (block) = subblocks;
3948 BLOCK_SUPERCONTEXT (block) = supercontext;
3949 BLOCK_CHAIN (block) = chain;
3950 return block;
3951 }
3952
3953 expanded_location
3954 expand_location (source_location loc)
3955 {
3956 expanded_location xloc;
3957 if (loc <= BUILTINS_LOCATION)
3958 {
3959 xloc.file = loc == UNKNOWN_LOCATION ? NULL : _("<built-in>");
3960 xloc.line = 0;
3961 xloc.column = 0;
3962 xloc.sysp = 0;
3963 }
3964 else
3965 {
3966 const struct line_map *map = linemap_lookup (line_table, loc);
3967 xloc.file = map->to_file;
3968 xloc.line = SOURCE_LINE (map, loc);
3969 xloc.column = SOURCE_COLUMN (map, loc);
3970 xloc.sysp = map->sysp != 0;
3971 };
3972 return xloc;
3973 }
3974
3975 \f
3976 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3977
3978 LOC is the location to use in tree T. */
3979
3980 void
3981 protected_set_expr_location (tree t, location_t loc)
3982 {
3983 if (t && CAN_HAVE_LOCATION_P (t))
3984 SET_EXPR_LOCATION (t, loc);
3985 }
3986 \f
3987 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3988 is ATTRIBUTE. */
3989
3990 tree
3991 build_decl_attribute_variant (tree ddecl, tree attribute)
3992 {
3993 DECL_ATTRIBUTES (ddecl) = attribute;
3994 return ddecl;
3995 }
3996
3997 /* Borrowed from hashtab.c iterative_hash implementation. */
3998 #define mix(a,b,c) \
3999 { \
4000 a -= b; a -= c; a ^= (c>>13); \
4001 b -= c; b -= a; b ^= (a<< 8); \
4002 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4003 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4004 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4005 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4006 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4007 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4008 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4009 }
4010
4011
4012 /* Produce good hash value combining VAL and VAL2. */
4013 hashval_t
4014 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4015 {
4016 /* the golden ratio; an arbitrary value. */
4017 hashval_t a = 0x9e3779b9;
4018
4019 mix (a, val, val2);
4020 return val2;
4021 }
4022
4023 /* Produce good hash value combining VAL and VAL2. */
4024 hashval_t
4025 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4026 {
4027 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4028 return iterative_hash_hashval_t (val, val2);
4029 else
4030 {
4031 hashval_t a = (hashval_t) val;
4032 /* Avoid warnings about shifting of more than the width of the type on
4033 hosts that won't execute this path. */
4034 int zero = 0;
4035 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4036 mix (a, b, val2);
4037 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4038 {
4039 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4040 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4041 mix (a, b, val2);
4042 }
4043 return val2;
4044 }
4045 }
4046
4047 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4048 is ATTRIBUTE and its qualifiers are QUALS.
4049
4050 Record such modified types already made so we don't make duplicates. */
4051
4052 tree
4053 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4054 {
4055 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4056 {
4057 hashval_t hashcode = 0;
4058 tree ntype;
4059 enum tree_code code = TREE_CODE (ttype);
4060
4061 /* Building a distinct copy of a tagged type is inappropriate; it
4062 causes breakage in code that expects there to be a one-to-one
4063 relationship between a struct and its fields.
4064 build_duplicate_type is another solution (as used in
4065 handle_transparent_union_attribute), but that doesn't play well
4066 with the stronger C++ type identity model. */
4067 if (TREE_CODE (ttype) == RECORD_TYPE
4068 || TREE_CODE (ttype) == UNION_TYPE
4069 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4070 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4071 {
4072 warning (OPT_Wattributes,
4073 "ignoring attributes applied to %qT after definition",
4074 TYPE_MAIN_VARIANT (ttype));
4075 return build_qualified_type (ttype, quals);
4076 }
4077
4078 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4079 ntype = build_distinct_type_copy (ttype);
4080
4081 TYPE_ATTRIBUTES (ntype) = attribute;
4082
4083 hashcode = iterative_hash_object (code, hashcode);
4084 if (TREE_TYPE (ntype))
4085 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4086 hashcode);
4087 hashcode = attribute_hash_list (attribute, hashcode);
4088
4089 switch (TREE_CODE (ntype))
4090 {
4091 case FUNCTION_TYPE:
4092 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4093 break;
4094 case ARRAY_TYPE:
4095 if (TYPE_DOMAIN (ntype))
4096 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4097 hashcode);
4098 break;
4099 case INTEGER_TYPE:
4100 hashcode = iterative_hash_object
4101 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4102 hashcode = iterative_hash_object
4103 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4104 break;
4105 case REAL_TYPE:
4106 case FIXED_POINT_TYPE:
4107 {
4108 unsigned int precision = TYPE_PRECISION (ntype);
4109 hashcode = iterative_hash_object (precision, hashcode);
4110 }
4111 break;
4112 default:
4113 break;
4114 }
4115
4116 ntype = type_hash_canon (hashcode, ntype);
4117
4118 /* If the target-dependent attributes make NTYPE different from
4119 its canonical type, we will need to use structural equality
4120 checks for this type. */
4121 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4122 || !targetm.comp_type_attributes (ntype, ttype))
4123 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4124 else if (TYPE_CANONICAL (ntype) == ntype)
4125 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4126
4127 ttype = build_qualified_type (ntype, quals);
4128 }
4129 else if (TYPE_QUALS (ttype) != quals)
4130 ttype = build_qualified_type (ttype, quals);
4131
4132 return ttype;
4133 }
4134
4135
4136 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4137 is ATTRIBUTE.
4138
4139 Record such modified types already made so we don't make duplicates. */
4140
4141 tree
4142 build_type_attribute_variant (tree ttype, tree attribute)
4143 {
4144 return build_type_attribute_qual_variant (ttype, attribute,
4145 TYPE_QUALS (ttype));
4146 }
4147
4148
4149 /* Reset the expression *EXPR_P, a size or position.
4150
4151 ??? We could reset all non-constant sizes or positions. But it's cheap
4152 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4153
4154 We need to reset self-referential sizes or positions because they cannot
4155 be gimplified and thus can contain a CALL_EXPR after the gimplification
4156 is finished, which will run afoul of LTO streaming. And they need to be
4157 reset to something essentially dummy but not constant, so as to preserve
4158 the properties of the object they are attached to. */
4159
4160 static inline void
4161 free_lang_data_in_one_sizepos (tree *expr_p)
4162 {
4163 tree expr = *expr_p;
4164 if (CONTAINS_PLACEHOLDER_P (expr))
4165 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4166 }
4167
4168
4169 /* Reset all the fields in a binfo node BINFO. We only keep
4170 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4171
4172 static void
4173 free_lang_data_in_binfo (tree binfo)
4174 {
4175 unsigned i;
4176 tree t;
4177
4178 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4179
4180 BINFO_VTABLE (binfo) = NULL_TREE;
4181 BINFO_BASE_ACCESSES (binfo) = NULL;
4182 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4183 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4184
4185 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4186 free_lang_data_in_binfo (t);
4187 }
4188
4189
4190 /* Reset all language specific information still present in TYPE. */
4191
4192 static void
4193 free_lang_data_in_type (tree type)
4194 {
4195 gcc_assert (TYPE_P (type));
4196
4197 /* Give the FE a chance to remove its own data first. */
4198 lang_hooks.free_lang_data (type);
4199
4200 TREE_LANG_FLAG_0 (type) = 0;
4201 TREE_LANG_FLAG_1 (type) = 0;
4202 TREE_LANG_FLAG_2 (type) = 0;
4203 TREE_LANG_FLAG_3 (type) = 0;
4204 TREE_LANG_FLAG_4 (type) = 0;
4205 TREE_LANG_FLAG_5 (type) = 0;
4206 TREE_LANG_FLAG_6 (type) = 0;
4207
4208 if (TREE_CODE (type) == FUNCTION_TYPE)
4209 {
4210 /* Remove the const and volatile qualifiers from arguments. The
4211 C++ front end removes them, but the C front end does not,
4212 leading to false ODR violation errors when merging two
4213 instances of the same function signature compiled by
4214 different front ends. */
4215 tree p;
4216
4217 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4218 {
4219 tree arg_type = TREE_VALUE (p);
4220
4221 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4222 {
4223 int quals = TYPE_QUALS (arg_type)
4224 & ~TYPE_QUAL_CONST
4225 & ~TYPE_QUAL_VOLATILE;
4226 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4227 free_lang_data_in_type (TREE_VALUE (p));
4228 }
4229 }
4230 }
4231
4232 /* Remove members that are not actually FIELD_DECLs from the field
4233 list of an aggregate. These occur in C++. */
4234 if (RECORD_OR_UNION_TYPE_P (type))
4235 {
4236 tree prev, member;
4237
4238 /* Note that TYPE_FIELDS can be shared across distinct
4239 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4240 to be removed, we cannot set its TREE_CHAIN to NULL.
4241 Otherwise, we would not be able to find all the other fields
4242 in the other instances of this TREE_TYPE.
4243
4244 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4245 prev = NULL_TREE;
4246 member = TYPE_FIELDS (type);
4247 while (member)
4248 {
4249 if (TREE_CODE (member) == FIELD_DECL)
4250 {
4251 if (prev)
4252 TREE_CHAIN (prev) = member;
4253 else
4254 TYPE_FIELDS (type) = member;
4255 prev = member;
4256 }
4257
4258 member = TREE_CHAIN (member);
4259 }
4260
4261 if (prev)
4262 TREE_CHAIN (prev) = NULL_TREE;
4263 else
4264 TYPE_FIELDS (type) = NULL_TREE;
4265
4266 TYPE_METHODS (type) = NULL_TREE;
4267 if (TYPE_BINFO (type))
4268 free_lang_data_in_binfo (TYPE_BINFO (type));
4269 }
4270 else
4271 {
4272 /* For non-aggregate types, clear out the language slot (which
4273 overloads TYPE_BINFO). */
4274 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4275
4276 if (INTEGRAL_TYPE_P (type)
4277 || SCALAR_FLOAT_TYPE_P (type)
4278 || FIXED_POINT_TYPE_P (type))
4279 {
4280 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4281 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4282 }
4283 }
4284
4285 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4286 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4287
4288 if (debug_info_level < DINFO_LEVEL_TERSE
4289 || (TYPE_CONTEXT (type)
4290 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4291 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4292 TYPE_CONTEXT (type) = NULL_TREE;
4293
4294 if (debug_info_level < DINFO_LEVEL_TERSE)
4295 TYPE_STUB_DECL (type) = NULL_TREE;
4296 }
4297
4298
4299 /* Return true if DECL may need an assembler name to be set. */
4300
4301 static inline bool
4302 need_assembler_name_p (tree decl)
4303 {
4304 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4305 if (TREE_CODE (decl) != FUNCTION_DECL
4306 && TREE_CODE (decl) != VAR_DECL)
4307 return false;
4308
4309 /* If DECL already has its assembler name set, it does not need a
4310 new one. */
4311 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4312 || DECL_ASSEMBLER_NAME_SET_P (decl))
4313 return false;
4314
4315 /* Abstract decls do not need an assembler name. */
4316 if (DECL_ABSTRACT (decl))
4317 return false;
4318
4319 /* For VAR_DECLs, only static, public and external symbols need an
4320 assembler name. */
4321 if (TREE_CODE (decl) == VAR_DECL
4322 && !TREE_STATIC (decl)
4323 && !TREE_PUBLIC (decl)
4324 && !DECL_EXTERNAL (decl))
4325 return false;
4326
4327 if (TREE_CODE (decl) == FUNCTION_DECL)
4328 {
4329 /* Do not set assembler name on builtins. Allow RTL expansion to
4330 decide whether to expand inline or via a regular call. */
4331 if (DECL_BUILT_IN (decl)
4332 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4333 return false;
4334
4335 /* Functions represented in the callgraph need an assembler name. */
4336 if (cgraph_get_node (decl) != NULL)
4337 return true;
4338
4339 /* Unused and not public functions don't need an assembler name. */
4340 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4341 return false;
4342 }
4343
4344 return true;
4345 }
4346
4347
4348 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4349 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4350 in BLOCK that is not in LOCALS is removed. */
4351
4352 static void
4353 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4354 {
4355 tree *tp, t;
4356
4357 tp = &BLOCK_VARS (block);
4358 while (*tp)
4359 {
4360 if (!pointer_set_contains (locals, *tp))
4361 *tp = TREE_CHAIN (*tp);
4362 else
4363 tp = &TREE_CHAIN (*tp);
4364 }
4365
4366 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4367 free_lang_data_in_block (fn, t, locals);
4368 }
4369
4370
4371 /* Reset all language specific information still present in symbol
4372 DECL. */
4373
4374 static void
4375 free_lang_data_in_decl (tree decl)
4376 {
4377 gcc_assert (DECL_P (decl));
4378
4379 /* Give the FE a chance to remove its own data first. */
4380 lang_hooks.free_lang_data (decl);
4381
4382 TREE_LANG_FLAG_0 (decl) = 0;
4383 TREE_LANG_FLAG_1 (decl) = 0;
4384 TREE_LANG_FLAG_2 (decl) = 0;
4385 TREE_LANG_FLAG_3 (decl) = 0;
4386 TREE_LANG_FLAG_4 (decl) = 0;
4387 TREE_LANG_FLAG_5 (decl) = 0;
4388 TREE_LANG_FLAG_6 (decl) = 0;
4389
4390 /* Identifiers need not have a type. */
4391 if (DECL_NAME (decl))
4392 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4393
4394 /* Ignore any intervening types, because we are going to clear their
4395 TYPE_CONTEXT fields. */
4396 if (TREE_CODE (decl) != FIELD_DECL
4397 && TREE_CODE (decl) != FUNCTION_DECL)
4398 DECL_CONTEXT (decl) = decl_function_context (decl);
4399
4400 if (DECL_CONTEXT (decl)
4401 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4402 DECL_CONTEXT (decl) = NULL_TREE;
4403
4404 if (TREE_CODE (decl) == VAR_DECL)
4405 {
4406 tree context = DECL_CONTEXT (decl);
4407
4408 if (context)
4409 {
4410 enum tree_code code = TREE_CODE (context);
4411 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4412 {
4413 /* Do not clear the decl context here, that will promote
4414 all vars to global ones. */
4415 DECL_INITIAL (decl) = NULL_TREE;
4416 }
4417
4418 if (TREE_STATIC (decl))
4419 DECL_CONTEXT (decl) = NULL_TREE;
4420 }
4421 }
4422
4423 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4424 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4425 if (TREE_CODE (decl) == FIELD_DECL)
4426 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4427
4428 /* DECL_FCONTEXT is only used for debug info generation. */
4429 if (TREE_CODE (decl) == FIELD_DECL
4430 && debug_info_level < DINFO_LEVEL_TERSE)
4431 DECL_FCONTEXT (decl) = NULL_TREE;
4432
4433 if (TREE_CODE (decl) == FUNCTION_DECL)
4434 {
4435 if (gimple_has_body_p (decl))
4436 {
4437 tree t;
4438 struct pointer_set_t *locals;
4439
4440 /* If DECL has a gimple body, then the context for its
4441 arguments must be DECL. Otherwise, it doesn't really
4442 matter, as we will not be emitting any code for DECL. In
4443 general, there may be other instances of DECL created by
4444 the front end and since PARM_DECLs are generally shared,
4445 their DECL_CONTEXT changes as the replicas of DECL are
4446 created. The only time where DECL_CONTEXT is important
4447 is for the FUNCTION_DECLs that have a gimple body (since
4448 the PARM_DECL will be used in the function's body). */
4449 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4450 DECL_CONTEXT (t) = decl;
4451
4452 /* Collect all the symbols declared in DECL. */
4453 locals = pointer_set_create ();
4454 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4455 for (; t; t = TREE_CHAIN (t))
4456 {
4457 pointer_set_insert (locals, TREE_VALUE (t));
4458
4459 /* All the local symbols should have DECL as their
4460 context. */
4461 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4462 }
4463
4464 /* Get rid of any decl not in local_decls. */
4465 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4466
4467 pointer_set_destroy (locals);
4468 }
4469
4470 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4471 At this point, it is not needed anymore. */
4472 DECL_SAVED_TREE (decl) = NULL_TREE;
4473 }
4474 else if (TREE_CODE (decl) == VAR_DECL)
4475 {
4476 tree expr = DECL_DEBUG_EXPR (decl);
4477 if (expr
4478 && TREE_CODE (expr) == VAR_DECL
4479 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4480 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4481
4482 if (DECL_EXTERNAL (decl)
4483 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4484 DECL_INITIAL (decl) = NULL_TREE;
4485 }
4486 else if (TREE_CODE (decl) == TYPE_DECL)
4487 {
4488 DECL_INITIAL (decl) = NULL_TREE;
4489
4490 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4491 FIELD_DECLs, which should be preserved. Otherwise,
4492 we shouldn't be concerned with source-level lexical
4493 nesting beyond this point. */
4494 DECL_CONTEXT (decl) = NULL_TREE;
4495 }
4496 }
4497
4498
4499 /* Data used when collecting DECLs and TYPEs for language data removal. */
4500
4501 struct free_lang_data_d
4502 {
4503 /* Worklist to avoid excessive recursion. */
4504 VEC(tree,heap) *worklist;
4505
4506 /* Set of traversed objects. Used to avoid duplicate visits. */
4507 struct pointer_set_t *pset;
4508
4509 /* Array of symbols to process with free_lang_data_in_decl. */
4510 VEC(tree,heap) *decls;
4511
4512 /* Array of types to process with free_lang_data_in_type. */
4513 VEC(tree,heap) *types;
4514 };
4515
4516
4517 /* Save all language fields needed to generate proper debug information
4518 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4519
4520 static void
4521 save_debug_info_for_decl (tree t)
4522 {
4523 /*struct saved_debug_info_d *sdi;*/
4524
4525 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4526
4527 /* FIXME. Partial implementation for saving debug info removed. */
4528 }
4529
4530
4531 /* Save all language fields needed to generate proper debug information
4532 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4533
4534 static void
4535 save_debug_info_for_type (tree t)
4536 {
4537 /*struct saved_debug_info_d *sdi;*/
4538
4539 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4540
4541 /* FIXME. Partial implementation for saving debug info removed. */
4542 }
4543
4544
4545 /* Add type or decl T to one of the list of tree nodes that need their
4546 language data removed. The lists are held inside FLD. */
4547
4548 static void
4549 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4550 {
4551 if (DECL_P (t))
4552 {
4553 VEC_safe_push (tree, heap, fld->decls, t);
4554 if (debug_info_level > DINFO_LEVEL_TERSE)
4555 save_debug_info_for_decl (t);
4556 }
4557 else if (TYPE_P (t))
4558 {
4559 VEC_safe_push (tree, heap, fld->types, t);
4560 if (debug_info_level > DINFO_LEVEL_TERSE)
4561 save_debug_info_for_type (t);
4562 }
4563 else
4564 gcc_unreachable ();
4565 }
4566
4567 /* Push tree node T into FLD->WORKLIST. */
4568
4569 static inline void
4570 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4571 {
4572 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4573 VEC_safe_push (tree, heap, fld->worklist, (t));
4574 }
4575
4576
4577 /* Operand callback helper for free_lang_data_in_node. *TP is the
4578 subtree operand being considered. */
4579
4580 static tree
4581 find_decls_types_r (tree *tp, int *ws, void *data)
4582 {
4583 tree t = *tp;
4584 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4585
4586 if (TREE_CODE (t) == TREE_LIST)
4587 return NULL_TREE;
4588
4589 /* Language specific nodes will be removed, so there is no need
4590 to gather anything under them. */
4591 if (is_lang_specific (t))
4592 {
4593 *ws = 0;
4594 return NULL_TREE;
4595 }
4596
4597 if (DECL_P (t))
4598 {
4599 /* Note that walk_tree does not traverse every possible field in
4600 decls, so we have to do our own traversals here. */
4601 add_tree_to_fld_list (t, fld);
4602
4603 fld_worklist_push (DECL_NAME (t), fld);
4604 fld_worklist_push (DECL_CONTEXT (t), fld);
4605 fld_worklist_push (DECL_SIZE (t), fld);
4606 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4607
4608 /* We are going to remove everything under DECL_INITIAL for
4609 TYPE_DECLs. No point walking them. */
4610 if (TREE_CODE (t) != TYPE_DECL)
4611 fld_worklist_push (DECL_INITIAL (t), fld);
4612
4613 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4614 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4615
4616 if (TREE_CODE (t) == FUNCTION_DECL)
4617 {
4618 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4619 fld_worklist_push (DECL_RESULT (t), fld);
4620 }
4621 else if (TREE_CODE (t) == TYPE_DECL)
4622 {
4623 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4624 fld_worklist_push (DECL_VINDEX (t), fld);
4625 }
4626 else if (TREE_CODE (t) == FIELD_DECL)
4627 {
4628 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4629 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4630 fld_worklist_push (DECL_QUALIFIER (t), fld);
4631 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4632 fld_worklist_push (DECL_FCONTEXT (t), fld);
4633 }
4634 else if (TREE_CODE (t) == VAR_DECL)
4635 {
4636 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4637 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4638 }
4639
4640 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4641 && DECL_HAS_VALUE_EXPR_P (t))
4642 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4643
4644 if (TREE_CODE (t) != FIELD_DECL)
4645 fld_worklist_push (TREE_CHAIN (t), fld);
4646 *ws = 0;
4647 }
4648 else if (TYPE_P (t))
4649 {
4650 /* Note that walk_tree does not traverse every possible field in
4651 types, so we have to do our own traversals here. */
4652 add_tree_to_fld_list (t, fld);
4653
4654 if (!RECORD_OR_UNION_TYPE_P (t))
4655 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4656 fld_worklist_push (TYPE_SIZE (t), fld);
4657 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4658 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4659 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4660 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4661 fld_worklist_push (TYPE_NAME (t), fld);
4662 fld_worklist_push (TYPE_MINVAL (t), fld);
4663 if (!RECORD_OR_UNION_TYPE_P (t))
4664 fld_worklist_push (TYPE_MAXVAL (t), fld);
4665 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4666 fld_worklist_push (TYPE_NEXT_VARIANT (t), fld);
4667 fld_worklist_push (TYPE_CONTEXT (t), fld);
4668 fld_worklist_push (TYPE_CANONICAL (t), fld);
4669
4670 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4671 {
4672 unsigned i;
4673 tree tem;
4674 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4675 i, tem); ++i)
4676 fld_worklist_push (TREE_TYPE (tem), fld);
4677 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4678 if (tem
4679 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4680 && TREE_CODE (tem) == TREE_LIST)
4681 do
4682 {
4683 fld_worklist_push (TREE_VALUE (tem), fld);
4684 tem = TREE_CHAIN (tem);
4685 }
4686 while (tem);
4687 }
4688 if (RECORD_OR_UNION_TYPE_P (t))
4689 {
4690 tree tem;
4691 /* Push all TYPE_FIELDS - there can be interleaving interesting
4692 and non-interesting things. */
4693 tem = TYPE_FIELDS (t);
4694 while (tem)
4695 {
4696 if (TREE_CODE (tem) == FIELD_DECL)
4697 fld_worklist_push (tem, fld);
4698 tem = TREE_CHAIN (tem);
4699 }
4700 }
4701
4702 fld_worklist_push (TREE_CHAIN (t), fld);
4703 *ws = 0;
4704 }
4705 else if (TREE_CODE (t) == BLOCK)
4706 {
4707 tree tem;
4708 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4709 fld_worklist_push (tem, fld);
4710 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4711 fld_worklist_push (tem, fld);
4712 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4713 }
4714
4715 fld_worklist_push (TREE_TYPE (t), fld);
4716
4717 return NULL_TREE;
4718 }
4719
4720
4721 /* Find decls and types in T. */
4722
4723 static void
4724 find_decls_types (tree t, struct free_lang_data_d *fld)
4725 {
4726 while (1)
4727 {
4728 if (!pointer_set_contains (fld->pset, t))
4729 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4730 if (VEC_empty (tree, fld->worklist))
4731 break;
4732 t = VEC_pop (tree, fld->worklist);
4733 }
4734 }
4735
4736 /* Translate all the types in LIST with the corresponding runtime
4737 types. */
4738
4739 static tree
4740 get_eh_types_for_runtime (tree list)
4741 {
4742 tree head, prev;
4743
4744 if (list == NULL_TREE)
4745 return NULL_TREE;
4746
4747 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4748 prev = head;
4749 list = TREE_CHAIN (list);
4750 while (list)
4751 {
4752 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4753 TREE_CHAIN (prev) = n;
4754 prev = TREE_CHAIN (prev);
4755 list = TREE_CHAIN (list);
4756 }
4757
4758 return head;
4759 }
4760
4761
4762 /* Find decls and types referenced in EH region R and store them in
4763 FLD->DECLS and FLD->TYPES. */
4764
4765 static void
4766 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4767 {
4768 switch (r->type)
4769 {
4770 case ERT_CLEANUP:
4771 break;
4772
4773 case ERT_TRY:
4774 {
4775 eh_catch c;
4776
4777 /* The types referenced in each catch must first be changed to the
4778 EH types used at runtime. This removes references to FE types
4779 in the region. */
4780 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4781 {
4782 c->type_list = get_eh_types_for_runtime (c->type_list);
4783 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4784 }
4785 }
4786 break;
4787
4788 case ERT_ALLOWED_EXCEPTIONS:
4789 r->u.allowed.type_list
4790 = get_eh_types_for_runtime (r->u.allowed.type_list);
4791 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4792 break;
4793
4794 case ERT_MUST_NOT_THROW:
4795 walk_tree (&r->u.must_not_throw.failure_decl,
4796 find_decls_types_r, fld, fld->pset);
4797 break;
4798 }
4799 }
4800
4801
4802 /* Find decls and types referenced in cgraph node N and store them in
4803 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4804 look for *every* kind of DECL and TYPE node reachable from N,
4805 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4806 NAMESPACE_DECLs, etc). */
4807
4808 static void
4809 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4810 {
4811 basic_block bb;
4812 struct function *fn;
4813 tree t;
4814
4815 find_decls_types (n->decl, fld);
4816
4817 if (!gimple_has_body_p (n->decl))
4818 return;
4819
4820 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4821
4822 fn = DECL_STRUCT_FUNCTION (n->decl);
4823
4824 /* Traverse locals. */
4825 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4826 find_decls_types (TREE_VALUE (t), fld);
4827
4828 /* Traverse EH regions in FN. */
4829 {
4830 eh_region r;
4831 FOR_ALL_EH_REGION_FN (r, fn)
4832 find_decls_types_in_eh_region (r, fld);
4833 }
4834
4835 /* Traverse every statement in FN. */
4836 FOR_EACH_BB_FN (bb, fn)
4837 {
4838 gimple_stmt_iterator si;
4839 unsigned i;
4840
4841 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4842 {
4843 gimple phi = gsi_stmt (si);
4844
4845 for (i = 0; i < gimple_phi_num_args (phi); i++)
4846 {
4847 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4848 find_decls_types (*arg_p, fld);
4849 }
4850 }
4851
4852 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4853 {
4854 gimple stmt = gsi_stmt (si);
4855
4856 for (i = 0; i < gimple_num_ops (stmt); i++)
4857 {
4858 tree arg = gimple_op (stmt, i);
4859 find_decls_types (arg, fld);
4860 }
4861 }
4862 }
4863 }
4864
4865
4866 /* Find decls and types referenced in varpool node N and store them in
4867 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4868 look for *every* kind of DECL and TYPE node reachable from N,
4869 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4870 NAMESPACE_DECLs, etc). */
4871
4872 static void
4873 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4874 {
4875 find_decls_types (v->decl, fld);
4876 }
4877
4878 /* If T needs an assembler name, have one created for it. */
4879
4880 void
4881 assign_assembler_name_if_neeeded (tree t)
4882 {
4883 if (need_assembler_name_p (t))
4884 {
4885 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4886 diagnostics that use input_location to show locus
4887 information. The problem here is that, at this point,
4888 input_location is generally anchored to the end of the file
4889 (since the parser is long gone), so we don't have a good
4890 position to pin it to.
4891
4892 To alleviate this problem, this uses the location of T's
4893 declaration. Examples of this are
4894 testsuite/g++.dg/template/cond2.C and
4895 testsuite/g++.dg/template/pr35240.C. */
4896 location_t saved_location = input_location;
4897 input_location = DECL_SOURCE_LOCATION (t);
4898
4899 decl_assembler_name (t);
4900
4901 input_location = saved_location;
4902 }
4903 }
4904
4905
4906 /* Free language specific information for every operand and expression
4907 in every node of the call graph. This process operates in three stages:
4908
4909 1- Every callgraph node and varpool node is traversed looking for
4910 decls and types embedded in them. This is a more exhaustive
4911 search than that done by find_referenced_vars, because it will
4912 also collect individual fields, decls embedded in types, etc.
4913
4914 2- All the decls found are sent to free_lang_data_in_decl.
4915
4916 3- All the types found are sent to free_lang_data_in_type.
4917
4918 The ordering between decls and types is important because
4919 free_lang_data_in_decl sets assembler names, which includes
4920 mangling. So types cannot be freed up until assembler names have
4921 been set up. */
4922
4923 static void
4924 free_lang_data_in_cgraph (void)
4925 {
4926 struct cgraph_node *n;
4927 struct varpool_node *v;
4928 struct free_lang_data_d fld;
4929 tree t;
4930 unsigned i;
4931 alias_pair *p;
4932
4933 /* Initialize sets and arrays to store referenced decls and types. */
4934 fld.pset = pointer_set_create ();
4935 fld.worklist = NULL;
4936 fld.decls = VEC_alloc (tree, heap, 100);
4937 fld.types = VEC_alloc (tree, heap, 100);
4938
4939 /* Find decls and types in the body of every function in the callgraph. */
4940 for (n = cgraph_nodes; n; n = n->next)
4941 find_decls_types_in_node (n, &fld);
4942
4943 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4944 find_decls_types (p->decl, &fld);
4945
4946 /* Find decls and types in every varpool symbol. */
4947 for (v = varpool_nodes_queue; v; v = v->next_needed)
4948 find_decls_types_in_var (v, &fld);
4949
4950 /* Set the assembler name on every decl found. We need to do this
4951 now because free_lang_data_in_decl will invalidate data needed
4952 for mangling. This breaks mangling on interdependent decls. */
4953 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4954 assign_assembler_name_if_neeeded (t);
4955
4956 /* Traverse every decl found freeing its language data. */
4957 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4958 free_lang_data_in_decl (t);
4959
4960 /* Traverse every type found freeing its language data. */
4961 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4962 free_lang_data_in_type (t);
4963
4964 pointer_set_destroy (fld.pset);
4965 VEC_free (tree, heap, fld.worklist);
4966 VEC_free (tree, heap, fld.decls);
4967 VEC_free (tree, heap, fld.types);
4968 }
4969
4970
4971 /* Free resources that are used by FE but are not needed once they are done. */
4972
4973 static unsigned
4974 free_lang_data (void)
4975 {
4976 unsigned i;
4977
4978 /* If we are the LTO frontend we have freed lang-specific data already. */
4979 if (in_lto_p
4980 || !flag_generate_lto)
4981 return 0;
4982
4983 /* Allocate and assign alias sets to the standard integer types
4984 while the slots are still in the way the frontends generated them. */
4985 for (i = 0; i < itk_none; ++i)
4986 if (integer_types[i])
4987 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
4988
4989 /* Traverse the IL resetting language specific information for
4990 operands, expressions, etc. */
4991 free_lang_data_in_cgraph ();
4992
4993 /* Create gimple variants for common types. */
4994 ptrdiff_type_node = integer_type_node;
4995 fileptr_type_node = ptr_type_node;
4996 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4997 || (TYPE_MODE (boolean_type_node)
4998 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4999 || TYPE_PRECISION (boolean_type_node) != 1
5000 || !TYPE_UNSIGNED (boolean_type_node))
5001 {
5002 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5003 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5004 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5005 TYPE_PRECISION (boolean_type_node) = 1;
5006 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5007 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5008 }
5009
5010 /* Unify char_type_node with its properly signed variant. */
5011 if (TYPE_UNSIGNED (char_type_node))
5012 unsigned_char_type_node = char_type_node;
5013 else
5014 signed_char_type_node = char_type_node;
5015
5016 /* Reset some langhooks. Do not reset types_compatible_p, it may
5017 still be used indirectly via the get_alias_set langhook. */
5018 lang_hooks.callgraph.analyze_expr = NULL;
5019 lang_hooks.dwarf_name = lhd_dwarf_name;
5020 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5021 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5022
5023 /* Reset diagnostic machinery. */
5024 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5025 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5026 diagnostic_format_decoder (global_dc) = default_tree_printer;
5027
5028 return 0;
5029 }
5030
5031
5032 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5033 {
5034 {
5035 SIMPLE_IPA_PASS,
5036 "*free_lang_data", /* name */
5037 NULL, /* gate */
5038 free_lang_data, /* execute */
5039 NULL, /* sub */
5040 NULL, /* next */
5041 0, /* static_pass_number */
5042 TV_IPA_FREE_LANG_DATA, /* tv_id */
5043 0, /* properties_required */
5044 0, /* properties_provided */
5045 0, /* properties_destroyed */
5046 0, /* todo_flags_start */
5047 TODO_ggc_collect /* todo_flags_finish */
5048 }
5049 };
5050
5051 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5052 or zero if not.
5053
5054 We try both `text' and `__text__', ATTR may be either one. */
5055 /* ??? It might be a reasonable simplification to require ATTR to be only
5056 `text'. One might then also require attribute lists to be stored in
5057 their canonicalized form. */
5058
5059 static int
5060 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5061 {
5062 int ident_len;
5063 const char *p;
5064
5065 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5066 return 0;
5067
5068 p = IDENTIFIER_POINTER (ident);
5069 ident_len = IDENTIFIER_LENGTH (ident);
5070
5071 if (ident_len == attr_len
5072 && strcmp (attr, p) == 0)
5073 return 1;
5074
5075 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5076 if (attr[0] == '_')
5077 {
5078 gcc_assert (attr[1] == '_');
5079 gcc_assert (attr[attr_len - 2] == '_');
5080 gcc_assert (attr[attr_len - 1] == '_');
5081 if (ident_len == attr_len - 4
5082 && strncmp (attr + 2, p, attr_len - 4) == 0)
5083 return 1;
5084 }
5085 else
5086 {
5087 if (ident_len == attr_len + 4
5088 && p[0] == '_' && p[1] == '_'
5089 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5090 && strncmp (attr, p + 2, attr_len) == 0)
5091 return 1;
5092 }
5093
5094 return 0;
5095 }
5096
5097 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5098 or zero if not.
5099
5100 We try both `text' and `__text__', ATTR may be either one. */
5101
5102 int
5103 is_attribute_p (const char *attr, const_tree ident)
5104 {
5105 return is_attribute_with_length_p (attr, strlen (attr), ident);
5106 }
5107
5108 /* Given an attribute name and a list of attributes, return a pointer to the
5109 attribute's list element if the attribute is part of the list, or NULL_TREE
5110 if not found. If the attribute appears more than once, this only
5111 returns the first occurrence; the TREE_CHAIN of the return value should
5112 be passed back in if further occurrences are wanted. */
5113
5114 tree
5115 lookup_attribute (const char *attr_name, tree list)
5116 {
5117 tree l;
5118 size_t attr_len = strlen (attr_name);
5119
5120 for (l = list; l; l = TREE_CHAIN (l))
5121 {
5122 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5123 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5124 return l;
5125 }
5126 return NULL_TREE;
5127 }
5128
5129 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5130 modified list. */
5131
5132 tree
5133 remove_attribute (const char *attr_name, tree list)
5134 {
5135 tree *p;
5136 size_t attr_len = strlen (attr_name);
5137
5138 for (p = &list; *p; )
5139 {
5140 tree l = *p;
5141 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5142 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5143 *p = TREE_CHAIN (l);
5144 else
5145 p = &TREE_CHAIN (l);
5146 }
5147
5148 return list;
5149 }
5150
5151 /* Return an attribute list that is the union of a1 and a2. */
5152
5153 tree
5154 merge_attributes (tree a1, tree a2)
5155 {
5156 tree attributes;
5157
5158 /* Either one unset? Take the set one. */
5159
5160 if ((attributes = a1) == 0)
5161 attributes = a2;
5162
5163 /* One that completely contains the other? Take it. */
5164
5165 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5166 {
5167 if (attribute_list_contained (a2, a1))
5168 attributes = a2;
5169 else
5170 {
5171 /* Pick the longest list, and hang on the other list. */
5172
5173 if (list_length (a1) < list_length (a2))
5174 attributes = a2, a2 = a1;
5175
5176 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5177 {
5178 tree a;
5179 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5180 attributes);
5181 a != NULL_TREE;
5182 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5183 TREE_CHAIN (a)))
5184 {
5185 if (TREE_VALUE (a) != NULL
5186 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5187 && TREE_VALUE (a2) != NULL
5188 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5189 {
5190 if (simple_cst_list_equal (TREE_VALUE (a),
5191 TREE_VALUE (a2)) == 1)
5192 break;
5193 }
5194 else if (simple_cst_equal (TREE_VALUE (a),
5195 TREE_VALUE (a2)) == 1)
5196 break;
5197 }
5198 if (a == NULL_TREE)
5199 {
5200 a1 = copy_node (a2);
5201 TREE_CHAIN (a1) = attributes;
5202 attributes = a1;
5203 }
5204 }
5205 }
5206 }
5207 return attributes;
5208 }
5209
5210 /* Given types T1 and T2, merge their attributes and return
5211 the result. */
5212
5213 tree
5214 merge_type_attributes (tree t1, tree t2)
5215 {
5216 return merge_attributes (TYPE_ATTRIBUTES (t1),
5217 TYPE_ATTRIBUTES (t2));
5218 }
5219
5220 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5221 the result. */
5222
5223 tree
5224 merge_decl_attributes (tree olddecl, tree newdecl)
5225 {
5226 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5227 DECL_ATTRIBUTES (newdecl));
5228 }
5229
5230 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5231
5232 /* Specialization of merge_decl_attributes for various Windows targets.
5233
5234 This handles the following situation:
5235
5236 __declspec (dllimport) int foo;
5237 int foo;
5238
5239 The second instance of `foo' nullifies the dllimport. */
5240
5241 tree
5242 merge_dllimport_decl_attributes (tree old, tree new_tree)
5243 {
5244 tree a;
5245 int delete_dllimport_p = 1;
5246
5247 /* What we need to do here is remove from `old' dllimport if it doesn't
5248 appear in `new'. dllimport behaves like extern: if a declaration is
5249 marked dllimport and a definition appears later, then the object
5250 is not dllimport'd. We also remove a `new' dllimport if the old list
5251 contains dllexport: dllexport always overrides dllimport, regardless
5252 of the order of declaration. */
5253 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5254 delete_dllimport_p = 0;
5255 else if (DECL_DLLIMPORT_P (new_tree)
5256 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5257 {
5258 DECL_DLLIMPORT_P (new_tree) = 0;
5259 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5260 "dllimport ignored", new_tree);
5261 }
5262 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5263 {
5264 /* Warn about overriding a symbol that has already been used, e.g.:
5265 extern int __attribute__ ((dllimport)) foo;
5266 int* bar () {return &foo;}
5267 int foo;
5268 */
5269 if (TREE_USED (old))
5270 {
5271 warning (0, "%q+D redeclared without dllimport attribute "
5272 "after being referenced with dll linkage", new_tree);
5273 /* If we have used a variable's address with dllimport linkage,
5274 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5275 decl may already have had TREE_CONSTANT computed.
5276 We still remove the attribute so that assembler code refers
5277 to '&foo rather than '_imp__foo'. */
5278 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5279 DECL_DLLIMPORT_P (new_tree) = 1;
5280 }
5281
5282 /* Let an inline definition silently override the external reference,
5283 but otherwise warn about attribute inconsistency. */
5284 else if (TREE_CODE (new_tree) == VAR_DECL
5285 || !DECL_DECLARED_INLINE_P (new_tree))
5286 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5287 "previous dllimport ignored", new_tree);
5288 }
5289 else
5290 delete_dllimport_p = 0;
5291
5292 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5293
5294 if (delete_dllimport_p)
5295 {
5296 tree prev, t;
5297 const size_t attr_len = strlen ("dllimport");
5298
5299 /* Scan the list for dllimport and delete it. */
5300 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5301 {
5302 if (is_attribute_with_length_p ("dllimport", attr_len,
5303 TREE_PURPOSE (t)))
5304 {
5305 if (prev == NULL_TREE)
5306 a = TREE_CHAIN (a);
5307 else
5308 TREE_CHAIN (prev) = TREE_CHAIN (t);
5309 break;
5310 }
5311 }
5312 }
5313
5314 return a;
5315 }
5316
5317 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5318 struct attribute_spec.handler. */
5319
5320 tree
5321 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5322 bool *no_add_attrs)
5323 {
5324 tree node = *pnode;
5325 bool is_dllimport;
5326
5327 /* These attributes may apply to structure and union types being created,
5328 but otherwise should pass to the declaration involved. */
5329 if (!DECL_P (node))
5330 {
5331 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5332 | (int) ATTR_FLAG_ARRAY_NEXT))
5333 {
5334 *no_add_attrs = true;
5335 return tree_cons (name, args, NULL_TREE);
5336 }
5337 if (TREE_CODE (node) == RECORD_TYPE
5338 || TREE_CODE (node) == UNION_TYPE)
5339 {
5340 node = TYPE_NAME (node);
5341 if (!node)
5342 return NULL_TREE;
5343 }
5344 else
5345 {
5346 warning (OPT_Wattributes, "%qE attribute ignored",
5347 name);
5348 *no_add_attrs = true;
5349 return NULL_TREE;
5350 }
5351 }
5352
5353 if (TREE_CODE (node) != FUNCTION_DECL
5354 && TREE_CODE (node) != VAR_DECL
5355 && TREE_CODE (node) != TYPE_DECL)
5356 {
5357 *no_add_attrs = true;
5358 warning (OPT_Wattributes, "%qE attribute ignored",
5359 name);
5360 return NULL_TREE;
5361 }
5362
5363 if (TREE_CODE (node) == TYPE_DECL
5364 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5365 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5366 {
5367 *no_add_attrs = true;
5368 warning (OPT_Wattributes, "%qE attribute ignored",
5369 name);
5370 return NULL_TREE;
5371 }
5372
5373 is_dllimport = is_attribute_p ("dllimport", name);
5374
5375 /* Report error on dllimport ambiguities seen now before they cause
5376 any damage. */
5377 if (is_dllimport)
5378 {
5379 /* Honor any target-specific overrides. */
5380 if (!targetm.valid_dllimport_attribute_p (node))
5381 *no_add_attrs = true;
5382
5383 else if (TREE_CODE (node) == FUNCTION_DECL
5384 && DECL_DECLARED_INLINE_P (node))
5385 {
5386 warning (OPT_Wattributes, "inline function %q+D declared as "
5387 " dllimport: attribute ignored", node);
5388 *no_add_attrs = true;
5389 }
5390 /* Like MS, treat definition of dllimported variables and
5391 non-inlined functions on declaration as syntax errors. */
5392 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5393 {
5394 error ("function %q+D definition is marked dllimport", node);
5395 *no_add_attrs = true;
5396 }
5397
5398 else if (TREE_CODE (node) == VAR_DECL)
5399 {
5400 if (DECL_INITIAL (node))
5401 {
5402 error ("variable %q+D definition is marked dllimport",
5403 node);
5404 *no_add_attrs = true;
5405 }
5406
5407 /* `extern' needn't be specified with dllimport.
5408 Specify `extern' now and hope for the best. Sigh. */
5409 DECL_EXTERNAL (node) = 1;
5410 /* Also, implicitly give dllimport'd variables declared within
5411 a function global scope, unless declared static. */
5412 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5413 TREE_PUBLIC (node) = 1;
5414 }
5415
5416 if (*no_add_attrs == false)
5417 DECL_DLLIMPORT_P (node) = 1;
5418 }
5419 else if (TREE_CODE (node) == FUNCTION_DECL
5420 && DECL_DECLARED_INLINE_P (node))
5421 /* An exported function, even if inline, must be emitted. */
5422 DECL_EXTERNAL (node) = 0;
5423
5424 /* Report error if symbol is not accessible at global scope. */
5425 if (!TREE_PUBLIC (node)
5426 && (TREE_CODE (node) == VAR_DECL
5427 || TREE_CODE (node) == FUNCTION_DECL))
5428 {
5429 error ("external linkage required for symbol %q+D because of "
5430 "%qE attribute", node, name);
5431 *no_add_attrs = true;
5432 }
5433
5434 /* A dllexport'd entity must have default visibility so that other
5435 program units (shared libraries or the main executable) can see
5436 it. A dllimport'd entity must have default visibility so that
5437 the linker knows that undefined references within this program
5438 unit can be resolved by the dynamic linker. */
5439 if (!*no_add_attrs)
5440 {
5441 if (DECL_VISIBILITY_SPECIFIED (node)
5442 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5443 error ("%qE implies default visibility, but %qD has already "
5444 "been declared with a different visibility",
5445 name, node);
5446 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5447 DECL_VISIBILITY_SPECIFIED (node) = 1;
5448 }
5449
5450 return NULL_TREE;
5451 }
5452
5453 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5454 \f
5455 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5456 of the various TYPE_QUAL values. */
5457
5458 static void
5459 set_type_quals (tree type, int type_quals)
5460 {
5461 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5462 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5463 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5464 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5465 }
5466
5467 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5468
5469 bool
5470 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5471 {
5472 return (TYPE_QUALS (cand) == type_quals
5473 && TYPE_NAME (cand) == TYPE_NAME (base)
5474 /* Apparently this is needed for Objective-C. */
5475 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5476 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5477 TYPE_ATTRIBUTES (base)));
5478 }
5479
5480 /* Return a version of the TYPE, qualified as indicated by the
5481 TYPE_QUALS, if one exists. If no qualified version exists yet,
5482 return NULL_TREE. */
5483
5484 tree
5485 get_qualified_type (tree type, int type_quals)
5486 {
5487 tree t;
5488
5489 if (TYPE_QUALS (type) == type_quals)
5490 return type;
5491
5492 /* Search the chain of variants to see if there is already one there just
5493 like the one we need to have. If so, use that existing one. We must
5494 preserve the TYPE_NAME, since there is code that depends on this. */
5495 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5496 if (check_qualified_type (t, type, type_quals))
5497 return t;
5498
5499 return NULL_TREE;
5500 }
5501
5502 /* Like get_qualified_type, but creates the type if it does not
5503 exist. This function never returns NULL_TREE. */
5504
5505 tree
5506 build_qualified_type (tree type, int type_quals)
5507 {
5508 tree t;
5509
5510 /* See if we already have the appropriate qualified variant. */
5511 t = get_qualified_type (type, type_quals);
5512
5513 /* If not, build it. */
5514 if (!t)
5515 {
5516 t = build_variant_type_copy (type);
5517 set_type_quals (t, type_quals);
5518
5519 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5520 /* Propagate structural equality. */
5521 SET_TYPE_STRUCTURAL_EQUALITY (t);
5522 else if (TYPE_CANONICAL (type) != type)
5523 /* Build the underlying canonical type, since it is different
5524 from TYPE. */
5525 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5526 type_quals);
5527 else
5528 /* T is its own canonical type. */
5529 TYPE_CANONICAL (t) = t;
5530
5531 }
5532
5533 return t;
5534 }
5535
5536 /* Create a new distinct copy of TYPE. The new type is made its own
5537 MAIN_VARIANT. If TYPE requires structural equality checks, the
5538 resulting type requires structural equality checks; otherwise, its
5539 TYPE_CANONICAL points to itself. */
5540
5541 tree
5542 build_distinct_type_copy (tree type)
5543 {
5544 tree t = copy_node (type);
5545
5546 TYPE_POINTER_TO (t) = 0;
5547 TYPE_REFERENCE_TO (t) = 0;
5548
5549 /* Set the canonical type either to a new equivalence class, or
5550 propagate the need for structural equality checks. */
5551 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5552 SET_TYPE_STRUCTURAL_EQUALITY (t);
5553 else
5554 TYPE_CANONICAL (t) = t;
5555
5556 /* Make it its own variant. */
5557 TYPE_MAIN_VARIANT (t) = t;
5558 TYPE_NEXT_VARIANT (t) = 0;
5559
5560 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5561 whose TREE_TYPE is not t. This can also happen in the Ada
5562 frontend when using subtypes. */
5563
5564 return t;
5565 }
5566
5567 /* Create a new variant of TYPE, equivalent but distinct. This is so
5568 the caller can modify it. TYPE_CANONICAL for the return type will
5569 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5570 are considered equal by the language itself (or that both types
5571 require structural equality checks). */
5572
5573 tree
5574 build_variant_type_copy (tree type)
5575 {
5576 tree t, m = TYPE_MAIN_VARIANT (type);
5577
5578 t = build_distinct_type_copy (type);
5579
5580 /* Since we're building a variant, assume that it is a non-semantic
5581 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5582 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5583
5584 /* Add the new type to the chain of variants of TYPE. */
5585 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5586 TYPE_NEXT_VARIANT (m) = t;
5587 TYPE_MAIN_VARIANT (t) = m;
5588
5589 return t;
5590 }
5591 \f
5592 /* Return true if the from tree in both tree maps are equal. */
5593
5594 int
5595 tree_map_base_eq (const void *va, const void *vb)
5596 {
5597 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5598 *const b = (const struct tree_map_base *) vb;
5599 return (a->from == b->from);
5600 }
5601
5602 /* Hash a from tree in a tree_map. */
5603
5604 unsigned int
5605 tree_map_base_hash (const void *item)
5606 {
5607 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5608 }
5609
5610 /* Return true if this tree map structure is marked for garbage collection
5611 purposes. We simply return true if the from tree is marked, so that this
5612 structure goes away when the from tree goes away. */
5613
5614 int
5615 tree_map_base_marked_p (const void *p)
5616 {
5617 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5618 }
5619
5620 unsigned int
5621 tree_map_hash (const void *item)
5622 {
5623 return (((const struct tree_map *) item)->hash);
5624 }
5625
5626 /* Return the initialization priority for DECL. */
5627
5628 priority_type
5629 decl_init_priority_lookup (tree decl)
5630 {
5631 struct tree_priority_map *h;
5632 struct tree_map_base in;
5633
5634 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5635 in.from = decl;
5636 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5637 return h ? h->init : DEFAULT_INIT_PRIORITY;
5638 }
5639
5640 /* Return the finalization priority for DECL. */
5641
5642 priority_type
5643 decl_fini_priority_lookup (tree decl)
5644 {
5645 struct tree_priority_map *h;
5646 struct tree_map_base in;
5647
5648 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5649 in.from = decl;
5650 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5651 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5652 }
5653
5654 /* Return the initialization and finalization priority information for
5655 DECL. If there is no previous priority information, a freshly
5656 allocated structure is returned. */
5657
5658 static struct tree_priority_map *
5659 decl_priority_info (tree decl)
5660 {
5661 struct tree_priority_map in;
5662 struct tree_priority_map *h;
5663 void **loc;
5664
5665 in.base.from = decl;
5666 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5667 h = (struct tree_priority_map *) *loc;
5668 if (!h)
5669 {
5670 h = GGC_CNEW (struct tree_priority_map);
5671 *loc = h;
5672 h->base.from = decl;
5673 h->init = DEFAULT_INIT_PRIORITY;
5674 h->fini = DEFAULT_INIT_PRIORITY;
5675 }
5676
5677 return h;
5678 }
5679
5680 /* Set the initialization priority for DECL to PRIORITY. */
5681
5682 void
5683 decl_init_priority_insert (tree decl, priority_type priority)
5684 {
5685 struct tree_priority_map *h;
5686
5687 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5688 h = decl_priority_info (decl);
5689 h->init = priority;
5690 }
5691
5692 /* Set the finalization priority for DECL to PRIORITY. */
5693
5694 void
5695 decl_fini_priority_insert (tree decl, priority_type priority)
5696 {
5697 struct tree_priority_map *h;
5698
5699 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5700 h = decl_priority_info (decl);
5701 h->fini = priority;
5702 }
5703
5704 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5705
5706 static void
5707 print_debug_expr_statistics (void)
5708 {
5709 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5710 (long) htab_size (debug_expr_for_decl),
5711 (long) htab_elements (debug_expr_for_decl),
5712 htab_collisions (debug_expr_for_decl));
5713 }
5714
5715 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5716
5717 static void
5718 print_value_expr_statistics (void)
5719 {
5720 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5721 (long) htab_size (value_expr_for_decl),
5722 (long) htab_elements (value_expr_for_decl),
5723 htab_collisions (value_expr_for_decl));
5724 }
5725
5726 /* Lookup a debug expression for FROM, and return it if we find one. */
5727
5728 tree
5729 decl_debug_expr_lookup (tree from)
5730 {
5731 struct tree_map *h, in;
5732 in.base.from = from;
5733
5734 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
5735 htab_hash_pointer (from));
5736 if (h)
5737 return h->to;
5738 return NULL_TREE;
5739 }
5740
5741 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5742
5743 void
5744 decl_debug_expr_insert (tree from, tree to)
5745 {
5746 struct tree_map *h;
5747 void **loc;
5748
5749 h = GGC_NEW (struct tree_map);
5750 h->hash = htab_hash_pointer (from);
5751 h->base.from = from;
5752 h->to = to;
5753 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
5754 *(struct tree_map **) loc = h;
5755 }
5756
5757 /* Lookup a value expression for FROM, and return it if we find one. */
5758
5759 tree
5760 decl_value_expr_lookup (tree from)
5761 {
5762 struct tree_map *h, in;
5763 in.base.from = from;
5764
5765 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
5766 htab_hash_pointer (from));
5767 if (h)
5768 return h->to;
5769 return NULL_TREE;
5770 }
5771
5772 /* Insert a mapping FROM->TO in the value expression hashtable. */
5773
5774 void
5775 decl_value_expr_insert (tree from, tree to)
5776 {
5777 struct tree_map *h;
5778 void **loc;
5779
5780 h = GGC_NEW (struct tree_map);
5781 h->hash = htab_hash_pointer (from);
5782 h->base.from = from;
5783 h->to = to;
5784 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
5785 *(struct tree_map **) loc = h;
5786 }
5787
5788 /* Hashing of types so that we don't make duplicates.
5789 The entry point is `type_hash_canon'. */
5790
5791 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5792 with types in the TREE_VALUE slots), by adding the hash codes
5793 of the individual types. */
5794
5795 static unsigned int
5796 type_hash_list (const_tree list, hashval_t hashcode)
5797 {
5798 const_tree tail;
5799
5800 for (tail = list; tail; tail = TREE_CHAIN (tail))
5801 if (TREE_VALUE (tail) != error_mark_node)
5802 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5803 hashcode);
5804
5805 return hashcode;
5806 }
5807
5808 /* These are the Hashtable callback functions. */
5809
5810 /* Returns true iff the types are equivalent. */
5811
5812 static int
5813 type_hash_eq (const void *va, const void *vb)
5814 {
5815 const struct type_hash *const a = (const struct type_hash *) va,
5816 *const b = (const struct type_hash *) vb;
5817
5818 /* First test the things that are the same for all types. */
5819 if (a->hash != b->hash
5820 || TREE_CODE (a->type) != TREE_CODE (b->type)
5821 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5822 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5823 TYPE_ATTRIBUTES (b->type))
5824 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5825 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5826 || (TREE_CODE (a->type) != COMPLEX_TYPE
5827 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5828 return 0;
5829
5830 switch (TREE_CODE (a->type))
5831 {
5832 case VOID_TYPE:
5833 case COMPLEX_TYPE:
5834 case POINTER_TYPE:
5835 case REFERENCE_TYPE:
5836 return 1;
5837
5838 case VECTOR_TYPE:
5839 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5840
5841 case ENUMERAL_TYPE:
5842 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5843 && !(TYPE_VALUES (a->type)
5844 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5845 && TYPE_VALUES (b->type)
5846 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5847 && type_list_equal (TYPE_VALUES (a->type),
5848 TYPE_VALUES (b->type))))
5849 return 0;
5850
5851 /* ... fall through ... */
5852
5853 case INTEGER_TYPE:
5854 case REAL_TYPE:
5855 case BOOLEAN_TYPE:
5856 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5857 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5858 TYPE_MAX_VALUE (b->type)))
5859 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5860 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5861 TYPE_MIN_VALUE (b->type))));
5862
5863 case FIXED_POINT_TYPE:
5864 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5865
5866 case OFFSET_TYPE:
5867 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5868
5869 case METHOD_TYPE:
5870 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5871 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5872 || (TYPE_ARG_TYPES (a->type)
5873 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5874 && TYPE_ARG_TYPES (b->type)
5875 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5876 && type_list_equal (TYPE_ARG_TYPES (a->type),
5877 TYPE_ARG_TYPES (b->type)))));
5878
5879 case ARRAY_TYPE:
5880 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5881
5882 case RECORD_TYPE:
5883 case UNION_TYPE:
5884 case QUAL_UNION_TYPE:
5885 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5886 || (TYPE_FIELDS (a->type)
5887 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5888 && TYPE_FIELDS (b->type)
5889 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5890 && type_list_equal (TYPE_FIELDS (a->type),
5891 TYPE_FIELDS (b->type))));
5892
5893 case FUNCTION_TYPE:
5894 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5895 || (TYPE_ARG_TYPES (a->type)
5896 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5897 && TYPE_ARG_TYPES (b->type)
5898 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5899 && type_list_equal (TYPE_ARG_TYPES (a->type),
5900 TYPE_ARG_TYPES (b->type))))
5901 break;
5902 return 0;
5903
5904 default:
5905 return 0;
5906 }
5907
5908 if (lang_hooks.types.type_hash_eq != NULL)
5909 return lang_hooks.types.type_hash_eq (a->type, b->type);
5910
5911 return 1;
5912 }
5913
5914 /* Return the cached hash value. */
5915
5916 static hashval_t
5917 type_hash_hash (const void *item)
5918 {
5919 return ((const struct type_hash *) item)->hash;
5920 }
5921
5922 /* Look in the type hash table for a type isomorphic to TYPE.
5923 If one is found, return it. Otherwise return 0. */
5924
5925 tree
5926 type_hash_lookup (hashval_t hashcode, tree type)
5927 {
5928 struct type_hash *h, in;
5929
5930 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5931 must call that routine before comparing TYPE_ALIGNs. */
5932 layout_type (type);
5933
5934 in.hash = hashcode;
5935 in.type = type;
5936
5937 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5938 hashcode);
5939 if (h)
5940 return h->type;
5941 return NULL_TREE;
5942 }
5943
5944 /* Add an entry to the type-hash-table
5945 for a type TYPE whose hash code is HASHCODE. */
5946
5947 void
5948 type_hash_add (hashval_t hashcode, tree type)
5949 {
5950 struct type_hash *h;
5951 void **loc;
5952
5953 h = GGC_NEW (struct type_hash);
5954 h->hash = hashcode;
5955 h->type = type;
5956 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5957 *loc = (void *)h;
5958 }
5959
5960 /* Given TYPE, and HASHCODE its hash code, return the canonical
5961 object for an identical type if one already exists.
5962 Otherwise, return TYPE, and record it as the canonical object.
5963
5964 To use this function, first create a type of the sort you want.
5965 Then compute its hash code from the fields of the type that
5966 make it different from other similar types.
5967 Then call this function and use the value. */
5968
5969 tree
5970 type_hash_canon (unsigned int hashcode, tree type)
5971 {
5972 tree t1;
5973
5974 /* The hash table only contains main variants, so ensure that's what we're
5975 being passed. */
5976 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5977
5978 if (!lang_hooks.types.hash_types)
5979 return type;
5980
5981 /* See if the type is in the hash table already. If so, return it.
5982 Otherwise, add the type. */
5983 t1 = type_hash_lookup (hashcode, type);
5984 if (t1 != 0)
5985 {
5986 #ifdef GATHER_STATISTICS
5987 tree_node_counts[(int) t_kind]--;
5988 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5989 #endif
5990 return t1;
5991 }
5992 else
5993 {
5994 type_hash_add (hashcode, type);
5995 return type;
5996 }
5997 }
5998
5999 /* See if the data pointed to by the type hash table is marked. We consider
6000 it marked if the type is marked or if a debug type number or symbol
6001 table entry has been made for the type. This reduces the amount of
6002 debugging output and eliminates that dependency of the debug output on
6003 the number of garbage collections. */
6004
6005 static int
6006 type_hash_marked_p (const void *p)
6007 {
6008 const_tree const type = ((const struct type_hash *) p)->type;
6009
6010 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
6011 }
6012
6013 static void
6014 print_type_hash_statistics (void)
6015 {
6016 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6017 (long) htab_size (type_hash_table),
6018 (long) htab_elements (type_hash_table),
6019 htab_collisions (type_hash_table));
6020 }
6021
6022 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6023 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6024 by adding the hash codes of the individual attributes. */
6025
6026 static unsigned int
6027 attribute_hash_list (const_tree list, hashval_t hashcode)
6028 {
6029 const_tree tail;
6030
6031 for (tail = list; tail; tail = TREE_CHAIN (tail))
6032 /* ??? Do we want to add in TREE_VALUE too? */
6033 hashcode = iterative_hash_object
6034 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6035 return hashcode;
6036 }
6037
6038 /* Given two lists of attributes, return true if list l2 is
6039 equivalent to l1. */
6040
6041 int
6042 attribute_list_equal (const_tree l1, const_tree l2)
6043 {
6044 return attribute_list_contained (l1, l2)
6045 && attribute_list_contained (l2, l1);
6046 }
6047
6048 /* Given two lists of attributes, return true if list L2 is
6049 completely contained within L1. */
6050 /* ??? This would be faster if attribute names were stored in a canonicalized
6051 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6052 must be used to show these elements are equivalent (which they are). */
6053 /* ??? It's not clear that attributes with arguments will always be handled
6054 correctly. */
6055
6056 int
6057 attribute_list_contained (const_tree l1, const_tree l2)
6058 {
6059 const_tree t1, t2;
6060
6061 /* First check the obvious, maybe the lists are identical. */
6062 if (l1 == l2)
6063 return 1;
6064
6065 /* Maybe the lists are similar. */
6066 for (t1 = l1, t2 = l2;
6067 t1 != 0 && t2 != 0
6068 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6069 && TREE_VALUE (t1) == TREE_VALUE (t2);
6070 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6071
6072 /* Maybe the lists are equal. */
6073 if (t1 == 0 && t2 == 0)
6074 return 1;
6075
6076 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6077 {
6078 const_tree attr;
6079 /* This CONST_CAST is okay because lookup_attribute does not
6080 modify its argument and the return value is assigned to a
6081 const_tree. */
6082 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6083 CONST_CAST_TREE(l1));
6084 attr != NULL_TREE;
6085 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6086 TREE_CHAIN (attr)))
6087 {
6088 if (TREE_VALUE (t2) != NULL
6089 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6090 && TREE_VALUE (attr) != NULL
6091 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6092 {
6093 if (simple_cst_list_equal (TREE_VALUE (t2),
6094 TREE_VALUE (attr)) == 1)
6095 break;
6096 }
6097 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6098 break;
6099 }
6100
6101 if (attr == 0)
6102 return 0;
6103 }
6104
6105 return 1;
6106 }
6107
6108 /* Given two lists of types
6109 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6110 return 1 if the lists contain the same types in the same order.
6111 Also, the TREE_PURPOSEs must match. */
6112
6113 int
6114 type_list_equal (const_tree l1, const_tree l2)
6115 {
6116 const_tree t1, t2;
6117
6118 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6119 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6120 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6121 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6122 && (TREE_TYPE (TREE_PURPOSE (t1))
6123 == TREE_TYPE (TREE_PURPOSE (t2))))))
6124 return 0;
6125
6126 return t1 == t2;
6127 }
6128
6129 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6130 given by TYPE. If the argument list accepts variable arguments,
6131 then this function counts only the ordinary arguments. */
6132
6133 int
6134 type_num_arguments (const_tree type)
6135 {
6136 int i = 0;
6137 tree t;
6138
6139 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6140 /* If the function does not take a variable number of arguments,
6141 the last element in the list will have type `void'. */
6142 if (VOID_TYPE_P (TREE_VALUE (t)))
6143 break;
6144 else
6145 ++i;
6146
6147 return i;
6148 }
6149
6150 /* Nonzero if integer constants T1 and T2
6151 represent the same constant value. */
6152
6153 int
6154 tree_int_cst_equal (const_tree t1, const_tree t2)
6155 {
6156 if (t1 == t2)
6157 return 1;
6158
6159 if (t1 == 0 || t2 == 0)
6160 return 0;
6161
6162 if (TREE_CODE (t1) == INTEGER_CST
6163 && TREE_CODE (t2) == INTEGER_CST
6164 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6165 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6166 return 1;
6167
6168 return 0;
6169 }
6170
6171 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6172 The precise way of comparison depends on their data type. */
6173
6174 int
6175 tree_int_cst_lt (const_tree t1, const_tree t2)
6176 {
6177 if (t1 == t2)
6178 return 0;
6179
6180 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6181 {
6182 int t1_sgn = tree_int_cst_sgn (t1);
6183 int t2_sgn = tree_int_cst_sgn (t2);
6184
6185 if (t1_sgn < t2_sgn)
6186 return 1;
6187 else if (t1_sgn > t2_sgn)
6188 return 0;
6189 /* Otherwise, both are non-negative, so we compare them as
6190 unsigned just in case one of them would overflow a signed
6191 type. */
6192 }
6193 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6194 return INT_CST_LT (t1, t2);
6195
6196 return INT_CST_LT_UNSIGNED (t1, t2);
6197 }
6198
6199 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6200
6201 int
6202 tree_int_cst_compare (const_tree t1, const_tree t2)
6203 {
6204 if (tree_int_cst_lt (t1, t2))
6205 return -1;
6206 else if (tree_int_cst_lt (t2, t1))
6207 return 1;
6208 else
6209 return 0;
6210 }
6211
6212 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6213 the host. If POS is zero, the value can be represented in a single
6214 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6215 be represented in a single unsigned HOST_WIDE_INT. */
6216
6217 int
6218 host_integerp (const_tree t, int pos)
6219 {
6220 if (t == NULL_TREE)
6221 return 0;
6222
6223 return (TREE_CODE (t) == INTEGER_CST
6224 && ((TREE_INT_CST_HIGH (t) == 0
6225 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6226 || (! pos && TREE_INT_CST_HIGH (t) == -1
6227 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6228 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6229 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6230 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6231 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6232 }
6233
6234 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6235 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6236 be non-negative. We must be able to satisfy the above conditions. */
6237
6238 HOST_WIDE_INT
6239 tree_low_cst (const_tree t, int pos)
6240 {
6241 gcc_assert (host_integerp (t, pos));
6242 return TREE_INT_CST_LOW (t);
6243 }
6244
6245 /* Return the most significant bit of the integer constant T. */
6246
6247 int
6248 tree_int_cst_msb (const_tree t)
6249 {
6250 int prec;
6251 HOST_WIDE_INT h;
6252 unsigned HOST_WIDE_INT l;
6253
6254 /* Note that using TYPE_PRECISION here is wrong. We care about the
6255 actual bits, not the (arbitrary) range of the type. */
6256 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6257 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6258 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6259 return (l & 1) == 1;
6260 }
6261
6262 /* Return an indication of the sign of the integer constant T.
6263 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6264 Note that -1 will never be returned if T's type is unsigned. */
6265
6266 int
6267 tree_int_cst_sgn (const_tree t)
6268 {
6269 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6270 return 0;
6271 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6272 return 1;
6273 else if (TREE_INT_CST_HIGH (t) < 0)
6274 return -1;
6275 else
6276 return 1;
6277 }
6278
6279 /* Return the minimum number of bits needed to represent VALUE in a
6280 signed or unsigned type, UNSIGNEDP says which. */
6281
6282 unsigned int
6283 tree_int_cst_min_precision (tree value, bool unsignedp)
6284 {
6285 int log;
6286
6287 /* If the value is negative, compute its negative minus 1. The latter
6288 adjustment is because the absolute value of the largest negative value
6289 is one larger than the largest positive value. This is equivalent to
6290 a bit-wise negation, so use that operation instead. */
6291
6292 if (tree_int_cst_sgn (value) < 0)
6293 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6294
6295 /* Return the number of bits needed, taking into account the fact
6296 that we need one more bit for a signed than unsigned type. */
6297
6298 if (integer_zerop (value))
6299 log = 0;
6300 else
6301 log = tree_floor_log2 (value);
6302
6303 return log + 1 + !unsignedp;
6304 }
6305
6306 /* Compare two constructor-element-type constants. Return 1 if the lists
6307 are known to be equal; otherwise return 0. */
6308
6309 int
6310 simple_cst_list_equal (const_tree l1, const_tree l2)
6311 {
6312 while (l1 != NULL_TREE && l2 != NULL_TREE)
6313 {
6314 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6315 return 0;
6316
6317 l1 = TREE_CHAIN (l1);
6318 l2 = TREE_CHAIN (l2);
6319 }
6320
6321 return l1 == l2;
6322 }
6323
6324 /* Return truthvalue of whether T1 is the same tree structure as T2.
6325 Return 1 if they are the same.
6326 Return 0 if they are understandably different.
6327 Return -1 if either contains tree structure not understood by
6328 this function. */
6329
6330 int
6331 simple_cst_equal (const_tree t1, const_tree t2)
6332 {
6333 enum tree_code code1, code2;
6334 int cmp;
6335 int i;
6336
6337 if (t1 == t2)
6338 return 1;
6339 if (t1 == 0 || t2 == 0)
6340 return 0;
6341
6342 code1 = TREE_CODE (t1);
6343 code2 = TREE_CODE (t2);
6344
6345 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6346 {
6347 if (CONVERT_EXPR_CODE_P (code2)
6348 || code2 == NON_LVALUE_EXPR)
6349 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6350 else
6351 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6352 }
6353
6354 else if (CONVERT_EXPR_CODE_P (code2)
6355 || code2 == NON_LVALUE_EXPR)
6356 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6357
6358 if (code1 != code2)
6359 return 0;
6360
6361 switch (code1)
6362 {
6363 case INTEGER_CST:
6364 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6365 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6366
6367 case REAL_CST:
6368 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6369
6370 case FIXED_CST:
6371 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6372
6373 case STRING_CST:
6374 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6375 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6376 TREE_STRING_LENGTH (t1)));
6377
6378 case CONSTRUCTOR:
6379 {
6380 unsigned HOST_WIDE_INT idx;
6381 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6382 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6383
6384 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6385 return false;
6386
6387 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6388 /* ??? Should we handle also fields here? */
6389 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6390 VEC_index (constructor_elt, v2, idx)->value))
6391 return false;
6392 return true;
6393 }
6394
6395 case SAVE_EXPR:
6396 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6397
6398 case CALL_EXPR:
6399 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6400 if (cmp <= 0)
6401 return cmp;
6402 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6403 return 0;
6404 {
6405 const_tree arg1, arg2;
6406 const_call_expr_arg_iterator iter1, iter2;
6407 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6408 arg2 = first_const_call_expr_arg (t2, &iter2);
6409 arg1 && arg2;
6410 arg1 = next_const_call_expr_arg (&iter1),
6411 arg2 = next_const_call_expr_arg (&iter2))
6412 {
6413 cmp = simple_cst_equal (arg1, arg2);
6414 if (cmp <= 0)
6415 return cmp;
6416 }
6417 return arg1 == arg2;
6418 }
6419
6420 case TARGET_EXPR:
6421 /* Special case: if either target is an unallocated VAR_DECL,
6422 it means that it's going to be unified with whatever the
6423 TARGET_EXPR is really supposed to initialize, so treat it
6424 as being equivalent to anything. */
6425 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6426 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6427 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6428 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6429 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6430 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6431 cmp = 1;
6432 else
6433 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6434
6435 if (cmp <= 0)
6436 return cmp;
6437
6438 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6439
6440 case WITH_CLEANUP_EXPR:
6441 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6442 if (cmp <= 0)
6443 return cmp;
6444
6445 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6446
6447 case COMPONENT_REF:
6448 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6449 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6450
6451 return 0;
6452
6453 case VAR_DECL:
6454 case PARM_DECL:
6455 case CONST_DECL:
6456 case FUNCTION_DECL:
6457 return 0;
6458
6459 default:
6460 break;
6461 }
6462
6463 /* This general rule works for most tree codes. All exceptions should be
6464 handled above. If this is a language-specific tree code, we can't
6465 trust what might be in the operand, so say we don't know
6466 the situation. */
6467 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6468 return -1;
6469
6470 switch (TREE_CODE_CLASS (code1))
6471 {
6472 case tcc_unary:
6473 case tcc_binary:
6474 case tcc_comparison:
6475 case tcc_expression:
6476 case tcc_reference:
6477 case tcc_statement:
6478 cmp = 1;
6479 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6480 {
6481 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6482 if (cmp <= 0)
6483 return cmp;
6484 }
6485
6486 return cmp;
6487
6488 default:
6489 return -1;
6490 }
6491 }
6492
6493 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6494 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6495 than U, respectively. */
6496
6497 int
6498 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6499 {
6500 if (tree_int_cst_sgn (t) < 0)
6501 return -1;
6502 else if (TREE_INT_CST_HIGH (t) != 0)
6503 return 1;
6504 else if (TREE_INT_CST_LOW (t) == u)
6505 return 0;
6506 else if (TREE_INT_CST_LOW (t) < u)
6507 return -1;
6508 else
6509 return 1;
6510 }
6511
6512 /* Return true if CODE represents an associative tree code. Otherwise
6513 return false. */
6514 bool
6515 associative_tree_code (enum tree_code code)
6516 {
6517 switch (code)
6518 {
6519 case BIT_IOR_EXPR:
6520 case BIT_AND_EXPR:
6521 case BIT_XOR_EXPR:
6522 case PLUS_EXPR:
6523 case MULT_EXPR:
6524 case MIN_EXPR:
6525 case MAX_EXPR:
6526 return true;
6527
6528 default:
6529 break;
6530 }
6531 return false;
6532 }
6533
6534 /* Return true if CODE represents a commutative tree code. Otherwise
6535 return false. */
6536 bool
6537 commutative_tree_code (enum tree_code code)
6538 {
6539 switch (code)
6540 {
6541 case PLUS_EXPR:
6542 case MULT_EXPR:
6543 case MIN_EXPR:
6544 case MAX_EXPR:
6545 case BIT_IOR_EXPR:
6546 case BIT_XOR_EXPR:
6547 case BIT_AND_EXPR:
6548 case NE_EXPR:
6549 case EQ_EXPR:
6550 case UNORDERED_EXPR:
6551 case ORDERED_EXPR:
6552 case UNEQ_EXPR:
6553 case LTGT_EXPR:
6554 case TRUTH_AND_EXPR:
6555 case TRUTH_XOR_EXPR:
6556 case TRUTH_OR_EXPR:
6557 return true;
6558
6559 default:
6560 break;
6561 }
6562 return false;
6563 }
6564
6565 /* Generate a hash value for an expression. This can be used iteratively
6566 by passing a previous result as the VAL argument.
6567
6568 This function is intended to produce the same hash for expressions which
6569 would compare equal using operand_equal_p. */
6570
6571 hashval_t
6572 iterative_hash_expr (const_tree t, hashval_t val)
6573 {
6574 int i;
6575 enum tree_code code;
6576 char tclass;
6577
6578 if (t == NULL_TREE)
6579 return iterative_hash_hashval_t (0, val);
6580
6581 code = TREE_CODE (t);
6582
6583 switch (code)
6584 {
6585 /* Alas, constants aren't shared, so we can't rely on pointer
6586 identity. */
6587 case INTEGER_CST:
6588 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6589 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6590 case REAL_CST:
6591 {
6592 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6593
6594 return iterative_hash_hashval_t (val2, val);
6595 }
6596 case FIXED_CST:
6597 {
6598 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6599
6600 return iterative_hash_hashval_t (val2, val);
6601 }
6602 case STRING_CST:
6603 return iterative_hash (TREE_STRING_POINTER (t),
6604 TREE_STRING_LENGTH (t), val);
6605 case COMPLEX_CST:
6606 val = iterative_hash_expr (TREE_REALPART (t), val);
6607 return iterative_hash_expr (TREE_IMAGPART (t), val);
6608 case VECTOR_CST:
6609 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6610 case SSA_NAME:
6611 /* We can just compare by pointer. */
6612 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6613 case PLACEHOLDER_EXPR:
6614 /* The node itself doesn't matter. */
6615 return val;
6616 case TREE_LIST:
6617 /* A list of expressions, for a CALL_EXPR or as the elements of a
6618 VECTOR_CST. */
6619 for (; t; t = TREE_CHAIN (t))
6620 val = iterative_hash_expr (TREE_VALUE (t), val);
6621 return val;
6622 case CONSTRUCTOR:
6623 {
6624 unsigned HOST_WIDE_INT idx;
6625 tree field, value;
6626 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6627 {
6628 val = iterative_hash_expr (field, val);
6629 val = iterative_hash_expr (value, val);
6630 }
6631 return val;
6632 }
6633 case FUNCTION_DECL:
6634 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6635 Otherwise nodes that compare equal according to operand_equal_p might
6636 get different hash codes. However, don't do this for machine specific
6637 or front end builtins, since the function code is overloaded in those
6638 cases. */
6639 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6640 && built_in_decls[DECL_FUNCTION_CODE (t)])
6641 {
6642 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6643 code = TREE_CODE (t);
6644 }
6645 /* FALL THROUGH */
6646 default:
6647 tclass = TREE_CODE_CLASS (code);
6648
6649 if (tclass == tcc_declaration)
6650 {
6651 /* DECL's have a unique ID */
6652 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6653 }
6654 else
6655 {
6656 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6657
6658 val = iterative_hash_object (code, val);
6659
6660 /* Don't hash the type, that can lead to having nodes which
6661 compare equal according to operand_equal_p, but which
6662 have different hash codes. */
6663 if (CONVERT_EXPR_CODE_P (code)
6664 || code == NON_LVALUE_EXPR)
6665 {
6666 /* Make sure to include signness in the hash computation. */
6667 val += TYPE_UNSIGNED (TREE_TYPE (t));
6668 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6669 }
6670
6671 else if (commutative_tree_code (code))
6672 {
6673 /* It's a commutative expression. We want to hash it the same
6674 however it appears. We do this by first hashing both operands
6675 and then rehashing based on the order of their independent
6676 hashes. */
6677 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6678 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6679 hashval_t t;
6680
6681 if (one > two)
6682 t = one, one = two, two = t;
6683
6684 val = iterative_hash_hashval_t (one, val);
6685 val = iterative_hash_hashval_t (two, val);
6686 }
6687 else
6688 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6689 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6690 }
6691 return val;
6692 break;
6693 }
6694 }
6695
6696 /* Generate a hash value for a pair of expressions. This can be used
6697 iteratively by passing a previous result as the VAL argument.
6698
6699 The same hash value is always returned for a given pair of expressions,
6700 regardless of the order in which they are presented. This is useful in
6701 hashing the operands of commutative functions. */
6702
6703 hashval_t
6704 iterative_hash_exprs_commutative (const_tree t1,
6705 const_tree t2, hashval_t val)
6706 {
6707 hashval_t one = iterative_hash_expr (t1, 0);
6708 hashval_t two = iterative_hash_expr (t2, 0);
6709 hashval_t t;
6710
6711 if (one > two)
6712 t = one, one = two, two = t;
6713 val = iterative_hash_hashval_t (one, val);
6714 val = iterative_hash_hashval_t (two, val);
6715
6716 return val;
6717 }
6718 \f
6719 /* Constructors for pointer, array and function types.
6720 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6721 constructed by language-dependent code, not here.) */
6722
6723 /* Construct, lay out and return the type of pointers to TO_TYPE with
6724 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6725 reference all of memory. If such a type has already been
6726 constructed, reuse it. */
6727
6728 tree
6729 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6730 bool can_alias_all)
6731 {
6732 tree t;
6733
6734 if (to_type == error_mark_node)
6735 return error_mark_node;
6736
6737 /* If the pointed-to type has the may_alias attribute set, force
6738 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6739 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6740 can_alias_all = true;
6741
6742 /* In some cases, languages will have things that aren't a POINTER_TYPE
6743 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6744 In that case, return that type without regard to the rest of our
6745 operands.
6746
6747 ??? This is a kludge, but consistent with the way this function has
6748 always operated and there doesn't seem to be a good way to avoid this
6749 at the moment. */
6750 if (TYPE_POINTER_TO (to_type) != 0
6751 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6752 return TYPE_POINTER_TO (to_type);
6753
6754 /* First, if we already have a type for pointers to TO_TYPE and it's
6755 the proper mode, use it. */
6756 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6757 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6758 return t;
6759
6760 t = make_node (POINTER_TYPE);
6761
6762 TREE_TYPE (t) = to_type;
6763 SET_TYPE_MODE (t, mode);
6764 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6765 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6766 TYPE_POINTER_TO (to_type) = t;
6767
6768 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6769 SET_TYPE_STRUCTURAL_EQUALITY (t);
6770 else if (TYPE_CANONICAL (to_type) != to_type)
6771 TYPE_CANONICAL (t)
6772 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6773 mode, can_alias_all);
6774
6775 /* Lay out the type. This function has many callers that are concerned
6776 with expression-construction, and this simplifies them all. */
6777 layout_type (t);
6778
6779 return t;
6780 }
6781
6782 /* By default build pointers in ptr_mode. */
6783
6784 tree
6785 build_pointer_type (tree to_type)
6786 {
6787 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6788 : TYPE_ADDR_SPACE (to_type);
6789 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6790 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6791 }
6792
6793 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6794
6795 tree
6796 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6797 bool can_alias_all)
6798 {
6799 tree t;
6800
6801 if (to_type == error_mark_node)
6802 return error_mark_node;
6803
6804 /* If the pointed-to type has the may_alias attribute set, force
6805 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6806 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6807 can_alias_all = true;
6808
6809 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6810 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6811 In that case, return that type without regard to the rest of our
6812 operands.
6813
6814 ??? This is a kludge, but consistent with the way this function has
6815 always operated and there doesn't seem to be a good way to avoid this
6816 at the moment. */
6817 if (TYPE_REFERENCE_TO (to_type) != 0
6818 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6819 return TYPE_REFERENCE_TO (to_type);
6820
6821 /* First, if we already have a type for pointers to TO_TYPE and it's
6822 the proper mode, use it. */
6823 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6824 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6825 return t;
6826
6827 t = make_node (REFERENCE_TYPE);
6828
6829 TREE_TYPE (t) = to_type;
6830 SET_TYPE_MODE (t, mode);
6831 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6832 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6833 TYPE_REFERENCE_TO (to_type) = t;
6834
6835 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6836 SET_TYPE_STRUCTURAL_EQUALITY (t);
6837 else if (TYPE_CANONICAL (to_type) != to_type)
6838 TYPE_CANONICAL (t)
6839 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6840 mode, can_alias_all);
6841
6842 layout_type (t);
6843
6844 return t;
6845 }
6846
6847
6848 /* Build the node for the type of references-to-TO_TYPE by default
6849 in ptr_mode. */
6850
6851 tree
6852 build_reference_type (tree to_type)
6853 {
6854 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6855 : TYPE_ADDR_SPACE (to_type);
6856 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6857 return build_reference_type_for_mode (to_type, pointer_mode, false);
6858 }
6859
6860 /* Build a type that is compatible with t but has no cv quals anywhere
6861 in its type, thus
6862
6863 const char *const *const * -> char ***. */
6864
6865 tree
6866 build_type_no_quals (tree t)
6867 {
6868 switch (TREE_CODE (t))
6869 {
6870 case POINTER_TYPE:
6871 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6872 TYPE_MODE (t),
6873 TYPE_REF_CAN_ALIAS_ALL (t));
6874 case REFERENCE_TYPE:
6875 return
6876 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6877 TYPE_MODE (t),
6878 TYPE_REF_CAN_ALIAS_ALL (t));
6879 default:
6880 return TYPE_MAIN_VARIANT (t);
6881 }
6882 }
6883
6884 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6885 MAXVAL should be the maximum value in the domain
6886 (one less than the length of the array).
6887
6888 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6889 We don't enforce this limit, that is up to caller (e.g. language front end).
6890 The limit exists because the result is a signed type and we don't handle
6891 sizes that use more than one HOST_WIDE_INT. */
6892
6893 tree
6894 build_index_type (tree maxval)
6895 {
6896 tree itype = make_node (INTEGER_TYPE);
6897
6898 TREE_TYPE (itype) = sizetype;
6899 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6900 TYPE_MIN_VALUE (itype) = size_zero_node;
6901 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6902 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6903 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6904 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6905 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6906 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6907
6908 if (host_integerp (maxval, 1))
6909 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6910 else
6911 {
6912 /* Since we cannot hash this type, we need to compare it using
6913 structural equality checks. */
6914 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6915 return itype;
6916 }
6917 }
6918
6919 #define MAX_INT_CACHED_PREC \
6920 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
6921 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
6922
6923 /* Builds a signed or unsigned integer type of precision PRECISION.
6924 Used for C bitfields whose precision does not match that of
6925 built-in target types. */
6926 tree
6927 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6928 int unsignedp)
6929 {
6930 tree itype, ret;
6931
6932 if (unsignedp)
6933 unsignedp = MAX_INT_CACHED_PREC + 1;
6934
6935 if (precision <= MAX_INT_CACHED_PREC)
6936 {
6937 itype = nonstandard_integer_type_cache[precision + unsignedp];
6938 if (itype)
6939 return itype;
6940 }
6941
6942 itype = make_node (INTEGER_TYPE);
6943 TYPE_PRECISION (itype) = precision;
6944
6945 if (unsignedp)
6946 fixup_unsigned_type (itype);
6947 else
6948 fixup_signed_type (itype);
6949
6950 ret = itype;
6951 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6952 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6953 if (precision <= MAX_INT_CACHED_PREC && lang_hooks.types.hash_types)
6954 nonstandard_integer_type_cache[precision + unsignedp] = ret;
6955
6956 return ret;
6957 }
6958
6959 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6960 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6961 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6962
6963 tree
6964 build_range_type (tree type, tree lowval, tree highval)
6965 {
6966 tree itype = make_node (INTEGER_TYPE);
6967
6968 TREE_TYPE (itype) = type;
6969 if (type == NULL_TREE)
6970 type = sizetype;
6971
6972 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6973 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6974
6975 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6976 SET_TYPE_MODE (itype, TYPE_MODE (type));
6977 TYPE_SIZE (itype) = TYPE_SIZE (type);
6978 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6979 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6980 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6981
6982 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6983 return type_hash_canon (tree_low_cst (highval, 0)
6984 - tree_low_cst (lowval, 0),
6985 itype);
6986 else
6987 return itype;
6988 }
6989
6990 /* Return true if the debug information for TYPE, a subtype, should be emitted
6991 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6992 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6993 debug info and doesn't reflect the source code. */
6994
6995 bool
6996 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6997 {
6998 tree base_type = TREE_TYPE (type), low, high;
6999
7000 /* Subrange types have a base type which is an integral type. */
7001 if (!INTEGRAL_TYPE_P (base_type))
7002 return false;
7003
7004 /* Get the real bounds of the subtype. */
7005 if (lang_hooks.types.get_subrange_bounds)
7006 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7007 else
7008 {
7009 low = TYPE_MIN_VALUE (type);
7010 high = TYPE_MAX_VALUE (type);
7011 }
7012
7013 /* If the type and its base type have the same representation and the same
7014 name, then the type is not a subrange but a copy of the base type. */
7015 if ((TREE_CODE (base_type) == INTEGER_TYPE
7016 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7017 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7018 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7019 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7020 {
7021 tree type_name = TYPE_NAME (type);
7022 tree base_type_name = TYPE_NAME (base_type);
7023
7024 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7025 type_name = DECL_NAME (type_name);
7026
7027 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7028 base_type_name = DECL_NAME (base_type_name);
7029
7030 if (type_name == base_type_name)
7031 return false;
7032 }
7033
7034 if (lowval)
7035 *lowval = low;
7036 if (highval)
7037 *highval = high;
7038 return true;
7039 }
7040
7041 /* Just like build_index_type, but takes lowval and highval instead
7042 of just highval (maxval). */
7043
7044 tree
7045 build_index_2_type (tree lowval, tree highval)
7046 {
7047 return build_range_type (sizetype, lowval, highval);
7048 }
7049
7050 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7051 and number of elements specified by the range of values of INDEX_TYPE.
7052 If such a type has already been constructed, reuse it. */
7053
7054 tree
7055 build_array_type (tree elt_type, tree index_type)
7056 {
7057 tree t;
7058 hashval_t hashcode = 0;
7059
7060 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7061 {
7062 error ("arrays of functions are not meaningful");
7063 elt_type = integer_type_node;
7064 }
7065
7066 t = make_node (ARRAY_TYPE);
7067 TREE_TYPE (t) = elt_type;
7068 TYPE_DOMAIN (t) = index_type;
7069 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7070 layout_type (t);
7071
7072 /* If the element type is incomplete at this point we get marked for
7073 structural equality. Do not record these types in the canonical
7074 type hashtable. */
7075 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7076 return t;
7077
7078 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7079 if (index_type)
7080 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7081 t = type_hash_canon (hashcode, t);
7082
7083 if (TYPE_CANONICAL (t) == t)
7084 {
7085 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7086 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7087 SET_TYPE_STRUCTURAL_EQUALITY (t);
7088 else if (TYPE_CANONICAL (elt_type) != elt_type
7089 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7090 TYPE_CANONICAL (t)
7091 = build_array_type (TYPE_CANONICAL (elt_type),
7092 index_type ? TYPE_CANONICAL (index_type) : NULL);
7093 }
7094
7095 return t;
7096 }
7097
7098 /* Recursively examines the array elements of TYPE, until a non-array
7099 element type is found. */
7100
7101 tree
7102 strip_array_types (tree type)
7103 {
7104 while (TREE_CODE (type) == ARRAY_TYPE)
7105 type = TREE_TYPE (type);
7106
7107 return type;
7108 }
7109
7110 /* Computes the canonical argument types from the argument type list
7111 ARGTYPES.
7112
7113 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7114 on entry to this function, or if any of the ARGTYPES are
7115 structural.
7116
7117 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7118 true on entry to this function, or if any of the ARGTYPES are
7119 non-canonical.
7120
7121 Returns a canonical argument list, which may be ARGTYPES when the
7122 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7123 true) or would not differ from ARGTYPES. */
7124
7125 static tree
7126 maybe_canonicalize_argtypes(tree argtypes,
7127 bool *any_structural_p,
7128 bool *any_noncanonical_p)
7129 {
7130 tree arg;
7131 bool any_noncanonical_argtypes_p = false;
7132
7133 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7134 {
7135 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7136 /* Fail gracefully by stating that the type is structural. */
7137 *any_structural_p = true;
7138 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7139 *any_structural_p = true;
7140 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7141 || TREE_PURPOSE (arg))
7142 /* If the argument has a default argument, we consider it
7143 non-canonical even though the type itself is canonical.
7144 That way, different variants of function and method types
7145 with default arguments will all point to the variant with
7146 no defaults as their canonical type. */
7147 any_noncanonical_argtypes_p = true;
7148 }
7149
7150 if (*any_structural_p)
7151 return argtypes;
7152
7153 if (any_noncanonical_argtypes_p)
7154 {
7155 /* Build the canonical list of argument types. */
7156 tree canon_argtypes = NULL_TREE;
7157 bool is_void = false;
7158
7159 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7160 {
7161 if (arg == void_list_node)
7162 is_void = true;
7163 else
7164 canon_argtypes = tree_cons (NULL_TREE,
7165 TYPE_CANONICAL (TREE_VALUE (arg)),
7166 canon_argtypes);
7167 }
7168
7169 canon_argtypes = nreverse (canon_argtypes);
7170 if (is_void)
7171 canon_argtypes = chainon (canon_argtypes, void_list_node);
7172
7173 /* There is a non-canonical type. */
7174 *any_noncanonical_p = true;
7175 return canon_argtypes;
7176 }
7177
7178 /* The canonical argument types are the same as ARGTYPES. */
7179 return argtypes;
7180 }
7181
7182 /* Construct, lay out and return
7183 the type of functions returning type VALUE_TYPE
7184 given arguments of types ARG_TYPES.
7185 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7186 are data type nodes for the arguments of the function.
7187 If such a type has already been constructed, reuse it. */
7188
7189 tree
7190 build_function_type (tree value_type, tree arg_types)
7191 {
7192 tree t;
7193 hashval_t hashcode = 0;
7194 bool any_structural_p, any_noncanonical_p;
7195 tree canon_argtypes;
7196
7197 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7198 {
7199 error ("function return type cannot be function");
7200 value_type = integer_type_node;
7201 }
7202
7203 /* Make a node of the sort we want. */
7204 t = make_node (FUNCTION_TYPE);
7205 TREE_TYPE (t) = value_type;
7206 TYPE_ARG_TYPES (t) = arg_types;
7207
7208 /* If we already have such a type, use the old one. */
7209 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7210 hashcode = type_hash_list (arg_types, hashcode);
7211 t = type_hash_canon (hashcode, t);
7212
7213 /* Set up the canonical type. */
7214 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7215 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7216 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7217 &any_structural_p,
7218 &any_noncanonical_p);
7219 if (any_structural_p)
7220 SET_TYPE_STRUCTURAL_EQUALITY (t);
7221 else if (any_noncanonical_p)
7222 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7223 canon_argtypes);
7224
7225 if (!COMPLETE_TYPE_P (t))
7226 layout_type (t);
7227 return t;
7228 }
7229
7230 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7231
7232 tree
7233 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7234 {
7235 tree new_type = NULL;
7236 tree args, new_args = NULL, t;
7237 tree new_reversed;
7238 int i = 0;
7239
7240 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7241 args = TREE_CHAIN (args), i++)
7242 if (!bitmap_bit_p (args_to_skip, i))
7243 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7244
7245 new_reversed = nreverse (new_args);
7246 if (args)
7247 {
7248 if (new_reversed)
7249 TREE_CHAIN (new_args) = void_list_node;
7250 else
7251 new_reversed = void_list_node;
7252 }
7253
7254 /* Use copy_node to preserve as much as possible from original type
7255 (debug info, attribute lists etc.)
7256 Exception is METHOD_TYPEs must have THIS argument.
7257 When we are asked to remove it, we need to build new FUNCTION_TYPE
7258 instead. */
7259 if (TREE_CODE (orig_type) != METHOD_TYPE
7260 || !bitmap_bit_p (args_to_skip, 0))
7261 {
7262 new_type = copy_node (orig_type);
7263 TYPE_ARG_TYPES (new_type) = new_reversed;
7264 }
7265 else
7266 {
7267 new_type
7268 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7269 new_reversed));
7270 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7271 }
7272
7273 /* This is a new type, not a copy of an old type. Need to reassociate
7274 variants. We can handle everything except the main variant lazily. */
7275 t = TYPE_MAIN_VARIANT (orig_type);
7276 if (orig_type != t)
7277 {
7278 TYPE_MAIN_VARIANT (new_type) = t;
7279 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7280 TYPE_NEXT_VARIANT (t) = new_type;
7281 }
7282 else
7283 {
7284 TYPE_MAIN_VARIANT (new_type) = new_type;
7285 TYPE_NEXT_VARIANT (new_type) = NULL;
7286 }
7287 return new_type;
7288 }
7289
7290 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7291
7292 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7293 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7294 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7295
7296 tree
7297 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7298 {
7299 tree new_decl = copy_node (orig_decl);
7300 tree new_type;
7301
7302 new_type = TREE_TYPE (orig_decl);
7303 if (prototype_p (new_type))
7304 new_type = build_function_type_skip_args (new_type, args_to_skip);
7305 TREE_TYPE (new_decl) = new_type;
7306
7307 /* For declarations setting DECL_VINDEX (i.e. methods)
7308 we expect first argument to be THIS pointer. */
7309 if (bitmap_bit_p (args_to_skip, 0))
7310 DECL_VINDEX (new_decl) = NULL_TREE;
7311 return new_decl;
7312 }
7313
7314 /* Build a function type. The RETURN_TYPE is the type returned by the
7315 function. If VAARGS is set, no void_type_node is appended to the
7316 the list. ARGP must be always be terminated be a NULL_TREE. */
7317
7318 static tree
7319 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7320 {
7321 tree t, args, last;
7322
7323 t = va_arg (argp, tree);
7324 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7325 args = tree_cons (NULL_TREE, t, args);
7326
7327 if (vaargs)
7328 {
7329 last = args;
7330 if (args != NULL_TREE)
7331 args = nreverse (args);
7332 gcc_assert (last != void_list_node);
7333 }
7334 else if (args == NULL_TREE)
7335 args = void_list_node;
7336 else
7337 {
7338 last = args;
7339 args = nreverse (args);
7340 TREE_CHAIN (last) = void_list_node;
7341 }
7342 args = build_function_type (return_type, args);
7343
7344 return args;
7345 }
7346
7347 /* Build a function type. The RETURN_TYPE is the type returned by the
7348 function. If additional arguments are provided, they are
7349 additional argument types. The list of argument types must always
7350 be terminated by NULL_TREE. */
7351
7352 tree
7353 build_function_type_list (tree return_type, ...)
7354 {
7355 tree args;
7356 va_list p;
7357
7358 va_start (p, return_type);
7359 args = build_function_type_list_1 (false, return_type, p);
7360 va_end (p);
7361 return args;
7362 }
7363
7364 /* Build a variable argument function type. The RETURN_TYPE is the
7365 type returned by the function. If additional arguments are provided,
7366 they are additional argument types. The list of argument types must
7367 always be terminated by NULL_TREE. */
7368
7369 tree
7370 build_varargs_function_type_list (tree return_type, ...)
7371 {
7372 tree args;
7373 va_list p;
7374
7375 va_start (p, return_type);
7376 args = build_function_type_list_1 (true, return_type, p);
7377 va_end (p);
7378
7379 return args;
7380 }
7381
7382 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7383 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7384 for the method. An implicit additional parameter (of type
7385 pointer-to-BASETYPE) is added to the ARGTYPES. */
7386
7387 tree
7388 build_method_type_directly (tree basetype,
7389 tree rettype,
7390 tree argtypes)
7391 {
7392 tree t;
7393 tree ptype;
7394 int hashcode = 0;
7395 bool any_structural_p, any_noncanonical_p;
7396 tree canon_argtypes;
7397
7398 /* Make a node of the sort we want. */
7399 t = make_node (METHOD_TYPE);
7400
7401 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7402 TREE_TYPE (t) = rettype;
7403 ptype = build_pointer_type (basetype);
7404
7405 /* The actual arglist for this function includes a "hidden" argument
7406 which is "this". Put it into the list of argument types. */
7407 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7408 TYPE_ARG_TYPES (t) = argtypes;
7409
7410 /* If we already have such a type, use the old one. */
7411 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7412 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7413 hashcode = type_hash_list (argtypes, hashcode);
7414 t = type_hash_canon (hashcode, t);
7415
7416 /* Set up the canonical type. */
7417 any_structural_p
7418 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7419 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7420 any_noncanonical_p
7421 = (TYPE_CANONICAL (basetype) != basetype
7422 || TYPE_CANONICAL (rettype) != rettype);
7423 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7424 &any_structural_p,
7425 &any_noncanonical_p);
7426 if (any_structural_p)
7427 SET_TYPE_STRUCTURAL_EQUALITY (t);
7428 else if (any_noncanonical_p)
7429 TYPE_CANONICAL (t)
7430 = build_method_type_directly (TYPE_CANONICAL (basetype),
7431 TYPE_CANONICAL (rettype),
7432 canon_argtypes);
7433 if (!COMPLETE_TYPE_P (t))
7434 layout_type (t);
7435
7436 return t;
7437 }
7438
7439 /* Construct, lay out and return the type of methods belonging to class
7440 BASETYPE and whose arguments and values are described by TYPE.
7441 If that type exists already, reuse it.
7442 TYPE must be a FUNCTION_TYPE node. */
7443
7444 tree
7445 build_method_type (tree basetype, tree type)
7446 {
7447 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7448
7449 return build_method_type_directly (basetype,
7450 TREE_TYPE (type),
7451 TYPE_ARG_TYPES (type));
7452 }
7453
7454 /* Construct, lay out and return the type of offsets to a value
7455 of type TYPE, within an object of type BASETYPE.
7456 If a suitable offset type exists already, reuse it. */
7457
7458 tree
7459 build_offset_type (tree basetype, tree type)
7460 {
7461 tree t;
7462 hashval_t hashcode = 0;
7463
7464 /* Make a node of the sort we want. */
7465 t = make_node (OFFSET_TYPE);
7466
7467 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7468 TREE_TYPE (t) = type;
7469
7470 /* If we already have such a type, use the old one. */
7471 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7472 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7473 t = type_hash_canon (hashcode, t);
7474
7475 if (!COMPLETE_TYPE_P (t))
7476 layout_type (t);
7477
7478 if (TYPE_CANONICAL (t) == t)
7479 {
7480 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7481 || TYPE_STRUCTURAL_EQUALITY_P (type))
7482 SET_TYPE_STRUCTURAL_EQUALITY (t);
7483 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7484 || TYPE_CANONICAL (type) != type)
7485 TYPE_CANONICAL (t)
7486 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7487 TYPE_CANONICAL (type));
7488 }
7489
7490 return t;
7491 }
7492
7493 /* Create a complex type whose components are COMPONENT_TYPE. */
7494
7495 tree
7496 build_complex_type (tree component_type)
7497 {
7498 tree t;
7499 hashval_t hashcode;
7500
7501 gcc_assert (INTEGRAL_TYPE_P (component_type)
7502 || SCALAR_FLOAT_TYPE_P (component_type)
7503 || FIXED_POINT_TYPE_P (component_type));
7504
7505 /* Make a node of the sort we want. */
7506 t = make_node (COMPLEX_TYPE);
7507
7508 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7509
7510 /* If we already have such a type, use the old one. */
7511 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7512 t = type_hash_canon (hashcode, t);
7513
7514 if (!COMPLETE_TYPE_P (t))
7515 layout_type (t);
7516
7517 if (TYPE_CANONICAL (t) == t)
7518 {
7519 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7520 SET_TYPE_STRUCTURAL_EQUALITY (t);
7521 else if (TYPE_CANONICAL (component_type) != component_type)
7522 TYPE_CANONICAL (t)
7523 = build_complex_type (TYPE_CANONICAL (component_type));
7524 }
7525
7526 /* We need to create a name, since complex is a fundamental type. */
7527 if (! TYPE_NAME (t))
7528 {
7529 const char *name;
7530 if (component_type == char_type_node)
7531 name = "complex char";
7532 else if (component_type == signed_char_type_node)
7533 name = "complex signed char";
7534 else if (component_type == unsigned_char_type_node)
7535 name = "complex unsigned char";
7536 else if (component_type == short_integer_type_node)
7537 name = "complex short int";
7538 else if (component_type == short_unsigned_type_node)
7539 name = "complex short unsigned int";
7540 else if (component_type == integer_type_node)
7541 name = "complex int";
7542 else if (component_type == unsigned_type_node)
7543 name = "complex unsigned int";
7544 else if (component_type == long_integer_type_node)
7545 name = "complex long int";
7546 else if (component_type == long_unsigned_type_node)
7547 name = "complex long unsigned int";
7548 else if (component_type == long_long_integer_type_node)
7549 name = "complex long long int";
7550 else if (component_type == long_long_unsigned_type_node)
7551 name = "complex long long unsigned int";
7552 else
7553 name = 0;
7554
7555 if (name != 0)
7556 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7557 get_identifier (name), t);
7558 }
7559
7560 return build_qualified_type (t, TYPE_QUALS (component_type));
7561 }
7562
7563 /* If TYPE is a real or complex floating-point type and the target
7564 does not directly support arithmetic on TYPE then return the wider
7565 type to be used for arithmetic on TYPE. Otherwise, return
7566 NULL_TREE. */
7567
7568 tree
7569 excess_precision_type (tree type)
7570 {
7571 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7572 {
7573 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7574 switch (TREE_CODE (type))
7575 {
7576 case REAL_TYPE:
7577 switch (flt_eval_method)
7578 {
7579 case 1:
7580 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7581 return double_type_node;
7582 break;
7583 case 2:
7584 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7585 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7586 return long_double_type_node;
7587 break;
7588 default:
7589 gcc_unreachable ();
7590 }
7591 break;
7592 case COMPLEX_TYPE:
7593 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7594 return NULL_TREE;
7595 switch (flt_eval_method)
7596 {
7597 case 1:
7598 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7599 return complex_double_type_node;
7600 break;
7601 case 2:
7602 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7603 || (TYPE_MODE (TREE_TYPE (type))
7604 == TYPE_MODE (double_type_node)))
7605 return complex_long_double_type_node;
7606 break;
7607 default:
7608 gcc_unreachable ();
7609 }
7610 break;
7611 default:
7612 break;
7613 }
7614 }
7615 return NULL_TREE;
7616 }
7617 \f
7618 /* Return OP, stripped of any conversions to wider types as much as is safe.
7619 Converting the value back to OP's type makes a value equivalent to OP.
7620
7621 If FOR_TYPE is nonzero, we return a value which, if converted to
7622 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7623
7624 OP must have integer, real or enumeral type. Pointers are not allowed!
7625
7626 There are some cases where the obvious value we could return
7627 would regenerate to OP if converted to OP's type,
7628 but would not extend like OP to wider types.
7629 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7630 For example, if OP is (unsigned short)(signed char)-1,
7631 we avoid returning (signed char)-1 if FOR_TYPE is int,
7632 even though extending that to an unsigned short would regenerate OP,
7633 since the result of extending (signed char)-1 to (int)
7634 is different from (int) OP. */
7635
7636 tree
7637 get_unwidened (tree op, tree for_type)
7638 {
7639 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7640 tree type = TREE_TYPE (op);
7641 unsigned final_prec
7642 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7643 int uns
7644 = (for_type != 0 && for_type != type
7645 && final_prec > TYPE_PRECISION (type)
7646 && TYPE_UNSIGNED (type));
7647 tree win = op;
7648
7649 while (CONVERT_EXPR_P (op))
7650 {
7651 int bitschange;
7652
7653 /* TYPE_PRECISION on vector types has different meaning
7654 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7655 so avoid them here. */
7656 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7657 break;
7658
7659 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7660 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7661
7662 /* Truncations are many-one so cannot be removed.
7663 Unless we are later going to truncate down even farther. */
7664 if (bitschange < 0
7665 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7666 break;
7667
7668 /* See what's inside this conversion. If we decide to strip it,
7669 we will set WIN. */
7670 op = TREE_OPERAND (op, 0);
7671
7672 /* If we have not stripped any zero-extensions (uns is 0),
7673 we can strip any kind of extension.
7674 If we have previously stripped a zero-extension,
7675 only zero-extensions can safely be stripped.
7676 Any extension can be stripped if the bits it would produce
7677 are all going to be discarded later by truncating to FOR_TYPE. */
7678
7679 if (bitschange > 0)
7680 {
7681 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7682 win = op;
7683 /* TYPE_UNSIGNED says whether this is a zero-extension.
7684 Let's avoid computing it if it does not affect WIN
7685 and if UNS will not be needed again. */
7686 if ((uns
7687 || CONVERT_EXPR_P (op))
7688 && TYPE_UNSIGNED (TREE_TYPE (op)))
7689 {
7690 uns = 1;
7691 win = op;
7692 }
7693 }
7694 }
7695
7696 /* If we finally reach a constant see if it fits in for_type and
7697 in that case convert it. */
7698 if (for_type
7699 && TREE_CODE (win) == INTEGER_CST
7700 && TREE_TYPE (win) != for_type
7701 && int_fits_type_p (win, for_type))
7702 win = fold_convert (for_type, win);
7703
7704 return win;
7705 }
7706 \f
7707 /* Return OP or a simpler expression for a narrower value
7708 which can be sign-extended or zero-extended to give back OP.
7709 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7710 or 0 if the value should be sign-extended. */
7711
7712 tree
7713 get_narrower (tree op, int *unsignedp_ptr)
7714 {
7715 int uns = 0;
7716 int first = 1;
7717 tree win = op;
7718 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7719
7720 while (TREE_CODE (op) == NOP_EXPR)
7721 {
7722 int bitschange
7723 = (TYPE_PRECISION (TREE_TYPE (op))
7724 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7725
7726 /* Truncations are many-one so cannot be removed. */
7727 if (bitschange < 0)
7728 break;
7729
7730 /* See what's inside this conversion. If we decide to strip it,
7731 we will set WIN. */
7732
7733 if (bitschange > 0)
7734 {
7735 op = TREE_OPERAND (op, 0);
7736 /* An extension: the outermost one can be stripped,
7737 but remember whether it is zero or sign extension. */
7738 if (first)
7739 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7740 /* Otherwise, if a sign extension has been stripped,
7741 only sign extensions can now be stripped;
7742 if a zero extension has been stripped, only zero-extensions. */
7743 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7744 break;
7745 first = 0;
7746 }
7747 else /* bitschange == 0 */
7748 {
7749 /* A change in nominal type can always be stripped, but we must
7750 preserve the unsignedness. */
7751 if (first)
7752 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7753 first = 0;
7754 op = TREE_OPERAND (op, 0);
7755 /* Keep trying to narrow, but don't assign op to win if it
7756 would turn an integral type into something else. */
7757 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7758 continue;
7759 }
7760
7761 win = op;
7762 }
7763
7764 if (TREE_CODE (op) == COMPONENT_REF
7765 /* Since type_for_size always gives an integer type. */
7766 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7767 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7768 /* Ensure field is laid out already. */
7769 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7770 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7771 {
7772 unsigned HOST_WIDE_INT innerprec
7773 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7774 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7775 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7776 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7777
7778 /* We can get this structure field in a narrower type that fits it,
7779 but the resulting extension to its nominal type (a fullword type)
7780 must satisfy the same conditions as for other extensions.
7781
7782 Do this only for fields that are aligned (not bit-fields),
7783 because when bit-field insns will be used there is no
7784 advantage in doing this. */
7785
7786 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7787 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7788 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7789 && type != 0)
7790 {
7791 if (first)
7792 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7793 win = fold_convert (type, op);
7794 }
7795 }
7796
7797 *unsignedp_ptr = uns;
7798 return win;
7799 }
7800 \f
7801 /* Nonzero if integer constant C has a value that is permissible
7802 for type TYPE (an INTEGER_TYPE). */
7803
7804 int
7805 int_fits_type_p (const_tree c, const_tree type)
7806 {
7807 tree type_low_bound, type_high_bound;
7808 bool ok_for_low_bound, ok_for_high_bound, unsc;
7809 double_int dc, dd;
7810
7811 dc = tree_to_double_int (c);
7812 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7813
7814 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7815 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7816 && unsc)
7817 /* So c is an unsigned integer whose type is sizetype and type is not.
7818 sizetype'd integers are sign extended even though they are
7819 unsigned. If the integer value fits in the lower end word of c,
7820 and if the higher end word has all its bits set to 1, that
7821 means the higher end bits are set to 1 only for sign extension.
7822 So let's convert c into an equivalent zero extended unsigned
7823 integer. */
7824 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7825
7826 retry:
7827 type_low_bound = TYPE_MIN_VALUE (type);
7828 type_high_bound = TYPE_MAX_VALUE (type);
7829
7830 /* If at least one bound of the type is a constant integer, we can check
7831 ourselves and maybe make a decision. If no such decision is possible, but
7832 this type is a subtype, try checking against that. Otherwise, use
7833 fit_double_type, which checks against the precision.
7834
7835 Compute the status for each possibly constant bound, and return if we see
7836 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7837 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7838 for "constant known to fit". */
7839
7840 /* Check if c >= type_low_bound. */
7841 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7842 {
7843 dd = tree_to_double_int (type_low_bound);
7844 if (TREE_CODE (type) == INTEGER_TYPE
7845 && TYPE_IS_SIZETYPE (type)
7846 && TYPE_UNSIGNED (type))
7847 dd = double_int_zext (dd, TYPE_PRECISION (type));
7848 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7849 {
7850 int c_neg = (!unsc && double_int_negative_p (dc));
7851 int t_neg = (unsc && double_int_negative_p (dd));
7852
7853 if (c_neg && !t_neg)
7854 return 0;
7855 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7856 return 0;
7857 }
7858 else if (double_int_cmp (dc, dd, unsc) < 0)
7859 return 0;
7860 ok_for_low_bound = true;
7861 }
7862 else
7863 ok_for_low_bound = false;
7864
7865 /* Check if c <= type_high_bound. */
7866 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7867 {
7868 dd = tree_to_double_int (type_high_bound);
7869 if (TREE_CODE (type) == INTEGER_TYPE
7870 && TYPE_IS_SIZETYPE (type)
7871 && TYPE_UNSIGNED (type))
7872 dd = double_int_zext (dd, TYPE_PRECISION (type));
7873 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7874 {
7875 int c_neg = (!unsc && double_int_negative_p (dc));
7876 int t_neg = (unsc && double_int_negative_p (dd));
7877
7878 if (t_neg && !c_neg)
7879 return 0;
7880 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7881 return 0;
7882 }
7883 else if (double_int_cmp (dc, dd, unsc) > 0)
7884 return 0;
7885 ok_for_high_bound = true;
7886 }
7887 else
7888 ok_for_high_bound = false;
7889
7890 /* If the constant fits both bounds, the result is known. */
7891 if (ok_for_low_bound && ok_for_high_bound)
7892 return 1;
7893
7894 /* Perform some generic filtering which may allow making a decision
7895 even if the bounds are not constant. First, negative integers
7896 never fit in unsigned types, */
7897 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7898 return 0;
7899
7900 /* Second, narrower types always fit in wider ones. */
7901 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7902 return 1;
7903
7904 /* Third, unsigned integers with top bit set never fit signed types. */
7905 if (! TYPE_UNSIGNED (type) && unsc)
7906 {
7907 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7908 if (prec < HOST_BITS_PER_WIDE_INT)
7909 {
7910 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7911 return 0;
7912 }
7913 else if (((((unsigned HOST_WIDE_INT) 1)
7914 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7915 return 0;
7916 }
7917
7918 /* If we haven't been able to decide at this point, there nothing more we
7919 can check ourselves here. Look at the base type if we have one and it
7920 has the same precision. */
7921 if (TREE_CODE (type) == INTEGER_TYPE
7922 && TREE_TYPE (type) != 0
7923 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7924 {
7925 type = TREE_TYPE (type);
7926 goto retry;
7927 }
7928
7929 /* Or to fit_double_type, if nothing else. */
7930 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7931 }
7932
7933 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7934 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7935 represented (assuming two's-complement arithmetic) within the bit
7936 precision of the type are returned instead. */
7937
7938 void
7939 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7940 {
7941 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7942 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7943 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7944 TYPE_UNSIGNED (type));
7945 else
7946 {
7947 if (TYPE_UNSIGNED (type))
7948 mpz_set_ui (min, 0);
7949 else
7950 {
7951 double_int mn;
7952 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7953 mn = double_int_sext (double_int_add (mn, double_int_one),
7954 TYPE_PRECISION (type));
7955 mpz_set_double_int (min, mn, false);
7956 }
7957 }
7958
7959 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7960 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7961 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7962 TYPE_UNSIGNED (type));
7963 else
7964 {
7965 if (TYPE_UNSIGNED (type))
7966 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7967 true);
7968 else
7969 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7970 true);
7971 }
7972 }
7973
7974 /* Return true if VAR is an automatic variable defined in function FN. */
7975
7976 bool
7977 auto_var_in_fn_p (const_tree var, const_tree fn)
7978 {
7979 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7980 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
7981 || TREE_CODE (var) == PARM_DECL)
7982 && ! TREE_STATIC (var))
7983 || TREE_CODE (var) == LABEL_DECL
7984 || TREE_CODE (var) == RESULT_DECL));
7985 }
7986
7987 /* Subprogram of following function. Called by walk_tree.
7988
7989 Return *TP if it is an automatic variable or parameter of the
7990 function passed in as DATA. */
7991
7992 static tree
7993 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7994 {
7995 tree fn = (tree) data;
7996
7997 if (TYPE_P (*tp))
7998 *walk_subtrees = 0;
7999
8000 else if (DECL_P (*tp)
8001 && auto_var_in_fn_p (*tp, fn))
8002 return *tp;
8003
8004 return NULL_TREE;
8005 }
8006
8007 /* Returns true if T is, contains, or refers to a type with variable
8008 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8009 arguments, but not the return type. If FN is nonzero, only return
8010 true if a modifier of the type or position of FN is a variable or
8011 parameter inside FN.
8012
8013 This concept is more general than that of C99 'variably modified types':
8014 in C99, a struct type is never variably modified because a VLA may not
8015 appear as a structure member. However, in GNU C code like:
8016
8017 struct S { int i[f()]; };
8018
8019 is valid, and other languages may define similar constructs. */
8020
8021 bool
8022 variably_modified_type_p (tree type, tree fn)
8023 {
8024 tree t;
8025
8026 /* Test if T is either variable (if FN is zero) or an expression containing
8027 a variable in FN. */
8028 #define RETURN_TRUE_IF_VAR(T) \
8029 do { tree _t = (T); \
8030 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8031 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8032 return true; } while (0)
8033
8034 if (type == error_mark_node)
8035 return false;
8036
8037 /* If TYPE itself has variable size, it is variably modified. */
8038 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8039 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8040
8041 switch (TREE_CODE (type))
8042 {
8043 case POINTER_TYPE:
8044 case REFERENCE_TYPE:
8045 case VECTOR_TYPE:
8046 if (variably_modified_type_p (TREE_TYPE (type), fn))
8047 return true;
8048 break;
8049
8050 case FUNCTION_TYPE:
8051 case METHOD_TYPE:
8052 /* If TYPE is a function type, it is variably modified if the
8053 return type is variably modified. */
8054 if (variably_modified_type_p (TREE_TYPE (type), fn))
8055 return true;
8056 break;
8057
8058 case INTEGER_TYPE:
8059 case REAL_TYPE:
8060 case FIXED_POINT_TYPE:
8061 case ENUMERAL_TYPE:
8062 case BOOLEAN_TYPE:
8063 /* Scalar types are variably modified if their end points
8064 aren't constant. */
8065 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8066 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8067 break;
8068
8069 case RECORD_TYPE:
8070 case UNION_TYPE:
8071 case QUAL_UNION_TYPE:
8072 /* We can't see if any of the fields are variably-modified by the
8073 definition we normally use, since that would produce infinite
8074 recursion via pointers. */
8075 /* This is variably modified if some field's type is. */
8076 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
8077 if (TREE_CODE (t) == FIELD_DECL)
8078 {
8079 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8080 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8081 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8082
8083 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8084 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8085 }
8086 break;
8087
8088 case ARRAY_TYPE:
8089 /* Do not call ourselves to avoid infinite recursion. This is
8090 variably modified if the element type is. */
8091 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8092 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8093 break;
8094
8095 default:
8096 break;
8097 }
8098
8099 /* The current language may have other cases to check, but in general,
8100 all other types are not variably modified. */
8101 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8102
8103 #undef RETURN_TRUE_IF_VAR
8104 }
8105
8106 /* Given a DECL or TYPE, return the scope in which it was declared, or
8107 NULL_TREE if there is no containing scope. */
8108
8109 tree
8110 get_containing_scope (const_tree t)
8111 {
8112 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8113 }
8114
8115 /* Return the innermost context enclosing DECL that is
8116 a FUNCTION_DECL, or zero if none. */
8117
8118 tree
8119 decl_function_context (const_tree decl)
8120 {
8121 tree context;
8122
8123 if (TREE_CODE (decl) == ERROR_MARK)
8124 return 0;
8125
8126 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8127 where we look up the function at runtime. Such functions always take
8128 a first argument of type 'pointer to real context'.
8129
8130 C++ should really be fixed to use DECL_CONTEXT for the real context,
8131 and use something else for the "virtual context". */
8132 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8133 context
8134 = TYPE_MAIN_VARIANT
8135 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8136 else
8137 context = DECL_CONTEXT (decl);
8138
8139 while (context && TREE_CODE (context) != FUNCTION_DECL)
8140 {
8141 if (TREE_CODE (context) == BLOCK)
8142 context = BLOCK_SUPERCONTEXT (context);
8143 else
8144 context = get_containing_scope (context);
8145 }
8146
8147 return context;
8148 }
8149
8150 /* Return the innermost context enclosing DECL that is
8151 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8152 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8153
8154 tree
8155 decl_type_context (const_tree decl)
8156 {
8157 tree context = DECL_CONTEXT (decl);
8158
8159 while (context)
8160 switch (TREE_CODE (context))
8161 {
8162 case NAMESPACE_DECL:
8163 case TRANSLATION_UNIT_DECL:
8164 return NULL_TREE;
8165
8166 case RECORD_TYPE:
8167 case UNION_TYPE:
8168 case QUAL_UNION_TYPE:
8169 return context;
8170
8171 case TYPE_DECL:
8172 case FUNCTION_DECL:
8173 context = DECL_CONTEXT (context);
8174 break;
8175
8176 case BLOCK:
8177 context = BLOCK_SUPERCONTEXT (context);
8178 break;
8179
8180 default:
8181 gcc_unreachable ();
8182 }
8183
8184 return NULL_TREE;
8185 }
8186
8187 /* CALL is a CALL_EXPR. Return the declaration for the function
8188 called, or NULL_TREE if the called function cannot be
8189 determined. */
8190
8191 tree
8192 get_callee_fndecl (const_tree call)
8193 {
8194 tree addr;
8195
8196 if (call == error_mark_node)
8197 return error_mark_node;
8198
8199 /* It's invalid to call this function with anything but a
8200 CALL_EXPR. */
8201 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8202
8203 /* The first operand to the CALL is the address of the function
8204 called. */
8205 addr = CALL_EXPR_FN (call);
8206
8207 STRIP_NOPS (addr);
8208
8209 /* If this is a readonly function pointer, extract its initial value. */
8210 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8211 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8212 && DECL_INITIAL (addr))
8213 addr = DECL_INITIAL (addr);
8214
8215 /* If the address is just `&f' for some function `f', then we know
8216 that `f' is being called. */
8217 if (TREE_CODE (addr) == ADDR_EXPR
8218 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8219 return TREE_OPERAND (addr, 0);
8220
8221 /* We couldn't figure out what was being called. */
8222 return NULL_TREE;
8223 }
8224
8225 /* Print debugging information about tree nodes generated during the compile,
8226 and any language-specific information. */
8227
8228 void
8229 dump_tree_statistics (void)
8230 {
8231 #ifdef GATHER_STATISTICS
8232 int i;
8233 int total_nodes, total_bytes;
8234 #endif
8235
8236 fprintf (stderr, "\n??? tree nodes created\n\n");
8237 #ifdef GATHER_STATISTICS
8238 fprintf (stderr, "Kind Nodes Bytes\n");
8239 fprintf (stderr, "---------------------------------------\n");
8240 total_nodes = total_bytes = 0;
8241 for (i = 0; i < (int) all_kinds; i++)
8242 {
8243 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8244 tree_node_counts[i], tree_node_sizes[i]);
8245 total_nodes += tree_node_counts[i];
8246 total_bytes += tree_node_sizes[i];
8247 }
8248 fprintf (stderr, "---------------------------------------\n");
8249 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8250 fprintf (stderr, "---------------------------------------\n");
8251 ssanames_print_statistics ();
8252 phinodes_print_statistics ();
8253 #else
8254 fprintf (stderr, "(No per-node statistics)\n");
8255 #endif
8256 print_type_hash_statistics ();
8257 print_debug_expr_statistics ();
8258 print_value_expr_statistics ();
8259 lang_hooks.print_statistics ();
8260 }
8261 \f
8262 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8263
8264 /* Generate a crc32 of a string. */
8265
8266 unsigned
8267 crc32_string (unsigned chksum, const char *string)
8268 {
8269 do
8270 {
8271 unsigned value = *string << 24;
8272 unsigned ix;
8273
8274 for (ix = 8; ix--; value <<= 1)
8275 {
8276 unsigned feedback;
8277
8278 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8279 chksum <<= 1;
8280 chksum ^= feedback;
8281 }
8282 }
8283 while (*string++);
8284 return chksum;
8285 }
8286
8287 /* P is a string that will be used in a symbol. Mask out any characters
8288 that are not valid in that context. */
8289
8290 void
8291 clean_symbol_name (char *p)
8292 {
8293 for (; *p; p++)
8294 if (! (ISALNUM (*p)
8295 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8296 || *p == '$'
8297 #endif
8298 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8299 || *p == '.'
8300 #endif
8301 ))
8302 *p = '_';
8303 }
8304
8305 /* Generate a name for a special-purpose function function.
8306 The generated name may need to be unique across the whole link.
8307 TYPE is some string to identify the purpose of this function to the
8308 linker or collect2; it must start with an uppercase letter,
8309 one of:
8310 I - for constructors
8311 D - for destructors
8312 N - for C++ anonymous namespaces
8313 F - for DWARF unwind frame information. */
8314
8315 tree
8316 get_file_function_name (const char *type)
8317 {
8318 char *buf;
8319 const char *p;
8320 char *q;
8321
8322 /* If we already have a name we know to be unique, just use that. */
8323 if (first_global_object_name)
8324 p = q = ASTRDUP (first_global_object_name);
8325 /* If the target is handling the constructors/destructors, they
8326 will be local to this file and the name is only necessary for
8327 debugging purposes. */
8328 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8329 {
8330 const char *file = main_input_filename;
8331 if (! file)
8332 file = input_filename;
8333 /* Just use the file's basename, because the full pathname
8334 might be quite long. */
8335 p = strrchr (file, '/');
8336 if (p)
8337 p++;
8338 else
8339 p = file;
8340 p = q = ASTRDUP (p);
8341 }
8342 else
8343 {
8344 /* Otherwise, the name must be unique across the entire link.
8345 We don't have anything that we know to be unique to this translation
8346 unit, so use what we do have and throw in some randomness. */
8347 unsigned len;
8348 const char *name = weak_global_object_name;
8349 const char *file = main_input_filename;
8350
8351 if (! name)
8352 name = "";
8353 if (! file)
8354 file = input_filename;
8355
8356 len = strlen (file);
8357 q = (char *) alloca (9 * 2 + len + 1);
8358 memcpy (q, file, len + 1);
8359
8360 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8361 crc32_string (0, get_random_seed (false)));
8362
8363 p = q;
8364 }
8365
8366 clean_symbol_name (q);
8367 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8368 + strlen (type));
8369
8370 /* Set up the name of the file-level functions we may need.
8371 Use a global object (which is already required to be unique over
8372 the program) rather than the file name (which imposes extra
8373 constraints). */
8374 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8375
8376 return get_identifier (buf);
8377 }
8378 \f
8379 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8380
8381 /* Complain that the tree code of NODE does not match the expected 0
8382 terminated list of trailing codes. The trailing code list can be
8383 empty, for a more vague error message. FILE, LINE, and FUNCTION
8384 are of the caller. */
8385
8386 void
8387 tree_check_failed (const_tree node, const char *file,
8388 int line, const char *function, ...)
8389 {
8390 va_list args;
8391 const char *buffer;
8392 unsigned length = 0;
8393 int code;
8394
8395 va_start (args, function);
8396 while ((code = va_arg (args, int)))
8397 length += 4 + strlen (tree_code_name[code]);
8398 va_end (args);
8399 if (length)
8400 {
8401 char *tmp;
8402 va_start (args, function);
8403 length += strlen ("expected ");
8404 buffer = tmp = (char *) alloca (length);
8405 length = 0;
8406 while ((code = va_arg (args, int)))
8407 {
8408 const char *prefix = length ? " or " : "expected ";
8409
8410 strcpy (tmp + length, prefix);
8411 length += strlen (prefix);
8412 strcpy (tmp + length, tree_code_name[code]);
8413 length += strlen (tree_code_name[code]);
8414 }
8415 va_end (args);
8416 }
8417 else
8418 buffer = "unexpected node";
8419
8420 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8421 buffer, tree_code_name[TREE_CODE (node)],
8422 function, trim_filename (file), line);
8423 }
8424
8425 /* Complain that the tree code of NODE does match the expected 0
8426 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8427 the caller. */
8428
8429 void
8430 tree_not_check_failed (const_tree node, const char *file,
8431 int line, const char *function, ...)
8432 {
8433 va_list args;
8434 char *buffer;
8435 unsigned length = 0;
8436 int code;
8437
8438 va_start (args, function);
8439 while ((code = va_arg (args, int)))
8440 length += 4 + strlen (tree_code_name[code]);
8441 va_end (args);
8442 va_start (args, function);
8443 buffer = (char *) alloca (length);
8444 length = 0;
8445 while ((code = va_arg (args, int)))
8446 {
8447 if (length)
8448 {
8449 strcpy (buffer + length, " or ");
8450 length += 4;
8451 }
8452 strcpy (buffer + length, tree_code_name[code]);
8453 length += strlen (tree_code_name[code]);
8454 }
8455 va_end (args);
8456
8457 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8458 buffer, tree_code_name[TREE_CODE (node)],
8459 function, trim_filename (file), line);
8460 }
8461
8462 /* Similar to tree_check_failed, except that we check for a class of tree
8463 code, given in CL. */
8464
8465 void
8466 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8467 const char *file, int line, const char *function)
8468 {
8469 internal_error
8470 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8471 TREE_CODE_CLASS_STRING (cl),
8472 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8473 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8474 }
8475
8476 /* Similar to tree_check_failed, except that instead of specifying a
8477 dozen codes, use the knowledge that they're all sequential. */
8478
8479 void
8480 tree_range_check_failed (const_tree node, const char *file, int line,
8481 const char *function, enum tree_code c1,
8482 enum tree_code c2)
8483 {
8484 char *buffer;
8485 unsigned length = 0;
8486 unsigned int c;
8487
8488 for (c = c1; c <= c2; ++c)
8489 length += 4 + strlen (tree_code_name[c]);
8490
8491 length += strlen ("expected ");
8492 buffer = (char *) alloca (length);
8493 length = 0;
8494
8495 for (c = c1; c <= c2; ++c)
8496 {
8497 const char *prefix = length ? " or " : "expected ";
8498
8499 strcpy (buffer + length, prefix);
8500 length += strlen (prefix);
8501 strcpy (buffer + length, tree_code_name[c]);
8502 length += strlen (tree_code_name[c]);
8503 }
8504
8505 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8506 buffer, tree_code_name[TREE_CODE (node)],
8507 function, trim_filename (file), line);
8508 }
8509
8510
8511 /* Similar to tree_check_failed, except that we check that a tree does
8512 not have the specified code, given in CL. */
8513
8514 void
8515 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8516 const char *file, int line, const char *function)
8517 {
8518 internal_error
8519 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8520 TREE_CODE_CLASS_STRING (cl),
8521 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8522 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8523 }
8524
8525
8526 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8527
8528 void
8529 omp_clause_check_failed (const_tree node, const char *file, int line,
8530 const char *function, enum omp_clause_code code)
8531 {
8532 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8533 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8534 function, trim_filename (file), line);
8535 }
8536
8537
8538 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8539
8540 void
8541 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8542 const char *function, enum omp_clause_code c1,
8543 enum omp_clause_code c2)
8544 {
8545 char *buffer;
8546 unsigned length = 0;
8547 unsigned int c;
8548
8549 for (c = c1; c <= c2; ++c)
8550 length += 4 + strlen (omp_clause_code_name[c]);
8551
8552 length += strlen ("expected ");
8553 buffer = (char *) alloca (length);
8554 length = 0;
8555
8556 for (c = c1; c <= c2; ++c)
8557 {
8558 const char *prefix = length ? " or " : "expected ";
8559
8560 strcpy (buffer + length, prefix);
8561 length += strlen (prefix);
8562 strcpy (buffer + length, omp_clause_code_name[c]);
8563 length += strlen (omp_clause_code_name[c]);
8564 }
8565
8566 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8567 buffer, omp_clause_code_name[TREE_CODE (node)],
8568 function, trim_filename (file), line);
8569 }
8570
8571
8572 #undef DEFTREESTRUCT
8573 #define DEFTREESTRUCT(VAL, NAME) NAME,
8574
8575 static const char *ts_enum_names[] = {
8576 #include "treestruct.def"
8577 };
8578 #undef DEFTREESTRUCT
8579
8580 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8581
8582 /* Similar to tree_class_check_failed, except that we check for
8583 whether CODE contains the tree structure identified by EN. */
8584
8585 void
8586 tree_contains_struct_check_failed (const_tree node,
8587 const enum tree_node_structure_enum en,
8588 const char *file, int line,
8589 const char *function)
8590 {
8591 internal_error
8592 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8593 TS_ENUM_NAME(en),
8594 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8595 }
8596
8597
8598 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8599 (dynamically sized) vector. */
8600
8601 void
8602 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8603 const char *function)
8604 {
8605 internal_error
8606 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8607 idx + 1, len, function, trim_filename (file), line);
8608 }
8609
8610 /* Similar to above, except that the check is for the bounds of the operand
8611 vector of an expression node EXP. */
8612
8613 void
8614 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8615 int line, const char *function)
8616 {
8617 int code = TREE_CODE (exp);
8618 internal_error
8619 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8620 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8621 function, trim_filename (file), line);
8622 }
8623
8624 /* Similar to above, except that the check is for the number of
8625 operands of an OMP_CLAUSE node. */
8626
8627 void
8628 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8629 int line, const char *function)
8630 {
8631 internal_error
8632 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8633 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8634 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8635 trim_filename (file), line);
8636 }
8637 #endif /* ENABLE_TREE_CHECKING */
8638 \f
8639 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8640 and mapped to the machine mode MODE. Initialize its fields and build
8641 the information necessary for debugging output. */
8642
8643 static tree
8644 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8645 {
8646 tree t;
8647 hashval_t hashcode = 0;
8648
8649 t = make_node (VECTOR_TYPE);
8650 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8651 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8652 SET_TYPE_MODE (t, mode);
8653
8654 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8655 SET_TYPE_STRUCTURAL_EQUALITY (t);
8656 else if (TYPE_CANONICAL (innertype) != innertype
8657 || mode != VOIDmode)
8658 TYPE_CANONICAL (t)
8659 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8660
8661 layout_type (t);
8662
8663 {
8664 tree index = build_int_cst (NULL_TREE, nunits - 1);
8665 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8666 build_index_type (index));
8667 tree rt = make_node (RECORD_TYPE);
8668
8669 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8670 get_identifier ("f"), array);
8671 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8672 layout_type (rt);
8673 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8674 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8675 the representation type, and we want to find that die when looking up
8676 the vector type. This is most easily achieved by making the TYPE_UID
8677 numbers equal. */
8678 TYPE_UID (rt) = TYPE_UID (t);
8679 }
8680
8681 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8682 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8683 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8684 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8685 t = type_hash_canon (hashcode, t);
8686
8687 /* We have built a main variant, based on the main variant of the
8688 inner type. Use it to build the variant we return. */
8689 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8690 && TREE_TYPE (t) != innertype)
8691 return build_type_attribute_qual_variant (t,
8692 TYPE_ATTRIBUTES (innertype),
8693 TYPE_QUALS (innertype));
8694
8695 return t;
8696 }
8697
8698 static tree
8699 make_or_reuse_type (unsigned size, int unsignedp)
8700 {
8701 if (size == INT_TYPE_SIZE)
8702 return unsignedp ? unsigned_type_node : integer_type_node;
8703 if (size == CHAR_TYPE_SIZE)
8704 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8705 if (size == SHORT_TYPE_SIZE)
8706 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8707 if (size == LONG_TYPE_SIZE)
8708 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8709 if (size == LONG_LONG_TYPE_SIZE)
8710 return (unsignedp ? long_long_unsigned_type_node
8711 : long_long_integer_type_node);
8712
8713 if (unsignedp)
8714 return make_unsigned_type (size);
8715 else
8716 return make_signed_type (size);
8717 }
8718
8719 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8720
8721 static tree
8722 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8723 {
8724 if (satp)
8725 {
8726 if (size == SHORT_FRACT_TYPE_SIZE)
8727 return unsignedp ? sat_unsigned_short_fract_type_node
8728 : sat_short_fract_type_node;
8729 if (size == FRACT_TYPE_SIZE)
8730 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8731 if (size == LONG_FRACT_TYPE_SIZE)
8732 return unsignedp ? sat_unsigned_long_fract_type_node
8733 : sat_long_fract_type_node;
8734 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8735 return unsignedp ? sat_unsigned_long_long_fract_type_node
8736 : sat_long_long_fract_type_node;
8737 }
8738 else
8739 {
8740 if (size == SHORT_FRACT_TYPE_SIZE)
8741 return unsignedp ? unsigned_short_fract_type_node
8742 : short_fract_type_node;
8743 if (size == FRACT_TYPE_SIZE)
8744 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8745 if (size == LONG_FRACT_TYPE_SIZE)
8746 return unsignedp ? unsigned_long_fract_type_node
8747 : long_fract_type_node;
8748 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8749 return unsignedp ? unsigned_long_long_fract_type_node
8750 : long_long_fract_type_node;
8751 }
8752
8753 return make_fract_type (size, unsignedp, satp);
8754 }
8755
8756 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8757
8758 static tree
8759 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8760 {
8761 if (satp)
8762 {
8763 if (size == SHORT_ACCUM_TYPE_SIZE)
8764 return unsignedp ? sat_unsigned_short_accum_type_node
8765 : sat_short_accum_type_node;
8766 if (size == ACCUM_TYPE_SIZE)
8767 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8768 if (size == LONG_ACCUM_TYPE_SIZE)
8769 return unsignedp ? sat_unsigned_long_accum_type_node
8770 : sat_long_accum_type_node;
8771 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8772 return unsignedp ? sat_unsigned_long_long_accum_type_node
8773 : sat_long_long_accum_type_node;
8774 }
8775 else
8776 {
8777 if (size == SHORT_ACCUM_TYPE_SIZE)
8778 return unsignedp ? unsigned_short_accum_type_node
8779 : short_accum_type_node;
8780 if (size == ACCUM_TYPE_SIZE)
8781 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8782 if (size == LONG_ACCUM_TYPE_SIZE)
8783 return unsignedp ? unsigned_long_accum_type_node
8784 : long_accum_type_node;
8785 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8786 return unsignedp ? unsigned_long_long_accum_type_node
8787 : long_long_accum_type_node;
8788 }
8789
8790 return make_accum_type (size, unsignedp, satp);
8791 }
8792
8793 /* Create nodes for all integer types (and error_mark_node) using the sizes
8794 of C datatypes. The caller should call set_sizetype soon after calling
8795 this function to select one of the types as sizetype. */
8796
8797 void
8798 build_common_tree_nodes (bool signed_char)
8799 {
8800 error_mark_node = make_node (ERROR_MARK);
8801 TREE_TYPE (error_mark_node) = error_mark_node;
8802
8803 initialize_sizetypes ();
8804
8805 /* Define both `signed char' and `unsigned char'. */
8806 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8807 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8808 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8809 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8810
8811 /* Define `char', which is like either `signed char' or `unsigned char'
8812 but not the same as either. */
8813 char_type_node
8814 = (signed_char
8815 ? make_signed_type (CHAR_TYPE_SIZE)
8816 : make_unsigned_type (CHAR_TYPE_SIZE));
8817 TYPE_STRING_FLAG (char_type_node) = 1;
8818
8819 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8820 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8821 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8822 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8823 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8824 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8825 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8826 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8827
8828 /* Define a boolean type. This type only represents boolean values but
8829 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8830 Front ends which want to override this size (i.e. Java) can redefine
8831 boolean_type_node before calling build_common_tree_nodes_2. */
8832 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8833 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8834 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8835 TYPE_PRECISION (boolean_type_node) = 1;
8836
8837 /* Fill in the rest of the sized types. Reuse existing type nodes
8838 when possible. */
8839 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8840 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8841 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8842 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8843 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8844
8845 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8846 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8847 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8848 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8849 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8850
8851 access_public_node = get_identifier ("public");
8852 access_protected_node = get_identifier ("protected");
8853 access_private_node = get_identifier ("private");
8854 }
8855
8856 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8857 It will create several other common tree nodes. */
8858
8859 void
8860 build_common_tree_nodes_2 (int short_double)
8861 {
8862 /* Define these next since types below may used them. */
8863 integer_zero_node = build_int_cst (NULL_TREE, 0);
8864 integer_one_node = build_int_cst (NULL_TREE, 1);
8865 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8866
8867 size_zero_node = size_int (0);
8868 size_one_node = size_int (1);
8869 bitsize_zero_node = bitsize_int (0);
8870 bitsize_one_node = bitsize_int (1);
8871 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8872
8873 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8874 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8875
8876 void_type_node = make_node (VOID_TYPE);
8877 layout_type (void_type_node);
8878
8879 /* We are not going to have real types in C with less than byte alignment,
8880 so we might as well not have any types that claim to have it. */
8881 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8882 TYPE_USER_ALIGN (void_type_node) = 0;
8883
8884 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8885 layout_type (TREE_TYPE (null_pointer_node));
8886
8887 ptr_type_node = build_pointer_type (void_type_node);
8888 const_ptr_type_node
8889 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8890 fileptr_type_node = ptr_type_node;
8891
8892 float_type_node = make_node (REAL_TYPE);
8893 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8894 layout_type (float_type_node);
8895
8896 double_type_node = make_node (REAL_TYPE);
8897 if (short_double)
8898 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8899 else
8900 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8901 layout_type (double_type_node);
8902
8903 long_double_type_node = make_node (REAL_TYPE);
8904 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8905 layout_type (long_double_type_node);
8906
8907 float_ptr_type_node = build_pointer_type (float_type_node);
8908 double_ptr_type_node = build_pointer_type (double_type_node);
8909 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8910 integer_ptr_type_node = build_pointer_type (integer_type_node);
8911
8912 /* Fixed size integer types. */
8913 uint32_type_node = build_nonstandard_integer_type (32, true);
8914 uint64_type_node = build_nonstandard_integer_type (64, true);
8915
8916 /* Decimal float types. */
8917 dfloat32_type_node = make_node (REAL_TYPE);
8918 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8919 layout_type (dfloat32_type_node);
8920 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8921 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8922
8923 dfloat64_type_node = make_node (REAL_TYPE);
8924 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8925 layout_type (dfloat64_type_node);
8926 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8927 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8928
8929 dfloat128_type_node = make_node (REAL_TYPE);
8930 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8931 layout_type (dfloat128_type_node);
8932 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8933 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8934
8935 complex_integer_type_node = build_complex_type (integer_type_node);
8936 complex_float_type_node = build_complex_type (float_type_node);
8937 complex_double_type_node = build_complex_type (double_type_node);
8938 complex_long_double_type_node = build_complex_type (long_double_type_node);
8939
8940 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8941 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8942 sat_ ## KIND ## _type_node = \
8943 make_sat_signed_ ## KIND ## _type (SIZE); \
8944 sat_unsigned_ ## KIND ## _type_node = \
8945 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8946 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8947 unsigned_ ## KIND ## _type_node = \
8948 make_unsigned_ ## KIND ## _type (SIZE);
8949
8950 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8951 sat_ ## WIDTH ## KIND ## _type_node = \
8952 make_sat_signed_ ## KIND ## _type (SIZE); \
8953 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8954 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8955 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8956 unsigned_ ## WIDTH ## KIND ## _type_node = \
8957 make_unsigned_ ## KIND ## _type (SIZE);
8958
8959 /* Make fixed-point type nodes based on four different widths. */
8960 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8961 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8962 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8963 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8964 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8965
8966 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8967 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8968 NAME ## _type_node = \
8969 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8970 u ## NAME ## _type_node = \
8971 make_or_reuse_unsigned_ ## KIND ## _type \
8972 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8973 sat_ ## NAME ## _type_node = \
8974 make_or_reuse_sat_signed_ ## KIND ## _type \
8975 (GET_MODE_BITSIZE (MODE ## mode)); \
8976 sat_u ## NAME ## _type_node = \
8977 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8978 (GET_MODE_BITSIZE (U ## MODE ## mode));
8979
8980 /* Fixed-point type and mode nodes. */
8981 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8982 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8983 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8984 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8985 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8986 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8987 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8988 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8989 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8990 MAKE_FIXED_MODE_NODE (accum, da, DA)
8991 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8992
8993 {
8994 tree t = targetm.build_builtin_va_list ();
8995
8996 /* Many back-ends define record types without setting TYPE_NAME.
8997 If we copied the record type here, we'd keep the original
8998 record type without a name. This breaks name mangling. So,
8999 don't copy record types and let c_common_nodes_and_builtins()
9000 declare the type to be __builtin_va_list. */
9001 if (TREE_CODE (t) != RECORD_TYPE)
9002 t = build_variant_type_copy (t);
9003
9004 va_list_type_node = t;
9005 }
9006 }
9007
9008 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9009
9010 static void
9011 local_define_builtin (const char *name, tree type, enum built_in_function code,
9012 const char *library_name, int ecf_flags)
9013 {
9014 tree decl;
9015
9016 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9017 library_name, NULL_TREE);
9018 if (ecf_flags & ECF_CONST)
9019 TREE_READONLY (decl) = 1;
9020 if (ecf_flags & ECF_PURE)
9021 DECL_PURE_P (decl) = 1;
9022 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9023 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9024 if (ecf_flags & ECF_NORETURN)
9025 TREE_THIS_VOLATILE (decl) = 1;
9026 if (ecf_flags & ECF_NOTHROW)
9027 TREE_NOTHROW (decl) = 1;
9028 if (ecf_flags & ECF_MALLOC)
9029 DECL_IS_MALLOC (decl) = 1;
9030
9031 built_in_decls[code] = decl;
9032 implicit_built_in_decls[code] = decl;
9033 }
9034
9035 /* Call this function after instantiating all builtins that the language
9036 front end cares about. This will build the rest of the builtins that
9037 are relied upon by the tree optimizers and the middle-end. */
9038
9039 void
9040 build_common_builtin_nodes (void)
9041 {
9042 tree tmp, tmp2, ftype;
9043
9044 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9045 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9046 {
9047 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9048 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9049 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9050 ftype = build_function_type (ptr_type_node, tmp);
9051
9052 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9053 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9054 "memcpy", ECF_NOTHROW);
9055 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9056 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9057 "memmove", ECF_NOTHROW);
9058 }
9059
9060 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9061 {
9062 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9063 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9064 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
9065 ftype = build_function_type (integer_type_node, tmp);
9066 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9067 "memcmp", ECF_PURE | ECF_NOTHROW);
9068 }
9069
9070 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9071 {
9072 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9073 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9074 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9075 ftype = build_function_type (ptr_type_node, tmp);
9076 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9077 "memset", ECF_NOTHROW);
9078 }
9079
9080 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9081 {
9082 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9083 ftype = build_function_type (ptr_type_node, tmp);
9084 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9085 "alloca", ECF_MALLOC | ECF_NOTHROW);
9086 }
9087
9088 /* If we're checking the stack, `alloca' can throw. */
9089 if (flag_stack_check)
9090 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9091
9092 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9093 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9094 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9095 ftype = build_function_type (void_type_node, tmp);
9096 local_define_builtin ("__builtin_init_trampoline", ftype,
9097 BUILT_IN_INIT_TRAMPOLINE,
9098 "__builtin_init_trampoline", ECF_NOTHROW);
9099
9100 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9101 ftype = build_function_type (ptr_type_node, tmp);
9102 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9103 BUILT_IN_ADJUST_TRAMPOLINE,
9104 "__builtin_adjust_trampoline",
9105 ECF_CONST | ECF_NOTHROW);
9106
9107 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9108 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9109 ftype = build_function_type (void_type_node, tmp);
9110 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9111 BUILT_IN_NONLOCAL_GOTO,
9112 "__builtin_nonlocal_goto",
9113 ECF_NORETURN | ECF_NOTHROW);
9114
9115 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9116 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9117 ftype = build_function_type (void_type_node, tmp);
9118 local_define_builtin ("__builtin_setjmp_setup", ftype,
9119 BUILT_IN_SETJMP_SETUP,
9120 "__builtin_setjmp_setup", ECF_NOTHROW);
9121
9122 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9123 ftype = build_function_type (ptr_type_node, tmp);
9124 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9125 BUILT_IN_SETJMP_DISPATCHER,
9126 "__builtin_setjmp_dispatcher",
9127 ECF_PURE | ECF_NOTHROW);
9128
9129 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9130 ftype = build_function_type (void_type_node, tmp);
9131 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9132 BUILT_IN_SETJMP_RECEIVER,
9133 "__builtin_setjmp_receiver", ECF_NOTHROW);
9134
9135 ftype = build_function_type (ptr_type_node, void_list_node);
9136 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9137 "__builtin_stack_save", ECF_NOTHROW);
9138
9139 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9140 ftype = build_function_type (void_type_node, tmp);
9141 local_define_builtin ("__builtin_stack_restore", ftype,
9142 BUILT_IN_STACK_RESTORE,
9143 "__builtin_stack_restore", ECF_NOTHROW);
9144
9145 ftype = build_function_type (void_type_node, void_list_node);
9146 local_define_builtin ("__builtin_profile_func_enter", ftype,
9147 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9148 local_define_builtin ("__builtin_profile_func_exit", ftype,
9149 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9150
9151 /* If there's a possibility that we might use the ARM EABI, build the
9152 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9153 if (targetm.arm_eabi_unwinder)
9154 {
9155 ftype = build_function_type (void_type_node, void_list_node);
9156 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9157 BUILT_IN_CXA_END_CLEANUP,
9158 "__cxa_end_cleanup", ECF_NORETURN);
9159 }
9160
9161 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9162 ftype = build_function_type (void_type_node, tmp);
9163 local_define_builtin ("__builtin_unwind_resume", ftype,
9164 BUILT_IN_UNWIND_RESUME,
9165 (USING_SJLJ_EXCEPTIONS
9166 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9167 ECF_NORETURN);
9168
9169 /* The exception object and filter values from the runtime. The argument
9170 must be zero before exception lowering, i.e. from the front end. After
9171 exception lowering, it will be the region number for the exception
9172 landing pad. These functions are PURE instead of CONST to prevent
9173 them from being hoisted past the exception edge that will initialize
9174 its value in the landing pad. */
9175 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9176 ftype = build_function_type (ptr_type_node, tmp);
9177 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9178 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9179
9180 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9181 ftype = build_function_type (tmp2, tmp);
9182 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9183 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9184
9185 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9186 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9187 ftype = build_function_type (void_type_node, tmp);
9188 local_define_builtin ("__builtin_eh_copy_values", ftype,
9189 BUILT_IN_EH_COPY_VALUES,
9190 "__builtin_eh_copy_values", ECF_NOTHROW);
9191
9192 /* Complex multiplication and division. These are handled as builtins
9193 rather than optabs because emit_library_call_value doesn't support
9194 complex. Further, we can do slightly better with folding these
9195 beasties if the real and complex parts of the arguments are separate. */
9196 {
9197 int mode;
9198
9199 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9200 {
9201 char mode_name_buf[4], *q;
9202 const char *p;
9203 enum built_in_function mcode, dcode;
9204 tree type, inner_type;
9205
9206 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9207 if (type == NULL)
9208 continue;
9209 inner_type = TREE_TYPE (type);
9210
9211 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9212 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9213 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9214 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9215 ftype = build_function_type (type, tmp);
9216
9217 mcode = ((enum built_in_function)
9218 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9219 dcode = ((enum built_in_function)
9220 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9221
9222 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9223 *q = TOLOWER (*p);
9224 *q = '\0';
9225
9226 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9227 local_define_builtin (built_in_names[mcode], ftype, mcode,
9228 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9229
9230 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9231 local_define_builtin (built_in_names[dcode], ftype, dcode,
9232 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9233 }
9234 }
9235 }
9236
9237 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9238 better way.
9239
9240 If we requested a pointer to a vector, build up the pointers that
9241 we stripped off while looking for the inner type. Similarly for
9242 return values from functions.
9243
9244 The argument TYPE is the top of the chain, and BOTTOM is the
9245 new type which we will point to. */
9246
9247 tree
9248 reconstruct_complex_type (tree type, tree bottom)
9249 {
9250 tree inner, outer;
9251
9252 if (TREE_CODE (type) == POINTER_TYPE)
9253 {
9254 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9255 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9256 TYPE_REF_CAN_ALIAS_ALL (type));
9257 }
9258 else if (TREE_CODE (type) == REFERENCE_TYPE)
9259 {
9260 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9261 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9262 TYPE_REF_CAN_ALIAS_ALL (type));
9263 }
9264 else if (TREE_CODE (type) == ARRAY_TYPE)
9265 {
9266 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9267 outer = build_array_type (inner, TYPE_DOMAIN (type));
9268 }
9269 else if (TREE_CODE (type) == FUNCTION_TYPE)
9270 {
9271 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9272 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9273 }
9274 else if (TREE_CODE (type) == METHOD_TYPE)
9275 {
9276 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9277 /* The build_method_type_directly() routine prepends 'this' to argument list,
9278 so we must compensate by getting rid of it. */
9279 outer
9280 = build_method_type_directly
9281 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9282 inner,
9283 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9284 }
9285 else if (TREE_CODE (type) == OFFSET_TYPE)
9286 {
9287 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9288 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9289 }
9290 else
9291 return bottom;
9292
9293 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9294 TYPE_QUALS (type));
9295 }
9296
9297 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9298 the inner type. */
9299 tree
9300 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9301 {
9302 int nunits;
9303
9304 switch (GET_MODE_CLASS (mode))
9305 {
9306 case MODE_VECTOR_INT:
9307 case MODE_VECTOR_FLOAT:
9308 case MODE_VECTOR_FRACT:
9309 case MODE_VECTOR_UFRACT:
9310 case MODE_VECTOR_ACCUM:
9311 case MODE_VECTOR_UACCUM:
9312 nunits = GET_MODE_NUNITS (mode);
9313 break;
9314
9315 case MODE_INT:
9316 /* Check that there are no leftover bits. */
9317 gcc_assert (GET_MODE_BITSIZE (mode)
9318 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9319
9320 nunits = GET_MODE_BITSIZE (mode)
9321 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9322 break;
9323
9324 default:
9325 gcc_unreachable ();
9326 }
9327
9328 return make_vector_type (innertype, nunits, mode);
9329 }
9330
9331 /* Similarly, but takes the inner type and number of units, which must be
9332 a power of two. */
9333
9334 tree
9335 build_vector_type (tree innertype, int nunits)
9336 {
9337 return make_vector_type (innertype, nunits, VOIDmode);
9338 }
9339
9340 /* Similarly, but takes the inner type and number of units, which must be
9341 a power of two. */
9342
9343 tree
9344 build_opaque_vector_type (tree innertype, int nunits)
9345 {
9346 tree t;
9347 innertype = build_distinct_type_copy (innertype);
9348 t = make_vector_type (innertype, nunits, VOIDmode);
9349 TYPE_VECTOR_OPAQUE (t) = true;
9350 return t;
9351 }
9352
9353
9354 /* Given an initializer INIT, return TRUE if INIT is zero or some
9355 aggregate of zeros. Otherwise return FALSE. */
9356 bool
9357 initializer_zerop (const_tree init)
9358 {
9359 tree elt;
9360
9361 STRIP_NOPS (init);
9362
9363 switch (TREE_CODE (init))
9364 {
9365 case INTEGER_CST:
9366 return integer_zerop (init);
9367
9368 case REAL_CST:
9369 /* ??? Note that this is not correct for C4X float formats. There,
9370 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9371 negative exponent. */
9372 return real_zerop (init)
9373 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9374
9375 case FIXED_CST:
9376 return fixed_zerop (init);
9377
9378 case COMPLEX_CST:
9379 return integer_zerop (init)
9380 || (real_zerop (init)
9381 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9382 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9383
9384 case VECTOR_CST:
9385 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9386 if (!initializer_zerop (TREE_VALUE (elt)))
9387 return false;
9388 return true;
9389
9390 case CONSTRUCTOR:
9391 {
9392 unsigned HOST_WIDE_INT idx;
9393
9394 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9395 if (!initializer_zerop (elt))
9396 return false;
9397 return true;
9398 }
9399
9400 case STRING_CST:
9401 {
9402 int i;
9403
9404 /* We need to loop through all elements to handle cases like
9405 "\0" and "\0foobar". */
9406 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9407 if (TREE_STRING_POINTER (init)[i] != '\0')
9408 return false;
9409
9410 return true;
9411 }
9412
9413 default:
9414 return false;
9415 }
9416 }
9417
9418 /* Build an empty statement at location LOC. */
9419
9420 tree
9421 build_empty_stmt (location_t loc)
9422 {
9423 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9424 SET_EXPR_LOCATION (t, loc);
9425 return t;
9426 }
9427
9428
9429 /* Build an OpenMP clause with code CODE. LOC is the location of the
9430 clause. */
9431
9432 tree
9433 build_omp_clause (location_t loc, enum omp_clause_code code)
9434 {
9435 tree t;
9436 int size, length;
9437
9438 length = omp_clause_num_ops[code];
9439 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9440
9441 t = GGC_NEWVAR (union tree_node, size);
9442 memset (t, 0, size);
9443 TREE_SET_CODE (t, OMP_CLAUSE);
9444 OMP_CLAUSE_SET_CODE (t, code);
9445 OMP_CLAUSE_LOCATION (t) = loc;
9446
9447 #ifdef GATHER_STATISTICS
9448 tree_node_counts[(int) omp_clause_kind]++;
9449 tree_node_sizes[(int) omp_clause_kind] += size;
9450 #endif
9451
9452 return t;
9453 }
9454
9455 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9456 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9457 Except for the CODE and operand count field, other storage for the
9458 object is initialized to zeros. */
9459
9460 tree
9461 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9462 {
9463 tree t;
9464 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9465
9466 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9467 gcc_assert (len >= 1);
9468
9469 #ifdef GATHER_STATISTICS
9470 tree_node_counts[(int) e_kind]++;
9471 tree_node_sizes[(int) e_kind] += length;
9472 #endif
9473
9474 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
9475
9476 memset (t, 0, length);
9477
9478 TREE_SET_CODE (t, code);
9479
9480 /* Can't use TREE_OPERAND to store the length because if checking is
9481 enabled, it will try to check the length before we store it. :-P */
9482 t->exp.operands[0] = build_int_cst (sizetype, len);
9483
9484 return t;
9485 }
9486
9487
9488 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9489 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9490 arguments. */
9491
9492 tree
9493 build_call_list (tree return_type, tree fn, tree arglist)
9494 {
9495 tree t;
9496 int i;
9497
9498 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9499 TREE_TYPE (t) = return_type;
9500 CALL_EXPR_FN (t) = fn;
9501 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9502 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9503 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9504 process_call_operands (t);
9505 return t;
9506 }
9507
9508 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9509 FN and a null static chain slot. NARGS is the number of call arguments
9510 which are specified as "..." arguments. */
9511
9512 tree
9513 build_call_nary (tree return_type, tree fn, int nargs, ...)
9514 {
9515 tree ret;
9516 va_list args;
9517 va_start (args, nargs);
9518 ret = build_call_valist (return_type, fn, nargs, args);
9519 va_end (args);
9520 return ret;
9521 }
9522
9523 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9524 FN and a null static chain slot. NARGS is the number of call arguments
9525 which are specified as a va_list ARGS. */
9526
9527 tree
9528 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9529 {
9530 tree t;
9531 int i;
9532
9533 t = build_vl_exp (CALL_EXPR, nargs + 3);
9534 TREE_TYPE (t) = return_type;
9535 CALL_EXPR_FN (t) = fn;
9536 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9537 for (i = 0; i < nargs; i++)
9538 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9539 process_call_operands (t);
9540 return t;
9541 }
9542
9543 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9544 FN and a null static chain slot. NARGS is the number of call arguments
9545 which are specified as a tree array ARGS. */
9546
9547 tree
9548 build_call_array_loc (location_t loc, tree return_type, tree fn,
9549 int nargs, const tree *args)
9550 {
9551 tree t;
9552 int i;
9553
9554 t = build_vl_exp (CALL_EXPR, nargs + 3);
9555 TREE_TYPE (t) = return_type;
9556 CALL_EXPR_FN (t) = fn;
9557 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9558 for (i = 0; i < nargs; i++)
9559 CALL_EXPR_ARG (t, i) = args[i];
9560 process_call_operands (t);
9561 SET_EXPR_LOCATION (t, loc);
9562 return t;
9563 }
9564
9565 /* Like build_call_array, but takes a VEC. */
9566
9567 tree
9568 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9569 {
9570 tree ret, t;
9571 unsigned int ix;
9572
9573 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9574 TREE_TYPE (ret) = return_type;
9575 CALL_EXPR_FN (ret) = fn;
9576 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9577 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9578 CALL_EXPR_ARG (ret, ix) = t;
9579 process_call_operands (ret);
9580 return ret;
9581 }
9582
9583
9584 /* Returns true if it is possible to prove that the index of
9585 an array access REF (an ARRAY_REF expression) falls into the
9586 array bounds. */
9587
9588 bool
9589 in_array_bounds_p (tree ref)
9590 {
9591 tree idx = TREE_OPERAND (ref, 1);
9592 tree min, max;
9593
9594 if (TREE_CODE (idx) != INTEGER_CST)
9595 return false;
9596
9597 min = array_ref_low_bound (ref);
9598 max = array_ref_up_bound (ref);
9599 if (!min
9600 || !max
9601 || TREE_CODE (min) != INTEGER_CST
9602 || TREE_CODE (max) != INTEGER_CST)
9603 return false;
9604
9605 if (tree_int_cst_lt (idx, min)
9606 || tree_int_cst_lt (max, idx))
9607 return false;
9608
9609 return true;
9610 }
9611
9612 /* Returns true if it is possible to prove that the range of
9613 an array access REF (an ARRAY_RANGE_REF expression) falls
9614 into the array bounds. */
9615
9616 bool
9617 range_in_array_bounds_p (tree ref)
9618 {
9619 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9620 tree range_min, range_max, min, max;
9621
9622 range_min = TYPE_MIN_VALUE (domain_type);
9623 range_max = TYPE_MAX_VALUE (domain_type);
9624 if (!range_min
9625 || !range_max
9626 || TREE_CODE (range_min) != INTEGER_CST
9627 || TREE_CODE (range_max) != INTEGER_CST)
9628 return false;
9629
9630 min = array_ref_low_bound (ref);
9631 max = array_ref_up_bound (ref);
9632 if (!min
9633 || !max
9634 || TREE_CODE (min) != INTEGER_CST
9635 || TREE_CODE (max) != INTEGER_CST)
9636 return false;
9637
9638 if (tree_int_cst_lt (range_min, min)
9639 || tree_int_cst_lt (max, range_max))
9640 return false;
9641
9642 return true;
9643 }
9644
9645 /* Return true if T (assumed to be a DECL) must be assigned a memory
9646 location. */
9647
9648 bool
9649 needs_to_live_in_memory (const_tree t)
9650 {
9651 if (TREE_CODE (t) == SSA_NAME)
9652 t = SSA_NAME_VAR (t);
9653
9654 return (TREE_ADDRESSABLE (t)
9655 || is_global_var (t)
9656 || (TREE_CODE (t) == RESULT_DECL
9657 && aggregate_value_p (t, current_function_decl)));
9658 }
9659
9660 /* There are situations in which a language considers record types
9661 compatible which have different field lists. Decide if two fields
9662 are compatible. It is assumed that the parent records are compatible. */
9663
9664 bool
9665 fields_compatible_p (const_tree f1, const_tree f2)
9666 {
9667 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9668 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9669 return false;
9670
9671 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9672 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9673 return false;
9674
9675 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9676 return false;
9677
9678 return true;
9679 }
9680
9681 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9682
9683 tree
9684 find_compatible_field (tree record, tree orig_field)
9685 {
9686 tree f;
9687
9688 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9689 if (TREE_CODE (f) == FIELD_DECL
9690 && fields_compatible_p (f, orig_field))
9691 return f;
9692
9693 /* ??? Why isn't this on the main fields list? */
9694 f = TYPE_VFIELD (record);
9695 if (f && TREE_CODE (f) == FIELD_DECL
9696 && fields_compatible_p (f, orig_field))
9697 return f;
9698
9699 /* ??? We should abort here, but Java appears to do Bad Things
9700 with inherited fields. */
9701 return orig_field;
9702 }
9703
9704 /* Return value of a constant X and sign-extend it. */
9705
9706 HOST_WIDE_INT
9707 int_cst_value (const_tree x)
9708 {
9709 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9710 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9711
9712 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9713 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9714 || TREE_INT_CST_HIGH (x) == -1);
9715
9716 if (bits < HOST_BITS_PER_WIDE_INT)
9717 {
9718 bool negative = ((val >> (bits - 1)) & 1) != 0;
9719 if (negative)
9720 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9721 else
9722 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9723 }
9724
9725 return val;
9726 }
9727
9728 /* Return value of a constant X and sign-extend it. */
9729
9730 HOST_WIDEST_INT
9731 widest_int_cst_value (const_tree x)
9732 {
9733 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9734 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9735
9736 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9737 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9738 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9739 << HOST_BITS_PER_WIDE_INT);
9740 #else
9741 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9742 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9743 || TREE_INT_CST_HIGH (x) == -1);
9744 #endif
9745
9746 if (bits < HOST_BITS_PER_WIDEST_INT)
9747 {
9748 bool negative = ((val >> (bits - 1)) & 1) != 0;
9749 if (negative)
9750 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9751 else
9752 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9753 }
9754
9755 return val;
9756 }
9757
9758 /* If TYPE is an integral type, return an equivalent type which is
9759 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9760 return TYPE itself. */
9761
9762 tree
9763 signed_or_unsigned_type_for (int unsignedp, tree type)
9764 {
9765 tree t = type;
9766 if (POINTER_TYPE_P (type))
9767 {
9768 /* If the pointer points to the normal address space, use the
9769 size_type_node. Otherwise use an appropriate size for the pointer
9770 based on the named address space it points to. */
9771 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9772 t = size_type_node;
9773 else
9774 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9775 }
9776
9777 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9778 return t;
9779
9780 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9781 }
9782
9783 /* Returns unsigned variant of TYPE. */
9784
9785 tree
9786 unsigned_type_for (tree type)
9787 {
9788 return signed_or_unsigned_type_for (1, type);
9789 }
9790
9791 /* Returns signed variant of TYPE. */
9792
9793 tree
9794 signed_type_for (tree type)
9795 {
9796 return signed_or_unsigned_type_for (0, type);
9797 }
9798
9799 /* Returns the largest value obtainable by casting something in INNER type to
9800 OUTER type. */
9801
9802 tree
9803 upper_bound_in_type (tree outer, tree inner)
9804 {
9805 unsigned HOST_WIDE_INT lo, hi;
9806 unsigned int det = 0;
9807 unsigned oprec = TYPE_PRECISION (outer);
9808 unsigned iprec = TYPE_PRECISION (inner);
9809 unsigned prec;
9810
9811 /* Compute a unique number for every combination. */
9812 det |= (oprec > iprec) ? 4 : 0;
9813 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9814 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9815
9816 /* Determine the exponent to use. */
9817 switch (det)
9818 {
9819 case 0:
9820 case 1:
9821 /* oprec <= iprec, outer: signed, inner: don't care. */
9822 prec = oprec - 1;
9823 break;
9824 case 2:
9825 case 3:
9826 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9827 prec = oprec;
9828 break;
9829 case 4:
9830 /* oprec > iprec, outer: signed, inner: signed. */
9831 prec = iprec - 1;
9832 break;
9833 case 5:
9834 /* oprec > iprec, outer: signed, inner: unsigned. */
9835 prec = iprec;
9836 break;
9837 case 6:
9838 /* oprec > iprec, outer: unsigned, inner: signed. */
9839 prec = oprec;
9840 break;
9841 case 7:
9842 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9843 prec = iprec;
9844 break;
9845 default:
9846 gcc_unreachable ();
9847 }
9848
9849 /* Compute 2^^prec - 1. */
9850 if (prec <= HOST_BITS_PER_WIDE_INT)
9851 {
9852 hi = 0;
9853 lo = ((~(unsigned HOST_WIDE_INT) 0)
9854 >> (HOST_BITS_PER_WIDE_INT - prec));
9855 }
9856 else
9857 {
9858 hi = ((~(unsigned HOST_WIDE_INT) 0)
9859 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9860 lo = ~(unsigned HOST_WIDE_INT) 0;
9861 }
9862
9863 return build_int_cst_wide (outer, lo, hi);
9864 }
9865
9866 /* Returns the smallest value obtainable by casting something in INNER type to
9867 OUTER type. */
9868
9869 tree
9870 lower_bound_in_type (tree outer, tree inner)
9871 {
9872 unsigned HOST_WIDE_INT lo, hi;
9873 unsigned oprec = TYPE_PRECISION (outer);
9874 unsigned iprec = TYPE_PRECISION (inner);
9875
9876 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9877 and obtain 0. */
9878 if (TYPE_UNSIGNED (outer)
9879 /* If we are widening something of an unsigned type, OUTER type
9880 contains all values of INNER type. In particular, both INNER
9881 and OUTER types have zero in common. */
9882 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9883 lo = hi = 0;
9884 else
9885 {
9886 /* If we are widening a signed type to another signed type, we
9887 want to obtain -2^^(iprec-1). If we are keeping the
9888 precision or narrowing to a signed type, we want to obtain
9889 -2^(oprec-1). */
9890 unsigned prec = oprec > iprec ? iprec : oprec;
9891
9892 if (prec <= HOST_BITS_PER_WIDE_INT)
9893 {
9894 hi = ~(unsigned HOST_WIDE_INT) 0;
9895 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9896 }
9897 else
9898 {
9899 hi = ((~(unsigned HOST_WIDE_INT) 0)
9900 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9901 lo = 0;
9902 }
9903 }
9904
9905 return build_int_cst_wide (outer, lo, hi);
9906 }
9907
9908 /* Return nonzero if two operands that are suitable for PHI nodes are
9909 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9910 SSA_NAME or invariant. Note that this is strictly an optimization.
9911 That is, callers of this function can directly call operand_equal_p
9912 and get the same result, only slower. */
9913
9914 int
9915 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9916 {
9917 if (arg0 == arg1)
9918 return 1;
9919 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9920 return 0;
9921 return operand_equal_p (arg0, arg1, 0);
9922 }
9923
9924 /* Returns number of zeros at the end of binary representation of X.
9925
9926 ??? Use ffs if available? */
9927
9928 tree
9929 num_ending_zeros (const_tree x)
9930 {
9931 unsigned HOST_WIDE_INT fr, nfr;
9932 unsigned num, abits;
9933 tree type = TREE_TYPE (x);
9934
9935 if (TREE_INT_CST_LOW (x) == 0)
9936 {
9937 num = HOST_BITS_PER_WIDE_INT;
9938 fr = TREE_INT_CST_HIGH (x);
9939 }
9940 else
9941 {
9942 num = 0;
9943 fr = TREE_INT_CST_LOW (x);
9944 }
9945
9946 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9947 {
9948 nfr = fr >> abits;
9949 if (nfr << abits == fr)
9950 {
9951 num += abits;
9952 fr = nfr;
9953 }
9954 }
9955
9956 if (num > TYPE_PRECISION (type))
9957 num = TYPE_PRECISION (type);
9958
9959 return build_int_cst_type (type, num);
9960 }
9961
9962
9963 #define WALK_SUBTREE(NODE) \
9964 do \
9965 { \
9966 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9967 if (result) \
9968 return result; \
9969 } \
9970 while (0)
9971
9972 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9973 be walked whenever a type is seen in the tree. Rest of operands and return
9974 value are as for walk_tree. */
9975
9976 static tree
9977 walk_type_fields (tree type, walk_tree_fn func, void *data,
9978 struct pointer_set_t *pset, walk_tree_lh lh)
9979 {
9980 tree result = NULL_TREE;
9981
9982 switch (TREE_CODE (type))
9983 {
9984 case POINTER_TYPE:
9985 case REFERENCE_TYPE:
9986 /* We have to worry about mutually recursive pointers. These can't
9987 be written in C. They can in Ada. It's pathological, but
9988 there's an ACATS test (c38102a) that checks it. Deal with this
9989 by checking if we're pointing to another pointer, that one
9990 points to another pointer, that one does too, and we have no htab.
9991 If so, get a hash table. We check three levels deep to avoid
9992 the cost of the hash table if we don't need one. */
9993 if (POINTER_TYPE_P (TREE_TYPE (type))
9994 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9995 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9996 && !pset)
9997 {
9998 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9999 func, data);
10000 if (result)
10001 return result;
10002
10003 break;
10004 }
10005
10006 /* ... fall through ... */
10007
10008 case COMPLEX_TYPE:
10009 WALK_SUBTREE (TREE_TYPE (type));
10010 break;
10011
10012 case METHOD_TYPE:
10013 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10014
10015 /* Fall through. */
10016
10017 case FUNCTION_TYPE:
10018 WALK_SUBTREE (TREE_TYPE (type));
10019 {
10020 tree arg;
10021
10022 /* We never want to walk into default arguments. */
10023 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10024 WALK_SUBTREE (TREE_VALUE (arg));
10025 }
10026 break;
10027
10028 case ARRAY_TYPE:
10029 /* Don't follow this nodes's type if a pointer for fear that
10030 we'll have infinite recursion. If we have a PSET, then we
10031 need not fear. */
10032 if (pset
10033 || (!POINTER_TYPE_P (TREE_TYPE (type))
10034 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10035 WALK_SUBTREE (TREE_TYPE (type));
10036 WALK_SUBTREE (TYPE_DOMAIN (type));
10037 break;
10038
10039 case OFFSET_TYPE:
10040 WALK_SUBTREE (TREE_TYPE (type));
10041 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10042 break;
10043
10044 default:
10045 break;
10046 }
10047
10048 return NULL_TREE;
10049 }
10050
10051 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10052 called with the DATA and the address of each sub-tree. If FUNC returns a
10053 non-NULL value, the traversal is stopped, and the value returned by FUNC
10054 is returned. If PSET is non-NULL it is used to record the nodes visited,
10055 and to avoid visiting a node more than once. */
10056
10057 tree
10058 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10059 struct pointer_set_t *pset, walk_tree_lh lh)
10060 {
10061 enum tree_code code;
10062 int walk_subtrees;
10063 tree result;
10064
10065 #define WALK_SUBTREE_TAIL(NODE) \
10066 do \
10067 { \
10068 tp = & (NODE); \
10069 goto tail_recurse; \
10070 } \
10071 while (0)
10072
10073 tail_recurse:
10074 /* Skip empty subtrees. */
10075 if (!*tp)
10076 return NULL_TREE;
10077
10078 /* Don't walk the same tree twice, if the user has requested
10079 that we avoid doing so. */
10080 if (pset && pointer_set_insert (pset, *tp))
10081 return NULL_TREE;
10082
10083 /* Call the function. */
10084 walk_subtrees = 1;
10085 result = (*func) (tp, &walk_subtrees, data);
10086
10087 /* If we found something, return it. */
10088 if (result)
10089 return result;
10090
10091 code = TREE_CODE (*tp);
10092
10093 /* Even if we didn't, FUNC may have decided that there was nothing
10094 interesting below this point in the tree. */
10095 if (!walk_subtrees)
10096 {
10097 /* But we still need to check our siblings. */
10098 if (code == TREE_LIST)
10099 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10100 else if (code == OMP_CLAUSE)
10101 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10102 else
10103 return NULL_TREE;
10104 }
10105
10106 if (lh)
10107 {
10108 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10109 if (result || !walk_subtrees)
10110 return result;
10111 }
10112
10113 switch (code)
10114 {
10115 case ERROR_MARK:
10116 case IDENTIFIER_NODE:
10117 case INTEGER_CST:
10118 case REAL_CST:
10119 case FIXED_CST:
10120 case VECTOR_CST:
10121 case STRING_CST:
10122 case BLOCK:
10123 case PLACEHOLDER_EXPR:
10124 case SSA_NAME:
10125 case FIELD_DECL:
10126 case RESULT_DECL:
10127 /* None of these have subtrees other than those already walked
10128 above. */
10129 break;
10130
10131 case TREE_LIST:
10132 WALK_SUBTREE (TREE_VALUE (*tp));
10133 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10134 break;
10135
10136 case TREE_VEC:
10137 {
10138 int len = TREE_VEC_LENGTH (*tp);
10139
10140 if (len == 0)
10141 break;
10142
10143 /* Walk all elements but the first. */
10144 while (--len)
10145 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10146
10147 /* Now walk the first one as a tail call. */
10148 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10149 }
10150
10151 case COMPLEX_CST:
10152 WALK_SUBTREE (TREE_REALPART (*tp));
10153 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10154
10155 case CONSTRUCTOR:
10156 {
10157 unsigned HOST_WIDE_INT idx;
10158 constructor_elt *ce;
10159
10160 for (idx = 0;
10161 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10162 idx++)
10163 WALK_SUBTREE (ce->value);
10164 }
10165 break;
10166
10167 case SAVE_EXPR:
10168 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10169
10170 case BIND_EXPR:
10171 {
10172 tree decl;
10173 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10174 {
10175 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10176 into declarations that are just mentioned, rather than
10177 declared; they don't really belong to this part of the tree.
10178 And, we can see cycles: the initializer for a declaration
10179 can refer to the declaration itself. */
10180 WALK_SUBTREE (DECL_INITIAL (decl));
10181 WALK_SUBTREE (DECL_SIZE (decl));
10182 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10183 }
10184 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10185 }
10186
10187 case STATEMENT_LIST:
10188 {
10189 tree_stmt_iterator i;
10190 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10191 WALK_SUBTREE (*tsi_stmt_ptr (i));
10192 }
10193 break;
10194
10195 case OMP_CLAUSE:
10196 switch (OMP_CLAUSE_CODE (*tp))
10197 {
10198 case OMP_CLAUSE_PRIVATE:
10199 case OMP_CLAUSE_SHARED:
10200 case OMP_CLAUSE_FIRSTPRIVATE:
10201 case OMP_CLAUSE_COPYIN:
10202 case OMP_CLAUSE_COPYPRIVATE:
10203 case OMP_CLAUSE_IF:
10204 case OMP_CLAUSE_NUM_THREADS:
10205 case OMP_CLAUSE_SCHEDULE:
10206 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10207 /* FALLTHRU */
10208
10209 case OMP_CLAUSE_NOWAIT:
10210 case OMP_CLAUSE_ORDERED:
10211 case OMP_CLAUSE_DEFAULT:
10212 case OMP_CLAUSE_UNTIED:
10213 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10214
10215 case OMP_CLAUSE_LASTPRIVATE:
10216 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10217 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10218 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10219
10220 case OMP_CLAUSE_COLLAPSE:
10221 {
10222 int i;
10223 for (i = 0; i < 3; i++)
10224 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10225 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10226 }
10227
10228 case OMP_CLAUSE_REDUCTION:
10229 {
10230 int i;
10231 for (i = 0; i < 4; i++)
10232 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10233 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10234 }
10235
10236 default:
10237 gcc_unreachable ();
10238 }
10239 break;
10240
10241 case TARGET_EXPR:
10242 {
10243 int i, len;
10244
10245 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10246 But, we only want to walk once. */
10247 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10248 for (i = 0; i < len; ++i)
10249 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10250 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10251 }
10252
10253 case DECL_EXPR:
10254 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10255 defining. We only want to walk into these fields of a type in this
10256 case and not in the general case of a mere reference to the type.
10257
10258 The criterion is as follows: if the field can be an expression, it
10259 must be walked only here. This should be in keeping with the fields
10260 that are directly gimplified in gimplify_type_sizes in order for the
10261 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10262 variable-sized types.
10263
10264 Note that DECLs get walked as part of processing the BIND_EXPR. */
10265 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10266 {
10267 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10268 if (TREE_CODE (*type_p) == ERROR_MARK)
10269 return NULL_TREE;
10270
10271 /* Call the function for the type. See if it returns anything or
10272 doesn't want us to continue. If we are to continue, walk both
10273 the normal fields and those for the declaration case. */
10274 result = (*func) (type_p, &walk_subtrees, data);
10275 if (result || !walk_subtrees)
10276 return result;
10277
10278 result = walk_type_fields (*type_p, func, data, pset, lh);
10279 if (result)
10280 return result;
10281
10282 /* If this is a record type, also walk the fields. */
10283 if (RECORD_OR_UNION_TYPE_P (*type_p))
10284 {
10285 tree field;
10286
10287 for (field = TYPE_FIELDS (*type_p); field;
10288 field = TREE_CHAIN (field))
10289 {
10290 /* We'd like to look at the type of the field, but we can
10291 easily get infinite recursion. So assume it's pointed
10292 to elsewhere in the tree. Also, ignore things that
10293 aren't fields. */
10294 if (TREE_CODE (field) != FIELD_DECL)
10295 continue;
10296
10297 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10298 WALK_SUBTREE (DECL_SIZE (field));
10299 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10300 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10301 WALK_SUBTREE (DECL_QUALIFIER (field));
10302 }
10303 }
10304
10305 /* Same for scalar types. */
10306 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10307 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10308 || TREE_CODE (*type_p) == INTEGER_TYPE
10309 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10310 || TREE_CODE (*type_p) == REAL_TYPE)
10311 {
10312 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10313 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10314 }
10315
10316 WALK_SUBTREE (TYPE_SIZE (*type_p));
10317 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10318 }
10319 /* FALLTHRU */
10320
10321 default:
10322 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10323 {
10324 int i, len;
10325
10326 /* Walk over all the sub-trees of this operand. */
10327 len = TREE_OPERAND_LENGTH (*tp);
10328
10329 /* Go through the subtrees. We need to do this in forward order so
10330 that the scope of a FOR_EXPR is handled properly. */
10331 if (len)
10332 {
10333 for (i = 0; i < len - 1; ++i)
10334 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10335 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10336 }
10337 }
10338 /* If this is a type, walk the needed fields in the type. */
10339 else if (TYPE_P (*tp))
10340 return walk_type_fields (*tp, func, data, pset, lh);
10341 break;
10342 }
10343
10344 /* We didn't find what we were looking for. */
10345 return NULL_TREE;
10346
10347 #undef WALK_SUBTREE_TAIL
10348 }
10349 #undef WALK_SUBTREE
10350
10351 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10352
10353 tree
10354 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10355 walk_tree_lh lh)
10356 {
10357 tree result;
10358 struct pointer_set_t *pset;
10359
10360 pset = pointer_set_create ();
10361 result = walk_tree_1 (tp, func, data, pset, lh);
10362 pointer_set_destroy (pset);
10363 return result;
10364 }
10365
10366
10367 tree *
10368 tree_block (tree t)
10369 {
10370 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10371
10372 if (IS_EXPR_CODE_CLASS (c))
10373 return &t->exp.block;
10374 gcc_unreachable ();
10375 return NULL;
10376 }
10377
10378 /* Create a nameless artificial label and put it in the current
10379 function context. The label has a location of LOC. Returns the
10380 newly created label. */
10381
10382 tree
10383 create_artificial_label (location_t loc)
10384 {
10385 tree lab = build_decl (loc,
10386 LABEL_DECL, NULL_TREE, void_type_node);
10387
10388 DECL_ARTIFICIAL (lab) = 1;
10389 DECL_IGNORED_P (lab) = 1;
10390 DECL_CONTEXT (lab) = current_function_decl;
10391 return lab;
10392 }
10393
10394 /* Given a tree, try to return a useful variable name that we can use
10395 to prefix a temporary that is being assigned the value of the tree.
10396 I.E. given <temp> = &A, return A. */
10397
10398 const char *
10399 get_name (tree t)
10400 {
10401 tree stripped_decl;
10402
10403 stripped_decl = t;
10404 STRIP_NOPS (stripped_decl);
10405 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10406 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10407 else
10408 {
10409 switch (TREE_CODE (stripped_decl))
10410 {
10411 case ADDR_EXPR:
10412 return get_name (TREE_OPERAND (stripped_decl, 0));
10413 default:
10414 return NULL;
10415 }
10416 }
10417 }
10418
10419 /* Return true if TYPE has a variable argument list. */
10420
10421 bool
10422 stdarg_p (tree fntype)
10423 {
10424 function_args_iterator args_iter;
10425 tree n = NULL_TREE, t;
10426
10427 if (!fntype)
10428 return false;
10429
10430 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10431 {
10432 n = t;
10433 }
10434
10435 return n != NULL_TREE && n != void_type_node;
10436 }
10437
10438 /* Return true if TYPE has a prototype. */
10439
10440 bool
10441 prototype_p (tree fntype)
10442 {
10443 tree t;
10444
10445 gcc_assert (fntype != NULL_TREE);
10446
10447 t = TYPE_ARG_TYPES (fntype);
10448 return (t != NULL_TREE);
10449 }
10450
10451 /* If BLOCK is inlined from an __attribute__((__artificial__))
10452 routine, return pointer to location from where it has been
10453 called. */
10454 location_t *
10455 block_nonartificial_location (tree block)
10456 {
10457 location_t *ret = NULL;
10458
10459 while (block && TREE_CODE (block) == BLOCK
10460 && BLOCK_ABSTRACT_ORIGIN (block))
10461 {
10462 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10463
10464 while (TREE_CODE (ao) == BLOCK
10465 && BLOCK_ABSTRACT_ORIGIN (ao)
10466 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10467 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10468
10469 if (TREE_CODE (ao) == FUNCTION_DECL)
10470 {
10471 /* If AO is an artificial inline, point RET to the
10472 call site locus at which it has been inlined and continue
10473 the loop, in case AO's caller is also an artificial
10474 inline. */
10475 if (DECL_DECLARED_INLINE_P (ao)
10476 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10477 ret = &BLOCK_SOURCE_LOCATION (block);
10478 else
10479 break;
10480 }
10481 else if (TREE_CODE (ao) != BLOCK)
10482 break;
10483
10484 block = BLOCK_SUPERCONTEXT (block);
10485 }
10486 return ret;
10487 }
10488
10489
10490 /* If EXP is inlined from an __attribute__((__artificial__))
10491 function, return the location of the original call expression. */
10492
10493 location_t
10494 tree_nonartificial_location (tree exp)
10495 {
10496 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10497
10498 if (loc)
10499 return *loc;
10500 else
10501 return EXPR_LOCATION (exp);
10502 }
10503
10504
10505 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10506 nodes. */
10507
10508 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10509
10510 static hashval_t
10511 cl_option_hash_hash (const void *x)
10512 {
10513 const_tree const t = (const_tree) x;
10514 const char *p;
10515 size_t i;
10516 size_t len = 0;
10517 hashval_t hash = 0;
10518
10519 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10520 {
10521 p = (const char *)TREE_OPTIMIZATION (t);
10522 len = sizeof (struct cl_optimization);
10523 }
10524
10525 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10526 {
10527 p = (const char *)TREE_TARGET_OPTION (t);
10528 len = sizeof (struct cl_target_option);
10529 }
10530
10531 else
10532 gcc_unreachable ();
10533
10534 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10535 something else. */
10536 for (i = 0; i < len; i++)
10537 if (p[i])
10538 hash = (hash << 4) ^ ((i << 2) | p[i]);
10539
10540 return hash;
10541 }
10542
10543 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10544 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10545 same. */
10546
10547 static int
10548 cl_option_hash_eq (const void *x, const void *y)
10549 {
10550 const_tree const xt = (const_tree) x;
10551 const_tree const yt = (const_tree) y;
10552 const char *xp;
10553 const char *yp;
10554 size_t len;
10555
10556 if (TREE_CODE (xt) != TREE_CODE (yt))
10557 return 0;
10558
10559 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10560 {
10561 xp = (const char *)TREE_OPTIMIZATION (xt);
10562 yp = (const char *)TREE_OPTIMIZATION (yt);
10563 len = sizeof (struct cl_optimization);
10564 }
10565
10566 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10567 {
10568 xp = (const char *)TREE_TARGET_OPTION (xt);
10569 yp = (const char *)TREE_TARGET_OPTION (yt);
10570 len = sizeof (struct cl_target_option);
10571 }
10572
10573 else
10574 gcc_unreachable ();
10575
10576 return (memcmp (xp, yp, len) == 0);
10577 }
10578
10579 /* Build an OPTIMIZATION_NODE based on the current options. */
10580
10581 tree
10582 build_optimization_node (void)
10583 {
10584 tree t;
10585 void **slot;
10586
10587 /* Use the cache of optimization nodes. */
10588
10589 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10590
10591 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10592 t = (tree) *slot;
10593 if (!t)
10594 {
10595 /* Insert this one into the hash table. */
10596 t = cl_optimization_node;
10597 *slot = t;
10598
10599 /* Make a new node for next time round. */
10600 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10601 }
10602
10603 return t;
10604 }
10605
10606 /* Build a TARGET_OPTION_NODE based on the current options. */
10607
10608 tree
10609 build_target_option_node (void)
10610 {
10611 tree t;
10612 void **slot;
10613
10614 /* Use the cache of optimization nodes. */
10615
10616 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10617
10618 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10619 t = (tree) *slot;
10620 if (!t)
10621 {
10622 /* Insert this one into the hash table. */
10623 t = cl_target_option_node;
10624 *slot = t;
10625
10626 /* Make a new node for next time round. */
10627 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10628 }
10629
10630 return t;
10631 }
10632
10633 /* Determine the "ultimate origin" of a block. The block may be an inlined
10634 instance of an inlined instance of a block which is local to an inline
10635 function, so we have to trace all of the way back through the origin chain
10636 to find out what sort of node actually served as the original seed for the
10637 given block. */
10638
10639 tree
10640 block_ultimate_origin (const_tree block)
10641 {
10642 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10643
10644 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10645 nodes in the function to point to themselves; ignore that if
10646 we're trying to output the abstract instance of this function. */
10647 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10648 return NULL_TREE;
10649
10650 if (immediate_origin == NULL_TREE)
10651 return NULL_TREE;
10652 else
10653 {
10654 tree ret_val;
10655 tree lookahead = immediate_origin;
10656
10657 do
10658 {
10659 ret_val = lookahead;
10660 lookahead = (TREE_CODE (ret_val) == BLOCK
10661 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10662 }
10663 while (lookahead != NULL && lookahead != ret_val);
10664
10665 /* The block's abstract origin chain may not be the *ultimate* origin of
10666 the block. It could lead to a DECL that has an abstract origin set.
10667 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10668 will give us if it has one). Note that DECL's abstract origins are
10669 supposed to be the most distant ancestor (or so decl_ultimate_origin
10670 claims), so we don't need to loop following the DECL origins. */
10671 if (DECL_P (ret_val))
10672 return DECL_ORIGIN (ret_val);
10673
10674 return ret_val;
10675 }
10676 }
10677
10678 /* Return true if T1 and T2 are equivalent lists. */
10679
10680 bool
10681 list_equal_p (const_tree t1, const_tree t2)
10682 {
10683 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10684 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10685 return false;
10686 return !t1 && !t2;
10687 }
10688
10689 /* Return true iff conversion in EXP generates no instruction. Mark
10690 it inline so that we fully inline into the stripping functions even
10691 though we have two uses of this function. */
10692
10693 static inline bool
10694 tree_nop_conversion (const_tree exp)
10695 {
10696 tree outer_type, inner_type;
10697
10698 if (!CONVERT_EXPR_P (exp)
10699 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10700 return false;
10701 if (TREE_OPERAND (exp, 0) == error_mark_node)
10702 return false;
10703
10704 outer_type = TREE_TYPE (exp);
10705 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10706
10707 if (!inner_type)
10708 return false;
10709
10710 /* Use precision rather then machine mode when we can, which gives
10711 the correct answer even for submode (bit-field) types. */
10712 if ((INTEGRAL_TYPE_P (outer_type)
10713 || POINTER_TYPE_P (outer_type)
10714 || TREE_CODE (outer_type) == OFFSET_TYPE)
10715 && (INTEGRAL_TYPE_P (inner_type)
10716 || POINTER_TYPE_P (inner_type)
10717 || TREE_CODE (inner_type) == OFFSET_TYPE))
10718 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10719
10720 /* Otherwise fall back on comparing machine modes (e.g. for
10721 aggregate types, floats). */
10722 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10723 }
10724
10725 /* Return true iff conversion in EXP generates no instruction. Don't
10726 consider conversions changing the signedness. */
10727
10728 static bool
10729 tree_sign_nop_conversion (const_tree exp)
10730 {
10731 tree outer_type, inner_type;
10732
10733 if (!tree_nop_conversion (exp))
10734 return false;
10735
10736 outer_type = TREE_TYPE (exp);
10737 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10738
10739 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10740 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10741 }
10742
10743 /* Strip conversions from EXP according to tree_nop_conversion and
10744 return the resulting expression. */
10745
10746 tree
10747 tree_strip_nop_conversions (tree exp)
10748 {
10749 while (tree_nop_conversion (exp))
10750 exp = TREE_OPERAND (exp, 0);
10751 return exp;
10752 }
10753
10754 /* Strip conversions from EXP according to tree_sign_nop_conversion
10755 and return the resulting expression. */
10756
10757 tree
10758 tree_strip_sign_nop_conversions (tree exp)
10759 {
10760 while (tree_sign_nop_conversion (exp))
10761 exp = TREE_OPERAND (exp, 0);
10762 return exp;
10763 }
10764
10765 static GTY(()) tree gcc_eh_personality_decl;
10766
10767 /* Return the GCC personality function decl. */
10768
10769 tree
10770 lhd_gcc_personality (void)
10771 {
10772 if (!gcc_eh_personality_decl)
10773 gcc_eh_personality_decl
10774 = build_personality_function (USING_SJLJ_EXCEPTIONS
10775 ? "__gcc_personality_sj0"
10776 : "__gcc_personality_v0");
10777
10778 return gcc_eh_personality_decl;
10779 }
10780
10781 /* Try to find a base info of BINFO that would have its field decl at offset
10782 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10783 found, return, otherwise return NULL_TREE. */
10784
10785 tree
10786 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10787 {
10788 tree type;
10789
10790 if (offset == 0)
10791 return binfo;
10792
10793 type = TREE_TYPE (binfo);
10794 while (offset > 0)
10795 {
10796 tree base_binfo, found_binfo;
10797 HOST_WIDE_INT pos, size;
10798 tree fld;
10799 int i;
10800
10801 if (TREE_CODE (type) != RECORD_TYPE)
10802 return NULL_TREE;
10803
10804 for (fld = TYPE_FIELDS (type); fld; fld = TREE_CHAIN (fld))
10805 {
10806 if (TREE_CODE (fld) != FIELD_DECL)
10807 continue;
10808
10809 pos = int_bit_position (fld);
10810 size = tree_low_cst (DECL_SIZE (fld), 1);
10811 if (pos <= offset && (pos + size) > offset)
10812 break;
10813 }
10814 if (!fld)
10815 return NULL_TREE;
10816
10817 found_binfo = NULL_TREE;
10818 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10819 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10820 {
10821 found_binfo = base_binfo;
10822 break;
10823 }
10824
10825 if (!found_binfo)
10826 return NULL_TREE;
10827
10828 type = TREE_TYPE (fld);
10829 binfo = found_binfo;
10830 offset -= pos;
10831 }
10832 if (type != expected_type)
10833 return NULL_TREE;
10834 return binfo;
10835 }
10836
10837 #include "gt-tree.h"