tm.texi (TARGET_ADDR_SPACE_POINTER_MODE): Document.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-inline.h"
49 #include "tree-iterator.h"
50 #include "basic-block.h"
51 #include "tree-flow.h"
52 #include "params.h"
53 #include "pointer-set.h"
54 #include "fixed-value.h"
55 #include "tree-pass.h"
56 #include "langhooks-def.h"
57 #include "diagnostic.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "perm_tree_lists",
140 "temp_tree_lists",
141 "vecs",
142 "binfos",
143 "ssa names",
144 "constructors",
145 "random kinds",
146 "lang_decl kinds",
147 "lang_type kinds",
148 "omp clauses",
149 };
150 #endif /* GATHER_STATISTICS */
151
152 /* Unique id for next decl created. */
153 static GTY(()) int next_decl_uid;
154 /* Unique id for next type created. */
155 static GTY(()) int next_type_uid = 1;
156 /* Unique id for next debug decl created. Use negative numbers,
157 to catch erroneous uses. */
158 static GTY(()) int next_debug_decl_uid;
159
160 /* Since we cannot rehash a type after it is in the table, we have to
161 keep the hash code. */
162
163 struct GTY(()) type_hash {
164 unsigned long hash;
165 tree type;
166 };
167
168 /* Initial size of the hash table (rounded to next prime). */
169 #define TYPE_HASH_INITIAL_SIZE 1000
170
171 /* Now here is the hash table. When recording a type, it is added to
172 the slot whose index is the hash code. Note that the hash table is
173 used for several kinds of types (function types, array types and
174 array index range types, for now). While all these live in the
175 same table, they are completely independent, and the hash code is
176 computed differently for each of these. */
177
178 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
179 htab_t type_hash_table;
180
181 /* Hash table and temporary node for larger integer const values. */
182 static GTY (()) tree int_cst_node;
183 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
184 htab_t int_cst_hash_table;
185
186 /* Hash table for optimization flags and target option flags. Use the same
187 hash table for both sets of options. Nodes for building the current
188 optimization and target option nodes. The assumption is most of the time
189 the options created will already be in the hash table, so we avoid
190 allocating and freeing up a node repeatably. */
191 static GTY (()) tree cl_optimization_node;
192 static GTY (()) tree cl_target_option_node;
193 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
194 htab_t cl_option_hash_table;
195
196 /* General tree->tree mapping structure for use in hash tables. */
197
198
199 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
200 htab_t debug_expr_for_decl;
201
202 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
203 htab_t value_expr_for_decl;
204
205 static GTY ((if_marked ("tree_priority_map_marked_p"),
206 param_is (struct tree_priority_map)))
207 htab_t init_priority_for_decl;
208
209 static void set_type_quals (tree, int);
210 static int type_hash_eq (const void *, const void *);
211 static hashval_t type_hash_hash (const void *);
212 static hashval_t int_cst_hash_hash (const void *);
213 static int int_cst_hash_eq (const void *, const void *);
214 static hashval_t cl_option_hash_hash (const void *);
215 static int cl_option_hash_eq (const void *, const void *);
216 static void print_type_hash_statistics (void);
217 static void print_debug_expr_statistics (void);
218 static void print_value_expr_statistics (void);
219 static int type_hash_marked_p (const void *);
220 static unsigned int type_hash_list (const_tree, hashval_t);
221 static unsigned int attribute_hash_list (const_tree, hashval_t);
222
223 tree global_trees[TI_MAX];
224 tree integer_types[itk_none];
225
226 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
227
228 /* Number of operands for each OpenMP clause. */
229 unsigned const char omp_clause_num_ops[] =
230 {
231 0, /* OMP_CLAUSE_ERROR */
232 1, /* OMP_CLAUSE_PRIVATE */
233 1, /* OMP_CLAUSE_SHARED */
234 1, /* OMP_CLAUSE_FIRSTPRIVATE */
235 2, /* OMP_CLAUSE_LASTPRIVATE */
236 4, /* OMP_CLAUSE_REDUCTION */
237 1, /* OMP_CLAUSE_COPYIN */
238 1, /* OMP_CLAUSE_COPYPRIVATE */
239 1, /* OMP_CLAUSE_IF */
240 1, /* OMP_CLAUSE_NUM_THREADS */
241 1, /* OMP_CLAUSE_SCHEDULE */
242 0, /* OMP_CLAUSE_NOWAIT */
243 0, /* OMP_CLAUSE_ORDERED */
244 0, /* OMP_CLAUSE_DEFAULT */
245 3, /* OMP_CLAUSE_COLLAPSE */
246 0 /* OMP_CLAUSE_UNTIED */
247 };
248
249 const char * const omp_clause_code_name[] =
250 {
251 "error_clause",
252 "private",
253 "shared",
254 "firstprivate",
255 "lastprivate",
256 "reduction",
257 "copyin",
258 "copyprivate",
259 "if",
260 "num_threads",
261 "schedule",
262 "nowait",
263 "ordered",
264 "default",
265 "collapse",
266 "untied"
267 };
268
269
270 /* Return the tree node structure used by tree code CODE. */
271
272 static inline enum tree_node_structure_enum
273 tree_node_structure_for_code (enum tree_code code)
274 {
275 switch (TREE_CODE_CLASS (code))
276 {
277 case tcc_declaration:
278 {
279 switch (code)
280 {
281 case FIELD_DECL:
282 return TS_FIELD_DECL;
283 case PARM_DECL:
284 return TS_PARM_DECL;
285 case VAR_DECL:
286 return TS_VAR_DECL;
287 case LABEL_DECL:
288 return TS_LABEL_DECL;
289 case RESULT_DECL:
290 return TS_RESULT_DECL;
291 case DEBUG_EXPR_DECL:
292 return TS_DECL_WRTL;
293 case CONST_DECL:
294 return TS_CONST_DECL;
295 case TYPE_DECL:
296 return TS_TYPE_DECL;
297 case FUNCTION_DECL:
298 return TS_FUNCTION_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472 }
473
474 /* Basic consistency checks for attributes used in fold. */
475 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
476 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON]);
477 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
478 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
479 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
480 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
481 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
488 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
489 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
490 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
494 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
495 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
496 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
503 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
504 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
505 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
507 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
508 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
509 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
510 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
511 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
512 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
513 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
514 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
515 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
516
517 #undef MARK_TS_BASE
518 #undef MARK_TS_COMMON
519 #undef MARK_TS_DECL_MINIMAL
520 #undef MARK_TS_DECL_COMMON
521 #undef MARK_TS_DECL_WRTL
522 #undef MARK_TS_DECL_WITH_VIS
523 #undef MARK_TS_DECL_NON_COMMON
524 }
525
526
527 /* Init tree.c. */
528
529 void
530 init_ttree (void)
531 {
532 /* Initialize the hash table of types. */
533 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
534 type_hash_eq, 0);
535
536 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
537 tree_map_eq, 0);
538
539 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
540 tree_map_eq, 0);
541 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
542 tree_priority_map_eq, 0);
543
544 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
545 int_cst_hash_eq, NULL);
546
547 int_cst_node = make_node (INTEGER_CST);
548
549 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
550 cl_option_hash_eq, NULL);
551
552 cl_optimization_node = make_node (OPTIMIZATION_NODE);
553 cl_target_option_node = make_node (TARGET_OPTION_NODE);
554
555 /* Initialize the tree_contains_struct array. */
556 initialize_tree_contains_struct ();
557 lang_hooks.init_ts ();
558 }
559
560 \f
561 /* The name of the object as the assembler will see it (but before any
562 translations made by ASM_OUTPUT_LABELREF). Often this is the same
563 as DECL_NAME. It is an IDENTIFIER_NODE. */
564 tree
565 decl_assembler_name (tree decl)
566 {
567 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
568 lang_hooks.set_decl_assembler_name (decl);
569 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
570 }
571
572 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
573
574 bool
575 decl_assembler_name_equal (tree decl, const_tree asmname)
576 {
577 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
578 const char *decl_str;
579 const char *asmname_str;
580 bool test = false;
581
582 if (decl_asmname == asmname)
583 return true;
584
585 decl_str = IDENTIFIER_POINTER (decl_asmname);
586 asmname_str = IDENTIFIER_POINTER (asmname);
587
588
589 /* If the target assembler name was set by the user, things are trickier.
590 We have a leading '*' to begin with. After that, it's arguable what
591 is the correct thing to do with -fleading-underscore. Arguably, we've
592 historically been doing the wrong thing in assemble_alias by always
593 printing the leading underscore. Since we're not changing that, make
594 sure user_label_prefix follows the '*' before matching. */
595 if (decl_str[0] == '*')
596 {
597 size_t ulp_len = strlen (user_label_prefix);
598
599 decl_str ++;
600
601 if (ulp_len == 0)
602 test = true;
603 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
604 decl_str += ulp_len, test=true;
605 else
606 decl_str --;
607 }
608 if (asmname_str[0] == '*')
609 {
610 size_t ulp_len = strlen (user_label_prefix);
611
612 asmname_str ++;
613
614 if (ulp_len == 0)
615 test = true;
616 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
617 asmname_str += ulp_len, test=true;
618 else
619 asmname_str --;
620 }
621
622 if (!test)
623 return false;
624 return strcmp (decl_str, asmname_str) == 0;
625 }
626
627 /* Hash asmnames ignoring the user specified marks. */
628
629 hashval_t
630 decl_assembler_name_hash (const_tree asmname)
631 {
632 if (IDENTIFIER_POINTER (asmname)[0] == '*')
633 {
634 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
635 size_t ulp_len = strlen (user_label_prefix);
636
637 if (ulp_len == 0)
638 ;
639 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
640 decl_str += ulp_len;
641
642 return htab_hash_string (decl_str);
643 }
644
645 return htab_hash_string (IDENTIFIER_POINTER (asmname));
646 }
647
648 /* Compute the number of bytes occupied by a tree with code CODE.
649 This function cannot be used for nodes that have variable sizes,
650 including TREE_VEC, STRING_CST, and CALL_EXPR. */
651 size_t
652 tree_code_size (enum tree_code code)
653 {
654 switch (TREE_CODE_CLASS (code))
655 {
656 case tcc_declaration: /* A decl node */
657 {
658 switch (code)
659 {
660 case FIELD_DECL:
661 return sizeof (struct tree_field_decl);
662 case PARM_DECL:
663 return sizeof (struct tree_parm_decl);
664 case VAR_DECL:
665 return sizeof (struct tree_var_decl);
666 case LABEL_DECL:
667 return sizeof (struct tree_label_decl);
668 case RESULT_DECL:
669 return sizeof (struct tree_result_decl);
670 case CONST_DECL:
671 return sizeof (struct tree_const_decl);
672 case TYPE_DECL:
673 return sizeof (struct tree_type_decl);
674 case FUNCTION_DECL:
675 return sizeof (struct tree_function_decl);
676 case DEBUG_EXPR_DECL:
677 return sizeof (struct tree_decl_with_rtl);
678 default:
679 return sizeof (struct tree_decl_non_common);
680 }
681 }
682
683 case tcc_type: /* a type node */
684 return sizeof (struct tree_type);
685
686 case tcc_reference: /* a reference */
687 case tcc_expression: /* an expression */
688 case tcc_statement: /* an expression with side effects */
689 case tcc_comparison: /* a comparison expression */
690 case tcc_unary: /* a unary arithmetic expression */
691 case tcc_binary: /* a binary arithmetic expression */
692 return (sizeof (struct tree_exp)
693 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
694
695 case tcc_constant: /* a constant */
696 switch (code)
697 {
698 case INTEGER_CST: return sizeof (struct tree_int_cst);
699 case REAL_CST: return sizeof (struct tree_real_cst);
700 case FIXED_CST: return sizeof (struct tree_fixed_cst);
701 case COMPLEX_CST: return sizeof (struct tree_complex);
702 case VECTOR_CST: return sizeof (struct tree_vector);
703 case STRING_CST: gcc_unreachable ();
704 default:
705 return lang_hooks.tree_size (code);
706 }
707
708 case tcc_exceptional: /* something random, like an identifier. */
709 switch (code)
710 {
711 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
712 case TREE_LIST: return sizeof (struct tree_list);
713
714 case ERROR_MARK:
715 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
716
717 case TREE_VEC:
718 case OMP_CLAUSE: gcc_unreachable ();
719
720 case SSA_NAME: return sizeof (struct tree_ssa_name);
721
722 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
723 case BLOCK: return sizeof (struct tree_block);
724 case CONSTRUCTOR: return sizeof (struct tree_constructor);
725 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
726 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
727
728 default:
729 return lang_hooks.tree_size (code);
730 }
731
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Compute the number of bytes occupied by NODE. This routine only
738 looks at TREE_CODE, except for those nodes that have variable sizes. */
739 size_t
740 tree_size (const_tree node)
741 {
742 const enum tree_code code = TREE_CODE (node);
743 switch (code)
744 {
745 case TREE_BINFO:
746 return (offsetof (struct tree_binfo, base_binfos)
747 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
748
749 case TREE_VEC:
750 return (sizeof (struct tree_vec)
751 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
752
753 case STRING_CST:
754 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
755
756 case OMP_CLAUSE:
757 return (sizeof (struct tree_omp_clause)
758 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
759 * sizeof (tree));
760
761 default:
762 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
763 return (sizeof (struct tree_exp)
764 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
765 else
766 return tree_code_size (code);
767 }
768 }
769
770 /* Return a newly allocated node of code CODE. For decl and type
771 nodes, some other fields are initialized. The rest of the node is
772 initialized to zero. This function cannot be used for TREE_VEC or
773 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
774
775 Achoo! I got a code in the node. */
776
777 tree
778 make_node_stat (enum tree_code code MEM_STAT_DECL)
779 {
780 tree t;
781 enum tree_code_class type = TREE_CODE_CLASS (code);
782 size_t length = tree_code_size (code);
783 #ifdef GATHER_STATISTICS
784 tree_node_kind kind;
785
786 switch (type)
787 {
788 case tcc_declaration: /* A decl node */
789 kind = d_kind;
790 break;
791
792 case tcc_type: /* a type node */
793 kind = t_kind;
794 break;
795
796 case tcc_statement: /* an expression with side effects */
797 kind = s_kind;
798 break;
799
800 case tcc_reference: /* a reference */
801 kind = r_kind;
802 break;
803
804 case tcc_expression: /* an expression */
805 case tcc_comparison: /* a comparison expression */
806 case tcc_unary: /* a unary arithmetic expression */
807 case tcc_binary: /* a binary arithmetic expression */
808 kind = e_kind;
809 break;
810
811 case tcc_constant: /* a constant */
812 kind = c_kind;
813 break;
814
815 case tcc_exceptional: /* something random, like an identifier. */
816 switch (code)
817 {
818 case IDENTIFIER_NODE:
819 kind = id_kind;
820 break;
821
822 case TREE_VEC:
823 kind = vec_kind;
824 break;
825
826 case TREE_BINFO:
827 kind = binfo_kind;
828 break;
829
830 case SSA_NAME:
831 kind = ssa_name_kind;
832 break;
833
834 case BLOCK:
835 kind = b_kind;
836 break;
837
838 case CONSTRUCTOR:
839 kind = constr_kind;
840 break;
841
842 default:
843 kind = x_kind;
844 break;
845 }
846 break;
847
848 default:
849 gcc_unreachable ();
850 }
851
852 tree_node_counts[(int) kind]++;
853 tree_node_sizes[(int) kind] += length;
854 #endif
855
856 if (code == IDENTIFIER_NODE)
857 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_id_zone);
858 else
859 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
860
861 memset (t, 0, length);
862
863 TREE_SET_CODE (t, code);
864
865 switch (type)
866 {
867 case tcc_statement:
868 TREE_SIDE_EFFECTS (t) = 1;
869 break;
870
871 case tcc_declaration:
872 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
873 {
874 if (code == FUNCTION_DECL)
875 {
876 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
877 DECL_MODE (t) = FUNCTION_MODE;
878 }
879 else
880 DECL_ALIGN (t) = 1;
881 }
882 DECL_SOURCE_LOCATION (t) = input_location;
883 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
884 DECL_UID (t) = --next_debug_decl_uid;
885 else
886 DECL_UID (t) = next_decl_uid++;
887 if (TREE_CODE (t) == LABEL_DECL)
888 LABEL_DECL_UID (t) = -1;
889
890 break;
891
892 case tcc_type:
893 TYPE_UID (t) = next_type_uid++;
894 TYPE_ALIGN (t) = BITS_PER_UNIT;
895 TYPE_USER_ALIGN (t) = 0;
896 TYPE_MAIN_VARIANT (t) = t;
897 TYPE_CANONICAL (t) = t;
898
899 /* Default to no attributes for type, but let target change that. */
900 TYPE_ATTRIBUTES (t) = NULL_TREE;
901 targetm.set_default_type_attributes (t);
902
903 /* We have not yet computed the alias set for this type. */
904 TYPE_ALIAS_SET (t) = -1;
905 break;
906
907 case tcc_constant:
908 TREE_CONSTANT (t) = 1;
909 break;
910
911 case tcc_expression:
912 switch (code)
913 {
914 case INIT_EXPR:
915 case MODIFY_EXPR:
916 case VA_ARG_EXPR:
917 case PREDECREMENT_EXPR:
918 case PREINCREMENT_EXPR:
919 case POSTDECREMENT_EXPR:
920 case POSTINCREMENT_EXPR:
921 /* All of these have side-effects, no matter what their
922 operands are. */
923 TREE_SIDE_EFFECTS (t) = 1;
924 break;
925
926 default:
927 break;
928 }
929 break;
930
931 default:
932 /* Other classes need no special treatment. */
933 break;
934 }
935
936 return t;
937 }
938 \f
939 /* Return a new node with the same contents as NODE except that its
940 TREE_CHAIN is zero and it has a fresh uid. */
941
942 tree
943 copy_node_stat (tree node MEM_STAT_DECL)
944 {
945 tree t;
946 enum tree_code code = TREE_CODE (node);
947 size_t length;
948
949 gcc_assert (code != STATEMENT_LIST);
950
951 length = tree_size (node);
952 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
953 memcpy (t, node, length);
954
955 TREE_CHAIN (t) = 0;
956 TREE_ASM_WRITTEN (t) = 0;
957 TREE_VISITED (t) = 0;
958 t->base.ann = 0;
959
960 if (TREE_CODE_CLASS (code) == tcc_declaration)
961 {
962 if (code == DEBUG_EXPR_DECL)
963 DECL_UID (t) = --next_debug_decl_uid;
964 else
965 DECL_UID (t) = next_decl_uid++;
966 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
967 && DECL_HAS_VALUE_EXPR_P (node))
968 {
969 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
970 DECL_HAS_VALUE_EXPR_P (t) = 1;
971 }
972 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
973 {
974 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
975 DECL_HAS_INIT_PRIORITY_P (t) = 1;
976 }
977 }
978 else if (TREE_CODE_CLASS (code) == tcc_type)
979 {
980 TYPE_UID (t) = next_type_uid++;
981 /* The following is so that the debug code for
982 the copy is different from the original type.
983 The two statements usually duplicate each other
984 (because they clear fields of the same union),
985 but the optimizer should catch that. */
986 TYPE_SYMTAB_POINTER (t) = 0;
987 TYPE_SYMTAB_ADDRESS (t) = 0;
988
989 /* Do not copy the values cache. */
990 if (TYPE_CACHED_VALUES_P(t))
991 {
992 TYPE_CACHED_VALUES_P (t) = 0;
993 TYPE_CACHED_VALUES (t) = NULL_TREE;
994 }
995 }
996
997 return t;
998 }
999
1000 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1001 For example, this can copy a list made of TREE_LIST nodes. */
1002
1003 tree
1004 copy_list (tree list)
1005 {
1006 tree head;
1007 tree prev, next;
1008
1009 if (list == 0)
1010 return 0;
1011
1012 head = prev = copy_node (list);
1013 next = TREE_CHAIN (list);
1014 while (next)
1015 {
1016 TREE_CHAIN (prev) = copy_node (next);
1017 prev = TREE_CHAIN (prev);
1018 next = TREE_CHAIN (next);
1019 }
1020 return head;
1021 }
1022
1023 \f
1024 /* Create an INT_CST node with a LOW value sign extended. */
1025
1026 tree
1027 build_int_cst (tree type, HOST_WIDE_INT low)
1028 {
1029 /* Support legacy code. */
1030 if (!type)
1031 type = integer_type_node;
1032
1033 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1034 }
1035
1036 /* Create an INT_CST node with a LOW value zero extended. */
1037
1038 tree
1039 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
1040 {
1041 return build_int_cst_wide (type, low, 0);
1042 }
1043
1044 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1045 if it is negative. This function is similar to build_int_cst, but
1046 the extra bits outside of the type precision are cleared. Constants
1047 with these extra bits may confuse the fold so that it detects overflows
1048 even in cases when they do not occur, and in general should be avoided.
1049 We cannot however make this a default behavior of build_int_cst without
1050 more intrusive changes, since there are parts of gcc that rely on the extra
1051 precision of the integer constants. */
1052
1053 tree
1054 build_int_cst_type (tree type, HOST_WIDE_INT low)
1055 {
1056 unsigned HOST_WIDE_INT low1;
1057 HOST_WIDE_INT hi;
1058
1059 gcc_assert (type);
1060
1061 fit_double_type (low, low < 0 ? -1 : 0, &low1, &hi, type);
1062
1063 return build_int_cst_wide (type, low1, hi);
1064 }
1065
1066 /* Create an INT_CST node of TYPE and value HI:LOW. The value is truncated
1067 and sign extended according to the value range of TYPE. */
1068
1069 tree
1070 build_int_cst_wide_type (tree type,
1071 unsigned HOST_WIDE_INT low, HOST_WIDE_INT high)
1072 {
1073 fit_double_type (low, high, &low, &high, type);
1074 return build_int_cst_wide (type, low, high);
1075 }
1076
1077 /* These are the hash table functions for the hash table of INTEGER_CST
1078 nodes of a sizetype. */
1079
1080 /* Return the hash code code X, an INTEGER_CST. */
1081
1082 static hashval_t
1083 int_cst_hash_hash (const void *x)
1084 {
1085 const_tree const t = (const_tree) x;
1086
1087 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1088 ^ htab_hash_pointer (TREE_TYPE (t)));
1089 }
1090
1091 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1092 is the same as that given by *Y, which is the same. */
1093
1094 static int
1095 int_cst_hash_eq (const void *x, const void *y)
1096 {
1097 const_tree const xt = (const_tree) x;
1098 const_tree const yt = (const_tree) y;
1099
1100 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1101 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1102 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1103 }
1104
1105 /* Create an INT_CST node of TYPE and value HI:LOW.
1106 The returned node is always shared. For small integers we use a
1107 per-type vector cache, for larger ones we use a single hash table. */
1108
1109 tree
1110 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1111 {
1112 tree t;
1113 int ix = -1;
1114 int limit = 0;
1115
1116 gcc_assert (type);
1117
1118 switch (TREE_CODE (type))
1119 {
1120 case POINTER_TYPE:
1121 case REFERENCE_TYPE:
1122 /* Cache NULL pointer. */
1123 if (!hi && !low)
1124 {
1125 limit = 1;
1126 ix = 0;
1127 }
1128 break;
1129
1130 case BOOLEAN_TYPE:
1131 /* Cache false or true. */
1132 limit = 2;
1133 if (!hi && low < 2)
1134 ix = low;
1135 break;
1136
1137 case INTEGER_TYPE:
1138 case OFFSET_TYPE:
1139 if (TYPE_UNSIGNED (type))
1140 {
1141 /* Cache 0..N */
1142 limit = INTEGER_SHARE_LIMIT;
1143 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1144 ix = low;
1145 }
1146 else
1147 {
1148 /* Cache -1..N */
1149 limit = INTEGER_SHARE_LIMIT + 1;
1150 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1151 ix = low + 1;
1152 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1153 ix = 0;
1154 }
1155 break;
1156
1157 case ENUMERAL_TYPE:
1158 break;
1159
1160 default:
1161 gcc_unreachable ();
1162 }
1163
1164 if (ix >= 0)
1165 {
1166 /* Look for it in the type's vector of small shared ints. */
1167 if (!TYPE_CACHED_VALUES_P (type))
1168 {
1169 TYPE_CACHED_VALUES_P (type) = 1;
1170 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1171 }
1172
1173 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1174 if (t)
1175 {
1176 /* Make sure no one is clobbering the shared constant. */
1177 gcc_assert (TREE_TYPE (t) == type);
1178 gcc_assert (TREE_INT_CST_LOW (t) == low);
1179 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1180 }
1181 else
1182 {
1183 /* Create a new shared int. */
1184 t = make_node (INTEGER_CST);
1185
1186 TREE_INT_CST_LOW (t) = low;
1187 TREE_INT_CST_HIGH (t) = hi;
1188 TREE_TYPE (t) = type;
1189
1190 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1191 }
1192 }
1193 else
1194 {
1195 /* Use the cache of larger shared ints. */
1196 void **slot;
1197
1198 TREE_INT_CST_LOW (int_cst_node) = low;
1199 TREE_INT_CST_HIGH (int_cst_node) = hi;
1200 TREE_TYPE (int_cst_node) = type;
1201
1202 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1203 t = (tree) *slot;
1204 if (!t)
1205 {
1206 /* Insert this one into the hash table. */
1207 t = int_cst_node;
1208 *slot = t;
1209 /* Make a new node for next time round. */
1210 int_cst_node = make_node (INTEGER_CST);
1211 }
1212 }
1213
1214 return t;
1215 }
1216
1217 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1218 and the rest are zeros. */
1219
1220 tree
1221 build_low_bits_mask (tree type, unsigned bits)
1222 {
1223 unsigned HOST_WIDE_INT low;
1224 HOST_WIDE_INT high;
1225 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
1226
1227 gcc_assert (bits <= TYPE_PRECISION (type));
1228
1229 if (bits == TYPE_PRECISION (type)
1230 && !TYPE_UNSIGNED (type))
1231 {
1232 /* Sign extended all-ones mask. */
1233 low = all_ones;
1234 high = -1;
1235 }
1236 else if (bits <= HOST_BITS_PER_WIDE_INT)
1237 {
1238 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1239 high = 0;
1240 }
1241 else
1242 {
1243 bits -= HOST_BITS_PER_WIDE_INT;
1244 low = all_ones;
1245 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
1246 }
1247
1248 return build_int_cst_wide (type, low, high);
1249 }
1250
1251 /* Checks that X is integer constant that can be expressed in (unsigned)
1252 HOST_WIDE_INT without loss of precision. */
1253
1254 bool
1255 cst_and_fits_in_hwi (const_tree x)
1256 {
1257 if (TREE_CODE (x) != INTEGER_CST)
1258 return false;
1259
1260 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1261 return false;
1262
1263 return (TREE_INT_CST_HIGH (x) == 0
1264 || TREE_INT_CST_HIGH (x) == -1);
1265 }
1266
1267 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1268 are in a list pointed to by VALS. */
1269
1270 tree
1271 build_vector (tree type, tree vals)
1272 {
1273 tree v = make_node (VECTOR_CST);
1274 int over = 0;
1275 tree link;
1276
1277 TREE_VECTOR_CST_ELTS (v) = vals;
1278 TREE_TYPE (v) = type;
1279
1280 /* Iterate through elements and check for overflow. */
1281 for (link = vals; link; link = TREE_CHAIN (link))
1282 {
1283 tree value = TREE_VALUE (link);
1284
1285 /* Don't crash if we get an address constant. */
1286 if (!CONSTANT_CLASS_P (value))
1287 continue;
1288
1289 over |= TREE_OVERFLOW (value);
1290 }
1291
1292 TREE_OVERFLOW (v) = over;
1293 return v;
1294 }
1295
1296 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1297 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1298
1299 tree
1300 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1301 {
1302 tree list = NULL_TREE;
1303 unsigned HOST_WIDE_INT idx;
1304 tree value;
1305
1306 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1307 list = tree_cons (NULL_TREE, value, list);
1308 return build_vector (type, nreverse (list));
1309 }
1310
1311 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1312 are in the VEC pointed to by VALS. */
1313 tree
1314 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1315 {
1316 tree c = make_node (CONSTRUCTOR);
1317 TREE_TYPE (c) = type;
1318 CONSTRUCTOR_ELTS (c) = vals;
1319 return c;
1320 }
1321
1322 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1323 INDEX and VALUE. */
1324 tree
1325 build_constructor_single (tree type, tree index, tree value)
1326 {
1327 VEC(constructor_elt,gc) *v;
1328 constructor_elt *elt;
1329 tree t;
1330
1331 v = VEC_alloc (constructor_elt, gc, 1);
1332 elt = VEC_quick_push (constructor_elt, v, NULL);
1333 elt->index = index;
1334 elt->value = value;
1335
1336 t = build_constructor (type, v);
1337 TREE_CONSTANT (t) = TREE_CONSTANT (value);
1338 return t;
1339 }
1340
1341
1342 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1343 are in a list pointed to by VALS. */
1344 tree
1345 build_constructor_from_list (tree type, tree vals)
1346 {
1347 tree t, val;
1348 VEC(constructor_elt,gc) *v = NULL;
1349 bool constant_p = true;
1350
1351 if (vals)
1352 {
1353 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1354 for (t = vals; t; t = TREE_CHAIN (t))
1355 {
1356 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
1357 val = TREE_VALUE (t);
1358 elt->index = TREE_PURPOSE (t);
1359 elt->value = val;
1360 if (!TREE_CONSTANT (val))
1361 constant_p = false;
1362 }
1363 }
1364
1365 t = build_constructor (type, v);
1366 TREE_CONSTANT (t) = constant_p;
1367 return t;
1368 }
1369
1370 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1371
1372 tree
1373 build_fixed (tree type, FIXED_VALUE_TYPE f)
1374 {
1375 tree v;
1376 FIXED_VALUE_TYPE *fp;
1377
1378 v = make_node (FIXED_CST);
1379 fp = GGC_NEW (FIXED_VALUE_TYPE);
1380 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1381
1382 TREE_TYPE (v) = type;
1383 TREE_FIXED_CST_PTR (v) = fp;
1384 return v;
1385 }
1386
1387 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1388
1389 tree
1390 build_real (tree type, REAL_VALUE_TYPE d)
1391 {
1392 tree v;
1393 REAL_VALUE_TYPE *dp;
1394 int overflow = 0;
1395
1396 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1397 Consider doing it via real_convert now. */
1398
1399 v = make_node (REAL_CST);
1400 dp = GGC_NEW (REAL_VALUE_TYPE);
1401 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1402
1403 TREE_TYPE (v) = type;
1404 TREE_REAL_CST_PTR (v) = dp;
1405 TREE_OVERFLOW (v) = overflow;
1406 return v;
1407 }
1408
1409 /* Return a new REAL_CST node whose type is TYPE
1410 and whose value is the integer value of the INTEGER_CST node I. */
1411
1412 REAL_VALUE_TYPE
1413 real_value_from_int_cst (const_tree type, const_tree i)
1414 {
1415 REAL_VALUE_TYPE d;
1416
1417 /* Clear all bits of the real value type so that we can later do
1418 bitwise comparisons to see if two values are the same. */
1419 memset (&d, 0, sizeof d);
1420
1421 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1422 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1423 TYPE_UNSIGNED (TREE_TYPE (i)));
1424 return d;
1425 }
1426
1427 /* Given a tree representing an integer constant I, return a tree
1428 representing the same value as a floating-point constant of type TYPE. */
1429
1430 tree
1431 build_real_from_int_cst (tree type, const_tree i)
1432 {
1433 tree v;
1434 int overflow = TREE_OVERFLOW (i);
1435
1436 v = build_real (type, real_value_from_int_cst (type, i));
1437
1438 TREE_OVERFLOW (v) |= overflow;
1439 return v;
1440 }
1441
1442 /* Return a newly constructed STRING_CST node whose value is
1443 the LEN characters at STR.
1444 The TREE_TYPE is not initialized. */
1445
1446 tree
1447 build_string (int len, const char *str)
1448 {
1449 tree s;
1450 size_t length;
1451
1452 /* Do not waste bytes provided by padding of struct tree_string. */
1453 length = len + offsetof (struct tree_string, str) + 1;
1454
1455 #ifdef GATHER_STATISTICS
1456 tree_node_counts[(int) c_kind]++;
1457 tree_node_sizes[(int) c_kind] += length;
1458 #endif
1459
1460 s = ggc_alloc_tree (length);
1461
1462 memset (s, 0, sizeof (struct tree_common));
1463 TREE_SET_CODE (s, STRING_CST);
1464 TREE_CONSTANT (s) = 1;
1465 TREE_STRING_LENGTH (s) = len;
1466 memcpy (s->string.str, str, len);
1467 s->string.str[len] = '\0';
1468
1469 return s;
1470 }
1471
1472 /* Return a newly constructed COMPLEX_CST node whose value is
1473 specified by the real and imaginary parts REAL and IMAG.
1474 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1475 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1476
1477 tree
1478 build_complex (tree type, tree real, tree imag)
1479 {
1480 tree t = make_node (COMPLEX_CST);
1481
1482 TREE_REALPART (t) = real;
1483 TREE_IMAGPART (t) = imag;
1484 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1485 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1486 return t;
1487 }
1488
1489 /* Return a constant of arithmetic type TYPE which is the
1490 multiplicative identity of the set TYPE. */
1491
1492 tree
1493 build_one_cst (tree type)
1494 {
1495 switch (TREE_CODE (type))
1496 {
1497 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1498 case POINTER_TYPE: case REFERENCE_TYPE:
1499 case OFFSET_TYPE:
1500 return build_int_cst (type, 1);
1501
1502 case REAL_TYPE:
1503 return build_real (type, dconst1);
1504
1505 case FIXED_POINT_TYPE:
1506 /* We can only generate 1 for accum types. */
1507 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1508 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1509
1510 case VECTOR_TYPE:
1511 {
1512 tree scalar, cst;
1513 int i;
1514
1515 scalar = build_one_cst (TREE_TYPE (type));
1516
1517 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1518 cst = NULL_TREE;
1519 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1520 cst = tree_cons (NULL_TREE, scalar, cst);
1521
1522 return build_vector (type, cst);
1523 }
1524
1525 case COMPLEX_TYPE:
1526 return build_complex (type,
1527 build_one_cst (TREE_TYPE (type)),
1528 fold_convert (TREE_TYPE (type), integer_zero_node));
1529
1530 default:
1531 gcc_unreachable ();
1532 }
1533 }
1534
1535 /* Build a BINFO with LEN language slots. */
1536
1537 tree
1538 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1539 {
1540 tree t;
1541 size_t length = (offsetof (struct tree_binfo, base_binfos)
1542 + VEC_embedded_size (tree, base_binfos));
1543
1544 #ifdef GATHER_STATISTICS
1545 tree_node_counts[(int) binfo_kind]++;
1546 tree_node_sizes[(int) binfo_kind] += length;
1547 #endif
1548
1549 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1550
1551 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1552
1553 TREE_SET_CODE (t, TREE_BINFO);
1554
1555 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1556
1557 return t;
1558 }
1559
1560
1561 /* Build a newly constructed TREE_VEC node of length LEN. */
1562
1563 tree
1564 make_tree_vec_stat (int len MEM_STAT_DECL)
1565 {
1566 tree t;
1567 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1568
1569 #ifdef GATHER_STATISTICS
1570 tree_node_counts[(int) vec_kind]++;
1571 tree_node_sizes[(int) vec_kind] += length;
1572 #endif
1573
1574 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
1575
1576 memset (t, 0, length);
1577
1578 TREE_SET_CODE (t, TREE_VEC);
1579 TREE_VEC_LENGTH (t) = len;
1580
1581 return t;
1582 }
1583 \f
1584 /* Return 1 if EXPR is the integer constant zero or a complex constant
1585 of zero. */
1586
1587 int
1588 integer_zerop (const_tree expr)
1589 {
1590 STRIP_NOPS (expr);
1591
1592 return ((TREE_CODE (expr) == INTEGER_CST
1593 && TREE_INT_CST_LOW (expr) == 0
1594 && TREE_INT_CST_HIGH (expr) == 0)
1595 || (TREE_CODE (expr) == COMPLEX_CST
1596 && integer_zerop (TREE_REALPART (expr))
1597 && integer_zerop (TREE_IMAGPART (expr))));
1598 }
1599
1600 /* Return 1 if EXPR is the integer constant one or the corresponding
1601 complex constant. */
1602
1603 int
1604 integer_onep (const_tree expr)
1605 {
1606 STRIP_NOPS (expr);
1607
1608 return ((TREE_CODE (expr) == INTEGER_CST
1609 && TREE_INT_CST_LOW (expr) == 1
1610 && TREE_INT_CST_HIGH (expr) == 0)
1611 || (TREE_CODE (expr) == COMPLEX_CST
1612 && integer_onep (TREE_REALPART (expr))
1613 && integer_zerop (TREE_IMAGPART (expr))));
1614 }
1615
1616 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1617 it contains. Likewise for the corresponding complex constant. */
1618
1619 int
1620 integer_all_onesp (const_tree expr)
1621 {
1622 int prec;
1623 int uns;
1624
1625 STRIP_NOPS (expr);
1626
1627 if (TREE_CODE (expr) == COMPLEX_CST
1628 && integer_all_onesp (TREE_REALPART (expr))
1629 && integer_zerop (TREE_IMAGPART (expr)))
1630 return 1;
1631
1632 else if (TREE_CODE (expr) != INTEGER_CST)
1633 return 0;
1634
1635 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1636 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1637 && TREE_INT_CST_HIGH (expr) == -1)
1638 return 1;
1639 if (!uns)
1640 return 0;
1641
1642 /* Note that using TYPE_PRECISION here is wrong. We care about the
1643 actual bits, not the (arbitrary) range of the type. */
1644 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1645 if (prec >= HOST_BITS_PER_WIDE_INT)
1646 {
1647 HOST_WIDE_INT high_value;
1648 int shift_amount;
1649
1650 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1651
1652 /* Can not handle precisions greater than twice the host int size. */
1653 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1654 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1655 /* Shifting by the host word size is undefined according to the ANSI
1656 standard, so we must handle this as a special case. */
1657 high_value = -1;
1658 else
1659 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1660
1661 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1662 && TREE_INT_CST_HIGH (expr) == high_value);
1663 }
1664 else
1665 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1666 }
1667
1668 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1669 one bit on). */
1670
1671 int
1672 integer_pow2p (const_tree expr)
1673 {
1674 int prec;
1675 HOST_WIDE_INT high, low;
1676
1677 STRIP_NOPS (expr);
1678
1679 if (TREE_CODE (expr) == COMPLEX_CST
1680 && integer_pow2p (TREE_REALPART (expr))
1681 && integer_zerop (TREE_IMAGPART (expr)))
1682 return 1;
1683
1684 if (TREE_CODE (expr) != INTEGER_CST)
1685 return 0;
1686
1687 prec = int_or_pointer_precision (TREE_TYPE (expr));
1688 high = TREE_INT_CST_HIGH (expr);
1689 low = TREE_INT_CST_LOW (expr);
1690
1691 /* First clear all bits that are beyond the type's precision in case
1692 we've been sign extended. */
1693
1694 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1695 ;
1696 else if (prec > HOST_BITS_PER_WIDE_INT)
1697 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1698 else
1699 {
1700 high = 0;
1701 if (prec < HOST_BITS_PER_WIDE_INT)
1702 low &= ~((HOST_WIDE_INT) (-1) << prec);
1703 }
1704
1705 if (high == 0 && low == 0)
1706 return 0;
1707
1708 return ((high == 0 && (low & (low - 1)) == 0)
1709 || (low == 0 && (high & (high - 1)) == 0));
1710 }
1711
1712 /* Return 1 if EXPR is an integer constant other than zero or a
1713 complex constant other than zero. */
1714
1715 int
1716 integer_nonzerop (const_tree expr)
1717 {
1718 STRIP_NOPS (expr);
1719
1720 return ((TREE_CODE (expr) == INTEGER_CST
1721 && (TREE_INT_CST_LOW (expr) != 0
1722 || TREE_INT_CST_HIGH (expr) != 0))
1723 || (TREE_CODE (expr) == COMPLEX_CST
1724 && (integer_nonzerop (TREE_REALPART (expr))
1725 || integer_nonzerop (TREE_IMAGPART (expr)))));
1726 }
1727
1728 /* Return 1 if EXPR is the fixed-point constant zero. */
1729
1730 int
1731 fixed_zerop (const_tree expr)
1732 {
1733 return (TREE_CODE (expr) == FIXED_CST
1734 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1735 }
1736
1737 /* Return the power of two represented by a tree node known to be a
1738 power of two. */
1739
1740 int
1741 tree_log2 (const_tree expr)
1742 {
1743 int prec;
1744 HOST_WIDE_INT high, low;
1745
1746 STRIP_NOPS (expr);
1747
1748 if (TREE_CODE (expr) == COMPLEX_CST)
1749 return tree_log2 (TREE_REALPART (expr));
1750
1751 prec = int_or_pointer_precision (TREE_TYPE (expr));
1752 high = TREE_INT_CST_HIGH (expr);
1753 low = TREE_INT_CST_LOW (expr);
1754
1755 /* First clear all bits that are beyond the type's precision in case
1756 we've been sign extended. */
1757
1758 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1759 ;
1760 else if (prec > HOST_BITS_PER_WIDE_INT)
1761 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1762 else
1763 {
1764 high = 0;
1765 if (prec < HOST_BITS_PER_WIDE_INT)
1766 low &= ~((HOST_WIDE_INT) (-1) << prec);
1767 }
1768
1769 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1770 : exact_log2 (low));
1771 }
1772
1773 /* Similar, but return the largest integer Y such that 2 ** Y is less
1774 than or equal to EXPR. */
1775
1776 int
1777 tree_floor_log2 (const_tree expr)
1778 {
1779 int prec;
1780 HOST_WIDE_INT high, low;
1781
1782 STRIP_NOPS (expr);
1783
1784 if (TREE_CODE (expr) == COMPLEX_CST)
1785 return tree_log2 (TREE_REALPART (expr));
1786
1787 prec = int_or_pointer_precision (TREE_TYPE (expr));
1788 high = TREE_INT_CST_HIGH (expr);
1789 low = TREE_INT_CST_LOW (expr);
1790
1791 /* First clear all bits that are beyond the type's precision in case
1792 we've been sign extended. Ignore if type's precision hasn't been set
1793 since what we are doing is setting it. */
1794
1795 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1796 ;
1797 else if (prec > HOST_BITS_PER_WIDE_INT)
1798 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1799 else
1800 {
1801 high = 0;
1802 if (prec < HOST_BITS_PER_WIDE_INT)
1803 low &= ~((HOST_WIDE_INT) (-1) << prec);
1804 }
1805
1806 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1807 : floor_log2 (low));
1808 }
1809
1810 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1811 decimal float constants, so don't return 1 for them. */
1812
1813 int
1814 real_zerop (const_tree expr)
1815 {
1816 STRIP_NOPS (expr);
1817
1818 return ((TREE_CODE (expr) == REAL_CST
1819 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1820 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1821 || (TREE_CODE (expr) == COMPLEX_CST
1822 && real_zerop (TREE_REALPART (expr))
1823 && real_zerop (TREE_IMAGPART (expr))));
1824 }
1825
1826 /* Return 1 if EXPR is the real constant one in real or complex form.
1827 Trailing zeroes matter for decimal float constants, so don't return
1828 1 for them. */
1829
1830 int
1831 real_onep (const_tree expr)
1832 {
1833 STRIP_NOPS (expr);
1834
1835 return ((TREE_CODE (expr) == REAL_CST
1836 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1837 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1838 || (TREE_CODE (expr) == COMPLEX_CST
1839 && real_onep (TREE_REALPART (expr))
1840 && real_zerop (TREE_IMAGPART (expr))));
1841 }
1842
1843 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1844 for decimal float constants, so don't return 1 for them. */
1845
1846 int
1847 real_twop (const_tree expr)
1848 {
1849 STRIP_NOPS (expr);
1850
1851 return ((TREE_CODE (expr) == REAL_CST
1852 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1853 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1854 || (TREE_CODE (expr) == COMPLEX_CST
1855 && real_twop (TREE_REALPART (expr))
1856 && real_zerop (TREE_IMAGPART (expr))));
1857 }
1858
1859 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1860 matter for decimal float constants, so don't return 1 for them. */
1861
1862 int
1863 real_minus_onep (const_tree expr)
1864 {
1865 STRIP_NOPS (expr);
1866
1867 return ((TREE_CODE (expr) == REAL_CST
1868 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1869 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1870 || (TREE_CODE (expr) == COMPLEX_CST
1871 && real_minus_onep (TREE_REALPART (expr))
1872 && real_zerop (TREE_IMAGPART (expr))));
1873 }
1874
1875 /* Nonzero if EXP is a constant or a cast of a constant. */
1876
1877 int
1878 really_constant_p (const_tree exp)
1879 {
1880 /* This is not quite the same as STRIP_NOPS. It does more. */
1881 while (CONVERT_EXPR_P (exp)
1882 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1883 exp = TREE_OPERAND (exp, 0);
1884 return TREE_CONSTANT (exp);
1885 }
1886 \f
1887 /* Return first list element whose TREE_VALUE is ELEM.
1888 Return 0 if ELEM is not in LIST. */
1889
1890 tree
1891 value_member (tree elem, tree list)
1892 {
1893 while (list)
1894 {
1895 if (elem == TREE_VALUE (list))
1896 return list;
1897 list = TREE_CHAIN (list);
1898 }
1899 return NULL_TREE;
1900 }
1901
1902 /* Return first list element whose TREE_PURPOSE is ELEM.
1903 Return 0 if ELEM is not in LIST. */
1904
1905 tree
1906 purpose_member (const_tree elem, tree list)
1907 {
1908 while (list)
1909 {
1910 if (elem == TREE_PURPOSE (list))
1911 return list;
1912 list = TREE_CHAIN (list);
1913 }
1914 return NULL_TREE;
1915 }
1916
1917 /* Returns element number IDX (zero-origin) of chain CHAIN, or
1918 NULL_TREE. */
1919
1920 tree
1921 chain_index (int idx, tree chain)
1922 {
1923 for (; chain && idx > 0; --idx)
1924 chain = TREE_CHAIN (chain);
1925 return chain;
1926 }
1927
1928 /* Return nonzero if ELEM is part of the chain CHAIN. */
1929
1930 int
1931 chain_member (const_tree elem, const_tree chain)
1932 {
1933 while (chain)
1934 {
1935 if (elem == chain)
1936 return 1;
1937 chain = TREE_CHAIN (chain);
1938 }
1939
1940 return 0;
1941 }
1942
1943 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1944 We expect a null pointer to mark the end of the chain.
1945 This is the Lisp primitive `length'. */
1946
1947 int
1948 list_length (const_tree t)
1949 {
1950 const_tree p = t;
1951 #ifdef ENABLE_TREE_CHECKING
1952 const_tree q = t;
1953 #endif
1954 int len = 0;
1955
1956 while (p)
1957 {
1958 p = TREE_CHAIN (p);
1959 #ifdef ENABLE_TREE_CHECKING
1960 if (len % 2)
1961 q = TREE_CHAIN (q);
1962 gcc_assert (p != q);
1963 #endif
1964 len++;
1965 }
1966
1967 return len;
1968 }
1969
1970 /* Returns the number of FIELD_DECLs in TYPE. */
1971
1972 int
1973 fields_length (const_tree type)
1974 {
1975 tree t = TYPE_FIELDS (type);
1976 int count = 0;
1977
1978 for (; t; t = TREE_CHAIN (t))
1979 if (TREE_CODE (t) == FIELD_DECL)
1980 ++count;
1981
1982 return count;
1983 }
1984
1985 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1986 by modifying the last node in chain 1 to point to chain 2.
1987 This is the Lisp primitive `nconc'. */
1988
1989 tree
1990 chainon (tree op1, tree op2)
1991 {
1992 tree t1;
1993
1994 if (!op1)
1995 return op2;
1996 if (!op2)
1997 return op1;
1998
1999 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2000 continue;
2001 TREE_CHAIN (t1) = op2;
2002
2003 #ifdef ENABLE_TREE_CHECKING
2004 {
2005 tree t2;
2006 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2007 gcc_assert (t2 != t1);
2008 }
2009 #endif
2010
2011 return op1;
2012 }
2013
2014 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2015
2016 tree
2017 tree_last (tree chain)
2018 {
2019 tree next;
2020 if (chain)
2021 while ((next = TREE_CHAIN (chain)))
2022 chain = next;
2023 return chain;
2024 }
2025
2026 /* Reverse the order of elements in the chain T,
2027 and return the new head of the chain (old last element). */
2028
2029 tree
2030 nreverse (tree t)
2031 {
2032 tree prev = 0, decl, next;
2033 for (decl = t; decl; decl = next)
2034 {
2035 next = TREE_CHAIN (decl);
2036 TREE_CHAIN (decl) = prev;
2037 prev = decl;
2038 }
2039 return prev;
2040 }
2041 \f
2042 /* Return a newly created TREE_LIST node whose
2043 purpose and value fields are PARM and VALUE. */
2044
2045 tree
2046 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2047 {
2048 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2049 TREE_PURPOSE (t) = parm;
2050 TREE_VALUE (t) = value;
2051 return t;
2052 }
2053
2054 /* Build a chain of TREE_LIST nodes from a vector. */
2055
2056 tree
2057 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2058 {
2059 tree ret = NULL_TREE;
2060 tree *pp = &ret;
2061 unsigned int i;
2062 tree t;
2063 for (i = 0; VEC_iterate (tree, vec, i, t); ++i)
2064 {
2065 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2066 pp = &TREE_CHAIN (*pp);
2067 }
2068 return ret;
2069 }
2070
2071 /* Return a newly created TREE_LIST node whose
2072 purpose and value fields are PURPOSE and VALUE
2073 and whose TREE_CHAIN is CHAIN. */
2074
2075 tree
2076 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2077 {
2078 tree node;
2079
2080 node = (tree) ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
2081
2082 memset (node, 0, sizeof (struct tree_common));
2083
2084 #ifdef GATHER_STATISTICS
2085 tree_node_counts[(int) x_kind]++;
2086 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2087 #endif
2088
2089 TREE_SET_CODE (node, TREE_LIST);
2090 TREE_CHAIN (node) = chain;
2091 TREE_PURPOSE (node) = purpose;
2092 TREE_VALUE (node) = value;
2093 return node;
2094 }
2095
2096 /* Return the elements of a CONSTRUCTOR as a TREE_LIST. */
2097
2098 tree
2099 ctor_to_list (tree ctor)
2100 {
2101 tree list = NULL_TREE;
2102 tree *p = &list;
2103 unsigned ix;
2104 tree purpose, val;
2105
2106 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (ctor), ix, purpose, val)
2107 {
2108 *p = build_tree_list (purpose, val);
2109 p = &TREE_CHAIN (*p);
2110 }
2111
2112 return list;
2113 }
2114
2115 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2116 trees. */
2117
2118 VEC(tree,gc) *
2119 ctor_to_vec (tree ctor)
2120 {
2121 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2122 unsigned int ix;
2123 tree val;
2124
2125 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2126 VEC_quick_push (tree, vec, val);
2127
2128 return vec;
2129 }
2130 \f
2131 /* Return the size nominally occupied by an object of type TYPE
2132 when it resides in memory. The value is measured in units of bytes,
2133 and its data type is that normally used for type sizes
2134 (which is the first type created by make_signed_type or
2135 make_unsigned_type). */
2136
2137 tree
2138 size_in_bytes (const_tree type)
2139 {
2140 tree t;
2141
2142 if (type == error_mark_node)
2143 return integer_zero_node;
2144
2145 type = TYPE_MAIN_VARIANT (type);
2146 t = TYPE_SIZE_UNIT (type);
2147
2148 if (t == 0)
2149 {
2150 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2151 return size_zero_node;
2152 }
2153
2154 return t;
2155 }
2156
2157 /* Return the size of TYPE (in bytes) as a wide integer
2158 or return -1 if the size can vary or is larger than an integer. */
2159
2160 HOST_WIDE_INT
2161 int_size_in_bytes (const_tree type)
2162 {
2163 tree t;
2164
2165 if (type == error_mark_node)
2166 return 0;
2167
2168 type = TYPE_MAIN_VARIANT (type);
2169 t = TYPE_SIZE_UNIT (type);
2170 if (t == 0
2171 || TREE_CODE (t) != INTEGER_CST
2172 || TREE_INT_CST_HIGH (t) != 0
2173 /* If the result would appear negative, it's too big to represent. */
2174 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2175 return -1;
2176
2177 return TREE_INT_CST_LOW (t);
2178 }
2179
2180 /* Return the maximum size of TYPE (in bytes) as a wide integer
2181 or return -1 if the size can vary or is larger than an integer. */
2182
2183 HOST_WIDE_INT
2184 max_int_size_in_bytes (const_tree type)
2185 {
2186 HOST_WIDE_INT size = -1;
2187 tree size_tree;
2188
2189 /* If this is an array type, check for a possible MAX_SIZE attached. */
2190
2191 if (TREE_CODE (type) == ARRAY_TYPE)
2192 {
2193 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2194
2195 if (size_tree && host_integerp (size_tree, 1))
2196 size = tree_low_cst (size_tree, 1);
2197 }
2198
2199 /* If we still haven't been able to get a size, see if the language
2200 can compute a maximum size. */
2201
2202 if (size == -1)
2203 {
2204 size_tree = lang_hooks.types.max_size (type);
2205
2206 if (size_tree && host_integerp (size_tree, 1))
2207 size = tree_low_cst (size_tree, 1);
2208 }
2209
2210 return size;
2211 }
2212
2213 /* Returns a tree for the size of EXP in bytes. */
2214
2215 tree
2216 tree_expr_size (const_tree exp)
2217 {
2218 if (DECL_P (exp)
2219 && DECL_SIZE_UNIT (exp) != 0)
2220 return DECL_SIZE_UNIT (exp);
2221 else
2222 return size_in_bytes (TREE_TYPE (exp));
2223 }
2224 \f
2225 /* Return the bit position of FIELD, in bits from the start of the record.
2226 This is a tree of type bitsizetype. */
2227
2228 tree
2229 bit_position (const_tree field)
2230 {
2231 return bit_from_pos (DECL_FIELD_OFFSET (field),
2232 DECL_FIELD_BIT_OFFSET (field));
2233 }
2234
2235 /* Likewise, but return as an integer. It must be representable in
2236 that way (since it could be a signed value, we don't have the
2237 option of returning -1 like int_size_in_byte can. */
2238
2239 HOST_WIDE_INT
2240 int_bit_position (const_tree field)
2241 {
2242 return tree_low_cst (bit_position (field), 0);
2243 }
2244 \f
2245 /* Return the byte position of FIELD, in bytes from the start of the record.
2246 This is a tree of type sizetype. */
2247
2248 tree
2249 byte_position (const_tree field)
2250 {
2251 return byte_from_pos (DECL_FIELD_OFFSET (field),
2252 DECL_FIELD_BIT_OFFSET (field));
2253 }
2254
2255 /* Likewise, but return as an integer. It must be representable in
2256 that way (since it could be a signed value, we don't have the
2257 option of returning -1 like int_size_in_byte can. */
2258
2259 HOST_WIDE_INT
2260 int_byte_position (const_tree field)
2261 {
2262 return tree_low_cst (byte_position (field), 0);
2263 }
2264 \f
2265 /* Return the strictest alignment, in bits, that T is known to have. */
2266
2267 unsigned int
2268 expr_align (const_tree t)
2269 {
2270 unsigned int align0, align1;
2271
2272 switch (TREE_CODE (t))
2273 {
2274 CASE_CONVERT: case NON_LVALUE_EXPR:
2275 /* If we have conversions, we know that the alignment of the
2276 object must meet each of the alignments of the types. */
2277 align0 = expr_align (TREE_OPERAND (t, 0));
2278 align1 = TYPE_ALIGN (TREE_TYPE (t));
2279 return MAX (align0, align1);
2280
2281 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2282 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2283 case CLEANUP_POINT_EXPR:
2284 /* These don't change the alignment of an object. */
2285 return expr_align (TREE_OPERAND (t, 0));
2286
2287 case COND_EXPR:
2288 /* The best we can do is say that the alignment is the least aligned
2289 of the two arms. */
2290 align0 = expr_align (TREE_OPERAND (t, 1));
2291 align1 = expr_align (TREE_OPERAND (t, 2));
2292 return MIN (align0, align1);
2293
2294 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2295 meaningfully, it's always 1. */
2296 case LABEL_DECL: case CONST_DECL:
2297 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2298 case FUNCTION_DECL:
2299 gcc_assert (DECL_ALIGN (t) != 0);
2300 return DECL_ALIGN (t);
2301
2302 default:
2303 break;
2304 }
2305
2306 /* Otherwise take the alignment from that of the type. */
2307 return TYPE_ALIGN (TREE_TYPE (t));
2308 }
2309 \f
2310 /* Return, as a tree node, the number of elements for TYPE (which is an
2311 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2312
2313 tree
2314 array_type_nelts (const_tree type)
2315 {
2316 tree index_type, min, max;
2317
2318 /* If they did it with unspecified bounds, then we should have already
2319 given an error about it before we got here. */
2320 if (! TYPE_DOMAIN (type))
2321 return error_mark_node;
2322
2323 index_type = TYPE_DOMAIN (type);
2324 min = TYPE_MIN_VALUE (index_type);
2325 max = TYPE_MAX_VALUE (index_type);
2326
2327 return (integer_zerop (min)
2328 ? max
2329 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2330 }
2331 \f
2332 /* If arg is static -- a reference to an object in static storage -- then
2333 return the object. This is not the same as the C meaning of `static'.
2334 If arg isn't static, return NULL. */
2335
2336 tree
2337 staticp (tree arg)
2338 {
2339 switch (TREE_CODE (arg))
2340 {
2341 case FUNCTION_DECL:
2342 /* Nested functions are static, even though taking their address will
2343 involve a trampoline as we unnest the nested function and create
2344 the trampoline on the tree level. */
2345 return arg;
2346
2347 case VAR_DECL:
2348 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2349 && ! DECL_THREAD_LOCAL_P (arg)
2350 && ! DECL_DLLIMPORT_P (arg)
2351 ? arg : NULL);
2352
2353 case CONST_DECL:
2354 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2355 ? arg : NULL);
2356
2357 case CONSTRUCTOR:
2358 return TREE_STATIC (arg) ? arg : NULL;
2359
2360 case LABEL_DECL:
2361 case STRING_CST:
2362 return arg;
2363
2364 case COMPONENT_REF:
2365 /* If the thing being referenced is not a field, then it is
2366 something language specific. */
2367 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2368
2369 /* If we are referencing a bitfield, we can't evaluate an
2370 ADDR_EXPR at compile time and so it isn't a constant. */
2371 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2372 return NULL;
2373
2374 return staticp (TREE_OPERAND (arg, 0));
2375
2376 case BIT_FIELD_REF:
2377 return NULL;
2378
2379 case MISALIGNED_INDIRECT_REF:
2380 case ALIGN_INDIRECT_REF:
2381 case INDIRECT_REF:
2382 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2383
2384 case ARRAY_REF:
2385 case ARRAY_RANGE_REF:
2386 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2387 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2388 return staticp (TREE_OPERAND (arg, 0));
2389 else
2390 return NULL;
2391
2392 case COMPOUND_LITERAL_EXPR:
2393 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2394
2395 default:
2396 return NULL;
2397 }
2398 }
2399
2400 \f
2401
2402
2403 /* Return whether OP is a DECL whose address is function-invariant. */
2404
2405 bool
2406 decl_address_invariant_p (const_tree op)
2407 {
2408 /* The conditions below are slightly less strict than the one in
2409 staticp. */
2410
2411 switch (TREE_CODE (op))
2412 {
2413 case PARM_DECL:
2414 case RESULT_DECL:
2415 case LABEL_DECL:
2416 case FUNCTION_DECL:
2417 return true;
2418
2419 case VAR_DECL:
2420 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2421 && !DECL_DLLIMPORT_P (op))
2422 || DECL_THREAD_LOCAL_P (op)
2423 || DECL_CONTEXT (op) == current_function_decl
2424 || decl_function_context (op) == current_function_decl)
2425 return true;
2426 break;
2427
2428 case CONST_DECL:
2429 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2430 || decl_function_context (op) == current_function_decl)
2431 return true;
2432 break;
2433
2434 default:
2435 break;
2436 }
2437
2438 return false;
2439 }
2440
2441 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2442
2443 bool
2444 decl_address_ip_invariant_p (const_tree op)
2445 {
2446 /* The conditions below are slightly less strict than the one in
2447 staticp. */
2448
2449 switch (TREE_CODE (op))
2450 {
2451 case LABEL_DECL:
2452 case FUNCTION_DECL:
2453 case STRING_CST:
2454 return true;
2455
2456 case VAR_DECL:
2457 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2458 && !DECL_DLLIMPORT_P (op))
2459 || DECL_THREAD_LOCAL_P (op))
2460 return true;
2461 break;
2462
2463 case CONST_DECL:
2464 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2465 return true;
2466 break;
2467
2468 default:
2469 break;
2470 }
2471
2472 return false;
2473 }
2474
2475
2476 /* Return true if T is function-invariant (internal function, does
2477 not handle arithmetic; that's handled in skip_simple_arithmetic and
2478 tree_invariant_p). */
2479
2480 static bool tree_invariant_p (tree t);
2481
2482 static bool
2483 tree_invariant_p_1 (tree t)
2484 {
2485 tree op;
2486
2487 if (TREE_CONSTANT (t)
2488 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2489 return true;
2490
2491 switch (TREE_CODE (t))
2492 {
2493 case SAVE_EXPR:
2494 return true;
2495
2496 case ADDR_EXPR:
2497 op = TREE_OPERAND (t, 0);
2498 while (handled_component_p (op))
2499 {
2500 switch (TREE_CODE (op))
2501 {
2502 case ARRAY_REF:
2503 case ARRAY_RANGE_REF:
2504 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2505 || TREE_OPERAND (op, 2) != NULL_TREE
2506 || TREE_OPERAND (op, 3) != NULL_TREE)
2507 return false;
2508 break;
2509
2510 case COMPONENT_REF:
2511 if (TREE_OPERAND (op, 2) != NULL_TREE)
2512 return false;
2513 break;
2514
2515 default:;
2516 }
2517 op = TREE_OPERAND (op, 0);
2518 }
2519
2520 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2521
2522 default:
2523 break;
2524 }
2525
2526 return false;
2527 }
2528
2529 /* Return true if T is function-invariant. */
2530
2531 static bool
2532 tree_invariant_p (tree t)
2533 {
2534 tree inner = skip_simple_arithmetic (t);
2535 return tree_invariant_p_1 (inner);
2536 }
2537
2538 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2539 Do this to any expression which may be used in more than one place,
2540 but must be evaluated only once.
2541
2542 Normally, expand_expr would reevaluate the expression each time.
2543 Calling save_expr produces something that is evaluated and recorded
2544 the first time expand_expr is called on it. Subsequent calls to
2545 expand_expr just reuse the recorded value.
2546
2547 The call to expand_expr that generates code that actually computes
2548 the value is the first call *at compile time*. Subsequent calls
2549 *at compile time* generate code to use the saved value.
2550 This produces correct result provided that *at run time* control
2551 always flows through the insns made by the first expand_expr
2552 before reaching the other places where the save_expr was evaluated.
2553 You, the caller of save_expr, must make sure this is so.
2554
2555 Constants, and certain read-only nodes, are returned with no
2556 SAVE_EXPR because that is safe. Expressions containing placeholders
2557 are not touched; see tree.def for an explanation of what these
2558 are used for. */
2559
2560 tree
2561 save_expr (tree expr)
2562 {
2563 tree t = fold (expr);
2564 tree inner;
2565
2566 /* If the tree evaluates to a constant, then we don't want to hide that
2567 fact (i.e. this allows further folding, and direct checks for constants).
2568 However, a read-only object that has side effects cannot be bypassed.
2569 Since it is no problem to reevaluate literals, we just return the
2570 literal node. */
2571 inner = skip_simple_arithmetic (t);
2572 if (TREE_CODE (inner) == ERROR_MARK)
2573 return inner;
2574
2575 if (tree_invariant_p_1 (inner))
2576 return t;
2577
2578 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2579 it means that the size or offset of some field of an object depends on
2580 the value within another field.
2581
2582 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2583 and some variable since it would then need to be both evaluated once and
2584 evaluated more than once. Front-ends must assure this case cannot
2585 happen by surrounding any such subexpressions in their own SAVE_EXPR
2586 and forcing evaluation at the proper time. */
2587 if (contains_placeholder_p (inner))
2588 return t;
2589
2590 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2591 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2592
2593 /* This expression might be placed ahead of a jump to ensure that the
2594 value was computed on both sides of the jump. So make sure it isn't
2595 eliminated as dead. */
2596 TREE_SIDE_EFFECTS (t) = 1;
2597 return t;
2598 }
2599
2600 /* Look inside EXPR and into any simple arithmetic operations. Return
2601 the innermost non-arithmetic node. */
2602
2603 tree
2604 skip_simple_arithmetic (tree expr)
2605 {
2606 tree inner;
2607
2608 /* We don't care about whether this can be used as an lvalue in this
2609 context. */
2610 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2611 expr = TREE_OPERAND (expr, 0);
2612
2613 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2614 a constant, it will be more efficient to not make another SAVE_EXPR since
2615 it will allow better simplification and GCSE will be able to merge the
2616 computations if they actually occur. */
2617 inner = expr;
2618 while (1)
2619 {
2620 if (UNARY_CLASS_P (inner))
2621 inner = TREE_OPERAND (inner, 0);
2622 else if (BINARY_CLASS_P (inner))
2623 {
2624 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2625 inner = TREE_OPERAND (inner, 0);
2626 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2627 inner = TREE_OPERAND (inner, 1);
2628 else
2629 break;
2630 }
2631 else
2632 break;
2633 }
2634
2635 return inner;
2636 }
2637
2638
2639 /* Return which tree structure is used by T. */
2640
2641 enum tree_node_structure_enum
2642 tree_node_structure (const_tree t)
2643 {
2644 const enum tree_code code = TREE_CODE (t);
2645 return tree_node_structure_for_code (code);
2646 }
2647
2648 /* Set various status flags when building a CALL_EXPR object T. */
2649
2650 static void
2651 process_call_operands (tree t)
2652 {
2653 bool side_effects = TREE_SIDE_EFFECTS (t);
2654 bool read_only = false;
2655 int i = call_expr_flags (t);
2656
2657 /* Calls have side-effects, except those to const or pure functions. */
2658 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2659 side_effects = true;
2660 /* Propagate TREE_READONLY of arguments for const functions. */
2661 if (i & ECF_CONST)
2662 read_only = true;
2663
2664 if (!side_effects || read_only)
2665 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2666 {
2667 tree op = TREE_OPERAND (t, i);
2668 if (op && TREE_SIDE_EFFECTS (op))
2669 side_effects = true;
2670 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2671 read_only = false;
2672 }
2673
2674 TREE_SIDE_EFFECTS (t) = side_effects;
2675 TREE_READONLY (t) = read_only;
2676 }
2677 \f
2678 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2679 or offset that depends on a field within a record. */
2680
2681 bool
2682 contains_placeholder_p (const_tree exp)
2683 {
2684 enum tree_code code;
2685
2686 if (!exp)
2687 return 0;
2688
2689 code = TREE_CODE (exp);
2690 if (code == PLACEHOLDER_EXPR)
2691 return 1;
2692
2693 switch (TREE_CODE_CLASS (code))
2694 {
2695 case tcc_reference:
2696 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2697 position computations since they will be converted into a
2698 WITH_RECORD_EXPR involving the reference, which will assume
2699 here will be valid. */
2700 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2701
2702 case tcc_exceptional:
2703 if (code == TREE_LIST)
2704 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2705 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2706 break;
2707
2708 case tcc_unary:
2709 case tcc_binary:
2710 case tcc_comparison:
2711 case tcc_expression:
2712 switch (code)
2713 {
2714 case COMPOUND_EXPR:
2715 /* Ignoring the first operand isn't quite right, but works best. */
2716 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2717
2718 case COND_EXPR:
2719 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2720 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2721 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2722
2723 case SAVE_EXPR:
2724 /* The save_expr function never wraps anything containing
2725 a PLACEHOLDER_EXPR. */
2726 return 0;
2727
2728 default:
2729 break;
2730 }
2731
2732 switch (TREE_CODE_LENGTH (code))
2733 {
2734 case 1:
2735 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2736 case 2:
2737 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2738 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2739 default:
2740 return 0;
2741 }
2742
2743 case tcc_vl_exp:
2744 switch (code)
2745 {
2746 case CALL_EXPR:
2747 {
2748 const_tree arg;
2749 const_call_expr_arg_iterator iter;
2750 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2751 if (CONTAINS_PLACEHOLDER_P (arg))
2752 return 1;
2753 return 0;
2754 }
2755 default:
2756 return 0;
2757 }
2758
2759 default:
2760 return 0;
2761 }
2762 return 0;
2763 }
2764
2765 /* Return true if any part of the computation of TYPE involves a
2766 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2767 (for QUAL_UNION_TYPE) and field positions. */
2768
2769 static bool
2770 type_contains_placeholder_1 (const_tree type)
2771 {
2772 /* If the size contains a placeholder or the parent type (component type in
2773 the case of arrays) type involves a placeholder, this type does. */
2774 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2775 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2776 || (TREE_TYPE (type) != 0
2777 && type_contains_placeholder_p (TREE_TYPE (type))))
2778 return true;
2779
2780 /* Now do type-specific checks. Note that the last part of the check above
2781 greatly limits what we have to do below. */
2782 switch (TREE_CODE (type))
2783 {
2784 case VOID_TYPE:
2785 case COMPLEX_TYPE:
2786 case ENUMERAL_TYPE:
2787 case BOOLEAN_TYPE:
2788 case POINTER_TYPE:
2789 case OFFSET_TYPE:
2790 case REFERENCE_TYPE:
2791 case METHOD_TYPE:
2792 case FUNCTION_TYPE:
2793 case VECTOR_TYPE:
2794 return false;
2795
2796 case INTEGER_TYPE:
2797 case REAL_TYPE:
2798 case FIXED_POINT_TYPE:
2799 /* Here we just check the bounds. */
2800 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2801 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2802
2803 case ARRAY_TYPE:
2804 /* We're already checked the component type (TREE_TYPE), so just check
2805 the index type. */
2806 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2807
2808 case RECORD_TYPE:
2809 case UNION_TYPE:
2810 case QUAL_UNION_TYPE:
2811 {
2812 tree field;
2813
2814 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2815 if (TREE_CODE (field) == FIELD_DECL
2816 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2817 || (TREE_CODE (type) == QUAL_UNION_TYPE
2818 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2819 || type_contains_placeholder_p (TREE_TYPE (field))))
2820 return true;
2821
2822 return false;
2823 }
2824
2825 default:
2826 gcc_unreachable ();
2827 }
2828 }
2829
2830 bool
2831 type_contains_placeholder_p (tree type)
2832 {
2833 bool result;
2834
2835 /* If the contains_placeholder_bits field has been initialized,
2836 then we know the answer. */
2837 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2838 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2839
2840 /* Indicate that we've seen this type node, and the answer is false.
2841 This is what we want to return if we run into recursion via fields. */
2842 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2843
2844 /* Compute the real value. */
2845 result = type_contains_placeholder_1 (type);
2846
2847 /* Store the real value. */
2848 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2849
2850 return result;
2851 }
2852 \f
2853 /* Push tree EXP onto vector QUEUE if it is not already present. */
2854
2855 static void
2856 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2857 {
2858 unsigned int i;
2859 tree iter;
2860
2861 for (i = 0; VEC_iterate (tree, *queue, i, iter); i++)
2862 if (simple_cst_equal (iter, exp) == 1)
2863 break;
2864
2865 if (!iter)
2866 VEC_safe_push (tree, heap, *queue, exp);
2867 }
2868
2869 /* Given a tree EXP, find all occurences of references to fields
2870 in a PLACEHOLDER_EXPR and place them in vector REFS without
2871 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2872 we assume here that EXP contains only arithmetic expressions
2873 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2874 argument list. */
2875
2876 void
2877 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2878 {
2879 enum tree_code code = TREE_CODE (exp);
2880 tree inner;
2881 int i;
2882
2883 /* We handle TREE_LIST and COMPONENT_REF separately. */
2884 if (code == TREE_LIST)
2885 {
2886 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2887 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2888 }
2889 else if (code == COMPONENT_REF)
2890 {
2891 for (inner = TREE_OPERAND (exp, 0);
2892 REFERENCE_CLASS_P (inner);
2893 inner = TREE_OPERAND (inner, 0))
2894 ;
2895
2896 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2897 push_without_duplicates (exp, refs);
2898 else
2899 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2900 }
2901 else
2902 switch (TREE_CODE_CLASS (code))
2903 {
2904 case tcc_constant:
2905 break;
2906
2907 case tcc_declaration:
2908 /* Variables allocated to static storage can stay. */
2909 if (!TREE_STATIC (exp))
2910 push_without_duplicates (exp, refs);
2911 break;
2912
2913 case tcc_expression:
2914 /* This is the pattern built in ada/make_aligning_type. */
2915 if (code == ADDR_EXPR
2916 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2917 {
2918 push_without_duplicates (exp, refs);
2919 break;
2920 }
2921
2922 /* Fall through... */
2923
2924 case tcc_exceptional:
2925 case tcc_unary:
2926 case tcc_binary:
2927 case tcc_comparison:
2928 case tcc_reference:
2929 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
2930 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2931 break;
2932
2933 case tcc_vl_exp:
2934 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
2935 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
2936 break;
2937
2938 default:
2939 gcc_unreachable ();
2940 }
2941 }
2942
2943 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2944 return a tree with all occurrences of references to F in a
2945 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
2946 CONST_DECLs. Note that we assume here that EXP contains only
2947 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
2948 occurring only in their argument list. */
2949
2950 tree
2951 substitute_in_expr (tree exp, tree f, tree r)
2952 {
2953 enum tree_code code = TREE_CODE (exp);
2954 tree op0, op1, op2, op3;
2955 tree new_tree;
2956
2957 /* We handle TREE_LIST and COMPONENT_REF separately. */
2958 if (code == TREE_LIST)
2959 {
2960 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2961 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2962 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2963 return exp;
2964
2965 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2966 }
2967 else if (code == COMPONENT_REF)
2968 {
2969 tree inner;
2970
2971 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2972 and it is the right field, replace it with R. */
2973 for (inner = TREE_OPERAND (exp, 0);
2974 REFERENCE_CLASS_P (inner);
2975 inner = TREE_OPERAND (inner, 0))
2976 ;
2977
2978 /* The field. */
2979 op1 = TREE_OPERAND (exp, 1);
2980
2981 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
2982 return r;
2983
2984 /* If this expression hasn't been completed let, leave it alone. */
2985 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
2986 return exp;
2987
2988 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2989 if (op0 == TREE_OPERAND (exp, 0))
2990 return exp;
2991
2992 new_tree
2993 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
2994 }
2995 else
2996 switch (TREE_CODE_CLASS (code))
2997 {
2998 case tcc_constant:
2999 return exp;
3000
3001 case tcc_declaration:
3002 if (exp == f)
3003 return r;
3004 else
3005 return exp;
3006
3007 case tcc_expression:
3008 if (exp == f)
3009 return r;
3010
3011 /* Fall through... */
3012
3013 case tcc_exceptional:
3014 case tcc_unary:
3015 case tcc_binary:
3016 case tcc_comparison:
3017 case tcc_reference:
3018 switch (TREE_CODE_LENGTH (code))
3019 {
3020 case 0:
3021 return exp;
3022
3023 case 1:
3024 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3025 if (op0 == TREE_OPERAND (exp, 0))
3026 return exp;
3027
3028 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3029 break;
3030
3031 case 2:
3032 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3033 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3034
3035 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3036 return exp;
3037
3038 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3039 break;
3040
3041 case 3:
3042 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3043 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3044 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3045
3046 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3047 && op2 == TREE_OPERAND (exp, 2))
3048 return exp;
3049
3050 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3051 break;
3052
3053 case 4:
3054 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3055 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3056 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3057 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3058
3059 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3060 && op2 == TREE_OPERAND (exp, 2)
3061 && op3 == TREE_OPERAND (exp, 3))
3062 return exp;
3063
3064 new_tree
3065 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3066 break;
3067
3068 default:
3069 gcc_unreachable ();
3070 }
3071 break;
3072
3073 case tcc_vl_exp:
3074 {
3075 int i;
3076
3077 new_tree = NULL_TREE;
3078
3079 /* If we are trying to replace F with a constant, inline back
3080 functions which do nothing else than computing a value from
3081 the arguments they are passed. This makes it possible to
3082 fold partially or entirely the replacement expression. */
3083 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3084 {
3085 tree t = maybe_inline_call_in_expr (exp);
3086 if (t)
3087 return SUBSTITUTE_IN_EXPR (t, f, r);
3088 }
3089
3090 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3091 {
3092 tree op = TREE_OPERAND (exp, i);
3093 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3094 if (new_op != op)
3095 {
3096 if (!new_tree)
3097 new_tree = copy_node (exp);
3098 TREE_OPERAND (new_tree, i) = new_op;
3099 }
3100 }
3101
3102 if (new_tree)
3103 {
3104 new_tree = fold (new_tree);
3105 if (TREE_CODE (new_tree) == CALL_EXPR)
3106 process_call_operands (new_tree);
3107 }
3108 else
3109 return exp;
3110 }
3111 break;
3112
3113 default:
3114 gcc_unreachable ();
3115 }
3116
3117 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3118 return new_tree;
3119 }
3120
3121 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3122 for it within OBJ, a tree that is an object or a chain of references. */
3123
3124 tree
3125 substitute_placeholder_in_expr (tree exp, tree obj)
3126 {
3127 enum tree_code code = TREE_CODE (exp);
3128 tree op0, op1, op2, op3;
3129 tree new_tree;
3130
3131 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3132 in the chain of OBJ. */
3133 if (code == PLACEHOLDER_EXPR)
3134 {
3135 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3136 tree elt;
3137
3138 for (elt = obj; elt != 0;
3139 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3140 || TREE_CODE (elt) == COND_EXPR)
3141 ? TREE_OPERAND (elt, 1)
3142 : (REFERENCE_CLASS_P (elt)
3143 || UNARY_CLASS_P (elt)
3144 || BINARY_CLASS_P (elt)
3145 || VL_EXP_CLASS_P (elt)
3146 || EXPRESSION_CLASS_P (elt))
3147 ? TREE_OPERAND (elt, 0) : 0))
3148 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3149 return elt;
3150
3151 for (elt = obj; elt != 0;
3152 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3153 || TREE_CODE (elt) == COND_EXPR)
3154 ? TREE_OPERAND (elt, 1)
3155 : (REFERENCE_CLASS_P (elt)
3156 || UNARY_CLASS_P (elt)
3157 || BINARY_CLASS_P (elt)
3158 || VL_EXP_CLASS_P (elt)
3159 || EXPRESSION_CLASS_P (elt))
3160 ? TREE_OPERAND (elt, 0) : 0))
3161 if (POINTER_TYPE_P (TREE_TYPE (elt))
3162 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3163 == need_type))
3164 return fold_build1 (INDIRECT_REF, need_type, elt);
3165
3166 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3167 survives until RTL generation, there will be an error. */
3168 return exp;
3169 }
3170
3171 /* TREE_LIST is special because we need to look at TREE_VALUE
3172 and TREE_CHAIN, not TREE_OPERANDS. */
3173 else if (code == TREE_LIST)
3174 {
3175 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3176 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3177 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3178 return exp;
3179
3180 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3181 }
3182 else
3183 switch (TREE_CODE_CLASS (code))
3184 {
3185 case tcc_constant:
3186 case tcc_declaration:
3187 return exp;
3188
3189 case tcc_exceptional:
3190 case tcc_unary:
3191 case tcc_binary:
3192 case tcc_comparison:
3193 case tcc_expression:
3194 case tcc_reference:
3195 case tcc_statement:
3196 switch (TREE_CODE_LENGTH (code))
3197 {
3198 case 0:
3199 return exp;
3200
3201 case 1:
3202 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3203 if (op0 == TREE_OPERAND (exp, 0))
3204 return exp;
3205
3206 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3207 break;
3208
3209 case 2:
3210 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3211 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3212
3213 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3214 return exp;
3215
3216 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3217 break;
3218
3219 case 3:
3220 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3221 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3222 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3223
3224 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3225 && op2 == TREE_OPERAND (exp, 2))
3226 return exp;
3227
3228 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3229 break;
3230
3231 case 4:
3232 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3233 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3234 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3235 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3236
3237 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3238 && op2 == TREE_OPERAND (exp, 2)
3239 && op3 == TREE_OPERAND (exp, 3))
3240 return exp;
3241
3242 new_tree
3243 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3244 break;
3245
3246 default:
3247 gcc_unreachable ();
3248 }
3249 break;
3250
3251 case tcc_vl_exp:
3252 {
3253 int i;
3254
3255 new_tree = NULL_TREE;
3256
3257 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3258 {
3259 tree op = TREE_OPERAND (exp, i);
3260 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3261 if (new_op != op)
3262 {
3263 if (!new_tree)
3264 new_tree = copy_node (exp);
3265 TREE_OPERAND (new_tree, i) = new_op;
3266 }
3267 }
3268
3269 if (new_tree)
3270 {
3271 new_tree = fold (new_tree);
3272 if (TREE_CODE (new_tree) == CALL_EXPR)
3273 process_call_operands (new_tree);
3274 }
3275 else
3276 return exp;
3277 }
3278 break;
3279
3280 default:
3281 gcc_unreachable ();
3282 }
3283
3284 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3285 return new_tree;
3286 }
3287 \f
3288 /* Stabilize a reference so that we can use it any number of times
3289 without causing its operands to be evaluated more than once.
3290 Returns the stabilized reference. This works by means of save_expr,
3291 so see the caveats in the comments about save_expr.
3292
3293 Also allows conversion expressions whose operands are references.
3294 Any other kind of expression is returned unchanged. */
3295
3296 tree
3297 stabilize_reference (tree ref)
3298 {
3299 tree result;
3300 enum tree_code code = TREE_CODE (ref);
3301
3302 switch (code)
3303 {
3304 case VAR_DECL:
3305 case PARM_DECL:
3306 case RESULT_DECL:
3307 /* No action is needed in this case. */
3308 return ref;
3309
3310 CASE_CONVERT:
3311 case FLOAT_EXPR:
3312 case FIX_TRUNC_EXPR:
3313 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3314 break;
3315
3316 case INDIRECT_REF:
3317 result = build_nt (INDIRECT_REF,
3318 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3319 break;
3320
3321 case COMPONENT_REF:
3322 result = build_nt (COMPONENT_REF,
3323 stabilize_reference (TREE_OPERAND (ref, 0)),
3324 TREE_OPERAND (ref, 1), NULL_TREE);
3325 break;
3326
3327 case BIT_FIELD_REF:
3328 result = build_nt (BIT_FIELD_REF,
3329 stabilize_reference (TREE_OPERAND (ref, 0)),
3330 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3331 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3332 break;
3333
3334 case ARRAY_REF:
3335 result = build_nt (ARRAY_REF,
3336 stabilize_reference (TREE_OPERAND (ref, 0)),
3337 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3338 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3339 break;
3340
3341 case ARRAY_RANGE_REF:
3342 result = build_nt (ARRAY_RANGE_REF,
3343 stabilize_reference (TREE_OPERAND (ref, 0)),
3344 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3345 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3346 break;
3347
3348 case COMPOUND_EXPR:
3349 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3350 it wouldn't be ignored. This matters when dealing with
3351 volatiles. */
3352 return stabilize_reference_1 (ref);
3353
3354 /* If arg isn't a kind of lvalue we recognize, make no change.
3355 Caller should recognize the error for an invalid lvalue. */
3356 default:
3357 return ref;
3358
3359 case ERROR_MARK:
3360 return error_mark_node;
3361 }
3362
3363 TREE_TYPE (result) = TREE_TYPE (ref);
3364 TREE_READONLY (result) = TREE_READONLY (ref);
3365 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3366 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3367
3368 return result;
3369 }
3370
3371 /* Subroutine of stabilize_reference; this is called for subtrees of
3372 references. Any expression with side-effects must be put in a SAVE_EXPR
3373 to ensure that it is only evaluated once.
3374
3375 We don't put SAVE_EXPR nodes around everything, because assigning very
3376 simple expressions to temporaries causes us to miss good opportunities
3377 for optimizations. Among other things, the opportunity to fold in the
3378 addition of a constant into an addressing mode often gets lost, e.g.
3379 "y[i+1] += x;". In general, we take the approach that we should not make
3380 an assignment unless we are forced into it - i.e., that any non-side effect
3381 operator should be allowed, and that cse should take care of coalescing
3382 multiple utterances of the same expression should that prove fruitful. */
3383
3384 tree
3385 stabilize_reference_1 (tree e)
3386 {
3387 tree result;
3388 enum tree_code code = TREE_CODE (e);
3389
3390 /* We cannot ignore const expressions because it might be a reference
3391 to a const array but whose index contains side-effects. But we can
3392 ignore things that are actual constant or that already have been
3393 handled by this function. */
3394
3395 if (tree_invariant_p (e))
3396 return e;
3397
3398 switch (TREE_CODE_CLASS (code))
3399 {
3400 case tcc_exceptional:
3401 case tcc_type:
3402 case tcc_declaration:
3403 case tcc_comparison:
3404 case tcc_statement:
3405 case tcc_expression:
3406 case tcc_reference:
3407 case tcc_vl_exp:
3408 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3409 so that it will only be evaluated once. */
3410 /* The reference (r) and comparison (<) classes could be handled as
3411 below, but it is generally faster to only evaluate them once. */
3412 if (TREE_SIDE_EFFECTS (e))
3413 return save_expr (e);
3414 return e;
3415
3416 case tcc_constant:
3417 /* Constants need no processing. In fact, we should never reach
3418 here. */
3419 return e;
3420
3421 case tcc_binary:
3422 /* Division is slow and tends to be compiled with jumps,
3423 especially the division by powers of 2 that is often
3424 found inside of an array reference. So do it just once. */
3425 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3426 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3427 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3428 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3429 return save_expr (e);
3430 /* Recursively stabilize each operand. */
3431 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3432 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3433 break;
3434
3435 case tcc_unary:
3436 /* Recursively stabilize each operand. */
3437 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3438 break;
3439
3440 default:
3441 gcc_unreachable ();
3442 }
3443
3444 TREE_TYPE (result) = TREE_TYPE (e);
3445 TREE_READONLY (result) = TREE_READONLY (e);
3446 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3447 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3448
3449 return result;
3450 }
3451 \f
3452 /* Low-level constructors for expressions. */
3453
3454 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3455 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3456
3457 void
3458 recompute_tree_invariant_for_addr_expr (tree t)
3459 {
3460 tree node;
3461 bool tc = true, se = false;
3462
3463 /* We started out assuming this address is both invariant and constant, but
3464 does not have side effects. Now go down any handled components and see if
3465 any of them involve offsets that are either non-constant or non-invariant.
3466 Also check for side-effects.
3467
3468 ??? Note that this code makes no attempt to deal with the case where
3469 taking the address of something causes a copy due to misalignment. */
3470
3471 #define UPDATE_FLAGS(NODE) \
3472 do { tree _node = (NODE); \
3473 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3474 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3475
3476 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3477 node = TREE_OPERAND (node, 0))
3478 {
3479 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3480 array reference (probably made temporarily by the G++ front end),
3481 so ignore all the operands. */
3482 if ((TREE_CODE (node) == ARRAY_REF
3483 || TREE_CODE (node) == ARRAY_RANGE_REF)
3484 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3485 {
3486 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3487 if (TREE_OPERAND (node, 2))
3488 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3489 if (TREE_OPERAND (node, 3))
3490 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3491 }
3492 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3493 FIELD_DECL, apparently. The G++ front end can put something else
3494 there, at least temporarily. */
3495 else if (TREE_CODE (node) == COMPONENT_REF
3496 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3497 {
3498 if (TREE_OPERAND (node, 2))
3499 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3500 }
3501 else if (TREE_CODE (node) == BIT_FIELD_REF)
3502 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3503 }
3504
3505 node = lang_hooks.expr_to_decl (node, &tc, &se);
3506
3507 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3508 the address, since &(*a)->b is a form of addition. If it's a constant, the
3509 address is constant too. If it's a decl, its address is constant if the
3510 decl is static. Everything else is not constant and, furthermore,
3511 taking the address of a volatile variable is not volatile. */
3512 if (TREE_CODE (node) == INDIRECT_REF)
3513 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3514 else if (CONSTANT_CLASS_P (node))
3515 ;
3516 else if (DECL_P (node))
3517 tc &= (staticp (node) != NULL_TREE);
3518 else
3519 {
3520 tc = false;
3521 se |= TREE_SIDE_EFFECTS (node);
3522 }
3523
3524
3525 TREE_CONSTANT (t) = tc;
3526 TREE_SIDE_EFFECTS (t) = se;
3527 #undef UPDATE_FLAGS
3528 }
3529
3530 /* Build an expression of code CODE, data type TYPE, and operands as
3531 specified. Expressions and reference nodes can be created this way.
3532 Constants, decls, types and misc nodes cannot be.
3533
3534 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3535 enough for all extant tree codes. */
3536
3537 tree
3538 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3539 {
3540 tree t;
3541
3542 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3543
3544 t = make_node_stat (code PASS_MEM_STAT);
3545 TREE_TYPE (t) = tt;
3546
3547 return t;
3548 }
3549
3550 tree
3551 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3552 {
3553 int length = sizeof (struct tree_exp);
3554 #ifdef GATHER_STATISTICS
3555 tree_node_kind kind;
3556 #endif
3557 tree t;
3558
3559 #ifdef GATHER_STATISTICS
3560 switch (TREE_CODE_CLASS (code))
3561 {
3562 case tcc_statement: /* an expression with side effects */
3563 kind = s_kind;
3564 break;
3565 case tcc_reference: /* a reference */
3566 kind = r_kind;
3567 break;
3568 default:
3569 kind = e_kind;
3570 break;
3571 }
3572
3573 tree_node_counts[(int) kind]++;
3574 tree_node_sizes[(int) kind] += length;
3575 #endif
3576
3577 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3578
3579 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
3580
3581 memset (t, 0, sizeof (struct tree_common));
3582
3583 TREE_SET_CODE (t, code);
3584
3585 TREE_TYPE (t) = type;
3586 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3587 TREE_OPERAND (t, 0) = node;
3588 TREE_BLOCK (t) = NULL_TREE;
3589 if (node && !TYPE_P (node))
3590 {
3591 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3592 TREE_READONLY (t) = TREE_READONLY (node);
3593 }
3594
3595 if (TREE_CODE_CLASS (code) == tcc_statement)
3596 TREE_SIDE_EFFECTS (t) = 1;
3597 else switch (code)
3598 {
3599 case VA_ARG_EXPR:
3600 /* All of these have side-effects, no matter what their
3601 operands are. */
3602 TREE_SIDE_EFFECTS (t) = 1;
3603 TREE_READONLY (t) = 0;
3604 break;
3605
3606 case MISALIGNED_INDIRECT_REF:
3607 case ALIGN_INDIRECT_REF:
3608 case INDIRECT_REF:
3609 /* Whether a dereference is readonly has nothing to do with whether
3610 its operand is readonly. */
3611 TREE_READONLY (t) = 0;
3612 break;
3613
3614 case ADDR_EXPR:
3615 if (node)
3616 recompute_tree_invariant_for_addr_expr (t);
3617 break;
3618
3619 default:
3620 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3621 && node && !TYPE_P (node)
3622 && TREE_CONSTANT (node))
3623 TREE_CONSTANT (t) = 1;
3624 if (TREE_CODE_CLASS (code) == tcc_reference
3625 && node && TREE_THIS_VOLATILE (node))
3626 TREE_THIS_VOLATILE (t) = 1;
3627 break;
3628 }
3629
3630 return t;
3631 }
3632
3633 #define PROCESS_ARG(N) \
3634 do { \
3635 TREE_OPERAND (t, N) = arg##N; \
3636 if (arg##N &&!TYPE_P (arg##N)) \
3637 { \
3638 if (TREE_SIDE_EFFECTS (arg##N)) \
3639 side_effects = 1; \
3640 if (!TREE_READONLY (arg##N) \
3641 && !CONSTANT_CLASS_P (arg##N)) \
3642 read_only = 0; \
3643 if (!TREE_CONSTANT (arg##N)) \
3644 constant = 0; \
3645 } \
3646 } while (0)
3647
3648 tree
3649 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3650 {
3651 bool constant, read_only, side_effects;
3652 tree t;
3653
3654 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3655
3656 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3657 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3658 /* When sizetype precision doesn't match that of pointers
3659 we need to be able to build explicit extensions or truncations
3660 of the offset argument. */
3661 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3662 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3663 && TREE_CODE (arg1) == INTEGER_CST);
3664
3665 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3666 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3667 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3668 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3669
3670 t = make_node_stat (code PASS_MEM_STAT);
3671 TREE_TYPE (t) = tt;
3672
3673 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3674 result based on those same flags for the arguments. But if the
3675 arguments aren't really even `tree' expressions, we shouldn't be trying
3676 to do this. */
3677
3678 /* Expressions without side effects may be constant if their
3679 arguments are as well. */
3680 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3681 || TREE_CODE_CLASS (code) == tcc_binary);
3682 read_only = 1;
3683 side_effects = TREE_SIDE_EFFECTS (t);
3684
3685 PROCESS_ARG(0);
3686 PROCESS_ARG(1);
3687
3688 TREE_READONLY (t) = read_only;
3689 TREE_CONSTANT (t) = constant;
3690 TREE_SIDE_EFFECTS (t) = side_effects;
3691 TREE_THIS_VOLATILE (t)
3692 = (TREE_CODE_CLASS (code) == tcc_reference
3693 && arg0 && TREE_THIS_VOLATILE (arg0));
3694
3695 return t;
3696 }
3697
3698
3699 tree
3700 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3701 tree arg2 MEM_STAT_DECL)
3702 {
3703 bool constant, read_only, side_effects;
3704 tree t;
3705
3706 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3707 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3708
3709 t = make_node_stat (code PASS_MEM_STAT);
3710 TREE_TYPE (t) = tt;
3711
3712 read_only = 1;
3713
3714 /* As a special exception, if COND_EXPR has NULL branches, we
3715 assume that it is a gimple statement and always consider
3716 it to have side effects. */
3717 if (code == COND_EXPR
3718 && tt == void_type_node
3719 && arg1 == NULL_TREE
3720 && arg2 == NULL_TREE)
3721 side_effects = true;
3722 else
3723 side_effects = TREE_SIDE_EFFECTS (t);
3724
3725 PROCESS_ARG(0);
3726 PROCESS_ARG(1);
3727 PROCESS_ARG(2);
3728
3729 if (code == COND_EXPR)
3730 TREE_READONLY (t) = read_only;
3731
3732 TREE_SIDE_EFFECTS (t) = side_effects;
3733 TREE_THIS_VOLATILE (t)
3734 = (TREE_CODE_CLASS (code) == tcc_reference
3735 && arg0 && TREE_THIS_VOLATILE (arg0));
3736
3737 return t;
3738 }
3739
3740 tree
3741 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3742 tree arg2, tree arg3 MEM_STAT_DECL)
3743 {
3744 bool constant, read_only, side_effects;
3745 tree t;
3746
3747 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3748
3749 t = make_node_stat (code PASS_MEM_STAT);
3750 TREE_TYPE (t) = tt;
3751
3752 side_effects = TREE_SIDE_EFFECTS (t);
3753
3754 PROCESS_ARG(0);
3755 PROCESS_ARG(1);
3756 PROCESS_ARG(2);
3757 PROCESS_ARG(3);
3758
3759 TREE_SIDE_EFFECTS (t) = side_effects;
3760 TREE_THIS_VOLATILE (t)
3761 = (TREE_CODE_CLASS (code) == tcc_reference
3762 && arg0 && TREE_THIS_VOLATILE (arg0));
3763
3764 return t;
3765 }
3766
3767 tree
3768 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3769 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3770 {
3771 bool constant, read_only, side_effects;
3772 tree t;
3773
3774 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3775
3776 t = make_node_stat (code PASS_MEM_STAT);
3777 TREE_TYPE (t) = tt;
3778
3779 side_effects = TREE_SIDE_EFFECTS (t);
3780
3781 PROCESS_ARG(0);
3782 PROCESS_ARG(1);
3783 PROCESS_ARG(2);
3784 PROCESS_ARG(3);
3785 PROCESS_ARG(4);
3786
3787 TREE_SIDE_EFFECTS (t) = side_effects;
3788 TREE_THIS_VOLATILE (t)
3789 = (TREE_CODE_CLASS (code) == tcc_reference
3790 && arg0 && TREE_THIS_VOLATILE (arg0));
3791
3792 return t;
3793 }
3794
3795 tree
3796 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3797 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3798 {
3799 bool constant, read_only, side_effects;
3800 tree t;
3801
3802 gcc_assert (code == TARGET_MEM_REF);
3803
3804 t = make_node_stat (code PASS_MEM_STAT);
3805 TREE_TYPE (t) = tt;
3806
3807 side_effects = TREE_SIDE_EFFECTS (t);
3808
3809 PROCESS_ARG(0);
3810 PROCESS_ARG(1);
3811 PROCESS_ARG(2);
3812 PROCESS_ARG(3);
3813 PROCESS_ARG(4);
3814 PROCESS_ARG(5);
3815
3816 TREE_SIDE_EFFECTS (t) = side_effects;
3817 TREE_THIS_VOLATILE (t) = 0;
3818
3819 return t;
3820 }
3821
3822 /* Similar except don't specify the TREE_TYPE
3823 and leave the TREE_SIDE_EFFECTS as 0.
3824 It is permissible for arguments to be null,
3825 or even garbage if their values do not matter. */
3826
3827 tree
3828 build_nt (enum tree_code code, ...)
3829 {
3830 tree t;
3831 int length;
3832 int i;
3833 va_list p;
3834
3835 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3836
3837 va_start (p, code);
3838
3839 t = make_node (code);
3840 length = TREE_CODE_LENGTH (code);
3841
3842 for (i = 0; i < length; i++)
3843 TREE_OPERAND (t, i) = va_arg (p, tree);
3844
3845 va_end (p);
3846 return t;
3847 }
3848
3849 /* Similar to build_nt, but for creating a CALL_EXPR object with
3850 ARGLIST passed as a list. */
3851
3852 tree
3853 build_nt_call_list (tree fn, tree arglist)
3854 {
3855 tree t;
3856 int i;
3857
3858 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
3859 CALL_EXPR_FN (t) = fn;
3860 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
3861 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
3862 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
3863 return t;
3864 }
3865
3866 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3867 tree VEC. */
3868
3869 tree
3870 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3871 {
3872 tree ret, t;
3873 unsigned int ix;
3874
3875 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3876 CALL_EXPR_FN (ret) = fn;
3877 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
3878 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
3879 CALL_EXPR_ARG (ret, ix) = t;
3880 return ret;
3881 }
3882 \f
3883 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3884 We do NOT enter this node in any sort of symbol table.
3885
3886 LOC is the location of the decl.
3887
3888 layout_decl is used to set up the decl's storage layout.
3889 Other slots are initialized to 0 or null pointers. */
3890
3891 tree
3892 build_decl_stat (location_t loc, enum tree_code code, tree name,
3893 tree type MEM_STAT_DECL)
3894 {
3895 tree t;
3896
3897 t = make_node_stat (code PASS_MEM_STAT);
3898 DECL_SOURCE_LOCATION (t) = loc;
3899
3900 /* if (type == error_mark_node)
3901 type = integer_type_node; */
3902 /* That is not done, deliberately, so that having error_mark_node
3903 as the type can suppress useless errors in the use of this variable. */
3904
3905 DECL_NAME (t) = name;
3906 TREE_TYPE (t) = type;
3907
3908 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3909 layout_decl (t, 0);
3910
3911 return t;
3912 }
3913
3914 /* Builds and returns function declaration with NAME and TYPE. */
3915
3916 tree
3917 build_fn_decl (const char *name, tree type)
3918 {
3919 tree id = get_identifier (name);
3920 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
3921
3922 DECL_EXTERNAL (decl) = 1;
3923 TREE_PUBLIC (decl) = 1;
3924 DECL_ARTIFICIAL (decl) = 1;
3925 TREE_NOTHROW (decl) = 1;
3926
3927 return decl;
3928 }
3929
3930 \f
3931 /* BLOCK nodes are used to represent the structure of binding contours
3932 and declarations, once those contours have been exited and their contents
3933 compiled. This information is used for outputting debugging info. */
3934
3935 tree
3936 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3937 {
3938 tree block = make_node (BLOCK);
3939
3940 BLOCK_VARS (block) = vars;
3941 BLOCK_SUBBLOCKS (block) = subblocks;
3942 BLOCK_SUPERCONTEXT (block) = supercontext;
3943 BLOCK_CHAIN (block) = chain;
3944 return block;
3945 }
3946
3947 expanded_location
3948 expand_location (source_location loc)
3949 {
3950 expanded_location xloc;
3951 if (loc <= BUILTINS_LOCATION)
3952 {
3953 xloc.file = loc == UNKNOWN_LOCATION ? NULL : _("<built-in>");
3954 xloc.line = 0;
3955 xloc.column = 0;
3956 xloc.sysp = 0;
3957 }
3958 else
3959 {
3960 const struct line_map *map = linemap_lookup (line_table, loc);
3961 xloc.file = map->to_file;
3962 xloc.line = SOURCE_LINE (map, loc);
3963 xloc.column = SOURCE_COLUMN (map, loc);
3964 xloc.sysp = map->sysp != 0;
3965 };
3966 return xloc;
3967 }
3968
3969 \f
3970 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
3971
3972 LOC is the location to use in tree T. */
3973
3974 void
3975 protected_set_expr_location (tree t, location_t loc)
3976 {
3977 if (t && CAN_HAVE_LOCATION_P (t))
3978 SET_EXPR_LOCATION (t, loc);
3979 }
3980 \f
3981 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3982 is ATTRIBUTE. */
3983
3984 tree
3985 build_decl_attribute_variant (tree ddecl, tree attribute)
3986 {
3987 DECL_ATTRIBUTES (ddecl) = attribute;
3988 return ddecl;
3989 }
3990
3991 /* Borrowed from hashtab.c iterative_hash implementation. */
3992 #define mix(a,b,c) \
3993 { \
3994 a -= b; a -= c; a ^= (c>>13); \
3995 b -= c; b -= a; b ^= (a<< 8); \
3996 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3997 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3998 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3999 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4000 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4001 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4002 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4003 }
4004
4005
4006 /* Produce good hash value combining VAL and VAL2. */
4007 hashval_t
4008 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4009 {
4010 /* the golden ratio; an arbitrary value. */
4011 hashval_t a = 0x9e3779b9;
4012
4013 mix (a, val, val2);
4014 return val2;
4015 }
4016
4017 /* Produce good hash value combining VAL and VAL2. */
4018 hashval_t
4019 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4020 {
4021 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4022 return iterative_hash_hashval_t (val, val2);
4023 else
4024 {
4025 hashval_t a = (hashval_t) val;
4026 /* Avoid warnings about shifting of more than the width of the type on
4027 hosts that won't execute this path. */
4028 int zero = 0;
4029 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4030 mix (a, b, val2);
4031 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4032 {
4033 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4034 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4035 mix (a, b, val2);
4036 }
4037 return val2;
4038 }
4039 }
4040
4041 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4042 is ATTRIBUTE and its qualifiers are QUALS.
4043
4044 Record such modified types already made so we don't make duplicates. */
4045
4046 tree
4047 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4048 {
4049 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4050 {
4051 hashval_t hashcode = 0;
4052 tree ntype;
4053 enum tree_code code = TREE_CODE (ttype);
4054
4055 /* Building a distinct copy of a tagged type is inappropriate; it
4056 causes breakage in code that expects there to be a one-to-one
4057 relationship between a struct and its fields.
4058 build_duplicate_type is another solution (as used in
4059 handle_transparent_union_attribute), but that doesn't play well
4060 with the stronger C++ type identity model. */
4061 if (TREE_CODE (ttype) == RECORD_TYPE
4062 || TREE_CODE (ttype) == UNION_TYPE
4063 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4064 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4065 {
4066 warning (OPT_Wattributes,
4067 "ignoring attributes applied to %qT after definition",
4068 TYPE_MAIN_VARIANT (ttype));
4069 return build_qualified_type (ttype, quals);
4070 }
4071
4072 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4073 ntype = build_distinct_type_copy (ttype);
4074
4075 TYPE_ATTRIBUTES (ntype) = attribute;
4076
4077 hashcode = iterative_hash_object (code, hashcode);
4078 if (TREE_TYPE (ntype))
4079 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4080 hashcode);
4081 hashcode = attribute_hash_list (attribute, hashcode);
4082
4083 switch (TREE_CODE (ntype))
4084 {
4085 case FUNCTION_TYPE:
4086 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4087 break;
4088 case ARRAY_TYPE:
4089 if (TYPE_DOMAIN (ntype))
4090 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4091 hashcode);
4092 break;
4093 case INTEGER_TYPE:
4094 hashcode = iterative_hash_object
4095 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4096 hashcode = iterative_hash_object
4097 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4098 break;
4099 case REAL_TYPE:
4100 case FIXED_POINT_TYPE:
4101 {
4102 unsigned int precision = TYPE_PRECISION (ntype);
4103 hashcode = iterative_hash_object (precision, hashcode);
4104 }
4105 break;
4106 default:
4107 break;
4108 }
4109
4110 ntype = type_hash_canon (hashcode, ntype);
4111
4112 /* If the target-dependent attributes make NTYPE different from
4113 its canonical type, we will need to use structural equality
4114 checks for this type. */
4115 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4116 || !targetm.comp_type_attributes (ntype, ttype))
4117 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4118 else if (TYPE_CANONICAL (ntype) == ntype)
4119 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4120
4121 ttype = build_qualified_type (ntype, quals);
4122 }
4123 else if (TYPE_QUALS (ttype) != quals)
4124 ttype = build_qualified_type (ttype, quals);
4125
4126 return ttype;
4127 }
4128
4129
4130 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4131 is ATTRIBUTE.
4132
4133 Record such modified types already made so we don't make duplicates. */
4134
4135 tree
4136 build_type_attribute_variant (tree ttype, tree attribute)
4137 {
4138 return build_type_attribute_qual_variant (ttype, attribute,
4139 TYPE_QUALS (ttype));
4140 }
4141
4142
4143 /* Reset all the fields in a binfo node BINFO. We only keep
4144 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4145
4146 static void
4147 free_lang_data_in_binfo (tree binfo)
4148 {
4149 unsigned i;
4150 tree t;
4151
4152 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4153
4154 BINFO_OFFSET (binfo) = NULL_TREE;
4155 BINFO_VTABLE (binfo) = NULL_TREE;
4156 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
4157 BINFO_BASE_ACCESSES (binfo) = NULL;
4158 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4159 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4160 BINFO_VPTR_FIELD (binfo) = NULL_TREE;
4161
4162 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (binfo), i, t); i++)
4163 free_lang_data_in_binfo (t);
4164 }
4165
4166
4167 /* Reset all language specific information still present in TYPE. */
4168
4169 static void
4170 free_lang_data_in_type (tree type)
4171 {
4172 gcc_assert (TYPE_P (type));
4173
4174 /* Fill in the alias-set. We need to at least track zeroness here
4175 for correctness. */
4176 if (lang_hooks.get_alias_set (type) == 0)
4177 TYPE_ALIAS_SET (type) = 0;
4178
4179 /* Give the FE a chance to remove its own data first. */
4180 lang_hooks.free_lang_data (type);
4181
4182 TREE_LANG_FLAG_0 (type) = 0;
4183 TREE_LANG_FLAG_1 (type) = 0;
4184 TREE_LANG_FLAG_2 (type) = 0;
4185 TREE_LANG_FLAG_3 (type) = 0;
4186 TREE_LANG_FLAG_4 (type) = 0;
4187 TREE_LANG_FLAG_5 (type) = 0;
4188 TREE_LANG_FLAG_6 (type) = 0;
4189
4190 if (TREE_CODE (type) == FUNCTION_TYPE)
4191 {
4192 /* Remove the const and volatile qualifiers from arguments. The
4193 C++ front end removes them, but the C front end does not,
4194 leading to false ODR violation errors when merging two
4195 instances of the same function signature compiled by
4196 different front ends. */
4197 tree p;
4198
4199 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4200 {
4201 tree arg_type = TREE_VALUE (p);
4202
4203 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4204 {
4205 int quals = TYPE_QUALS (arg_type)
4206 & ~TYPE_QUAL_CONST
4207 & ~TYPE_QUAL_VOLATILE;
4208 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4209 free_lang_data_in_type (TREE_VALUE (p));
4210 }
4211 }
4212 }
4213
4214 /* Remove members that are not actually FIELD_DECLs from the field
4215 list of an aggregate. These occur in C++. */
4216 if (RECORD_OR_UNION_TYPE_P (type))
4217 {
4218 tree prev, member;
4219
4220 /* Note that TYPE_FIELDS can be shared across distinct
4221 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4222 to be removed, we cannot set its TREE_CHAIN to NULL.
4223 Otherwise, we would not be able to find all the other fields
4224 in the other instances of this TREE_TYPE.
4225
4226 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4227 prev = NULL_TREE;
4228 member = TYPE_FIELDS (type);
4229 while (member)
4230 {
4231 if (TREE_CODE (member) == FIELD_DECL)
4232 {
4233 if (prev)
4234 TREE_CHAIN (prev) = member;
4235 else
4236 TYPE_FIELDS (type) = member;
4237 prev = member;
4238 }
4239
4240 member = TREE_CHAIN (member);
4241 }
4242
4243 if (prev)
4244 TREE_CHAIN (prev) = NULL_TREE;
4245 else
4246 TYPE_FIELDS (type) = NULL_TREE;
4247
4248 TYPE_METHODS (type) = NULL_TREE;
4249 if (TYPE_BINFO (type))
4250 free_lang_data_in_binfo (TYPE_BINFO (type));
4251 }
4252 else
4253 {
4254 /* For non-aggregate types, clear out the language slot (which
4255 overloads TYPE_BINFO). */
4256 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4257 }
4258
4259 TYPE_CONTEXT (type) = NULL_TREE;
4260 TYPE_STUB_DECL (type) = NULL_TREE;
4261 }
4262
4263
4264 /* Return true if DECL may need an assembler name to be set. */
4265
4266 static inline bool
4267 need_assembler_name_p (tree decl)
4268 {
4269 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4270 if (TREE_CODE (decl) != FUNCTION_DECL
4271 && TREE_CODE (decl) != VAR_DECL)
4272 return false;
4273
4274 /* If DECL already has its assembler name set, it does not need a
4275 new one. */
4276 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4277 || DECL_ASSEMBLER_NAME_SET_P (decl))
4278 return false;
4279
4280 /* For VAR_DECLs, only static, public and external symbols need an
4281 assembler name. */
4282 if (TREE_CODE (decl) == VAR_DECL
4283 && !TREE_STATIC (decl)
4284 && !TREE_PUBLIC (decl)
4285 && !DECL_EXTERNAL (decl))
4286 return false;
4287
4288 if (TREE_CODE (decl) == FUNCTION_DECL)
4289 {
4290 /* Do not set assembler name on builtins. Allow RTL expansion to
4291 decide whether to expand inline or via a regular call. */
4292 if (DECL_BUILT_IN (decl)
4293 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4294 return false;
4295
4296 /* Functions represented in the callgraph need an assembler name. */
4297 if (cgraph_node_for_decl (decl) != NULL)
4298 return true;
4299
4300 /* Unused and not public functions don't need an assembler name. */
4301 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4302 return false;
4303 }
4304
4305 return true;
4306 }
4307
4308
4309 /* Remove all the non-variable decls from BLOCK. LOCALS is the set of
4310 variables in DECL_STRUCT_FUNCTION (FN)->local_decls. Every decl
4311 in BLOCK that is not in LOCALS is removed. */
4312
4313 static void
4314 free_lang_data_in_block (tree fn, tree block, struct pointer_set_t *locals)
4315 {
4316 tree *tp, t;
4317
4318 tp = &BLOCK_VARS (block);
4319 while (*tp)
4320 {
4321 if (!pointer_set_contains (locals, *tp))
4322 *tp = TREE_CHAIN (*tp);
4323 else
4324 tp = &TREE_CHAIN (*tp);
4325 }
4326
4327 for (t = BLOCK_SUBBLOCKS (block); t; t = BLOCK_CHAIN (t))
4328 free_lang_data_in_block (fn, t, locals);
4329 }
4330
4331
4332 /* Reset all language specific information still present in symbol
4333 DECL. */
4334
4335 static void
4336 free_lang_data_in_decl (tree decl)
4337 {
4338 gcc_assert (DECL_P (decl));
4339
4340 /* Give the FE a chance to remove its own data first. */
4341 lang_hooks.free_lang_data (decl);
4342
4343 TREE_LANG_FLAG_0 (decl) = 0;
4344 TREE_LANG_FLAG_1 (decl) = 0;
4345 TREE_LANG_FLAG_2 (decl) = 0;
4346 TREE_LANG_FLAG_3 (decl) = 0;
4347 TREE_LANG_FLAG_4 (decl) = 0;
4348 TREE_LANG_FLAG_5 (decl) = 0;
4349 TREE_LANG_FLAG_6 (decl) = 0;
4350
4351 /* Identifiers need not have a type. */
4352 if (DECL_NAME (decl))
4353 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4354
4355 /* Ignore any intervening types, because we are going to clear their
4356 TYPE_CONTEXT fields. */
4357 if (TREE_CODE (decl) != FIELD_DECL)
4358 DECL_CONTEXT (decl) = decl_function_context (decl);
4359
4360 if (DECL_CONTEXT (decl)
4361 && TREE_CODE (DECL_CONTEXT (decl)) == NAMESPACE_DECL)
4362 DECL_CONTEXT (decl) = NULL_TREE;
4363
4364 if (TREE_CODE (decl) == VAR_DECL)
4365 {
4366 tree context = DECL_CONTEXT (decl);
4367
4368 if (context)
4369 {
4370 enum tree_code code = TREE_CODE (context);
4371 if (code == FUNCTION_DECL && DECL_ABSTRACT (context))
4372 {
4373 /* Do not clear the decl context here, that will promote
4374 all vars to global ones. */
4375 DECL_INITIAL (decl) = NULL_TREE;
4376 }
4377
4378 if (TREE_STATIC (decl))
4379 DECL_CONTEXT (decl) = NULL_TREE;
4380 }
4381 }
4382
4383 if (TREE_CODE (decl) == PARM_DECL
4384 || TREE_CODE (decl) == FIELD_DECL
4385 || TREE_CODE (decl) == RESULT_DECL)
4386 {
4387 tree unit_size = DECL_SIZE_UNIT (decl);
4388 tree size = DECL_SIZE (decl);
4389 if ((unit_size && TREE_CODE (unit_size) != INTEGER_CST)
4390 || (size && TREE_CODE (size) != INTEGER_CST))
4391 {
4392 DECL_SIZE_UNIT (decl) = NULL_TREE;
4393 DECL_SIZE (decl) = NULL_TREE;
4394 }
4395
4396 if (TREE_CODE (decl) == FIELD_DECL
4397 && DECL_FIELD_OFFSET (decl)
4398 && TREE_CODE (DECL_FIELD_OFFSET (decl)) != INTEGER_CST)
4399 DECL_FIELD_OFFSET (decl) = NULL_TREE;
4400
4401 /* DECL_FCONTEXT is only used for debug info generation. */
4402 if (TREE_CODE (decl) == FIELD_DECL)
4403 DECL_FCONTEXT (decl) = NULL_TREE;
4404 }
4405 else if (TREE_CODE (decl) == FUNCTION_DECL)
4406 {
4407 if (gimple_has_body_p (decl))
4408 {
4409 tree t;
4410 struct pointer_set_t *locals;
4411
4412 /* If DECL has a gimple body, then the context for its
4413 arguments must be DECL. Otherwise, it doesn't really
4414 matter, as we will not be emitting any code for DECL. In
4415 general, there may be other instances of DECL created by
4416 the front end and since PARM_DECLs are generally shared,
4417 their DECL_CONTEXT changes as the replicas of DECL are
4418 created. The only time where DECL_CONTEXT is important
4419 is for the FUNCTION_DECLs that have a gimple body (since
4420 the PARM_DECL will be used in the function's body). */
4421 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4422 DECL_CONTEXT (t) = decl;
4423
4424 /* Collect all the symbols declared in DECL. */
4425 locals = pointer_set_create ();
4426 t = DECL_STRUCT_FUNCTION (decl)->local_decls;
4427 for (; t; t = TREE_CHAIN (t))
4428 {
4429 pointer_set_insert (locals, TREE_VALUE (t));
4430
4431 /* All the local symbols should have DECL as their
4432 context. */
4433 DECL_CONTEXT (TREE_VALUE (t)) = decl;
4434 }
4435
4436 /* Get rid of any decl not in local_decls. */
4437 free_lang_data_in_block (decl, DECL_INITIAL (decl), locals);
4438
4439 pointer_set_destroy (locals);
4440 }
4441
4442 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4443 At this point, it is not needed anymore. */
4444 DECL_SAVED_TREE (decl) = NULL_TREE;
4445 }
4446 else if (TREE_CODE (decl) == VAR_DECL)
4447 {
4448 tree expr = DECL_DEBUG_EXPR (decl);
4449 if (expr
4450 && TREE_CODE (expr) == VAR_DECL
4451 && !TREE_STATIC (expr) && !DECL_EXTERNAL (expr))
4452 SET_DECL_DEBUG_EXPR (decl, NULL_TREE);
4453
4454 if (DECL_EXTERNAL (decl)
4455 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4456 DECL_INITIAL (decl) = NULL_TREE;
4457 }
4458 else if (TREE_CODE (decl) == TYPE_DECL)
4459 {
4460 DECL_INITIAL (decl) = NULL_TREE;
4461
4462 /* DECL_CONTEXT is overloaded as DECL_FIELD_CONTEXT for
4463 FIELD_DECLs, which should be preserved. Otherwise,
4464 we shouldn't be concerned with source-level lexical
4465 nesting beyond this point. */
4466 DECL_CONTEXT (decl) = NULL_TREE;
4467 }
4468 }
4469
4470
4471 /* Data used when collecting DECLs and TYPEs for language data removal. */
4472
4473 struct free_lang_data_d
4474 {
4475 /* Worklist to avoid excessive recursion. */
4476 VEC(tree,heap) *worklist;
4477
4478 /* Set of traversed objects. Used to avoid duplicate visits. */
4479 struct pointer_set_t *pset;
4480
4481 /* Array of symbols to process with free_lang_data_in_decl. */
4482 VEC(tree,heap) *decls;
4483
4484 /* Array of types to process with free_lang_data_in_type. */
4485 VEC(tree,heap) *types;
4486 };
4487
4488
4489 /* Save all language fields needed to generate proper debug information
4490 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4491
4492 static void
4493 save_debug_info_for_decl (tree t)
4494 {
4495 /*struct saved_debug_info_d *sdi;*/
4496
4497 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4498
4499 /* FIXME. Partial implementation for saving debug info removed. */
4500 }
4501
4502
4503 /* Save all language fields needed to generate proper debug information
4504 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4505
4506 static void
4507 save_debug_info_for_type (tree t)
4508 {
4509 /*struct saved_debug_info_d *sdi;*/
4510
4511 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4512
4513 /* FIXME. Partial implementation for saving debug info removed. */
4514 }
4515
4516
4517 /* Add type or decl T to one of the list of tree nodes that need their
4518 language data removed. The lists are held inside FLD. */
4519
4520 static void
4521 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4522 {
4523 if (DECL_P (t))
4524 {
4525 VEC_safe_push (tree, heap, fld->decls, t);
4526 if (debug_info_level > DINFO_LEVEL_TERSE)
4527 save_debug_info_for_decl (t);
4528 }
4529 else if (TYPE_P (t))
4530 {
4531 VEC_safe_push (tree, heap, fld->types, t);
4532 if (debug_info_level > DINFO_LEVEL_TERSE)
4533 save_debug_info_for_type (t);
4534 }
4535 else
4536 gcc_unreachable ();
4537 }
4538
4539 /* Push tree node T into FLD->WORKLIST. */
4540
4541 static inline void
4542 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4543 {
4544 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4545 VEC_safe_push (tree, heap, fld->worklist, (t));
4546 }
4547
4548
4549 /* Operand callback helper for free_lang_data_in_node. *TP is the
4550 subtree operand being considered. */
4551
4552 static tree
4553 find_decls_types_r (tree *tp, int *ws, void *data)
4554 {
4555 tree t = *tp;
4556 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4557
4558 if (TREE_CODE (t) == TREE_LIST)
4559 return NULL_TREE;
4560
4561 /* Language specific nodes will be removed, so there is no need
4562 to gather anything under them. */
4563 if (is_lang_specific (t))
4564 {
4565 *ws = 0;
4566 return NULL_TREE;
4567 }
4568
4569 if (DECL_P (t))
4570 {
4571 /* Note that walk_tree does not traverse every possible field in
4572 decls, so we have to do our own traversals here. */
4573 add_tree_to_fld_list (t, fld);
4574
4575 fld_worklist_push (DECL_NAME (t), fld);
4576 fld_worklist_push (DECL_CONTEXT (t), fld);
4577 fld_worklist_push (DECL_SIZE (t), fld);
4578 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4579
4580 /* We are going to remove everything under DECL_INITIAL for
4581 TYPE_DECLs. No point walking them. */
4582 if (TREE_CODE (t) != TYPE_DECL)
4583 fld_worklist_push (DECL_INITIAL (t), fld);
4584
4585 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4586 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4587
4588 if (TREE_CODE (t) == FUNCTION_DECL)
4589 {
4590 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4591 fld_worklist_push (DECL_RESULT (t), fld);
4592 }
4593 else if (TREE_CODE (t) == TYPE_DECL)
4594 {
4595 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4596 fld_worklist_push (DECL_VINDEX (t), fld);
4597 }
4598 else if (TREE_CODE (t) == FIELD_DECL)
4599 {
4600 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4601 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4602 fld_worklist_push (DECL_QUALIFIER (t), fld);
4603 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4604 fld_worklist_push (DECL_FCONTEXT (t), fld);
4605 }
4606 else if (TREE_CODE (t) == VAR_DECL)
4607 {
4608 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4609 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4610 }
4611
4612 if (TREE_CODE (t) != FIELD_DECL)
4613 fld_worklist_push (TREE_CHAIN (t), fld);
4614 *ws = 0;
4615 }
4616 else if (TYPE_P (t))
4617 {
4618 /* Note that walk_tree does not traverse every possible field in
4619 types, so we have to do our own traversals here. */
4620 add_tree_to_fld_list (t, fld);
4621
4622 if (!RECORD_OR_UNION_TYPE_P (t))
4623 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4624 fld_worklist_push (TYPE_SIZE (t), fld);
4625 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4626 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4627 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4628 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4629 fld_worklist_push (TYPE_NAME (t), fld);
4630 fld_worklist_push (TYPE_MINVAL (t), fld);
4631 if (!RECORD_OR_UNION_TYPE_P (t))
4632 fld_worklist_push (TYPE_MAXVAL (t), fld);
4633 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4634 fld_worklist_push (TYPE_NEXT_VARIANT (t), fld);
4635 fld_worklist_push (TYPE_CONTEXT (t), fld);
4636 fld_worklist_push (TYPE_CANONICAL (t), fld);
4637
4638 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4639 {
4640 unsigned i;
4641 tree tem;
4642 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4643 i, tem); ++i)
4644 fld_worklist_push (TREE_TYPE (tem), fld);
4645 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4646 if (tem
4647 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4648 && TREE_CODE (tem) == TREE_LIST)
4649 do
4650 {
4651 fld_worklist_push (TREE_VALUE (tem), fld);
4652 tem = TREE_CHAIN (tem);
4653 }
4654 while (tem);
4655 }
4656 if (RECORD_OR_UNION_TYPE_P (t))
4657 {
4658 tree tem;
4659 /* Push all TYPE_FIELDS - there can be interleaving interesting
4660 and non-interesting things. */
4661 tem = TYPE_FIELDS (t);
4662 while (tem)
4663 {
4664 if (TREE_CODE (tem) == FIELD_DECL)
4665 fld_worklist_push (tem, fld);
4666 tem = TREE_CHAIN (tem);
4667 }
4668 }
4669
4670 fld_worklist_push (TREE_CHAIN (t), fld);
4671 *ws = 0;
4672 }
4673
4674 fld_worklist_push (TREE_TYPE (t), fld);
4675
4676 return NULL_TREE;
4677 }
4678
4679
4680 /* Find decls and types in T. */
4681
4682 static void
4683 find_decls_types (tree t, struct free_lang_data_d *fld)
4684 {
4685 while (1)
4686 {
4687 if (!pointer_set_contains (fld->pset, t))
4688 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4689 if (VEC_empty (tree, fld->worklist))
4690 break;
4691 t = VEC_pop (tree, fld->worklist);
4692 }
4693 }
4694
4695 /* Translate all the types in LIST with the corresponding runtime
4696 types. */
4697
4698 static tree
4699 get_eh_types_for_runtime (tree list)
4700 {
4701 tree head, prev;
4702
4703 if (list == NULL_TREE)
4704 return NULL_TREE;
4705
4706 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4707 prev = head;
4708 list = TREE_CHAIN (list);
4709 while (list)
4710 {
4711 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4712 TREE_CHAIN (prev) = n;
4713 prev = TREE_CHAIN (prev);
4714 list = TREE_CHAIN (list);
4715 }
4716
4717 return head;
4718 }
4719
4720
4721 /* Find decls and types referenced in EH region R and store them in
4722 FLD->DECLS and FLD->TYPES. */
4723
4724 static void
4725 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4726 {
4727 switch (r->type)
4728 {
4729 case ERT_CLEANUP:
4730 break;
4731
4732 case ERT_TRY:
4733 {
4734 eh_catch c;
4735
4736 /* The types referenced in each catch must first be changed to the
4737 EH types used at runtime. This removes references to FE types
4738 in the region. */
4739 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4740 {
4741 c->type_list = get_eh_types_for_runtime (c->type_list);
4742 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4743 }
4744 }
4745 break;
4746
4747 case ERT_ALLOWED_EXCEPTIONS:
4748 r->u.allowed.type_list
4749 = get_eh_types_for_runtime (r->u.allowed.type_list);
4750 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4751 break;
4752
4753 case ERT_MUST_NOT_THROW:
4754 walk_tree (&r->u.must_not_throw.failure_decl,
4755 find_decls_types_r, fld, fld->pset);
4756 break;
4757 }
4758 }
4759
4760
4761 /* Find decls and types referenced in cgraph node N and store them in
4762 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4763 look for *every* kind of DECL and TYPE node reachable from N,
4764 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4765 NAMESPACE_DECLs, etc). */
4766
4767 static void
4768 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4769 {
4770 basic_block bb;
4771 struct function *fn;
4772 tree t;
4773
4774 find_decls_types (n->decl, fld);
4775
4776 if (!gimple_has_body_p (n->decl))
4777 return;
4778
4779 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4780
4781 fn = DECL_STRUCT_FUNCTION (n->decl);
4782
4783 /* Traverse locals. */
4784 for (t = fn->local_decls; t; t = TREE_CHAIN (t))
4785 find_decls_types (TREE_VALUE (t), fld);
4786
4787 /* Traverse EH regions in FN. */
4788 {
4789 eh_region r;
4790 FOR_ALL_EH_REGION_FN (r, fn)
4791 find_decls_types_in_eh_region (r, fld);
4792 }
4793
4794 /* Traverse every statement in FN. */
4795 FOR_EACH_BB_FN (bb, fn)
4796 {
4797 gimple_stmt_iterator si;
4798 unsigned i;
4799
4800 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4801 {
4802 gimple phi = gsi_stmt (si);
4803
4804 for (i = 0; i < gimple_phi_num_args (phi); i++)
4805 {
4806 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4807 find_decls_types (*arg_p, fld);
4808 }
4809 }
4810
4811 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4812 {
4813 gimple stmt = gsi_stmt (si);
4814
4815 for (i = 0; i < gimple_num_ops (stmt); i++)
4816 {
4817 tree arg = gimple_op (stmt, i);
4818 find_decls_types (arg, fld);
4819 }
4820 }
4821 }
4822 }
4823
4824
4825 /* Find decls and types referenced in varpool node N and store them in
4826 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4827 look for *every* kind of DECL and TYPE node reachable from N,
4828 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4829 NAMESPACE_DECLs, etc). */
4830
4831 static void
4832 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4833 {
4834 find_decls_types (v->decl, fld);
4835 }
4836
4837
4838 /* Free language specific information for every operand and expression
4839 in every node of the call graph. This process operates in three stages:
4840
4841 1- Every callgraph node and varpool node is traversed looking for
4842 decls and types embedded in them. This is a more exhaustive
4843 search than that done by find_referenced_vars, because it will
4844 also collect individual fields, decls embedded in types, etc.
4845
4846 2- All the decls found are sent to free_lang_data_in_decl.
4847
4848 3- All the types found are sent to free_lang_data_in_type.
4849
4850 The ordering between decls and types is important because
4851 free_lang_data_in_decl sets assembler names, which includes
4852 mangling. So types cannot be freed up until assembler names have
4853 been set up. */
4854
4855 static void
4856 free_lang_data_in_cgraph (void)
4857 {
4858 struct cgraph_node *n;
4859 struct varpool_node *v;
4860 struct free_lang_data_d fld;
4861 tree t;
4862 unsigned i;
4863 alias_pair *p;
4864
4865 /* Initialize sets and arrays to store referenced decls and types. */
4866 fld.pset = pointer_set_create ();
4867 fld.worklist = NULL;
4868 fld.decls = VEC_alloc (tree, heap, 100);
4869 fld.types = VEC_alloc (tree, heap, 100);
4870
4871 /* Find decls and types in the body of every function in the callgraph. */
4872 for (n = cgraph_nodes; n; n = n->next)
4873 find_decls_types_in_node (n, &fld);
4874
4875 for (i = 0; VEC_iterate (alias_pair, alias_pairs, i, p); i++)
4876 find_decls_types (p->decl, &fld);
4877
4878 /* Find decls and types in every varpool symbol. */
4879 for (v = varpool_nodes_queue; v; v = v->next_needed)
4880 find_decls_types_in_var (v, &fld);
4881
4882 /* Set the assembler name on every decl found. We need to do this
4883 now because free_lang_data_in_decl will invalidate data needed
4884 for mangling. This breaks mangling on interdependent decls. */
4885 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4886 if (need_assembler_name_p (t))
4887 {
4888 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4889 diagnostics that use input_location to show locus
4890 information. The problem here is that, at this point,
4891 input_location is generally anchored to the end of the file
4892 (since the parser is long gone), so we don't have a good
4893 position to pin it to.
4894
4895 To alleviate this problem, this uses the location of T's
4896 declaration. Examples of this are
4897 testsuite/g++.dg/template/cond2.C and
4898 testsuite/g++.dg/template/pr35240.C. */
4899 location_t saved_location = input_location;
4900 input_location = DECL_SOURCE_LOCATION (t);
4901
4902 decl_assembler_name (t);
4903
4904 input_location = saved_location;
4905 }
4906
4907 /* Traverse every decl found freeing its language data. */
4908 for (i = 0; VEC_iterate (tree, fld.decls, i, t); i++)
4909 free_lang_data_in_decl (t);
4910
4911 /* Traverse every type found freeing its language data. */
4912 for (i = 0; VEC_iterate (tree, fld.types, i, t); i++)
4913 free_lang_data_in_type (t);
4914
4915 pointer_set_destroy (fld.pset);
4916 VEC_free (tree, heap, fld.worklist);
4917 VEC_free (tree, heap, fld.decls);
4918 VEC_free (tree, heap, fld.types);
4919 }
4920
4921
4922 /* Free resources that are used by FE but are not needed once they are done. */
4923
4924 static unsigned
4925 free_lang_data (void)
4926 {
4927 /* Traverse the IL resetting language specific information for
4928 operands, expressions, etc. */
4929 free_lang_data_in_cgraph ();
4930
4931 /* Create gimple variants for common types. */
4932 ptrdiff_type_node = integer_type_node;
4933 fileptr_type_node = ptr_type_node;
4934 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
4935 || (TYPE_MODE (boolean_type_node)
4936 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
4937 || TYPE_PRECISION (boolean_type_node) != 1
4938 || !TYPE_UNSIGNED (boolean_type_node))
4939 {
4940 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4941 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4942 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
4943 TYPE_PRECISION (boolean_type_node) = 1;
4944 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4945 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4946 }
4947
4948 /* Unify char_type_node with its properly signed variant. */
4949 if (TYPE_UNSIGNED (char_type_node))
4950 unsigned_char_type_node = char_type_node;
4951 else
4952 signed_char_type_node = char_type_node;
4953
4954 /* Reset some langhooks. */
4955 lang_hooks.callgraph.analyze_expr = NULL;
4956 lang_hooks.types_compatible_p = NULL;
4957 lang_hooks.dwarf_name = lhd_dwarf_name;
4958 lang_hooks.decl_printable_name = gimple_decl_printable_name;
4959 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
4960 lang_hooks.fold_obj_type_ref = gimple_fold_obj_type_ref;
4961
4962 /* Reset diagnostic machinery. */
4963 diagnostic_starter (global_dc) = default_diagnostic_starter;
4964 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
4965 diagnostic_format_decoder (global_dc) = default_tree_printer;
4966
4967 /* FIXME. We remove sufficient language data that the debug
4968 info writer gets completely confused. Disable debug information
4969 for now. */
4970 debug_info_level = DINFO_LEVEL_NONE;
4971 write_symbols = NO_DEBUG;
4972 debug_hooks = &do_nothing_debug_hooks;
4973
4974 return 0;
4975 }
4976
4977
4978 /* Gate function for free_lang_data. */
4979
4980 static bool
4981 gate_free_lang_data (void)
4982 {
4983 /* FIXME. Remove after save_debug_info is working. */
4984 return (flag_generate_lto
4985 || (!in_lto_p
4986 && !flag_gtoggle && debug_info_level <= DINFO_LEVEL_TERSE));
4987 }
4988
4989
4990 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
4991 {
4992 {
4993 SIMPLE_IPA_PASS,
4994 NULL, /* name */
4995 gate_free_lang_data, /* gate */
4996 free_lang_data, /* execute */
4997 NULL, /* sub */
4998 NULL, /* next */
4999 0, /* static_pass_number */
5000 TV_IPA_FREE_LANG_DATA, /* tv_id */
5001 0, /* properties_required */
5002 0, /* properties_provided */
5003 0, /* properties_destroyed */
5004 0, /* todo_flags_start */
5005 TODO_ggc_collect /* todo_flags_finish */
5006 }
5007 };
5008
5009 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5010 or zero if not.
5011
5012 We try both `text' and `__text__', ATTR may be either one. */
5013 /* ??? It might be a reasonable simplification to require ATTR to be only
5014 `text'. One might then also require attribute lists to be stored in
5015 their canonicalized form. */
5016
5017 static int
5018 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5019 {
5020 int ident_len;
5021 const char *p;
5022
5023 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5024 return 0;
5025
5026 p = IDENTIFIER_POINTER (ident);
5027 ident_len = IDENTIFIER_LENGTH (ident);
5028
5029 if (ident_len == attr_len
5030 && strcmp (attr, p) == 0)
5031 return 1;
5032
5033 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5034 if (attr[0] == '_')
5035 {
5036 gcc_assert (attr[1] == '_');
5037 gcc_assert (attr[attr_len - 2] == '_');
5038 gcc_assert (attr[attr_len - 1] == '_');
5039 if (ident_len == attr_len - 4
5040 && strncmp (attr + 2, p, attr_len - 4) == 0)
5041 return 1;
5042 }
5043 else
5044 {
5045 if (ident_len == attr_len + 4
5046 && p[0] == '_' && p[1] == '_'
5047 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5048 && strncmp (attr, p + 2, attr_len) == 0)
5049 return 1;
5050 }
5051
5052 return 0;
5053 }
5054
5055 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5056 or zero if not.
5057
5058 We try both `text' and `__text__', ATTR may be either one. */
5059
5060 int
5061 is_attribute_p (const char *attr, const_tree ident)
5062 {
5063 return is_attribute_with_length_p (attr, strlen (attr), ident);
5064 }
5065
5066 /* Given an attribute name and a list of attributes, return a pointer to the
5067 attribute's list element if the attribute is part of the list, or NULL_TREE
5068 if not found. If the attribute appears more than once, this only
5069 returns the first occurrence; the TREE_CHAIN of the return value should
5070 be passed back in if further occurrences are wanted. */
5071
5072 tree
5073 lookup_attribute (const char *attr_name, tree list)
5074 {
5075 tree l;
5076 size_t attr_len = strlen (attr_name);
5077
5078 for (l = list; l; l = TREE_CHAIN (l))
5079 {
5080 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5081 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5082 return l;
5083 }
5084 return NULL_TREE;
5085 }
5086
5087 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5088 modified list. */
5089
5090 tree
5091 remove_attribute (const char *attr_name, tree list)
5092 {
5093 tree *p;
5094 size_t attr_len = strlen (attr_name);
5095
5096 for (p = &list; *p; )
5097 {
5098 tree l = *p;
5099 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5100 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5101 *p = TREE_CHAIN (l);
5102 else
5103 p = &TREE_CHAIN (l);
5104 }
5105
5106 return list;
5107 }
5108
5109 /* Return an attribute list that is the union of a1 and a2. */
5110
5111 tree
5112 merge_attributes (tree a1, tree a2)
5113 {
5114 tree attributes;
5115
5116 /* Either one unset? Take the set one. */
5117
5118 if ((attributes = a1) == 0)
5119 attributes = a2;
5120
5121 /* One that completely contains the other? Take it. */
5122
5123 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5124 {
5125 if (attribute_list_contained (a2, a1))
5126 attributes = a2;
5127 else
5128 {
5129 /* Pick the longest list, and hang on the other list. */
5130
5131 if (list_length (a1) < list_length (a2))
5132 attributes = a2, a2 = a1;
5133
5134 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5135 {
5136 tree a;
5137 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5138 attributes);
5139 a != NULL_TREE;
5140 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5141 TREE_CHAIN (a)))
5142 {
5143 if (TREE_VALUE (a) != NULL
5144 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5145 && TREE_VALUE (a2) != NULL
5146 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5147 {
5148 if (simple_cst_list_equal (TREE_VALUE (a),
5149 TREE_VALUE (a2)) == 1)
5150 break;
5151 }
5152 else if (simple_cst_equal (TREE_VALUE (a),
5153 TREE_VALUE (a2)) == 1)
5154 break;
5155 }
5156 if (a == NULL_TREE)
5157 {
5158 a1 = copy_node (a2);
5159 TREE_CHAIN (a1) = attributes;
5160 attributes = a1;
5161 }
5162 }
5163 }
5164 }
5165 return attributes;
5166 }
5167
5168 /* Given types T1 and T2, merge their attributes and return
5169 the result. */
5170
5171 tree
5172 merge_type_attributes (tree t1, tree t2)
5173 {
5174 return merge_attributes (TYPE_ATTRIBUTES (t1),
5175 TYPE_ATTRIBUTES (t2));
5176 }
5177
5178 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5179 the result. */
5180
5181 tree
5182 merge_decl_attributes (tree olddecl, tree newdecl)
5183 {
5184 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5185 DECL_ATTRIBUTES (newdecl));
5186 }
5187
5188 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5189
5190 /* Specialization of merge_decl_attributes for various Windows targets.
5191
5192 This handles the following situation:
5193
5194 __declspec (dllimport) int foo;
5195 int foo;
5196
5197 The second instance of `foo' nullifies the dllimport. */
5198
5199 tree
5200 merge_dllimport_decl_attributes (tree old, tree new_tree)
5201 {
5202 tree a;
5203 int delete_dllimport_p = 1;
5204
5205 /* What we need to do here is remove from `old' dllimport if it doesn't
5206 appear in `new'. dllimport behaves like extern: if a declaration is
5207 marked dllimport and a definition appears later, then the object
5208 is not dllimport'd. We also remove a `new' dllimport if the old list
5209 contains dllexport: dllexport always overrides dllimport, regardless
5210 of the order of declaration. */
5211 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5212 delete_dllimport_p = 0;
5213 else if (DECL_DLLIMPORT_P (new_tree)
5214 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5215 {
5216 DECL_DLLIMPORT_P (new_tree) = 0;
5217 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5218 "dllimport ignored", new_tree);
5219 }
5220 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5221 {
5222 /* Warn about overriding a symbol that has already been used, e.g.:
5223 extern int __attribute__ ((dllimport)) foo;
5224 int* bar () {return &foo;}
5225 int foo;
5226 */
5227 if (TREE_USED (old))
5228 {
5229 warning (0, "%q+D redeclared without dllimport attribute "
5230 "after being referenced with dll linkage", new_tree);
5231 /* If we have used a variable's address with dllimport linkage,
5232 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5233 decl may already have had TREE_CONSTANT computed.
5234 We still remove the attribute so that assembler code refers
5235 to '&foo rather than '_imp__foo'. */
5236 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5237 DECL_DLLIMPORT_P (new_tree) = 1;
5238 }
5239
5240 /* Let an inline definition silently override the external reference,
5241 but otherwise warn about attribute inconsistency. */
5242 else if (TREE_CODE (new_tree) == VAR_DECL
5243 || !DECL_DECLARED_INLINE_P (new_tree))
5244 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5245 "previous dllimport ignored", new_tree);
5246 }
5247 else
5248 delete_dllimport_p = 0;
5249
5250 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5251
5252 if (delete_dllimport_p)
5253 {
5254 tree prev, t;
5255 const size_t attr_len = strlen ("dllimport");
5256
5257 /* Scan the list for dllimport and delete it. */
5258 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5259 {
5260 if (is_attribute_with_length_p ("dllimport", attr_len,
5261 TREE_PURPOSE (t)))
5262 {
5263 if (prev == NULL_TREE)
5264 a = TREE_CHAIN (a);
5265 else
5266 TREE_CHAIN (prev) = TREE_CHAIN (t);
5267 break;
5268 }
5269 }
5270 }
5271
5272 return a;
5273 }
5274
5275 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5276 struct attribute_spec.handler. */
5277
5278 tree
5279 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5280 bool *no_add_attrs)
5281 {
5282 tree node = *pnode;
5283 bool is_dllimport;
5284
5285 /* These attributes may apply to structure and union types being created,
5286 but otherwise should pass to the declaration involved. */
5287 if (!DECL_P (node))
5288 {
5289 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5290 | (int) ATTR_FLAG_ARRAY_NEXT))
5291 {
5292 *no_add_attrs = true;
5293 return tree_cons (name, args, NULL_TREE);
5294 }
5295 if (TREE_CODE (node) == RECORD_TYPE
5296 || TREE_CODE (node) == UNION_TYPE)
5297 {
5298 node = TYPE_NAME (node);
5299 if (!node)
5300 return NULL_TREE;
5301 }
5302 else
5303 {
5304 warning (OPT_Wattributes, "%qE attribute ignored",
5305 name);
5306 *no_add_attrs = true;
5307 return NULL_TREE;
5308 }
5309 }
5310
5311 if (TREE_CODE (node) != FUNCTION_DECL
5312 && TREE_CODE (node) != VAR_DECL
5313 && TREE_CODE (node) != TYPE_DECL)
5314 {
5315 *no_add_attrs = true;
5316 warning (OPT_Wattributes, "%qE attribute ignored",
5317 name);
5318 return NULL_TREE;
5319 }
5320
5321 if (TREE_CODE (node) == TYPE_DECL
5322 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5323 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5324 {
5325 *no_add_attrs = true;
5326 warning (OPT_Wattributes, "%qE attribute ignored",
5327 name);
5328 return NULL_TREE;
5329 }
5330
5331 is_dllimport = is_attribute_p ("dllimport", name);
5332
5333 /* Report error on dllimport ambiguities seen now before they cause
5334 any damage. */
5335 if (is_dllimport)
5336 {
5337 /* Honor any target-specific overrides. */
5338 if (!targetm.valid_dllimport_attribute_p (node))
5339 *no_add_attrs = true;
5340
5341 else if (TREE_CODE (node) == FUNCTION_DECL
5342 && DECL_DECLARED_INLINE_P (node))
5343 {
5344 warning (OPT_Wattributes, "inline function %q+D declared as "
5345 " dllimport: attribute ignored", node);
5346 *no_add_attrs = true;
5347 }
5348 /* Like MS, treat definition of dllimported variables and
5349 non-inlined functions on declaration as syntax errors. */
5350 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5351 {
5352 error ("function %q+D definition is marked dllimport", node);
5353 *no_add_attrs = true;
5354 }
5355
5356 else if (TREE_CODE (node) == VAR_DECL)
5357 {
5358 if (DECL_INITIAL (node))
5359 {
5360 error ("variable %q+D definition is marked dllimport",
5361 node);
5362 *no_add_attrs = true;
5363 }
5364
5365 /* `extern' needn't be specified with dllimport.
5366 Specify `extern' now and hope for the best. Sigh. */
5367 DECL_EXTERNAL (node) = 1;
5368 /* Also, implicitly give dllimport'd variables declared within
5369 a function global scope, unless declared static. */
5370 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5371 TREE_PUBLIC (node) = 1;
5372 }
5373
5374 if (*no_add_attrs == false)
5375 DECL_DLLIMPORT_P (node) = 1;
5376 }
5377 else if (TREE_CODE (node) == FUNCTION_DECL
5378 && DECL_DECLARED_INLINE_P (node))
5379 /* An exported function, even if inline, must be emitted. */
5380 DECL_EXTERNAL (node) = 0;
5381
5382 /* Report error if symbol is not accessible at global scope. */
5383 if (!TREE_PUBLIC (node)
5384 && (TREE_CODE (node) == VAR_DECL
5385 || TREE_CODE (node) == FUNCTION_DECL))
5386 {
5387 error ("external linkage required for symbol %q+D because of "
5388 "%qE attribute", node, name);
5389 *no_add_attrs = true;
5390 }
5391
5392 /* A dllexport'd entity must have default visibility so that other
5393 program units (shared libraries or the main executable) can see
5394 it. A dllimport'd entity must have default visibility so that
5395 the linker knows that undefined references within this program
5396 unit can be resolved by the dynamic linker. */
5397 if (!*no_add_attrs)
5398 {
5399 if (DECL_VISIBILITY_SPECIFIED (node)
5400 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5401 error ("%qE implies default visibility, but %qD has already "
5402 "been declared with a different visibility",
5403 name, node);
5404 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5405 DECL_VISIBILITY_SPECIFIED (node) = 1;
5406 }
5407
5408 return NULL_TREE;
5409 }
5410
5411 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5412 \f
5413 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5414 of the various TYPE_QUAL values. */
5415
5416 static void
5417 set_type_quals (tree type, int type_quals)
5418 {
5419 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5420 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5421 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5422 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5423 }
5424
5425 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5426
5427 bool
5428 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5429 {
5430 return (TYPE_QUALS (cand) == type_quals
5431 && TYPE_NAME (cand) == TYPE_NAME (base)
5432 /* Apparently this is needed for Objective-C. */
5433 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5434 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5435 TYPE_ATTRIBUTES (base)));
5436 }
5437
5438 /* Return a version of the TYPE, qualified as indicated by the
5439 TYPE_QUALS, if one exists. If no qualified version exists yet,
5440 return NULL_TREE. */
5441
5442 tree
5443 get_qualified_type (tree type, int type_quals)
5444 {
5445 tree t;
5446
5447 if (TYPE_QUALS (type) == type_quals)
5448 return type;
5449
5450 /* Search the chain of variants to see if there is already one there just
5451 like the one we need to have. If so, use that existing one. We must
5452 preserve the TYPE_NAME, since there is code that depends on this. */
5453 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5454 if (check_qualified_type (t, type, type_quals))
5455 return t;
5456
5457 return NULL_TREE;
5458 }
5459
5460 /* Like get_qualified_type, but creates the type if it does not
5461 exist. This function never returns NULL_TREE. */
5462
5463 tree
5464 build_qualified_type (tree type, int type_quals)
5465 {
5466 tree t;
5467
5468 /* See if we already have the appropriate qualified variant. */
5469 t = get_qualified_type (type, type_quals);
5470
5471 /* If not, build it. */
5472 if (!t)
5473 {
5474 t = build_variant_type_copy (type);
5475 set_type_quals (t, type_quals);
5476
5477 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5478 /* Propagate structural equality. */
5479 SET_TYPE_STRUCTURAL_EQUALITY (t);
5480 else if (TYPE_CANONICAL (type) != type)
5481 /* Build the underlying canonical type, since it is different
5482 from TYPE. */
5483 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5484 type_quals);
5485 else
5486 /* T is its own canonical type. */
5487 TYPE_CANONICAL (t) = t;
5488
5489 }
5490
5491 return t;
5492 }
5493
5494 /* Create a new distinct copy of TYPE. The new type is made its own
5495 MAIN_VARIANT. If TYPE requires structural equality checks, the
5496 resulting type requires structural equality checks; otherwise, its
5497 TYPE_CANONICAL points to itself. */
5498
5499 tree
5500 build_distinct_type_copy (tree type)
5501 {
5502 tree t = copy_node (type);
5503
5504 TYPE_POINTER_TO (t) = 0;
5505 TYPE_REFERENCE_TO (t) = 0;
5506
5507 /* Set the canonical type either to a new equivalence class, or
5508 propagate the need for structural equality checks. */
5509 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5510 SET_TYPE_STRUCTURAL_EQUALITY (t);
5511 else
5512 TYPE_CANONICAL (t) = t;
5513
5514 /* Make it its own variant. */
5515 TYPE_MAIN_VARIANT (t) = t;
5516 TYPE_NEXT_VARIANT (t) = 0;
5517
5518 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5519 whose TREE_TYPE is not t. This can also happen in the Ada
5520 frontend when using subtypes. */
5521
5522 return t;
5523 }
5524
5525 /* Create a new variant of TYPE, equivalent but distinct. This is so
5526 the caller can modify it. TYPE_CANONICAL for the return type will
5527 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5528 are considered equal by the language itself (or that both types
5529 require structural equality checks). */
5530
5531 tree
5532 build_variant_type_copy (tree type)
5533 {
5534 tree t, m = TYPE_MAIN_VARIANT (type);
5535
5536 t = build_distinct_type_copy (type);
5537
5538 /* Since we're building a variant, assume that it is a non-semantic
5539 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5540 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5541
5542 /* Add the new type to the chain of variants of TYPE. */
5543 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5544 TYPE_NEXT_VARIANT (m) = t;
5545 TYPE_MAIN_VARIANT (t) = m;
5546
5547 return t;
5548 }
5549 \f
5550 /* Return true if the from tree in both tree maps are equal. */
5551
5552 int
5553 tree_map_base_eq (const void *va, const void *vb)
5554 {
5555 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5556 *const b = (const struct tree_map_base *) vb;
5557 return (a->from == b->from);
5558 }
5559
5560 /* Hash a from tree in a tree_map. */
5561
5562 unsigned int
5563 tree_map_base_hash (const void *item)
5564 {
5565 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5566 }
5567
5568 /* Return true if this tree map structure is marked for garbage collection
5569 purposes. We simply return true if the from tree is marked, so that this
5570 structure goes away when the from tree goes away. */
5571
5572 int
5573 tree_map_base_marked_p (const void *p)
5574 {
5575 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5576 }
5577
5578 unsigned int
5579 tree_map_hash (const void *item)
5580 {
5581 return (((const struct tree_map *) item)->hash);
5582 }
5583
5584 /* Return the initialization priority for DECL. */
5585
5586 priority_type
5587 decl_init_priority_lookup (tree decl)
5588 {
5589 struct tree_priority_map *h;
5590 struct tree_map_base in;
5591
5592 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5593 in.from = decl;
5594 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5595 return h ? h->init : DEFAULT_INIT_PRIORITY;
5596 }
5597
5598 /* Return the finalization priority for DECL. */
5599
5600 priority_type
5601 decl_fini_priority_lookup (tree decl)
5602 {
5603 struct tree_priority_map *h;
5604 struct tree_map_base in;
5605
5606 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5607 in.from = decl;
5608 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5609 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5610 }
5611
5612 /* Return the initialization and finalization priority information for
5613 DECL. If there is no previous priority information, a freshly
5614 allocated structure is returned. */
5615
5616 static struct tree_priority_map *
5617 decl_priority_info (tree decl)
5618 {
5619 struct tree_priority_map in;
5620 struct tree_priority_map *h;
5621 void **loc;
5622
5623 in.base.from = decl;
5624 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5625 h = (struct tree_priority_map *) *loc;
5626 if (!h)
5627 {
5628 h = GGC_CNEW (struct tree_priority_map);
5629 *loc = h;
5630 h->base.from = decl;
5631 h->init = DEFAULT_INIT_PRIORITY;
5632 h->fini = DEFAULT_INIT_PRIORITY;
5633 }
5634
5635 return h;
5636 }
5637
5638 /* Set the initialization priority for DECL to PRIORITY. */
5639
5640 void
5641 decl_init_priority_insert (tree decl, priority_type priority)
5642 {
5643 struct tree_priority_map *h;
5644
5645 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5646 h = decl_priority_info (decl);
5647 h->init = priority;
5648 }
5649
5650 /* Set the finalization priority for DECL to PRIORITY. */
5651
5652 void
5653 decl_fini_priority_insert (tree decl, priority_type priority)
5654 {
5655 struct tree_priority_map *h;
5656
5657 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5658 h = decl_priority_info (decl);
5659 h->fini = priority;
5660 }
5661
5662 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5663
5664 static void
5665 print_debug_expr_statistics (void)
5666 {
5667 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5668 (long) htab_size (debug_expr_for_decl),
5669 (long) htab_elements (debug_expr_for_decl),
5670 htab_collisions (debug_expr_for_decl));
5671 }
5672
5673 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5674
5675 static void
5676 print_value_expr_statistics (void)
5677 {
5678 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5679 (long) htab_size (value_expr_for_decl),
5680 (long) htab_elements (value_expr_for_decl),
5681 htab_collisions (value_expr_for_decl));
5682 }
5683
5684 /* Lookup a debug expression for FROM, and return it if we find one. */
5685
5686 tree
5687 decl_debug_expr_lookup (tree from)
5688 {
5689 struct tree_map *h, in;
5690 in.base.from = from;
5691
5692 h = (struct tree_map *) htab_find_with_hash (debug_expr_for_decl, &in,
5693 htab_hash_pointer (from));
5694 if (h)
5695 return h->to;
5696 return NULL_TREE;
5697 }
5698
5699 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5700
5701 void
5702 decl_debug_expr_insert (tree from, tree to)
5703 {
5704 struct tree_map *h;
5705 void **loc;
5706
5707 h = GGC_NEW (struct tree_map);
5708 h->hash = htab_hash_pointer (from);
5709 h->base.from = from;
5710 h->to = to;
5711 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
5712 *(struct tree_map **) loc = h;
5713 }
5714
5715 /* Lookup a value expression for FROM, and return it if we find one. */
5716
5717 tree
5718 decl_value_expr_lookup (tree from)
5719 {
5720 struct tree_map *h, in;
5721 in.base.from = from;
5722
5723 h = (struct tree_map *) htab_find_with_hash (value_expr_for_decl, &in,
5724 htab_hash_pointer (from));
5725 if (h)
5726 return h->to;
5727 return NULL_TREE;
5728 }
5729
5730 /* Insert a mapping FROM->TO in the value expression hashtable. */
5731
5732 void
5733 decl_value_expr_insert (tree from, tree to)
5734 {
5735 struct tree_map *h;
5736 void **loc;
5737
5738 h = GGC_NEW (struct tree_map);
5739 h->hash = htab_hash_pointer (from);
5740 h->base.from = from;
5741 h->to = to;
5742 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
5743 *(struct tree_map **) loc = h;
5744 }
5745
5746 /* Hashing of types so that we don't make duplicates.
5747 The entry point is `type_hash_canon'. */
5748
5749 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5750 with types in the TREE_VALUE slots), by adding the hash codes
5751 of the individual types. */
5752
5753 static unsigned int
5754 type_hash_list (const_tree list, hashval_t hashcode)
5755 {
5756 const_tree tail;
5757
5758 for (tail = list; tail; tail = TREE_CHAIN (tail))
5759 if (TREE_VALUE (tail) != error_mark_node)
5760 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5761 hashcode);
5762
5763 return hashcode;
5764 }
5765
5766 /* These are the Hashtable callback functions. */
5767
5768 /* Returns true iff the types are equivalent. */
5769
5770 static int
5771 type_hash_eq (const void *va, const void *vb)
5772 {
5773 const struct type_hash *const a = (const struct type_hash *) va,
5774 *const b = (const struct type_hash *) vb;
5775
5776 /* First test the things that are the same for all types. */
5777 if (a->hash != b->hash
5778 || TREE_CODE (a->type) != TREE_CODE (b->type)
5779 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5780 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5781 TYPE_ATTRIBUTES (b->type))
5782 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5783 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5784 || (TREE_CODE (a->type) != COMPLEX_TYPE
5785 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5786 return 0;
5787
5788 switch (TREE_CODE (a->type))
5789 {
5790 case VOID_TYPE:
5791 case COMPLEX_TYPE:
5792 case POINTER_TYPE:
5793 case REFERENCE_TYPE:
5794 return 1;
5795
5796 case VECTOR_TYPE:
5797 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5798
5799 case ENUMERAL_TYPE:
5800 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5801 && !(TYPE_VALUES (a->type)
5802 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5803 && TYPE_VALUES (b->type)
5804 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5805 && type_list_equal (TYPE_VALUES (a->type),
5806 TYPE_VALUES (b->type))))
5807 return 0;
5808
5809 /* ... fall through ... */
5810
5811 case INTEGER_TYPE:
5812 case REAL_TYPE:
5813 case BOOLEAN_TYPE:
5814 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5815 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5816 TYPE_MAX_VALUE (b->type)))
5817 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5818 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5819 TYPE_MIN_VALUE (b->type))));
5820
5821 case FIXED_POINT_TYPE:
5822 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5823
5824 case OFFSET_TYPE:
5825 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5826
5827 case METHOD_TYPE:
5828 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5829 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5830 || (TYPE_ARG_TYPES (a->type)
5831 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5832 && TYPE_ARG_TYPES (b->type)
5833 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5834 && type_list_equal (TYPE_ARG_TYPES (a->type),
5835 TYPE_ARG_TYPES (b->type)))));
5836
5837 case ARRAY_TYPE:
5838 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5839
5840 case RECORD_TYPE:
5841 case UNION_TYPE:
5842 case QUAL_UNION_TYPE:
5843 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5844 || (TYPE_FIELDS (a->type)
5845 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5846 && TYPE_FIELDS (b->type)
5847 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5848 && type_list_equal (TYPE_FIELDS (a->type),
5849 TYPE_FIELDS (b->type))));
5850
5851 case FUNCTION_TYPE:
5852 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5853 || (TYPE_ARG_TYPES (a->type)
5854 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5855 && TYPE_ARG_TYPES (b->type)
5856 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5857 && type_list_equal (TYPE_ARG_TYPES (a->type),
5858 TYPE_ARG_TYPES (b->type))))
5859 break;
5860 return 0;
5861
5862 default:
5863 return 0;
5864 }
5865
5866 if (lang_hooks.types.type_hash_eq != NULL)
5867 return lang_hooks.types.type_hash_eq (a->type, b->type);
5868
5869 return 1;
5870 }
5871
5872 /* Return the cached hash value. */
5873
5874 static hashval_t
5875 type_hash_hash (const void *item)
5876 {
5877 return ((const struct type_hash *) item)->hash;
5878 }
5879
5880 /* Look in the type hash table for a type isomorphic to TYPE.
5881 If one is found, return it. Otherwise return 0. */
5882
5883 tree
5884 type_hash_lookup (hashval_t hashcode, tree type)
5885 {
5886 struct type_hash *h, in;
5887
5888 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
5889 must call that routine before comparing TYPE_ALIGNs. */
5890 layout_type (type);
5891
5892 in.hash = hashcode;
5893 in.type = type;
5894
5895 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
5896 hashcode);
5897 if (h)
5898 return h->type;
5899 return NULL_TREE;
5900 }
5901
5902 /* Add an entry to the type-hash-table
5903 for a type TYPE whose hash code is HASHCODE. */
5904
5905 void
5906 type_hash_add (hashval_t hashcode, tree type)
5907 {
5908 struct type_hash *h;
5909 void **loc;
5910
5911 h = GGC_NEW (struct type_hash);
5912 h->hash = hashcode;
5913 h->type = type;
5914 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
5915 *loc = (void *)h;
5916 }
5917
5918 /* Given TYPE, and HASHCODE its hash code, return the canonical
5919 object for an identical type if one already exists.
5920 Otherwise, return TYPE, and record it as the canonical object.
5921
5922 To use this function, first create a type of the sort you want.
5923 Then compute its hash code from the fields of the type that
5924 make it different from other similar types.
5925 Then call this function and use the value. */
5926
5927 tree
5928 type_hash_canon (unsigned int hashcode, tree type)
5929 {
5930 tree t1;
5931
5932 /* The hash table only contains main variants, so ensure that's what we're
5933 being passed. */
5934 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
5935
5936 if (!lang_hooks.types.hash_types)
5937 return type;
5938
5939 /* See if the type is in the hash table already. If so, return it.
5940 Otherwise, add the type. */
5941 t1 = type_hash_lookup (hashcode, type);
5942 if (t1 != 0)
5943 {
5944 #ifdef GATHER_STATISTICS
5945 tree_node_counts[(int) t_kind]--;
5946 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
5947 #endif
5948 return t1;
5949 }
5950 else
5951 {
5952 type_hash_add (hashcode, type);
5953 return type;
5954 }
5955 }
5956
5957 /* See if the data pointed to by the type hash table is marked. We consider
5958 it marked if the type is marked or if a debug type number or symbol
5959 table entry has been made for the type. This reduces the amount of
5960 debugging output and eliminates that dependency of the debug output on
5961 the number of garbage collections. */
5962
5963 static int
5964 type_hash_marked_p (const void *p)
5965 {
5966 const_tree const type = ((const struct type_hash *) p)->type;
5967
5968 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
5969 }
5970
5971 static void
5972 print_type_hash_statistics (void)
5973 {
5974 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
5975 (long) htab_size (type_hash_table),
5976 (long) htab_elements (type_hash_table),
5977 htab_collisions (type_hash_table));
5978 }
5979
5980 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
5981 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
5982 by adding the hash codes of the individual attributes. */
5983
5984 static unsigned int
5985 attribute_hash_list (const_tree list, hashval_t hashcode)
5986 {
5987 const_tree tail;
5988
5989 for (tail = list; tail; tail = TREE_CHAIN (tail))
5990 /* ??? Do we want to add in TREE_VALUE too? */
5991 hashcode = iterative_hash_object
5992 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
5993 return hashcode;
5994 }
5995
5996 /* Given two lists of attributes, return true if list l2 is
5997 equivalent to l1. */
5998
5999 int
6000 attribute_list_equal (const_tree l1, const_tree l2)
6001 {
6002 return attribute_list_contained (l1, l2)
6003 && attribute_list_contained (l2, l1);
6004 }
6005
6006 /* Given two lists of attributes, return true if list L2 is
6007 completely contained within L1. */
6008 /* ??? This would be faster if attribute names were stored in a canonicalized
6009 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6010 must be used to show these elements are equivalent (which they are). */
6011 /* ??? It's not clear that attributes with arguments will always be handled
6012 correctly. */
6013
6014 int
6015 attribute_list_contained (const_tree l1, const_tree l2)
6016 {
6017 const_tree t1, t2;
6018
6019 /* First check the obvious, maybe the lists are identical. */
6020 if (l1 == l2)
6021 return 1;
6022
6023 /* Maybe the lists are similar. */
6024 for (t1 = l1, t2 = l2;
6025 t1 != 0 && t2 != 0
6026 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6027 && TREE_VALUE (t1) == TREE_VALUE (t2);
6028 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6029
6030 /* Maybe the lists are equal. */
6031 if (t1 == 0 && t2 == 0)
6032 return 1;
6033
6034 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6035 {
6036 const_tree attr;
6037 /* This CONST_CAST is okay because lookup_attribute does not
6038 modify its argument and the return value is assigned to a
6039 const_tree. */
6040 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6041 CONST_CAST_TREE(l1));
6042 attr != NULL_TREE;
6043 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6044 TREE_CHAIN (attr)))
6045 {
6046 if (TREE_VALUE (t2) != NULL
6047 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6048 && TREE_VALUE (attr) != NULL
6049 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6050 {
6051 if (simple_cst_list_equal (TREE_VALUE (t2),
6052 TREE_VALUE (attr)) == 1)
6053 break;
6054 }
6055 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6056 break;
6057 }
6058
6059 if (attr == 0)
6060 return 0;
6061 }
6062
6063 return 1;
6064 }
6065
6066 /* Given two lists of types
6067 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6068 return 1 if the lists contain the same types in the same order.
6069 Also, the TREE_PURPOSEs must match. */
6070
6071 int
6072 type_list_equal (const_tree l1, const_tree l2)
6073 {
6074 const_tree t1, t2;
6075
6076 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6077 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6078 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6079 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6080 && (TREE_TYPE (TREE_PURPOSE (t1))
6081 == TREE_TYPE (TREE_PURPOSE (t2))))))
6082 return 0;
6083
6084 return t1 == t2;
6085 }
6086
6087 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6088 given by TYPE. If the argument list accepts variable arguments,
6089 then this function counts only the ordinary arguments. */
6090
6091 int
6092 type_num_arguments (const_tree type)
6093 {
6094 int i = 0;
6095 tree t;
6096
6097 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6098 /* If the function does not take a variable number of arguments,
6099 the last element in the list will have type `void'. */
6100 if (VOID_TYPE_P (TREE_VALUE (t)))
6101 break;
6102 else
6103 ++i;
6104
6105 return i;
6106 }
6107
6108 /* Nonzero if integer constants T1 and T2
6109 represent the same constant value. */
6110
6111 int
6112 tree_int_cst_equal (const_tree t1, const_tree t2)
6113 {
6114 if (t1 == t2)
6115 return 1;
6116
6117 if (t1 == 0 || t2 == 0)
6118 return 0;
6119
6120 if (TREE_CODE (t1) == INTEGER_CST
6121 && TREE_CODE (t2) == INTEGER_CST
6122 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6123 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6124 return 1;
6125
6126 return 0;
6127 }
6128
6129 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6130 The precise way of comparison depends on their data type. */
6131
6132 int
6133 tree_int_cst_lt (const_tree t1, const_tree t2)
6134 {
6135 if (t1 == t2)
6136 return 0;
6137
6138 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6139 {
6140 int t1_sgn = tree_int_cst_sgn (t1);
6141 int t2_sgn = tree_int_cst_sgn (t2);
6142
6143 if (t1_sgn < t2_sgn)
6144 return 1;
6145 else if (t1_sgn > t2_sgn)
6146 return 0;
6147 /* Otherwise, both are non-negative, so we compare them as
6148 unsigned just in case one of them would overflow a signed
6149 type. */
6150 }
6151 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6152 return INT_CST_LT (t1, t2);
6153
6154 return INT_CST_LT_UNSIGNED (t1, t2);
6155 }
6156
6157 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6158
6159 int
6160 tree_int_cst_compare (const_tree t1, const_tree t2)
6161 {
6162 if (tree_int_cst_lt (t1, t2))
6163 return -1;
6164 else if (tree_int_cst_lt (t2, t1))
6165 return 1;
6166 else
6167 return 0;
6168 }
6169
6170 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6171 the host. If POS is zero, the value can be represented in a single
6172 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6173 be represented in a single unsigned HOST_WIDE_INT. */
6174
6175 int
6176 host_integerp (const_tree t, int pos)
6177 {
6178 if (t == NULL_TREE)
6179 return 0;
6180
6181 return (TREE_CODE (t) == INTEGER_CST
6182 && ((TREE_INT_CST_HIGH (t) == 0
6183 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6184 || (! pos && TREE_INT_CST_HIGH (t) == -1
6185 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6186 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6187 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6188 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6189 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6190 }
6191
6192 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6193 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6194 be non-negative. We must be able to satisfy the above conditions. */
6195
6196 HOST_WIDE_INT
6197 tree_low_cst (const_tree t, int pos)
6198 {
6199 gcc_assert (host_integerp (t, pos));
6200 return TREE_INT_CST_LOW (t);
6201 }
6202
6203 /* Return the most significant bit of the integer constant T. */
6204
6205 int
6206 tree_int_cst_msb (const_tree t)
6207 {
6208 int prec;
6209 HOST_WIDE_INT h;
6210 unsigned HOST_WIDE_INT l;
6211
6212 /* Note that using TYPE_PRECISION here is wrong. We care about the
6213 actual bits, not the (arbitrary) range of the type. */
6214 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6215 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6216 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6217 return (l & 1) == 1;
6218 }
6219
6220 /* Return an indication of the sign of the integer constant T.
6221 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6222 Note that -1 will never be returned if T's type is unsigned. */
6223
6224 int
6225 tree_int_cst_sgn (const_tree t)
6226 {
6227 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6228 return 0;
6229 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6230 return 1;
6231 else if (TREE_INT_CST_HIGH (t) < 0)
6232 return -1;
6233 else
6234 return 1;
6235 }
6236
6237 /* Return the minimum number of bits needed to represent VALUE in a
6238 signed or unsigned type, UNSIGNEDP says which. */
6239
6240 unsigned int
6241 tree_int_cst_min_precision (tree value, bool unsignedp)
6242 {
6243 int log;
6244
6245 /* If the value is negative, compute its negative minus 1. The latter
6246 adjustment is because the absolute value of the largest negative value
6247 is one larger than the largest positive value. This is equivalent to
6248 a bit-wise negation, so use that operation instead. */
6249
6250 if (tree_int_cst_sgn (value) < 0)
6251 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6252
6253 /* Return the number of bits needed, taking into account the fact
6254 that we need one more bit for a signed than unsigned type. */
6255
6256 if (integer_zerop (value))
6257 log = 0;
6258 else
6259 log = tree_floor_log2 (value);
6260
6261 return log + 1 + !unsignedp;
6262 }
6263
6264 /* Compare two constructor-element-type constants. Return 1 if the lists
6265 are known to be equal; otherwise return 0. */
6266
6267 int
6268 simple_cst_list_equal (const_tree l1, const_tree l2)
6269 {
6270 while (l1 != NULL_TREE && l2 != NULL_TREE)
6271 {
6272 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6273 return 0;
6274
6275 l1 = TREE_CHAIN (l1);
6276 l2 = TREE_CHAIN (l2);
6277 }
6278
6279 return l1 == l2;
6280 }
6281
6282 /* Return truthvalue of whether T1 is the same tree structure as T2.
6283 Return 1 if they are the same.
6284 Return 0 if they are understandably different.
6285 Return -1 if either contains tree structure not understood by
6286 this function. */
6287
6288 int
6289 simple_cst_equal (const_tree t1, const_tree t2)
6290 {
6291 enum tree_code code1, code2;
6292 int cmp;
6293 int i;
6294
6295 if (t1 == t2)
6296 return 1;
6297 if (t1 == 0 || t2 == 0)
6298 return 0;
6299
6300 code1 = TREE_CODE (t1);
6301 code2 = TREE_CODE (t2);
6302
6303 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6304 {
6305 if (CONVERT_EXPR_CODE_P (code2)
6306 || code2 == NON_LVALUE_EXPR)
6307 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6308 else
6309 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6310 }
6311
6312 else if (CONVERT_EXPR_CODE_P (code2)
6313 || code2 == NON_LVALUE_EXPR)
6314 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6315
6316 if (code1 != code2)
6317 return 0;
6318
6319 switch (code1)
6320 {
6321 case INTEGER_CST:
6322 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6323 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6324
6325 case REAL_CST:
6326 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6327
6328 case FIXED_CST:
6329 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6330
6331 case STRING_CST:
6332 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6333 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6334 TREE_STRING_LENGTH (t1)));
6335
6336 case CONSTRUCTOR:
6337 {
6338 unsigned HOST_WIDE_INT idx;
6339 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6340 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6341
6342 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6343 return false;
6344
6345 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6346 /* ??? Should we handle also fields here? */
6347 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6348 VEC_index (constructor_elt, v2, idx)->value))
6349 return false;
6350 return true;
6351 }
6352
6353 case SAVE_EXPR:
6354 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6355
6356 case CALL_EXPR:
6357 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6358 if (cmp <= 0)
6359 return cmp;
6360 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6361 return 0;
6362 {
6363 const_tree arg1, arg2;
6364 const_call_expr_arg_iterator iter1, iter2;
6365 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6366 arg2 = first_const_call_expr_arg (t2, &iter2);
6367 arg1 && arg2;
6368 arg1 = next_const_call_expr_arg (&iter1),
6369 arg2 = next_const_call_expr_arg (&iter2))
6370 {
6371 cmp = simple_cst_equal (arg1, arg2);
6372 if (cmp <= 0)
6373 return cmp;
6374 }
6375 return arg1 == arg2;
6376 }
6377
6378 case TARGET_EXPR:
6379 /* Special case: if either target is an unallocated VAR_DECL,
6380 it means that it's going to be unified with whatever the
6381 TARGET_EXPR is really supposed to initialize, so treat it
6382 as being equivalent to anything. */
6383 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6384 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6385 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6386 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6387 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6388 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6389 cmp = 1;
6390 else
6391 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6392
6393 if (cmp <= 0)
6394 return cmp;
6395
6396 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6397
6398 case WITH_CLEANUP_EXPR:
6399 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6400 if (cmp <= 0)
6401 return cmp;
6402
6403 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6404
6405 case COMPONENT_REF:
6406 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6407 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6408
6409 return 0;
6410
6411 case VAR_DECL:
6412 case PARM_DECL:
6413 case CONST_DECL:
6414 case FUNCTION_DECL:
6415 return 0;
6416
6417 default:
6418 break;
6419 }
6420
6421 /* This general rule works for most tree codes. All exceptions should be
6422 handled above. If this is a language-specific tree code, we can't
6423 trust what might be in the operand, so say we don't know
6424 the situation. */
6425 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6426 return -1;
6427
6428 switch (TREE_CODE_CLASS (code1))
6429 {
6430 case tcc_unary:
6431 case tcc_binary:
6432 case tcc_comparison:
6433 case tcc_expression:
6434 case tcc_reference:
6435 case tcc_statement:
6436 cmp = 1;
6437 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6438 {
6439 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6440 if (cmp <= 0)
6441 return cmp;
6442 }
6443
6444 return cmp;
6445
6446 default:
6447 return -1;
6448 }
6449 }
6450
6451 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6452 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6453 than U, respectively. */
6454
6455 int
6456 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6457 {
6458 if (tree_int_cst_sgn (t) < 0)
6459 return -1;
6460 else if (TREE_INT_CST_HIGH (t) != 0)
6461 return 1;
6462 else if (TREE_INT_CST_LOW (t) == u)
6463 return 0;
6464 else if (TREE_INT_CST_LOW (t) < u)
6465 return -1;
6466 else
6467 return 1;
6468 }
6469
6470 /* Return true if CODE represents an associative tree code. Otherwise
6471 return false. */
6472 bool
6473 associative_tree_code (enum tree_code code)
6474 {
6475 switch (code)
6476 {
6477 case BIT_IOR_EXPR:
6478 case BIT_AND_EXPR:
6479 case BIT_XOR_EXPR:
6480 case PLUS_EXPR:
6481 case MULT_EXPR:
6482 case MIN_EXPR:
6483 case MAX_EXPR:
6484 return true;
6485
6486 default:
6487 break;
6488 }
6489 return false;
6490 }
6491
6492 /* Return true if CODE represents a commutative tree code. Otherwise
6493 return false. */
6494 bool
6495 commutative_tree_code (enum tree_code code)
6496 {
6497 switch (code)
6498 {
6499 case PLUS_EXPR:
6500 case MULT_EXPR:
6501 case MIN_EXPR:
6502 case MAX_EXPR:
6503 case BIT_IOR_EXPR:
6504 case BIT_XOR_EXPR:
6505 case BIT_AND_EXPR:
6506 case NE_EXPR:
6507 case EQ_EXPR:
6508 case UNORDERED_EXPR:
6509 case ORDERED_EXPR:
6510 case UNEQ_EXPR:
6511 case LTGT_EXPR:
6512 case TRUTH_AND_EXPR:
6513 case TRUTH_XOR_EXPR:
6514 case TRUTH_OR_EXPR:
6515 return true;
6516
6517 default:
6518 break;
6519 }
6520 return false;
6521 }
6522
6523 /* Generate a hash value for an expression. This can be used iteratively
6524 by passing a previous result as the VAL argument.
6525
6526 This function is intended to produce the same hash for expressions which
6527 would compare equal using operand_equal_p. */
6528
6529 hashval_t
6530 iterative_hash_expr (const_tree t, hashval_t val)
6531 {
6532 int i;
6533 enum tree_code code;
6534 char tclass;
6535
6536 if (t == NULL_TREE)
6537 return iterative_hash_hashval_t (0, val);
6538
6539 code = TREE_CODE (t);
6540
6541 switch (code)
6542 {
6543 /* Alas, constants aren't shared, so we can't rely on pointer
6544 identity. */
6545 case INTEGER_CST:
6546 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6547 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6548 case REAL_CST:
6549 {
6550 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6551
6552 return iterative_hash_hashval_t (val2, val);
6553 }
6554 case FIXED_CST:
6555 {
6556 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6557
6558 return iterative_hash_hashval_t (val2, val);
6559 }
6560 case STRING_CST:
6561 return iterative_hash (TREE_STRING_POINTER (t),
6562 TREE_STRING_LENGTH (t), val);
6563 case COMPLEX_CST:
6564 val = iterative_hash_expr (TREE_REALPART (t), val);
6565 return iterative_hash_expr (TREE_IMAGPART (t), val);
6566 case VECTOR_CST:
6567 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6568
6569 case SSA_NAME:
6570 /* we can just compare by pointer. */
6571 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6572
6573 case TREE_LIST:
6574 /* A list of expressions, for a CALL_EXPR or as the elements of a
6575 VECTOR_CST. */
6576 for (; t; t = TREE_CHAIN (t))
6577 val = iterative_hash_expr (TREE_VALUE (t), val);
6578 return val;
6579 case CONSTRUCTOR:
6580 {
6581 unsigned HOST_WIDE_INT idx;
6582 tree field, value;
6583 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6584 {
6585 val = iterative_hash_expr (field, val);
6586 val = iterative_hash_expr (value, val);
6587 }
6588 return val;
6589 }
6590 case FUNCTION_DECL:
6591 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6592 Otherwise nodes that compare equal according to operand_equal_p might
6593 get different hash codes. However, don't do this for machine specific
6594 or front end builtins, since the function code is overloaded in those
6595 cases. */
6596 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6597 && built_in_decls[DECL_FUNCTION_CODE (t)])
6598 {
6599 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6600 code = TREE_CODE (t);
6601 }
6602 /* FALL THROUGH */
6603 default:
6604 tclass = TREE_CODE_CLASS (code);
6605
6606 if (tclass == tcc_declaration)
6607 {
6608 /* DECL's have a unique ID */
6609 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6610 }
6611 else
6612 {
6613 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6614
6615 val = iterative_hash_object (code, val);
6616
6617 /* Don't hash the type, that can lead to having nodes which
6618 compare equal according to operand_equal_p, but which
6619 have different hash codes. */
6620 if (CONVERT_EXPR_CODE_P (code)
6621 || code == NON_LVALUE_EXPR)
6622 {
6623 /* Make sure to include signness in the hash computation. */
6624 val += TYPE_UNSIGNED (TREE_TYPE (t));
6625 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6626 }
6627
6628 else if (commutative_tree_code (code))
6629 {
6630 /* It's a commutative expression. We want to hash it the same
6631 however it appears. We do this by first hashing both operands
6632 and then rehashing based on the order of their independent
6633 hashes. */
6634 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6635 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6636 hashval_t t;
6637
6638 if (one > two)
6639 t = one, one = two, two = t;
6640
6641 val = iterative_hash_hashval_t (one, val);
6642 val = iterative_hash_hashval_t (two, val);
6643 }
6644 else
6645 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6646 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6647 }
6648 return val;
6649 break;
6650 }
6651 }
6652
6653 /* Generate a hash value for a pair of expressions. This can be used
6654 iteratively by passing a previous result as the VAL argument.
6655
6656 The same hash value is always returned for a given pair of expressions,
6657 regardless of the order in which they are presented. This is useful in
6658 hashing the operands of commutative functions. */
6659
6660 hashval_t
6661 iterative_hash_exprs_commutative (const_tree t1,
6662 const_tree t2, hashval_t val)
6663 {
6664 hashval_t one = iterative_hash_expr (t1, 0);
6665 hashval_t two = iterative_hash_expr (t2, 0);
6666 hashval_t t;
6667
6668 if (one > two)
6669 t = one, one = two, two = t;
6670 val = iterative_hash_hashval_t (one, val);
6671 val = iterative_hash_hashval_t (two, val);
6672
6673 return val;
6674 }
6675 \f
6676 /* Constructors for pointer, array and function types.
6677 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6678 constructed by language-dependent code, not here.) */
6679
6680 /* Construct, lay out and return the type of pointers to TO_TYPE with
6681 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6682 reference all of memory. If such a type has already been
6683 constructed, reuse it. */
6684
6685 tree
6686 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6687 bool can_alias_all)
6688 {
6689 tree t;
6690
6691 if (to_type == error_mark_node)
6692 return error_mark_node;
6693
6694 /* If the pointed-to type has the may_alias attribute set, force
6695 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6696 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6697 can_alias_all = true;
6698
6699 /* In some cases, languages will have things that aren't a POINTER_TYPE
6700 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6701 In that case, return that type without regard to the rest of our
6702 operands.
6703
6704 ??? This is a kludge, but consistent with the way this function has
6705 always operated and there doesn't seem to be a good way to avoid this
6706 at the moment. */
6707 if (TYPE_POINTER_TO (to_type) != 0
6708 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6709 return TYPE_POINTER_TO (to_type);
6710
6711 /* First, if we already have a type for pointers to TO_TYPE and it's
6712 the proper mode, use it. */
6713 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6714 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6715 return t;
6716
6717 t = make_node (POINTER_TYPE);
6718
6719 TREE_TYPE (t) = to_type;
6720 SET_TYPE_MODE (t, mode);
6721 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6722 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6723 TYPE_POINTER_TO (to_type) = t;
6724
6725 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6726 SET_TYPE_STRUCTURAL_EQUALITY (t);
6727 else if (TYPE_CANONICAL (to_type) != to_type)
6728 TYPE_CANONICAL (t)
6729 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6730 mode, can_alias_all);
6731
6732 /* Lay out the type. This function has many callers that are concerned
6733 with expression-construction, and this simplifies them all. */
6734 layout_type (t);
6735
6736 return t;
6737 }
6738
6739 /* By default build pointers in ptr_mode. */
6740
6741 tree
6742 build_pointer_type (tree to_type)
6743 {
6744 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6745 : TYPE_ADDR_SPACE (to_type);
6746 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6747 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6748 }
6749
6750 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6751
6752 tree
6753 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6754 bool can_alias_all)
6755 {
6756 tree t;
6757
6758 if (to_type == error_mark_node)
6759 return error_mark_node;
6760
6761 /* If the pointed-to type has the may_alias attribute set, force
6762 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6763 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6764 can_alias_all = true;
6765
6766 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6767 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6768 In that case, return that type without regard to the rest of our
6769 operands.
6770
6771 ??? This is a kludge, but consistent with the way this function has
6772 always operated and there doesn't seem to be a good way to avoid this
6773 at the moment. */
6774 if (TYPE_REFERENCE_TO (to_type) != 0
6775 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6776 return TYPE_REFERENCE_TO (to_type);
6777
6778 /* First, if we already have a type for pointers to TO_TYPE and it's
6779 the proper mode, use it. */
6780 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6781 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6782 return t;
6783
6784 t = make_node (REFERENCE_TYPE);
6785
6786 TREE_TYPE (t) = to_type;
6787 SET_TYPE_MODE (t, mode);
6788 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6789 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6790 TYPE_REFERENCE_TO (to_type) = t;
6791
6792 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6793 SET_TYPE_STRUCTURAL_EQUALITY (t);
6794 else if (TYPE_CANONICAL (to_type) != to_type)
6795 TYPE_CANONICAL (t)
6796 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6797 mode, can_alias_all);
6798
6799 layout_type (t);
6800
6801 return t;
6802 }
6803
6804
6805 /* Build the node for the type of references-to-TO_TYPE by default
6806 in ptr_mode. */
6807
6808 tree
6809 build_reference_type (tree to_type)
6810 {
6811 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6812 : TYPE_ADDR_SPACE (to_type);
6813 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6814 return build_reference_type_for_mode (to_type, pointer_mode, false);
6815 }
6816
6817 /* Build a type that is compatible with t but has no cv quals anywhere
6818 in its type, thus
6819
6820 const char *const *const * -> char ***. */
6821
6822 tree
6823 build_type_no_quals (tree t)
6824 {
6825 switch (TREE_CODE (t))
6826 {
6827 case POINTER_TYPE:
6828 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6829 TYPE_MODE (t),
6830 TYPE_REF_CAN_ALIAS_ALL (t));
6831 case REFERENCE_TYPE:
6832 return
6833 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6834 TYPE_MODE (t),
6835 TYPE_REF_CAN_ALIAS_ALL (t));
6836 default:
6837 return TYPE_MAIN_VARIANT (t);
6838 }
6839 }
6840
6841 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
6842 MAXVAL should be the maximum value in the domain
6843 (one less than the length of the array).
6844
6845 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
6846 We don't enforce this limit, that is up to caller (e.g. language front end).
6847 The limit exists because the result is a signed type and we don't handle
6848 sizes that use more than one HOST_WIDE_INT. */
6849
6850 tree
6851 build_index_type (tree maxval)
6852 {
6853 tree itype = make_node (INTEGER_TYPE);
6854
6855 TREE_TYPE (itype) = sizetype;
6856 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
6857 TYPE_MIN_VALUE (itype) = size_zero_node;
6858 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
6859 SET_TYPE_MODE (itype, TYPE_MODE (sizetype));
6860 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
6861 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
6862 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
6863 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
6864
6865 if (host_integerp (maxval, 1))
6866 return type_hash_canon (tree_low_cst (maxval, 1), itype);
6867 else
6868 {
6869 /* Since we cannot hash this type, we need to compare it using
6870 structural equality checks. */
6871 SET_TYPE_STRUCTURAL_EQUALITY (itype);
6872 return itype;
6873 }
6874 }
6875
6876 /* Builds a signed or unsigned integer type of precision PRECISION.
6877 Used for C bitfields whose precision does not match that of
6878 built-in target types. */
6879 tree
6880 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
6881 int unsignedp)
6882 {
6883 tree itype = make_node (INTEGER_TYPE);
6884
6885 TYPE_PRECISION (itype) = precision;
6886
6887 if (unsignedp)
6888 fixup_unsigned_type (itype);
6889 else
6890 fixup_signed_type (itype);
6891
6892 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
6893 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
6894
6895 return itype;
6896 }
6897
6898 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
6899 ENUMERAL_TYPE or BOOLEAN_TYPE), with low bound LOWVAL and
6900 high bound HIGHVAL. If TYPE is NULL, sizetype is used. */
6901
6902 tree
6903 build_range_type (tree type, tree lowval, tree highval)
6904 {
6905 tree itype = make_node (INTEGER_TYPE);
6906
6907 TREE_TYPE (itype) = type;
6908 if (type == NULL_TREE)
6909 type = sizetype;
6910
6911 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
6912 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
6913
6914 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
6915 SET_TYPE_MODE (itype, TYPE_MODE (type));
6916 TYPE_SIZE (itype) = TYPE_SIZE (type);
6917 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
6918 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
6919 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
6920
6921 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
6922 return type_hash_canon (tree_low_cst (highval, 0)
6923 - tree_low_cst (lowval, 0),
6924 itype);
6925 else
6926 return itype;
6927 }
6928
6929 /* Return true if the debug information for TYPE, a subtype, should be emitted
6930 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
6931 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
6932 debug info and doesn't reflect the source code. */
6933
6934 bool
6935 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
6936 {
6937 tree base_type = TREE_TYPE (type), low, high;
6938
6939 /* Subrange types have a base type which is an integral type. */
6940 if (!INTEGRAL_TYPE_P (base_type))
6941 return false;
6942
6943 /* Get the real bounds of the subtype. */
6944 if (lang_hooks.types.get_subrange_bounds)
6945 lang_hooks.types.get_subrange_bounds (type, &low, &high);
6946 else
6947 {
6948 low = TYPE_MIN_VALUE (type);
6949 high = TYPE_MAX_VALUE (type);
6950 }
6951
6952 /* If the type and its base type have the same representation and the same
6953 name, then the type is not a subrange but a copy of the base type. */
6954 if ((TREE_CODE (base_type) == INTEGER_TYPE
6955 || TREE_CODE (base_type) == BOOLEAN_TYPE)
6956 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
6957 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
6958 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
6959 {
6960 tree type_name = TYPE_NAME (type);
6961 tree base_type_name = TYPE_NAME (base_type);
6962
6963 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
6964 type_name = DECL_NAME (type_name);
6965
6966 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
6967 base_type_name = DECL_NAME (base_type_name);
6968
6969 if (type_name == base_type_name)
6970 return false;
6971 }
6972
6973 if (lowval)
6974 *lowval = low;
6975 if (highval)
6976 *highval = high;
6977 return true;
6978 }
6979
6980 /* Just like build_index_type, but takes lowval and highval instead
6981 of just highval (maxval). */
6982
6983 tree
6984 build_index_2_type (tree lowval, tree highval)
6985 {
6986 return build_range_type (sizetype, lowval, highval);
6987 }
6988
6989 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
6990 and number of elements specified by the range of values of INDEX_TYPE.
6991 If such a type has already been constructed, reuse it. */
6992
6993 tree
6994 build_array_type (tree elt_type, tree index_type)
6995 {
6996 tree t;
6997 hashval_t hashcode = 0;
6998
6999 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7000 {
7001 error ("arrays of functions are not meaningful");
7002 elt_type = integer_type_node;
7003 }
7004
7005 t = make_node (ARRAY_TYPE);
7006 TREE_TYPE (t) = elt_type;
7007 TYPE_DOMAIN (t) = index_type;
7008 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7009 layout_type (t);
7010
7011 /* If the element type is incomplete at this point we get marked for
7012 structural equality. Do not record these types in the canonical
7013 type hashtable. */
7014 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7015 return t;
7016
7017 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
7018 if (index_type)
7019 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7020 t = type_hash_canon (hashcode, t);
7021
7022 if (TYPE_CANONICAL (t) == t)
7023 {
7024 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7025 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7026 SET_TYPE_STRUCTURAL_EQUALITY (t);
7027 else if (TYPE_CANONICAL (elt_type) != elt_type
7028 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7029 TYPE_CANONICAL (t)
7030 = build_array_type (TYPE_CANONICAL (elt_type),
7031 index_type ? TYPE_CANONICAL (index_type) : NULL);
7032 }
7033
7034 return t;
7035 }
7036
7037 /* Recursively examines the array elements of TYPE, until a non-array
7038 element type is found. */
7039
7040 tree
7041 strip_array_types (tree type)
7042 {
7043 while (TREE_CODE (type) == ARRAY_TYPE)
7044 type = TREE_TYPE (type);
7045
7046 return type;
7047 }
7048
7049 /* Computes the canonical argument types from the argument type list
7050 ARGTYPES.
7051
7052 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7053 on entry to this function, or if any of the ARGTYPES are
7054 structural.
7055
7056 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7057 true on entry to this function, or if any of the ARGTYPES are
7058 non-canonical.
7059
7060 Returns a canonical argument list, which may be ARGTYPES when the
7061 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7062 true) or would not differ from ARGTYPES. */
7063
7064 static tree
7065 maybe_canonicalize_argtypes(tree argtypes,
7066 bool *any_structural_p,
7067 bool *any_noncanonical_p)
7068 {
7069 tree arg;
7070 bool any_noncanonical_argtypes_p = false;
7071
7072 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7073 {
7074 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7075 /* Fail gracefully by stating that the type is structural. */
7076 *any_structural_p = true;
7077 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7078 *any_structural_p = true;
7079 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7080 || TREE_PURPOSE (arg))
7081 /* If the argument has a default argument, we consider it
7082 non-canonical even though the type itself is canonical.
7083 That way, different variants of function and method types
7084 with default arguments will all point to the variant with
7085 no defaults as their canonical type. */
7086 any_noncanonical_argtypes_p = true;
7087 }
7088
7089 if (*any_structural_p)
7090 return argtypes;
7091
7092 if (any_noncanonical_argtypes_p)
7093 {
7094 /* Build the canonical list of argument types. */
7095 tree canon_argtypes = NULL_TREE;
7096 bool is_void = false;
7097
7098 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7099 {
7100 if (arg == void_list_node)
7101 is_void = true;
7102 else
7103 canon_argtypes = tree_cons (NULL_TREE,
7104 TYPE_CANONICAL (TREE_VALUE (arg)),
7105 canon_argtypes);
7106 }
7107
7108 canon_argtypes = nreverse (canon_argtypes);
7109 if (is_void)
7110 canon_argtypes = chainon (canon_argtypes, void_list_node);
7111
7112 /* There is a non-canonical type. */
7113 *any_noncanonical_p = true;
7114 return canon_argtypes;
7115 }
7116
7117 /* The canonical argument types are the same as ARGTYPES. */
7118 return argtypes;
7119 }
7120
7121 /* Construct, lay out and return
7122 the type of functions returning type VALUE_TYPE
7123 given arguments of types ARG_TYPES.
7124 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7125 are data type nodes for the arguments of the function.
7126 If such a type has already been constructed, reuse it. */
7127
7128 tree
7129 build_function_type (tree value_type, tree arg_types)
7130 {
7131 tree t;
7132 hashval_t hashcode = 0;
7133 bool any_structural_p, any_noncanonical_p;
7134 tree canon_argtypes;
7135
7136 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7137 {
7138 error ("function return type cannot be function");
7139 value_type = integer_type_node;
7140 }
7141
7142 /* Make a node of the sort we want. */
7143 t = make_node (FUNCTION_TYPE);
7144 TREE_TYPE (t) = value_type;
7145 TYPE_ARG_TYPES (t) = arg_types;
7146
7147 /* If we already have such a type, use the old one. */
7148 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7149 hashcode = type_hash_list (arg_types, hashcode);
7150 t = type_hash_canon (hashcode, t);
7151
7152 /* Set up the canonical type. */
7153 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7154 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7155 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7156 &any_structural_p,
7157 &any_noncanonical_p);
7158 if (any_structural_p)
7159 SET_TYPE_STRUCTURAL_EQUALITY (t);
7160 else if (any_noncanonical_p)
7161 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7162 canon_argtypes);
7163
7164 if (!COMPLETE_TYPE_P (t))
7165 layout_type (t);
7166 return t;
7167 }
7168
7169 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7170
7171 tree
7172 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7173 {
7174 tree new_type = NULL;
7175 tree args, new_args = NULL, t;
7176 tree new_reversed;
7177 int i = 0;
7178
7179 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7180 args = TREE_CHAIN (args), i++)
7181 if (!bitmap_bit_p (args_to_skip, i))
7182 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7183
7184 new_reversed = nreverse (new_args);
7185 if (args)
7186 {
7187 if (new_reversed)
7188 TREE_CHAIN (new_args) = void_list_node;
7189 else
7190 new_reversed = void_list_node;
7191 }
7192
7193 /* Use copy_node to preserve as much as possible from original type
7194 (debug info, attribute lists etc.)
7195 Exception is METHOD_TYPEs must have THIS argument.
7196 When we are asked to remove it, we need to build new FUNCTION_TYPE
7197 instead. */
7198 if (TREE_CODE (orig_type) != METHOD_TYPE
7199 || !bitmap_bit_p (args_to_skip, 0))
7200 {
7201 new_type = copy_node (orig_type);
7202 TYPE_ARG_TYPES (new_type) = new_reversed;
7203 }
7204 else
7205 {
7206 new_type
7207 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7208 new_reversed));
7209 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7210 }
7211
7212 /* This is a new type, not a copy of an old type. Need to reassociate
7213 variants. We can handle everything except the main variant lazily. */
7214 t = TYPE_MAIN_VARIANT (orig_type);
7215 if (orig_type != t)
7216 {
7217 TYPE_MAIN_VARIANT (new_type) = t;
7218 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7219 TYPE_NEXT_VARIANT (t) = new_type;
7220 }
7221 else
7222 {
7223 TYPE_MAIN_VARIANT (new_type) = new_type;
7224 TYPE_NEXT_VARIANT (new_type) = NULL;
7225 }
7226 return new_type;
7227 }
7228
7229 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7230
7231 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7232 linked by TREE_CHAIN directly. It is caller responsibility to eliminate
7233 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7234
7235 tree
7236 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7237 {
7238 tree new_decl = copy_node (orig_decl);
7239 tree new_type;
7240
7241 new_type = TREE_TYPE (orig_decl);
7242 if (prototype_p (new_type))
7243 new_type = build_function_type_skip_args (new_type, args_to_skip);
7244 TREE_TYPE (new_decl) = new_type;
7245
7246 /* For declarations setting DECL_VINDEX (i.e. methods)
7247 we expect first argument to be THIS pointer. */
7248 if (bitmap_bit_p (args_to_skip, 0))
7249 DECL_VINDEX (new_decl) = NULL_TREE;
7250 return new_decl;
7251 }
7252
7253 /* Build a function type. The RETURN_TYPE is the type returned by the
7254 function. If VAARGS is set, no void_type_node is appended to the
7255 the list. ARGP muse be alway be terminated be a NULL_TREE. */
7256
7257 static tree
7258 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7259 {
7260 tree t, args, last;
7261
7262 t = va_arg (argp, tree);
7263 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7264 args = tree_cons (NULL_TREE, t, args);
7265
7266 if (vaargs)
7267 {
7268 last = args;
7269 if (args != NULL_TREE)
7270 args = nreverse (args);
7271 gcc_assert (args != NULL_TREE && last != void_list_node);
7272 }
7273 else if (args == NULL_TREE)
7274 args = void_list_node;
7275 else
7276 {
7277 last = args;
7278 args = nreverse (args);
7279 TREE_CHAIN (last) = void_list_node;
7280 }
7281 args = build_function_type (return_type, args);
7282
7283 return args;
7284 }
7285
7286 /* Build a function type. The RETURN_TYPE is the type returned by the
7287 function. If additional arguments are provided, they are
7288 additional argument types. The list of argument types must always
7289 be terminated by NULL_TREE. */
7290
7291 tree
7292 build_function_type_list (tree return_type, ...)
7293 {
7294 tree args;
7295 va_list p;
7296
7297 va_start (p, return_type);
7298 args = build_function_type_list_1 (false, return_type, p);
7299 va_end (p);
7300 return args;
7301 }
7302
7303 /* Build a variable argument function type. The RETURN_TYPE is the
7304 type returned by the function. If additional arguments are provided,
7305 they are additional argument types. The list of argument types must
7306 always be terminated by NULL_TREE. */
7307
7308 tree
7309 build_varargs_function_type_list (tree return_type, ...)
7310 {
7311 tree args;
7312 va_list p;
7313
7314 va_start (p, return_type);
7315 args = build_function_type_list_1 (true, return_type, p);
7316 va_end (p);
7317
7318 return args;
7319 }
7320
7321 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7322 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7323 for the method. An implicit additional parameter (of type
7324 pointer-to-BASETYPE) is added to the ARGTYPES. */
7325
7326 tree
7327 build_method_type_directly (tree basetype,
7328 tree rettype,
7329 tree argtypes)
7330 {
7331 tree t;
7332 tree ptype;
7333 int hashcode = 0;
7334 bool any_structural_p, any_noncanonical_p;
7335 tree canon_argtypes;
7336
7337 /* Make a node of the sort we want. */
7338 t = make_node (METHOD_TYPE);
7339
7340 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7341 TREE_TYPE (t) = rettype;
7342 ptype = build_pointer_type (basetype);
7343
7344 /* The actual arglist for this function includes a "hidden" argument
7345 which is "this". Put it into the list of argument types. */
7346 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7347 TYPE_ARG_TYPES (t) = argtypes;
7348
7349 /* If we already have such a type, use the old one. */
7350 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7351 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7352 hashcode = type_hash_list (argtypes, hashcode);
7353 t = type_hash_canon (hashcode, t);
7354
7355 /* Set up the canonical type. */
7356 any_structural_p
7357 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7358 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7359 any_noncanonical_p
7360 = (TYPE_CANONICAL (basetype) != basetype
7361 || TYPE_CANONICAL (rettype) != rettype);
7362 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7363 &any_structural_p,
7364 &any_noncanonical_p);
7365 if (any_structural_p)
7366 SET_TYPE_STRUCTURAL_EQUALITY (t);
7367 else if (any_noncanonical_p)
7368 TYPE_CANONICAL (t)
7369 = build_method_type_directly (TYPE_CANONICAL (basetype),
7370 TYPE_CANONICAL (rettype),
7371 canon_argtypes);
7372 if (!COMPLETE_TYPE_P (t))
7373 layout_type (t);
7374
7375 return t;
7376 }
7377
7378 /* Construct, lay out and return the type of methods belonging to class
7379 BASETYPE and whose arguments and values are described by TYPE.
7380 If that type exists already, reuse it.
7381 TYPE must be a FUNCTION_TYPE node. */
7382
7383 tree
7384 build_method_type (tree basetype, tree type)
7385 {
7386 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7387
7388 return build_method_type_directly (basetype,
7389 TREE_TYPE (type),
7390 TYPE_ARG_TYPES (type));
7391 }
7392
7393 /* Construct, lay out and return the type of offsets to a value
7394 of type TYPE, within an object of type BASETYPE.
7395 If a suitable offset type exists already, reuse it. */
7396
7397 tree
7398 build_offset_type (tree basetype, tree type)
7399 {
7400 tree t;
7401 hashval_t hashcode = 0;
7402
7403 /* Make a node of the sort we want. */
7404 t = make_node (OFFSET_TYPE);
7405
7406 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7407 TREE_TYPE (t) = type;
7408
7409 /* If we already have such a type, use the old one. */
7410 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7411 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7412 t = type_hash_canon (hashcode, t);
7413
7414 if (!COMPLETE_TYPE_P (t))
7415 layout_type (t);
7416
7417 if (TYPE_CANONICAL (t) == t)
7418 {
7419 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7420 || TYPE_STRUCTURAL_EQUALITY_P (type))
7421 SET_TYPE_STRUCTURAL_EQUALITY (t);
7422 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7423 || TYPE_CANONICAL (type) != type)
7424 TYPE_CANONICAL (t)
7425 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7426 TYPE_CANONICAL (type));
7427 }
7428
7429 return t;
7430 }
7431
7432 /* Create a complex type whose components are COMPONENT_TYPE. */
7433
7434 tree
7435 build_complex_type (tree component_type)
7436 {
7437 tree t;
7438 hashval_t hashcode;
7439
7440 gcc_assert (INTEGRAL_TYPE_P (component_type)
7441 || SCALAR_FLOAT_TYPE_P (component_type)
7442 || FIXED_POINT_TYPE_P (component_type));
7443
7444 /* Make a node of the sort we want. */
7445 t = make_node (COMPLEX_TYPE);
7446
7447 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7448
7449 /* If we already have such a type, use the old one. */
7450 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7451 t = type_hash_canon (hashcode, t);
7452
7453 if (!COMPLETE_TYPE_P (t))
7454 layout_type (t);
7455
7456 if (TYPE_CANONICAL (t) == t)
7457 {
7458 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7459 SET_TYPE_STRUCTURAL_EQUALITY (t);
7460 else if (TYPE_CANONICAL (component_type) != component_type)
7461 TYPE_CANONICAL (t)
7462 = build_complex_type (TYPE_CANONICAL (component_type));
7463 }
7464
7465 /* We need to create a name, since complex is a fundamental type. */
7466 if (! TYPE_NAME (t))
7467 {
7468 const char *name;
7469 if (component_type == char_type_node)
7470 name = "complex char";
7471 else if (component_type == signed_char_type_node)
7472 name = "complex signed char";
7473 else if (component_type == unsigned_char_type_node)
7474 name = "complex unsigned char";
7475 else if (component_type == short_integer_type_node)
7476 name = "complex short int";
7477 else if (component_type == short_unsigned_type_node)
7478 name = "complex short unsigned int";
7479 else if (component_type == integer_type_node)
7480 name = "complex int";
7481 else if (component_type == unsigned_type_node)
7482 name = "complex unsigned int";
7483 else if (component_type == long_integer_type_node)
7484 name = "complex long int";
7485 else if (component_type == long_unsigned_type_node)
7486 name = "complex long unsigned int";
7487 else if (component_type == long_long_integer_type_node)
7488 name = "complex long long int";
7489 else if (component_type == long_long_unsigned_type_node)
7490 name = "complex long long unsigned int";
7491 else
7492 name = 0;
7493
7494 if (name != 0)
7495 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7496 get_identifier (name), t);
7497 }
7498
7499 return build_qualified_type (t, TYPE_QUALS (component_type));
7500 }
7501
7502 /* If TYPE is a real or complex floating-point type and the target
7503 does not directly support arithmetic on TYPE then return the wider
7504 type to be used for arithmetic on TYPE. Otherwise, return
7505 NULL_TREE. */
7506
7507 tree
7508 excess_precision_type (tree type)
7509 {
7510 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7511 {
7512 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7513 switch (TREE_CODE (type))
7514 {
7515 case REAL_TYPE:
7516 switch (flt_eval_method)
7517 {
7518 case 1:
7519 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7520 return double_type_node;
7521 break;
7522 case 2:
7523 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7524 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7525 return long_double_type_node;
7526 break;
7527 default:
7528 gcc_unreachable ();
7529 }
7530 break;
7531 case COMPLEX_TYPE:
7532 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7533 return NULL_TREE;
7534 switch (flt_eval_method)
7535 {
7536 case 1:
7537 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7538 return complex_double_type_node;
7539 break;
7540 case 2:
7541 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7542 || (TYPE_MODE (TREE_TYPE (type))
7543 == TYPE_MODE (double_type_node)))
7544 return complex_long_double_type_node;
7545 break;
7546 default:
7547 gcc_unreachable ();
7548 }
7549 break;
7550 default:
7551 break;
7552 }
7553 }
7554 return NULL_TREE;
7555 }
7556 \f
7557 /* Return OP, stripped of any conversions to wider types as much as is safe.
7558 Converting the value back to OP's type makes a value equivalent to OP.
7559
7560 If FOR_TYPE is nonzero, we return a value which, if converted to
7561 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7562
7563 OP must have integer, real or enumeral type. Pointers are not allowed!
7564
7565 There are some cases where the obvious value we could return
7566 would regenerate to OP if converted to OP's type,
7567 but would not extend like OP to wider types.
7568 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7569 For example, if OP is (unsigned short)(signed char)-1,
7570 we avoid returning (signed char)-1 if FOR_TYPE is int,
7571 even though extending that to an unsigned short would regenerate OP,
7572 since the result of extending (signed char)-1 to (int)
7573 is different from (int) OP. */
7574
7575 tree
7576 get_unwidened (tree op, tree for_type)
7577 {
7578 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7579 tree type = TREE_TYPE (op);
7580 unsigned final_prec
7581 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7582 int uns
7583 = (for_type != 0 && for_type != type
7584 && final_prec > TYPE_PRECISION (type)
7585 && TYPE_UNSIGNED (type));
7586 tree win = op;
7587
7588 while (CONVERT_EXPR_P (op))
7589 {
7590 int bitschange;
7591
7592 /* TYPE_PRECISION on vector types has different meaning
7593 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7594 so avoid them here. */
7595 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7596 break;
7597
7598 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7599 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7600
7601 /* Truncations are many-one so cannot be removed.
7602 Unless we are later going to truncate down even farther. */
7603 if (bitschange < 0
7604 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7605 break;
7606
7607 /* See what's inside this conversion. If we decide to strip it,
7608 we will set WIN. */
7609 op = TREE_OPERAND (op, 0);
7610
7611 /* If we have not stripped any zero-extensions (uns is 0),
7612 we can strip any kind of extension.
7613 If we have previously stripped a zero-extension,
7614 only zero-extensions can safely be stripped.
7615 Any extension can be stripped if the bits it would produce
7616 are all going to be discarded later by truncating to FOR_TYPE. */
7617
7618 if (bitschange > 0)
7619 {
7620 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7621 win = op;
7622 /* TYPE_UNSIGNED says whether this is a zero-extension.
7623 Let's avoid computing it if it does not affect WIN
7624 and if UNS will not be needed again. */
7625 if ((uns
7626 || CONVERT_EXPR_P (op))
7627 && TYPE_UNSIGNED (TREE_TYPE (op)))
7628 {
7629 uns = 1;
7630 win = op;
7631 }
7632 }
7633 }
7634
7635 return win;
7636 }
7637 \f
7638 /* Return OP or a simpler expression for a narrower value
7639 which can be sign-extended or zero-extended to give back OP.
7640 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7641 or 0 if the value should be sign-extended. */
7642
7643 tree
7644 get_narrower (tree op, int *unsignedp_ptr)
7645 {
7646 int uns = 0;
7647 int first = 1;
7648 tree win = op;
7649 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7650
7651 while (TREE_CODE (op) == NOP_EXPR)
7652 {
7653 int bitschange
7654 = (TYPE_PRECISION (TREE_TYPE (op))
7655 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7656
7657 /* Truncations are many-one so cannot be removed. */
7658 if (bitschange < 0)
7659 break;
7660
7661 /* See what's inside this conversion. If we decide to strip it,
7662 we will set WIN. */
7663
7664 if (bitschange > 0)
7665 {
7666 op = TREE_OPERAND (op, 0);
7667 /* An extension: the outermost one can be stripped,
7668 but remember whether it is zero or sign extension. */
7669 if (first)
7670 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7671 /* Otherwise, if a sign extension has been stripped,
7672 only sign extensions can now be stripped;
7673 if a zero extension has been stripped, only zero-extensions. */
7674 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7675 break;
7676 first = 0;
7677 }
7678 else /* bitschange == 0 */
7679 {
7680 /* A change in nominal type can always be stripped, but we must
7681 preserve the unsignedness. */
7682 if (first)
7683 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7684 first = 0;
7685 op = TREE_OPERAND (op, 0);
7686 /* Keep trying to narrow, but don't assign op to win if it
7687 would turn an integral type into something else. */
7688 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7689 continue;
7690 }
7691
7692 win = op;
7693 }
7694
7695 if (TREE_CODE (op) == COMPONENT_REF
7696 /* Since type_for_size always gives an integer type. */
7697 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7698 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7699 /* Ensure field is laid out already. */
7700 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7701 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7702 {
7703 unsigned HOST_WIDE_INT innerprec
7704 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7705 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7706 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7707 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7708
7709 /* We can get this structure field in a narrower type that fits it,
7710 but the resulting extension to its nominal type (a fullword type)
7711 must satisfy the same conditions as for other extensions.
7712
7713 Do this only for fields that are aligned (not bit-fields),
7714 because when bit-field insns will be used there is no
7715 advantage in doing this. */
7716
7717 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7718 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7719 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7720 && type != 0)
7721 {
7722 if (first)
7723 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7724 win = fold_convert (type, op);
7725 }
7726 }
7727
7728 *unsignedp_ptr = uns;
7729 return win;
7730 }
7731 \f
7732 /* Nonzero if integer constant C has a value that is permissible
7733 for type TYPE (an INTEGER_TYPE). */
7734
7735 int
7736 int_fits_type_p (const_tree c, const_tree type)
7737 {
7738 tree type_low_bound, type_high_bound;
7739 bool ok_for_low_bound, ok_for_high_bound, unsc;
7740 double_int dc, dd;
7741
7742 dc = tree_to_double_int (c);
7743 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7744
7745 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7746 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7747 && unsc)
7748 /* So c is an unsigned integer whose type is sizetype and type is not.
7749 sizetype'd integers are sign extended even though they are
7750 unsigned. If the integer value fits in the lower end word of c,
7751 and if the higher end word has all its bits set to 1, that
7752 means the higher end bits are set to 1 only for sign extension.
7753 So let's convert c into an equivalent zero extended unsigned
7754 integer. */
7755 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7756
7757 retry:
7758 type_low_bound = TYPE_MIN_VALUE (type);
7759 type_high_bound = TYPE_MAX_VALUE (type);
7760
7761 /* If at least one bound of the type is a constant integer, we can check
7762 ourselves and maybe make a decision. If no such decision is possible, but
7763 this type is a subtype, try checking against that. Otherwise, use
7764 fit_double_type, which checks against the precision.
7765
7766 Compute the status for each possibly constant bound, and return if we see
7767 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7768 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7769 for "constant known to fit". */
7770
7771 /* Check if c >= type_low_bound. */
7772 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7773 {
7774 dd = tree_to_double_int (type_low_bound);
7775 if (TREE_CODE (type) == INTEGER_TYPE
7776 && TYPE_IS_SIZETYPE (type)
7777 && TYPE_UNSIGNED (type))
7778 dd = double_int_zext (dd, TYPE_PRECISION (type));
7779 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7780 {
7781 int c_neg = (!unsc && double_int_negative_p (dc));
7782 int t_neg = (unsc && double_int_negative_p (dd));
7783
7784 if (c_neg && !t_neg)
7785 return 0;
7786 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
7787 return 0;
7788 }
7789 else if (double_int_cmp (dc, dd, unsc) < 0)
7790 return 0;
7791 ok_for_low_bound = true;
7792 }
7793 else
7794 ok_for_low_bound = false;
7795
7796 /* Check if c <= type_high_bound. */
7797 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
7798 {
7799 dd = tree_to_double_int (type_high_bound);
7800 if (TREE_CODE (type) == INTEGER_TYPE
7801 && TYPE_IS_SIZETYPE (type)
7802 && TYPE_UNSIGNED (type))
7803 dd = double_int_zext (dd, TYPE_PRECISION (type));
7804 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
7805 {
7806 int c_neg = (!unsc && double_int_negative_p (dc));
7807 int t_neg = (unsc && double_int_negative_p (dd));
7808
7809 if (t_neg && !c_neg)
7810 return 0;
7811 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
7812 return 0;
7813 }
7814 else if (double_int_cmp (dc, dd, unsc) > 0)
7815 return 0;
7816 ok_for_high_bound = true;
7817 }
7818 else
7819 ok_for_high_bound = false;
7820
7821 /* If the constant fits both bounds, the result is known. */
7822 if (ok_for_low_bound && ok_for_high_bound)
7823 return 1;
7824
7825 /* Perform some generic filtering which may allow making a decision
7826 even if the bounds are not constant. First, negative integers
7827 never fit in unsigned types, */
7828 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
7829 return 0;
7830
7831 /* Second, narrower types always fit in wider ones. */
7832 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
7833 return 1;
7834
7835 /* Third, unsigned integers with top bit set never fit signed types. */
7836 if (! TYPE_UNSIGNED (type) && unsc)
7837 {
7838 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
7839 if (prec < HOST_BITS_PER_WIDE_INT)
7840 {
7841 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
7842 return 0;
7843 }
7844 else if (((((unsigned HOST_WIDE_INT) 1)
7845 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
7846 return 0;
7847 }
7848
7849 /* If we haven't been able to decide at this point, there nothing more we
7850 can check ourselves here. Look at the base type if we have one and it
7851 has the same precision. */
7852 if (TREE_CODE (type) == INTEGER_TYPE
7853 && TREE_TYPE (type) != 0
7854 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
7855 {
7856 type = TREE_TYPE (type);
7857 goto retry;
7858 }
7859
7860 /* Or to fit_double_type, if nothing else. */
7861 return !fit_double_type (dc.low, dc.high, &dc.low, &dc.high, type);
7862 }
7863
7864 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
7865 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
7866 represented (assuming two's-complement arithmetic) within the bit
7867 precision of the type are returned instead. */
7868
7869 void
7870 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
7871 {
7872 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
7873 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
7874 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
7875 TYPE_UNSIGNED (type));
7876 else
7877 {
7878 if (TYPE_UNSIGNED (type))
7879 mpz_set_ui (min, 0);
7880 else
7881 {
7882 double_int mn;
7883 mn = double_int_mask (TYPE_PRECISION (type) - 1);
7884 mn = double_int_sext (double_int_add (mn, double_int_one),
7885 TYPE_PRECISION (type));
7886 mpz_set_double_int (min, mn, false);
7887 }
7888 }
7889
7890 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
7891 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
7892 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
7893 TYPE_UNSIGNED (type));
7894 else
7895 {
7896 if (TYPE_UNSIGNED (type))
7897 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
7898 true);
7899 else
7900 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
7901 true);
7902 }
7903 }
7904
7905 /* Return true if VAR is an automatic variable defined in function FN. */
7906
7907 bool
7908 auto_var_in_fn_p (const_tree var, const_tree fn)
7909 {
7910 return (DECL_P (var) && DECL_CONTEXT (var) == fn
7911 && (((TREE_CODE (var) == VAR_DECL || TREE_CODE (var) == PARM_DECL)
7912 && ! TREE_STATIC (var))
7913 || TREE_CODE (var) == LABEL_DECL
7914 || TREE_CODE (var) == RESULT_DECL));
7915 }
7916
7917 /* Subprogram of following function. Called by walk_tree.
7918
7919 Return *TP if it is an automatic variable or parameter of the
7920 function passed in as DATA. */
7921
7922 static tree
7923 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
7924 {
7925 tree fn = (tree) data;
7926
7927 if (TYPE_P (*tp))
7928 *walk_subtrees = 0;
7929
7930 else if (DECL_P (*tp)
7931 && auto_var_in_fn_p (*tp, fn))
7932 return *tp;
7933
7934 return NULL_TREE;
7935 }
7936
7937 /* Returns true if T is, contains, or refers to a type with variable
7938 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
7939 arguments, but not the return type. If FN is nonzero, only return
7940 true if a modifier of the type or position of FN is a variable or
7941 parameter inside FN.
7942
7943 This concept is more general than that of C99 'variably modified types':
7944 in C99, a struct type is never variably modified because a VLA may not
7945 appear as a structure member. However, in GNU C code like:
7946
7947 struct S { int i[f()]; };
7948
7949 is valid, and other languages may define similar constructs. */
7950
7951 bool
7952 variably_modified_type_p (tree type, tree fn)
7953 {
7954 tree t;
7955
7956 /* Test if T is either variable (if FN is zero) or an expression containing
7957 a variable in FN. */
7958 #define RETURN_TRUE_IF_VAR(T) \
7959 do { tree _t = (T); \
7960 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
7961 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
7962 return true; } while (0)
7963
7964 if (type == error_mark_node)
7965 return false;
7966
7967 /* If TYPE itself has variable size, it is variably modified. */
7968 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
7969 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
7970
7971 switch (TREE_CODE (type))
7972 {
7973 case POINTER_TYPE:
7974 case REFERENCE_TYPE:
7975 case VECTOR_TYPE:
7976 if (variably_modified_type_p (TREE_TYPE (type), fn))
7977 return true;
7978 break;
7979
7980 case FUNCTION_TYPE:
7981 case METHOD_TYPE:
7982 /* If TYPE is a function type, it is variably modified if the
7983 return type is variably modified. */
7984 if (variably_modified_type_p (TREE_TYPE (type), fn))
7985 return true;
7986 break;
7987
7988 case INTEGER_TYPE:
7989 case REAL_TYPE:
7990 case FIXED_POINT_TYPE:
7991 case ENUMERAL_TYPE:
7992 case BOOLEAN_TYPE:
7993 /* Scalar types are variably modified if their end points
7994 aren't constant. */
7995 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
7996 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
7997 break;
7998
7999 case RECORD_TYPE:
8000 case UNION_TYPE:
8001 case QUAL_UNION_TYPE:
8002 /* We can't see if any of the fields are variably-modified by the
8003 definition we normally use, since that would produce infinite
8004 recursion via pointers. */
8005 /* This is variably modified if some field's type is. */
8006 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
8007 if (TREE_CODE (t) == FIELD_DECL)
8008 {
8009 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8010 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8011 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8012
8013 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8014 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8015 }
8016 break;
8017
8018 case ARRAY_TYPE:
8019 /* Do not call ourselves to avoid infinite recursion. This is
8020 variably modified if the element type is. */
8021 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8022 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8023 break;
8024
8025 default:
8026 break;
8027 }
8028
8029 /* The current language may have other cases to check, but in general,
8030 all other types are not variably modified. */
8031 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8032
8033 #undef RETURN_TRUE_IF_VAR
8034 }
8035
8036 /* Given a DECL or TYPE, return the scope in which it was declared, or
8037 NULL_TREE if there is no containing scope. */
8038
8039 tree
8040 get_containing_scope (const_tree t)
8041 {
8042 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8043 }
8044
8045 /* Return the innermost context enclosing DECL that is
8046 a FUNCTION_DECL, or zero if none. */
8047
8048 tree
8049 decl_function_context (const_tree decl)
8050 {
8051 tree context;
8052
8053 if (TREE_CODE (decl) == ERROR_MARK)
8054 return 0;
8055
8056 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8057 where we look up the function at runtime. Such functions always take
8058 a first argument of type 'pointer to real context'.
8059
8060 C++ should really be fixed to use DECL_CONTEXT for the real context,
8061 and use something else for the "virtual context". */
8062 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8063 context
8064 = TYPE_MAIN_VARIANT
8065 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8066 else
8067 context = DECL_CONTEXT (decl);
8068
8069 while (context && TREE_CODE (context) != FUNCTION_DECL)
8070 {
8071 if (TREE_CODE (context) == BLOCK)
8072 context = BLOCK_SUPERCONTEXT (context);
8073 else
8074 context = get_containing_scope (context);
8075 }
8076
8077 return context;
8078 }
8079
8080 /* Return the innermost context enclosing DECL that is
8081 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8082 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8083
8084 tree
8085 decl_type_context (const_tree decl)
8086 {
8087 tree context = DECL_CONTEXT (decl);
8088
8089 while (context)
8090 switch (TREE_CODE (context))
8091 {
8092 case NAMESPACE_DECL:
8093 case TRANSLATION_UNIT_DECL:
8094 return NULL_TREE;
8095
8096 case RECORD_TYPE:
8097 case UNION_TYPE:
8098 case QUAL_UNION_TYPE:
8099 return context;
8100
8101 case TYPE_DECL:
8102 case FUNCTION_DECL:
8103 context = DECL_CONTEXT (context);
8104 break;
8105
8106 case BLOCK:
8107 context = BLOCK_SUPERCONTEXT (context);
8108 break;
8109
8110 default:
8111 gcc_unreachable ();
8112 }
8113
8114 return NULL_TREE;
8115 }
8116
8117 /* CALL is a CALL_EXPR. Return the declaration for the function
8118 called, or NULL_TREE if the called function cannot be
8119 determined. */
8120
8121 tree
8122 get_callee_fndecl (const_tree call)
8123 {
8124 tree addr;
8125
8126 if (call == error_mark_node)
8127 return error_mark_node;
8128
8129 /* It's invalid to call this function with anything but a
8130 CALL_EXPR. */
8131 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8132
8133 /* The first operand to the CALL is the address of the function
8134 called. */
8135 addr = CALL_EXPR_FN (call);
8136
8137 STRIP_NOPS (addr);
8138
8139 /* If this is a readonly function pointer, extract its initial value. */
8140 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8141 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8142 && DECL_INITIAL (addr))
8143 addr = DECL_INITIAL (addr);
8144
8145 /* If the address is just `&f' for some function `f', then we know
8146 that `f' is being called. */
8147 if (TREE_CODE (addr) == ADDR_EXPR
8148 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8149 return TREE_OPERAND (addr, 0);
8150
8151 /* We couldn't figure out what was being called. */
8152 return NULL_TREE;
8153 }
8154
8155 /* Print debugging information about tree nodes generated during the compile,
8156 and any language-specific information. */
8157
8158 void
8159 dump_tree_statistics (void)
8160 {
8161 #ifdef GATHER_STATISTICS
8162 int i;
8163 int total_nodes, total_bytes;
8164 #endif
8165
8166 fprintf (stderr, "\n??? tree nodes created\n\n");
8167 #ifdef GATHER_STATISTICS
8168 fprintf (stderr, "Kind Nodes Bytes\n");
8169 fprintf (stderr, "---------------------------------------\n");
8170 total_nodes = total_bytes = 0;
8171 for (i = 0; i < (int) all_kinds; i++)
8172 {
8173 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8174 tree_node_counts[i], tree_node_sizes[i]);
8175 total_nodes += tree_node_counts[i];
8176 total_bytes += tree_node_sizes[i];
8177 }
8178 fprintf (stderr, "---------------------------------------\n");
8179 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8180 fprintf (stderr, "---------------------------------------\n");
8181 ssanames_print_statistics ();
8182 phinodes_print_statistics ();
8183 #else
8184 fprintf (stderr, "(No per-node statistics)\n");
8185 #endif
8186 print_type_hash_statistics ();
8187 print_debug_expr_statistics ();
8188 print_value_expr_statistics ();
8189 lang_hooks.print_statistics ();
8190 }
8191 \f
8192 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8193
8194 /* Generate a crc32 of a string. */
8195
8196 unsigned
8197 crc32_string (unsigned chksum, const char *string)
8198 {
8199 do
8200 {
8201 unsigned value = *string << 24;
8202 unsigned ix;
8203
8204 for (ix = 8; ix--; value <<= 1)
8205 {
8206 unsigned feedback;
8207
8208 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8209 chksum <<= 1;
8210 chksum ^= feedback;
8211 }
8212 }
8213 while (*string++);
8214 return chksum;
8215 }
8216
8217 /* P is a string that will be used in a symbol. Mask out any characters
8218 that are not valid in that context. */
8219
8220 void
8221 clean_symbol_name (char *p)
8222 {
8223 for (; *p; p++)
8224 if (! (ISALNUM (*p)
8225 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8226 || *p == '$'
8227 #endif
8228 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8229 || *p == '.'
8230 #endif
8231 ))
8232 *p = '_';
8233 }
8234
8235 /* Generate a name for a special-purpose function function.
8236 The generated name may need to be unique across the whole link.
8237 TYPE is some string to identify the purpose of this function to the
8238 linker or collect2; it must start with an uppercase letter,
8239 one of:
8240 I - for constructors
8241 D - for destructors
8242 N - for C++ anonymous namespaces
8243 F - for DWARF unwind frame information. */
8244
8245 tree
8246 get_file_function_name (const char *type)
8247 {
8248 char *buf;
8249 const char *p;
8250 char *q;
8251
8252 /* If we already have a name we know to be unique, just use that. */
8253 if (first_global_object_name)
8254 p = q = ASTRDUP (first_global_object_name);
8255 /* If the target is handling the constructors/destructors, they
8256 will be local to this file and the name is only necessary for
8257 debugging purposes. */
8258 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8259 {
8260 const char *file = main_input_filename;
8261 if (! file)
8262 file = input_filename;
8263 /* Just use the file's basename, because the full pathname
8264 might be quite long. */
8265 p = strrchr (file, '/');
8266 if (p)
8267 p++;
8268 else
8269 p = file;
8270 p = q = ASTRDUP (p);
8271 }
8272 else
8273 {
8274 /* Otherwise, the name must be unique across the entire link.
8275 We don't have anything that we know to be unique to this translation
8276 unit, so use what we do have and throw in some randomness. */
8277 unsigned len;
8278 const char *name = weak_global_object_name;
8279 const char *file = main_input_filename;
8280
8281 if (! name)
8282 name = "";
8283 if (! file)
8284 file = input_filename;
8285
8286 len = strlen (file);
8287 q = (char *) alloca (9 * 2 + len + 1);
8288 memcpy (q, file, len + 1);
8289
8290 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8291 crc32_string (0, get_random_seed (false)));
8292
8293 p = q;
8294 }
8295
8296 clean_symbol_name (q);
8297 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8298 + strlen (type));
8299
8300 /* Set up the name of the file-level functions we may need.
8301 Use a global object (which is already required to be unique over
8302 the program) rather than the file name (which imposes extra
8303 constraints). */
8304 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8305
8306 return get_identifier (buf);
8307 }
8308 \f
8309 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8310
8311 /* Complain that the tree code of NODE does not match the expected 0
8312 terminated list of trailing codes. The trailing code list can be
8313 empty, for a more vague error message. FILE, LINE, and FUNCTION
8314 are of the caller. */
8315
8316 void
8317 tree_check_failed (const_tree node, const char *file,
8318 int line, const char *function, ...)
8319 {
8320 va_list args;
8321 const char *buffer;
8322 unsigned length = 0;
8323 int code;
8324
8325 va_start (args, function);
8326 while ((code = va_arg (args, int)))
8327 length += 4 + strlen (tree_code_name[code]);
8328 va_end (args);
8329 if (length)
8330 {
8331 char *tmp;
8332 va_start (args, function);
8333 length += strlen ("expected ");
8334 buffer = tmp = (char *) alloca (length);
8335 length = 0;
8336 while ((code = va_arg (args, int)))
8337 {
8338 const char *prefix = length ? " or " : "expected ";
8339
8340 strcpy (tmp + length, prefix);
8341 length += strlen (prefix);
8342 strcpy (tmp + length, tree_code_name[code]);
8343 length += strlen (tree_code_name[code]);
8344 }
8345 va_end (args);
8346 }
8347 else
8348 buffer = "unexpected node";
8349
8350 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8351 buffer, tree_code_name[TREE_CODE (node)],
8352 function, trim_filename (file), line);
8353 }
8354
8355 /* Complain that the tree code of NODE does match the expected 0
8356 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8357 the caller. */
8358
8359 void
8360 tree_not_check_failed (const_tree node, const char *file,
8361 int line, const char *function, ...)
8362 {
8363 va_list args;
8364 char *buffer;
8365 unsigned length = 0;
8366 int code;
8367
8368 va_start (args, function);
8369 while ((code = va_arg (args, int)))
8370 length += 4 + strlen (tree_code_name[code]);
8371 va_end (args);
8372 va_start (args, function);
8373 buffer = (char *) alloca (length);
8374 length = 0;
8375 while ((code = va_arg (args, int)))
8376 {
8377 if (length)
8378 {
8379 strcpy (buffer + length, " or ");
8380 length += 4;
8381 }
8382 strcpy (buffer + length, tree_code_name[code]);
8383 length += strlen (tree_code_name[code]);
8384 }
8385 va_end (args);
8386
8387 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8388 buffer, tree_code_name[TREE_CODE (node)],
8389 function, trim_filename (file), line);
8390 }
8391
8392 /* Similar to tree_check_failed, except that we check for a class of tree
8393 code, given in CL. */
8394
8395 void
8396 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8397 const char *file, int line, const char *function)
8398 {
8399 internal_error
8400 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8401 TREE_CODE_CLASS_STRING (cl),
8402 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8403 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8404 }
8405
8406 /* Similar to tree_check_failed, except that instead of specifying a
8407 dozen codes, use the knowledge that they're all sequential. */
8408
8409 void
8410 tree_range_check_failed (const_tree node, const char *file, int line,
8411 const char *function, enum tree_code c1,
8412 enum tree_code c2)
8413 {
8414 char *buffer;
8415 unsigned length = 0;
8416 unsigned int c;
8417
8418 for (c = c1; c <= c2; ++c)
8419 length += 4 + strlen (tree_code_name[c]);
8420
8421 length += strlen ("expected ");
8422 buffer = (char *) alloca (length);
8423 length = 0;
8424
8425 for (c = c1; c <= c2; ++c)
8426 {
8427 const char *prefix = length ? " or " : "expected ";
8428
8429 strcpy (buffer + length, prefix);
8430 length += strlen (prefix);
8431 strcpy (buffer + length, tree_code_name[c]);
8432 length += strlen (tree_code_name[c]);
8433 }
8434
8435 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8436 buffer, tree_code_name[TREE_CODE (node)],
8437 function, trim_filename (file), line);
8438 }
8439
8440
8441 /* Similar to tree_check_failed, except that we check that a tree does
8442 not have the specified code, given in CL. */
8443
8444 void
8445 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8446 const char *file, int line, const char *function)
8447 {
8448 internal_error
8449 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8450 TREE_CODE_CLASS_STRING (cl),
8451 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8452 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8453 }
8454
8455
8456 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8457
8458 void
8459 omp_clause_check_failed (const_tree node, const char *file, int line,
8460 const char *function, enum omp_clause_code code)
8461 {
8462 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8463 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8464 function, trim_filename (file), line);
8465 }
8466
8467
8468 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8469
8470 void
8471 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8472 const char *function, enum omp_clause_code c1,
8473 enum omp_clause_code c2)
8474 {
8475 char *buffer;
8476 unsigned length = 0;
8477 unsigned int c;
8478
8479 for (c = c1; c <= c2; ++c)
8480 length += 4 + strlen (omp_clause_code_name[c]);
8481
8482 length += strlen ("expected ");
8483 buffer = (char *) alloca (length);
8484 length = 0;
8485
8486 for (c = c1; c <= c2; ++c)
8487 {
8488 const char *prefix = length ? " or " : "expected ";
8489
8490 strcpy (buffer + length, prefix);
8491 length += strlen (prefix);
8492 strcpy (buffer + length, omp_clause_code_name[c]);
8493 length += strlen (omp_clause_code_name[c]);
8494 }
8495
8496 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8497 buffer, omp_clause_code_name[TREE_CODE (node)],
8498 function, trim_filename (file), line);
8499 }
8500
8501
8502 #undef DEFTREESTRUCT
8503 #define DEFTREESTRUCT(VAL, NAME) NAME,
8504
8505 static const char *ts_enum_names[] = {
8506 #include "treestruct.def"
8507 };
8508 #undef DEFTREESTRUCT
8509
8510 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8511
8512 /* Similar to tree_class_check_failed, except that we check for
8513 whether CODE contains the tree structure identified by EN. */
8514
8515 void
8516 tree_contains_struct_check_failed (const_tree node,
8517 const enum tree_node_structure_enum en,
8518 const char *file, int line,
8519 const char *function)
8520 {
8521 internal_error
8522 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8523 TS_ENUM_NAME(en),
8524 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8525 }
8526
8527
8528 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8529 (dynamically sized) vector. */
8530
8531 void
8532 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8533 const char *function)
8534 {
8535 internal_error
8536 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8537 idx + 1, len, function, trim_filename (file), line);
8538 }
8539
8540 /* Similar to above, except that the check is for the bounds of the operand
8541 vector of an expression node EXP. */
8542
8543 void
8544 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8545 int line, const char *function)
8546 {
8547 int code = TREE_CODE (exp);
8548 internal_error
8549 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8550 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8551 function, trim_filename (file), line);
8552 }
8553
8554 /* Similar to above, except that the check is for the number of
8555 operands of an OMP_CLAUSE node. */
8556
8557 void
8558 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8559 int line, const char *function)
8560 {
8561 internal_error
8562 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8563 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8564 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8565 trim_filename (file), line);
8566 }
8567 #endif /* ENABLE_TREE_CHECKING */
8568 \f
8569 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8570 and mapped to the machine mode MODE. Initialize its fields and build
8571 the information necessary for debugging output. */
8572
8573 static tree
8574 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8575 {
8576 tree t;
8577 hashval_t hashcode = 0;
8578
8579 t = make_node (VECTOR_TYPE);
8580 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8581 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8582 SET_TYPE_MODE (t, mode);
8583
8584 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8585 SET_TYPE_STRUCTURAL_EQUALITY (t);
8586 else if (TYPE_CANONICAL (innertype) != innertype
8587 || mode != VOIDmode)
8588 TYPE_CANONICAL (t)
8589 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8590
8591 layout_type (t);
8592
8593 {
8594 tree index = build_int_cst (NULL_TREE, nunits - 1);
8595 tree array = build_array_type (TYPE_MAIN_VARIANT (innertype),
8596 build_index_type (index));
8597 tree rt = make_node (RECORD_TYPE);
8598
8599 TYPE_FIELDS (rt) = build_decl (UNKNOWN_LOCATION, FIELD_DECL,
8600 get_identifier ("f"), array);
8601 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
8602 layout_type (rt);
8603 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
8604 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
8605 the representation type, and we want to find that die when looking up
8606 the vector type. This is most easily achieved by making the TYPE_UID
8607 numbers equal. */
8608 TYPE_UID (rt) = TYPE_UID (t);
8609 }
8610
8611 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8612 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8613 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8614 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8615 t = type_hash_canon (hashcode, t);
8616
8617 /* We have built a main variant, based on the main variant of the
8618 inner type. Use it to build the variant we return. */
8619 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8620 && TREE_TYPE (t) != innertype)
8621 return build_type_attribute_qual_variant (t,
8622 TYPE_ATTRIBUTES (innertype),
8623 TYPE_QUALS (innertype));
8624
8625 return t;
8626 }
8627
8628 static tree
8629 make_or_reuse_type (unsigned size, int unsignedp)
8630 {
8631 if (size == INT_TYPE_SIZE)
8632 return unsignedp ? unsigned_type_node : integer_type_node;
8633 if (size == CHAR_TYPE_SIZE)
8634 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8635 if (size == SHORT_TYPE_SIZE)
8636 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8637 if (size == LONG_TYPE_SIZE)
8638 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8639 if (size == LONG_LONG_TYPE_SIZE)
8640 return (unsignedp ? long_long_unsigned_type_node
8641 : long_long_integer_type_node);
8642
8643 if (unsignedp)
8644 return make_unsigned_type (size);
8645 else
8646 return make_signed_type (size);
8647 }
8648
8649 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8650
8651 static tree
8652 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8653 {
8654 if (satp)
8655 {
8656 if (size == SHORT_FRACT_TYPE_SIZE)
8657 return unsignedp ? sat_unsigned_short_fract_type_node
8658 : sat_short_fract_type_node;
8659 if (size == FRACT_TYPE_SIZE)
8660 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8661 if (size == LONG_FRACT_TYPE_SIZE)
8662 return unsignedp ? sat_unsigned_long_fract_type_node
8663 : sat_long_fract_type_node;
8664 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8665 return unsignedp ? sat_unsigned_long_long_fract_type_node
8666 : sat_long_long_fract_type_node;
8667 }
8668 else
8669 {
8670 if (size == SHORT_FRACT_TYPE_SIZE)
8671 return unsignedp ? unsigned_short_fract_type_node
8672 : short_fract_type_node;
8673 if (size == FRACT_TYPE_SIZE)
8674 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8675 if (size == LONG_FRACT_TYPE_SIZE)
8676 return unsignedp ? unsigned_long_fract_type_node
8677 : long_fract_type_node;
8678 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8679 return unsignedp ? unsigned_long_long_fract_type_node
8680 : long_long_fract_type_node;
8681 }
8682
8683 return make_fract_type (size, unsignedp, satp);
8684 }
8685
8686 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8687
8688 static tree
8689 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8690 {
8691 if (satp)
8692 {
8693 if (size == SHORT_ACCUM_TYPE_SIZE)
8694 return unsignedp ? sat_unsigned_short_accum_type_node
8695 : sat_short_accum_type_node;
8696 if (size == ACCUM_TYPE_SIZE)
8697 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8698 if (size == LONG_ACCUM_TYPE_SIZE)
8699 return unsignedp ? sat_unsigned_long_accum_type_node
8700 : sat_long_accum_type_node;
8701 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8702 return unsignedp ? sat_unsigned_long_long_accum_type_node
8703 : sat_long_long_accum_type_node;
8704 }
8705 else
8706 {
8707 if (size == SHORT_ACCUM_TYPE_SIZE)
8708 return unsignedp ? unsigned_short_accum_type_node
8709 : short_accum_type_node;
8710 if (size == ACCUM_TYPE_SIZE)
8711 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8712 if (size == LONG_ACCUM_TYPE_SIZE)
8713 return unsignedp ? unsigned_long_accum_type_node
8714 : long_accum_type_node;
8715 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8716 return unsignedp ? unsigned_long_long_accum_type_node
8717 : long_long_accum_type_node;
8718 }
8719
8720 return make_accum_type (size, unsignedp, satp);
8721 }
8722
8723 /* Create nodes for all integer types (and error_mark_node) using the sizes
8724 of C datatypes. The caller should call set_sizetype soon after calling
8725 this function to select one of the types as sizetype. */
8726
8727 void
8728 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
8729 {
8730 error_mark_node = make_node (ERROR_MARK);
8731 TREE_TYPE (error_mark_node) = error_mark_node;
8732
8733 initialize_sizetypes (signed_sizetype);
8734
8735 /* Define both `signed char' and `unsigned char'. */
8736 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8737 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8738 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8739 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8740
8741 /* Define `char', which is like either `signed char' or `unsigned char'
8742 but not the same as either. */
8743 char_type_node
8744 = (signed_char
8745 ? make_signed_type (CHAR_TYPE_SIZE)
8746 : make_unsigned_type (CHAR_TYPE_SIZE));
8747 TYPE_STRING_FLAG (char_type_node) = 1;
8748
8749 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8750 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8751 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8752 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8753 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8754 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8755 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8756 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8757
8758 /* Define a boolean type. This type only represents boolean values but
8759 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8760 Front ends which want to override this size (i.e. Java) can redefine
8761 boolean_type_node before calling build_common_tree_nodes_2. */
8762 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8763 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8764 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8765 TYPE_PRECISION (boolean_type_node) = 1;
8766
8767 /* Fill in the rest of the sized types. Reuse existing type nodes
8768 when possible. */
8769 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8770 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8771 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8772 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8773 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8774
8775 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8776 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8777 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8778 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8779 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8780
8781 access_public_node = get_identifier ("public");
8782 access_protected_node = get_identifier ("protected");
8783 access_private_node = get_identifier ("private");
8784 }
8785
8786 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8787 It will create several other common tree nodes. */
8788
8789 void
8790 build_common_tree_nodes_2 (int short_double)
8791 {
8792 /* Define these next since types below may used them. */
8793 integer_zero_node = build_int_cst (NULL_TREE, 0);
8794 integer_one_node = build_int_cst (NULL_TREE, 1);
8795 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
8796
8797 size_zero_node = size_int (0);
8798 size_one_node = size_int (1);
8799 bitsize_zero_node = bitsize_int (0);
8800 bitsize_one_node = bitsize_int (1);
8801 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
8802
8803 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
8804 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
8805
8806 void_type_node = make_node (VOID_TYPE);
8807 layout_type (void_type_node);
8808
8809 /* We are not going to have real types in C with less than byte alignment,
8810 so we might as well not have any types that claim to have it. */
8811 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
8812 TYPE_USER_ALIGN (void_type_node) = 0;
8813
8814 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
8815 layout_type (TREE_TYPE (null_pointer_node));
8816
8817 ptr_type_node = build_pointer_type (void_type_node);
8818 const_ptr_type_node
8819 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
8820 fileptr_type_node = ptr_type_node;
8821
8822 float_type_node = make_node (REAL_TYPE);
8823 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
8824 layout_type (float_type_node);
8825
8826 double_type_node = make_node (REAL_TYPE);
8827 if (short_double)
8828 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
8829 else
8830 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
8831 layout_type (double_type_node);
8832
8833 long_double_type_node = make_node (REAL_TYPE);
8834 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
8835 layout_type (long_double_type_node);
8836
8837 float_ptr_type_node = build_pointer_type (float_type_node);
8838 double_ptr_type_node = build_pointer_type (double_type_node);
8839 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
8840 integer_ptr_type_node = build_pointer_type (integer_type_node);
8841
8842 /* Fixed size integer types. */
8843 uint32_type_node = build_nonstandard_integer_type (32, true);
8844 uint64_type_node = build_nonstandard_integer_type (64, true);
8845
8846 /* Decimal float types. */
8847 dfloat32_type_node = make_node (REAL_TYPE);
8848 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
8849 layout_type (dfloat32_type_node);
8850 SET_TYPE_MODE (dfloat32_type_node, SDmode);
8851 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
8852
8853 dfloat64_type_node = make_node (REAL_TYPE);
8854 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
8855 layout_type (dfloat64_type_node);
8856 SET_TYPE_MODE (dfloat64_type_node, DDmode);
8857 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
8858
8859 dfloat128_type_node = make_node (REAL_TYPE);
8860 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
8861 layout_type (dfloat128_type_node);
8862 SET_TYPE_MODE (dfloat128_type_node, TDmode);
8863 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
8864
8865 complex_integer_type_node = build_complex_type (integer_type_node);
8866 complex_float_type_node = build_complex_type (float_type_node);
8867 complex_double_type_node = build_complex_type (double_type_node);
8868 complex_long_double_type_node = build_complex_type (long_double_type_node);
8869
8870 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
8871 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
8872 sat_ ## KIND ## _type_node = \
8873 make_sat_signed_ ## KIND ## _type (SIZE); \
8874 sat_unsigned_ ## KIND ## _type_node = \
8875 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8876 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8877 unsigned_ ## KIND ## _type_node = \
8878 make_unsigned_ ## KIND ## _type (SIZE);
8879
8880 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
8881 sat_ ## WIDTH ## KIND ## _type_node = \
8882 make_sat_signed_ ## KIND ## _type (SIZE); \
8883 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
8884 make_sat_unsigned_ ## KIND ## _type (SIZE); \
8885 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
8886 unsigned_ ## WIDTH ## KIND ## _type_node = \
8887 make_unsigned_ ## KIND ## _type (SIZE);
8888
8889 /* Make fixed-point type nodes based on four different widths. */
8890 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
8891 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
8892 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
8893 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
8894 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
8895
8896 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
8897 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
8898 NAME ## _type_node = \
8899 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
8900 u ## NAME ## _type_node = \
8901 make_or_reuse_unsigned_ ## KIND ## _type \
8902 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
8903 sat_ ## NAME ## _type_node = \
8904 make_or_reuse_sat_signed_ ## KIND ## _type \
8905 (GET_MODE_BITSIZE (MODE ## mode)); \
8906 sat_u ## NAME ## _type_node = \
8907 make_or_reuse_sat_unsigned_ ## KIND ## _type \
8908 (GET_MODE_BITSIZE (U ## MODE ## mode));
8909
8910 /* Fixed-point type and mode nodes. */
8911 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
8912 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
8913 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
8914 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
8915 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
8916 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
8917 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
8918 MAKE_FIXED_MODE_NODE (accum, ha, HA)
8919 MAKE_FIXED_MODE_NODE (accum, sa, SA)
8920 MAKE_FIXED_MODE_NODE (accum, da, DA)
8921 MAKE_FIXED_MODE_NODE (accum, ta, TA)
8922
8923 {
8924 tree t = targetm.build_builtin_va_list ();
8925
8926 /* Many back-ends define record types without setting TYPE_NAME.
8927 If we copied the record type here, we'd keep the original
8928 record type without a name. This breaks name mangling. So,
8929 don't copy record types and let c_common_nodes_and_builtins()
8930 declare the type to be __builtin_va_list. */
8931 if (TREE_CODE (t) != RECORD_TYPE)
8932 t = build_variant_type_copy (t);
8933
8934 va_list_type_node = t;
8935 }
8936 }
8937
8938 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
8939
8940 static void
8941 local_define_builtin (const char *name, tree type, enum built_in_function code,
8942 const char *library_name, int ecf_flags)
8943 {
8944 tree decl;
8945
8946 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
8947 library_name, NULL_TREE);
8948 if (ecf_flags & ECF_CONST)
8949 TREE_READONLY (decl) = 1;
8950 if (ecf_flags & ECF_PURE)
8951 DECL_PURE_P (decl) = 1;
8952 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
8953 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
8954 if (ecf_flags & ECF_NORETURN)
8955 TREE_THIS_VOLATILE (decl) = 1;
8956 if (ecf_flags & ECF_NOTHROW)
8957 TREE_NOTHROW (decl) = 1;
8958 if (ecf_flags & ECF_MALLOC)
8959 DECL_IS_MALLOC (decl) = 1;
8960
8961 built_in_decls[code] = decl;
8962 implicit_built_in_decls[code] = decl;
8963 }
8964
8965 /* Call this function after instantiating all builtins that the language
8966 front end cares about. This will build the rest of the builtins that
8967 are relied upon by the tree optimizers and the middle-end. */
8968
8969 void
8970 build_common_builtin_nodes (void)
8971 {
8972 tree tmp, tmp2, ftype;
8973
8974 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
8975 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8976 {
8977 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8978 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8979 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
8980 ftype = build_function_type (ptr_type_node, tmp);
8981
8982 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
8983 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
8984 "memcpy", ECF_NOTHROW);
8985 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
8986 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
8987 "memmove", ECF_NOTHROW);
8988 }
8989
8990 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
8991 {
8992 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
8993 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8994 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
8995 ftype = build_function_type (integer_type_node, tmp);
8996 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
8997 "memcmp", ECF_PURE | ECF_NOTHROW);
8998 }
8999
9000 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9001 {
9002 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9003 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9004 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9005 ftype = build_function_type (ptr_type_node, tmp);
9006 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9007 "memset", ECF_NOTHROW);
9008 }
9009
9010 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9011 {
9012 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
9013 ftype = build_function_type (ptr_type_node, tmp);
9014 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9015 "alloca", ECF_NOTHROW | ECF_MALLOC);
9016 }
9017
9018 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9019 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9020 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9021 ftype = build_function_type (void_type_node, tmp);
9022 local_define_builtin ("__builtin_init_trampoline", ftype,
9023 BUILT_IN_INIT_TRAMPOLINE,
9024 "__builtin_init_trampoline", ECF_NOTHROW);
9025
9026 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9027 ftype = build_function_type (ptr_type_node, tmp);
9028 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9029 BUILT_IN_ADJUST_TRAMPOLINE,
9030 "__builtin_adjust_trampoline",
9031 ECF_CONST | ECF_NOTHROW);
9032
9033 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9034 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9035 ftype = build_function_type (void_type_node, tmp);
9036 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9037 BUILT_IN_NONLOCAL_GOTO,
9038 "__builtin_nonlocal_goto",
9039 ECF_NORETURN | ECF_NOTHROW);
9040
9041 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9042 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
9043 ftype = build_function_type (void_type_node, tmp);
9044 local_define_builtin ("__builtin_setjmp_setup", ftype,
9045 BUILT_IN_SETJMP_SETUP,
9046 "__builtin_setjmp_setup", ECF_NOTHROW);
9047
9048 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9049 ftype = build_function_type (ptr_type_node, tmp);
9050 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9051 BUILT_IN_SETJMP_DISPATCHER,
9052 "__builtin_setjmp_dispatcher",
9053 ECF_PURE | ECF_NOTHROW);
9054
9055 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9056 ftype = build_function_type (void_type_node, tmp);
9057 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9058 BUILT_IN_SETJMP_RECEIVER,
9059 "__builtin_setjmp_receiver", ECF_NOTHROW);
9060
9061 ftype = build_function_type (ptr_type_node, void_list_node);
9062 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9063 "__builtin_stack_save", ECF_NOTHROW);
9064
9065 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9066 ftype = build_function_type (void_type_node, tmp);
9067 local_define_builtin ("__builtin_stack_restore", ftype,
9068 BUILT_IN_STACK_RESTORE,
9069 "__builtin_stack_restore", ECF_NOTHROW);
9070
9071 ftype = build_function_type (void_type_node, void_list_node);
9072 local_define_builtin ("__builtin_profile_func_enter", ftype,
9073 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9074 local_define_builtin ("__builtin_profile_func_exit", ftype,
9075 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9076
9077 /* If there's a possibility that we might use the ARM EABI, build the
9078 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9079 if (targetm.arm_eabi_unwinder)
9080 {
9081 ftype = build_function_type (void_type_node, void_list_node);
9082 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9083 BUILT_IN_CXA_END_CLEANUP,
9084 "__cxa_end_cleanup", ECF_NORETURN);
9085 }
9086
9087 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
9088 ftype = build_function_type (void_type_node, tmp);
9089 local_define_builtin ("__builtin_unwind_resume", ftype,
9090 BUILT_IN_UNWIND_RESUME,
9091 (USING_SJLJ_EXCEPTIONS
9092 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9093 ECF_NORETURN);
9094
9095 /* The exception object and filter values from the runtime. The argument
9096 must be zero before exception lowering, i.e. from the front end. After
9097 exception lowering, it will be the region number for the exception
9098 landing pad. These functions are PURE instead of CONST to prevent
9099 them from being hoisted past the exception edge that will initialize
9100 its value in the landing pad. */
9101 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9102 ftype = build_function_type (ptr_type_node, tmp);
9103 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9104 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW);
9105
9106 tmp2 = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9107 ftype = build_function_type (tmp2, tmp);
9108 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9109 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW);
9110
9111 tmp = tree_cons (NULL_TREE, integer_type_node, void_list_node);
9112 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
9113 ftype = build_function_type (void_type_node, tmp);
9114 local_define_builtin ("__builtin_eh_copy_values", ftype,
9115 BUILT_IN_EH_COPY_VALUES,
9116 "__builtin_eh_copy_values", ECF_NOTHROW);
9117
9118 /* Complex multiplication and division. These are handled as builtins
9119 rather than optabs because emit_library_call_value doesn't support
9120 complex. Further, we can do slightly better with folding these
9121 beasties if the real and complex parts of the arguments are separate. */
9122 {
9123 int mode;
9124
9125 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9126 {
9127 char mode_name_buf[4], *q;
9128 const char *p;
9129 enum built_in_function mcode, dcode;
9130 tree type, inner_type;
9131
9132 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9133 if (type == NULL)
9134 continue;
9135 inner_type = TREE_TYPE (type);
9136
9137 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
9138 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9139 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9140 tmp = tree_cons (NULL_TREE, inner_type, tmp);
9141 ftype = build_function_type (type, tmp);
9142
9143 mcode = ((enum built_in_function)
9144 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9145 dcode = ((enum built_in_function)
9146 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9147
9148 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9149 *q = TOLOWER (*p);
9150 *q = '\0';
9151
9152 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9153 local_define_builtin (built_in_names[mcode], ftype, mcode,
9154 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
9155
9156 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9157 local_define_builtin (built_in_names[dcode], ftype, dcode,
9158 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
9159 }
9160 }
9161 }
9162
9163 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9164 better way.
9165
9166 If we requested a pointer to a vector, build up the pointers that
9167 we stripped off while looking for the inner type. Similarly for
9168 return values from functions.
9169
9170 The argument TYPE is the top of the chain, and BOTTOM is the
9171 new type which we will point to. */
9172
9173 tree
9174 reconstruct_complex_type (tree type, tree bottom)
9175 {
9176 tree inner, outer;
9177
9178 if (TREE_CODE (type) == POINTER_TYPE)
9179 {
9180 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9181 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9182 TYPE_REF_CAN_ALIAS_ALL (type));
9183 }
9184 else if (TREE_CODE (type) == REFERENCE_TYPE)
9185 {
9186 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9187 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9188 TYPE_REF_CAN_ALIAS_ALL (type));
9189 }
9190 else if (TREE_CODE (type) == ARRAY_TYPE)
9191 {
9192 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9193 outer = build_array_type (inner, TYPE_DOMAIN (type));
9194 }
9195 else if (TREE_CODE (type) == FUNCTION_TYPE)
9196 {
9197 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9198 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9199 }
9200 else if (TREE_CODE (type) == METHOD_TYPE)
9201 {
9202 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9203 /* The build_method_type_directly() routine prepends 'this' to argument list,
9204 so we must compensate by getting rid of it. */
9205 outer
9206 = build_method_type_directly
9207 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9208 inner,
9209 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9210 }
9211 else if (TREE_CODE (type) == OFFSET_TYPE)
9212 {
9213 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9214 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9215 }
9216 else
9217 return bottom;
9218
9219 return build_qualified_type (outer, TYPE_QUALS (type));
9220 }
9221
9222 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9223 the inner type. */
9224 tree
9225 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9226 {
9227 int nunits;
9228
9229 switch (GET_MODE_CLASS (mode))
9230 {
9231 case MODE_VECTOR_INT:
9232 case MODE_VECTOR_FLOAT:
9233 case MODE_VECTOR_FRACT:
9234 case MODE_VECTOR_UFRACT:
9235 case MODE_VECTOR_ACCUM:
9236 case MODE_VECTOR_UACCUM:
9237 nunits = GET_MODE_NUNITS (mode);
9238 break;
9239
9240 case MODE_INT:
9241 /* Check that there are no leftover bits. */
9242 gcc_assert (GET_MODE_BITSIZE (mode)
9243 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9244
9245 nunits = GET_MODE_BITSIZE (mode)
9246 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9247 break;
9248
9249 default:
9250 gcc_unreachable ();
9251 }
9252
9253 return make_vector_type (innertype, nunits, mode);
9254 }
9255
9256 /* Similarly, but takes the inner type and number of units, which must be
9257 a power of two. */
9258
9259 tree
9260 build_vector_type (tree innertype, int nunits)
9261 {
9262 return make_vector_type (innertype, nunits, VOIDmode);
9263 }
9264
9265 /* Similarly, but takes the inner type and number of units, which must be
9266 a power of two. */
9267
9268 tree
9269 build_opaque_vector_type (tree innertype, int nunits)
9270 {
9271 tree t;
9272 innertype = build_distinct_type_copy (innertype);
9273 t = make_vector_type (innertype, nunits, VOIDmode);
9274 TYPE_VECTOR_OPAQUE (t) = true;
9275 return t;
9276 }
9277
9278
9279 /* Given an initializer INIT, return TRUE if INIT is zero or some
9280 aggregate of zeros. Otherwise return FALSE. */
9281 bool
9282 initializer_zerop (const_tree init)
9283 {
9284 tree elt;
9285
9286 STRIP_NOPS (init);
9287
9288 switch (TREE_CODE (init))
9289 {
9290 case INTEGER_CST:
9291 return integer_zerop (init);
9292
9293 case REAL_CST:
9294 /* ??? Note that this is not correct for C4X float formats. There,
9295 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9296 negative exponent. */
9297 return real_zerop (init)
9298 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9299
9300 case FIXED_CST:
9301 return fixed_zerop (init);
9302
9303 case COMPLEX_CST:
9304 return integer_zerop (init)
9305 || (real_zerop (init)
9306 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9307 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9308
9309 case VECTOR_CST:
9310 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9311 if (!initializer_zerop (TREE_VALUE (elt)))
9312 return false;
9313 return true;
9314
9315 case CONSTRUCTOR:
9316 {
9317 unsigned HOST_WIDE_INT idx;
9318
9319 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9320 if (!initializer_zerop (elt))
9321 return false;
9322 return true;
9323 }
9324
9325 default:
9326 return false;
9327 }
9328 }
9329
9330 /* Build an empty statement at location LOC. */
9331
9332 tree
9333 build_empty_stmt (location_t loc)
9334 {
9335 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9336 SET_EXPR_LOCATION (t, loc);
9337 return t;
9338 }
9339
9340
9341 /* Build an OpenMP clause with code CODE. LOC is the location of the
9342 clause. */
9343
9344 tree
9345 build_omp_clause (location_t loc, enum omp_clause_code code)
9346 {
9347 tree t;
9348 int size, length;
9349
9350 length = omp_clause_num_ops[code];
9351 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9352
9353 t = GGC_NEWVAR (union tree_node, size);
9354 memset (t, 0, size);
9355 TREE_SET_CODE (t, OMP_CLAUSE);
9356 OMP_CLAUSE_SET_CODE (t, code);
9357 OMP_CLAUSE_LOCATION (t) = loc;
9358
9359 #ifdef GATHER_STATISTICS
9360 tree_node_counts[(int) omp_clause_kind]++;
9361 tree_node_sizes[(int) omp_clause_kind] += size;
9362 #endif
9363
9364 return t;
9365 }
9366
9367 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9368 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9369 Except for the CODE and operand count field, other storage for the
9370 object is initialized to zeros. */
9371
9372 tree
9373 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9374 {
9375 tree t;
9376 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9377
9378 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9379 gcc_assert (len >= 1);
9380
9381 #ifdef GATHER_STATISTICS
9382 tree_node_counts[(int) e_kind]++;
9383 tree_node_sizes[(int) e_kind] += length;
9384 #endif
9385
9386 t = (tree) ggc_alloc_zone_pass_stat (length, &tree_zone);
9387
9388 memset (t, 0, length);
9389
9390 TREE_SET_CODE (t, code);
9391
9392 /* Can't use TREE_OPERAND to store the length because if checking is
9393 enabled, it will try to check the length before we store it. :-P */
9394 t->exp.operands[0] = build_int_cst (sizetype, len);
9395
9396 return t;
9397 }
9398
9399
9400 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE
9401 and FN and a null static chain slot. ARGLIST is a TREE_LIST of the
9402 arguments. */
9403
9404 tree
9405 build_call_list (tree return_type, tree fn, tree arglist)
9406 {
9407 tree t;
9408 int i;
9409
9410 t = build_vl_exp (CALL_EXPR, list_length (arglist) + 3);
9411 TREE_TYPE (t) = return_type;
9412 CALL_EXPR_FN (t) = fn;
9413 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9414 for (i = 0; arglist; arglist = TREE_CHAIN (arglist), i++)
9415 CALL_EXPR_ARG (t, i) = TREE_VALUE (arglist);
9416 process_call_operands (t);
9417 return t;
9418 }
9419
9420 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9421 FN and a null static chain slot. NARGS is the number of call arguments
9422 which are specified as "..." arguments. */
9423
9424 tree
9425 build_call_nary (tree return_type, tree fn, int nargs, ...)
9426 {
9427 tree ret;
9428 va_list args;
9429 va_start (args, nargs);
9430 ret = build_call_valist (return_type, fn, nargs, args);
9431 va_end (args);
9432 return ret;
9433 }
9434
9435 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9436 FN and a null static chain slot. NARGS is the number of call arguments
9437 which are specified as a va_list ARGS. */
9438
9439 tree
9440 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9441 {
9442 tree t;
9443 int i;
9444
9445 t = build_vl_exp (CALL_EXPR, nargs + 3);
9446 TREE_TYPE (t) = return_type;
9447 CALL_EXPR_FN (t) = fn;
9448 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9449 for (i = 0; i < nargs; i++)
9450 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9451 process_call_operands (t);
9452 return t;
9453 }
9454
9455 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9456 FN and a null static chain slot. NARGS is the number of call arguments
9457 which are specified as a tree array ARGS. */
9458
9459 tree
9460 build_call_array_loc (location_t loc, tree return_type, tree fn,
9461 int nargs, const tree *args)
9462 {
9463 tree t;
9464 int i;
9465
9466 t = build_vl_exp (CALL_EXPR, nargs + 3);
9467 TREE_TYPE (t) = return_type;
9468 CALL_EXPR_FN (t) = fn;
9469 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9470 for (i = 0; i < nargs; i++)
9471 CALL_EXPR_ARG (t, i) = args[i];
9472 process_call_operands (t);
9473 SET_EXPR_LOCATION (t, loc);
9474 return t;
9475 }
9476
9477 /* Like build_call_array, but takes a VEC. */
9478
9479 tree
9480 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9481 {
9482 tree ret, t;
9483 unsigned int ix;
9484
9485 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9486 TREE_TYPE (ret) = return_type;
9487 CALL_EXPR_FN (ret) = fn;
9488 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9489 for (ix = 0; VEC_iterate (tree, args, ix, t); ++ix)
9490 CALL_EXPR_ARG (ret, ix) = t;
9491 process_call_operands (ret);
9492 return ret;
9493 }
9494
9495
9496 /* Returns true if it is possible to prove that the index of
9497 an array access REF (an ARRAY_REF expression) falls into the
9498 array bounds. */
9499
9500 bool
9501 in_array_bounds_p (tree ref)
9502 {
9503 tree idx = TREE_OPERAND (ref, 1);
9504 tree min, max;
9505
9506 if (TREE_CODE (idx) != INTEGER_CST)
9507 return false;
9508
9509 min = array_ref_low_bound (ref);
9510 max = array_ref_up_bound (ref);
9511 if (!min
9512 || !max
9513 || TREE_CODE (min) != INTEGER_CST
9514 || TREE_CODE (max) != INTEGER_CST)
9515 return false;
9516
9517 if (tree_int_cst_lt (idx, min)
9518 || tree_int_cst_lt (max, idx))
9519 return false;
9520
9521 return true;
9522 }
9523
9524 /* Returns true if it is possible to prove that the range of
9525 an array access REF (an ARRAY_RANGE_REF expression) falls
9526 into the array bounds. */
9527
9528 bool
9529 range_in_array_bounds_p (tree ref)
9530 {
9531 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9532 tree range_min, range_max, min, max;
9533
9534 range_min = TYPE_MIN_VALUE (domain_type);
9535 range_max = TYPE_MAX_VALUE (domain_type);
9536 if (!range_min
9537 || !range_max
9538 || TREE_CODE (range_min) != INTEGER_CST
9539 || TREE_CODE (range_max) != INTEGER_CST)
9540 return false;
9541
9542 min = array_ref_low_bound (ref);
9543 max = array_ref_up_bound (ref);
9544 if (!min
9545 || !max
9546 || TREE_CODE (min) != INTEGER_CST
9547 || TREE_CODE (max) != INTEGER_CST)
9548 return false;
9549
9550 if (tree_int_cst_lt (range_min, min)
9551 || tree_int_cst_lt (max, range_max))
9552 return false;
9553
9554 return true;
9555 }
9556
9557 /* Return true if T (assumed to be a DECL) must be assigned a memory
9558 location. */
9559
9560 bool
9561 needs_to_live_in_memory (const_tree t)
9562 {
9563 if (TREE_CODE (t) == SSA_NAME)
9564 t = SSA_NAME_VAR (t);
9565
9566 return (TREE_ADDRESSABLE (t)
9567 || is_global_var (t)
9568 || (TREE_CODE (t) == RESULT_DECL
9569 && aggregate_value_p (t, current_function_decl)));
9570 }
9571
9572 /* There are situations in which a language considers record types
9573 compatible which have different field lists. Decide if two fields
9574 are compatible. It is assumed that the parent records are compatible. */
9575
9576 bool
9577 fields_compatible_p (const_tree f1, const_tree f2)
9578 {
9579 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9580 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9581 return false;
9582
9583 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9584 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9585 return false;
9586
9587 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9588 return false;
9589
9590 return true;
9591 }
9592
9593 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9594
9595 tree
9596 find_compatible_field (tree record, tree orig_field)
9597 {
9598 tree f;
9599
9600 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9601 if (TREE_CODE (f) == FIELD_DECL
9602 && fields_compatible_p (f, orig_field))
9603 return f;
9604
9605 /* ??? Why isn't this on the main fields list? */
9606 f = TYPE_VFIELD (record);
9607 if (f && TREE_CODE (f) == FIELD_DECL
9608 && fields_compatible_p (f, orig_field))
9609 return f;
9610
9611 /* ??? We should abort here, but Java appears to do Bad Things
9612 with inherited fields. */
9613 return orig_field;
9614 }
9615
9616 /* Return value of a constant X and sign-extend it. */
9617
9618 HOST_WIDE_INT
9619 int_cst_value (const_tree x)
9620 {
9621 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9622 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9623
9624 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9625 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9626 || TREE_INT_CST_HIGH (x) == -1);
9627
9628 if (bits < HOST_BITS_PER_WIDE_INT)
9629 {
9630 bool negative = ((val >> (bits - 1)) & 1) != 0;
9631 if (negative)
9632 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9633 else
9634 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9635 }
9636
9637 return val;
9638 }
9639
9640 /* Return value of a constant X and sign-extend it. */
9641
9642 HOST_WIDEST_INT
9643 widest_int_cst_value (const_tree x)
9644 {
9645 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9646 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9647
9648 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9649 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9650 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9651 << HOST_BITS_PER_WIDE_INT);
9652 #else
9653 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9654 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9655 || TREE_INT_CST_HIGH (x) == -1);
9656 #endif
9657
9658 if (bits < HOST_BITS_PER_WIDEST_INT)
9659 {
9660 bool negative = ((val >> (bits - 1)) & 1) != 0;
9661 if (negative)
9662 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9663 else
9664 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9665 }
9666
9667 return val;
9668 }
9669
9670 /* If TYPE is an integral type, return an equivalent type which is
9671 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9672 return TYPE itself. */
9673
9674 tree
9675 signed_or_unsigned_type_for (int unsignedp, tree type)
9676 {
9677 tree t = type;
9678 if (POINTER_TYPE_P (type))
9679 {
9680 /* If the pointer points to the normal address space, use the
9681 size_type_node. Otherwise use an appropriate size for the pointer
9682 based on the named address space it points to. */
9683 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9684 t = size_type_node;
9685
9686 else
9687 {
9688 int prec = int_or_pointer_precision (t);
9689 return lang_hooks.types.type_for_size (prec, unsignedp);
9690 }
9691 }
9692
9693 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9694 return t;
9695
9696 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9697 }
9698
9699 /* Returns unsigned variant of TYPE. */
9700
9701 tree
9702 unsigned_type_for (tree type)
9703 {
9704 return signed_or_unsigned_type_for (1, type);
9705 }
9706
9707 /* Returns signed variant of TYPE. */
9708
9709 tree
9710 signed_type_for (tree type)
9711 {
9712 return signed_or_unsigned_type_for (0, type);
9713 }
9714
9715 /* Returns the largest value obtainable by casting something in INNER type to
9716 OUTER type. */
9717
9718 tree
9719 upper_bound_in_type (tree outer, tree inner)
9720 {
9721 unsigned HOST_WIDE_INT lo, hi;
9722 unsigned int det = 0;
9723 unsigned oprec = TYPE_PRECISION (outer);
9724 unsigned iprec = TYPE_PRECISION (inner);
9725 unsigned prec;
9726
9727 /* Compute a unique number for every combination. */
9728 det |= (oprec > iprec) ? 4 : 0;
9729 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9730 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9731
9732 /* Determine the exponent to use. */
9733 switch (det)
9734 {
9735 case 0:
9736 case 1:
9737 /* oprec <= iprec, outer: signed, inner: don't care. */
9738 prec = oprec - 1;
9739 break;
9740 case 2:
9741 case 3:
9742 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9743 prec = oprec;
9744 break;
9745 case 4:
9746 /* oprec > iprec, outer: signed, inner: signed. */
9747 prec = iprec - 1;
9748 break;
9749 case 5:
9750 /* oprec > iprec, outer: signed, inner: unsigned. */
9751 prec = iprec;
9752 break;
9753 case 6:
9754 /* oprec > iprec, outer: unsigned, inner: signed. */
9755 prec = oprec;
9756 break;
9757 case 7:
9758 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9759 prec = iprec;
9760 break;
9761 default:
9762 gcc_unreachable ();
9763 }
9764
9765 /* Compute 2^^prec - 1. */
9766 if (prec <= HOST_BITS_PER_WIDE_INT)
9767 {
9768 hi = 0;
9769 lo = ((~(unsigned HOST_WIDE_INT) 0)
9770 >> (HOST_BITS_PER_WIDE_INT - prec));
9771 }
9772 else
9773 {
9774 hi = ((~(unsigned HOST_WIDE_INT) 0)
9775 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9776 lo = ~(unsigned HOST_WIDE_INT) 0;
9777 }
9778
9779 return build_int_cst_wide (outer, lo, hi);
9780 }
9781
9782 /* Returns the smallest value obtainable by casting something in INNER type to
9783 OUTER type. */
9784
9785 tree
9786 lower_bound_in_type (tree outer, tree inner)
9787 {
9788 unsigned HOST_WIDE_INT lo, hi;
9789 unsigned oprec = TYPE_PRECISION (outer);
9790 unsigned iprec = TYPE_PRECISION (inner);
9791
9792 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9793 and obtain 0. */
9794 if (TYPE_UNSIGNED (outer)
9795 /* If we are widening something of an unsigned type, OUTER type
9796 contains all values of INNER type. In particular, both INNER
9797 and OUTER types have zero in common. */
9798 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9799 lo = hi = 0;
9800 else
9801 {
9802 /* If we are widening a signed type to another signed type, we
9803 want to obtain -2^^(iprec-1). If we are keeping the
9804 precision or narrowing to a signed type, we want to obtain
9805 -2^(oprec-1). */
9806 unsigned prec = oprec > iprec ? iprec : oprec;
9807
9808 if (prec <= HOST_BITS_PER_WIDE_INT)
9809 {
9810 hi = ~(unsigned HOST_WIDE_INT) 0;
9811 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
9812 }
9813 else
9814 {
9815 hi = ((~(unsigned HOST_WIDE_INT) 0)
9816 << (prec - HOST_BITS_PER_WIDE_INT - 1));
9817 lo = 0;
9818 }
9819 }
9820
9821 return build_int_cst_wide (outer, lo, hi);
9822 }
9823
9824 /* Return nonzero if two operands that are suitable for PHI nodes are
9825 necessarily equal. Specifically, both ARG0 and ARG1 must be either
9826 SSA_NAME or invariant. Note that this is strictly an optimization.
9827 That is, callers of this function can directly call operand_equal_p
9828 and get the same result, only slower. */
9829
9830 int
9831 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
9832 {
9833 if (arg0 == arg1)
9834 return 1;
9835 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
9836 return 0;
9837 return operand_equal_p (arg0, arg1, 0);
9838 }
9839
9840 /* Returns number of zeros at the end of binary representation of X.
9841
9842 ??? Use ffs if available? */
9843
9844 tree
9845 num_ending_zeros (const_tree x)
9846 {
9847 unsigned HOST_WIDE_INT fr, nfr;
9848 unsigned num, abits;
9849 tree type = TREE_TYPE (x);
9850
9851 if (TREE_INT_CST_LOW (x) == 0)
9852 {
9853 num = HOST_BITS_PER_WIDE_INT;
9854 fr = TREE_INT_CST_HIGH (x);
9855 }
9856 else
9857 {
9858 num = 0;
9859 fr = TREE_INT_CST_LOW (x);
9860 }
9861
9862 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
9863 {
9864 nfr = fr >> abits;
9865 if (nfr << abits == fr)
9866 {
9867 num += abits;
9868 fr = nfr;
9869 }
9870 }
9871
9872 if (num > TYPE_PRECISION (type))
9873 num = TYPE_PRECISION (type);
9874
9875 return build_int_cst_type (type, num);
9876 }
9877
9878
9879 #define WALK_SUBTREE(NODE) \
9880 do \
9881 { \
9882 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
9883 if (result) \
9884 return result; \
9885 } \
9886 while (0)
9887
9888 /* This is a subroutine of walk_tree that walks field of TYPE that are to
9889 be walked whenever a type is seen in the tree. Rest of operands and return
9890 value are as for walk_tree. */
9891
9892 static tree
9893 walk_type_fields (tree type, walk_tree_fn func, void *data,
9894 struct pointer_set_t *pset, walk_tree_lh lh)
9895 {
9896 tree result = NULL_TREE;
9897
9898 switch (TREE_CODE (type))
9899 {
9900 case POINTER_TYPE:
9901 case REFERENCE_TYPE:
9902 /* We have to worry about mutually recursive pointers. These can't
9903 be written in C. They can in Ada. It's pathological, but
9904 there's an ACATS test (c38102a) that checks it. Deal with this
9905 by checking if we're pointing to another pointer, that one
9906 points to another pointer, that one does too, and we have no htab.
9907 If so, get a hash table. We check three levels deep to avoid
9908 the cost of the hash table if we don't need one. */
9909 if (POINTER_TYPE_P (TREE_TYPE (type))
9910 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
9911 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
9912 && !pset)
9913 {
9914 result = walk_tree_without_duplicates (&TREE_TYPE (type),
9915 func, data);
9916 if (result)
9917 return result;
9918
9919 break;
9920 }
9921
9922 /* ... fall through ... */
9923
9924 case COMPLEX_TYPE:
9925 WALK_SUBTREE (TREE_TYPE (type));
9926 break;
9927
9928 case METHOD_TYPE:
9929 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
9930
9931 /* Fall through. */
9932
9933 case FUNCTION_TYPE:
9934 WALK_SUBTREE (TREE_TYPE (type));
9935 {
9936 tree arg;
9937
9938 /* We never want to walk into default arguments. */
9939 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
9940 WALK_SUBTREE (TREE_VALUE (arg));
9941 }
9942 break;
9943
9944 case ARRAY_TYPE:
9945 /* Don't follow this nodes's type if a pointer for fear that
9946 we'll have infinite recursion. If we have a PSET, then we
9947 need not fear. */
9948 if (pset
9949 || (!POINTER_TYPE_P (TREE_TYPE (type))
9950 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
9951 WALK_SUBTREE (TREE_TYPE (type));
9952 WALK_SUBTREE (TYPE_DOMAIN (type));
9953 break;
9954
9955 case OFFSET_TYPE:
9956 WALK_SUBTREE (TREE_TYPE (type));
9957 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
9958 break;
9959
9960 default:
9961 break;
9962 }
9963
9964 return NULL_TREE;
9965 }
9966
9967 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
9968 called with the DATA and the address of each sub-tree. If FUNC returns a
9969 non-NULL value, the traversal is stopped, and the value returned by FUNC
9970 is returned. If PSET is non-NULL it is used to record the nodes visited,
9971 and to avoid visiting a node more than once. */
9972
9973 tree
9974 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
9975 struct pointer_set_t *pset, walk_tree_lh lh)
9976 {
9977 enum tree_code code;
9978 int walk_subtrees;
9979 tree result;
9980
9981 #define WALK_SUBTREE_TAIL(NODE) \
9982 do \
9983 { \
9984 tp = & (NODE); \
9985 goto tail_recurse; \
9986 } \
9987 while (0)
9988
9989 tail_recurse:
9990 /* Skip empty subtrees. */
9991 if (!*tp)
9992 return NULL_TREE;
9993
9994 /* Don't walk the same tree twice, if the user has requested
9995 that we avoid doing so. */
9996 if (pset && pointer_set_insert (pset, *tp))
9997 return NULL_TREE;
9998
9999 /* Call the function. */
10000 walk_subtrees = 1;
10001 result = (*func) (tp, &walk_subtrees, data);
10002
10003 /* If we found something, return it. */
10004 if (result)
10005 return result;
10006
10007 code = TREE_CODE (*tp);
10008
10009 /* Even if we didn't, FUNC may have decided that there was nothing
10010 interesting below this point in the tree. */
10011 if (!walk_subtrees)
10012 {
10013 /* But we still need to check our siblings. */
10014 if (code == TREE_LIST)
10015 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10016 else if (code == OMP_CLAUSE)
10017 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10018 else
10019 return NULL_TREE;
10020 }
10021
10022 if (lh)
10023 {
10024 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10025 if (result || !walk_subtrees)
10026 return result;
10027 }
10028
10029 switch (code)
10030 {
10031 case ERROR_MARK:
10032 case IDENTIFIER_NODE:
10033 case INTEGER_CST:
10034 case REAL_CST:
10035 case FIXED_CST:
10036 case VECTOR_CST:
10037 case STRING_CST:
10038 case BLOCK:
10039 case PLACEHOLDER_EXPR:
10040 case SSA_NAME:
10041 case FIELD_DECL:
10042 case RESULT_DECL:
10043 /* None of these have subtrees other than those already walked
10044 above. */
10045 break;
10046
10047 case TREE_LIST:
10048 WALK_SUBTREE (TREE_VALUE (*tp));
10049 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10050 break;
10051
10052 case TREE_VEC:
10053 {
10054 int len = TREE_VEC_LENGTH (*tp);
10055
10056 if (len == 0)
10057 break;
10058
10059 /* Walk all elements but the first. */
10060 while (--len)
10061 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10062
10063 /* Now walk the first one as a tail call. */
10064 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10065 }
10066
10067 case COMPLEX_CST:
10068 WALK_SUBTREE (TREE_REALPART (*tp));
10069 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10070
10071 case CONSTRUCTOR:
10072 {
10073 unsigned HOST_WIDE_INT idx;
10074 constructor_elt *ce;
10075
10076 for (idx = 0;
10077 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10078 idx++)
10079 WALK_SUBTREE (ce->value);
10080 }
10081 break;
10082
10083 case SAVE_EXPR:
10084 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10085
10086 case BIND_EXPR:
10087 {
10088 tree decl;
10089 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
10090 {
10091 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10092 into declarations that are just mentioned, rather than
10093 declared; they don't really belong to this part of the tree.
10094 And, we can see cycles: the initializer for a declaration
10095 can refer to the declaration itself. */
10096 WALK_SUBTREE (DECL_INITIAL (decl));
10097 WALK_SUBTREE (DECL_SIZE (decl));
10098 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10099 }
10100 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10101 }
10102
10103 case STATEMENT_LIST:
10104 {
10105 tree_stmt_iterator i;
10106 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10107 WALK_SUBTREE (*tsi_stmt_ptr (i));
10108 }
10109 break;
10110
10111 case OMP_CLAUSE:
10112 switch (OMP_CLAUSE_CODE (*tp))
10113 {
10114 case OMP_CLAUSE_PRIVATE:
10115 case OMP_CLAUSE_SHARED:
10116 case OMP_CLAUSE_FIRSTPRIVATE:
10117 case OMP_CLAUSE_COPYIN:
10118 case OMP_CLAUSE_COPYPRIVATE:
10119 case OMP_CLAUSE_IF:
10120 case OMP_CLAUSE_NUM_THREADS:
10121 case OMP_CLAUSE_SCHEDULE:
10122 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10123 /* FALLTHRU */
10124
10125 case OMP_CLAUSE_NOWAIT:
10126 case OMP_CLAUSE_ORDERED:
10127 case OMP_CLAUSE_DEFAULT:
10128 case OMP_CLAUSE_UNTIED:
10129 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10130
10131 case OMP_CLAUSE_LASTPRIVATE:
10132 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10133 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10134 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10135
10136 case OMP_CLAUSE_COLLAPSE:
10137 {
10138 int i;
10139 for (i = 0; i < 3; i++)
10140 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10141 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10142 }
10143
10144 case OMP_CLAUSE_REDUCTION:
10145 {
10146 int i;
10147 for (i = 0; i < 4; i++)
10148 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10149 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10150 }
10151
10152 default:
10153 gcc_unreachable ();
10154 }
10155 break;
10156
10157 case TARGET_EXPR:
10158 {
10159 int i, len;
10160
10161 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10162 But, we only want to walk once. */
10163 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10164 for (i = 0; i < len; ++i)
10165 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10166 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10167 }
10168
10169 case DECL_EXPR:
10170 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10171 defining. We only want to walk into these fields of a type in this
10172 case and not in the general case of a mere reference to the type.
10173
10174 The criterion is as follows: if the field can be an expression, it
10175 must be walked only here. This should be in keeping with the fields
10176 that are directly gimplified in gimplify_type_sizes in order for the
10177 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10178 variable-sized types.
10179
10180 Note that DECLs get walked as part of processing the BIND_EXPR. */
10181 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10182 {
10183 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10184 if (TREE_CODE (*type_p) == ERROR_MARK)
10185 return NULL_TREE;
10186
10187 /* Call the function for the type. See if it returns anything or
10188 doesn't want us to continue. If we are to continue, walk both
10189 the normal fields and those for the declaration case. */
10190 result = (*func) (type_p, &walk_subtrees, data);
10191 if (result || !walk_subtrees)
10192 return result;
10193
10194 result = walk_type_fields (*type_p, func, data, pset, lh);
10195 if (result)
10196 return result;
10197
10198 /* If this is a record type, also walk the fields. */
10199 if (RECORD_OR_UNION_TYPE_P (*type_p))
10200 {
10201 tree field;
10202
10203 for (field = TYPE_FIELDS (*type_p); field;
10204 field = TREE_CHAIN (field))
10205 {
10206 /* We'd like to look at the type of the field, but we can
10207 easily get infinite recursion. So assume it's pointed
10208 to elsewhere in the tree. Also, ignore things that
10209 aren't fields. */
10210 if (TREE_CODE (field) != FIELD_DECL)
10211 continue;
10212
10213 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10214 WALK_SUBTREE (DECL_SIZE (field));
10215 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10216 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10217 WALK_SUBTREE (DECL_QUALIFIER (field));
10218 }
10219 }
10220
10221 /* Same for scalar types. */
10222 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10223 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10224 || TREE_CODE (*type_p) == INTEGER_TYPE
10225 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10226 || TREE_CODE (*type_p) == REAL_TYPE)
10227 {
10228 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10229 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10230 }
10231
10232 WALK_SUBTREE (TYPE_SIZE (*type_p));
10233 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10234 }
10235 /* FALLTHRU */
10236
10237 default:
10238 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10239 {
10240 int i, len;
10241
10242 /* Walk over all the sub-trees of this operand. */
10243 len = TREE_OPERAND_LENGTH (*tp);
10244
10245 /* Go through the subtrees. We need to do this in forward order so
10246 that the scope of a FOR_EXPR is handled properly. */
10247 if (len)
10248 {
10249 for (i = 0; i < len - 1; ++i)
10250 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10251 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10252 }
10253 }
10254 /* If this is a type, walk the needed fields in the type. */
10255 else if (TYPE_P (*tp))
10256 return walk_type_fields (*tp, func, data, pset, lh);
10257 break;
10258 }
10259
10260 /* We didn't find what we were looking for. */
10261 return NULL_TREE;
10262
10263 #undef WALK_SUBTREE_TAIL
10264 }
10265 #undef WALK_SUBTREE
10266
10267 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10268
10269 tree
10270 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10271 walk_tree_lh lh)
10272 {
10273 tree result;
10274 struct pointer_set_t *pset;
10275
10276 pset = pointer_set_create ();
10277 result = walk_tree_1 (tp, func, data, pset, lh);
10278 pointer_set_destroy (pset);
10279 return result;
10280 }
10281
10282
10283 tree *
10284 tree_block (tree t)
10285 {
10286 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10287
10288 if (IS_EXPR_CODE_CLASS (c))
10289 return &t->exp.block;
10290 gcc_unreachable ();
10291 return NULL;
10292 }
10293
10294 /* Build and return a TREE_LIST of arguments in the CALL_EXPR exp.
10295 FIXME: don't use this function. It exists for compatibility with
10296 the old representation of CALL_EXPRs where a list was used to hold the
10297 arguments. Places that currently extract the arglist from a CALL_EXPR
10298 ought to be rewritten to use the CALL_EXPR itself. */
10299 tree
10300 call_expr_arglist (tree exp)
10301 {
10302 tree arglist = NULL_TREE;
10303 int i;
10304 for (i = call_expr_nargs (exp) - 1; i >= 0; i--)
10305 arglist = tree_cons (NULL_TREE, CALL_EXPR_ARG (exp, i), arglist);
10306 return arglist;
10307 }
10308
10309
10310 /* Create a nameless artificial label and put it in the current
10311 function context. The label has a location of LOC. Returns the
10312 newly created label. */
10313
10314 tree
10315 create_artificial_label (location_t loc)
10316 {
10317 tree lab = build_decl (loc,
10318 LABEL_DECL, NULL_TREE, void_type_node);
10319
10320 DECL_ARTIFICIAL (lab) = 1;
10321 DECL_IGNORED_P (lab) = 1;
10322 DECL_CONTEXT (lab) = current_function_decl;
10323 return lab;
10324 }
10325
10326 /* Given a tree, try to return a useful variable name that we can use
10327 to prefix a temporary that is being assigned the value of the tree.
10328 I.E. given <temp> = &A, return A. */
10329
10330 const char *
10331 get_name (tree t)
10332 {
10333 tree stripped_decl;
10334
10335 stripped_decl = t;
10336 STRIP_NOPS (stripped_decl);
10337 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10338 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10339 else
10340 {
10341 switch (TREE_CODE (stripped_decl))
10342 {
10343 case ADDR_EXPR:
10344 return get_name (TREE_OPERAND (stripped_decl, 0));
10345 default:
10346 return NULL;
10347 }
10348 }
10349 }
10350
10351 /* Return true if TYPE has a variable argument list. */
10352
10353 bool
10354 stdarg_p (tree fntype)
10355 {
10356 function_args_iterator args_iter;
10357 tree n = NULL_TREE, t;
10358
10359 if (!fntype)
10360 return false;
10361
10362 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10363 {
10364 n = t;
10365 }
10366
10367 return n != NULL_TREE && n != void_type_node;
10368 }
10369
10370 /* Return true if TYPE has a prototype. */
10371
10372 bool
10373 prototype_p (tree fntype)
10374 {
10375 tree t;
10376
10377 gcc_assert (fntype != NULL_TREE);
10378
10379 t = TYPE_ARG_TYPES (fntype);
10380 return (t != NULL_TREE);
10381 }
10382
10383 /* If BLOCK is inlined from an __attribute__((__artificial__))
10384 routine, return pointer to location from where it has been
10385 called. */
10386 location_t *
10387 block_nonartificial_location (tree block)
10388 {
10389 location_t *ret = NULL;
10390
10391 while (block && TREE_CODE (block) == BLOCK
10392 && BLOCK_ABSTRACT_ORIGIN (block))
10393 {
10394 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10395
10396 while (TREE_CODE (ao) == BLOCK
10397 && BLOCK_ABSTRACT_ORIGIN (ao)
10398 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10399 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10400
10401 if (TREE_CODE (ao) == FUNCTION_DECL)
10402 {
10403 /* If AO is an artificial inline, point RET to the
10404 call site locus at which it has been inlined and continue
10405 the loop, in case AO's caller is also an artificial
10406 inline. */
10407 if (DECL_DECLARED_INLINE_P (ao)
10408 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10409 ret = &BLOCK_SOURCE_LOCATION (block);
10410 else
10411 break;
10412 }
10413 else if (TREE_CODE (ao) != BLOCK)
10414 break;
10415
10416 block = BLOCK_SUPERCONTEXT (block);
10417 }
10418 return ret;
10419 }
10420
10421
10422 /* If EXP is inlined from an __attribute__((__artificial__))
10423 function, return the location of the original call expression. */
10424
10425 location_t
10426 tree_nonartificial_location (tree exp)
10427 {
10428 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10429
10430 if (loc)
10431 return *loc;
10432 else
10433 return EXPR_LOCATION (exp);
10434 }
10435
10436
10437 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10438 nodes. */
10439
10440 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10441
10442 static hashval_t
10443 cl_option_hash_hash (const void *x)
10444 {
10445 const_tree const t = (const_tree) x;
10446 const char *p;
10447 size_t i;
10448 size_t len = 0;
10449 hashval_t hash = 0;
10450
10451 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10452 {
10453 p = (const char *)TREE_OPTIMIZATION (t);
10454 len = sizeof (struct cl_optimization);
10455 }
10456
10457 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10458 {
10459 p = (const char *)TREE_TARGET_OPTION (t);
10460 len = sizeof (struct cl_target_option);
10461 }
10462
10463 else
10464 gcc_unreachable ();
10465
10466 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10467 something else. */
10468 for (i = 0; i < len; i++)
10469 if (p[i])
10470 hash = (hash << 4) ^ ((i << 2) | p[i]);
10471
10472 return hash;
10473 }
10474
10475 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10476 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10477 same. */
10478
10479 static int
10480 cl_option_hash_eq (const void *x, const void *y)
10481 {
10482 const_tree const xt = (const_tree) x;
10483 const_tree const yt = (const_tree) y;
10484 const char *xp;
10485 const char *yp;
10486 size_t len;
10487
10488 if (TREE_CODE (xt) != TREE_CODE (yt))
10489 return 0;
10490
10491 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10492 {
10493 xp = (const char *)TREE_OPTIMIZATION (xt);
10494 yp = (const char *)TREE_OPTIMIZATION (yt);
10495 len = sizeof (struct cl_optimization);
10496 }
10497
10498 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10499 {
10500 xp = (const char *)TREE_TARGET_OPTION (xt);
10501 yp = (const char *)TREE_TARGET_OPTION (yt);
10502 len = sizeof (struct cl_target_option);
10503 }
10504
10505 else
10506 gcc_unreachable ();
10507
10508 return (memcmp (xp, yp, len) == 0);
10509 }
10510
10511 /* Build an OPTIMIZATION_NODE based on the current options. */
10512
10513 tree
10514 build_optimization_node (void)
10515 {
10516 tree t;
10517 void **slot;
10518
10519 /* Use the cache of optimization nodes. */
10520
10521 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node));
10522
10523 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10524 t = (tree) *slot;
10525 if (!t)
10526 {
10527 /* Insert this one into the hash table. */
10528 t = cl_optimization_node;
10529 *slot = t;
10530
10531 /* Make a new node for next time round. */
10532 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10533 }
10534
10535 return t;
10536 }
10537
10538 /* Build a TARGET_OPTION_NODE based on the current options. */
10539
10540 tree
10541 build_target_option_node (void)
10542 {
10543 tree t;
10544 void **slot;
10545
10546 /* Use the cache of optimization nodes. */
10547
10548 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node));
10549
10550 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10551 t = (tree) *slot;
10552 if (!t)
10553 {
10554 /* Insert this one into the hash table. */
10555 t = cl_target_option_node;
10556 *slot = t;
10557
10558 /* Make a new node for next time round. */
10559 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10560 }
10561
10562 return t;
10563 }
10564
10565 /* Return the size in bits of an integer or pointer type. TYPE_PRECISION
10566 contains the bits, but in the past it was not set in some cases and there
10567 was special purpose code that checked for POINTER_TYPE_P or OFFSET_TYPE, so
10568 check that it is consitant when assertion checking is used. */
10569
10570 unsigned int
10571 int_or_pointer_precision (const_tree type)
10572 {
10573 #if ENABLE_ASSERT_CHECKING
10574 unsigned int prec;
10575
10576 if (POINTER_TYPE_P (type))
10577 {
10578 addr_space_t as = TYPE_ADDR_SPACE (TREE_TYPE (type));
10579 prec = GET_MODE_BITSIZE (targetm.addr_space.pointer_mode (as));
10580 gcc_assert (prec == TYPE_PRECISION (type));
10581 }
10582 else if (TREE_CODE (type) == OFFSET_TYPE)
10583 {
10584 prec = POINTER_SIZE;
10585 gcc_assert (prec == TYPE_PRECISION (type));
10586 }
10587 else
10588 {
10589 prec = TYPE_PRECISION (type);
10590 gcc_assert (prec != 0);
10591 }
10592
10593 return prec;
10594
10595 #else
10596 return TYPE_PRECISION (type);
10597 #endif
10598 }
10599
10600 /* Determine the "ultimate origin" of a block. The block may be an inlined
10601 instance of an inlined instance of a block which is local to an inline
10602 function, so we have to trace all of the way back through the origin chain
10603 to find out what sort of node actually served as the original seed for the
10604 given block. */
10605
10606 tree
10607 block_ultimate_origin (const_tree block)
10608 {
10609 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10610
10611 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10612 nodes in the function to point to themselves; ignore that if
10613 we're trying to output the abstract instance of this function. */
10614 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10615 return NULL_TREE;
10616
10617 if (immediate_origin == NULL_TREE)
10618 return NULL_TREE;
10619 else
10620 {
10621 tree ret_val;
10622 tree lookahead = immediate_origin;
10623
10624 do
10625 {
10626 ret_val = lookahead;
10627 lookahead = (TREE_CODE (ret_val) == BLOCK
10628 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10629 }
10630 while (lookahead != NULL && lookahead != ret_val);
10631
10632 /* The block's abstract origin chain may not be the *ultimate* origin of
10633 the block. It could lead to a DECL that has an abstract origin set.
10634 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10635 will give us if it has one). Note that DECL's abstract origins are
10636 supposed to be the most distant ancestor (or so decl_ultimate_origin
10637 claims), so we don't need to loop following the DECL origins. */
10638 if (DECL_P (ret_val))
10639 return DECL_ORIGIN (ret_val);
10640
10641 return ret_val;
10642 }
10643 }
10644
10645 /* Return true if T1 and T2 are equivalent lists. */
10646
10647 bool
10648 list_equal_p (const_tree t1, const_tree t2)
10649 {
10650 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10651 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10652 return false;
10653 return !t1 && !t2;
10654 }
10655
10656 /* Return true iff conversion in EXP generates no instruction. Mark
10657 it inline so that we fully inline into the stripping functions even
10658 though we have two uses of this function. */
10659
10660 static inline bool
10661 tree_nop_conversion (const_tree exp)
10662 {
10663 tree outer_type, inner_type;
10664
10665 if (!CONVERT_EXPR_P (exp)
10666 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10667 return false;
10668 if (TREE_OPERAND (exp, 0) == error_mark_node)
10669 return false;
10670
10671 outer_type = TREE_TYPE (exp);
10672 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10673
10674 /* Use precision rather then machine mode when we can, which gives
10675 the correct answer even for submode (bit-field) types. */
10676 if ((INTEGRAL_TYPE_P (outer_type)
10677 || POINTER_TYPE_P (outer_type)
10678 || TREE_CODE (outer_type) == OFFSET_TYPE)
10679 && (INTEGRAL_TYPE_P (inner_type)
10680 || POINTER_TYPE_P (inner_type)
10681 || TREE_CODE (inner_type) == OFFSET_TYPE))
10682 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10683
10684 /* Otherwise fall back on comparing machine modes (e.g. for
10685 aggregate types, floats). */
10686 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10687 }
10688
10689 /* Return true iff conversion in EXP generates no instruction. Don't
10690 consider conversions changing the signedness. */
10691
10692 static bool
10693 tree_sign_nop_conversion (const_tree exp)
10694 {
10695 tree outer_type, inner_type;
10696
10697 if (!tree_nop_conversion (exp))
10698 return false;
10699
10700 outer_type = TREE_TYPE (exp);
10701 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10702
10703 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10704 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10705 }
10706
10707 /* Strip conversions from EXP according to tree_nop_conversion and
10708 return the resulting expression. */
10709
10710 tree
10711 tree_strip_nop_conversions (tree exp)
10712 {
10713 while (tree_nop_conversion (exp))
10714 exp = TREE_OPERAND (exp, 0);
10715 return exp;
10716 }
10717
10718 /* Strip conversions from EXP according to tree_sign_nop_conversion
10719 and return the resulting expression. */
10720
10721 tree
10722 tree_strip_sign_nop_conversions (tree exp)
10723 {
10724 while (tree_sign_nop_conversion (exp))
10725 exp = TREE_OPERAND (exp, 0);
10726 return exp;
10727 }
10728
10729 static GTY(()) tree gcc_eh_personality_decl;
10730
10731 /* Return the GCC personality function decl. */
10732
10733 tree
10734 lhd_gcc_personality (void)
10735 {
10736 if (!gcc_eh_personality_decl)
10737 gcc_eh_personality_decl
10738 = build_personality_function (USING_SJLJ_EXCEPTIONS
10739 ? "__gcc_personality_sj0"
10740 : "__gcc_personality_v0");
10741
10742 return gcc_eh_personality_decl;
10743 }
10744
10745 #include "gt-tree.h"