re PR c++/16882 (overloading confused by const vector arguments)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_VEC:
247 return (sizeof (struct tree_vec)
248 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
249
250 case STRING_CST:
251 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
252
253 default:
254 return tree_code_size (code);
255 }
256 }
257
258 /* Return a newly allocated node of code CODE. For decl and type
259 nodes, some other fields are initialized. The rest of the node is
260 initialized to zero. This function cannot be used for PHI_NODE or
261 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
262
263 Achoo! I got a code in the node. */
264
265 tree
266 make_node_stat (enum tree_code code MEM_STAT_DECL)
267 {
268 tree t;
269 enum tree_code_class type = TREE_CODE_CLASS (code);
270 size_t length = tree_code_size (code);
271 #ifdef GATHER_STATISTICS
272 tree_node_kind kind;
273
274 switch (type)
275 {
276 case tcc_declaration: /* A decl node */
277 kind = d_kind;
278 break;
279
280 case tcc_type: /* a type node */
281 kind = t_kind;
282 break;
283
284 case tcc_statement: /* an expression with side effects */
285 kind = s_kind;
286 break;
287
288 case tcc_reference: /* a reference */
289 kind = r_kind;
290 break;
291
292 case tcc_expression: /* an expression */
293 case tcc_comparison: /* a comparison expression */
294 case tcc_unary: /* a unary arithmetic expression */
295 case tcc_binary: /* a binary arithmetic expression */
296 kind = e_kind;
297 break;
298
299 case tcc_constant: /* a constant */
300 kind = c_kind;
301 break;
302
303 case tcc_exceptional: /* something random, like an identifier. */
304 switch (code)
305 {
306 case IDENTIFIER_NODE:
307 kind = id_kind;
308 break;
309
310 case TREE_VEC:;
311 kind = vec_kind;
312 break;
313
314 case TREE_BINFO:
315 kind = binfo_kind;
316 break;
317
318 case PHI_NODE:
319 kind = phi_kind;
320 break;
321
322 case SSA_NAME:
323 kind = ssa_name_kind;
324 break;
325
326 case BLOCK:
327 kind = b_kind;
328 break;
329
330 default:
331 kind = x_kind;
332 break;
333 }
334 break;
335
336 default:
337 gcc_unreachable ();
338 }
339
340 tree_node_counts[(int) kind]++;
341 tree_node_sizes[(int) kind] += length;
342 #endif
343
344 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
345
346 memset (t, 0, length);
347
348 TREE_SET_CODE (t, code);
349
350 switch (type)
351 {
352 case tcc_statement:
353 TREE_SIDE_EFFECTS (t) = 1;
354 break;
355
356 case tcc_declaration:
357 if (code != FUNCTION_DECL)
358 DECL_ALIGN (t) = 1;
359 DECL_USER_ALIGN (t) = 0;
360 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
361 DECL_SOURCE_LOCATION (t) = input_location;
362 DECL_UID (t) = next_decl_uid++;
363
364 /* We have not yet computed the alias set for this declaration. */
365 DECL_POINTER_ALIAS_SET (t) = -1;
366 break;
367
368 case tcc_type:
369 TYPE_UID (t) = next_type_uid++;
370 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
371 TYPE_USER_ALIGN (t) = 0;
372 TYPE_MAIN_VARIANT (t) = t;
373
374 /* Default to no attributes for type, but let target change that. */
375 TYPE_ATTRIBUTES (t) = NULL_TREE;
376 targetm.set_default_type_attributes (t);
377
378 /* We have not yet computed the alias set for this type. */
379 TYPE_ALIAS_SET (t) = -1;
380 break;
381
382 case tcc_constant:
383 TREE_CONSTANT (t) = 1;
384 TREE_INVARIANT (t) = 1;
385 break;
386
387 case tcc_expression:
388 switch (code)
389 {
390 case INIT_EXPR:
391 case MODIFY_EXPR:
392 case VA_ARG_EXPR:
393 case PREDECREMENT_EXPR:
394 case PREINCREMENT_EXPR:
395 case POSTDECREMENT_EXPR:
396 case POSTINCREMENT_EXPR:
397 /* All of these have side-effects, no matter what their
398 operands are. */
399 TREE_SIDE_EFFECTS (t) = 1;
400 break;
401
402 default:
403 break;
404 }
405 break;
406
407 default:
408 /* Other classes need no special treatment. */
409 break;
410 }
411
412 return t;
413 }
414 \f
415 /* Return a new node with the same contents as NODE except that its
416 TREE_CHAIN is zero and it has a fresh uid. */
417
418 tree
419 copy_node_stat (tree node MEM_STAT_DECL)
420 {
421 tree t;
422 enum tree_code code = TREE_CODE (node);
423 size_t length;
424
425 gcc_assert (code != STATEMENT_LIST);
426
427 length = tree_size (node);
428 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
429 memcpy (t, node, length);
430
431 TREE_CHAIN (t) = 0;
432 TREE_ASM_WRITTEN (t) = 0;
433 TREE_VISITED (t) = 0;
434 t->common.ann = 0;
435
436 if (TREE_CODE_CLASS (code) == tcc_declaration)
437 DECL_UID (t) = next_decl_uid++;
438 else if (TREE_CODE_CLASS (code) == tcc_type)
439 {
440 TYPE_UID (t) = next_type_uid++;
441 /* The following is so that the debug code for
442 the copy is different from the original type.
443 The two statements usually duplicate each other
444 (because they clear fields of the same union),
445 but the optimizer should catch that. */
446 TYPE_SYMTAB_POINTER (t) = 0;
447 TYPE_SYMTAB_ADDRESS (t) = 0;
448
449 /* Do not copy the values cache. */
450 if (TYPE_CACHED_VALUES_P(t))
451 {
452 TYPE_CACHED_VALUES_P (t) = 0;
453 TYPE_CACHED_VALUES (t) = NULL_TREE;
454 }
455 }
456
457 return t;
458 }
459
460 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
461 For example, this can copy a list made of TREE_LIST nodes. */
462
463 tree
464 copy_list (tree list)
465 {
466 tree head;
467 tree prev, next;
468
469 if (list == 0)
470 return 0;
471
472 head = prev = copy_node (list);
473 next = TREE_CHAIN (list);
474 while (next)
475 {
476 TREE_CHAIN (prev) = copy_node (next);
477 prev = TREE_CHAIN (prev);
478 next = TREE_CHAIN (next);
479 }
480 return head;
481 }
482
483 \f
484 /* Create an INT_CST node with a LOW value sign extended. */
485
486 tree
487 build_int_cst (tree type, HOST_WIDE_INT low)
488 {
489 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
490 }
491
492 /* Create an INT_CST node with a LOW value zero extended. */
493
494 tree
495 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
496 {
497 return build_int_cst_wide (type, low, 0);
498 }
499
500 /* Create an INT_CST node with a LOW value zero or sign extended depending
501 on the type. */
502
503 tree
504 build_int_cst_type (tree type, HOST_WIDE_INT low)
505 {
506 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
507 unsigned bits;
508 bool signed_p;
509 bool negative;
510 tree ret;
511
512 if (!type)
513 type = integer_type_node;
514
515 bits = TYPE_PRECISION (type);
516 signed_p = !TYPE_UNSIGNED (type);
517 negative = ((val >> (bits - 1)) & 1) != 0;
518
519 if (signed_p && negative)
520 {
521 if (bits < HOST_BITS_PER_WIDE_INT)
522 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
523 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
524 }
525 else
526 {
527 if (bits < HOST_BITS_PER_WIDE_INT)
528 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
529 ret = build_int_cst_wide (type, val, 0);
530 }
531
532 return ret;
533 }
534
535 /* These are the hash table functions for the hash table of INTEGER_CST
536 nodes of a sizetype. */
537
538 /* Return the hash code code X, an INTEGER_CST. */
539
540 static hashval_t
541 int_cst_hash_hash (const void *x)
542 {
543 tree t = (tree) x;
544
545 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
546 ^ htab_hash_pointer (TREE_TYPE (t)));
547 }
548
549 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
550 is the same as that given by *Y, which is the same. */
551
552 static int
553 int_cst_hash_eq (const void *x, const void *y)
554 {
555 tree xt = (tree) x;
556 tree yt = (tree) y;
557
558 return (TREE_TYPE (xt) == TREE_TYPE (yt)
559 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
560 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
561 }
562
563 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
564 integer_type_node is used. The returned node is always shared.
565 For small integers we use a per-type vector cache, for larger ones
566 we use a single hash table. */
567
568 tree
569 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
570 {
571 tree t;
572 int ix = -1;
573 int limit = 0;
574
575 if (!type)
576 type = integer_type_node;
577
578 switch (TREE_CODE (type))
579 {
580 case POINTER_TYPE:
581 case REFERENCE_TYPE:
582 /* Cache NULL pointer. */
583 if (!hi && !low)
584 {
585 limit = 1;
586 ix = 0;
587 }
588 break;
589
590 case BOOLEAN_TYPE:
591 /* Cache false or true. */
592 limit = 2;
593 if (!hi && low < 2)
594 ix = low;
595 break;
596
597 case INTEGER_TYPE:
598 case CHAR_TYPE:
599 case OFFSET_TYPE:
600 if (TYPE_UNSIGNED (type))
601 {
602 /* Cache 0..N */
603 limit = INTEGER_SHARE_LIMIT;
604 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
605 ix = low;
606 }
607 else
608 {
609 /* Cache -1..N */
610 limit = INTEGER_SHARE_LIMIT + 1;
611 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
612 ix = low + 1;
613 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
614 ix = 0;
615 }
616 break;
617 default:
618 break;
619 }
620
621 if (ix >= 0)
622 {
623 /* Look for it in the type's vector of small shared ints. */
624 if (!TYPE_CACHED_VALUES_P (type))
625 {
626 TYPE_CACHED_VALUES_P (type) = 1;
627 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
628 }
629
630 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
631 if (t)
632 {
633 /* Make sure no one is clobbering the shared constant. */
634 gcc_assert (TREE_TYPE (t) == type);
635 gcc_assert (TREE_INT_CST_LOW (t) == low);
636 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
637 }
638 else
639 {
640 /* Create a new shared int. */
641 t = make_node (INTEGER_CST);
642
643 TREE_INT_CST_LOW (t) = low;
644 TREE_INT_CST_HIGH (t) = hi;
645 TREE_TYPE (t) = type;
646
647 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
648 }
649 }
650 else
651 {
652 /* Use the cache of larger shared ints. */
653 void **slot;
654
655 TREE_INT_CST_LOW (int_cst_node) = low;
656 TREE_INT_CST_HIGH (int_cst_node) = hi;
657 TREE_TYPE (int_cst_node) = type;
658
659 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
660 t = *slot;
661 if (!t)
662 {
663 /* Insert this one into the hash table. */
664 t = int_cst_node;
665 *slot = t;
666 /* Make a new node for next time round. */
667 int_cst_node = make_node (INTEGER_CST);
668 }
669 }
670
671 return t;
672 }
673
674 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
675 and the rest are zeros. */
676
677 tree
678 build_low_bits_mask (tree type, unsigned bits)
679 {
680 unsigned HOST_WIDE_INT low;
681 HOST_WIDE_INT high;
682 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
683
684 gcc_assert (bits <= TYPE_PRECISION (type));
685
686 if (bits == TYPE_PRECISION (type)
687 && !TYPE_UNSIGNED (type))
688 {
689 /* Sign extended all-ones mask. */
690 low = all_ones;
691 high = -1;
692 }
693 else if (bits <= HOST_BITS_PER_WIDE_INT)
694 {
695 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
696 high = 0;
697 }
698 else
699 {
700 bits -= HOST_BITS_PER_WIDE_INT;
701 low = all_ones;
702 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
703 }
704
705 return build_int_cst_wide (type, low, high);
706 }
707
708 /* Checks that X is integer constant that can be expressed in (unsigned)
709 HOST_WIDE_INT without loss of precision. */
710
711 bool
712 cst_and_fits_in_hwi (tree x)
713 {
714 if (TREE_CODE (x) != INTEGER_CST)
715 return false;
716
717 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
718 return false;
719
720 return (TREE_INT_CST_HIGH (x) == 0
721 || TREE_INT_CST_HIGH (x) == -1);
722 }
723
724 /* Return a new VECTOR_CST node whose type is TYPE and whose values
725 are in a list pointed by VALS. */
726
727 tree
728 build_vector (tree type, tree vals)
729 {
730 tree v = make_node (VECTOR_CST);
731 int over1 = 0, over2 = 0;
732 tree link;
733
734 TREE_VECTOR_CST_ELTS (v) = vals;
735 TREE_TYPE (v) = type;
736
737 /* Iterate through elements and check for overflow. */
738 for (link = vals; link; link = TREE_CHAIN (link))
739 {
740 tree value = TREE_VALUE (link);
741
742 over1 |= TREE_OVERFLOW (value);
743 over2 |= TREE_CONSTANT_OVERFLOW (value);
744 }
745
746 TREE_OVERFLOW (v) = over1;
747 TREE_CONSTANT_OVERFLOW (v) = over2;
748
749 return v;
750 }
751
752 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
753 are in a list pointed to by VALS. */
754 tree
755 build_constructor (tree type, tree vals)
756 {
757 tree c = make_node (CONSTRUCTOR);
758 TREE_TYPE (c) = type;
759 CONSTRUCTOR_ELTS (c) = vals;
760
761 /* ??? May not be necessary. Mirrors what build does. */
762 if (vals)
763 {
764 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
765 TREE_READONLY (c) = TREE_READONLY (vals);
766 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
767 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
768 }
769
770 return c;
771 }
772
773 /* Return a new REAL_CST node whose type is TYPE and value is D. */
774
775 tree
776 build_real (tree type, REAL_VALUE_TYPE d)
777 {
778 tree v;
779 REAL_VALUE_TYPE *dp;
780 int overflow = 0;
781
782 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
783 Consider doing it via real_convert now. */
784
785 v = make_node (REAL_CST);
786 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
787 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
788
789 TREE_TYPE (v) = type;
790 TREE_REAL_CST_PTR (v) = dp;
791 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
792 return v;
793 }
794
795 /* Return a new REAL_CST node whose type is TYPE
796 and whose value is the integer value of the INTEGER_CST node I. */
797
798 REAL_VALUE_TYPE
799 real_value_from_int_cst (tree type, tree i)
800 {
801 REAL_VALUE_TYPE d;
802
803 /* Clear all bits of the real value type so that we can later do
804 bitwise comparisons to see if two values are the same. */
805 memset (&d, 0, sizeof d);
806
807 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
808 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
809 TYPE_UNSIGNED (TREE_TYPE (i)));
810 return d;
811 }
812
813 /* Given a tree representing an integer constant I, return a tree
814 representing the same value as a floating-point constant of type TYPE. */
815
816 tree
817 build_real_from_int_cst (tree type, tree i)
818 {
819 tree v;
820 int overflow = TREE_OVERFLOW (i);
821
822 v = build_real (type, real_value_from_int_cst (type, i));
823
824 TREE_OVERFLOW (v) |= overflow;
825 TREE_CONSTANT_OVERFLOW (v) |= overflow;
826 return v;
827 }
828
829 /* Return a newly constructed STRING_CST node whose value is
830 the LEN characters at STR.
831 The TREE_TYPE is not initialized. */
832
833 tree
834 build_string (int len, const char *str)
835 {
836 tree s;
837 size_t length;
838
839 length = len + sizeof (struct tree_string);
840
841 #ifdef GATHER_STATISTICS
842 tree_node_counts[(int) c_kind]++;
843 tree_node_sizes[(int) c_kind] += length;
844 #endif
845
846 s = ggc_alloc_tree (length);
847
848 memset (s, 0, sizeof (struct tree_common));
849 TREE_SET_CODE (s, STRING_CST);
850 TREE_STRING_LENGTH (s) = len;
851 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
852 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
853
854 return s;
855 }
856
857 /* Return a newly constructed COMPLEX_CST node whose value is
858 specified by the real and imaginary parts REAL and IMAG.
859 Both REAL and IMAG should be constant nodes. TYPE, if specified,
860 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
861
862 tree
863 build_complex (tree type, tree real, tree imag)
864 {
865 tree t = make_node (COMPLEX_CST);
866
867 TREE_REALPART (t) = real;
868 TREE_IMAGPART (t) = imag;
869 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
870 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
871 TREE_CONSTANT_OVERFLOW (t)
872 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
873 return t;
874 }
875
876 /* Build a BINFO with LEN language slots. */
877
878 tree
879 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
880 {
881 tree t;
882 size_t length = (offsetof (struct tree_binfo, base_binfos)
883 + VEC_embedded_size (tree, base_binfos));
884
885 #ifdef GATHER_STATISTICS
886 tree_node_counts[(int) binfo_kind]++;
887 tree_node_sizes[(int) binfo_kind] += length;
888 #endif
889
890 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
891
892 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
893
894 TREE_SET_CODE (t, TREE_BINFO);
895
896 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
897
898 return t;
899 }
900
901
902 /* Build a newly constructed TREE_VEC node of length LEN. */
903
904 tree
905 make_tree_vec_stat (int len MEM_STAT_DECL)
906 {
907 tree t;
908 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
909
910 #ifdef GATHER_STATISTICS
911 tree_node_counts[(int) vec_kind]++;
912 tree_node_sizes[(int) vec_kind] += length;
913 #endif
914
915 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
916
917 memset (t, 0, length);
918
919 TREE_SET_CODE (t, TREE_VEC);
920 TREE_VEC_LENGTH (t) = len;
921
922 return t;
923 }
924 \f
925 /* Return 1 if EXPR is the integer constant zero or a complex constant
926 of zero. */
927
928 int
929 integer_zerop (tree expr)
930 {
931 STRIP_NOPS (expr);
932
933 return ((TREE_CODE (expr) == INTEGER_CST
934 && ! TREE_CONSTANT_OVERFLOW (expr)
935 && TREE_INT_CST_LOW (expr) == 0
936 && TREE_INT_CST_HIGH (expr) == 0)
937 || (TREE_CODE (expr) == COMPLEX_CST
938 && integer_zerop (TREE_REALPART (expr))
939 && integer_zerop (TREE_IMAGPART (expr))));
940 }
941
942 /* Return 1 if EXPR is the integer constant one or the corresponding
943 complex constant. */
944
945 int
946 integer_onep (tree expr)
947 {
948 STRIP_NOPS (expr);
949
950 return ((TREE_CODE (expr) == INTEGER_CST
951 && ! TREE_CONSTANT_OVERFLOW (expr)
952 && TREE_INT_CST_LOW (expr) == 1
953 && TREE_INT_CST_HIGH (expr) == 0)
954 || (TREE_CODE (expr) == COMPLEX_CST
955 && integer_onep (TREE_REALPART (expr))
956 && integer_zerop (TREE_IMAGPART (expr))));
957 }
958
959 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
960 it contains. Likewise for the corresponding complex constant. */
961
962 int
963 integer_all_onesp (tree expr)
964 {
965 int prec;
966 int uns;
967
968 STRIP_NOPS (expr);
969
970 if (TREE_CODE (expr) == COMPLEX_CST
971 && integer_all_onesp (TREE_REALPART (expr))
972 && integer_zerop (TREE_IMAGPART (expr)))
973 return 1;
974
975 else if (TREE_CODE (expr) != INTEGER_CST
976 || TREE_CONSTANT_OVERFLOW (expr))
977 return 0;
978
979 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
980 if (!uns)
981 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
982 && TREE_INT_CST_HIGH (expr) == -1);
983
984 /* Note that using TYPE_PRECISION here is wrong. We care about the
985 actual bits, not the (arbitrary) range of the type. */
986 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
987 if (prec >= HOST_BITS_PER_WIDE_INT)
988 {
989 HOST_WIDE_INT high_value;
990 int shift_amount;
991
992 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
993
994 /* Can not handle precisions greater than twice the host int size. */
995 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
996 if (shift_amount == HOST_BITS_PER_WIDE_INT)
997 /* Shifting by the host word size is undefined according to the ANSI
998 standard, so we must handle this as a special case. */
999 high_value = -1;
1000 else
1001 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1002
1003 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1004 && TREE_INT_CST_HIGH (expr) == high_value);
1005 }
1006 else
1007 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1008 }
1009
1010 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1011 one bit on). */
1012
1013 int
1014 integer_pow2p (tree expr)
1015 {
1016 int prec;
1017 HOST_WIDE_INT high, low;
1018
1019 STRIP_NOPS (expr);
1020
1021 if (TREE_CODE (expr) == COMPLEX_CST
1022 && integer_pow2p (TREE_REALPART (expr))
1023 && integer_zerop (TREE_IMAGPART (expr)))
1024 return 1;
1025
1026 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1027 return 0;
1028
1029 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1030 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1031 high = TREE_INT_CST_HIGH (expr);
1032 low = TREE_INT_CST_LOW (expr);
1033
1034 /* First clear all bits that are beyond the type's precision in case
1035 we've been sign extended. */
1036
1037 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1038 ;
1039 else if (prec > HOST_BITS_PER_WIDE_INT)
1040 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1041 else
1042 {
1043 high = 0;
1044 if (prec < HOST_BITS_PER_WIDE_INT)
1045 low &= ~((HOST_WIDE_INT) (-1) << prec);
1046 }
1047
1048 if (high == 0 && low == 0)
1049 return 0;
1050
1051 return ((high == 0 && (low & (low - 1)) == 0)
1052 || (low == 0 && (high & (high - 1)) == 0));
1053 }
1054
1055 /* Return 1 if EXPR is an integer constant other than zero or a
1056 complex constant other than zero. */
1057
1058 int
1059 integer_nonzerop (tree expr)
1060 {
1061 STRIP_NOPS (expr);
1062
1063 return ((TREE_CODE (expr) == INTEGER_CST
1064 && ! TREE_CONSTANT_OVERFLOW (expr)
1065 && (TREE_INT_CST_LOW (expr) != 0
1066 || TREE_INT_CST_HIGH (expr) != 0))
1067 || (TREE_CODE (expr) == COMPLEX_CST
1068 && (integer_nonzerop (TREE_REALPART (expr))
1069 || integer_nonzerop (TREE_IMAGPART (expr)))));
1070 }
1071
1072 /* Return the power of two represented by a tree node known to be a
1073 power of two. */
1074
1075 int
1076 tree_log2 (tree expr)
1077 {
1078 int prec;
1079 HOST_WIDE_INT high, low;
1080
1081 STRIP_NOPS (expr);
1082
1083 if (TREE_CODE (expr) == COMPLEX_CST)
1084 return tree_log2 (TREE_REALPART (expr));
1085
1086 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1087 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1088
1089 high = TREE_INT_CST_HIGH (expr);
1090 low = TREE_INT_CST_LOW (expr);
1091
1092 /* First clear all bits that are beyond the type's precision in case
1093 we've been sign extended. */
1094
1095 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1096 ;
1097 else if (prec > HOST_BITS_PER_WIDE_INT)
1098 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1099 else
1100 {
1101 high = 0;
1102 if (prec < HOST_BITS_PER_WIDE_INT)
1103 low &= ~((HOST_WIDE_INT) (-1) << prec);
1104 }
1105
1106 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1107 : exact_log2 (low));
1108 }
1109
1110 /* Similar, but return the largest integer Y such that 2 ** Y is less
1111 than or equal to EXPR. */
1112
1113 int
1114 tree_floor_log2 (tree expr)
1115 {
1116 int prec;
1117 HOST_WIDE_INT high, low;
1118
1119 STRIP_NOPS (expr);
1120
1121 if (TREE_CODE (expr) == COMPLEX_CST)
1122 return tree_log2 (TREE_REALPART (expr));
1123
1124 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1125 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1126
1127 high = TREE_INT_CST_HIGH (expr);
1128 low = TREE_INT_CST_LOW (expr);
1129
1130 /* First clear all bits that are beyond the type's precision in case
1131 we've been sign extended. Ignore if type's precision hasn't been set
1132 since what we are doing is setting it. */
1133
1134 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1135 ;
1136 else if (prec > HOST_BITS_PER_WIDE_INT)
1137 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1138 else
1139 {
1140 high = 0;
1141 if (prec < HOST_BITS_PER_WIDE_INT)
1142 low &= ~((HOST_WIDE_INT) (-1) << prec);
1143 }
1144
1145 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1146 : floor_log2 (low));
1147 }
1148
1149 /* Return 1 if EXPR is the real constant zero. */
1150
1151 int
1152 real_zerop (tree expr)
1153 {
1154 STRIP_NOPS (expr);
1155
1156 return ((TREE_CODE (expr) == REAL_CST
1157 && ! TREE_CONSTANT_OVERFLOW (expr)
1158 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1159 || (TREE_CODE (expr) == COMPLEX_CST
1160 && real_zerop (TREE_REALPART (expr))
1161 && real_zerop (TREE_IMAGPART (expr))));
1162 }
1163
1164 /* Return 1 if EXPR is the real constant one in real or complex form. */
1165
1166 int
1167 real_onep (tree expr)
1168 {
1169 STRIP_NOPS (expr);
1170
1171 return ((TREE_CODE (expr) == REAL_CST
1172 && ! TREE_CONSTANT_OVERFLOW (expr)
1173 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1174 || (TREE_CODE (expr) == COMPLEX_CST
1175 && real_onep (TREE_REALPART (expr))
1176 && real_zerop (TREE_IMAGPART (expr))));
1177 }
1178
1179 /* Return 1 if EXPR is the real constant two. */
1180
1181 int
1182 real_twop (tree expr)
1183 {
1184 STRIP_NOPS (expr);
1185
1186 return ((TREE_CODE (expr) == REAL_CST
1187 && ! TREE_CONSTANT_OVERFLOW (expr)
1188 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1189 || (TREE_CODE (expr) == COMPLEX_CST
1190 && real_twop (TREE_REALPART (expr))
1191 && real_zerop (TREE_IMAGPART (expr))));
1192 }
1193
1194 /* Return 1 if EXPR is the real constant minus one. */
1195
1196 int
1197 real_minus_onep (tree expr)
1198 {
1199 STRIP_NOPS (expr);
1200
1201 return ((TREE_CODE (expr) == REAL_CST
1202 && ! TREE_CONSTANT_OVERFLOW (expr)
1203 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1204 || (TREE_CODE (expr) == COMPLEX_CST
1205 && real_minus_onep (TREE_REALPART (expr))
1206 && real_zerop (TREE_IMAGPART (expr))));
1207 }
1208
1209 /* Nonzero if EXP is a constant or a cast of a constant. */
1210
1211 int
1212 really_constant_p (tree exp)
1213 {
1214 /* This is not quite the same as STRIP_NOPS. It does more. */
1215 while (TREE_CODE (exp) == NOP_EXPR
1216 || TREE_CODE (exp) == CONVERT_EXPR
1217 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1218 exp = TREE_OPERAND (exp, 0);
1219 return TREE_CONSTANT (exp);
1220 }
1221 \f
1222 /* Return first list element whose TREE_VALUE is ELEM.
1223 Return 0 if ELEM is not in LIST. */
1224
1225 tree
1226 value_member (tree elem, tree list)
1227 {
1228 while (list)
1229 {
1230 if (elem == TREE_VALUE (list))
1231 return list;
1232 list = TREE_CHAIN (list);
1233 }
1234 return NULL_TREE;
1235 }
1236
1237 /* Return first list element whose TREE_PURPOSE is ELEM.
1238 Return 0 if ELEM is not in LIST. */
1239
1240 tree
1241 purpose_member (tree elem, tree list)
1242 {
1243 while (list)
1244 {
1245 if (elem == TREE_PURPOSE (list))
1246 return list;
1247 list = TREE_CHAIN (list);
1248 }
1249 return NULL_TREE;
1250 }
1251
1252 /* Return nonzero if ELEM is part of the chain CHAIN. */
1253
1254 int
1255 chain_member (tree elem, tree chain)
1256 {
1257 while (chain)
1258 {
1259 if (elem == chain)
1260 return 1;
1261 chain = TREE_CHAIN (chain);
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1268 We expect a null pointer to mark the end of the chain.
1269 This is the Lisp primitive `length'. */
1270
1271 int
1272 list_length (tree t)
1273 {
1274 tree p = t;
1275 #ifdef ENABLE_TREE_CHECKING
1276 tree q = t;
1277 #endif
1278 int len = 0;
1279
1280 while (p)
1281 {
1282 p = TREE_CHAIN (p);
1283 #ifdef ENABLE_TREE_CHECKING
1284 if (len % 2)
1285 q = TREE_CHAIN (q);
1286 gcc_assert (p != q);
1287 #endif
1288 len++;
1289 }
1290
1291 return len;
1292 }
1293
1294 /* Returns the number of FIELD_DECLs in TYPE. */
1295
1296 int
1297 fields_length (tree type)
1298 {
1299 tree t = TYPE_FIELDS (type);
1300 int count = 0;
1301
1302 for (; t; t = TREE_CHAIN (t))
1303 if (TREE_CODE (t) == FIELD_DECL)
1304 ++count;
1305
1306 return count;
1307 }
1308
1309 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1310 by modifying the last node in chain 1 to point to chain 2.
1311 This is the Lisp primitive `nconc'. */
1312
1313 tree
1314 chainon (tree op1, tree op2)
1315 {
1316 tree t1;
1317
1318 if (!op1)
1319 return op2;
1320 if (!op2)
1321 return op1;
1322
1323 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1324 continue;
1325 TREE_CHAIN (t1) = op2;
1326
1327 #ifdef ENABLE_TREE_CHECKING
1328 {
1329 tree t2;
1330 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1331 gcc_assert (t2 != t1);
1332 }
1333 #endif
1334
1335 return op1;
1336 }
1337
1338 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1339
1340 tree
1341 tree_last (tree chain)
1342 {
1343 tree next;
1344 if (chain)
1345 while ((next = TREE_CHAIN (chain)))
1346 chain = next;
1347 return chain;
1348 }
1349
1350 /* Reverse the order of elements in the chain T,
1351 and return the new head of the chain (old last element). */
1352
1353 tree
1354 nreverse (tree t)
1355 {
1356 tree prev = 0, decl, next;
1357 for (decl = t; decl; decl = next)
1358 {
1359 next = TREE_CHAIN (decl);
1360 TREE_CHAIN (decl) = prev;
1361 prev = decl;
1362 }
1363 return prev;
1364 }
1365 \f
1366 /* Return a newly created TREE_LIST node whose
1367 purpose and value fields are PARM and VALUE. */
1368
1369 tree
1370 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1371 {
1372 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1373 TREE_PURPOSE (t) = parm;
1374 TREE_VALUE (t) = value;
1375 return t;
1376 }
1377
1378 /* Return a newly created TREE_LIST node whose
1379 purpose and value fields are PURPOSE and VALUE
1380 and whose TREE_CHAIN is CHAIN. */
1381
1382 tree
1383 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1384 {
1385 tree node;
1386
1387 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1388 tree_zone PASS_MEM_STAT);
1389
1390 memset (node, 0, sizeof (struct tree_common));
1391
1392 #ifdef GATHER_STATISTICS
1393 tree_node_counts[(int) x_kind]++;
1394 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1395 #endif
1396
1397 TREE_SET_CODE (node, TREE_LIST);
1398 TREE_CHAIN (node) = chain;
1399 TREE_PURPOSE (node) = purpose;
1400 TREE_VALUE (node) = value;
1401 return node;
1402 }
1403
1404 \f
1405 /* Return the size nominally occupied by an object of type TYPE
1406 when it resides in memory. The value is measured in units of bytes,
1407 and its data type is that normally used for type sizes
1408 (which is the first type created by make_signed_type or
1409 make_unsigned_type). */
1410
1411 tree
1412 size_in_bytes (tree type)
1413 {
1414 tree t;
1415
1416 if (type == error_mark_node)
1417 return integer_zero_node;
1418
1419 type = TYPE_MAIN_VARIANT (type);
1420 t = TYPE_SIZE_UNIT (type);
1421
1422 if (t == 0)
1423 {
1424 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1425 return size_zero_node;
1426 }
1427
1428 if (TREE_CODE (t) == INTEGER_CST)
1429 t = force_fit_type (t, 0, false, false);
1430
1431 return t;
1432 }
1433
1434 /* Return the size of TYPE (in bytes) as a wide integer
1435 or return -1 if the size can vary or is larger than an integer. */
1436
1437 HOST_WIDE_INT
1438 int_size_in_bytes (tree type)
1439 {
1440 tree t;
1441
1442 if (type == error_mark_node)
1443 return 0;
1444
1445 type = TYPE_MAIN_VARIANT (type);
1446 t = TYPE_SIZE_UNIT (type);
1447 if (t == 0
1448 || TREE_CODE (t) != INTEGER_CST
1449 || TREE_OVERFLOW (t)
1450 || TREE_INT_CST_HIGH (t) != 0
1451 /* If the result would appear negative, it's too big to represent. */
1452 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1453 return -1;
1454
1455 return TREE_INT_CST_LOW (t);
1456 }
1457 \f
1458 /* Return the bit position of FIELD, in bits from the start of the record.
1459 This is a tree of type bitsizetype. */
1460
1461 tree
1462 bit_position (tree field)
1463 {
1464 return bit_from_pos (DECL_FIELD_OFFSET (field),
1465 DECL_FIELD_BIT_OFFSET (field));
1466 }
1467
1468 /* Likewise, but return as an integer. Abort if it cannot be represented
1469 in that way (since it could be a signed value, we don't have the option
1470 of returning -1 like int_size_in_byte can. */
1471
1472 HOST_WIDE_INT
1473 int_bit_position (tree field)
1474 {
1475 return tree_low_cst (bit_position (field), 0);
1476 }
1477 \f
1478 /* Return the byte position of FIELD, in bytes from the start of the record.
1479 This is a tree of type sizetype. */
1480
1481 tree
1482 byte_position (tree field)
1483 {
1484 return byte_from_pos (DECL_FIELD_OFFSET (field),
1485 DECL_FIELD_BIT_OFFSET (field));
1486 }
1487
1488 /* Likewise, but return as an integer. Abort if it cannot be represented
1489 in that way (since it could be a signed value, we don't have the option
1490 of returning -1 like int_size_in_byte can. */
1491
1492 HOST_WIDE_INT
1493 int_byte_position (tree field)
1494 {
1495 return tree_low_cst (byte_position (field), 0);
1496 }
1497 \f
1498 /* Return the strictest alignment, in bits, that T is known to have. */
1499
1500 unsigned int
1501 expr_align (tree t)
1502 {
1503 unsigned int align0, align1;
1504
1505 switch (TREE_CODE (t))
1506 {
1507 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1508 /* If we have conversions, we know that the alignment of the
1509 object must meet each of the alignments of the types. */
1510 align0 = expr_align (TREE_OPERAND (t, 0));
1511 align1 = TYPE_ALIGN (TREE_TYPE (t));
1512 return MAX (align0, align1);
1513
1514 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1515 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1516 case CLEANUP_POINT_EXPR:
1517 /* These don't change the alignment of an object. */
1518 return expr_align (TREE_OPERAND (t, 0));
1519
1520 case COND_EXPR:
1521 /* The best we can do is say that the alignment is the least aligned
1522 of the two arms. */
1523 align0 = expr_align (TREE_OPERAND (t, 1));
1524 align1 = expr_align (TREE_OPERAND (t, 2));
1525 return MIN (align0, align1);
1526
1527 case LABEL_DECL: case CONST_DECL:
1528 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1529 if (DECL_ALIGN (t) != 0)
1530 return DECL_ALIGN (t);
1531 break;
1532
1533 case FUNCTION_DECL:
1534 return FUNCTION_BOUNDARY;
1535
1536 default:
1537 break;
1538 }
1539
1540 /* Otherwise take the alignment from that of the type. */
1541 return TYPE_ALIGN (TREE_TYPE (t));
1542 }
1543 \f
1544 /* Return, as a tree node, the number of elements for TYPE (which is an
1545 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1546
1547 tree
1548 array_type_nelts (tree type)
1549 {
1550 tree index_type, min, max;
1551
1552 /* If they did it with unspecified bounds, then we should have already
1553 given an error about it before we got here. */
1554 if (! TYPE_DOMAIN (type))
1555 return error_mark_node;
1556
1557 index_type = TYPE_DOMAIN (type);
1558 min = TYPE_MIN_VALUE (index_type);
1559 max = TYPE_MAX_VALUE (index_type);
1560
1561 return (integer_zerop (min)
1562 ? max
1563 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1564 }
1565 \f
1566 /* If arg is static -- a reference to an object in static storage -- then
1567 return the object. This is not the same as the C meaning of `static'.
1568 If arg isn't static, return NULL. */
1569
1570 tree
1571 staticp (tree arg)
1572 {
1573 switch (TREE_CODE (arg))
1574 {
1575 case FUNCTION_DECL:
1576 /* Nested functions are static, even though taking their address will
1577 involve a trampoline as we unnest the nested function and create
1578 the trampoline on the tree level. */
1579 return arg;
1580
1581 case VAR_DECL:
1582 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1583 && ! DECL_THREAD_LOCAL (arg)
1584 && ! DECL_NON_ADDR_CONST_P (arg)
1585 ? arg : NULL);
1586
1587 case CONST_DECL:
1588 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1589 ? arg : NULL);
1590
1591 case CONSTRUCTOR:
1592 return TREE_STATIC (arg) ? arg : NULL;
1593
1594 case LABEL_DECL:
1595 case STRING_CST:
1596 return arg;
1597
1598 case COMPONENT_REF:
1599 /* If the thing being referenced is not a field, then it is
1600 something language specific. */
1601 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1602 return (*lang_hooks.staticp) (arg);
1603
1604 /* If we are referencing a bitfield, we can't evaluate an
1605 ADDR_EXPR at compile time and so it isn't a constant. */
1606 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1607 return NULL;
1608
1609 return staticp (TREE_OPERAND (arg, 0));
1610
1611 case BIT_FIELD_REF:
1612 return NULL;
1613
1614 case MISALIGNED_INDIRECT_REF:
1615 case ALIGN_INDIRECT_REF:
1616 case INDIRECT_REF:
1617 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1618
1619 case ARRAY_REF:
1620 case ARRAY_RANGE_REF:
1621 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1622 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1623 return staticp (TREE_OPERAND (arg, 0));
1624 else
1625 return false;
1626
1627 default:
1628 if ((unsigned int) TREE_CODE (arg)
1629 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1630 return lang_hooks.staticp (arg);
1631 else
1632 return NULL;
1633 }
1634 }
1635 \f
1636 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1637 Do this to any expression which may be used in more than one place,
1638 but must be evaluated only once.
1639
1640 Normally, expand_expr would reevaluate the expression each time.
1641 Calling save_expr produces something that is evaluated and recorded
1642 the first time expand_expr is called on it. Subsequent calls to
1643 expand_expr just reuse the recorded value.
1644
1645 The call to expand_expr that generates code that actually computes
1646 the value is the first call *at compile time*. Subsequent calls
1647 *at compile time* generate code to use the saved value.
1648 This produces correct result provided that *at run time* control
1649 always flows through the insns made by the first expand_expr
1650 before reaching the other places where the save_expr was evaluated.
1651 You, the caller of save_expr, must make sure this is so.
1652
1653 Constants, and certain read-only nodes, are returned with no
1654 SAVE_EXPR because that is safe. Expressions containing placeholders
1655 are not touched; see tree.def for an explanation of what these
1656 are used for. */
1657
1658 tree
1659 save_expr (tree expr)
1660 {
1661 tree t = fold (expr);
1662 tree inner;
1663
1664 /* If the tree evaluates to a constant, then we don't want to hide that
1665 fact (i.e. this allows further folding, and direct checks for constants).
1666 However, a read-only object that has side effects cannot be bypassed.
1667 Since it is no problem to reevaluate literals, we just return the
1668 literal node. */
1669 inner = skip_simple_arithmetic (t);
1670
1671 if (TREE_INVARIANT (inner)
1672 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1673 || TREE_CODE (inner) == SAVE_EXPR
1674 || TREE_CODE (inner) == ERROR_MARK)
1675 return t;
1676
1677 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1678 it means that the size or offset of some field of an object depends on
1679 the value within another field.
1680
1681 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1682 and some variable since it would then need to be both evaluated once and
1683 evaluated more than once. Front-ends must assure this case cannot
1684 happen by surrounding any such subexpressions in their own SAVE_EXPR
1685 and forcing evaluation at the proper time. */
1686 if (contains_placeholder_p (inner))
1687 return t;
1688
1689 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1690
1691 /* This expression might be placed ahead of a jump to ensure that the
1692 value was computed on both sides of the jump. So make sure it isn't
1693 eliminated as dead. */
1694 TREE_SIDE_EFFECTS (t) = 1;
1695 TREE_INVARIANT (t) = 1;
1696 return t;
1697 }
1698
1699 /* Look inside EXPR and into any simple arithmetic operations. Return
1700 the innermost non-arithmetic node. */
1701
1702 tree
1703 skip_simple_arithmetic (tree expr)
1704 {
1705 tree inner;
1706
1707 /* We don't care about whether this can be used as an lvalue in this
1708 context. */
1709 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1710 expr = TREE_OPERAND (expr, 0);
1711
1712 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1713 a constant, it will be more efficient to not make another SAVE_EXPR since
1714 it will allow better simplification and GCSE will be able to merge the
1715 computations if they actually occur. */
1716 inner = expr;
1717 while (1)
1718 {
1719 if (UNARY_CLASS_P (inner))
1720 inner = TREE_OPERAND (inner, 0);
1721 else if (BINARY_CLASS_P (inner))
1722 {
1723 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1724 inner = TREE_OPERAND (inner, 0);
1725 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1726 inner = TREE_OPERAND (inner, 1);
1727 else
1728 break;
1729 }
1730 else
1731 break;
1732 }
1733
1734 return inner;
1735 }
1736
1737 /* Returns the index of the first non-tree operand for CODE, or the number
1738 of operands if all are trees. */
1739
1740 int
1741 first_rtl_op (enum tree_code code)
1742 {
1743 switch (code)
1744 {
1745 default:
1746 return TREE_CODE_LENGTH (code);
1747 }
1748 }
1749
1750 /* Return which tree structure is used by T. */
1751
1752 enum tree_node_structure_enum
1753 tree_node_structure (tree t)
1754 {
1755 enum tree_code code = TREE_CODE (t);
1756
1757 switch (TREE_CODE_CLASS (code))
1758 {
1759 case tcc_declaration:
1760 return TS_DECL;
1761 case tcc_type:
1762 return TS_TYPE;
1763 case tcc_reference:
1764 case tcc_comparison:
1765 case tcc_unary:
1766 case tcc_binary:
1767 case tcc_expression:
1768 case tcc_statement:
1769 return TS_EXP;
1770 default: /* tcc_constant and tcc_exceptional */
1771 break;
1772 }
1773 switch (code)
1774 {
1775 /* tcc_constant cases. */
1776 case INTEGER_CST: return TS_INT_CST;
1777 case REAL_CST: return TS_REAL_CST;
1778 case COMPLEX_CST: return TS_COMPLEX;
1779 case VECTOR_CST: return TS_VECTOR;
1780 case STRING_CST: return TS_STRING;
1781 /* tcc_exceptional cases. */
1782 case ERROR_MARK: return TS_COMMON;
1783 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1784 case TREE_LIST: return TS_LIST;
1785 case TREE_VEC: return TS_VEC;
1786 case PHI_NODE: return TS_PHI_NODE;
1787 case SSA_NAME: return TS_SSA_NAME;
1788 case PLACEHOLDER_EXPR: return TS_COMMON;
1789 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1790 case BLOCK: return TS_BLOCK;
1791 case TREE_BINFO: return TS_BINFO;
1792 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1793
1794 default:
1795 gcc_unreachable ();
1796 }
1797 }
1798 \f
1799 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1800 or offset that depends on a field within a record. */
1801
1802 bool
1803 contains_placeholder_p (tree exp)
1804 {
1805 enum tree_code code;
1806
1807 if (!exp)
1808 return 0;
1809
1810 code = TREE_CODE (exp);
1811 if (code == PLACEHOLDER_EXPR)
1812 return 1;
1813
1814 switch (TREE_CODE_CLASS (code))
1815 {
1816 case tcc_reference:
1817 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1818 position computations since they will be converted into a
1819 WITH_RECORD_EXPR involving the reference, which will assume
1820 here will be valid. */
1821 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1822
1823 case tcc_exceptional:
1824 if (code == TREE_LIST)
1825 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1826 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1827 break;
1828
1829 case tcc_unary:
1830 case tcc_binary:
1831 case tcc_comparison:
1832 case tcc_expression:
1833 switch (code)
1834 {
1835 case COMPOUND_EXPR:
1836 /* Ignoring the first operand isn't quite right, but works best. */
1837 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1838
1839 case COND_EXPR:
1840 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1841 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1842 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1843
1844 default:
1845 break;
1846 }
1847
1848 switch (first_rtl_op (code))
1849 {
1850 case 1:
1851 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1852 case 2:
1853 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1854 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1855 default:
1856 return 0;
1857 }
1858
1859 default:
1860 return 0;
1861 }
1862 return 0;
1863 }
1864
1865 /* Return true if any part of the computation of TYPE involves a
1866 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1867 (for QUAL_UNION_TYPE) and field positions. */
1868
1869 static bool
1870 type_contains_placeholder_1 (tree type)
1871 {
1872 /* If the size contains a placeholder or the parent type (component type in
1873 the case of arrays) type involves a placeholder, this type does. */
1874 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1875 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1876 || (TREE_TYPE (type) != 0
1877 && type_contains_placeholder_p (TREE_TYPE (type))))
1878 return true;
1879
1880 /* Now do type-specific checks. Note that the last part of the check above
1881 greatly limits what we have to do below. */
1882 switch (TREE_CODE (type))
1883 {
1884 case VOID_TYPE:
1885 case COMPLEX_TYPE:
1886 case ENUMERAL_TYPE:
1887 case BOOLEAN_TYPE:
1888 case CHAR_TYPE:
1889 case POINTER_TYPE:
1890 case OFFSET_TYPE:
1891 case REFERENCE_TYPE:
1892 case METHOD_TYPE:
1893 case FILE_TYPE:
1894 case FUNCTION_TYPE:
1895 return false;
1896
1897 case INTEGER_TYPE:
1898 case REAL_TYPE:
1899 /* Here we just check the bounds. */
1900 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1901 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1902
1903 case ARRAY_TYPE:
1904 case SET_TYPE:
1905 case VECTOR_TYPE:
1906 /* We're already checked the component type (TREE_TYPE), so just check
1907 the index type. */
1908 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1909
1910 case RECORD_TYPE:
1911 case UNION_TYPE:
1912 case QUAL_UNION_TYPE:
1913 {
1914 tree field;
1915
1916 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1917 if (TREE_CODE (field) == FIELD_DECL
1918 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1919 || (TREE_CODE (type) == QUAL_UNION_TYPE
1920 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1921 || type_contains_placeholder_p (TREE_TYPE (field))))
1922 return true;
1923
1924 return false;
1925 }
1926
1927 default:
1928 gcc_unreachable ();
1929 }
1930 }
1931
1932 bool
1933 type_contains_placeholder_p (tree type)
1934 {
1935 bool result;
1936
1937 /* If the contains_placeholder_bits field has been initialized,
1938 then we know the answer. */
1939 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1940 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1941
1942 /* Indicate that we've seen this type node, and the answer is false.
1943 This is what we want to return if we run into recursion via fields. */
1944 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1945
1946 /* Compute the real value. */
1947 result = type_contains_placeholder_1 (type);
1948
1949 /* Store the real value. */
1950 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1951
1952 return result;
1953 }
1954 \f
1955 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1956 return a tree with all occurrences of references to F in a
1957 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1958 contains only arithmetic expressions or a CALL_EXPR with a
1959 PLACEHOLDER_EXPR occurring only in its arglist. */
1960
1961 tree
1962 substitute_in_expr (tree exp, tree f, tree r)
1963 {
1964 enum tree_code code = TREE_CODE (exp);
1965 tree op0, op1, op2;
1966 tree new;
1967 tree inner;
1968
1969 /* We handle TREE_LIST and COMPONENT_REF separately. */
1970 if (code == TREE_LIST)
1971 {
1972 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1973 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1974 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1975 return exp;
1976
1977 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1978 }
1979 else if (code == COMPONENT_REF)
1980 {
1981 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1982 and it is the right field, replace it with R. */
1983 for (inner = TREE_OPERAND (exp, 0);
1984 REFERENCE_CLASS_P (inner);
1985 inner = TREE_OPERAND (inner, 0))
1986 ;
1987 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1988 && TREE_OPERAND (exp, 1) == f)
1989 return r;
1990
1991 /* If this expression hasn't been completed let, leave it alone. */
1992 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1993 return exp;
1994
1995 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1996 if (op0 == TREE_OPERAND (exp, 0))
1997 return exp;
1998
1999 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
2000 op0, TREE_OPERAND (exp, 1), NULL_TREE));
2001 }
2002 else
2003 switch (TREE_CODE_CLASS (code))
2004 {
2005 case tcc_constant:
2006 case tcc_declaration:
2007 return exp;
2008
2009 case tcc_exceptional:
2010 case tcc_unary:
2011 case tcc_binary:
2012 case tcc_comparison:
2013 case tcc_expression:
2014 case tcc_reference:
2015 switch (first_rtl_op (code))
2016 {
2017 case 0:
2018 return exp;
2019
2020 case 1:
2021 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2022 if (op0 == TREE_OPERAND (exp, 0))
2023 return exp;
2024
2025 new = fold (build1 (code, TREE_TYPE (exp), op0));
2026 break;
2027
2028 case 2:
2029 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2030 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2031
2032 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2033 return exp;
2034
2035 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2036 break;
2037
2038 case 3:
2039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2041 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2042
2043 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2044 && op2 == TREE_OPERAND (exp, 2))
2045 return exp;
2046
2047 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2048 break;
2049
2050 default:
2051 gcc_unreachable ();
2052 }
2053 break;
2054
2055 default:
2056 gcc_unreachable ();
2057 }
2058
2059 TREE_READONLY (new) = TREE_READONLY (exp);
2060 return new;
2061 }
2062
2063 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2064 for it within OBJ, a tree that is an object or a chain of references. */
2065
2066 tree
2067 substitute_placeholder_in_expr (tree exp, tree obj)
2068 {
2069 enum tree_code code = TREE_CODE (exp);
2070 tree op0, op1, op2, op3;
2071
2072 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2073 in the chain of OBJ. */
2074 if (code == PLACEHOLDER_EXPR)
2075 {
2076 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2077 tree elt;
2078
2079 for (elt = obj; elt != 0;
2080 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2081 || TREE_CODE (elt) == COND_EXPR)
2082 ? TREE_OPERAND (elt, 1)
2083 : (REFERENCE_CLASS_P (elt)
2084 || UNARY_CLASS_P (elt)
2085 || BINARY_CLASS_P (elt)
2086 || EXPRESSION_CLASS_P (elt))
2087 ? TREE_OPERAND (elt, 0) : 0))
2088 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2089 return elt;
2090
2091 for (elt = obj; elt != 0;
2092 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2093 || TREE_CODE (elt) == COND_EXPR)
2094 ? TREE_OPERAND (elt, 1)
2095 : (REFERENCE_CLASS_P (elt)
2096 || UNARY_CLASS_P (elt)
2097 || BINARY_CLASS_P (elt)
2098 || EXPRESSION_CLASS_P (elt))
2099 ? TREE_OPERAND (elt, 0) : 0))
2100 if (POINTER_TYPE_P (TREE_TYPE (elt))
2101 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2102 == need_type))
2103 return fold (build1 (INDIRECT_REF, need_type, elt));
2104
2105 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2106 survives until RTL generation, there will be an error. */
2107 return exp;
2108 }
2109
2110 /* TREE_LIST is special because we need to look at TREE_VALUE
2111 and TREE_CHAIN, not TREE_OPERANDS. */
2112 else if (code == TREE_LIST)
2113 {
2114 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2115 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2116 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2117 return exp;
2118
2119 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2120 }
2121 else
2122 switch (TREE_CODE_CLASS (code))
2123 {
2124 case tcc_constant:
2125 case tcc_declaration:
2126 return exp;
2127
2128 case tcc_exceptional:
2129 case tcc_unary:
2130 case tcc_binary:
2131 case tcc_comparison:
2132 case tcc_expression:
2133 case tcc_reference:
2134 case tcc_statement:
2135 switch (first_rtl_op (code))
2136 {
2137 case 0:
2138 return exp;
2139
2140 case 1:
2141 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2142 if (op0 == TREE_OPERAND (exp, 0))
2143 return exp;
2144 else
2145 return fold (build1 (code, TREE_TYPE (exp), op0));
2146
2147 case 2:
2148 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2149 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2150
2151 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2152 return exp;
2153 else
2154 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2155
2156 case 3:
2157 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2158 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2159 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2160
2161 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2162 && op2 == TREE_OPERAND (exp, 2))
2163 return exp;
2164 else
2165 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2166
2167 case 4:
2168 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2169 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2170 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2171 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2172
2173 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2174 && op2 == TREE_OPERAND (exp, 2)
2175 && op3 == TREE_OPERAND (exp, 3))
2176 return exp;
2177 else
2178 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2179
2180 default:
2181 gcc_unreachable ();
2182 }
2183 break;
2184
2185 default:
2186 gcc_unreachable ();
2187 }
2188 }
2189 \f
2190 /* Stabilize a reference so that we can use it any number of times
2191 without causing its operands to be evaluated more than once.
2192 Returns the stabilized reference. This works by means of save_expr,
2193 so see the caveats in the comments about save_expr.
2194
2195 Also allows conversion expressions whose operands are references.
2196 Any other kind of expression is returned unchanged. */
2197
2198 tree
2199 stabilize_reference (tree ref)
2200 {
2201 tree result;
2202 enum tree_code code = TREE_CODE (ref);
2203
2204 switch (code)
2205 {
2206 case VAR_DECL:
2207 case PARM_DECL:
2208 case RESULT_DECL:
2209 /* No action is needed in this case. */
2210 return ref;
2211
2212 case NOP_EXPR:
2213 case CONVERT_EXPR:
2214 case FLOAT_EXPR:
2215 case FIX_TRUNC_EXPR:
2216 case FIX_FLOOR_EXPR:
2217 case FIX_ROUND_EXPR:
2218 case FIX_CEIL_EXPR:
2219 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2220 break;
2221
2222 case INDIRECT_REF:
2223 result = build_nt (INDIRECT_REF,
2224 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2225 break;
2226
2227 case COMPONENT_REF:
2228 result = build_nt (COMPONENT_REF,
2229 stabilize_reference (TREE_OPERAND (ref, 0)),
2230 TREE_OPERAND (ref, 1), NULL_TREE);
2231 break;
2232
2233 case BIT_FIELD_REF:
2234 result = build_nt (BIT_FIELD_REF,
2235 stabilize_reference (TREE_OPERAND (ref, 0)),
2236 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2237 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2238 break;
2239
2240 case ARRAY_REF:
2241 result = build_nt (ARRAY_REF,
2242 stabilize_reference (TREE_OPERAND (ref, 0)),
2243 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2244 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2245 break;
2246
2247 case ARRAY_RANGE_REF:
2248 result = build_nt (ARRAY_RANGE_REF,
2249 stabilize_reference (TREE_OPERAND (ref, 0)),
2250 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2251 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2252 break;
2253
2254 case COMPOUND_EXPR:
2255 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2256 it wouldn't be ignored. This matters when dealing with
2257 volatiles. */
2258 return stabilize_reference_1 (ref);
2259
2260 /* If arg isn't a kind of lvalue we recognize, make no change.
2261 Caller should recognize the error for an invalid lvalue. */
2262 default:
2263 return ref;
2264
2265 case ERROR_MARK:
2266 return error_mark_node;
2267 }
2268
2269 TREE_TYPE (result) = TREE_TYPE (ref);
2270 TREE_READONLY (result) = TREE_READONLY (ref);
2271 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2272 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2273
2274 return result;
2275 }
2276
2277 /* Subroutine of stabilize_reference; this is called for subtrees of
2278 references. Any expression with side-effects must be put in a SAVE_EXPR
2279 to ensure that it is only evaluated once.
2280
2281 We don't put SAVE_EXPR nodes around everything, because assigning very
2282 simple expressions to temporaries causes us to miss good opportunities
2283 for optimizations. Among other things, the opportunity to fold in the
2284 addition of a constant into an addressing mode often gets lost, e.g.
2285 "y[i+1] += x;". In general, we take the approach that we should not make
2286 an assignment unless we are forced into it - i.e., that any non-side effect
2287 operator should be allowed, and that cse should take care of coalescing
2288 multiple utterances of the same expression should that prove fruitful. */
2289
2290 tree
2291 stabilize_reference_1 (tree e)
2292 {
2293 tree result;
2294 enum tree_code code = TREE_CODE (e);
2295
2296 /* We cannot ignore const expressions because it might be a reference
2297 to a const array but whose index contains side-effects. But we can
2298 ignore things that are actual constant or that already have been
2299 handled by this function. */
2300
2301 if (TREE_INVARIANT (e))
2302 return e;
2303
2304 switch (TREE_CODE_CLASS (code))
2305 {
2306 case tcc_exceptional:
2307 case tcc_type:
2308 case tcc_declaration:
2309 case tcc_comparison:
2310 case tcc_statement:
2311 case tcc_expression:
2312 case tcc_reference:
2313 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2314 so that it will only be evaluated once. */
2315 /* The reference (r) and comparison (<) classes could be handled as
2316 below, but it is generally faster to only evaluate them once. */
2317 if (TREE_SIDE_EFFECTS (e))
2318 return save_expr (e);
2319 return e;
2320
2321 case tcc_constant:
2322 /* Constants need no processing. In fact, we should never reach
2323 here. */
2324 return e;
2325
2326 case tcc_binary:
2327 /* Division is slow and tends to be compiled with jumps,
2328 especially the division by powers of 2 that is often
2329 found inside of an array reference. So do it just once. */
2330 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2331 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2332 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2333 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2334 return save_expr (e);
2335 /* Recursively stabilize each operand. */
2336 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2337 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2338 break;
2339
2340 case tcc_unary:
2341 /* Recursively stabilize each operand. */
2342 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2343 break;
2344
2345 default:
2346 gcc_unreachable ();
2347 }
2348
2349 TREE_TYPE (result) = TREE_TYPE (e);
2350 TREE_READONLY (result) = TREE_READONLY (e);
2351 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2352 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2353 TREE_INVARIANT (result) = 1;
2354
2355 return result;
2356 }
2357 \f
2358 /* Low-level constructors for expressions. */
2359
2360 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2361 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2362
2363 void
2364 recompute_tree_invarant_for_addr_expr (tree t)
2365 {
2366 tree node;
2367 bool tc = true, ti = true, se = false;
2368
2369 /* We started out assuming this address is both invariant and constant, but
2370 does not have side effects. Now go down any handled components and see if
2371 any of them involve offsets that are either non-constant or non-invariant.
2372 Also check for side-effects.
2373
2374 ??? Note that this code makes no attempt to deal with the case where
2375 taking the address of something causes a copy due to misalignment. */
2376
2377 #define UPDATE_TITCSE(NODE) \
2378 do { tree _node = (NODE); \
2379 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2380 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2381 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2382
2383 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2384 node = TREE_OPERAND (node, 0))
2385 {
2386 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2387 array reference (probably made temporarily by the G++ front end),
2388 so ignore all the operands. */
2389 if ((TREE_CODE (node) == ARRAY_REF
2390 || TREE_CODE (node) == ARRAY_RANGE_REF)
2391 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2392 {
2393 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2394 if (TREE_OPERAND (node, 2))
2395 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2396 if (TREE_OPERAND (node, 3))
2397 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2398 }
2399 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2400 FIELD_DECL, apparently. The G++ front end can put something else
2401 there, at least temporarily. */
2402 else if (TREE_CODE (node) == COMPONENT_REF
2403 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2404 {
2405 if (TREE_OPERAND (node, 2))
2406 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2407 }
2408 else if (TREE_CODE (node) == BIT_FIELD_REF)
2409 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2410 }
2411
2412 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2413 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2414 invariant and constant if the decl is static. It's also invariant if it's
2415 a decl in the current function. Taking the address of a volatile variable
2416 is not volatile. If it's a constant, the address is both invariant and
2417 constant. Otherwise it's neither. */
2418 if (TREE_CODE (node) == INDIRECT_REF)
2419 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2420 else if (DECL_P (node))
2421 {
2422 if (staticp (node))
2423 ;
2424 else if (decl_function_context (node) == current_function_decl)
2425 tc = false;
2426 else
2427 ti = tc = false;
2428 }
2429 else if (CONSTANT_CLASS_P (node))
2430 ;
2431 else
2432 {
2433 ti = tc = false;
2434 se |= TREE_SIDE_EFFECTS (node);
2435 }
2436
2437 TREE_CONSTANT (t) = tc;
2438 TREE_INVARIANT (t) = ti;
2439 TREE_SIDE_EFFECTS (t) = se;
2440 #undef UPDATE_TITCSE
2441 }
2442
2443 /* Build an expression of code CODE, data type TYPE, and operands as
2444 specified. Expressions and reference nodes can be created this way.
2445 Constants, decls, types and misc nodes cannot be.
2446
2447 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2448 enough for all extant tree codes. These functions can be called
2449 directly (preferably!), but can also be obtained via GCC preprocessor
2450 magic within the build macro. */
2451
2452 tree
2453 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2454 {
2455 tree t;
2456
2457 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2458
2459 t = make_node_stat (code PASS_MEM_STAT);
2460 TREE_TYPE (t) = tt;
2461
2462 return t;
2463 }
2464
2465 tree
2466 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2467 {
2468 int length = sizeof (struct tree_exp);
2469 #ifdef GATHER_STATISTICS
2470 tree_node_kind kind;
2471 #endif
2472 tree t;
2473
2474 #ifdef GATHER_STATISTICS
2475 switch (TREE_CODE_CLASS (code))
2476 {
2477 case tcc_statement: /* an expression with side effects */
2478 kind = s_kind;
2479 break;
2480 case tcc_reference: /* a reference */
2481 kind = r_kind;
2482 break;
2483 default:
2484 kind = e_kind;
2485 break;
2486 }
2487
2488 tree_node_counts[(int) kind]++;
2489 tree_node_sizes[(int) kind] += length;
2490 #endif
2491
2492 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2493
2494 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2495
2496 memset (t, 0, sizeof (struct tree_common));
2497
2498 TREE_SET_CODE (t, code);
2499
2500 TREE_TYPE (t) = type;
2501 #ifdef USE_MAPPED_LOCATION
2502 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2503 #else
2504 SET_EXPR_LOCUS (t, NULL);
2505 #endif
2506 TREE_COMPLEXITY (t) = 0;
2507 TREE_OPERAND (t, 0) = node;
2508 TREE_BLOCK (t) = NULL_TREE;
2509 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2510 {
2511 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2512 TREE_READONLY (t) = TREE_READONLY (node);
2513 }
2514
2515 if (TREE_CODE_CLASS (code) == tcc_statement)
2516 TREE_SIDE_EFFECTS (t) = 1;
2517 else switch (code)
2518 {
2519 case INIT_EXPR:
2520 case MODIFY_EXPR:
2521 case VA_ARG_EXPR:
2522 case PREDECREMENT_EXPR:
2523 case PREINCREMENT_EXPR:
2524 case POSTDECREMENT_EXPR:
2525 case POSTINCREMENT_EXPR:
2526 /* All of these have side-effects, no matter what their
2527 operands are. */
2528 TREE_SIDE_EFFECTS (t) = 1;
2529 TREE_READONLY (t) = 0;
2530 break;
2531
2532 case MISALIGNED_INDIRECT_REF:
2533 case ALIGN_INDIRECT_REF:
2534 case INDIRECT_REF:
2535 /* Whether a dereference is readonly has nothing to do with whether
2536 its operand is readonly. */
2537 TREE_READONLY (t) = 0;
2538 break;
2539
2540 case ADDR_EXPR:
2541 if (node)
2542 recompute_tree_invarant_for_addr_expr (t);
2543 break;
2544
2545 default:
2546 if (TREE_CODE_CLASS (code) == tcc_unary
2547 && node && !TYPE_P (node)
2548 && TREE_CONSTANT (node))
2549 TREE_CONSTANT (t) = 1;
2550 if (TREE_CODE_CLASS (code) == tcc_unary
2551 && node && TREE_INVARIANT (node))
2552 TREE_INVARIANT (t) = 1;
2553 if (TREE_CODE_CLASS (code) == tcc_reference
2554 && node && TREE_THIS_VOLATILE (node))
2555 TREE_THIS_VOLATILE (t) = 1;
2556 break;
2557 }
2558
2559 return t;
2560 }
2561
2562 #define PROCESS_ARG(N) \
2563 do { \
2564 TREE_OPERAND (t, N) = arg##N; \
2565 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2566 { \
2567 if (TREE_SIDE_EFFECTS (arg##N)) \
2568 side_effects = 1; \
2569 if (!TREE_READONLY (arg##N)) \
2570 read_only = 0; \
2571 if (!TREE_CONSTANT (arg##N)) \
2572 constant = 0; \
2573 if (!TREE_INVARIANT (arg##N)) \
2574 invariant = 0; \
2575 } \
2576 } while (0)
2577
2578 tree
2579 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2580 {
2581 bool constant, read_only, side_effects, invariant;
2582 tree t;
2583 int fro;
2584
2585 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2586
2587 t = make_node_stat (code PASS_MEM_STAT);
2588 TREE_TYPE (t) = tt;
2589
2590 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2591 result based on those same flags for the arguments. But if the
2592 arguments aren't really even `tree' expressions, we shouldn't be trying
2593 to do this. */
2594 fro = first_rtl_op (code);
2595
2596 /* Expressions without side effects may be constant if their
2597 arguments are as well. */
2598 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2599 || TREE_CODE_CLASS (code) == tcc_binary);
2600 read_only = 1;
2601 side_effects = TREE_SIDE_EFFECTS (t);
2602 invariant = constant;
2603
2604 PROCESS_ARG(0);
2605 PROCESS_ARG(1);
2606
2607 TREE_READONLY (t) = read_only;
2608 TREE_CONSTANT (t) = constant;
2609 TREE_INVARIANT (t) = invariant;
2610 TREE_SIDE_EFFECTS (t) = side_effects;
2611 TREE_THIS_VOLATILE (t)
2612 = (TREE_CODE_CLASS (code) == tcc_reference
2613 && arg0 && TREE_THIS_VOLATILE (arg0));
2614
2615 return t;
2616 }
2617
2618 tree
2619 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2620 tree arg2 MEM_STAT_DECL)
2621 {
2622 bool constant, read_only, side_effects, invariant;
2623 tree t;
2624 int fro;
2625
2626 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2627
2628 t = make_node_stat (code PASS_MEM_STAT);
2629 TREE_TYPE (t) = tt;
2630
2631 fro = first_rtl_op (code);
2632
2633 side_effects = TREE_SIDE_EFFECTS (t);
2634
2635 PROCESS_ARG(0);
2636 PROCESS_ARG(1);
2637 PROCESS_ARG(2);
2638
2639 if (code == CALL_EXPR && !side_effects)
2640 {
2641 tree node;
2642 int i;
2643
2644 /* Calls have side-effects, except those to const or
2645 pure functions. */
2646 i = call_expr_flags (t);
2647 if (!(i & (ECF_CONST | ECF_PURE)))
2648 side_effects = 1;
2649
2650 /* And even those have side-effects if their arguments do. */
2651 else for (node = arg1; node; node = TREE_CHAIN (node))
2652 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2653 {
2654 side_effects = 1;
2655 break;
2656 }
2657 }
2658
2659 TREE_SIDE_EFFECTS (t) = side_effects;
2660 TREE_THIS_VOLATILE (t)
2661 = (TREE_CODE_CLASS (code) == tcc_reference
2662 && arg0 && TREE_THIS_VOLATILE (arg0));
2663
2664 return t;
2665 }
2666
2667 tree
2668 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2669 tree arg2, tree arg3 MEM_STAT_DECL)
2670 {
2671 bool constant, read_only, side_effects, invariant;
2672 tree t;
2673 int fro;
2674
2675 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2676
2677 t = make_node_stat (code PASS_MEM_STAT);
2678 TREE_TYPE (t) = tt;
2679
2680 fro = first_rtl_op (code);
2681
2682 side_effects = TREE_SIDE_EFFECTS (t);
2683
2684 PROCESS_ARG(0);
2685 PROCESS_ARG(1);
2686 PROCESS_ARG(2);
2687 PROCESS_ARG(3);
2688
2689 TREE_SIDE_EFFECTS (t) = side_effects;
2690 TREE_THIS_VOLATILE (t)
2691 = (TREE_CODE_CLASS (code) == tcc_reference
2692 && arg0 && TREE_THIS_VOLATILE (arg0));
2693
2694 return t;
2695 }
2696
2697 /* Backup definition for non-gcc build compilers. */
2698
2699 tree
2700 (build) (enum tree_code code, tree tt, ...)
2701 {
2702 tree t, arg0, arg1, arg2, arg3;
2703 int length = TREE_CODE_LENGTH (code);
2704 va_list p;
2705
2706 va_start (p, tt);
2707 switch (length)
2708 {
2709 case 0:
2710 t = build0 (code, tt);
2711 break;
2712 case 1:
2713 arg0 = va_arg (p, tree);
2714 t = build1 (code, tt, arg0);
2715 break;
2716 case 2:
2717 arg0 = va_arg (p, tree);
2718 arg1 = va_arg (p, tree);
2719 t = build2 (code, tt, arg0, arg1);
2720 break;
2721 case 3:
2722 arg0 = va_arg (p, tree);
2723 arg1 = va_arg (p, tree);
2724 arg2 = va_arg (p, tree);
2725 t = build3 (code, tt, arg0, arg1, arg2);
2726 break;
2727 case 4:
2728 arg0 = va_arg (p, tree);
2729 arg1 = va_arg (p, tree);
2730 arg2 = va_arg (p, tree);
2731 arg3 = va_arg (p, tree);
2732 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2733 break;
2734 default:
2735 gcc_unreachable ();
2736 }
2737 va_end (p);
2738
2739 return t;
2740 }
2741
2742 /* Similar except don't specify the TREE_TYPE
2743 and leave the TREE_SIDE_EFFECTS as 0.
2744 It is permissible for arguments to be null,
2745 or even garbage if their values do not matter. */
2746
2747 tree
2748 build_nt (enum tree_code code, ...)
2749 {
2750 tree t;
2751 int length;
2752 int i;
2753 va_list p;
2754
2755 va_start (p, code);
2756
2757 t = make_node (code);
2758 length = TREE_CODE_LENGTH (code);
2759
2760 for (i = 0; i < length; i++)
2761 TREE_OPERAND (t, i) = va_arg (p, tree);
2762
2763 va_end (p);
2764 return t;
2765 }
2766 \f
2767 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2768 We do NOT enter this node in any sort of symbol table.
2769
2770 layout_decl is used to set up the decl's storage layout.
2771 Other slots are initialized to 0 or null pointers. */
2772
2773 tree
2774 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2775 {
2776 tree t;
2777
2778 t = make_node_stat (code PASS_MEM_STAT);
2779
2780 /* if (type == error_mark_node)
2781 type = integer_type_node; */
2782 /* That is not done, deliberately, so that having error_mark_node
2783 as the type can suppress useless errors in the use of this variable. */
2784
2785 DECL_NAME (t) = name;
2786 TREE_TYPE (t) = type;
2787
2788 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2789 layout_decl (t, 0);
2790 else if (code == FUNCTION_DECL)
2791 DECL_MODE (t) = FUNCTION_MODE;
2792
2793 /* Set default visibility to whatever the user supplied with
2794 visibility_specified depending on #pragma GCC visibility. */
2795 DECL_VISIBILITY (t) = default_visibility;
2796 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2797
2798 return t;
2799 }
2800 \f
2801 /* BLOCK nodes are used to represent the structure of binding contours
2802 and declarations, once those contours have been exited and their contents
2803 compiled. This information is used for outputting debugging info. */
2804
2805 tree
2806 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2807 tree supercontext, tree chain)
2808 {
2809 tree block = make_node (BLOCK);
2810
2811 BLOCK_VARS (block) = vars;
2812 BLOCK_SUBBLOCKS (block) = subblocks;
2813 BLOCK_SUPERCONTEXT (block) = supercontext;
2814 BLOCK_CHAIN (block) = chain;
2815 return block;
2816 }
2817
2818 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2819 /* ??? gengtype doesn't handle conditionals */
2820 static GTY(()) tree last_annotated_node;
2821 #endif
2822
2823 #ifdef USE_MAPPED_LOCATION
2824
2825 expanded_location
2826 expand_location (source_location loc)
2827 {
2828 expanded_location xloc;
2829 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2830 else
2831 {
2832 const struct line_map *map = linemap_lookup (&line_table, loc);
2833 xloc.file = map->to_file;
2834 xloc.line = SOURCE_LINE (map, loc);
2835 xloc.column = SOURCE_COLUMN (map, loc);
2836 };
2837 return xloc;
2838 }
2839
2840 #else
2841
2842 /* Record the exact location where an expression or an identifier were
2843 encountered. */
2844
2845 void
2846 annotate_with_file_line (tree node, const char *file, int line)
2847 {
2848 /* Roughly one percent of the calls to this function are to annotate
2849 a node with the same information already attached to that node!
2850 Just return instead of wasting memory. */
2851 if (EXPR_LOCUS (node)
2852 && (EXPR_FILENAME (node) == file
2853 || ! strcmp (EXPR_FILENAME (node), file))
2854 && EXPR_LINENO (node) == line)
2855 {
2856 last_annotated_node = node;
2857 return;
2858 }
2859
2860 /* In heavily macroized code (such as GCC itself) this single
2861 entry cache can reduce the number of allocations by more
2862 than half. */
2863 if (last_annotated_node
2864 && EXPR_LOCUS (last_annotated_node)
2865 && (EXPR_FILENAME (last_annotated_node) == file
2866 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2867 && EXPR_LINENO (last_annotated_node) == line)
2868 {
2869 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2870 return;
2871 }
2872
2873 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2874 EXPR_LINENO (node) = line;
2875 EXPR_FILENAME (node) = file;
2876 last_annotated_node = node;
2877 }
2878
2879 void
2880 annotate_with_locus (tree node, location_t locus)
2881 {
2882 annotate_with_file_line (node, locus.file, locus.line);
2883 }
2884 #endif
2885 \f
2886 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2887 is ATTRIBUTE. */
2888
2889 tree
2890 build_decl_attribute_variant (tree ddecl, tree attribute)
2891 {
2892 DECL_ATTRIBUTES (ddecl) = attribute;
2893 return ddecl;
2894 }
2895
2896 /* Borrowed from hashtab.c iterative_hash implementation. */
2897 #define mix(a,b,c) \
2898 { \
2899 a -= b; a -= c; a ^= (c>>13); \
2900 b -= c; b -= a; b ^= (a<< 8); \
2901 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2902 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2903 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2904 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2905 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2906 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2907 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2908 }
2909
2910
2911 /* Produce good hash value combining VAL and VAL2. */
2912 static inline hashval_t
2913 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2914 {
2915 /* the golden ratio; an arbitrary value. */
2916 hashval_t a = 0x9e3779b9;
2917
2918 mix (a, val, val2);
2919 return val2;
2920 }
2921
2922 /* Produce good hash value combining PTR and VAL2. */
2923 static inline hashval_t
2924 iterative_hash_pointer (void *ptr, hashval_t val2)
2925 {
2926 if (sizeof (ptr) == sizeof (hashval_t))
2927 return iterative_hash_hashval_t ((size_t) ptr, val2);
2928 else
2929 {
2930 hashval_t a = (hashval_t) (size_t) ptr;
2931 /* Avoid warnings about shifting of more than the width of the type on
2932 hosts that won't execute this path. */
2933 int zero = 0;
2934 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2935 mix (a, b, val2);
2936 return val2;
2937 }
2938 }
2939
2940 /* Produce good hash value combining VAL and VAL2. */
2941 static inline hashval_t
2942 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2943 {
2944 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2945 return iterative_hash_hashval_t (val, val2);
2946 else
2947 {
2948 hashval_t a = (hashval_t) val;
2949 /* Avoid warnings about shifting of more than the width of the type on
2950 hosts that won't execute this path. */
2951 int zero = 0;
2952 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2953 mix (a, b, val2);
2954 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2955 {
2956 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2957 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2958 mix (a, b, val2);
2959 }
2960 return val2;
2961 }
2962 }
2963
2964 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2965 is ATTRIBUTE.
2966
2967 Record such modified types already made so we don't make duplicates. */
2968
2969 tree
2970 build_type_attribute_variant (tree ttype, tree attribute)
2971 {
2972 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2973 {
2974 hashval_t hashcode = 0;
2975 tree ntype;
2976 enum tree_code code = TREE_CODE (ttype);
2977
2978 ntype = copy_node (ttype);
2979
2980 TYPE_POINTER_TO (ntype) = 0;
2981 TYPE_REFERENCE_TO (ntype) = 0;
2982 TYPE_ATTRIBUTES (ntype) = attribute;
2983
2984 /* Create a new main variant of TYPE. */
2985 TYPE_MAIN_VARIANT (ntype) = ntype;
2986 TYPE_NEXT_VARIANT (ntype) = 0;
2987 set_type_quals (ntype, TYPE_UNQUALIFIED);
2988
2989 hashcode = iterative_hash_object (code, hashcode);
2990 if (TREE_TYPE (ntype))
2991 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2992 hashcode);
2993 hashcode = attribute_hash_list (attribute, hashcode);
2994
2995 switch (TREE_CODE (ntype))
2996 {
2997 case FUNCTION_TYPE:
2998 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
2999 break;
3000 case ARRAY_TYPE:
3001 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3002 hashcode);
3003 break;
3004 case INTEGER_TYPE:
3005 hashcode = iterative_hash_object
3006 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3007 hashcode = iterative_hash_object
3008 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3009 break;
3010 case REAL_TYPE:
3011 {
3012 unsigned int precision = TYPE_PRECISION (ntype);
3013 hashcode = iterative_hash_object (precision, hashcode);
3014 }
3015 break;
3016 default:
3017 break;
3018 }
3019
3020 ntype = type_hash_canon (hashcode, ntype);
3021 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3022 }
3023
3024 return ttype;
3025 }
3026
3027 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3028 or zero if not.
3029
3030 We try both `text' and `__text__', ATTR may be either one. */
3031 /* ??? It might be a reasonable simplification to require ATTR to be only
3032 `text'. One might then also require attribute lists to be stored in
3033 their canonicalized form. */
3034
3035 int
3036 is_attribute_p (const char *attr, tree ident)
3037 {
3038 int ident_len, attr_len;
3039 const char *p;
3040
3041 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3042 return 0;
3043
3044 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3045 return 1;
3046
3047 p = IDENTIFIER_POINTER (ident);
3048 ident_len = strlen (p);
3049 attr_len = strlen (attr);
3050
3051 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3052 if (attr[0] == '_')
3053 {
3054 gcc_assert (attr[1] == '_');
3055 gcc_assert (attr[attr_len - 2] == '_');
3056 gcc_assert (attr[attr_len - 1] == '_');
3057 gcc_assert (attr[1] == '_');
3058 if (ident_len == attr_len - 4
3059 && strncmp (attr + 2, p, attr_len - 4) == 0)
3060 return 1;
3061 }
3062 else
3063 {
3064 if (ident_len == attr_len + 4
3065 && p[0] == '_' && p[1] == '_'
3066 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3067 && strncmp (attr, p + 2, attr_len) == 0)
3068 return 1;
3069 }
3070
3071 return 0;
3072 }
3073
3074 /* Given an attribute name and a list of attributes, return a pointer to the
3075 attribute's list element if the attribute is part of the list, or NULL_TREE
3076 if not found. If the attribute appears more than once, this only
3077 returns the first occurrence; the TREE_CHAIN of the return value should
3078 be passed back in if further occurrences are wanted. */
3079
3080 tree
3081 lookup_attribute (const char *attr_name, tree list)
3082 {
3083 tree l;
3084
3085 for (l = list; l; l = TREE_CHAIN (l))
3086 {
3087 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3088 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3089 return l;
3090 }
3091
3092 return NULL_TREE;
3093 }
3094
3095 /* Return an attribute list that is the union of a1 and a2. */
3096
3097 tree
3098 merge_attributes (tree a1, tree a2)
3099 {
3100 tree attributes;
3101
3102 /* Either one unset? Take the set one. */
3103
3104 if ((attributes = a1) == 0)
3105 attributes = a2;
3106
3107 /* One that completely contains the other? Take it. */
3108
3109 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3110 {
3111 if (attribute_list_contained (a2, a1))
3112 attributes = a2;
3113 else
3114 {
3115 /* Pick the longest list, and hang on the other list. */
3116
3117 if (list_length (a1) < list_length (a2))
3118 attributes = a2, a2 = a1;
3119
3120 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3121 {
3122 tree a;
3123 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3124 attributes);
3125 a != NULL_TREE;
3126 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3127 TREE_CHAIN (a)))
3128 {
3129 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3130 break;
3131 }
3132 if (a == NULL_TREE)
3133 {
3134 a1 = copy_node (a2);
3135 TREE_CHAIN (a1) = attributes;
3136 attributes = a1;
3137 }
3138 }
3139 }
3140 }
3141 return attributes;
3142 }
3143
3144 /* Given types T1 and T2, merge their attributes and return
3145 the result. */
3146
3147 tree
3148 merge_type_attributes (tree t1, tree t2)
3149 {
3150 return merge_attributes (TYPE_ATTRIBUTES (t1),
3151 TYPE_ATTRIBUTES (t2));
3152 }
3153
3154 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3155 the result. */
3156
3157 tree
3158 merge_decl_attributes (tree olddecl, tree newdecl)
3159 {
3160 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3161 DECL_ATTRIBUTES (newdecl));
3162 }
3163
3164 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3165
3166 /* Specialization of merge_decl_attributes for various Windows targets.
3167
3168 This handles the following situation:
3169
3170 __declspec (dllimport) int foo;
3171 int foo;
3172
3173 The second instance of `foo' nullifies the dllimport. */
3174
3175 tree
3176 merge_dllimport_decl_attributes (tree old, tree new)
3177 {
3178 tree a;
3179 int delete_dllimport_p;
3180
3181 old = DECL_ATTRIBUTES (old);
3182 new = DECL_ATTRIBUTES (new);
3183
3184 /* What we need to do here is remove from `old' dllimport if it doesn't
3185 appear in `new'. dllimport behaves like extern: if a declaration is
3186 marked dllimport and a definition appears later, then the object
3187 is not dllimport'd. */
3188 if (lookup_attribute ("dllimport", old) != NULL_TREE
3189 && lookup_attribute ("dllimport", new) == NULL_TREE)
3190 delete_dllimport_p = 1;
3191 else
3192 delete_dllimport_p = 0;
3193
3194 a = merge_attributes (old, new);
3195
3196 if (delete_dllimport_p)
3197 {
3198 tree prev, t;
3199
3200 /* Scan the list for dllimport and delete it. */
3201 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3202 {
3203 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3204 {
3205 if (prev == NULL_TREE)
3206 a = TREE_CHAIN (a);
3207 else
3208 TREE_CHAIN (prev) = TREE_CHAIN (t);
3209 break;
3210 }
3211 }
3212 }
3213
3214 return a;
3215 }
3216
3217 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3218 struct attribute_spec.handler. */
3219
3220 tree
3221 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3222 bool *no_add_attrs)
3223 {
3224 tree node = *pnode;
3225
3226 /* These attributes may apply to structure and union types being created,
3227 but otherwise should pass to the declaration involved. */
3228 if (!DECL_P (node))
3229 {
3230 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3231 | (int) ATTR_FLAG_ARRAY_NEXT))
3232 {
3233 *no_add_attrs = true;
3234 return tree_cons (name, args, NULL_TREE);
3235 }
3236 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3237 {
3238 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3239 *no_add_attrs = true;
3240 }
3241
3242 return NULL_TREE;
3243 }
3244
3245 /* Report error on dllimport ambiguities seen now before they cause
3246 any damage. */
3247 if (is_attribute_p ("dllimport", name))
3248 {
3249 /* Like MS, treat definition of dllimported variables and
3250 non-inlined functions on declaration as syntax errors. We
3251 allow the attribute for function definitions if declared
3252 inline. */
3253 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3254 && !DECL_DECLARED_INLINE_P (node))
3255 {
3256 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3257 *no_add_attrs = true;
3258 }
3259
3260 else if (TREE_CODE (node) == VAR_DECL)
3261 {
3262 if (DECL_INITIAL (node))
3263 {
3264 error ("%Jvariable %qD definition is marked dllimport.",
3265 node, node);
3266 *no_add_attrs = true;
3267 }
3268
3269 /* `extern' needn't be specified with dllimport.
3270 Specify `extern' now and hope for the best. Sigh. */
3271 DECL_EXTERNAL (node) = 1;
3272 /* Also, implicitly give dllimport'd variables declared within
3273 a function global scope, unless declared static. */
3274 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3275 TREE_PUBLIC (node) = 1;
3276 }
3277 }
3278
3279 /* Report error if symbol is not accessible at global scope. */
3280 if (!TREE_PUBLIC (node)
3281 && (TREE_CODE (node) == VAR_DECL
3282 || TREE_CODE (node) == FUNCTION_DECL))
3283 {
3284 error ("%Jexternal linkage required for symbol %qD because of "
3285 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3286 *no_add_attrs = true;
3287 }
3288
3289 return NULL_TREE;
3290 }
3291
3292 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3293 \f
3294 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3295 of the various TYPE_QUAL values. */
3296
3297 static void
3298 set_type_quals (tree type, int type_quals)
3299 {
3300 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3301 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3302 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3303 }
3304
3305 /* Returns true iff cand is equivalent to base with type_quals. */
3306
3307 bool
3308 check_qualified_type (tree cand, tree base, int type_quals)
3309 {
3310 return (TYPE_QUALS (cand) == type_quals
3311 && TYPE_NAME (cand) == TYPE_NAME (base)
3312 /* Apparently this is needed for Objective-C. */
3313 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3314 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3315 TYPE_ATTRIBUTES (base)));
3316 }
3317
3318 /* Return a version of the TYPE, qualified as indicated by the
3319 TYPE_QUALS, if one exists. If no qualified version exists yet,
3320 return NULL_TREE. */
3321
3322 tree
3323 get_qualified_type (tree type, int type_quals)
3324 {
3325 tree t;
3326
3327 if (TYPE_QUALS (type) == type_quals)
3328 return type;
3329
3330 /* Search the chain of variants to see if there is already one there just
3331 like the one we need to have. If so, use that existing one. We must
3332 preserve the TYPE_NAME, since there is code that depends on this. */
3333 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3334 if (check_qualified_type (t, type, type_quals))
3335 return t;
3336
3337 return NULL_TREE;
3338 }
3339
3340 /* Like get_qualified_type, but creates the type if it does not
3341 exist. This function never returns NULL_TREE. */
3342
3343 tree
3344 build_qualified_type (tree type, int type_quals)
3345 {
3346 tree t;
3347
3348 /* See if we already have the appropriate qualified variant. */
3349 t = get_qualified_type (type, type_quals);
3350
3351 /* If not, build it. */
3352 if (!t)
3353 {
3354 t = build_variant_type_copy (type);
3355 set_type_quals (t, type_quals);
3356 }
3357
3358 return t;
3359 }
3360
3361 /* Create a new distinct copy of TYPE. The new type is made its own
3362 MAIN_VARIANT. */
3363
3364 tree
3365 build_distinct_type_copy (tree type)
3366 {
3367 tree t = copy_node (type);
3368
3369 TYPE_POINTER_TO (t) = 0;
3370 TYPE_REFERENCE_TO (t) = 0;
3371
3372 /* Make it its own variant. */
3373 TYPE_MAIN_VARIANT (t) = t;
3374 TYPE_NEXT_VARIANT (t) = 0;
3375
3376 return t;
3377 }
3378
3379 /* Create a new variant of TYPE, equivalent but distinct.
3380 This is so the caller can modify it. */
3381
3382 tree
3383 build_variant_type_copy (tree type)
3384 {
3385 tree t, m = TYPE_MAIN_VARIANT (type);
3386
3387 t = build_distinct_type_copy (type);
3388
3389 /* Add the new type to the chain of variants of TYPE. */
3390 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3391 TYPE_NEXT_VARIANT (m) = t;
3392 TYPE_MAIN_VARIANT (t) = m;
3393
3394 return t;
3395 }
3396 \f
3397 /* Hashing of types so that we don't make duplicates.
3398 The entry point is `type_hash_canon'. */
3399
3400 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3401 with types in the TREE_VALUE slots), by adding the hash codes
3402 of the individual types. */
3403
3404 unsigned int
3405 type_hash_list (tree list, hashval_t hashcode)
3406 {
3407 tree tail;
3408
3409 for (tail = list; tail; tail = TREE_CHAIN (tail))
3410 if (TREE_VALUE (tail) != error_mark_node)
3411 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3412 hashcode);
3413
3414 return hashcode;
3415 }
3416
3417 /* These are the Hashtable callback functions. */
3418
3419 /* Returns true iff the types are equivalent. */
3420
3421 static int
3422 type_hash_eq (const void *va, const void *vb)
3423 {
3424 const struct type_hash *a = va, *b = vb;
3425
3426 /* First test the things that are the same for all types. */
3427 if (a->hash != b->hash
3428 || TREE_CODE (a->type) != TREE_CODE (b->type)
3429 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3430 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3431 TYPE_ATTRIBUTES (b->type))
3432 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3433 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3434 return 0;
3435
3436 switch (TREE_CODE (a->type))
3437 {
3438 case VOID_TYPE:
3439 case COMPLEX_TYPE:
3440 case POINTER_TYPE:
3441 case REFERENCE_TYPE:
3442 return 1;
3443
3444 case VECTOR_TYPE:
3445 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3446
3447 case ENUMERAL_TYPE:
3448 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3449 && !(TYPE_VALUES (a->type)
3450 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3451 && TYPE_VALUES (b->type)
3452 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3453 && type_list_equal (TYPE_VALUES (a->type),
3454 TYPE_VALUES (b->type))))
3455 return 0;
3456
3457 /* ... fall through ... */
3458
3459 case INTEGER_TYPE:
3460 case REAL_TYPE:
3461 case BOOLEAN_TYPE:
3462 case CHAR_TYPE:
3463 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3464 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3465 TYPE_MAX_VALUE (b->type)))
3466 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3467 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3468 TYPE_MIN_VALUE (b->type))));
3469
3470 case OFFSET_TYPE:
3471 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3472
3473 case METHOD_TYPE:
3474 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3475 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3476 || (TYPE_ARG_TYPES (a->type)
3477 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3478 && TYPE_ARG_TYPES (b->type)
3479 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3480 && type_list_equal (TYPE_ARG_TYPES (a->type),
3481 TYPE_ARG_TYPES (b->type)))));
3482
3483 case ARRAY_TYPE:
3484 case SET_TYPE:
3485 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3486
3487 case RECORD_TYPE:
3488 case UNION_TYPE:
3489 case QUAL_UNION_TYPE:
3490 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3491 || (TYPE_FIELDS (a->type)
3492 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3493 && TYPE_FIELDS (b->type)
3494 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3495 && type_list_equal (TYPE_FIELDS (a->type),
3496 TYPE_FIELDS (b->type))));
3497
3498 case FUNCTION_TYPE:
3499 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3500 || (TYPE_ARG_TYPES (a->type)
3501 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3502 && TYPE_ARG_TYPES (b->type)
3503 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3504 && type_list_equal (TYPE_ARG_TYPES (a->type),
3505 TYPE_ARG_TYPES (b->type))));
3506
3507 default:
3508 return 0;
3509 }
3510 }
3511
3512 /* Return the cached hash value. */
3513
3514 static hashval_t
3515 type_hash_hash (const void *item)
3516 {
3517 return ((const struct type_hash *) item)->hash;
3518 }
3519
3520 /* Look in the type hash table for a type isomorphic to TYPE.
3521 If one is found, return it. Otherwise return 0. */
3522
3523 tree
3524 type_hash_lookup (hashval_t hashcode, tree type)
3525 {
3526 struct type_hash *h, in;
3527
3528 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3529 must call that routine before comparing TYPE_ALIGNs. */
3530 layout_type (type);
3531
3532 in.hash = hashcode;
3533 in.type = type;
3534
3535 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3536 if (h)
3537 return h->type;
3538 return NULL_TREE;
3539 }
3540
3541 /* Add an entry to the type-hash-table
3542 for a type TYPE whose hash code is HASHCODE. */
3543
3544 void
3545 type_hash_add (hashval_t hashcode, tree type)
3546 {
3547 struct type_hash *h;
3548 void **loc;
3549
3550 h = ggc_alloc (sizeof (struct type_hash));
3551 h->hash = hashcode;
3552 h->type = type;
3553 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3554 *(struct type_hash **) loc = h;
3555 }
3556
3557 /* Given TYPE, and HASHCODE its hash code, return the canonical
3558 object for an identical type if one already exists.
3559 Otherwise, return TYPE, and record it as the canonical object.
3560
3561 To use this function, first create a type of the sort you want.
3562 Then compute its hash code from the fields of the type that
3563 make it different from other similar types.
3564 Then call this function and use the value. */
3565
3566 tree
3567 type_hash_canon (unsigned int hashcode, tree type)
3568 {
3569 tree t1;
3570
3571 /* The hash table only contains main variants, so ensure that's what we're
3572 being passed. */
3573 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3574
3575 if (!lang_hooks.types.hash_types)
3576 return type;
3577
3578 /* See if the type is in the hash table already. If so, return it.
3579 Otherwise, add the type. */
3580 t1 = type_hash_lookup (hashcode, type);
3581 if (t1 != 0)
3582 {
3583 #ifdef GATHER_STATISTICS
3584 tree_node_counts[(int) t_kind]--;
3585 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3586 #endif
3587 return t1;
3588 }
3589 else
3590 {
3591 type_hash_add (hashcode, type);
3592 return type;
3593 }
3594 }
3595
3596 /* See if the data pointed to by the type hash table is marked. We consider
3597 it marked if the type is marked or if a debug type number or symbol
3598 table entry has been made for the type. This reduces the amount of
3599 debugging output and eliminates that dependency of the debug output on
3600 the number of garbage collections. */
3601
3602 static int
3603 type_hash_marked_p (const void *p)
3604 {
3605 tree type = ((struct type_hash *) p)->type;
3606
3607 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3608 }
3609
3610 static void
3611 print_type_hash_statistics (void)
3612 {
3613 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3614 (long) htab_size (type_hash_table),
3615 (long) htab_elements (type_hash_table),
3616 htab_collisions (type_hash_table));
3617 }
3618
3619 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3620 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3621 by adding the hash codes of the individual attributes. */
3622
3623 unsigned int
3624 attribute_hash_list (tree list, hashval_t hashcode)
3625 {
3626 tree tail;
3627
3628 for (tail = list; tail; tail = TREE_CHAIN (tail))
3629 /* ??? Do we want to add in TREE_VALUE too? */
3630 hashcode = iterative_hash_object
3631 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3632 return hashcode;
3633 }
3634
3635 /* Given two lists of attributes, return true if list l2 is
3636 equivalent to l1. */
3637
3638 int
3639 attribute_list_equal (tree l1, tree l2)
3640 {
3641 return attribute_list_contained (l1, l2)
3642 && attribute_list_contained (l2, l1);
3643 }
3644
3645 /* Given two lists of attributes, return true if list L2 is
3646 completely contained within L1. */
3647 /* ??? This would be faster if attribute names were stored in a canonicalized
3648 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3649 must be used to show these elements are equivalent (which they are). */
3650 /* ??? It's not clear that attributes with arguments will always be handled
3651 correctly. */
3652
3653 int
3654 attribute_list_contained (tree l1, tree l2)
3655 {
3656 tree t1, t2;
3657
3658 /* First check the obvious, maybe the lists are identical. */
3659 if (l1 == l2)
3660 return 1;
3661
3662 /* Maybe the lists are similar. */
3663 for (t1 = l1, t2 = l2;
3664 t1 != 0 && t2 != 0
3665 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3666 && TREE_VALUE (t1) == TREE_VALUE (t2);
3667 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3668
3669 /* Maybe the lists are equal. */
3670 if (t1 == 0 && t2 == 0)
3671 return 1;
3672
3673 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3674 {
3675 tree attr;
3676 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3677 attr != NULL_TREE;
3678 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3679 TREE_CHAIN (attr)))
3680 {
3681 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3682 break;
3683 }
3684
3685 if (attr == 0)
3686 return 0;
3687
3688 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3689 return 0;
3690 }
3691
3692 return 1;
3693 }
3694
3695 /* Given two lists of types
3696 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3697 return 1 if the lists contain the same types in the same order.
3698 Also, the TREE_PURPOSEs must match. */
3699
3700 int
3701 type_list_equal (tree l1, tree l2)
3702 {
3703 tree t1, t2;
3704
3705 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3706 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3707 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3708 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3709 && (TREE_TYPE (TREE_PURPOSE (t1))
3710 == TREE_TYPE (TREE_PURPOSE (t2))))))
3711 return 0;
3712
3713 return t1 == t2;
3714 }
3715
3716 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3717 given by TYPE. If the argument list accepts variable arguments,
3718 then this function counts only the ordinary arguments. */
3719
3720 int
3721 type_num_arguments (tree type)
3722 {
3723 int i = 0;
3724 tree t;
3725
3726 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3727 /* If the function does not take a variable number of arguments,
3728 the last element in the list will have type `void'. */
3729 if (VOID_TYPE_P (TREE_VALUE (t)))
3730 break;
3731 else
3732 ++i;
3733
3734 return i;
3735 }
3736
3737 /* Nonzero if integer constants T1 and T2
3738 represent the same constant value. */
3739
3740 int
3741 tree_int_cst_equal (tree t1, tree t2)
3742 {
3743 if (t1 == t2)
3744 return 1;
3745
3746 if (t1 == 0 || t2 == 0)
3747 return 0;
3748
3749 if (TREE_CODE (t1) == INTEGER_CST
3750 && TREE_CODE (t2) == INTEGER_CST
3751 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3752 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3753 return 1;
3754
3755 return 0;
3756 }
3757
3758 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3759 The precise way of comparison depends on their data type. */
3760
3761 int
3762 tree_int_cst_lt (tree t1, tree t2)
3763 {
3764 if (t1 == t2)
3765 return 0;
3766
3767 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3768 {
3769 int t1_sgn = tree_int_cst_sgn (t1);
3770 int t2_sgn = tree_int_cst_sgn (t2);
3771
3772 if (t1_sgn < t2_sgn)
3773 return 1;
3774 else if (t1_sgn > t2_sgn)
3775 return 0;
3776 /* Otherwise, both are non-negative, so we compare them as
3777 unsigned just in case one of them would overflow a signed
3778 type. */
3779 }
3780 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3781 return INT_CST_LT (t1, t2);
3782
3783 return INT_CST_LT_UNSIGNED (t1, t2);
3784 }
3785
3786 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3787
3788 int
3789 tree_int_cst_compare (tree t1, tree t2)
3790 {
3791 if (tree_int_cst_lt (t1, t2))
3792 return -1;
3793 else if (tree_int_cst_lt (t2, t1))
3794 return 1;
3795 else
3796 return 0;
3797 }
3798
3799 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3800 the host. If POS is zero, the value can be represented in a single
3801 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3802 be represented in a single unsigned HOST_WIDE_INT. */
3803
3804 int
3805 host_integerp (tree t, int pos)
3806 {
3807 return (TREE_CODE (t) == INTEGER_CST
3808 && ! TREE_OVERFLOW (t)
3809 && ((TREE_INT_CST_HIGH (t) == 0
3810 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3811 || (! pos && TREE_INT_CST_HIGH (t) == -1
3812 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3813 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3814 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3815 }
3816
3817 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3818 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3819 be positive. Abort if we cannot satisfy the above conditions. */
3820
3821 HOST_WIDE_INT
3822 tree_low_cst (tree t, int pos)
3823 {
3824 gcc_assert (host_integerp (t, pos));
3825 return TREE_INT_CST_LOW (t);
3826 }
3827
3828 /* Return the most significant bit of the integer constant T. */
3829
3830 int
3831 tree_int_cst_msb (tree t)
3832 {
3833 int prec;
3834 HOST_WIDE_INT h;
3835 unsigned HOST_WIDE_INT l;
3836
3837 /* Note that using TYPE_PRECISION here is wrong. We care about the
3838 actual bits, not the (arbitrary) range of the type. */
3839 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3840 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3841 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3842 return (l & 1) == 1;
3843 }
3844
3845 /* Return an indication of the sign of the integer constant T.
3846 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3847 Note that -1 will never be returned it T's type is unsigned. */
3848
3849 int
3850 tree_int_cst_sgn (tree t)
3851 {
3852 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3853 return 0;
3854 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3855 return 1;
3856 else if (TREE_INT_CST_HIGH (t) < 0)
3857 return -1;
3858 else
3859 return 1;
3860 }
3861
3862 /* Compare two constructor-element-type constants. Return 1 if the lists
3863 are known to be equal; otherwise return 0. */
3864
3865 int
3866 simple_cst_list_equal (tree l1, tree l2)
3867 {
3868 while (l1 != NULL_TREE && l2 != NULL_TREE)
3869 {
3870 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3871 return 0;
3872
3873 l1 = TREE_CHAIN (l1);
3874 l2 = TREE_CHAIN (l2);
3875 }
3876
3877 return l1 == l2;
3878 }
3879
3880 /* Return truthvalue of whether T1 is the same tree structure as T2.
3881 Return 1 if they are the same.
3882 Return 0 if they are understandably different.
3883 Return -1 if either contains tree structure not understood by
3884 this function. */
3885
3886 int
3887 simple_cst_equal (tree t1, tree t2)
3888 {
3889 enum tree_code code1, code2;
3890 int cmp;
3891 int i;
3892
3893 if (t1 == t2)
3894 return 1;
3895 if (t1 == 0 || t2 == 0)
3896 return 0;
3897
3898 code1 = TREE_CODE (t1);
3899 code2 = TREE_CODE (t2);
3900
3901 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3902 {
3903 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3904 || code2 == NON_LVALUE_EXPR)
3905 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3906 else
3907 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3908 }
3909
3910 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3911 || code2 == NON_LVALUE_EXPR)
3912 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3913
3914 if (code1 != code2)
3915 return 0;
3916
3917 switch (code1)
3918 {
3919 case INTEGER_CST:
3920 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3921 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3922
3923 case REAL_CST:
3924 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3925
3926 case STRING_CST:
3927 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3928 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3929 TREE_STRING_LENGTH (t1)));
3930
3931 case CONSTRUCTOR:
3932 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3933 CONSTRUCTOR_ELTS (t2));
3934
3935 case SAVE_EXPR:
3936 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3937
3938 case CALL_EXPR:
3939 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3940 if (cmp <= 0)
3941 return cmp;
3942 return
3943 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3944
3945 case TARGET_EXPR:
3946 /* Special case: if either target is an unallocated VAR_DECL,
3947 it means that it's going to be unified with whatever the
3948 TARGET_EXPR is really supposed to initialize, so treat it
3949 as being equivalent to anything. */
3950 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3951 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3952 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3953 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3954 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3955 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3956 cmp = 1;
3957 else
3958 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3959
3960 if (cmp <= 0)
3961 return cmp;
3962
3963 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3964
3965 case WITH_CLEANUP_EXPR:
3966 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3967 if (cmp <= 0)
3968 return cmp;
3969
3970 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3971
3972 case COMPONENT_REF:
3973 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3974 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3975
3976 return 0;
3977
3978 case VAR_DECL:
3979 case PARM_DECL:
3980 case CONST_DECL:
3981 case FUNCTION_DECL:
3982 return 0;
3983
3984 default:
3985 break;
3986 }
3987
3988 /* This general rule works for most tree codes. All exceptions should be
3989 handled above. If this is a language-specific tree code, we can't
3990 trust what might be in the operand, so say we don't know
3991 the situation. */
3992 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3993 return -1;
3994
3995 switch (TREE_CODE_CLASS (code1))
3996 {
3997 case tcc_unary:
3998 case tcc_binary:
3999 case tcc_comparison:
4000 case tcc_expression:
4001 case tcc_reference:
4002 case tcc_statement:
4003 cmp = 1;
4004 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4005 {
4006 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4007 if (cmp <= 0)
4008 return cmp;
4009 }
4010
4011 return cmp;
4012
4013 default:
4014 return -1;
4015 }
4016 }
4017
4018 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4019 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4020 than U, respectively. */
4021
4022 int
4023 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4024 {
4025 if (tree_int_cst_sgn (t) < 0)
4026 return -1;
4027 else if (TREE_INT_CST_HIGH (t) != 0)
4028 return 1;
4029 else if (TREE_INT_CST_LOW (t) == u)
4030 return 0;
4031 else if (TREE_INT_CST_LOW (t) < u)
4032 return -1;
4033 else
4034 return 1;
4035 }
4036
4037 /* Return true if CODE represents an associative tree code. Otherwise
4038 return false. */
4039 bool
4040 associative_tree_code (enum tree_code code)
4041 {
4042 switch (code)
4043 {
4044 case BIT_IOR_EXPR:
4045 case BIT_AND_EXPR:
4046 case BIT_XOR_EXPR:
4047 case PLUS_EXPR:
4048 case MULT_EXPR:
4049 case MIN_EXPR:
4050 case MAX_EXPR:
4051 return true;
4052
4053 default:
4054 break;
4055 }
4056 return false;
4057 }
4058
4059 /* Return true if CODE represents a commutative tree code. Otherwise
4060 return false. */
4061 bool
4062 commutative_tree_code (enum tree_code code)
4063 {
4064 switch (code)
4065 {
4066 case PLUS_EXPR:
4067 case MULT_EXPR:
4068 case MIN_EXPR:
4069 case MAX_EXPR:
4070 case BIT_IOR_EXPR:
4071 case BIT_XOR_EXPR:
4072 case BIT_AND_EXPR:
4073 case NE_EXPR:
4074 case EQ_EXPR:
4075 case UNORDERED_EXPR:
4076 case ORDERED_EXPR:
4077 case UNEQ_EXPR:
4078 case LTGT_EXPR:
4079 case TRUTH_AND_EXPR:
4080 case TRUTH_XOR_EXPR:
4081 case TRUTH_OR_EXPR:
4082 return true;
4083
4084 default:
4085 break;
4086 }
4087 return false;
4088 }
4089
4090 /* Generate a hash value for an expression. This can be used iteratively
4091 by passing a previous result as the "val" argument.
4092
4093 This function is intended to produce the same hash for expressions which
4094 would compare equal using operand_equal_p. */
4095
4096 hashval_t
4097 iterative_hash_expr (tree t, hashval_t val)
4098 {
4099 int i;
4100 enum tree_code code;
4101 char class;
4102
4103 if (t == NULL_TREE)
4104 return iterative_hash_pointer (t, val);
4105
4106 code = TREE_CODE (t);
4107
4108 switch (code)
4109 {
4110 /* Alas, constants aren't shared, so we can't rely on pointer
4111 identity. */
4112 case INTEGER_CST:
4113 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4114 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4115 case REAL_CST:
4116 {
4117 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4118
4119 return iterative_hash_hashval_t (val2, val);
4120 }
4121 case STRING_CST:
4122 return iterative_hash (TREE_STRING_POINTER (t),
4123 TREE_STRING_LENGTH (t), val);
4124 case COMPLEX_CST:
4125 val = iterative_hash_expr (TREE_REALPART (t), val);
4126 return iterative_hash_expr (TREE_IMAGPART (t), val);
4127 case VECTOR_CST:
4128 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4129
4130 case SSA_NAME:
4131 case VALUE_HANDLE:
4132 /* we can just compare by pointer. */
4133 return iterative_hash_pointer (t, val);
4134
4135 case TREE_LIST:
4136 /* A list of expressions, for a CALL_EXPR or as the elements of a
4137 VECTOR_CST. */
4138 for (; t; t = TREE_CHAIN (t))
4139 val = iterative_hash_expr (TREE_VALUE (t), val);
4140 return val;
4141 default:
4142 class = TREE_CODE_CLASS (code);
4143
4144 if (class == tcc_declaration)
4145 {
4146 /* Decls we can just compare by pointer. */
4147 val = iterative_hash_pointer (t, val);
4148 }
4149 else
4150 {
4151 gcc_assert (IS_EXPR_CODE_CLASS (class));
4152
4153 val = iterative_hash_object (code, val);
4154
4155 /* Don't hash the type, that can lead to having nodes which
4156 compare equal according to operand_equal_p, but which
4157 have different hash codes. */
4158 if (code == NOP_EXPR
4159 || code == CONVERT_EXPR
4160 || code == NON_LVALUE_EXPR)
4161 {
4162 /* Make sure to include signness in the hash computation. */
4163 val += TYPE_UNSIGNED (TREE_TYPE (t));
4164 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4165 }
4166
4167 else if (commutative_tree_code (code))
4168 {
4169 /* It's a commutative expression. We want to hash it the same
4170 however it appears. We do this by first hashing both operands
4171 and then rehashing based on the order of their independent
4172 hashes. */
4173 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4174 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4175 hashval_t t;
4176
4177 if (one > two)
4178 t = one, one = two, two = t;
4179
4180 val = iterative_hash_hashval_t (one, val);
4181 val = iterative_hash_hashval_t (two, val);
4182 }
4183 else
4184 for (i = first_rtl_op (code) - 1; i >= 0; --i)
4185 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4186 }
4187 return val;
4188 break;
4189 }
4190 }
4191 \f
4192 /* Constructors for pointer, array and function types.
4193 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4194 constructed by language-dependent code, not here.) */
4195
4196 /* Construct, lay out and return the type of pointers to TO_TYPE with
4197 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4198 reference all of memory. If such a type has already been
4199 constructed, reuse it. */
4200
4201 tree
4202 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4203 bool can_alias_all)
4204 {
4205 tree t;
4206
4207 /* In some cases, languages will have things that aren't a POINTER_TYPE
4208 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4209 In that case, return that type without regard to the rest of our
4210 operands.
4211
4212 ??? This is a kludge, but consistent with the way this function has
4213 always operated and there doesn't seem to be a good way to avoid this
4214 at the moment. */
4215 if (TYPE_POINTER_TO (to_type) != 0
4216 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4217 return TYPE_POINTER_TO (to_type);
4218
4219 /* First, if we already have a type for pointers to TO_TYPE and it's
4220 the proper mode, use it. */
4221 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4222 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4223 return t;
4224
4225 t = make_node (POINTER_TYPE);
4226
4227 TREE_TYPE (t) = to_type;
4228 TYPE_MODE (t) = mode;
4229 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4230 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4231 TYPE_POINTER_TO (to_type) = t;
4232
4233 /* Lay out the type. This function has many callers that are concerned
4234 with expression-construction, and this simplifies them all. */
4235 layout_type (t);
4236
4237 return t;
4238 }
4239
4240 /* By default build pointers in ptr_mode. */
4241
4242 tree
4243 build_pointer_type (tree to_type)
4244 {
4245 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4246 }
4247
4248 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4249
4250 tree
4251 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4252 bool can_alias_all)
4253 {
4254 tree t;
4255
4256 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4257 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4258 In that case, return that type without regard to the rest of our
4259 operands.
4260
4261 ??? This is a kludge, but consistent with the way this function has
4262 always operated and there doesn't seem to be a good way to avoid this
4263 at the moment. */
4264 if (TYPE_REFERENCE_TO (to_type) != 0
4265 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4266 return TYPE_REFERENCE_TO (to_type);
4267
4268 /* First, if we already have a type for pointers to TO_TYPE and it's
4269 the proper mode, use it. */
4270 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4271 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4272 return t;
4273
4274 t = make_node (REFERENCE_TYPE);
4275
4276 TREE_TYPE (t) = to_type;
4277 TYPE_MODE (t) = mode;
4278 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4279 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4280 TYPE_REFERENCE_TO (to_type) = t;
4281
4282 layout_type (t);
4283
4284 return t;
4285 }
4286
4287
4288 /* Build the node for the type of references-to-TO_TYPE by default
4289 in ptr_mode. */
4290
4291 tree
4292 build_reference_type (tree to_type)
4293 {
4294 return build_reference_type_for_mode (to_type, ptr_mode, false);
4295 }
4296
4297 /* Build a type that is compatible with t but has no cv quals anywhere
4298 in its type, thus
4299
4300 const char *const *const * -> char ***. */
4301
4302 tree
4303 build_type_no_quals (tree t)
4304 {
4305 switch (TREE_CODE (t))
4306 {
4307 case POINTER_TYPE:
4308 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4309 TYPE_MODE (t),
4310 TYPE_REF_CAN_ALIAS_ALL (t));
4311 case REFERENCE_TYPE:
4312 return
4313 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4314 TYPE_MODE (t),
4315 TYPE_REF_CAN_ALIAS_ALL (t));
4316 default:
4317 return TYPE_MAIN_VARIANT (t);
4318 }
4319 }
4320
4321 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4322 MAXVAL should be the maximum value in the domain
4323 (one less than the length of the array).
4324
4325 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4326 We don't enforce this limit, that is up to caller (e.g. language front end).
4327 The limit exists because the result is a signed type and we don't handle
4328 sizes that use more than one HOST_WIDE_INT. */
4329
4330 tree
4331 build_index_type (tree maxval)
4332 {
4333 tree itype = make_node (INTEGER_TYPE);
4334
4335 TREE_TYPE (itype) = sizetype;
4336 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4337 TYPE_MIN_VALUE (itype) = size_zero_node;
4338 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4339 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4340 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4341 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4342 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4343 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4344
4345 if (host_integerp (maxval, 1))
4346 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4347 else
4348 return itype;
4349 }
4350
4351 /* Builds a signed or unsigned integer type of precision PRECISION.
4352 Used for C bitfields whose precision does not match that of
4353 built-in target types. */
4354 tree
4355 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4356 int unsignedp)
4357 {
4358 tree itype = make_node (INTEGER_TYPE);
4359
4360 TYPE_PRECISION (itype) = precision;
4361
4362 if (unsignedp)
4363 fixup_unsigned_type (itype);
4364 else
4365 fixup_signed_type (itype);
4366
4367 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4368 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4369
4370 return itype;
4371 }
4372
4373 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4374 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4375 low bound LOWVAL and high bound HIGHVAL.
4376 if TYPE==NULL_TREE, sizetype is used. */
4377
4378 tree
4379 build_range_type (tree type, tree lowval, tree highval)
4380 {
4381 tree itype = make_node (INTEGER_TYPE);
4382
4383 TREE_TYPE (itype) = type;
4384 if (type == NULL_TREE)
4385 type = sizetype;
4386
4387 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4388 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4389
4390 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4391 TYPE_MODE (itype) = TYPE_MODE (type);
4392 TYPE_SIZE (itype) = TYPE_SIZE (type);
4393 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4394 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4395 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4396
4397 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4398 return type_hash_canon (tree_low_cst (highval, 0)
4399 - tree_low_cst (lowval, 0),
4400 itype);
4401 else
4402 return itype;
4403 }
4404
4405 /* Just like build_index_type, but takes lowval and highval instead
4406 of just highval (maxval). */
4407
4408 tree
4409 build_index_2_type (tree lowval, tree highval)
4410 {
4411 return build_range_type (sizetype, lowval, highval);
4412 }
4413
4414 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4415 and number of elements specified by the range of values of INDEX_TYPE.
4416 If such a type has already been constructed, reuse it. */
4417
4418 tree
4419 build_array_type (tree elt_type, tree index_type)
4420 {
4421 tree t;
4422 hashval_t hashcode = 0;
4423
4424 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4425 {
4426 error ("arrays of functions are not meaningful");
4427 elt_type = integer_type_node;
4428 }
4429
4430 t = make_node (ARRAY_TYPE);
4431 TREE_TYPE (t) = elt_type;
4432 TYPE_DOMAIN (t) = index_type;
4433
4434 if (index_type == 0)
4435 {
4436 layout_type (t);
4437 return t;
4438 }
4439
4440 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4441 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4442 t = type_hash_canon (hashcode, t);
4443
4444 if (!COMPLETE_TYPE_P (t))
4445 layout_type (t);
4446 return t;
4447 }
4448
4449 /* Return the TYPE of the elements comprising
4450 the innermost dimension of ARRAY. */
4451
4452 tree
4453 get_inner_array_type (tree array)
4454 {
4455 tree type = TREE_TYPE (array);
4456
4457 while (TREE_CODE (type) == ARRAY_TYPE)
4458 type = TREE_TYPE (type);
4459
4460 return type;
4461 }
4462
4463 /* Construct, lay out and return
4464 the type of functions returning type VALUE_TYPE
4465 given arguments of types ARG_TYPES.
4466 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4467 are data type nodes for the arguments of the function.
4468 If such a type has already been constructed, reuse it. */
4469
4470 tree
4471 build_function_type (tree value_type, tree arg_types)
4472 {
4473 tree t;
4474 hashval_t hashcode = 0;
4475
4476 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4477 {
4478 error ("function return type cannot be function");
4479 value_type = integer_type_node;
4480 }
4481
4482 /* Make a node of the sort we want. */
4483 t = make_node (FUNCTION_TYPE);
4484 TREE_TYPE (t) = value_type;
4485 TYPE_ARG_TYPES (t) = arg_types;
4486
4487 /* If we already have such a type, use the old one. */
4488 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4489 hashcode = type_hash_list (arg_types, hashcode);
4490 t = type_hash_canon (hashcode, t);
4491
4492 if (!COMPLETE_TYPE_P (t))
4493 layout_type (t);
4494 return t;
4495 }
4496
4497 /* Build a function type. The RETURN_TYPE is the type returned by the
4498 function. If additional arguments are provided, they are
4499 additional argument types. The list of argument types must always
4500 be terminated by NULL_TREE. */
4501
4502 tree
4503 build_function_type_list (tree return_type, ...)
4504 {
4505 tree t, args, last;
4506 va_list p;
4507
4508 va_start (p, return_type);
4509
4510 t = va_arg (p, tree);
4511 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4512 args = tree_cons (NULL_TREE, t, args);
4513
4514 last = args;
4515 args = nreverse (args);
4516 TREE_CHAIN (last) = void_list_node;
4517 args = build_function_type (return_type, args);
4518
4519 va_end (p);
4520 return args;
4521 }
4522
4523 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4524 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4525 for the method. An implicit additional parameter (of type
4526 pointer-to-BASETYPE) is added to the ARGTYPES. */
4527
4528 tree
4529 build_method_type_directly (tree basetype,
4530 tree rettype,
4531 tree argtypes)
4532 {
4533 tree t;
4534 tree ptype;
4535 int hashcode = 0;
4536
4537 /* Make a node of the sort we want. */
4538 t = make_node (METHOD_TYPE);
4539
4540 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4541 TREE_TYPE (t) = rettype;
4542 ptype = build_pointer_type (basetype);
4543
4544 /* The actual arglist for this function includes a "hidden" argument
4545 which is "this". Put it into the list of argument types. */
4546 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4547 TYPE_ARG_TYPES (t) = argtypes;
4548
4549 /* If we already have such a type, use the old one. */
4550 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4551 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4552 hashcode = type_hash_list (argtypes, hashcode);
4553 t = type_hash_canon (hashcode, t);
4554
4555 if (!COMPLETE_TYPE_P (t))
4556 layout_type (t);
4557
4558 return t;
4559 }
4560
4561 /* Construct, lay out and return the type of methods belonging to class
4562 BASETYPE and whose arguments and values are described by TYPE.
4563 If that type exists already, reuse it.
4564 TYPE must be a FUNCTION_TYPE node. */
4565
4566 tree
4567 build_method_type (tree basetype, tree type)
4568 {
4569 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4570
4571 return build_method_type_directly (basetype,
4572 TREE_TYPE (type),
4573 TYPE_ARG_TYPES (type));
4574 }
4575
4576 /* Construct, lay out and return the type of offsets to a value
4577 of type TYPE, within an object of type BASETYPE.
4578 If a suitable offset type exists already, reuse it. */
4579
4580 tree
4581 build_offset_type (tree basetype, tree type)
4582 {
4583 tree t;
4584 hashval_t hashcode = 0;
4585
4586 /* Make a node of the sort we want. */
4587 t = make_node (OFFSET_TYPE);
4588
4589 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4590 TREE_TYPE (t) = type;
4591
4592 /* If we already have such a type, use the old one. */
4593 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4594 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4595 t = type_hash_canon (hashcode, t);
4596
4597 if (!COMPLETE_TYPE_P (t))
4598 layout_type (t);
4599
4600 return t;
4601 }
4602
4603 /* Create a complex type whose components are COMPONENT_TYPE. */
4604
4605 tree
4606 build_complex_type (tree component_type)
4607 {
4608 tree t;
4609 hashval_t hashcode;
4610
4611 /* Make a node of the sort we want. */
4612 t = make_node (COMPLEX_TYPE);
4613
4614 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4615
4616 /* If we already have such a type, use the old one. */
4617 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4618 t = type_hash_canon (hashcode, t);
4619
4620 if (!COMPLETE_TYPE_P (t))
4621 layout_type (t);
4622
4623 /* If we are writing Dwarf2 output we need to create a name,
4624 since complex is a fundamental type. */
4625 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4626 && ! TYPE_NAME (t))
4627 {
4628 const char *name;
4629 if (component_type == char_type_node)
4630 name = "complex char";
4631 else if (component_type == signed_char_type_node)
4632 name = "complex signed char";
4633 else if (component_type == unsigned_char_type_node)
4634 name = "complex unsigned char";
4635 else if (component_type == short_integer_type_node)
4636 name = "complex short int";
4637 else if (component_type == short_unsigned_type_node)
4638 name = "complex short unsigned int";
4639 else if (component_type == integer_type_node)
4640 name = "complex int";
4641 else if (component_type == unsigned_type_node)
4642 name = "complex unsigned int";
4643 else if (component_type == long_integer_type_node)
4644 name = "complex long int";
4645 else if (component_type == long_unsigned_type_node)
4646 name = "complex long unsigned int";
4647 else if (component_type == long_long_integer_type_node)
4648 name = "complex long long int";
4649 else if (component_type == long_long_unsigned_type_node)
4650 name = "complex long long unsigned int";
4651 else
4652 name = 0;
4653
4654 if (name != 0)
4655 TYPE_NAME (t) = get_identifier (name);
4656 }
4657
4658 return build_qualified_type (t, TYPE_QUALS (component_type));
4659 }
4660 \f
4661 /* Return OP, stripped of any conversions to wider types as much as is safe.
4662 Converting the value back to OP's type makes a value equivalent to OP.
4663
4664 If FOR_TYPE is nonzero, we return a value which, if converted to
4665 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4666
4667 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4668 narrowest type that can hold the value, even if they don't exactly fit.
4669 Otherwise, bit-field references are changed to a narrower type
4670 only if they can be fetched directly from memory in that type.
4671
4672 OP must have integer, real or enumeral type. Pointers are not allowed!
4673
4674 There are some cases where the obvious value we could return
4675 would regenerate to OP if converted to OP's type,
4676 but would not extend like OP to wider types.
4677 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4678 For example, if OP is (unsigned short)(signed char)-1,
4679 we avoid returning (signed char)-1 if FOR_TYPE is int,
4680 even though extending that to an unsigned short would regenerate OP,
4681 since the result of extending (signed char)-1 to (int)
4682 is different from (int) OP. */
4683
4684 tree
4685 get_unwidened (tree op, tree for_type)
4686 {
4687 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4688 tree type = TREE_TYPE (op);
4689 unsigned final_prec
4690 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4691 int uns
4692 = (for_type != 0 && for_type != type
4693 && final_prec > TYPE_PRECISION (type)
4694 && TYPE_UNSIGNED (type));
4695 tree win = op;
4696
4697 while (TREE_CODE (op) == NOP_EXPR)
4698 {
4699 int bitschange
4700 = TYPE_PRECISION (TREE_TYPE (op))
4701 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4702
4703 /* Truncations are many-one so cannot be removed.
4704 Unless we are later going to truncate down even farther. */
4705 if (bitschange < 0
4706 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4707 break;
4708
4709 /* See what's inside this conversion. If we decide to strip it,
4710 we will set WIN. */
4711 op = TREE_OPERAND (op, 0);
4712
4713 /* If we have not stripped any zero-extensions (uns is 0),
4714 we can strip any kind of extension.
4715 If we have previously stripped a zero-extension,
4716 only zero-extensions can safely be stripped.
4717 Any extension can be stripped if the bits it would produce
4718 are all going to be discarded later by truncating to FOR_TYPE. */
4719
4720 if (bitschange > 0)
4721 {
4722 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4723 win = op;
4724 /* TYPE_UNSIGNED says whether this is a zero-extension.
4725 Let's avoid computing it if it does not affect WIN
4726 and if UNS will not be needed again. */
4727 if ((uns || TREE_CODE (op) == NOP_EXPR)
4728 && TYPE_UNSIGNED (TREE_TYPE (op)))
4729 {
4730 uns = 1;
4731 win = op;
4732 }
4733 }
4734 }
4735
4736 if (TREE_CODE (op) == COMPONENT_REF
4737 /* Since type_for_size always gives an integer type. */
4738 && TREE_CODE (type) != REAL_TYPE
4739 /* Don't crash if field not laid out yet. */
4740 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4741 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4742 {
4743 unsigned int innerprec
4744 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4745 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4746 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4747 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4748
4749 /* We can get this structure field in the narrowest type it fits in.
4750 If FOR_TYPE is 0, do this only for a field that matches the
4751 narrower type exactly and is aligned for it
4752 The resulting extension to its nominal type (a fullword type)
4753 must fit the same conditions as for other extensions. */
4754
4755 if (type != 0
4756 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4757 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4758 && (! uns || final_prec <= innerprec || unsignedp))
4759 {
4760 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4761 TREE_OPERAND (op, 1), NULL_TREE);
4762 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4763 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4764 }
4765 }
4766
4767 return win;
4768 }
4769 \f
4770 /* Return OP or a simpler expression for a narrower value
4771 which can be sign-extended or zero-extended to give back OP.
4772 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4773 or 0 if the value should be sign-extended. */
4774
4775 tree
4776 get_narrower (tree op, int *unsignedp_ptr)
4777 {
4778 int uns = 0;
4779 int first = 1;
4780 tree win = op;
4781 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4782
4783 while (TREE_CODE (op) == NOP_EXPR)
4784 {
4785 int bitschange
4786 = (TYPE_PRECISION (TREE_TYPE (op))
4787 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4788
4789 /* Truncations are many-one so cannot be removed. */
4790 if (bitschange < 0)
4791 break;
4792
4793 /* See what's inside this conversion. If we decide to strip it,
4794 we will set WIN. */
4795
4796 if (bitschange > 0)
4797 {
4798 op = TREE_OPERAND (op, 0);
4799 /* An extension: the outermost one can be stripped,
4800 but remember whether it is zero or sign extension. */
4801 if (first)
4802 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4803 /* Otherwise, if a sign extension has been stripped,
4804 only sign extensions can now be stripped;
4805 if a zero extension has been stripped, only zero-extensions. */
4806 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4807 break;
4808 first = 0;
4809 }
4810 else /* bitschange == 0 */
4811 {
4812 /* A change in nominal type can always be stripped, but we must
4813 preserve the unsignedness. */
4814 if (first)
4815 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4816 first = 0;
4817 op = TREE_OPERAND (op, 0);
4818 /* Keep trying to narrow, but don't assign op to win if it
4819 would turn an integral type into something else. */
4820 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4821 continue;
4822 }
4823
4824 win = op;
4825 }
4826
4827 if (TREE_CODE (op) == COMPONENT_REF
4828 /* Since type_for_size always gives an integer type. */
4829 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4830 /* Ensure field is laid out already. */
4831 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4832 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4833 {
4834 unsigned HOST_WIDE_INT innerprec
4835 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4836 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4837 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4838 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4839
4840 /* We can get this structure field in a narrower type that fits it,
4841 but the resulting extension to its nominal type (a fullword type)
4842 must satisfy the same conditions as for other extensions.
4843
4844 Do this only for fields that are aligned (not bit-fields),
4845 because when bit-field insns will be used there is no
4846 advantage in doing this. */
4847
4848 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4849 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4850 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4851 && type != 0)
4852 {
4853 if (first)
4854 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4855 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4856 TREE_OPERAND (op, 1), NULL_TREE);
4857 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4858 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4859 }
4860 }
4861 *unsignedp_ptr = uns;
4862 return win;
4863 }
4864 \f
4865 /* Nonzero if integer constant C has a value that is permissible
4866 for type TYPE (an INTEGER_TYPE). */
4867
4868 int
4869 int_fits_type_p (tree c, tree type)
4870 {
4871 tree type_low_bound = TYPE_MIN_VALUE (type);
4872 tree type_high_bound = TYPE_MAX_VALUE (type);
4873 int ok_for_low_bound, ok_for_high_bound;
4874
4875 /* Perform some generic filtering first, which may allow making a decision
4876 even if the bounds are not constant. First, negative integers never fit
4877 in unsigned types, */
4878 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4879 /* Also, unsigned integers with top bit set never fit signed types. */
4880 || (! TYPE_UNSIGNED (type)
4881 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4882 return 0;
4883
4884 /* If at least one bound of the type is a constant integer, we can check
4885 ourselves and maybe make a decision. If no such decision is possible, but
4886 this type is a subtype, try checking against that. Otherwise, use
4887 force_fit_type, which checks against the precision.
4888
4889 Compute the status for each possibly constant bound, and return if we see
4890 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4891 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4892 for "constant known to fit". */
4893
4894 ok_for_low_bound = -1;
4895 ok_for_high_bound = -1;
4896
4897 /* Check if C >= type_low_bound. */
4898 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4899 {
4900 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4901 if (! ok_for_low_bound)
4902 return 0;
4903 }
4904
4905 /* Check if c <= type_high_bound. */
4906 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4907 {
4908 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4909 if (! ok_for_high_bound)
4910 return 0;
4911 }
4912
4913 /* If the constant fits both bounds, the result is known. */
4914 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4915 return 1;
4916
4917 /* If we haven't been able to decide at this point, there nothing more we
4918 can check ourselves here. Look at the base type if we have one. */
4919 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4920 return int_fits_type_p (c, TREE_TYPE (type));
4921
4922 /* Or to force_fit_type, if nothing else. */
4923 else
4924 {
4925 c = copy_node (c);
4926 TREE_TYPE (c) = type;
4927 c = force_fit_type (c, -1, false, false);
4928 return !TREE_OVERFLOW (c);
4929 }
4930 }
4931
4932 /* Subprogram of following function. Called by walk_tree.
4933
4934 Return *TP if it is an automatic variable or parameter of the
4935 function passed in as DATA. */
4936
4937 static tree
4938 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4939 {
4940 tree fn = (tree) data;
4941
4942 if (TYPE_P (*tp))
4943 *walk_subtrees = 0;
4944
4945 else if (DECL_P (*tp)
4946 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4947 return *tp;
4948
4949 return NULL_TREE;
4950 }
4951
4952 /* Returns true if T is, contains, or refers to a type with variable
4953 size. If FN is nonzero, only return true if a modifier of the type
4954 or position of FN is a variable or parameter inside FN.
4955
4956 This concept is more general than that of C99 'variably modified types':
4957 in C99, a struct type is never variably modified because a VLA may not
4958 appear as a structure member. However, in GNU C code like:
4959
4960 struct S { int i[f()]; };
4961
4962 is valid, and other languages may define similar constructs. */
4963
4964 bool
4965 variably_modified_type_p (tree type, tree fn)
4966 {
4967 tree t;
4968
4969 /* Test if T is either variable (if FN is zero) or an expression containing
4970 a variable in FN. */
4971 #define RETURN_TRUE_IF_VAR(T) \
4972 do { tree _t = (T); \
4973 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4974 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4975 return true; } while (0)
4976
4977 if (type == error_mark_node)
4978 return false;
4979
4980 /* If TYPE itself has variable size, it is variably modified.
4981
4982 We do not yet have a representation of the C99 '[*]' syntax.
4983 When a representation is chosen, this function should be modified
4984 to test for that case as well. */
4985 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
4986 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
4987
4988 switch (TREE_CODE (type))
4989 {
4990 case POINTER_TYPE:
4991 case REFERENCE_TYPE:
4992 case ARRAY_TYPE:
4993 case SET_TYPE:
4994 case VECTOR_TYPE:
4995 if (variably_modified_type_p (TREE_TYPE (type), fn))
4996 return true;
4997 break;
4998
4999 case FUNCTION_TYPE:
5000 case METHOD_TYPE:
5001 /* If TYPE is a function type, it is variably modified if any of the
5002 parameters or the return type are variably modified. */
5003 if (variably_modified_type_p (TREE_TYPE (type), fn))
5004 return true;
5005
5006 for (t = TYPE_ARG_TYPES (type);
5007 t && t != void_list_node;
5008 t = TREE_CHAIN (t))
5009 if (variably_modified_type_p (TREE_VALUE (t), fn))
5010 return true;
5011 break;
5012
5013 case INTEGER_TYPE:
5014 case REAL_TYPE:
5015 case ENUMERAL_TYPE:
5016 case BOOLEAN_TYPE:
5017 case CHAR_TYPE:
5018 /* Scalar types are variably modified if their end points
5019 aren't constant. */
5020 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5021 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5022 break;
5023
5024 case RECORD_TYPE:
5025 case UNION_TYPE:
5026 case QUAL_UNION_TYPE:
5027 /* We can't see if any of the field are variably-modified by the
5028 definition we normally use, since that would produce infinite
5029 recursion via pointers. */
5030 /* This is variably modified if some field's type is. */
5031 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5032 if (TREE_CODE (t) == FIELD_DECL)
5033 {
5034 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5035 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5036 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5037
5038 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5039 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5040 }
5041 break;
5042
5043 default:
5044 break;
5045 }
5046
5047 /* The current language may have other cases to check, but in general,
5048 all other types are not variably modified. */
5049 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5050
5051 #undef RETURN_TRUE_IF_VAR
5052 }
5053
5054 /* Given a DECL or TYPE, return the scope in which it was declared, or
5055 NULL_TREE if there is no containing scope. */
5056
5057 tree
5058 get_containing_scope (tree t)
5059 {
5060 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5061 }
5062
5063 /* Return the innermost context enclosing DECL that is
5064 a FUNCTION_DECL, or zero if none. */
5065
5066 tree
5067 decl_function_context (tree decl)
5068 {
5069 tree context;
5070
5071 if (TREE_CODE (decl) == ERROR_MARK)
5072 return 0;
5073
5074 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5075 where we look up the function at runtime. Such functions always take
5076 a first argument of type 'pointer to real context'.
5077
5078 C++ should really be fixed to use DECL_CONTEXT for the real context,
5079 and use something else for the "virtual context". */
5080 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5081 context
5082 = TYPE_MAIN_VARIANT
5083 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5084 else
5085 context = DECL_CONTEXT (decl);
5086
5087 while (context && TREE_CODE (context) != FUNCTION_DECL)
5088 {
5089 if (TREE_CODE (context) == BLOCK)
5090 context = BLOCK_SUPERCONTEXT (context);
5091 else
5092 context = get_containing_scope (context);
5093 }
5094
5095 return context;
5096 }
5097
5098 /* Return the innermost context enclosing DECL that is
5099 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5100 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5101
5102 tree
5103 decl_type_context (tree decl)
5104 {
5105 tree context = DECL_CONTEXT (decl);
5106
5107 while (context)
5108 switch (TREE_CODE (context))
5109 {
5110 case NAMESPACE_DECL:
5111 case TRANSLATION_UNIT_DECL:
5112 return NULL_TREE;
5113
5114 case RECORD_TYPE:
5115 case UNION_TYPE:
5116 case QUAL_UNION_TYPE:
5117 return context;
5118
5119 case TYPE_DECL:
5120 case FUNCTION_DECL:
5121 context = DECL_CONTEXT (context);
5122 break;
5123
5124 case BLOCK:
5125 context = BLOCK_SUPERCONTEXT (context);
5126 break;
5127
5128 default:
5129 gcc_unreachable ();
5130 }
5131
5132 return NULL_TREE;
5133 }
5134
5135 /* CALL is a CALL_EXPR. Return the declaration for the function
5136 called, or NULL_TREE if the called function cannot be
5137 determined. */
5138
5139 tree
5140 get_callee_fndecl (tree call)
5141 {
5142 tree addr;
5143
5144 /* It's invalid to call this function with anything but a
5145 CALL_EXPR. */
5146 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5147
5148 /* The first operand to the CALL is the address of the function
5149 called. */
5150 addr = TREE_OPERAND (call, 0);
5151
5152 STRIP_NOPS (addr);
5153
5154 /* If this is a readonly function pointer, extract its initial value. */
5155 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5156 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5157 && DECL_INITIAL (addr))
5158 addr = DECL_INITIAL (addr);
5159
5160 /* If the address is just `&f' for some function `f', then we know
5161 that `f' is being called. */
5162 if (TREE_CODE (addr) == ADDR_EXPR
5163 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5164 return TREE_OPERAND (addr, 0);
5165
5166 /* We couldn't figure out what was being called. Maybe the front
5167 end has some idea. */
5168 return lang_hooks.lang_get_callee_fndecl (call);
5169 }
5170
5171 /* Print debugging information about tree nodes generated during the compile,
5172 and any language-specific information. */
5173
5174 void
5175 dump_tree_statistics (void)
5176 {
5177 #ifdef GATHER_STATISTICS
5178 int i;
5179 int total_nodes, total_bytes;
5180 #endif
5181
5182 fprintf (stderr, "\n??? tree nodes created\n\n");
5183 #ifdef GATHER_STATISTICS
5184 fprintf (stderr, "Kind Nodes Bytes\n");
5185 fprintf (stderr, "---------------------------------------\n");
5186 total_nodes = total_bytes = 0;
5187 for (i = 0; i < (int) all_kinds; i++)
5188 {
5189 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5190 tree_node_counts[i], tree_node_sizes[i]);
5191 total_nodes += tree_node_counts[i];
5192 total_bytes += tree_node_sizes[i];
5193 }
5194 fprintf (stderr, "---------------------------------------\n");
5195 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5196 fprintf (stderr, "---------------------------------------\n");
5197 ssanames_print_statistics ();
5198 phinodes_print_statistics ();
5199 #else
5200 fprintf (stderr, "(No per-node statistics)\n");
5201 #endif
5202 print_type_hash_statistics ();
5203 lang_hooks.print_statistics ();
5204 }
5205 \f
5206 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5207
5208 /* Generate a crc32 of a string. */
5209
5210 unsigned
5211 crc32_string (unsigned chksum, const char *string)
5212 {
5213 do
5214 {
5215 unsigned value = *string << 24;
5216 unsigned ix;
5217
5218 for (ix = 8; ix--; value <<= 1)
5219 {
5220 unsigned feedback;
5221
5222 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5223 chksum <<= 1;
5224 chksum ^= feedback;
5225 }
5226 }
5227 while (*string++);
5228 return chksum;
5229 }
5230
5231 /* P is a string that will be used in a symbol. Mask out any characters
5232 that are not valid in that context. */
5233
5234 void
5235 clean_symbol_name (char *p)
5236 {
5237 for (; *p; p++)
5238 if (! (ISALNUM (*p)
5239 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5240 || *p == '$'
5241 #endif
5242 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5243 || *p == '.'
5244 #endif
5245 ))
5246 *p = '_';
5247 }
5248
5249 /* Generate a name for a function unique to this translation unit.
5250 TYPE is some string to identify the purpose of this function to the
5251 linker or collect2. */
5252
5253 tree
5254 get_file_function_name_long (const char *type)
5255 {
5256 char *buf;
5257 const char *p;
5258 char *q;
5259
5260 if (first_global_object_name)
5261 p = first_global_object_name;
5262 else
5263 {
5264 /* We don't have anything that we know to be unique to this translation
5265 unit, so use what we do have and throw in some randomness. */
5266 unsigned len;
5267 const char *name = weak_global_object_name;
5268 const char *file = main_input_filename;
5269
5270 if (! name)
5271 name = "";
5272 if (! file)
5273 file = input_filename;
5274
5275 len = strlen (file);
5276 q = alloca (9 * 2 + len + 1);
5277 memcpy (q, file, len + 1);
5278 clean_symbol_name (q);
5279
5280 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5281 crc32_string (0, flag_random_seed));
5282
5283 p = q;
5284 }
5285
5286 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5287
5288 /* Set up the name of the file-level functions we may need.
5289 Use a global object (which is already required to be unique over
5290 the program) rather than the file name (which imposes extra
5291 constraints). */
5292 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5293
5294 return get_identifier (buf);
5295 }
5296
5297 /* If KIND=='I', return a suitable global initializer (constructor) name.
5298 If KIND=='D', return a suitable global clean-up (destructor) name. */
5299
5300 tree
5301 get_file_function_name (int kind)
5302 {
5303 char p[2];
5304
5305 p[0] = kind;
5306 p[1] = 0;
5307
5308 return get_file_function_name_long (p);
5309 }
5310 \f
5311 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5312 The result is placed in BUFFER (which has length BIT_SIZE),
5313 with one bit in each char ('\000' or '\001').
5314
5315 If the constructor is constant, NULL_TREE is returned.
5316 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5317
5318 tree
5319 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5320 {
5321 int i;
5322 tree vals;
5323 HOST_WIDE_INT domain_min
5324 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5325 tree non_const_bits = NULL_TREE;
5326
5327 for (i = 0; i < bit_size; i++)
5328 buffer[i] = 0;
5329
5330 for (vals = TREE_OPERAND (init, 1);
5331 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5332 {
5333 if (!host_integerp (TREE_VALUE (vals), 0)
5334 || (TREE_PURPOSE (vals) != NULL_TREE
5335 && !host_integerp (TREE_PURPOSE (vals), 0)))
5336 non_const_bits
5337 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5338 else if (TREE_PURPOSE (vals) != NULL_TREE)
5339 {
5340 /* Set a range of bits to ones. */
5341 HOST_WIDE_INT lo_index
5342 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5343 HOST_WIDE_INT hi_index
5344 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5345
5346 gcc_assert (lo_index >= 0);
5347 gcc_assert (lo_index < bit_size);
5348 gcc_assert (hi_index >= 0);
5349 gcc_assert (hi_index < bit_size);
5350 for (; lo_index <= hi_index; lo_index++)
5351 buffer[lo_index] = 1;
5352 }
5353 else
5354 {
5355 /* Set a single bit to one. */
5356 HOST_WIDE_INT index
5357 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5358 if (index < 0 || index >= bit_size)
5359 {
5360 error ("invalid initializer for bit string");
5361 return NULL_TREE;
5362 }
5363 buffer[index] = 1;
5364 }
5365 }
5366 return non_const_bits;
5367 }
5368
5369 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5370 The result is placed in BUFFER (which is an array of bytes).
5371 If the constructor is constant, NULL_TREE is returned.
5372 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5373
5374 tree
5375 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5376 {
5377 int i;
5378 int set_word_size = BITS_PER_UNIT;
5379 int bit_size = wd_size * set_word_size;
5380 int bit_pos = 0;
5381 unsigned char *bytep = buffer;
5382 char *bit_buffer = alloca (bit_size);
5383 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5384
5385 for (i = 0; i < wd_size; i++)
5386 buffer[i] = 0;
5387
5388 for (i = 0; i < bit_size; i++)
5389 {
5390 if (bit_buffer[i])
5391 {
5392 if (BYTES_BIG_ENDIAN)
5393 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5394 else
5395 *bytep |= 1 << bit_pos;
5396 }
5397 bit_pos++;
5398 if (bit_pos >= set_word_size)
5399 bit_pos = 0, bytep++;
5400 }
5401 return non_const_bits;
5402 }
5403 \f
5404 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5405
5406 /* Complain that the tree code of NODE does not match the expected 0
5407 terminated list of trailing codes. The trailing code list can be
5408 empty, for a more vague error message. FILE, LINE, and FUNCTION
5409 are of the caller. */
5410
5411 void
5412 tree_check_failed (const tree node, const char *file,
5413 int line, const char *function, ...)
5414 {
5415 va_list args;
5416 char *buffer;
5417 unsigned length = 0;
5418 int code;
5419
5420 va_start (args, function);
5421 while ((code = va_arg (args, int)))
5422 length += 4 + strlen (tree_code_name[code]);
5423 va_end (args);
5424 if (length)
5425 {
5426 va_start (args, function);
5427 length += strlen ("expected ");
5428 buffer = alloca (length);
5429 length = 0;
5430 while ((code = va_arg (args, int)))
5431 {
5432 const char *prefix = length ? " or " : "expected ";
5433
5434 strcpy (buffer + length, prefix);
5435 length += strlen (prefix);
5436 strcpy (buffer + length, tree_code_name[code]);
5437 length += strlen (tree_code_name[code]);
5438 }
5439 va_end (args);
5440 }
5441 else
5442 buffer = (char *)"unexpected node";
5443
5444 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5445 buffer, tree_code_name[TREE_CODE (node)],
5446 function, trim_filename (file), line);
5447 }
5448
5449 /* Complain that the tree code of NODE does match the expected 0
5450 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5451 the caller. */
5452
5453 void
5454 tree_not_check_failed (const tree node, const char *file,
5455 int line, const char *function, ...)
5456 {
5457 va_list args;
5458 char *buffer;
5459 unsigned length = 0;
5460 int code;
5461
5462 va_start (args, function);
5463 while ((code = va_arg (args, int)))
5464 length += 4 + strlen (tree_code_name[code]);
5465 va_end (args);
5466 va_start (args, function);
5467 buffer = alloca (length);
5468 length = 0;
5469 while ((code = va_arg (args, int)))
5470 {
5471 if (length)
5472 {
5473 strcpy (buffer + length, " or ");
5474 length += 4;
5475 }
5476 strcpy (buffer + length, tree_code_name[code]);
5477 length += strlen (tree_code_name[code]);
5478 }
5479 va_end (args);
5480
5481 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5482 buffer, tree_code_name[TREE_CODE (node)],
5483 function, trim_filename (file), line);
5484 }
5485
5486 /* Similar to tree_check_failed, except that we check for a class of tree
5487 code, given in CL. */
5488
5489 void
5490 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5491 const char *file, int line, const char *function)
5492 {
5493 internal_error
5494 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5495 TREE_CODE_CLASS_STRING (cl),
5496 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5497 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5498 }
5499
5500 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5501 (dynamically sized) vector. */
5502
5503 void
5504 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5505 const char *function)
5506 {
5507 internal_error
5508 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5509 idx + 1, len, function, trim_filename (file), line);
5510 }
5511
5512 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5513 (dynamically sized) vector. */
5514
5515 void
5516 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5517 const char *function)
5518 {
5519 internal_error
5520 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5521 idx + 1, len, function, trim_filename (file), line);
5522 }
5523
5524 /* Similar to above, except that the check is for the bounds of the operand
5525 vector of an expression node. */
5526
5527 void
5528 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5529 int line, const char *function)
5530 {
5531 internal_error
5532 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5533 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5534 function, trim_filename (file), line);
5535 }
5536 #endif /* ENABLE_TREE_CHECKING */
5537 \f
5538 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5539 and mapped to the machine mode MODE. Initialize its fields and build
5540 the information necessary for debugging output. */
5541
5542 static tree
5543 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5544 {
5545 tree t = make_node (VECTOR_TYPE);
5546
5547 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5548 TYPE_VECTOR_SUBPARTS (t) = nunits;
5549 TYPE_MODE (t) = mode;
5550 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5551 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5552
5553 layout_type (t);
5554
5555 {
5556 tree index = build_int_cst (NULL_TREE, nunits - 1);
5557 tree array = build_array_type (innertype, build_index_type (index));
5558 tree rt = make_node (RECORD_TYPE);
5559
5560 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5561 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5562 layout_type (rt);
5563 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5564 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5565 the representation type, and we want to find that die when looking up
5566 the vector type. This is most easily achieved by making the TYPE_UID
5567 numbers equal. */
5568 TYPE_UID (rt) = TYPE_UID (t);
5569 }
5570
5571 /* Build our main variant, based on the main variant of the inner type. */
5572 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5573 {
5574 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5575 unsigned int hash = TYPE_HASH (innertype_main_variant);
5576 TYPE_MAIN_VARIANT (t)
5577 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5578 nunits, mode));
5579 }
5580
5581 return t;
5582 }
5583
5584 static tree
5585 make_or_reuse_type (unsigned size, int unsignedp)
5586 {
5587 if (size == INT_TYPE_SIZE)
5588 return unsignedp ? unsigned_type_node : integer_type_node;
5589 if (size == CHAR_TYPE_SIZE)
5590 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5591 if (size == SHORT_TYPE_SIZE)
5592 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5593 if (size == LONG_TYPE_SIZE)
5594 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5595 if (size == LONG_LONG_TYPE_SIZE)
5596 return (unsignedp ? long_long_unsigned_type_node
5597 : long_long_integer_type_node);
5598
5599 if (unsignedp)
5600 return make_unsigned_type (size);
5601 else
5602 return make_signed_type (size);
5603 }
5604
5605 /* Create nodes for all integer types (and error_mark_node) using the sizes
5606 of C datatypes. The caller should call set_sizetype soon after calling
5607 this function to select one of the types as sizetype. */
5608
5609 void
5610 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5611 {
5612 error_mark_node = make_node (ERROR_MARK);
5613 TREE_TYPE (error_mark_node) = error_mark_node;
5614
5615 initialize_sizetypes (signed_sizetype);
5616
5617 /* Define both `signed char' and `unsigned char'. */
5618 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5619 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5620
5621 /* Define `char', which is like either `signed char' or `unsigned char'
5622 but not the same as either. */
5623 char_type_node
5624 = (signed_char
5625 ? make_signed_type (CHAR_TYPE_SIZE)
5626 : make_unsigned_type (CHAR_TYPE_SIZE));
5627
5628 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5629 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5630 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5631 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5632 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5633 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5634 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5635 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5636
5637 /* Define a boolean type. This type only represents boolean values but
5638 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5639 Front ends which want to override this size (i.e. Java) can redefine
5640 boolean_type_node before calling build_common_tree_nodes_2. */
5641 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5642 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5643 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5644 TYPE_PRECISION (boolean_type_node) = 1;
5645
5646 /* Fill in the rest of the sized types. Reuse existing type nodes
5647 when possible. */
5648 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5649 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5650 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5651 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5652 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5653
5654 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5655 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5656 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5657 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5658 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5659
5660 access_public_node = get_identifier ("public");
5661 access_protected_node = get_identifier ("protected");
5662 access_private_node = get_identifier ("private");
5663 }
5664
5665 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5666 It will create several other common tree nodes. */
5667
5668 void
5669 build_common_tree_nodes_2 (int short_double)
5670 {
5671 /* Define these next since types below may used them. */
5672 integer_zero_node = build_int_cst (NULL_TREE, 0);
5673 integer_one_node = build_int_cst (NULL_TREE, 1);
5674 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5675
5676 size_zero_node = size_int (0);
5677 size_one_node = size_int (1);
5678 bitsize_zero_node = bitsize_int (0);
5679 bitsize_one_node = bitsize_int (1);
5680 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5681
5682 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5683 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5684
5685 void_type_node = make_node (VOID_TYPE);
5686 layout_type (void_type_node);
5687
5688 /* We are not going to have real types in C with less than byte alignment,
5689 so we might as well not have any types that claim to have it. */
5690 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5691 TYPE_USER_ALIGN (void_type_node) = 0;
5692
5693 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5694 layout_type (TREE_TYPE (null_pointer_node));
5695
5696 ptr_type_node = build_pointer_type (void_type_node);
5697 const_ptr_type_node
5698 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5699 fileptr_type_node = ptr_type_node;
5700
5701 float_type_node = make_node (REAL_TYPE);
5702 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5703 layout_type (float_type_node);
5704
5705 double_type_node = make_node (REAL_TYPE);
5706 if (short_double)
5707 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5708 else
5709 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5710 layout_type (double_type_node);
5711
5712 long_double_type_node = make_node (REAL_TYPE);
5713 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5714 layout_type (long_double_type_node);
5715
5716 float_ptr_type_node = build_pointer_type (float_type_node);
5717 double_ptr_type_node = build_pointer_type (double_type_node);
5718 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5719 integer_ptr_type_node = build_pointer_type (integer_type_node);
5720
5721 complex_integer_type_node = make_node (COMPLEX_TYPE);
5722 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5723 layout_type (complex_integer_type_node);
5724
5725 complex_float_type_node = make_node (COMPLEX_TYPE);
5726 TREE_TYPE (complex_float_type_node) = float_type_node;
5727 layout_type (complex_float_type_node);
5728
5729 complex_double_type_node = make_node (COMPLEX_TYPE);
5730 TREE_TYPE (complex_double_type_node) = double_type_node;
5731 layout_type (complex_double_type_node);
5732
5733 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5734 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5735 layout_type (complex_long_double_type_node);
5736
5737 {
5738 tree t = targetm.build_builtin_va_list ();
5739
5740 /* Many back-ends define record types without setting TYPE_NAME.
5741 If we copied the record type here, we'd keep the original
5742 record type without a name. This breaks name mangling. So,
5743 don't copy record types and let c_common_nodes_and_builtins()
5744 declare the type to be __builtin_va_list. */
5745 if (TREE_CODE (t) != RECORD_TYPE)
5746 t = build_variant_type_copy (t);
5747
5748 va_list_type_node = t;
5749 }
5750 }
5751
5752 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5753 better way.
5754
5755 If we requested a pointer to a vector, build up the pointers that
5756 we stripped off while looking for the inner type. Similarly for
5757 return values from functions.
5758
5759 The argument TYPE is the top of the chain, and BOTTOM is the
5760 new type which we will point to. */
5761
5762 tree
5763 reconstruct_complex_type (tree type, tree bottom)
5764 {
5765 tree inner, outer;
5766
5767 if (POINTER_TYPE_P (type))
5768 {
5769 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5770 outer = build_pointer_type (inner);
5771 }
5772 else if (TREE_CODE (type) == ARRAY_TYPE)
5773 {
5774 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5775 outer = build_array_type (inner, TYPE_DOMAIN (type));
5776 }
5777 else if (TREE_CODE (type) == FUNCTION_TYPE)
5778 {
5779 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5780 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5781 }
5782 else if (TREE_CODE (type) == METHOD_TYPE)
5783 {
5784 tree argtypes;
5785 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5786 /* The build_method_type_directly() routine prepends 'this' to argument list,
5787 so we must compensate by getting rid of it. */
5788 argtypes = TYPE_ARG_TYPES (type);
5789 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5790 inner,
5791 TYPE_ARG_TYPES (type));
5792 TYPE_ARG_TYPES (outer) = argtypes;
5793 }
5794 else
5795 return bottom;
5796
5797 TYPE_READONLY (outer) = TYPE_READONLY (type);
5798 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5799
5800 return outer;
5801 }
5802
5803 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5804 the inner type. */
5805 tree
5806 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5807 {
5808 int nunits;
5809
5810 switch (GET_MODE_CLASS (mode))
5811 {
5812 case MODE_VECTOR_INT:
5813 case MODE_VECTOR_FLOAT:
5814 nunits = GET_MODE_NUNITS (mode);
5815 break;
5816
5817 case MODE_INT:
5818 /* Check that there are no leftover bits. */
5819 gcc_assert (GET_MODE_BITSIZE (mode)
5820 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5821
5822 nunits = GET_MODE_BITSIZE (mode)
5823 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5824 break;
5825
5826 default:
5827 gcc_unreachable ();
5828 }
5829
5830 return make_vector_type (innertype, nunits, mode);
5831 }
5832
5833 /* Similarly, but takes the inner type and number of units, which must be
5834 a power of two. */
5835
5836 tree
5837 build_vector_type (tree innertype, int nunits)
5838 {
5839 return make_vector_type (innertype, nunits, VOIDmode);
5840 }
5841
5842 /* Given an initializer INIT, return TRUE if INIT is zero or some
5843 aggregate of zeros. Otherwise return FALSE. */
5844 bool
5845 initializer_zerop (tree init)
5846 {
5847 tree elt;
5848
5849 STRIP_NOPS (init);
5850
5851 switch (TREE_CODE (init))
5852 {
5853 case INTEGER_CST:
5854 return integer_zerop (init);
5855
5856 case REAL_CST:
5857 /* ??? Note that this is not correct for C4X float formats. There,
5858 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5859 negative exponent. */
5860 return real_zerop (init)
5861 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5862
5863 case COMPLEX_CST:
5864 return integer_zerop (init)
5865 || (real_zerop (init)
5866 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5867 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5868
5869 case VECTOR_CST:
5870 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5871 if (!initializer_zerop (TREE_VALUE (elt)))
5872 return false;
5873 return true;
5874
5875 case CONSTRUCTOR:
5876 elt = CONSTRUCTOR_ELTS (init);
5877 if (elt == NULL_TREE)
5878 return true;
5879
5880 /* A set is empty only if it has no elements. */
5881 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5882 return false;
5883
5884 for (; elt ; elt = TREE_CHAIN (elt))
5885 if (! initializer_zerop (TREE_VALUE (elt)))
5886 return false;
5887 return true;
5888
5889 default:
5890 return false;
5891 }
5892 }
5893
5894 void
5895 add_var_to_bind_expr (tree bind_expr, tree var)
5896 {
5897 BIND_EXPR_VARS (bind_expr)
5898 = chainon (BIND_EXPR_VARS (bind_expr), var);
5899 if (BIND_EXPR_BLOCK (bind_expr))
5900 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5901 = BIND_EXPR_VARS (bind_expr);
5902 }
5903
5904 /* Build an empty statement. */
5905
5906 tree
5907 build_empty_stmt (void)
5908 {
5909 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5910 }
5911
5912
5913 /* Returns true if it is possible to prove that the index of
5914 an array access REF (an ARRAY_REF expression) falls into the
5915 array bounds. */
5916
5917 bool
5918 in_array_bounds_p (tree ref)
5919 {
5920 tree idx = TREE_OPERAND (ref, 1);
5921 tree min, max;
5922
5923 if (TREE_CODE (idx) != INTEGER_CST)
5924 return false;
5925
5926 min = array_ref_low_bound (ref);
5927 max = array_ref_up_bound (ref);
5928 if (!min
5929 || !max
5930 || TREE_CODE (min) != INTEGER_CST
5931 || TREE_CODE (max) != INTEGER_CST)
5932 return false;
5933
5934 if (tree_int_cst_lt (idx, min)
5935 || tree_int_cst_lt (max, idx))
5936 return false;
5937
5938 return true;
5939 }
5940
5941 /* Return true if T (assumed to be a DECL) is a global variable. */
5942
5943 bool
5944 is_global_var (tree t)
5945 {
5946 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5947 }
5948
5949 /* Return true if T (assumed to be a DECL) must be assigned a memory
5950 location. */
5951
5952 bool
5953 needs_to_live_in_memory (tree t)
5954 {
5955 return (TREE_ADDRESSABLE (t)
5956 || is_global_var (t)
5957 || (TREE_CODE (t) == RESULT_DECL
5958 && aggregate_value_p (t, current_function_decl)));
5959 }
5960
5961 /* There are situations in which a language considers record types
5962 compatible which have different field lists. Decide if two fields
5963 are compatible. It is assumed that the parent records are compatible. */
5964
5965 bool
5966 fields_compatible_p (tree f1, tree f2)
5967 {
5968 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5969 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5970 return false;
5971
5972 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5973 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5974 return false;
5975
5976 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5977 return false;
5978
5979 return true;
5980 }
5981
5982 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5983
5984 tree
5985 find_compatible_field (tree record, tree orig_field)
5986 {
5987 tree f;
5988
5989 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
5990 if (TREE_CODE (f) == FIELD_DECL
5991 && fields_compatible_p (f, orig_field))
5992 return f;
5993
5994 /* ??? Why isn't this on the main fields list? */
5995 f = TYPE_VFIELD (record);
5996 if (f && TREE_CODE (f) == FIELD_DECL
5997 && fields_compatible_p (f, orig_field))
5998 return f;
5999
6000 /* ??? We should abort here, but Java appears to do Bad Things
6001 with inherited fields. */
6002 return orig_field;
6003 }
6004
6005 /* Return value of a constant X. */
6006
6007 HOST_WIDE_INT
6008 int_cst_value (tree x)
6009 {
6010 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6011 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6012 bool negative = ((val >> (bits - 1)) & 1) != 0;
6013
6014 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6015
6016 if (negative)
6017 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6018 else
6019 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6020
6021 return val;
6022 }
6023
6024 /* Returns the greatest common divisor of A and B, which must be
6025 INTEGER_CSTs. */
6026
6027 tree
6028 tree_fold_gcd (tree a, tree b)
6029 {
6030 tree a_mod_b;
6031 tree type = TREE_TYPE (a);
6032
6033 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6034 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6035
6036 if (integer_zerop (a))
6037 return b;
6038
6039 if (integer_zerop (b))
6040 return a;
6041
6042 if (tree_int_cst_sgn (a) == -1)
6043 a = fold (build2 (MULT_EXPR, type, a,
6044 convert (type, integer_minus_one_node)));
6045
6046 if (tree_int_cst_sgn (b) == -1)
6047 b = fold (build2 (MULT_EXPR, type, b,
6048 convert (type, integer_minus_one_node)));
6049
6050 while (1)
6051 {
6052 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6053
6054 if (!TREE_INT_CST_LOW (a_mod_b)
6055 && !TREE_INT_CST_HIGH (a_mod_b))
6056 return b;
6057
6058 a = b;
6059 b = a_mod_b;
6060 }
6061 }
6062
6063 /* Returns unsigned variant of TYPE. */
6064
6065 tree
6066 unsigned_type_for (tree type)
6067 {
6068 return lang_hooks.types.unsigned_type (type);
6069 }
6070
6071 /* Returns signed variant of TYPE. */
6072
6073 tree
6074 signed_type_for (tree type)
6075 {
6076 return lang_hooks.types.signed_type (type);
6077 }
6078
6079 /* Returns the largest value obtainable by casting something in INNER type to
6080 OUTER type. */
6081
6082 tree
6083 upper_bound_in_type (tree outer, tree inner)
6084 {
6085 unsigned HOST_WIDE_INT lo, hi;
6086 unsigned bits = TYPE_PRECISION (inner);
6087
6088 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6089 {
6090 /* Zero extending in these cases. */
6091 if (bits <= HOST_BITS_PER_WIDE_INT)
6092 {
6093 hi = 0;
6094 lo = (~(unsigned HOST_WIDE_INT) 0)
6095 >> (HOST_BITS_PER_WIDE_INT - bits);
6096 }
6097 else
6098 {
6099 hi = (~(unsigned HOST_WIDE_INT) 0)
6100 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6101 lo = ~(unsigned HOST_WIDE_INT) 0;
6102 }
6103 }
6104 else
6105 {
6106 /* Sign extending in these cases. */
6107 if (bits <= HOST_BITS_PER_WIDE_INT)
6108 {
6109 hi = 0;
6110 lo = (~(unsigned HOST_WIDE_INT) 0)
6111 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6112 }
6113 else
6114 {
6115 hi = (~(unsigned HOST_WIDE_INT) 0)
6116 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6117 lo = ~(unsigned HOST_WIDE_INT) 0;
6118 }
6119 }
6120
6121 return fold_convert (outer,
6122 build_int_cst_wide (inner, lo, hi));
6123 }
6124
6125 /* Returns the smallest value obtainable by casting something in INNER type to
6126 OUTER type. */
6127
6128 tree
6129 lower_bound_in_type (tree outer, tree inner)
6130 {
6131 unsigned HOST_WIDE_INT lo, hi;
6132 unsigned bits = TYPE_PRECISION (inner);
6133
6134 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6135 lo = hi = 0;
6136 else if (bits <= HOST_BITS_PER_WIDE_INT)
6137 {
6138 hi = ~(unsigned HOST_WIDE_INT) 0;
6139 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6140 }
6141 else
6142 {
6143 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6144 lo = 0;
6145 }
6146
6147 return fold_convert (outer,
6148 build_int_cst_wide (inner, lo, hi));
6149 }
6150
6151 #include "gt-tree.h"