re PR c++/24138 (ICE with the code in PR 20407)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
20 02110-1301, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53
54 /* Each tree code class has an associated string representation.
55 These must correspond to the tree_code_class entries. */
56
57 const char *const tree_code_class_strings[] =
58 {
59 "exceptional",
60 "constant",
61 "type",
62 "declaration",
63 "reference",
64 "comparison",
65 "unary",
66 "binary",
67 "statement",
68 "expression",
69 };
70
71 /* obstack.[ch] explicitly declined to prototype this. */
72 extern int _obstack_allocated_p (struct obstack *h, void *obj);
73
74 #ifdef GATHER_STATISTICS
75 /* Statistics-gathering stuff. */
76
77 int tree_node_counts[(int) all_kinds];
78 int tree_node_sizes[(int) all_kinds];
79
80 /* Keep in sync with tree.h:enum tree_node_kind. */
81 static const char * const tree_node_kind_names[] = {
82 "decls",
83 "types",
84 "blocks",
85 "stmts",
86 "refs",
87 "exprs",
88 "constants",
89 "identifiers",
90 "perm_tree_lists",
91 "temp_tree_lists",
92 "vecs",
93 "binfos",
94 "phi_nodes",
95 "ssa names",
96 "constructors",
97 "random kinds",
98 "lang_decl kinds",
99 "lang_type kinds"
100 };
101 #endif /* GATHER_STATISTICS */
102
103 /* Unique id for next decl created. */
104 static GTY(()) int next_decl_uid;
105 /* Unique id for next type created. */
106 static GTY(()) int next_type_uid = 1;
107
108 /* Since we cannot rehash a type after it is in the table, we have to
109 keep the hash code. */
110
111 struct type_hash GTY(())
112 {
113 unsigned long hash;
114 tree type;
115 };
116
117 /* Initial size of the hash table (rounded to next prime). */
118 #define TYPE_HASH_INITIAL_SIZE 1000
119
120 /* Now here is the hash table. When recording a type, it is added to
121 the slot whose index is the hash code. Note that the hash table is
122 used for several kinds of types (function types, array types and
123 array index range types, for now). While all these live in the
124 same table, they are completely independent, and the hash code is
125 computed differently for each of these. */
126
127 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
128 htab_t type_hash_table;
129
130 /* Hash table and temporary node for larger integer const values. */
131 static GTY (()) tree int_cst_node;
132 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
133 htab_t int_cst_hash_table;
134
135 /* General tree->tree mapping structure for use in hash tables. */
136
137
138 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
139 htab_t debug_expr_for_decl;
140
141 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
142 htab_t value_expr_for_decl;
143
144 static GTY ((if_marked ("tree_int_map_marked_p"), param_is (struct tree_int_map)))
145 htab_t init_priority_for_decl;
146
147 static GTY ((if_marked ("tree_map_marked_p"), param_is (struct tree_map)))
148 htab_t restrict_base_for_decl;
149
150 struct tree_int_map GTY(())
151 {
152 tree from;
153 unsigned short to;
154 };
155 static unsigned int tree_int_map_hash (const void *);
156 static int tree_int_map_eq (const void *, const void *);
157 static int tree_int_map_marked_p (const void *);
158 static void set_type_quals (tree, int);
159 static int type_hash_eq (const void *, const void *);
160 static hashval_t type_hash_hash (const void *);
161 static hashval_t int_cst_hash_hash (const void *);
162 static int int_cst_hash_eq (const void *, const void *);
163 static void print_type_hash_statistics (void);
164 static void print_debug_expr_statistics (void);
165 static void print_value_expr_statistics (void);
166 static tree make_vector_type (tree, int, enum machine_mode);
167 static int type_hash_marked_p (const void *);
168 static unsigned int type_hash_list (tree, hashval_t);
169 static unsigned int attribute_hash_list (tree, hashval_t);
170
171 tree global_trees[TI_MAX];
172 tree integer_types[itk_none];
173
174 unsigned char tree_contains_struct[256][64];
175 \f
176 /* Init tree.c. */
177
178 void
179 init_ttree (void)
180 {
181
182 /* Initialize the hash table of types. */
183 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
184 type_hash_eq, 0);
185
186 debug_expr_for_decl = htab_create_ggc (512, tree_map_hash,
187 tree_map_eq, 0);
188
189 value_expr_for_decl = htab_create_ggc (512, tree_map_hash,
190 tree_map_eq, 0);
191 init_priority_for_decl = htab_create_ggc (512, tree_int_map_hash,
192 tree_int_map_eq, 0);
193 restrict_base_for_decl = htab_create_ggc (256, tree_map_hash,
194 tree_map_eq, 0);
195
196 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
197 int_cst_hash_eq, NULL);
198
199 int_cst_node = make_node (INTEGER_CST);
200
201 tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON] = 1;
202 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_NON_COMMON] = 1;
203 tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON] = 1;
204
205
206 tree_contains_struct[CONST_DECL][TS_DECL_COMMON] = 1;
207 tree_contains_struct[VAR_DECL][TS_DECL_COMMON] = 1;
208 tree_contains_struct[PARM_DECL][TS_DECL_COMMON] = 1;
209 tree_contains_struct[RESULT_DECL][TS_DECL_COMMON] = 1;
210 tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON] = 1;
211 tree_contains_struct[TYPE_DECL][TS_DECL_COMMON] = 1;
212 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON] = 1;
213 tree_contains_struct[LABEL_DECL][TS_DECL_COMMON] = 1;
214 tree_contains_struct[FIELD_DECL][TS_DECL_COMMON] = 1;
215
216
217 tree_contains_struct[CONST_DECL][TS_DECL_WRTL] = 1;
218 tree_contains_struct[VAR_DECL][TS_DECL_WRTL] = 1;
219 tree_contains_struct[PARM_DECL][TS_DECL_WRTL] = 1;
220 tree_contains_struct[RESULT_DECL][TS_DECL_WRTL] = 1;
221 tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL] = 1;
222 tree_contains_struct[LABEL_DECL][TS_DECL_WRTL] = 1;
223
224 tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL] = 1;
225 tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL] = 1;
226 tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL] = 1;
227 tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL] = 1;
228 tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL] = 1;
229 tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL] = 1;
230 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL] = 1;
231 tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL] = 1;
232 tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL] = 1;
233 tree_contains_struct[STRUCT_FIELD_TAG][TS_DECL_MINIMAL] = 1;
234 tree_contains_struct[NAME_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
235 tree_contains_struct[TYPE_MEMORY_TAG][TS_DECL_MINIMAL] = 1;
236
237 tree_contains_struct[STRUCT_FIELD_TAG][TS_MEMORY_TAG] = 1;
238 tree_contains_struct[NAME_MEMORY_TAG][TS_MEMORY_TAG] = 1;
239 tree_contains_struct[TYPE_MEMORY_TAG][TS_MEMORY_TAG] = 1;
240
241 tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS] = 1;
242 tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS] = 1;
243 tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS] = 1;
244 tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_WITH_VIS] = 1;
245
246 tree_contains_struct[VAR_DECL][TS_VAR_DECL] = 1;
247 tree_contains_struct[FIELD_DECL][TS_FIELD_DECL] = 1;
248 tree_contains_struct[PARM_DECL][TS_PARM_DECL] = 1;
249 tree_contains_struct[LABEL_DECL][TS_LABEL_DECL] = 1;
250 tree_contains_struct[RESULT_DECL][TS_RESULT_DECL] = 1;
251 tree_contains_struct[CONST_DECL][TS_CONST_DECL] = 1;
252 tree_contains_struct[TYPE_DECL][TS_TYPE_DECL] = 1;
253 tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL] = 1;
254
255 lang_hooks.init_ts ();
256 }
257
258 \f
259 /* The name of the object as the assembler will see it (but before any
260 translations made by ASM_OUTPUT_LABELREF). Often this is the same
261 as DECL_NAME. It is an IDENTIFIER_NODE. */
262 tree
263 decl_assembler_name (tree decl)
264 {
265 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
266 lang_hooks.set_decl_assembler_name (decl);
267 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
268 }
269
270 /* Compute the number of bytes occupied by a tree with code CODE.
271 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
272 codes, which are of variable length. */
273 size_t
274 tree_code_size (enum tree_code code)
275 {
276 switch (TREE_CODE_CLASS (code))
277 {
278 case tcc_declaration: /* A decl node */
279 {
280 switch (code)
281 {
282 case FIELD_DECL:
283 return sizeof (struct tree_field_decl);
284 case PARM_DECL:
285 return sizeof (struct tree_parm_decl);
286 case VAR_DECL:
287 return sizeof (struct tree_var_decl);
288 case LABEL_DECL:
289 return sizeof (struct tree_label_decl);
290 case RESULT_DECL:
291 return sizeof (struct tree_result_decl);
292 case CONST_DECL:
293 return sizeof (struct tree_const_decl);
294 case TYPE_DECL:
295 return sizeof (struct tree_type_decl);
296 case FUNCTION_DECL:
297 return sizeof (struct tree_function_decl);
298 case NAME_MEMORY_TAG:
299 case TYPE_MEMORY_TAG:
300 case STRUCT_FIELD_TAG:
301 return sizeof (struct tree_memory_tag);
302 default:
303 return sizeof (struct tree_decl_non_common);
304 }
305 }
306
307 case tcc_type: /* a type node */
308 return sizeof (struct tree_type);
309
310 case tcc_reference: /* a reference */
311 case tcc_expression: /* an expression */
312 case tcc_statement: /* an expression with side effects */
313 case tcc_comparison: /* a comparison expression */
314 case tcc_unary: /* a unary arithmetic expression */
315 case tcc_binary: /* a binary arithmetic expression */
316 return (sizeof (struct tree_exp)
317 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
318
319 case tcc_constant: /* a constant */
320 switch (code)
321 {
322 case INTEGER_CST: return sizeof (struct tree_int_cst);
323 case REAL_CST: return sizeof (struct tree_real_cst);
324 case COMPLEX_CST: return sizeof (struct tree_complex);
325 case VECTOR_CST: return sizeof (struct tree_vector);
326 case STRING_CST: gcc_unreachable ();
327 default:
328 return lang_hooks.tree_size (code);
329 }
330
331 case tcc_exceptional: /* something random, like an identifier. */
332 switch (code)
333 {
334 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
335 case TREE_LIST: return sizeof (struct tree_list);
336
337 case ERROR_MARK:
338 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
339
340 case TREE_VEC:
341 case PHI_NODE: gcc_unreachable ();
342
343 case SSA_NAME: return sizeof (struct tree_ssa_name);
344
345 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
346 case BLOCK: return sizeof (struct tree_block);
347 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
348 case CONSTRUCTOR: return sizeof (struct tree_constructor);
349
350 default:
351 return lang_hooks.tree_size (code);
352 }
353
354 default:
355 gcc_unreachable ();
356 }
357 }
358
359 /* Compute the number of bytes occupied by NODE. This routine only
360 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
361 size_t
362 tree_size (tree node)
363 {
364 enum tree_code code = TREE_CODE (node);
365 switch (code)
366 {
367 case PHI_NODE:
368 return (sizeof (struct tree_phi_node)
369 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
370
371 case TREE_BINFO:
372 return (offsetof (struct tree_binfo, base_binfos)
373 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
374
375 case TREE_VEC:
376 return (sizeof (struct tree_vec)
377 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
378
379 case STRING_CST:
380 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
381
382 default:
383 return tree_code_size (code);
384 }
385 }
386
387 /* Return a newly allocated node of code CODE. For decl and type
388 nodes, some other fields are initialized. The rest of the node is
389 initialized to zero. This function cannot be used for PHI_NODE or
390 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
391
392 Achoo! I got a code in the node. */
393
394 tree
395 make_node_stat (enum tree_code code MEM_STAT_DECL)
396 {
397 tree t;
398 enum tree_code_class type = TREE_CODE_CLASS (code);
399 size_t length = tree_code_size (code);
400 #ifdef GATHER_STATISTICS
401 tree_node_kind kind;
402
403 switch (type)
404 {
405 case tcc_declaration: /* A decl node */
406 kind = d_kind;
407 break;
408
409 case tcc_type: /* a type node */
410 kind = t_kind;
411 break;
412
413 case tcc_statement: /* an expression with side effects */
414 kind = s_kind;
415 break;
416
417 case tcc_reference: /* a reference */
418 kind = r_kind;
419 break;
420
421 case tcc_expression: /* an expression */
422 case tcc_comparison: /* a comparison expression */
423 case tcc_unary: /* a unary arithmetic expression */
424 case tcc_binary: /* a binary arithmetic expression */
425 kind = e_kind;
426 break;
427
428 case tcc_constant: /* a constant */
429 kind = c_kind;
430 break;
431
432 case tcc_exceptional: /* something random, like an identifier. */
433 switch (code)
434 {
435 case IDENTIFIER_NODE:
436 kind = id_kind;
437 break;
438
439 case TREE_VEC:
440 kind = vec_kind;
441 break;
442
443 case TREE_BINFO:
444 kind = binfo_kind;
445 break;
446
447 case PHI_NODE:
448 kind = phi_kind;
449 break;
450
451 case SSA_NAME:
452 kind = ssa_name_kind;
453 break;
454
455 case BLOCK:
456 kind = b_kind;
457 break;
458
459 case CONSTRUCTOR:
460 kind = constr_kind;
461 break;
462
463 default:
464 kind = x_kind;
465 break;
466 }
467 break;
468
469 default:
470 gcc_unreachable ();
471 }
472
473 tree_node_counts[(int) kind]++;
474 tree_node_sizes[(int) kind] += length;
475 #endif
476
477 if (code == IDENTIFIER_NODE)
478 t = ggc_alloc_zone_pass_stat (length, &tree_id_zone);
479 else
480 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
481
482 memset (t, 0, length);
483
484 TREE_SET_CODE (t, code);
485
486 switch (type)
487 {
488 case tcc_statement:
489 TREE_SIDE_EFFECTS (t) = 1;
490 break;
491
492 case tcc_declaration:
493 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
494 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
495 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
496 {
497 if (code != FUNCTION_DECL)
498 DECL_ALIGN (t) = 1;
499 DECL_USER_ALIGN (t) = 0;
500 /* We have not yet computed the alias set for this declaration. */
501 DECL_POINTER_ALIAS_SET (t) = -1;
502 }
503 DECL_SOURCE_LOCATION (t) = input_location;
504 DECL_UID (t) = next_decl_uid++;
505
506 break;
507
508 case tcc_type:
509 TYPE_UID (t) = next_type_uid++;
510 TYPE_ALIGN (t) = BITS_PER_UNIT;
511 TYPE_USER_ALIGN (t) = 0;
512 TYPE_MAIN_VARIANT (t) = t;
513
514 /* Default to no attributes for type, but let target change that. */
515 TYPE_ATTRIBUTES (t) = NULL_TREE;
516 targetm.set_default_type_attributes (t);
517
518 /* We have not yet computed the alias set for this type. */
519 TYPE_ALIAS_SET (t) = -1;
520 break;
521
522 case tcc_constant:
523 TREE_CONSTANT (t) = 1;
524 TREE_INVARIANT (t) = 1;
525 break;
526
527 case tcc_expression:
528 switch (code)
529 {
530 case INIT_EXPR:
531 case MODIFY_EXPR:
532 case VA_ARG_EXPR:
533 case PREDECREMENT_EXPR:
534 case PREINCREMENT_EXPR:
535 case POSTDECREMENT_EXPR:
536 case POSTINCREMENT_EXPR:
537 /* All of these have side-effects, no matter what their
538 operands are. */
539 TREE_SIDE_EFFECTS (t) = 1;
540 break;
541
542 default:
543 break;
544 }
545 break;
546
547 default:
548 /* Other classes need no special treatment. */
549 break;
550 }
551
552 return t;
553 }
554 \f
555 /* Return a new node with the same contents as NODE except that its
556 TREE_CHAIN is zero and it has a fresh uid. */
557
558 tree
559 copy_node_stat (tree node MEM_STAT_DECL)
560 {
561 tree t;
562 enum tree_code code = TREE_CODE (node);
563 size_t length;
564
565 gcc_assert (code != STATEMENT_LIST);
566
567 length = tree_size (node);
568 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
569 memcpy (t, node, length);
570
571 TREE_CHAIN (t) = 0;
572 TREE_ASM_WRITTEN (t) = 0;
573 TREE_VISITED (t) = 0;
574 t->common.ann = 0;
575
576 if (TREE_CODE_CLASS (code) == tcc_declaration)
577 {
578 DECL_UID (t) = next_decl_uid++;
579 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
580 && DECL_HAS_VALUE_EXPR_P (node))
581 {
582 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
583 DECL_HAS_VALUE_EXPR_P (t) = 1;
584 }
585 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
586 {
587 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
588 DECL_HAS_INIT_PRIORITY_P (t) = 1;
589 }
590 if (TREE_CODE (node) == VAR_DECL && DECL_BASED_ON_RESTRICT_P (node))
591 {
592 SET_DECL_RESTRICT_BASE (t, DECL_GET_RESTRICT_BASE (node));
593 DECL_BASED_ON_RESTRICT_P (t) = 1;
594 }
595 }
596 else if (TREE_CODE_CLASS (code) == tcc_type)
597 {
598 TYPE_UID (t) = next_type_uid++;
599 /* The following is so that the debug code for
600 the copy is different from the original type.
601 The two statements usually duplicate each other
602 (because they clear fields of the same union),
603 but the optimizer should catch that. */
604 TYPE_SYMTAB_POINTER (t) = 0;
605 TYPE_SYMTAB_ADDRESS (t) = 0;
606
607 /* Do not copy the values cache. */
608 if (TYPE_CACHED_VALUES_P(t))
609 {
610 TYPE_CACHED_VALUES_P (t) = 0;
611 TYPE_CACHED_VALUES (t) = NULL_TREE;
612 }
613 }
614
615 return t;
616 }
617
618 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
619 For example, this can copy a list made of TREE_LIST nodes. */
620
621 tree
622 copy_list (tree list)
623 {
624 tree head;
625 tree prev, next;
626
627 if (list == 0)
628 return 0;
629
630 head = prev = copy_node (list);
631 next = TREE_CHAIN (list);
632 while (next)
633 {
634 TREE_CHAIN (prev) = copy_node (next);
635 prev = TREE_CHAIN (prev);
636 next = TREE_CHAIN (next);
637 }
638 return head;
639 }
640
641 \f
642 /* Create an INT_CST node with a LOW value sign extended. */
643
644 tree
645 build_int_cst (tree type, HOST_WIDE_INT low)
646 {
647 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
648 }
649
650 /* Create an INT_CST node with a LOW value zero extended. */
651
652 tree
653 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
654 {
655 return build_int_cst_wide (type, low, 0);
656 }
657
658 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
659 if it is negative. This function is similar to build_int_cst, but
660 the extra bits outside of the type precision are cleared. Constants
661 with these extra bits may confuse the fold so that it detects overflows
662 even in cases when they do not occur, and in general should be avoided.
663 We cannot however make this a default behavior of build_int_cst without
664 more intrusive changes, since there are parts of gcc that rely on the extra
665 precision of the integer constants. */
666
667 tree
668 build_int_cst_type (tree type, HOST_WIDE_INT low)
669 {
670 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
671 unsigned HOST_WIDE_INT hi, mask;
672 unsigned bits;
673 bool signed_p;
674 bool negative;
675
676 if (!type)
677 type = integer_type_node;
678
679 bits = TYPE_PRECISION (type);
680 signed_p = !TYPE_UNSIGNED (type);
681
682 if (bits >= HOST_BITS_PER_WIDE_INT)
683 negative = (low < 0);
684 else
685 {
686 /* If the sign bit is inside precision of LOW, use it to determine
687 the sign of the constant. */
688 negative = ((val >> (bits - 1)) & 1) != 0;
689
690 /* Mask out the bits outside of the precision of the constant. */
691 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
692
693 if (signed_p && negative)
694 val |= ~mask;
695 else
696 val &= mask;
697 }
698
699 /* Determine the high bits. */
700 hi = (negative ? ~(unsigned HOST_WIDE_INT) 0 : 0);
701
702 /* For unsigned type we need to mask out the bits outside of the type
703 precision. */
704 if (!signed_p)
705 {
706 if (bits <= HOST_BITS_PER_WIDE_INT)
707 hi = 0;
708 else
709 {
710 bits -= HOST_BITS_PER_WIDE_INT;
711 mask = (((unsigned HOST_WIDE_INT) 2) << (bits - 1)) - 1;
712 hi &= mask;
713 }
714 }
715
716 return build_int_cst_wide (type, val, hi);
717 }
718
719 /* These are the hash table functions for the hash table of INTEGER_CST
720 nodes of a sizetype. */
721
722 /* Return the hash code code X, an INTEGER_CST. */
723
724 static hashval_t
725 int_cst_hash_hash (const void *x)
726 {
727 tree t = (tree) x;
728
729 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
730 ^ htab_hash_pointer (TREE_TYPE (t)));
731 }
732
733 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
734 is the same as that given by *Y, which is the same. */
735
736 static int
737 int_cst_hash_eq (const void *x, const void *y)
738 {
739 tree xt = (tree) x;
740 tree yt = (tree) y;
741
742 return (TREE_TYPE (xt) == TREE_TYPE (yt)
743 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
744 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
745 }
746
747 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
748 integer_type_node is used. The returned node is always shared.
749 For small integers we use a per-type vector cache, for larger ones
750 we use a single hash table. */
751
752 tree
753 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
754 {
755 tree t;
756 int ix = -1;
757 int limit = 0;
758
759 if (!type)
760 type = integer_type_node;
761
762 switch (TREE_CODE (type))
763 {
764 case POINTER_TYPE:
765 case REFERENCE_TYPE:
766 /* Cache NULL pointer. */
767 if (!hi && !low)
768 {
769 limit = 1;
770 ix = 0;
771 }
772 break;
773
774 case BOOLEAN_TYPE:
775 /* Cache false or true. */
776 limit = 2;
777 if (!hi && low < 2)
778 ix = low;
779 break;
780
781 case INTEGER_TYPE:
782 case CHAR_TYPE:
783 case OFFSET_TYPE:
784 if (TYPE_UNSIGNED (type))
785 {
786 /* Cache 0..N */
787 limit = INTEGER_SHARE_LIMIT;
788 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
789 ix = low;
790 }
791 else
792 {
793 /* Cache -1..N */
794 limit = INTEGER_SHARE_LIMIT + 1;
795 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
796 ix = low + 1;
797 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
798 ix = 0;
799 }
800 break;
801 default:
802 break;
803 }
804
805 if (ix >= 0)
806 {
807 /* Look for it in the type's vector of small shared ints. */
808 if (!TYPE_CACHED_VALUES_P (type))
809 {
810 TYPE_CACHED_VALUES_P (type) = 1;
811 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
812 }
813
814 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
815 if (t)
816 {
817 /* Make sure no one is clobbering the shared constant. */
818 gcc_assert (TREE_TYPE (t) == type);
819 gcc_assert (TREE_INT_CST_LOW (t) == low);
820 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
821 }
822 else
823 {
824 /* Create a new shared int. */
825 t = make_node (INTEGER_CST);
826
827 TREE_INT_CST_LOW (t) = low;
828 TREE_INT_CST_HIGH (t) = hi;
829 TREE_TYPE (t) = type;
830
831 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
832 }
833 }
834 else
835 {
836 /* Use the cache of larger shared ints. */
837 void **slot;
838
839 TREE_INT_CST_LOW (int_cst_node) = low;
840 TREE_INT_CST_HIGH (int_cst_node) = hi;
841 TREE_TYPE (int_cst_node) = type;
842
843 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
844 t = *slot;
845 if (!t)
846 {
847 /* Insert this one into the hash table. */
848 t = int_cst_node;
849 *slot = t;
850 /* Make a new node for next time round. */
851 int_cst_node = make_node (INTEGER_CST);
852 }
853 }
854
855 return t;
856 }
857
858 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
859 and the rest are zeros. */
860
861 tree
862 build_low_bits_mask (tree type, unsigned bits)
863 {
864 unsigned HOST_WIDE_INT low;
865 HOST_WIDE_INT high;
866 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
867
868 gcc_assert (bits <= TYPE_PRECISION (type));
869
870 if (bits == TYPE_PRECISION (type)
871 && !TYPE_UNSIGNED (type))
872 {
873 /* Sign extended all-ones mask. */
874 low = all_ones;
875 high = -1;
876 }
877 else if (bits <= HOST_BITS_PER_WIDE_INT)
878 {
879 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
880 high = 0;
881 }
882 else
883 {
884 bits -= HOST_BITS_PER_WIDE_INT;
885 low = all_ones;
886 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
887 }
888
889 return build_int_cst_wide (type, low, high);
890 }
891
892 /* Checks that X is integer constant that can be expressed in (unsigned)
893 HOST_WIDE_INT without loss of precision. */
894
895 bool
896 cst_and_fits_in_hwi (tree x)
897 {
898 if (TREE_CODE (x) != INTEGER_CST)
899 return false;
900
901 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
902 return false;
903
904 return (TREE_INT_CST_HIGH (x) == 0
905 || TREE_INT_CST_HIGH (x) == -1);
906 }
907
908 /* Return a new VECTOR_CST node whose type is TYPE and whose values
909 are in a list pointed to by VALS. */
910
911 tree
912 build_vector (tree type, tree vals)
913 {
914 tree v = make_node (VECTOR_CST);
915 int over1 = 0, over2 = 0;
916 tree link;
917
918 TREE_VECTOR_CST_ELTS (v) = vals;
919 TREE_TYPE (v) = type;
920
921 /* Iterate through elements and check for overflow. */
922 for (link = vals; link; link = TREE_CHAIN (link))
923 {
924 tree value = TREE_VALUE (link);
925
926 over1 |= TREE_OVERFLOW (value);
927 over2 |= TREE_CONSTANT_OVERFLOW (value);
928 }
929
930 TREE_OVERFLOW (v) = over1;
931 TREE_CONSTANT_OVERFLOW (v) = over2;
932
933 return v;
934 }
935
936 /* Return a new VECTOR_CST node whose type is TYPE and whose values
937 are extracted from V, a vector of CONSTRUCTOR_ELT. */
938
939 tree
940 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
941 {
942 tree list = NULL_TREE;
943 unsigned HOST_WIDE_INT idx;
944 tree value;
945
946 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
947 list = tree_cons (NULL_TREE, value, list);
948 return build_vector (type, nreverse (list));
949 }
950
951 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
952 are in the VEC pointed to by VALS. */
953 tree
954 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
955 {
956 tree c = make_node (CONSTRUCTOR);
957 TREE_TYPE (c) = type;
958 CONSTRUCTOR_ELTS (c) = vals;
959 return c;
960 }
961
962 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
963 INDEX and VALUE. */
964 tree
965 build_constructor_single (tree type, tree index, tree value)
966 {
967 VEC(constructor_elt,gc) *v;
968 constructor_elt *elt;
969
970 v = VEC_alloc (constructor_elt, gc, 1);
971 elt = VEC_quick_push (constructor_elt, v, NULL);
972 elt->index = index;
973 elt->value = value;
974
975 return build_constructor (type, v);
976 }
977
978
979 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
980 are in a list pointed to by VALS. */
981 tree
982 build_constructor_from_list (tree type, tree vals)
983 {
984 tree t;
985 VEC(constructor_elt,gc) *v = NULL;
986
987 if (vals)
988 {
989 v = VEC_alloc (constructor_elt, gc, list_length (vals));
990 for (t = vals; t; t = TREE_CHAIN (t))
991 {
992 constructor_elt *elt = VEC_quick_push (constructor_elt, v, NULL);
993 elt->index = TREE_PURPOSE (t);
994 elt->value = TREE_VALUE (t);
995 }
996 }
997
998 return build_constructor (type, v);
999 }
1000
1001
1002 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1003
1004 tree
1005 build_real (tree type, REAL_VALUE_TYPE d)
1006 {
1007 tree v;
1008 REAL_VALUE_TYPE *dp;
1009 int overflow = 0;
1010
1011 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1012 Consider doing it via real_convert now. */
1013
1014 v = make_node (REAL_CST);
1015 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
1016 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1017
1018 TREE_TYPE (v) = type;
1019 TREE_REAL_CST_PTR (v) = dp;
1020 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1021 return v;
1022 }
1023
1024 /* Return a new REAL_CST node whose type is TYPE
1025 and whose value is the integer value of the INTEGER_CST node I. */
1026
1027 REAL_VALUE_TYPE
1028 real_value_from_int_cst (tree type, tree i)
1029 {
1030 REAL_VALUE_TYPE d;
1031
1032 /* Clear all bits of the real value type so that we can later do
1033 bitwise comparisons to see if two values are the same. */
1034 memset (&d, 0, sizeof d);
1035
1036 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1037 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1038 TYPE_UNSIGNED (TREE_TYPE (i)));
1039 return d;
1040 }
1041
1042 /* Given a tree representing an integer constant I, return a tree
1043 representing the same value as a floating-point constant of type TYPE. */
1044
1045 tree
1046 build_real_from_int_cst (tree type, tree i)
1047 {
1048 tree v;
1049 int overflow = TREE_OVERFLOW (i);
1050
1051 v = build_real (type, real_value_from_int_cst (type, i));
1052
1053 TREE_OVERFLOW (v) |= overflow;
1054 TREE_CONSTANT_OVERFLOW (v) |= overflow;
1055 return v;
1056 }
1057
1058 /* Return a newly constructed STRING_CST node whose value is
1059 the LEN characters at STR.
1060 The TREE_TYPE is not initialized. */
1061
1062 tree
1063 build_string (int len, const char *str)
1064 {
1065 tree s;
1066 size_t length;
1067
1068 length = len + sizeof (struct tree_string);
1069
1070 #ifdef GATHER_STATISTICS
1071 tree_node_counts[(int) c_kind]++;
1072 tree_node_sizes[(int) c_kind] += length;
1073 #endif
1074
1075 s = ggc_alloc_tree (length);
1076
1077 memset (s, 0, sizeof (struct tree_common));
1078 TREE_SET_CODE (s, STRING_CST);
1079 TREE_CONSTANT (s) = 1;
1080 TREE_INVARIANT (s) = 1;
1081 TREE_STRING_LENGTH (s) = len;
1082 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
1083 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
1084
1085 return s;
1086 }
1087
1088 /* Return a newly constructed COMPLEX_CST node whose value is
1089 specified by the real and imaginary parts REAL and IMAG.
1090 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1091 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1092
1093 tree
1094 build_complex (tree type, tree real, tree imag)
1095 {
1096 tree t = make_node (COMPLEX_CST);
1097
1098 TREE_REALPART (t) = real;
1099 TREE_IMAGPART (t) = imag;
1100 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1101 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1102 TREE_CONSTANT_OVERFLOW (t)
1103 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1104 return t;
1105 }
1106
1107 /* Build a BINFO with LEN language slots. */
1108
1109 tree
1110 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1111 {
1112 tree t;
1113 size_t length = (offsetof (struct tree_binfo, base_binfos)
1114 + VEC_embedded_size (tree, base_binfos));
1115
1116 #ifdef GATHER_STATISTICS
1117 tree_node_counts[(int) binfo_kind]++;
1118 tree_node_sizes[(int) binfo_kind] += length;
1119 #endif
1120
1121 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1122
1123 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1124
1125 TREE_SET_CODE (t, TREE_BINFO);
1126
1127 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1128
1129 return t;
1130 }
1131
1132
1133 /* Build a newly constructed TREE_VEC node of length LEN. */
1134
1135 tree
1136 make_tree_vec_stat (int len MEM_STAT_DECL)
1137 {
1138 tree t;
1139 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1140
1141 #ifdef GATHER_STATISTICS
1142 tree_node_counts[(int) vec_kind]++;
1143 tree_node_sizes[(int) vec_kind] += length;
1144 #endif
1145
1146 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
1147
1148 memset (t, 0, length);
1149
1150 TREE_SET_CODE (t, TREE_VEC);
1151 TREE_VEC_LENGTH (t) = len;
1152
1153 return t;
1154 }
1155 \f
1156 /* Return 1 if EXPR is the integer constant zero or a complex constant
1157 of zero. */
1158
1159 int
1160 integer_zerop (tree expr)
1161 {
1162 STRIP_NOPS (expr);
1163
1164 return ((TREE_CODE (expr) == INTEGER_CST
1165 && ! TREE_CONSTANT_OVERFLOW (expr)
1166 && TREE_INT_CST_LOW (expr) == 0
1167 && TREE_INT_CST_HIGH (expr) == 0)
1168 || (TREE_CODE (expr) == COMPLEX_CST
1169 && integer_zerop (TREE_REALPART (expr))
1170 && integer_zerop (TREE_IMAGPART (expr))));
1171 }
1172
1173 /* Return 1 if EXPR is the integer constant one or the corresponding
1174 complex constant. */
1175
1176 int
1177 integer_onep (tree expr)
1178 {
1179 STRIP_NOPS (expr);
1180
1181 return ((TREE_CODE (expr) == INTEGER_CST
1182 && ! TREE_CONSTANT_OVERFLOW (expr)
1183 && TREE_INT_CST_LOW (expr) == 1
1184 && TREE_INT_CST_HIGH (expr) == 0)
1185 || (TREE_CODE (expr) == COMPLEX_CST
1186 && integer_onep (TREE_REALPART (expr))
1187 && integer_zerop (TREE_IMAGPART (expr))));
1188 }
1189
1190 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1191 it contains. Likewise for the corresponding complex constant. */
1192
1193 int
1194 integer_all_onesp (tree expr)
1195 {
1196 int prec;
1197 int uns;
1198
1199 STRIP_NOPS (expr);
1200
1201 if (TREE_CODE (expr) == COMPLEX_CST
1202 && integer_all_onesp (TREE_REALPART (expr))
1203 && integer_zerop (TREE_IMAGPART (expr)))
1204 return 1;
1205
1206 else if (TREE_CODE (expr) != INTEGER_CST
1207 || TREE_CONSTANT_OVERFLOW (expr))
1208 return 0;
1209
1210 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1211 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1212 && TREE_INT_CST_HIGH (expr) == -1)
1213 return 1;
1214 if (!uns)
1215 return 0;
1216
1217 /* Note that using TYPE_PRECISION here is wrong. We care about the
1218 actual bits, not the (arbitrary) range of the type. */
1219 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1220 if (prec >= HOST_BITS_PER_WIDE_INT)
1221 {
1222 HOST_WIDE_INT high_value;
1223 int shift_amount;
1224
1225 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1226
1227 /* Can not handle precisions greater than twice the host int size. */
1228 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1229 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1230 /* Shifting by the host word size is undefined according to the ANSI
1231 standard, so we must handle this as a special case. */
1232 high_value = -1;
1233 else
1234 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1235
1236 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1237 && TREE_INT_CST_HIGH (expr) == high_value);
1238 }
1239 else
1240 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1241 }
1242
1243 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1244 one bit on). */
1245
1246 int
1247 integer_pow2p (tree expr)
1248 {
1249 int prec;
1250 HOST_WIDE_INT high, low;
1251
1252 STRIP_NOPS (expr);
1253
1254 if (TREE_CODE (expr) == COMPLEX_CST
1255 && integer_pow2p (TREE_REALPART (expr))
1256 && integer_zerop (TREE_IMAGPART (expr)))
1257 return 1;
1258
1259 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1260 return 0;
1261
1262 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1263 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1264 high = TREE_INT_CST_HIGH (expr);
1265 low = TREE_INT_CST_LOW (expr);
1266
1267 /* First clear all bits that are beyond the type's precision in case
1268 we've been sign extended. */
1269
1270 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1271 ;
1272 else if (prec > HOST_BITS_PER_WIDE_INT)
1273 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1274 else
1275 {
1276 high = 0;
1277 if (prec < HOST_BITS_PER_WIDE_INT)
1278 low &= ~((HOST_WIDE_INT) (-1) << prec);
1279 }
1280
1281 if (high == 0 && low == 0)
1282 return 0;
1283
1284 return ((high == 0 && (low & (low - 1)) == 0)
1285 || (low == 0 && (high & (high - 1)) == 0));
1286 }
1287
1288 /* Return 1 if EXPR is an integer constant other than zero or a
1289 complex constant other than zero. */
1290
1291 int
1292 integer_nonzerop (tree expr)
1293 {
1294 STRIP_NOPS (expr);
1295
1296 return ((TREE_CODE (expr) == INTEGER_CST
1297 && ! TREE_CONSTANT_OVERFLOW (expr)
1298 && (TREE_INT_CST_LOW (expr) != 0
1299 || TREE_INT_CST_HIGH (expr) != 0))
1300 || (TREE_CODE (expr) == COMPLEX_CST
1301 && (integer_nonzerop (TREE_REALPART (expr))
1302 || integer_nonzerop (TREE_IMAGPART (expr)))));
1303 }
1304
1305 /* Return the power of two represented by a tree node known to be a
1306 power of two. */
1307
1308 int
1309 tree_log2 (tree expr)
1310 {
1311 int prec;
1312 HOST_WIDE_INT high, low;
1313
1314 STRIP_NOPS (expr);
1315
1316 if (TREE_CODE (expr) == COMPLEX_CST)
1317 return tree_log2 (TREE_REALPART (expr));
1318
1319 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1320 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1321
1322 high = TREE_INT_CST_HIGH (expr);
1323 low = TREE_INT_CST_LOW (expr);
1324
1325 /* First clear all bits that are beyond the type's precision in case
1326 we've been sign extended. */
1327
1328 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1329 ;
1330 else if (prec > HOST_BITS_PER_WIDE_INT)
1331 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1332 else
1333 {
1334 high = 0;
1335 if (prec < HOST_BITS_PER_WIDE_INT)
1336 low &= ~((HOST_WIDE_INT) (-1) << prec);
1337 }
1338
1339 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1340 : exact_log2 (low));
1341 }
1342
1343 /* Similar, but return the largest integer Y such that 2 ** Y is less
1344 than or equal to EXPR. */
1345
1346 int
1347 tree_floor_log2 (tree expr)
1348 {
1349 int prec;
1350 HOST_WIDE_INT high, low;
1351
1352 STRIP_NOPS (expr);
1353
1354 if (TREE_CODE (expr) == COMPLEX_CST)
1355 return tree_log2 (TREE_REALPART (expr));
1356
1357 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1358 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1359
1360 high = TREE_INT_CST_HIGH (expr);
1361 low = TREE_INT_CST_LOW (expr);
1362
1363 /* First clear all bits that are beyond the type's precision in case
1364 we've been sign extended. Ignore if type's precision hasn't been set
1365 since what we are doing is setting it. */
1366
1367 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1368 ;
1369 else if (prec > HOST_BITS_PER_WIDE_INT)
1370 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1371 else
1372 {
1373 high = 0;
1374 if (prec < HOST_BITS_PER_WIDE_INT)
1375 low &= ~((HOST_WIDE_INT) (-1) << prec);
1376 }
1377
1378 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1379 : floor_log2 (low));
1380 }
1381
1382 /* Return 1 if EXPR is the real constant zero. */
1383
1384 int
1385 real_zerop (tree expr)
1386 {
1387 STRIP_NOPS (expr);
1388
1389 return ((TREE_CODE (expr) == REAL_CST
1390 && ! TREE_CONSTANT_OVERFLOW (expr)
1391 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1392 || (TREE_CODE (expr) == COMPLEX_CST
1393 && real_zerop (TREE_REALPART (expr))
1394 && real_zerop (TREE_IMAGPART (expr))));
1395 }
1396
1397 /* Return 1 if EXPR is the real constant one in real or complex form. */
1398
1399 int
1400 real_onep (tree expr)
1401 {
1402 STRIP_NOPS (expr);
1403
1404 return ((TREE_CODE (expr) == REAL_CST
1405 && ! TREE_CONSTANT_OVERFLOW (expr)
1406 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1407 || (TREE_CODE (expr) == COMPLEX_CST
1408 && real_onep (TREE_REALPART (expr))
1409 && real_zerop (TREE_IMAGPART (expr))));
1410 }
1411
1412 /* Return 1 if EXPR is the real constant two. */
1413
1414 int
1415 real_twop (tree expr)
1416 {
1417 STRIP_NOPS (expr);
1418
1419 return ((TREE_CODE (expr) == REAL_CST
1420 && ! TREE_CONSTANT_OVERFLOW (expr)
1421 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1422 || (TREE_CODE (expr) == COMPLEX_CST
1423 && real_twop (TREE_REALPART (expr))
1424 && real_zerop (TREE_IMAGPART (expr))));
1425 }
1426
1427 /* Return 1 if EXPR is the real constant minus one. */
1428
1429 int
1430 real_minus_onep (tree expr)
1431 {
1432 STRIP_NOPS (expr);
1433
1434 return ((TREE_CODE (expr) == REAL_CST
1435 && ! TREE_CONSTANT_OVERFLOW (expr)
1436 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1437 || (TREE_CODE (expr) == COMPLEX_CST
1438 && real_minus_onep (TREE_REALPART (expr))
1439 && real_zerop (TREE_IMAGPART (expr))));
1440 }
1441
1442 /* Nonzero if EXP is a constant or a cast of a constant. */
1443
1444 int
1445 really_constant_p (tree exp)
1446 {
1447 /* This is not quite the same as STRIP_NOPS. It does more. */
1448 while (TREE_CODE (exp) == NOP_EXPR
1449 || TREE_CODE (exp) == CONVERT_EXPR
1450 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1451 exp = TREE_OPERAND (exp, 0);
1452 return TREE_CONSTANT (exp);
1453 }
1454 \f
1455 /* Return first list element whose TREE_VALUE is ELEM.
1456 Return 0 if ELEM is not in LIST. */
1457
1458 tree
1459 value_member (tree elem, tree list)
1460 {
1461 while (list)
1462 {
1463 if (elem == TREE_VALUE (list))
1464 return list;
1465 list = TREE_CHAIN (list);
1466 }
1467 return NULL_TREE;
1468 }
1469
1470 /* Return first list element whose TREE_PURPOSE is ELEM.
1471 Return 0 if ELEM is not in LIST. */
1472
1473 tree
1474 purpose_member (tree elem, tree list)
1475 {
1476 while (list)
1477 {
1478 if (elem == TREE_PURPOSE (list))
1479 return list;
1480 list = TREE_CHAIN (list);
1481 }
1482 return NULL_TREE;
1483 }
1484
1485 /* Return nonzero if ELEM is part of the chain CHAIN. */
1486
1487 int
1488 chain_member (tree elem, tree chain)
1489 {
1490 while (chain)
1491 {
1492 if (elem == chain)
1493 return 1;
1494 chain = TREE_CHAIN (chain);
1495 }
1496
1497 return 0;
1498 }
1499
1500 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1501 We expect a null pointer to mark the end of the chain.
1502 This is the Lisp primitive `length'. */
1503
1504 int
1505 list_length (tree t)
1506 {
1507 tree p = t;
1508 #ifdef ENABLE_TREE_CHECKING
1509 tree q = t;
1510 #endif
1511 int len = 0;
1512
1513 while (p)
1514 {
1515 p = TREE_CHAIN (p);
1516 #ifdef ENABLE_TREE_CHECKING
1517 if (len % 2)
1518 q = TREE_CHAIN (q);
1519 gcc_assert (p != q);
1520 #endif
1521 len++;
1522 }
1523
1524 return len;
1525 }
1526
1527 /* Returns the number of FIELD_DECLs in TYPE. */
1528
1529 int
1530 fields_length (tree type)
1531 {
1532 tree t = TYPE_FIELDS (type);
1533 int count = 0;
1534
1535 for (; t; t = TREE_CHAIN (t))
1536 if (TREE_CODE (t) == FIELD_DECL)
1537 ++count;
1538
1539 return count;
1540 }
1541
1542 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1543 by modifying the last node in chain 1 to point to chain 2.
1544 This is the Lisp primitive `nconc'. */
1545
1546 tree
1547 chainon (tree op1, tree op2)
1548 {
1549 tree t1;
1550
1551 if (!op1)
1552 return op2;
1553 if (!op2)
1554 return op1;
1555
1556 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1557 continue;
1558 TREE_CHAIN (t1) = op2;
1559
1560 #ifdef ENABLE_TREE_CHECKING
1561 {
1562 tree t2;
1563 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1564 gcc_assert (t2 != t1);
1565 }
1566 #endif
1567
1568 return op1;
1569 }
1570
1571 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1572
1573 tree
1574 tree_last (tree chain)
1575 {
1576 tree next;
1577 if (chain)
1578 while ((next = TREE_CHAIN (chain)))
1579 chain = next;
1580 return chain;
1581 }
1582
1583 /* Reverse the order of elements in the chain T,
1584 and return the new head of the chain (old last element). */
1585
1586 tree
1587 nreverse (tree t)
1588 {
1589 tree prev = 0, decl, next;
1590 for (decl = t; decl; decl = next)
1591 {
1592 next = TREE_CHAIN (decl);
1593 TREE_CHAIN (decl) = prev;
1594 prev = decl;
1595 }
1596 return prev;
1597 }
1598 \f
1599 /* Return a newly created TREE_LIST node whose
1600 purpose and value fields are PARM and VALUE. */
1601
1602 tree
1603 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1604 {
1605 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1606 TREE_PURPOSE (t) = parm;
1607 TREE_VALUE (t) = value;
1608 return t;
1609 }
1610
1611 /* Return a newly created TREE_LIST node whose
1612 purpose and value fields are PURPOSE and VALUE
1613 and whose TREE_CHAIN is CHAIN. */
1614
1615 tree
1616 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1617 {
1618 tree node;
1619
1620 node = ggc_alloc_zone_pass_stat (sizeof (struct tree_list), &tree_zone);
1621
1622 memset (node, 0, sizeof (struct tree_common));
1623
1624 #ifdef GATHER_STATISTICS
1625 tree_node_counts[(int) x_kind]++;
1626 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1627 #endif
1628
1629 TREE_SET_CODE (node, TREE_LIST);
1630 TREE_CHAIN (node) = chain;
1631 TREE_PURPOSE (node) = purpose;
1632 TREE_VALUE (node) = value;
1633 return node;
1634 }
1635
1636 \f
1637 /* Return the size nominally occupied by an object of type TYPE
1638 when it resides in memory. The value is measured in units of bytes,
1639 and its data type is that normally used for type sizes
1640 (which is the first type created by make_signed_type or
1641 make_unsigned_type). */
1642
1643 tree
1644 size_in_bytes (tree type)
1645 {
1646 tree t;
1647
1648 if (type == error_mark_node)
1649 return integer_zero_node;
1650
1651 type = TYPE_MAIN_VARIANT (type);
1652 t = TYPE_SIZE_UNIT (type);
1653
1654 if (t == 0)
1655 {
1656 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1657 return size_zero_node;
1658 }
1659
1660 if (TREE_CODE (t) == INTEGER_CST)
1661 t = force_fit_type (t, 0, false, false);
1662
1663 return t;
1664 }
1665
1666 /* Return the size of TYPE (in bytes) as a wide integer
1667 or return -1 if the size can vary or is larger than an integer. */
1668
1669 HOST_WIDE_INT
1670 int_size_in_bytes (tree type)
1671 {
1672 tree t;
1673
1674 if (type == error_mark_node)
1675 return 0;
1676
1677 type = TYPE_MAIN_VARIANT (type);
1678 t = TYPE_SIZE_UNIT (type);
1679 if (t == 0
1680 || TREE_CODE (t) != INTEGER_CST
1681 || TREE_OVERFLOW (t)
1682 || TREE_INT_CST_HIGH (t) != 0
1683 /* If the result would appear negative, it's too big to represent. */
1684 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1685 return -1;
1686
1687 return TREE_INT_CST_LOW (t);
1688 }
1689 \f
1690 /* Return the bit position of FIELD, in bits from the start of the record.
1691 This is a tree of type bitsizetype. */
1692
1693 tree
1694 bit_position (tree field)
1695 {
1696 return bit_from_pos (DECL_FIELD_OFFSET (field),
1697 DECL_FIELD_BIT_OFFSET (field));
1698 }
1699
1700 /* Likewise, but return as an integer. It must be representable in
1701 that way (since it could be a signed value, we don't have the
1702 option of returning -1 like int_size_in_byte can. */
1703
1704 HOST_WIDE_INT
1705 int_bit_position (tree field)
1706 {
1707 return tree_low_cst (bit_position (field), 0);
1708 }
1709 \f
1710 /* Return the byte position of FIELD, in bytes from the start of the record.
1711 This is a tree of type sizetype. */
1712
1713 tree
1714 byte_position (tree field)
1715 {
1716 return byte_from_pos (DECL_FIELD_OFFSET (field),
1717 DECL_FIELD_BIT_OFFSET (field));
1718 }
1719
1720 /* Likewise, but return as an integer. It must be representable in
1721 that way (since it could be a signed value, we don't have the
1722 option of returning -1 like int_size_in_byte can. */
1723
1724 HOST_WIDE_INT
1725 int_byte_position (tree field)
1726 {
1727 return tree_low_cst (byte_position (field), 0);
1728 }
1729 \f
1730 /* Return the strictest alignment, in bits, that T is known to have. */
1731
1732 unsigned int
1733 expr_align (tree t)
1734 {
1735 unsigned int align0, align1;
1736
1737 switch (TREE_CODE (t))
1738 {
1739 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1740 /* If we have conversions, we know that the alignment of the
1741 object must meet each of the alignments of the types. */
1742 align0 = expr_align (TREE_OPERAND (t, 0));
1743 align1 = TYPE_ALIGN (TREE_TYPE (t));
1744 return MAX (align0, align1);
1745
1746 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1747 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1748 case CLEANUP_POINT_EXPR:
1749 /* These don't change the alignment of an object. */
1750 return expr_align (TREE_OPERAND (t, 0));
1751
1752 case COND_EXPR:
1753 /* The best we can do is say that the alignment is the least aligned
1754 of the two arms. */
1755 align0 = expr_align (TREE_OPERAND (t, 1));
1756 align1 = expr_align (TREE_OPERAND (t, 2));
1757 return MIN (align0, align1);
1758
1759 case LABEL_DECL: case CONST_DECL:
1760 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1761 if (DECL_ALIGN (t) != 0)
1762 return DECL_ALIGN (t);
1763 break;
1764
1765 case FUNCTION_DECL:
1766 return FUNCTION_BOUNDARY;
1767
1768 default:
1769 break;
1770 }
1771
1772 /* Otherwise take the alignment from that of the type. */
1773 return TYPE_ALIGN (TREE_TYPE (t));
1774 }
1775 \f
1776 /* Return, as a tree node, the number of elements for TYPE (which is an
1777 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1778
1779 tree
1780 array_type_nelts (tree type)
1781 {
1782 tree index_type, min, max;
1783
1784 /* If they did it with unspecified bounds, then we should have already
1785 given an error about it before we got here. */
1786 if (! TYPE_DOMAIN (type))
1787 return error_mark_node;
1788
1789 index_type = TYPE_DOMAIN (type);
1790 min = TYPE_MIN_VALUE (index_type);
1791 max = TYPE_MAX_VALUE (index_type);
1792
1793 return (integer_zerop (min)
1794 ? max
1795 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
1796 }
1797 \f
1798 /* If arg is static -- a reference to an object in static storage -- then
1799 return the object. This is not the same as the C meaning of `static'.
1800 If arg isn't static, return NULL. */
1801
1802 tree
1803 staticp (tree arg)
1804 {
1805 switch (TREE_CODE (arg))
1806 {
1807 case FUNCTION_DECL:
1808 /* Nested functions are static, even though taking their address will
1809 involve a trampoline as we unnest the nested function and create
1810 the trampoline on the tree level. */
1811 return arg;
1812
1813 case VAR_DECL:
1814 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1815 && ! DECL_THREAD_LOCAL_P (arg)
1816 && ! DECL_DLLIMPORT_P (arg)
1817 ? arg : NULL);
1818
1819 case CONST_DECL:
1820 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1821 ? arg : NULL);
1822
1823 case CONSTRUCTOR:
1824 return TREE_STATIC (arg) ? arg : NULL;
1825
1826 case LABEL_DECL:
1827 case STRING_CST:
1828 return arg;
1829
1830 case COMPONENT_REF:
1831 /* If the thing being referenced is not a field, then it is
1832 something language specific. */
1833 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1834 return (*lang_hooks.staticp) (arg);
1835
1836 /* If we are referencing a bitfield, we can't evaluate an
1837 ADDR_EXPR at compile time and so it isn't a constant. */
1838 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1839 return NULL;
1840
1841 return staticp (TREE_OPERAND (arg, 0));
1842
1843 case BIT_FIELD_REF:
1844 return NULL;
1845
1846 case MISALIGNED_INDIRECT_REF:
1847 case ALIGN_INDIRECT_REF:
1848 case INDIRECT_REF:
1849 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1850
1851 case ARRAY_REF:
1852 case ARRAY_RANGE_REF:
1853 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1854 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1855 return staticp (TREE_OPERAND (arg, 0));
1856 else
1857 return false;
1858
1859 default:
1860 if ((unsigned int) TREE_CODE (arg)
1861 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1862 return lang_hooks.staticp (arg);
1863 else
1864 return NULL;
1865 }
1866 }
1867 \f
1868 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1869 Do this to any expression which may be used in more than one place,
1870 but must be evaluated only once.
1871
1872 Normally, expand_expr would reevaluate the expression each time.
1873 Calling save_expr produces something that is evaluated and recorded
1874 the first time expand_expr is called on it. Subsequent calls to
1875 expand_expr just reuse the recorded value.
1876
1877 The call to expand_expr that generates code that actually computes
1878 the value is the first call *at compile time*. Subsequent calls
1879 *at compile time* generate code to use the saved value.
1880 This produces correct result provided that *at run time* control
1881 always flows through the insns made by the first expand_expr
1882 before reaching the other places where the save_expr was evaluated.
1883 You, the caller of save_expr, must make sure this is so.
1884
1885 Constants, and certain read-only nodes, are returned with no
1886 SAVE_EXPR because that is safe. Expressions containing placeholders
1887 are not touched; see tree.def for an explanation of what these
1888 are used for. */
1889
1890 tree
1891 save_expr (tree expr)
1892 {
1893 tree t = fold (expr);
1894 tree inner;
1895
1896 /* If the tree evaluates to a constant, then we don't want to hide that
1897 fact (i.e. this allows further folding, and direct checks for constants).
1898 However, a read-only object that has side effects cannot be bypassed.
1899 Since it is no problem to reevaluate literals, we just return the
1900 literal node. */
1901 inner = skip_simple_arithmetic (t);
1902
1903 if (TREE_INVARIANT (inner)
1904 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1905 || TREE_CODE (inner) == SAVE_EXPR
1906 || TREE_CODE (inner) == ERROR_MARK)
1907 return t;
1908
1909 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1910 it means that the size or offset of some field of an object depends on
1911 the value within another field.
1912
1913 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1914 and some variable since it would then need to be both evaluated once and
1915 evaluated more than once. Front-ends must assure this case cannot
1916 happen by surrounding any such subexpressions in their own SAVE_EXPR
1917 and forcing evaluation at the proper time. */
1918 if (contains_placeholder_p (inner))
1919 return t;
1920
1921 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1922
1923 /* This expression might be placed ahead of a jump to ensure that the
1924 value was computed on both sides of the jump. So make sure it isn't
1925 eliminated as dead. */
1926 TREE_SIDE_EFFECTS (t) = 1;
1927 TREE_INVARIANT (t) = 1;
1928 return t;
1929 }
1930
1931 /* Look inside EXPR and into any simple arithmetic operations. Return
1932 the innermost non-arithmetic node. */
1933
1934 tree
1935 skip_simple_arithmetic (tree expr)
1936 {
1937 tree inner;
1938
1939 /* We don't care about whether this can be used as an lvalue in this
1940 context. */
1941 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1942 expr = TREE_OPERAND (expr, 0);
1943
1944 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1945 a constant, it will be more efficient to not make another SAVE_EXPR since
1946 it will allow better simplification and GCSE will be able to merge the
1947 computations if they actually occur. */
1948 inner = expr;
1949 while (1)
1950 {
1951 if (UNARY_CLASS_P (inner))
1952 inner = TREE_OPERAND (inner, 0);
1953 else if (BINARY_CLASS_P (inner))
1954 {
1955 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1956 inner = TREE_OPERAND (inner, 0);
1957 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1958 inner = TREE_OPERAND (inner, 1);
1959 else
1960 break;
1961 }
1962 else
1963 break;
1964 }
1965
1966 return inner;
1967 }
1968
1969 /* Return which tree structure is used by T. */
1970
1971 enum tree_node_structure_enum
1972 tree_node_structure (tree t)
1973 {
1974 enum tree_code code = TREE_CODE (t);
1975
1976 switch (TREE_CODE_CLASS (code))
1977 {
1978 case tcc_declaration:
1979 {
1980 switch (code)
1981 {
1982 case FIELD_DECL:
1983 return TS_FIELD_DECL;
1984 case PARM_DECL:
1985 return TS_PARM_DECL;
1986 case VAR_DECL:
1987 return TS_VAR_DECL;
1988 case LABEL_DECL:
1989 return TS_LABEL_DECL;
1990 case RESULT_DECL:
1991 return TS_RESULT_DECL;
1992 case CONST_DECL:
1993 return TS_CONST_DECL;
1994 case TYPE_DECL:
1995 return TS_TYPE_DECL;
1996 case FUNCTION_DECL:
1997 return TS_FUNCTION_DECL;
1998 case TYPE_MEMORY_TAG:
1999 case NAME_MEMORY_TAG:
2000 case STRUCT_FIELD_TAG:
2001 return TS_MEMORY_TAG;
2002 default:
2003 return TS_DECL_NON_COMMON;
2004 }
2005 }
2006 case tcc_type:
2007 return TS_TYPE;
2008 case tcc_reference:
2009 case tcc_comparison:
2010 case tcc_unary:
2011 case tcc_binary:
2012 case tcc_expression:
2013 case tcc_statement:
2014 return TS_EXP;
2015 default: /* tcc_constant and tcc_exceptional */
2016 break;
2017 }
2018 switch (code)
2019 {
2020 /* tcc_constant cases. */
2021 case INTEGER_CST: return TS_INT_CST;
2022 case REAL_CST: return TS_REAL_CST;
2023 case COMPLEX_CST: return TS_COMPLEX;
2024 case VECTOR_CST: return TS_VECTOR;
2025 case STRING_CST: return TS_STRING;
2026 /* tcc_exceptional cases. */
2027 case ERROR_MARK: return TS_COMMON;
2028 case IDENTIFIER_NODE: return TS_IDENTIFIER;
2029 case TREE_LIST: return TS_LIST;
2030 case TREE_VEC: return TS_VEC;
2031 case PHI_NODE: return TS_PHI_NODE;
2032 case SSA_NAME: return TS_SSA_NAME;
2033 case PLACEHOLDER_EXPR: return TS_COMMON;
2034 case STATEMENT_LIST: return TS_STATEMENT_LIST;
2035 case BLOCK: return TS_BLOCK;
2036 case CONSTRUCTOR: return TS_CONSTRUCTOR;
2037 case TREE_BINFO: return TS_BINFO;
2038 case VALUE_HANDLE: return TS_VALUE_HANDLE;
2039
2040 default:
2041 gcc_unreachable ();
2042 }
2043 }
2044 \f
2045 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2046 or offset that depends on a field within a record. */
2047
2048 bool
2049 contains_placeholder_p (tree exp)
2050 {
2051 enum tree_code code;
2052
2053 if (!exp)
2054 return 0;
2055
2056 code = TREE_CODE (exp);
2057 if (code == PLACEHOLDER_EXPR)
2058 return 1;
2059
2060 switch (TREE_CODE_CLASS (code))
2061 {
2062 case tcc_reference:
2063 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2064 position computations since they will be converted into a
2065 WITH_RECORD_EXPR involving the reference, which will assume
2066 here will be valid. */
2067 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2068
2069 case tcc_exceptional:
2070 if (code == TREE_LIST)
2071 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2072 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2073 break;
2074
2075 case tcc_unary:
2076 case tcc_binary:
2077 case tcc_comparison:
2078 case tcc_expression:
2079 switch (code)
2080 {
2081 case COMPOUND_EXPR:
2082 /* Ignoring the first operand isn't quite right, but works best. */
2083 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2084
2085 case COND_EXPR:
2086 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2087 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2088 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2089
2090 case CALL_EXPR:
2091 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2092
2093 default:
2094 break;
2095 }
2096
2097 switch (TREE_CODE_LENGTH (code))
2098 {
2099 case 1:
2100 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2101 case 2:
2102 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2103 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2104 default:
2105 return 0;
2106 }
2107
2108 default:
2109 return 0;
2110 }
2111 return 0;
2112 }
2113
2114 /* Return true if any part of the computation of TYPE involves a
2115 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2116 (for QUAL_UNION_TYPE) and field positions. */
2117
2118 static bool
2119 type_contains_placeholder_1 (tree type)
2120 {
2121 /* If the size contains a placeholder or the parent type (component type in
2122 the case of arrays) type involves a placeholder, this type does. */
2123 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2124 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2125 || (TREE_TYPE (type) != 0
2126 && type_contains_placeholder_p (TREE_TYPE (type))))
2127 return true;
2128
2129 /* Now do type-specific checks. Note that the last part of the check above
2130 greatly limits what we have to do below. */
2131 switch (TREE_CODE (type))
2132 {
2133 case VOID_TYPE:
2134 case COMPLEX_TYPE:
2135 case ENUMERAL_TYPE:
2136 case BOOLEAN_TYPE:
2137 case CHAR_TYPE:
2138 case POINTER_TYPE:
2139 case OFFSET_TYPE:
2140 case REFERENCE_TYPE:
2141 case METHOD_TYPE:
2142 case FUNCTION_TYPE:
2143 case VECTOR_TYPE:
2144 return false;
2145
2146 case INTEGER_TYPE:
2147 case REAL_TYPE:
2148 /* Here we just check the bounds. */
2149 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2150 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2151
2152 case ARRAY_TYPE:
2153 /* We're already checked the component type (TREE_TYPE), so just check
2154 the index type. */
2155 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2156
2157 case RECORD_TYPE:
2158 case UNION_TYPE:
2159 case QUAL_UNION_TYPE:
2160 {
2161 tree field;
2162
2163 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
2164 if (TREE_CODE (field) == FIELD_DECL
2165 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2166 || (TREE_CODE (type) == QUAL_UNION_TYPE
2167 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2168 || type_contains_placeholder_p (TREE_TYPE (field))))
2169 return true;
2170
2171 return false;
2172 }
2173
2174 default:
2175 gcc_unreachable ();
2176 }
2177 }
2178
2179 bool
2180 type_contains_placeholder_p (tree type)
2181 {
2182 bool result;
2183
2184 /* If the contains_placeholder_bits field has been initialized,
2185 then we know the answer. */
2186 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2187 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2188
2189 /* Indicate that we've seen this type node, and the answer is false.
2190 This is what we want to return if we run into recursion via fields. */
2191 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2192
2193 /* Compute the real value. */
2194 result = type_contains_placeholder_1 (type);
2195
2196 /* Store the real value. */
2197 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2198
2199 return result;
2200 }
2201 \f
2202 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2203 return a tree with all occurrences of references to F in a
2204 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2205 contains only arithmetic expressions or a CALL_EXPR with a
2206 PLACEHOLDER_EXPR occurring only in its arglist. */
2207
2208 tree
2209 substitute_in_expr (tree exp, tree f, tree r)
2210 {
2211 enum tree_code code = TREE_CODE (exp);
2212 tree op0, op1, op2, op3;
2213 tree new;
2214 tree inner;
2215
2216 /* We handle TREE_LIST and COMPONENT_REF separately. */
2217 if (code == TREE_LIST)
2218 {
2219 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
2220 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
2221 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2222 return exp;
2223
2224 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2225 }
2226 else if (code == COMPONENT_REF)
2227 {
2228 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2229 and it is the right field, replace it with R. */
2230 for (inner = TREE_OPERAND (exp, 0);
2231 REFERENCE_CLASS_P (inner);
2232 inner = TREE_OPERAND (inner, 0))
2233 ;
2234 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2235 && TREE_OPERAND (exp, 1) == f)
2236 return r;
2237
2238 /* If this expression hasn't been completed let, leave it alone. */
2239 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
2240 return exp;
2241
2242 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2243 if (op0 == TREE_OPERAND (exp, 0))
2244 return exp;
2245
2246 new = fold_build3 (COMPONENT_REF, TREE_TYPE (exp),
2247 op0, TREE_OPERAND (exp, 1), NULL_TREE);
2248 }
2249 else
2250 switch (TREE_CODE_CLASS (code))
2251 {
2252 case tcc_constant:
2253 case tcc_declaration:
2254 return exp;
2255
2256 case tcc_exceptional:
2257 case tcc_unary:
2258 case tcc_binary:
2259 case tcc_comparison:
2260 case tcc_expression:
2261 case tcc_reference:
2262 switch (TREE_CODE_LENGTH (code))
2263 {
2264 case 0:
2265 return exp;
2266
2267 case 1:
2268 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2269 if (op0 == TREE_OPERAND (exp, 0))
2270 return exp;
2271
2272 new = fold_build1 (code, TREE_TYPE (exp), op0);
2273 break;
2274
2275 case 2:
2276 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2277 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2278
2279 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2280 return exp;
2281
2282 new = fold_build2 (code, TREE_TYPE (exp), op0, op1);
2283 break;
2284
2285 case 3:
2286 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2287 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2288 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2289
2290 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2291 && op2 == TREE_OPERAND (exp, 2))
2292 return exp;
2293
2294 new = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2295 break;
2296
2297 case 4:
2298 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2299 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2300 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2301 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
2302
2303 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2304 && op2 == TREE_OPERAND (exp, 2)
2305 && op3 == TREE_OPERAND (exp, 3))
2306 return exp;
2307
2308 new = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2309 break;
2310
2311 default:
2312 gcc_unreachable ();
2313 }
2314 break;
2315
2316 default:
2317 gcc_unreachable ();
2318 }
2319
2320 TREE_READONLY (new) = TREE_READONLY (exp);
2321 return new;
2322 }
2323
2324 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2325 for it within OBJ, a tree that is an object or a chain of references. */
2326
2327 tree
2328 substitute_placeholder_in_expr (tree exp, tree obj)
2329 {
2330 enum tree_code code = TREE_CODE (exp);
2331 tree op0, op1, op2, op3;
2332
2333 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2334 in the chain of OBJ. */
2335 if (code == PLACEHOLDER_EXPR)
2336 {
2337 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2338 tree elt;
2339
2340 for (elt = obj; elt != 0;
2341 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2342 || TREE_CODE (elt) == COND_EXPR)
2343 ? TREE_OPERAND (elt, 1)
2344 : (REFERENCE_CLASS_P (elt)
2345 || UNARY_CLASS_P (elt)
2346 || BINARY_CLASS_P (elt)
2347 || EXPRESSION_CLASS_P (elt))
2348 ? TREE_OPERAND (elt, 0) : 0))
2349 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2350 return elt;
2351
2352 for (elt = obj; elt != 0;
2353 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2354 || TREE_CODE (elt) == COND_EXPR)
2355 ? TREE_OPERAND (elt, 1)
2356 : (REFERENCE_CLASS_P (elt)
2357 || UNARY_CLASS_P (elt)
2358 || BINARY_CLASS_P (elt)
2359 || EXPRESSION_CLASS_P (elt))
2360 ? TREE_OPERAND (elt, 0) : 0))
2361 if (POINTER_TYPE_P (TREE_TYPE (elt))
2362 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2363 == need_type))
2364 return fold_build1 (INDIRECT_REF, need_type, elt);
2365
2366 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2367 survives until RTL generation, there will be an error. */
2368 return exp;
2369 }
2370
2371 /* TREE_LIST is special because we need to look at TREE_VALUE
2372 and TREE_CHAIN, not TREE_OPERANDS. */
2373 else if (code == TREE_LIST)
2374 {
2375 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2376 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2377 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2378 return exp;
2379
2380 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2381 }
2382 else
2383 switch (TREE_CODE_CLASS (code))
2384 {
2385 case tcc_constant:
2386 case tcc_declaration:
2387 return exp;
2388
2389 case tcc_exceptional:
2390 case tcc_unary:
2391 case tcc_binary:
2392 case tcc_comparison:
2393 case tcc_expression:
2394 case tcc_reference:
2395 case tcc_statement:
2396 switch (TREE_CODE_LENGTH (code))
2397 {
2398 case 0:
2399 return exp;
2400
2401 case 1:
2402 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2403 if (op0 == TREE_OPERAND (exp, 0))
2404 return exp;
2405 else
2406 return fold_build1 (code, TREE_TYPE (exp), op0);
2407
2408 case 2:
2409 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2410 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2411
2412 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2413 return exp;
2414 else
2415 return fold_build2 (code, TREE_TYPE (exp), op0, op1);
2416
2417 case 3:
2418 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2419 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2420 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2421
2422 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2423 && op2 == TREE_OPERAND (exp, 2))
2424 return exp;
2425 else
2426 return fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
2427
2428 case 4:
2429 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2430 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2431 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2432 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2433
2434 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2435 && op2 == TREE_OPERAND (exp, 2)
2436 && op3 == TREE_OPERAND (exp, 3))
2437 return exp;
2438 else
2439 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2440
2441 default:
2442 gcc_unreachable ();
2443 }
2444 break;
2445
2446 default:
2447 gcc_unreachable ();
2448 }
2449 }
2450 \f
2451 /* Stabilize a reference so that we can use it any number of times
2452 without causing its operands to be evaluated more than once.
2453 Returns the stabilized reference. This works by means of save_expr,
2454 so see the caveats in the comments about save_expr.
2455
2456 Also allows conversion expressions whose operands are references.
2457 Any other kind of expression is returned unchanged. */
2458
2459 tree
2460 stabilize_reference (tree ref)
2461 {
2462 tree result;
2463 enum tree_code code = TREE_CODE (ref);
2464
2465 switch (code)
2466 {
2467 case VAR_DECL:
2468 case PARM_DECL:
2469 case RESULT_DECL:
2470 /* No action is needed in this case. */
2471 return ref;
2472
2473 case NOP_EXPR:
2474 case CONVERT_EXPR:
2475 case FLOAT_EXPR:
2476 case FIX_TRUNC_EXPR:
2477 case FIX_FLOOR_EXPR:
2478 case FIX_ROUND_EXPR:
2479 case FIX_CEIL_EXPR:
2480 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2481 break;
2482
2483 case INDIRECT_REF:
2484 result = build_nt (INDIRECT_REF,
2485 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2486 break;
2487
2488 case COMPONENT_REF:
2489 result = build_nt (COMPONENT_REF,
2490 stabilize_reference (TREE_OPERAND (ref, 0)),
2491 TREE_OPERAND (ref, 1), NULL_TREE);
2492 break;
2493
2494 case BIT_FIELD_REF:
2495 result = build_nt (BIT_FIELD_REF,
2496 stabilize_reference (TREE_OPERAND (ref, 0)),
2497 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2498 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2499 break;
2500
2501 case ARRAY_REF:
2502 result = build_nt (ARRAY_REF,
2503 stabilize_reference (TREE_OPERAND (ref, 0)),
2504 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2505 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2506 break;
2507
2508 case ARRAY_RANGE_REF:
2509 result = build_nt (ARRAY_RANGE_REF,
2510 stabilize_reference (TREE_OPERAND (ref, 0)),
2511 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2512 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2513 break;
2514
2515 case COMPOUND_EXPR:
2516 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2517 it wouldn't be ignored. This matters when dealing with
2518 volatiles. */
2519 return stabilize_reference_1 (ref);
2520
2521 /* If arg isn't a kind of lvalue we recognize, make no change.
2522 Caller should recognize the error for an invalid lvalue. */
2523 default:
2524 return ref;
2525
2526 case ERROR_MARK:
2527 return error_mark_node;
2528 }
2529
2530 TREE_TYPE (result) = TREE_TYPE (ref);
2531 TREE_READONLY (result) = TREE_READONLY (ref);
2532 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2533 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2534
2535 return result;
2536 }
2537
2538 /* Subroutine of stabilize_reference; this is called for subtrees of
2539 references. Any expression with side-effects must be put in a SAVE_EXPR
2540 to ensure that it is only evaluated once.
2541
2542 We don't put SAVE_EXPR nodes around everything, because assigning very
2543 simple expressions to temporaries causes us to miss good opportunities
2544 for optimizations. Among other things, the opportunity to fold in the
2545 addition of a constant into an addressing mode often gets lost, e.g.
2546 "y[i+1] += x;". In general, we take the approach that we should not make
2547 an assignment unless we are forced into it - i.e., that any non-side effect
2548 operator should be allowed, and that cse should take care of coalescing
2549 multiple utterances of the same expression should that prove fruitful. */
2550
2551 tree
2552 stabilize_reference_1 (tree e)
2553 {
2554 tree result;
2555 enum tree_code code = TREE_CODE (e);
2556
2557 /* We cannot ignore const expressions because it might be a reference
2558 to a const array but whose index contains side-effects. But we can
2559 ignore things that are actual constant or that already have been
2560 handled by this function. */
2561
2562 if (TREE_INVARIANT (e))
2563 return e;
2564
2565 switch (TREE_CODE_CLASS (code))
2566 {
2567 case tcc_exceptional:
2568 case tcc_type:
2569 case tcc_declaration:
2570 case tcc_comparison:
2571 case tcc_statement:
2572 case tcc_expression:
2573 case tcc_reference:
2574 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2575 so that it will only be evaluated once. */
2576 /* The reference (r) and comparison (<) classes could be handled as
2577 below, but it is generally faster to only evaluate them once. */
2578 if (TREE_SIDE_EFFECTS (e))
2579 return save_expr (e);
2580 return e;
2581
2582 case tcc_constant:
2583 /* Constants need no processing. In fact, we should never reach
2584 here. */
2585 return e;
2586
2587 case tcc_binary:
2588 /* Division is slow and tends to be compiled with jumps,
2589 especially the division by powers of 2 that is often
2590 found inside of an array reference. So do it just once. */
2591 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2592 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2593 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2594 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2595 return save_expr (e);
2596 /* Recursively stabilize each operand. */
2597 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2598 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2599 break;
2600
2601 case tcc_unary:
2602 /* Recursively stabilize each operand. */
2603 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2604 break;
2605
2606 default:
2607 gcc_unreachable ();
2608 }
2609
2610 TREE_TYPE (result) = TREE_TYPE (e);
2611 TREE_READONLY (result) = TREE_READONLY (e);
2612 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2613 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2614 TREE_INVARIANT (result) = 1;
2615
2616 return result;
2617 }
2618 \f
2619 /* Low-level constructors for expressions. */
2620
2621 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2622 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2623
2624 void
2625 recompute_tree_invarant_for_addr_expr (tree t)
2626 {
2627 tree node;
2628 bool tc = true, ti = true, se = false;
2629
2630 /* We started out assuming this address is both invariant and constant, but
2631 does not have side effects. Now go down any handled components and see if
2632 any of them involve offsets that are either non-constant or non-invariant.
2633 Also check for side-effects.
2634
2635 ??? Note that this code makes no attempt to deal with the case where
2636 taking the address of something causes a copy due to misalignment. */
2637
2638 #define UPDATE_TITCSE(NODE) \
2639 do { tree _node = (NODE); \
2640 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2641 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2642 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2643
2644 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2645 node = TREE_OPERAND (node, 0))
2646 {
2647 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2648 array reference (probably made temporarily by the G++ front end),
2649 so ignore all the operands. */
2650 if ((TREE_CODE (node) == ARRAY_REF
2651 || TREE_CODE (node) == ARRAY_RANGE_REF)
2652 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2653 {
2654 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2655 if (TREE_OPERAND (node, 2))
2656 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2657 if (TREE_OPERAND (node, 3))
2658 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2659 }
2660 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2661 FIELD_DECL, apparently. The G++ front end can put something else
2662 there, at least temporarily. */
2663 else if (TREE_CODE (node) == COMPONENT_REF
2664 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2665 {
2666 if (TREE_OPERAND (node, 2))
2667 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2668 }
2669 else if (TREE_CODE (node) == BIT_FIELD_REF)
2670 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2671 }
2672
2673 node = lang_hooks.expr_to_decl (node, &tc, &ti, &se);
2674
2675 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2676 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2677 invariant and constant if the decl is static. It's also invariant if it's
2678 a decl in the current function. Taking the address of a volatile variable
2679 is not volatile. If it's a constant, the address is both invariant and
2680 constant. Otherwise it's neither. */
2681 if (TREE_CODE (node) == INDIRECT_REF)
2682 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2683 else if (DECL_P (node))
2684 {
2685 if (staticp (node))
2686 ;
2687 else if (decl_function_context (node) == current_function_decl
2688 /* Addresses of thread-local variables are invariant. */
2689 || (TREE_CODE (node) == VAR_DECL
2690 && DECL_THREAD_LOCAL_P (node)))
2691 tc = false;
2692 else
2693 ti = tc = false;
2694 }
2695 else if (CONSTANT_CLASS_P (node))
2696 ;
2697 else
2698 {
2699 ti = tc = false;
2700 se |= TREE_SIDE_EFFECTS (node);
2701 }
2702
2703 TREE_CONSTANT (t) = tc;
2704 TREE_INVARIANT (t) = ti;
2705 TREE_SIDE_EFFECTS (t) = se;
2706 #undef UPDATE_TITCSE
2707 }
2708
2709 /* Build an expression of code CODE, data type TYPE, and operands as
2710 specified. Expressions and reference nodes can be created this way.
2711 Constants, decls, types and misc nodes cannot be.
2712
2713 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2714 enough for all extant tree codes. */
2715
2716 tree
2717 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2718 {
2719 tree t;
2720
2721 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2722
2723 t = make_node_stat (code PASS_MEM_STAT);
2724 TREE_TYPE (t) = tt;
2725
2726 return t;
2727 }
2728
2729 tree
2730 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2731 {
2732 int length = sizeof (struct tree_exp);
2733 #ifdef GATHER_STATISTICS
2734 tree_node_kind kind;
2735 #endif
2736 tree t;
2737
2738 #ifdef GATHER_STATISTICS
2739 switch (TREE_CODE_CLASS (code))
2740 {
2741 case tcc_statement: /* an expression with side effects */
2742 kind = s_kind;
2743 break;
2744 case tcc_reference: /* a reference */
2745 kind = r_kind;
2746 break;
2747 default:
2748 kind = e_kind;
2749 break;
2750 }
2751
2752 tree_node_counts[(int) kind]++;
2753 tree_node_sizes[(int) kind] += length;
2754 #endif
2755
2756 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2757
2758 t = ggc_alloc_zone_pass_stat (length, &tree_zone);
2759
2760 memset (t, 0, sizeof (struct tree_common));
2761
2762 TREE_SET_CODE (t, code);
2763
2764 TREE_TYPE (t) = type;
2765 #ifdef USE_MAPPED_LOCATION
2766 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2767 #else
2768 SET_EXPR_LOCUS (t, NULL);
2769 #endif
2770 TREE_COMPLEXITY (t) = 0;
2771 TREE_OPERAND (t, 0) = node;
2772 TREE_BLOCK (t) = NULL_TREE;
2773 if (node && !TYPE_P (node))
2774 {
2775 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2776 TREE_READONLY (t) = TREE_READONLY (node);
2777 }
2778
2779 if (TREE_CODE_CLASS (code) == tcc_statement)
2780 TREE_SIDE_EFFECTS (t) = 1;
2781 else switch (code)
2782 {
2783 case VA_ARG_EXPR:
2784 /* All of these have side-effects, no matter what their
2785 operands are. */
2786 TREE_SIDE_EFFECTS (t) = 1;
2787 TREE_READONLY (t) = 0;
2788 break;
2789
2790 case MISALIGNED_INDIRECT_REF:
2791 case ALIGN_INDIRECT_REF:
2792 case INDIRECT_REF:
2793 /* Whether a dereference is readonly has nothing to do with whether
2794 its operand is readonly. */
2795 TREE_READONLY (t) = 0;
2796 break;
2797
2798 case ADDR_EXPR:
2799 if (node)
2800 recompute_tree_invarant_for_addr_expr (t);
2801 break;
2802
2803 default:
2804 if (TREE_CODE_CLASS (code) == tcc_unary
2805 && node && !TYPE_P (node)
2806 && TREE_CONSTANT (node))
2807 TREE_CONSTANT (t) = 1;
2808 if (TREE_CODE_CLASS (code) == tcc_unary
2809 && node && TREE_INVARIANT (node))
2810 TREE_INVARIANT (t) = 1;
2811 if (TREE_CODE_CLASS (code) == tcc_reference
2812 && node && TREE_THIS_VOLATILE (node))
2813 TREE_THIS_VOLATILE (t) = 1;
2814 break;
2815 }
2816
2817 return t;
2818 }
2819
2820 #define PROCESS_ARG(N) \
2821 do { \
2822 TREE_OPERAND (t, N) = arg##N; \
2823 if (arg##N &&!TYPE_P (arg##N)) \
2824 { \
2825 if (TREE_SIDE_EFFECTS (arg##N)) \
2826 side_effects = 1; \
2827 if (!TREE_READONLY (arg##N)) \
2828 read_only = 0; \
2829 if (!TREE_CONSTANT (arg##N)) \
2830 constant = 0; \
2831 if (!TREE_INVARIANT (arg##N)) \
2832 invariant = 0; \
2833 } \
2834 } while (0)
2835
2836 tree
2837 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2838 {
2839 bool constant, read_only, side_effects, invariant;
2840 tree t;
2841
2842 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2843
2844 t = make_node_stat (code PASS_MEM_STAT);
2845 TREE_TYPE (t) = tt;
2846
2847 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2848 result based on those same flags for the arguments. But if the
2849 arguments aren't really even `tree' expressions, we shouldn't be trying
2850 to do this. */
2851
2852 /* Expressions without side effects may be constant if their
2853 arguments are as well. */
2854 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2855 || TREE_CODE_CLASS (code) == tcc_binary);
2856 read_only = 1;
2857 side_effects = TREE_SIDE_EFFECTS (t);
2858 invariant = constant;
2859
2860 PROCESS_ARG(0);
2861 PROCESS_ARG(1);
2862
2863 TREE_READONLY (t) = read_only;
2864 TREE_CONSTANT (t) = constant;
2865 TREE_INVARIANT (t) = invariant;
2866 TREE_SIDE_EFFECTS (t) = side_effects;
2867 TREE_THIS_VOLATILE (t)
2868 = (TREE_CODE_CLASS (code) == tcc_reference
2869 && arg0 && TREE_THIS_VOLATILE (arg0));
2870
2871 return t;
2872 }
2873
2874 tree
2875 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2876 tree arg2 MEM_STAT_DECL)
2877 {
2878 bool constant, read_only, side_effects, invariant;
2879 tree t;
2880
2881 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2882
2883 t = make_node_stat (code PASS_MEM_STAT);
2884 TREE_TYPE (t) = tt;
2885
2886 side_effects = TREE_SIDE_EFFECTS (t);
2887
2888 PROCESS_ARG(0);
2889 PROCESS_ARG(1);
2890 PROCESS_ARG(2);
2891
2892 if (code == CALL_EXPR && !side_effects)
2893 {
2894 tree node;
2895 int i;
2896
2897 /* Calls have side-effects, except those to const or
2898 pure functions. */
2899 i = call_expr_flags (t);
2900 if (!(i & (ECF_CONST | ECF_PURE)))
2901 side_effects = 1;
2902
2903 /* And even those have side-effects if their arguments do. */
2904 else for (node = arg1; node; node = TREE_CHAIN (node))
2905 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2906 {
2907 side_effects = 1;
2908 break;
2909 }
2910 }
2911
2912 TREE_SIDE_EFFECTS (t) = side_effects;
2913 TREE_THIS_VOLATILE (t)
2914 = (TREE_CODE_CLASS (code) == tcc_reference
2915 && arg0 && TREE_THIS_VOLATILE (arg0));
2916
2917 return t;
2918 }
2919
2920 tree
2921 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2922 tree arg2, tree arg3 MEM_STAT_DECL)
2923 {
2924 bool constant, read_only, side_effects, invariant;
2925 tree t;
2926
2927 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2928
2929 t = make_node_stat (code PASS_MEM_STAT);
2930 TREE_TYPE (t) = tt;
2931
2932 side_effects = TREE_SIDE_EFFECTS (t);
2933
2934 PROCESS_ARG(0);
2935 PROCESS_ARG(1);
2936 PROCESS_ARG(2);
2937 PROCESS_ARG(3);
2938
2939 TREE_SIDE_EFFECTS (t) = side_effects;
2940 TREE_THIS_VOLATILE (t)
2941 = (TREE_CODE_CLASS (code) == tcc_reference
2942 && arg0 && TREE_THIS_VOLATILE (arg0));
2943
2944 return t;
2945 }
2946
2947 tree
2948 build7_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2949 tree arg2, tree arg3, tree arg4, tree arg5,
2950 tree arg6 MEM_STAT_DECL)
2951 {
2952 bool constant, read_only, side_effects, invariant;
2953 tree t;
2954
2955 gcc_assert (code == TARGET_MEM_REF);
2956
2957 t = make_node_stat (code PASS_MEM_STAT);
2958 TREE_TYPE (t) = tt;
2959
2960 side_effects = TREE_SIDE_EFFECTS (t);
2961
2962 PROCESS_ARG(0);
2963 PROCESS_ARG(1);
2964 PROCESS_ARG(2);
2965 PROCESS_ARG(3);
2966 PROCESS_ARG(4);
2967 PROCESS_ARG(5);
2968 PROCESS_ARG(6);
2969
2970 TREE_SIDE_EFFECTS (t) = side_effects;
2971 TREE_THIS_VOLATILE (t) = 0;
2972
2973 return t;
2974 }
2975
2976 /* Similar except don't specify the TREE_TYPE
2977 and leave the TREE_SIDE_EFFECTS as 0.
2978 It is permissible for arguments to be null,
2979 or even garbage if their values do not matter. */
2980
2981 tree
2982 build_nt (enum tree_code code, ...)
2983 {
2984 tree t;
2985 int length;
2986 int i;
2987 va_list p;
2988
2989 va_start (p, code);
2990
2991 t = make_node (code);
2992 length = TREE_CODE_LENGTH (code);
2993
2994 for (i = 0; i < length; i++)
2995 TREE_OPERAND (t, i) = va_arg (p, tree);
2996
2997 va_end (p);
2998 return t;
2999 }
3000 \f
3001 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3002 We do NOT enter this node in any sort of symbol table.
3003
3004 layout_decl is used to set up the decl's storage layout.
3005 Other slots are initialized to 0 or null pointers. */
3006
3007 tree
3008 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
3009 {
3010 tree t;
3011
3012 t = make_node_stat (code PASS_MEM_STAT);
3013
3014 /* if (type == error_mark_node)
3015 type = integer_type_node; */
3016 /* That is not done, deliberately, so that having error_mark_node
3017 as the type can suppress useless errors in the use of this variable. */
3018
3019 DECL_NAME (t) = name;
3020 TREE_TYPE (t) = type;
3021
3022 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3023 layout_decl (t, 0);
3024 else if (code == FUNCTION_DECL)
3025 DECL_MODE (t) = FUNCTION_MODE;
3026
3027 if (CODE_CONTAINS_STRUCT (code, TS_DECL_WITH_VIS))
3028 {
3029 /* Set default visibility to whatever the user supplied with
3030 visibility_specified depending on #pragma GCC visibility. */
3031 DECL_VISIBILITY (t) = default_visibility;
3032 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
3033 }
3034
3035 return t;
3036 }
3037
3038 /* Builds and returns function declaration with NAME and TYPE. */
3039
3040 tree
3041 build_fn_decl (const char *name, tree type)
3042 {
3043 tree id = get_identifier (name);
3044 tree decl = build_decl (FUNCTION_DECL, id, type);
3045
3046 DECL_EXTERNAL (decl) = 1;
3047 TREE_PUBLIC (decl) = 1;
3048 DECL_ARTIFICIAL (decl) = 1;
3049 TREE_NOTHROW (decl) = 1;
3050
3051 return decl;
3052 }
3053
3054 \f
3055 /* BLOCK nodes are used to represent the structure of binding contours
3056 and declarations, once those contours have been exited and their contents
3057 compiled. This information is used for outputting debugging info. */
3058
3059 tree
3060 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
3061 {
3062 tree block = make_node (BLOCK);
3063
3064 BLOCK_VARS (block) = vars;
3065 BLOCK_SUBBLOCKS (block) = subblocks;
3066 BLOCK_SUPERCONTEXT (block) = supercontext;
3067 BLOCK_CHAIN (block) = chain;
3068 return block;
3069 }
3070
3071 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
3072 /* ??? gengtype doesn't handle conditionals */
3073 static GTY(()) location_t *last_annotated_node;
3074 #endif
3075
3076 #ifdef USE_MAPPED_LOCATION
3077
3078 expanded_location
3079 expand_location (source_location loc)
3080 {
3081 expanded_location xloc;
3082 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
3083 else
3084 {
3085 const struct line_map *map = linemap_lookup (&line_table, loc);
3086 xloc.file = map->to_file;
3087 xloc.line = SOURCE_LINE (map, loc);
3088 xloc.column = SOURCE_COLUMN (map, loc);
3089 };
3090 return xloc;
3091 }
3092
3093 #else
3094
3095 /* Record the exact location where an expression or an identifier were
3096 encountered. */
3097
3098 void
3099 annotate_with_file_line (tree node, const char *file, int line)
3100 {
3101 /* Roughly one percent of the calls to this function are to annotate
3102 a node with the same information already attached to that node!
3103 Just return instead of wasting memory. */
3104 if (EXPR_LOCUS (node)
3105 && EXPR_LINENO (node) == line
3106 && (EXPR_FILENAME (node) == file
3107 || !strcmp (EXPR_FILENAME (node), file)))
3108 {
3109 last_annotated_node = EXPR_LOCUS (node);
3110 return;
3111 }
3112
3113 /* In heavily macroized code (such as GCC itself) this single
3114 entry cache can reduce the number of allocations by more
3115 than half. */
3116 if (last_annotated_node
3117 && last_annotated_node->line == line
3118 && (last_annotated_node->file == file
3119 || !strcmp (last_annotated_node->file, file)))
3120 {
3121 SET_EXPR_LOCUS (node, last_annotated_node);
3122 return;
3123 }
3124
3125 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
3126 EXPR_LINENO (node) = line;
3127 EXPR_FILENAME (node) = file;
3128 last_annotated_node = EXPR_LOCUS (node);
3129 }
3130
3131 void
3132 annotate_with_locus (tree node, location_t locus)
3133 {
3134 annotate_with_file_line (node, locus.file, locus.line);
3135 }
3136 #endif
3137 \f
3138 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
3139 is ATTRIBUTE. */
3140
3141 tree
3142 build_decl_attribute_variant (tree ddecl, tree attribute)
3143 {
3144 DECL_ATTRIBUTES (ddecl) = attribute;
3145 return ddecl;
3146 }
3147
3148 /* Borrowed from hashtab.c iterative_hash implementation. */
3149 #define mix(a,b,c) \
3150 { \
3151 a -= b; a -= c; a ^= (c>>13); \
3152 b -= c; b -= a; b ^= (a<< 8); \
3153 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
3154 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
3155 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
3156 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
3157 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
3158 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
3159 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
3160 }
3161
3162
3163 /* Produce good hash value combining VAL and VAL2. */
3164 static inline hashval_t
3165 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
3166 {
3167 /* the golden ratio; an arbitrary value. */
3168 hashval_t a = 0x9e3779b9;
3169
3170 mix (a, val, val2);
3171 return val2;
3172 }
3173
3174 /* Produce good hash value combining PTR and VAL2. */
3175 static inline hashval_t
3176 iterative_hash_pointer (void *ptr, hashval_t val2)
3177 {
3178 if (sizeof (ptr) == sizeof (hashval_t))
3179 return iterative_hash_hashval_t ((size_t) ptr, val2);
3180 else
3181 {
3182 hashval_t a = (hashval_t) (size_t) ptr;
3183 /* Avoid warnings about shifting of more than the width of the type on
3184 hosts that won't execute this path. */
3185 int zero = 0;
3186 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
3187 mix (a, b, val2);
3188 return val2;
3189 }
3190 }
3191
3192 /* Produce good hash value combining VAL and VAL2. */
3193 static inline hashval_t
3194 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
3195 {
3196 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
3197 return iterative_hash_hashval_t (val, val2);
3198 else
3199 {
3200 hashval_t a = (hashval_t) val;
3201 /* Avoid warnings about shifting of more than the width of the type on
3202 hosts that won't execute this path. */
3203 int zero = 0;
3204 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
3205 mix (a, b, val2);
3206 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
3207 {
3208 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
3209 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
3210 mix (a, b, val2);
3211 }
3212 return val2;
3213 }
3214 }
3215
3216 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3217 is ATTRIBUTE.
3218
3219 Record such modified types already made so we don't make duplicates. */
3220
3221 tree
3222 build_type_attribute_variant (tree ttype, tree attribute)
3223 {
3224 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3225 {
3226 hashval_t hashcode = 0;
3227 tree ntype;
3228 enum tree_code code = TREE_CODE (ttype);
3229
3230 ntype = copy_node (ttype);
3231
3232 TYPE_POINTER_TO (ntype) = 0;
3233 TYPE_REFERENCE_TO (ntype) = 0;
3234 TYPE_ATTRIBUTES (ntype) = attribute;
3235
3236 /* Create a new main variant of TYPE. */
3237 TYPE_MAIN_VARIANT (ntype) = ntype;
3238 TYPE_NEXT_VARIANT (ntype) = 0;
3239 set_type_quals (ntype, TYPE_UNQUALIFIED);
3240
3241 hashcode = iterative_hash_object (code, hashcode);
3242 if (TREE_TYPE (ntype))
3243 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
3244 hashcode);
3245 hashcode = attribute_hash_list (attribute, hashcode);
3246
3247 switch (TREE_CODE (ntype))
3248 {
3249 case FUNCTION_TYPE:
3250 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3251 break;
3252 case ARRAY_TYPE:
3253 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3254 hashcode);
3255 break;
3256 case INTEGER_TYPE:
3257 hashcode = iterative_hash_object
3258 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3259 hashcode = iterative_hash_object
3260 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3261 break;
3262 case REAL_TYPE:
3263 {
3264 unsigned int precision = TYPE_PRECISION (ntype);
3265 hashcode = iterative_hash_object (precision, hashcode);
3266 }
3267 break;
3268 default:
3269 break;
3270 }
3271
3272 ntype = type_hash_canon (hashcode, ntype);
3273 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3274 }
3275
3276 return ttype;
3277 }
3278
3279
3280 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3281 or zero if not.
3282
3283 We try both `text' and `__text__', ATTR may be either one. */
3284 /* ??? It might be a reasonable simplification to require ATTR to be only
3285 `text'. One might then also require attribute lists to be stored in
3286 their canonicalized form. */
3287
3288 static int
3289 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3290 {
3291 int ident_len;
3292 const char *p;
3293
3294 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3295 return 0;
3296
3297 p = IDENTIFIER_POINTER (ident);
3298 ident_len = IDENTIFIER_LENGTH (ident);
3299
3300 if (ident_len == attr_len
3301 && strcmp (attr, p) == 0)
3302 return 1;
3303
3304 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3305 if (attr[0] == '_')
3306 {
3307 gcc_assert (attr[1] == '_');
3308 gcc_assert (attr[attr_len - 2] == '_');
3309 gcc_assert (attr[attr_len - 1] == '_');
3310 gcc_assert (attr[1] == '_');
3311 if (ident_len == attr_len - 4
3312 && strncmp (attr + 2, p, attr_len - 4) == 0)
3313 return 1;
3314 }
3315 else
3316 {
3317 if (ident_len == attr_len + 4
3318 && p[0] == '_' && p[1] == '_'
3319 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3320 && strncmp (attr, p + 2, attr_len) == 0)
3321 return 1;
3322 }
3323
3324 return 0;
3325 }
3326
3327 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3328 or zero if not.
3329
3330 We try both `text' and `__text__', ATTR may be either one. */
3331
3332 int
3333 is_attribute_p (const char *attr, tree ident)
3334 {
3335 return is_attribute_with_length_p (attr, strlen (attr), ident);
3336 }
3337
3338 /* Given an attribute name and a list of attributes, return a pointer to the
3339 attribute's list element if the attribute is part of the list, or NULL_TREE
3340 if not found. If the attribute appears more than once, this only
3341 returns the first occurrence; the TREE_CHAIN of the return value should
3342 be passed back in if further occurrences are wanted. */
3343
3344 tree
3345 lookup_attribute (const char *attr_name, tree list)
3346 {
3347 tree l;
3348 size_t attr_len = strlen (attr_name);
3349
3350 for (l = list; l; l = TREE_CHAIN (l))
3351 {
3352 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3353 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3354 return l;
3355 }
3356
3357 return NULL_TREE;
3358 }
3359
3360 /* Return an attribute list that is the union of a1 and a2. */
3361
3362 tree
3363 merge_attributes (tree a1, tree a2)
3364 {
3365 tree attributes;
3366
3367 /* Either one unset? Take the set one. */
3368
3369 if ((attributes = a1) == 0)
3370 attributes = a2;
3371
3372 /* One that completely contains the other? Take it. */
3373
3374 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3375 {
3376 if (attribute_list_contained (a2, a1))
3377 attributes = a2;
3378 else
3379 {
3380 /* Pick the longest list, and hang on the other list. */
3381
3382 if (list_length (a1) < list_length (a2))
3383 attributes = a2, a2 = a1;
3384
3385 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3386 {
3387 tree a;
3388 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3389 attributes);
3390 a != NULL_TREE;
3391 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3392 TREE_CHAIN (a)))
3393 {
3394 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3395 break;
3396 }
3397 if (a == NULL_TREE)
3398 {
3399 a1 = copy_node (a2);
3400 TREE_CHAIN (a1) = attributes;
3401 attributes = a1;
3402 }
3403 }
3404 }
3405 }
3406 return attributes;
3407 }
3408
3409 /* Given types T1 and T2, merge their attributes and return
3410 the result. */
3411
3412 tree
3413 merge_type_attributes (tree t1, tree t2)
3414 {
3415 return merge_attributes (TYPE_ATTRIBUTES (t1),
3416 TYPE_ATTRIBUTES (t2));
3417 }
3418
3419 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3420 the result. */
3421
3422 tree
3423 merge_decl_attributes (tree olddecl, tree newdecl)
3424 {
3425 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3426 DECL_ATTRIBUTES (newdecl));
3427 }
3428
3429 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3430
3431 /* Specialization of merge_decl_attributes for various Windows targets.
3432
3433 This handles the following situation:
3434
3435 __declspec (dllimport) int foo;
3436 int foo;
3437
3438 The second instance of `foo' nullifies the dllimport. */
3439
3440 tree
3441 merge_dllimport_decl_attributes (tree old, tree new)
3442 {
3443 tree a;
3444 int delete_dllimport_p = 1;
3445
3446 /* What we need to do here is remove from `old' dllimport if it doesn't
3447 appear in `new'. dllimport behaves like extern: if a declaration is
3448 marked dllimport and a definition appears later, then the object
3449 is not dllimport'd. We also remove a `new' dllimport if the old list
3450 contains dllexport: dllexport always overrides dllimport, regardless
3451 of the order of declaration. */
3452 if (!VAR_OR_FUNCTION_DECL_P (new))
3453 delete_dllimport_p = 0;
3454 else if (DECL_DLLIMPORT_P (new)
3455 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
3456 {
3457 DECL_DLLIMPORT_P (new) = 0;
3458 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
3459 "dllimport ignored", new);
3460 }
3461 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new))
3462 {
3463 /* Warn about overriding a symbol that has already been used. eg:
3464 extern int __attribute__ ((dllimport)) foo;
3465 int* bar () {return &foo;}
3466 int foo;
3467 */
3468 if (TREE_USED (old))
3469 {
3470 warning (0, "%q+D redeclared without dllimport attribute "
3471 "after being referenced with dll linkage", new);
3472 /* If we have used a variable's address with dllimport linkage,
3473 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
3474 decl may already have had TREE_INVARIANT and TREE_CONSTANT
3475 computed.
3476 We still remove the attribute so that assembler code refers
3477 to '&foo rather than '_imp__foo'. */
3478 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
3479 DECL_DLLIMPORT_P (new) = 1;
3480 }
3481
3482 /* Let an inline definition silently override the external reference,
3483 but otherwise warn about attribute inconsistency. */
3484 else if (TREE_CODE (new) == VAR_DECL
3485 || !DECL_DECLARED_INLINE_P (new))
3486 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
3487 "previous dllimport ignored", new);
3488 }
3489 else
3490 delete_dllimport_p = 0;
3491
3492 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new));
3493
3494 if (delete_dllimport_p)
3495 {
3496 tree prev, t;
3497 const size_t attr_len = strlen ("dllimport");
3498
3499 /* Scan the list for dllimport and delete it. */
3500 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3501 {
3502 if (is_attribute_with_length_p ("dllimport", attr_len,
3503 TREE_PURPOSE (t)))
3504 {
3505 if (prev == NULL_TREE)
3506 a = TREE_CHAIN (a);
3507 else
3508 TREE_CHAIN (prev) = TREE_CHAIN (t);
3509 break;
3510 }
3511 }
3512 }
3513
3514 return a;
3515 }
3516
3517 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3518 struct attribute_spec.handler. */
3519
3520 tree
3521 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3522 bool *no_add_attrs)
3523 {
3524 tree node = *pnode;
3525
3526 /* These attributes may apply to structure and union types being created,
3527 but otherwise should pass to the declaration involved. */
3528 if (!DECL_P (node))
3529 {
3530 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3531 | (int) ATTR_FLAG_ARRAY_NEXT))
3532 {
3533 *no_add_attrs = true;
3534 return tree_cons (name, args, NULL_TREE);
3535 }
3536 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3537 {
3538 warning (OPT_Wattributes, "%qs attribute ignored",
3539 IDENTIFIER_POINTER (name));
3540 *no_add_attrs = true;
3541 }
3542
3543 return NULL_TREE;
3544 }
3545
3546 /* Report error on dllimport ambiguities seen now before they cause
3547 any damage. */
3548 if (is_attribute_p ("dllimport", name))
3549 {
3550 /* Honor any target-specific overrides. */
3551 if (!targetm.valid_dllimport_attribute_p (node))
3552 *no_add_attrs = true;
3553
3554 else if (TREE_CODE (node) == FUNCTION_DECL
3555 && DECL_DECLARED_INLINE_P (node))
3556 {
3557 warning (OPT_Wattributes, "inline function %q+D declared as "
3558 " dllimport: attribute ignored", node);
3559 *no_add_attrs = true;
3560 }
3561 /* Like MS, treat definition of dllimported variables and
3562 non-inlined functions on declaration as syntax errors. */
3563 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
3564 {
3565 error ("function %q+D definition is marked dllimport", node);
3566 *no_add_attrs = true;
3567 }
3568
3569 else if (TREE_CODE (node) == VAR_DECL)
3570 {
3571 if (DECL_INITIAL (node))
3572 {
3573 error ("variable %q+D definition is marked dllimport",
3574 node);
3575 *no_add_attrs = true;
3576 }
3577
3578 /* `extern' needn't be specified with dllimport.
3579 Specify `extern' now and hope for the best. Sigh. */
3580 DECL_EXTERNAL (node) = 1;
3581 /* Also, implicitly give dllimport'd variables declared within
3582 a function global scope, unless declared static. */
3583 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3584 TREE_PUBLIC (node) = 1;
3585 }
3586
3587 if (*no_add_attrs == false)
3588 DECL_DLLIMPORT_P (node) = 1;
3589 }
3590
3591 /* Report error if symbol is not accessible at global scope. */
3592 if (!TREE_PUBLIC (node)
3593 && (TREE_CODE (node) == VAR_DECL
3594 || TREE_CODE (node) == FUNCTION_DECL))
3595 {
3596 error ("external linkage required for symbol %q+D because of "
3597 "%qs attribute", node, IDENTIFIER_POINTER (name));
3598 *no_add_attrs = true;
3599 }
3600
3601 return NULL_TREE;
3602 }
3603
3604 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3605 \f
3606 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3607 of the various TYPE_QUAL values. */
3608
3609 static void
3610 set_type_quals (tree type, int type_quals)
3611 {
3612 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3613 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3614 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3615 }
3616
3617 /* Returns true iff cand is equivalent to base with type_quals. */
3618
3619 bool
3620 check_qualified_type (tree cand, tree base, int type_quals)
3621 {
3622 return (TYPE_QUALS (cand) == type_quals
3623 && TYPE_NAME (cand) == TYPE_NAME (base)
3624 /* Apparently this is needed for Objective-C. */
3625 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3626 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3627 TYPE_ATTRIBUTES (base)));
3628 }
3629
3630 /* Return a version of the TYPE, qualified as indicated by the
3631 TYPE_QUALS, if one exists. If no qualified version exists yet,
3632 return NULL_TREE. */
3633
3634 tree
3635 get_qualified_type (tree type, int type_quals)
3636 {
3637 tree t;
3638
3639 if (TYPE_QUALS (type) == type_quals)
3640 return type;
3641
3642 /* Search the chain of variants to see if there is already one there just
3643 like the one we need to have. If so, use that existing one. We must
3644 preserve the TYPE_NAME, since there is code that depends on this. */
3645 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3646 if (check_qualified_type (t, type, type_quals))
3647 return t;
3648
3649 return NULL_TREE;
3650 }
3651
3652 /* Like get_qualified_type, but creates the type if it does not
3653 exist. This function never returns NULL_TREE. */
3654
3655 tree
3656 build_qualified_type (tree type, int type_quals)
3657 {
3658 tree t;
3659
3660 /* See if we already have the appropriate qualified variant. */
3661 t = get_qualified_type (type, type_quals);
3662
3663 /* If not, build it. */
3664 if (!t)
3665 {
3666 t = build_variant_type_copy (type);
3667 set_type_quals (t, type_quals);
3668
3669 /* If it's a pointer type, the new variant points to the same type. */
3670 if (TREE_CODE (type) == POINTER_TYPE)
3671 {
3672 TYPE_NEXT_PTR_TO (t) = TYPE_NEXT_PTR_TO (type);
3673 TYPE_NEXT_PTR_TO (type) = t;
3674 }
3675
3676 /* Same for a reference type. */
3677 else if (TREE_CODE (type) == REFERENCE_TYPE)
3678 {
3679 TYPE_NEXT_REF_TO (t) = TYPE_NEXT_REF_TO (type);
3680 TYPE_NEXT_REF_TO (type) = t;
3681 }
3682 }
3683
3684 return t;
3685 }
3686
3687 /* Create a new distinct copy of TYPE. The new type is made its own
3688 MAIN_VARIANT. */
3689
3690 tree
3691 build_distinct_type_copy (tree type)
3692 {
3693 tree t = copy_node (type);
3694
3695 TYPE_POINTER_TO (t) = 0;
3696 TYPE_REFERENCE_TO (t) = 0;
3697
3698 /* Make it its own variant. */
3699 TYPE_MAIN_VARIANT (t) = t;
3700 TYPE_NEXT_VARIANT (t) = 0;
3701
3702 return t;
3703 }
3704
3705 /* Create a new variant of TYPE, equivalent but distinct.
3706 This is so the caller can modify it. */
3707
3708 tree
3709 build_variant_type_copy (tree type)
3710 {
3711 tree t, m = TYPE_MAIN_VARIANT (type);
3712
3713 t = build_distinct_type_copy (type);
3714
3715 /* Add the new type to the chain of variants of TYPE. */
3716 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3717 TYPE_NEXT_VARIANT (m) = t;
3718 TYPE_MAIN_VARIANT (t) = m;
3719
3720 return t;
3721 }
3722 \f
3723 /* Return true if the from tree in both tree maps are equal. */
3724
3725 int
3726 tree_map_eq (const void *va, const void *vb)
3727 {
3728 const struct tree_map *a = va, *b = vb;
3729 return (a->from == b->from);
3730 }
3731
3732 /* Hash a from tree in a tree_map. */
3733
3734 unsigned int
3735 tree_map_hash (const void *item)
3736 {
3737 return (((const struct tree_map *) item)->hash);
3738 }
3739
3740 /* Return true if this tree map structure is marked for garbage collection
3741 purposes. We simply return true if the from tree is marked, so that this
3742 structure goes away when the from tree goes away. */
3743
3744 int
3745 tree_map_marked_p (const void *p)
3746 {
3747 tree from = ((struct tree_map *) p)->from;
3748
3749 return ggc_marked_p (from);
3750 }
3751
3752 /* Return true if the trees in the tree_int_map *'s VA and VB are equal. */
3753
3754 static int
3755 tree_int_map_eq (const void *va, const void *vb)
3756 {
3757 const struct tree_int_map *a = va, *b = vb;
3758 return (a->from == b->from);
3759 }
3760
3761 /* Hash a from tree in the tree_int_map * ITEM. */
3762
3763 static unsigned int
3764 tree_int_map_hash (const void *item)
3765 {
3766 return htab_hash_pointer (((const struct tree_int_map *)item)->from);
3767 }
3768
3769 /* Return true if this tree int map structure is marked for garbage collection
3770 purposes. We simply return true if the from tree_int_map *P's from tree is marked, so that this
3771 structure goes away when the from tree goes away. */
3772
3773 static int
3774 tree_int_map_marked_p (const void *p)
3775 {
3776 tree from = ((struct tree_int_map *) p)->from;
3777
3778 return ggc_marked_p (from);
3779 }
3780 /* Lookup an init priority for FROM, and return it if we find one. */
3781
3782 unsigned short
3783 decl_init_priority_lookup (tree from)
3784 {
3785 struct tree_int_map *h, in;
3786 in.from = from;
3787
3788 h = htab_find_with_hash (init_priority_for_decl,
3789 &in, htab_hash_pointer (from));
3790 if (h)
3791 return h->to;
3792 return 0;
3793 }
3794
3795 /* Insert a mapping FROM->TO in the init priority hashtable. */
3796
3797 void
3798 decl_init_priority_insert (tree from, unsigned short to)
3799 {
3800 struct tree_int_map *h;
3801 void **loc;
3802
3803 h = ggc_alloc (sizeof (struct tree_int_map));
3804 h->from = from;
3805 h->to = to;
3806 loc = htab_find_slot_with_hash (init_priority_for_decl, h,
3807 htab_hash_pointer (from), INSERT);
3808 *(struct tree_int_map **) loc = h;
3809 }
3810
3811 /* Look up a restrict qualified base decl for FROM. */
3812
3813 tree
3814 decl_restrict_base_lookup (tree from)
3815 {
3816 struct tree_map *h;
3817 struct tree_map in;
3818
3819 in.from = from;
3820 h = htab_find_with_hash (restrict_base_for_decl, &in,
3821 htab_hash_pointer (from));
3822 return h ? h->to : NULL_TREE;
3823 }
3824
3825 /* Record the restrict qualified base TO for FROM. */
3826
3827 void
3828 decl_restrict_base_insert (tree from, tree to)
3829 {
3830 struct tree_map *h;
3831 void **loc;
3832
3833 h = ggc_alloc (sizeof (struct tree_map));
3834 h->hash = htab_hash_pointer (from);
3835 h->from = from;
3836 h->to = to;
3837 loc = htab_find_slot_with_hash (restrict_base_for_decl, h, h->hash, INSERT);
3838 *(struct tree_map **) loc = h;
3839 }
3840
3841 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
3842
3843 static void
3844 print_debug_expr_statistics (void)
3845 {
3846 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
3847 (long) htab_size (debug_expr_for_decl),
3848 (long) htab_elements (debug_expr_for_decl),
3849 htab_collisions (debug_expr_for_decl));
3850 }
3851
3852 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
3853
3854 static void
3855 print_value_expr_statistics (void)
3856 {
3857 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
3858 (long) htab_size (value_expr_for_decl),
3859 (long) htab_elements (value_expr_for_decl),
3860 htab_collisions (value_expr_for_decl));
3861 }
3862
3863 /* Print out statistics for the RESTRICT_BASE_FOR_DECL hash table, but
3864 don't print anything if the table is empty. */
3865
3866 static void
3867 print_restrict_base_statistics (void)
3868 {
3869 if (htab_elements (restrict_base_for_decl) != 0)
3870 fprintf (stderr,
3871 "RESTRICT_BASE hash: size %ld, %ld elements, %f collisions\n",
3872 (long) htab_size (restrict_base_for_decl),
3873 (long) htab_elements (restrict_base_for_decl),
3874 htab_collisions (restrict_base_for_decl));
3875 }
3876
3877 /* Lookup a debug expression for FROM, and return it if we find one. */
3878
3879 tree
3880 decl_debug_expr_lookup (tree from)
3881 {
3882 struct tree_map *h, in;
3883 in.from = from;
3884
3885 h = htab_find_with_hash (debug_expr_for_decl, &in, htab_hash_pointer (from));
3886 if (h)
3887 return h->to;
3888 return NULL_TREE;
3889 }
3890
3891 /* Insert a mapping FROM->TO in the debug expression hashtable. */
3892
3893 void
3894 decl_debug_expr_insert (tree from, tree to)
3895 {
3896 struct tree_map *h;
3897 void **loc;
3898
3899 h = ggc_alloc (sizeof (struct tree_map));
3900 h->hash = htab_hash_pointer (from);
3901 h->from = from;
3902 h->to = to;
3903 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, h->hash, INSERT);
3904 *(struct tree_map **) loc = h;
3905 }
3906
3907 /* Lookup a value expression for FROM, and return it if we find one. */
3908
3909 tree
3910 decl_value_expr_lookup (tree from)
3911 {
3912 struct tree_map *h, in;
3913 in.from = from;
3914
3915 h = htab_find_with_hash (value_expr_for_decl, &in, htab_hash_pointer (from));
3916 if (h)
3917 return h->to;
3918 return NULL_TREE;
3919 }
3920
3921 /* Insert a mapping FROM->TO in the value expression hashtable. */
3922
3923 void
3924 decl_value_expr_insert (tree from, tree to)
3925 {
3926 struct tree_map *h;
3927 void **loc;
3928
3929 h = ggc_alloc (sizeof (struct tree_map));
3930 h->hash = htab_hash_pointer (from);
3931 h->from = from;
3932 h->to = to;
3933 loc = htab_find_slot_with_hash (value_expr_for_decl, h, h->hash, INSERT);
3934 *(struct tree_map **) loc = h;
3935 }
3936
3937 /* Hashing of types so that we don't make duplicates.
3938 The entry point is `type_hash_canon'. */
3939
3940 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3941 with types in the TREE_VALUE slots), by adding the hash codes
3942 of the individual types. */
3943
3944 unsigned int
3945 type_hash_list (tree list, hashval_t hashcode)
3946 {
3947 tree tail;
3948
3949 for (tail = list; tail; tail = TREE_CHAIN (tail))
3950 if (TREE_VALUE (tail) != error_mark_node)
3951 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3952 hashcode);
3953
3954 return hashcode;
3955 }
3956
3957 /* These are the Hashtable callback functions. */
3958
3959 /* Returns true iff the types are equivalent. */
3960
3961 static int
3962 type_hash_eq (const void *va, const void *vb)
3963 {
3964 const struct type_hash *a = va, *b = vb;
3965
3966 /* First test the things that are the same for all types. */
3967 if (a->hash != b->hash
3968 || TREE_CODE (a->type) != TREE_CODE (b->type)
3969 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3970 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3971 TYPE_ATTRIBUTES (b->type))
3972 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3973 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3974 return 0;
3975
3976 switch (TREE_CODE (a->type))
3977 {
3978 case VOID_TYPE:
3979 case COMPLEX_TYPE:
3980 case POINTER_TYPE:
3981 case REFERENCE_TYPE:
3982 return 1;
3983
3984 case VECTOR_TYPE:
3985 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3986
3987 case ENUMERAL_TYPE:
3988 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3989 && !(TYPE_VALUES (a->type)
3990 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3991 && TYPE_VALUES (b->type)
3992 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3993 && type_list_equal (TYPE_VALUES (a->type),
3994 TYPE_VALUES (b->type))))
3995 return 0;
3996
3997 /* ... fall through ... */
3998
3999 case INTEGER_TYPE:
4000 case REAL_TYPE:
4001 case BOOLEAN_TYPE:
4002 case CHAR_TYPE:
4003 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
4004 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
4005 TYPE_MAX_VALUE (b->type)))
4006 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
4007 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
4008 TYPE_MIN_VALUE (b->type))));
4009
4010 case OFFSET_TYPE:
4011 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
4012
4013 case METHOD_TYPE:
4014 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
4015 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4016 || (TYPE_ARG_TYPES (a->type)
4017 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4018 && TYPE_ARG_TYPES (b->type)
4019 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4020 && type_list_equal (TYPE_ARG_TYPES (a->type),
4021 TYPE_ARG_TYPES (b->type)))));
4022
4023 case ARRAY_TYPE:
4024 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
4025
4026 case RECORD_TYPE:
4027 case UNION_TYPE:
4028 case QUAL_UNION_TYPE:
4029 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
4030 || (TYPE_FIELDS (a->type)
4031 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
4032 && TYPE_FIELDS (b->type)
4033 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
4034 && type_list_equal (TYPE_FIELDS (a->type),
4035 TYPE_FIELDS (b->type))));
4036
4037 case FUNCTION_TYPE:
4038 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
4039 || (TYPE_ARG_TYPES (a->type)
4040 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
4041 && TYPE_ARG_TYPES (b->type)
4042 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
4043 && type_list_equal (TYPE_ARG_TYPES (a->type),
4044 TYPE_ARG_TYPES (b->type))));
4045
4046 default:
4047 return 0;
4048 }
4049 }
4050
4051 /* Return the cached hash value. */
4052
4053 static hashval_t
4054 type_hash_hash (const void *item)
4055 {
4056 return ((const struct type_hash *) item)->hash;
4057 }
4058
4059 /* Look in the type hash table for a type isomorphic to TYPE.
4060 If one is found, return it. Otherwise return 0. */
4061
4062 tree
4063 type_hash_lookup (hashval_t hashcode, tree type)
4064 {
4065 struct type_hash *h, in;
4066
4067 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
4068 must call that routine before comparing TYPE_ALIGNs. */
4069 layout_type (type);
4070
4071 in.hash = hashcode;
4072 in.type = type;
4073
4074 h = htab_find_with_hash (type_hash_table, &in, hashcode);
4075 if (h)
4076 return h->type;
4077 return NULL_TREE;
4078 }
4079
4080 /* Add an entry to the type-hash-table
4081 for a type TYPE whose hash code is HASHCODE. */
4082
4083 void
4084 type_hash_add (hashval_t hashcode, tree type)
4085 {
4086 struct type_hash *h;
4087 void **loc;
4088
4089 h = ggc_alloc (sizeof (struct type_hash));
4090 h->hash = hashcode;
4091 h->type = type;
4092 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
4093 *(struct type_hash **) loc = h;
4094 }
4095
4096 /* Given TYPE, and HASHCODE its hash code, return the canonical
4097 object for an identical type if one already exists.
4098 Otherwise, return TYPE, and record it as the canonical object.
4099
4100 To use this function, first create a type of the sort you want.
4101 Then compute its hash code from the fields of the type that
4102 make it different from other similar types.
4103 Then call this function and use the value. */
4104
4105 tree
4106 type_hash_canon (unsigned int hashcode, tree type)
4107 {
4108 tree t1;
4109
4110 /* The hash table only contains main variants, so ensure that's what we're
4111 being passed. */
4112 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
4113
4114 if (!lang_hooks.types.hash_types)
4115 return type;
4116
4117 /* See if the type is in the hash table already. If so, return it.
4118 Otherwise, add the type. */
4119 t1 = type_hash_lookup (hashcode, type);
4120 if (t1 != 0)
4121 {
4122 #ifdef GATHER_STATISTICS
4123 tree_node_counts[(int) t_kind]--;
4124 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
4125 #endif
4126 return t1;
4127 }
4128 else
4129 {
4130 type_hash_add (hashcode, type);
4131 return type;
4132 }
4133 }
4134
4135 /* See if the data pointed to by the type hash table is marked. We consider
4136 it marked if the type is marked or if a debug type number or symbol
4137 table entry has been made for the type. This reduces the amount of
4138 debugging output and eliminates that dependency of the debug output on
4139 the number of garbage collections. */
4140
4141 static int
4142 type_hash_marked_p (const void *p)
4143 {
4144 tree type = ((struct type_hash *) p)->type;
4145
4146 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
4147 }
4148
4149 static void
4150 print_type_hash_statistics (void)
4151 {
4152 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
4153 (long) htab_size (type_hash_table),
4154 (long) htab_elements (type_hash_table),
4155 htab_collisions (type_hash_table));
4156 }
4157
4158 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
4159 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
4160 by adding the hash codes of the individual attributes. */
4161
4162 unsigned int
4163 attribute_hash_list (tree list, hashval_t hashcode)
4164 {
4165 tree tail;
4166
4167 for (tail = list; tail; tail = TREE_CHAIN (tail))
4168 /* ??? Do we want to add in TREE_VALUE too? */
4169 hashcode = iterative_hash_object
4170 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
4171 return hashcode;
4172 }
4173
4174 /* Given two lists of attributes, return true if list l2 is
4175 equivalent to l1. */
4176
4177 int
4178 attribute_list_equal (tree l1, tree l2)
4179 {
4180 return attribute_list_contained (l1, l2)
4181 && attribute_list_contained (l2, l1);
4182 }
4183
4184 /* Given two lists of attributes, return true if list L2 is
4185 completely contained within L1. */
4186 /* ??? This would be faster if attribute names were stored in a canonicalized
4187 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
4188 must be used to show these elements are equivalent (which they are). */
4189 /* ??? It's not clear that attributes with arguments will always be handled
4190 correctly. */
4191
4192 int
4193 attribute_list_contained (tree l1, tree l2)
4194 {
4195 tree t1, t2;
4196
4197 /* First check the obvious, maybe the lists are identical. */
4198 if (l1 == l2)
4199 return 1;
4200
4201 /* Maybe the lists are similar. */
4202 for (t1 = l1, t2 = l2;
4203 t1 != 0 && t2 != 0
4204 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
4205 && TREE_VALUE (t1) == TREE_VALUE (t2);
4206 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
4207
4208 /* Maybe the lists are equal. */
4209 if (t1 == 0 && t2 == 0)
4210 return 1;
4211
4212 for (; t2 != 0; t2 = TREE_CHAIN (t2))
4213 {
4214 tree attr;
4215 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
4216 attr != NULL_TREE;
4217 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
4218 TREE_CHAIN (attr)))
4219 {
4220 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
4221 break;
4222 }
4223
4224 if (attr == 0)
4225 return 0;
4226
4227 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
4228 return 0;
4229 }
4230
4231 return 1;
4232 }
4233
4234 /* Given two lists of types
4235 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
4236 return 1 if the lists contain the same types in the same order.
4237 Also, the TREE_PURPOSEs must match. */
4238
4239 int
4240 type_list_equal (tree l1, tree l2)
4241 {
4242 tree t1, t2;
4243
4244 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
4245 if (TREE_VALUE (t1) != TREE_VALUE (t2)
4246 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
4247 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
4248 && (TREE_TYPE (TREE_PURPOSE (t1))
4249 == TREE_TYPE (TREE_PURPOSE (t2))))))
4250 return 0;
4251
4252 return t1 == t2;
4253 }
4254
4255 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
4256 given by TYPE. If the argument list accepts variable arguments,
4257 then this function counts only the ordinary arguments. */
4258
4259 int
4260 type_num_arguments (tree type)
4261 {
4262 int i = 0;
4263 tree t;
4264
4265 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
4266 /* If the function does not take a variable number of arguments,
4267 the last element in the list will have type `void'. */
4268 if (VOID_TYPE_P (TREE_VALUE (t)))
4269 break;
4270 else
4271 ++i;
4272
4273 return i;
4274 }
4275
4276 /* Nonzero if integer constants T1 and T2
4277 represent the same constant value. */
4278
4279 int
4280 tree_int_cst_equal (tree t1, tree t2)
4281 {
4282 if (t1 == t2)
4283 return 1;
4284
4285 if (t1 == 0 || t2 == 0)
4286 return 0;
4287
4288 if (TREE_CODE (t1) == INTEGER_CST
4289 && TREE_CODE (t2) == INTEGER_CST
4290 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4291 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
4292 return 1;
4293
4294 return 0;
4295 }
4296
4297 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
4298 The precise way of comparison depends on their data type. */
4299
4300 int
4301 tree_int_cst_lt (tree t1, tree t2)
4302 {
4303 if (t1 == t2)
4304 return 0;
4305
4306 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
4307 {
4308 int t1_sgn = tree_int_cst_sgn (t1);
4309 int t2_sgn = tree_int_cst_sgn (t2);
4310
4311 if (t1_sgn < t2_sgn)
4312 return 1;
4313 else if (t1_sgn > t2_sgn)
4314 return 0;
4315 /* Otherwise, both are non-negative, so we compare them as
4316 unsigned just in case one of them would overflow a signed
4317 type. */
4318 }
4319 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
4320 return INT_CST_LT (t1, t2);
4321
4322 return INT_CST_LT_UNSIGNED (t1, t2);
4323 }
4324
4325 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
4326
4327 int
4328 tree_int_cst_compare (tree t1, tree t2)
4329 {
4330 if (tree_int_cst_lt (t1, t2))
4331 return -1;
4332 else if (tree_int_cst_lt (t2, t1))
4333 return 1;
4334 else
4335 return 0;
4336 }
4337
4338 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
4339 the host. If POS is zero, the value can be represented in a single
4340 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
4341 be represented in a single unsigned HOST_WIDE_INT. */
4342
4343 int
4344 host_integerp (tree t, int pos)
4345 {
4346 return (TREE_CODE (t) == INTEGER_CST
4347 && ! TREE_OVERFLOW (t)
4348 && ((TREE_INT_CST_HIGH (t) == 0
4349 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
4350 || (! pos && TREE_INT_CST_HIGH (t) == -1
4351 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
4352 && !TYPE_UNSIGNED (TREE_TYPE (t)))
4353 || (pos && TREE_INT_CST_HIGH (t) == 0)));
4354 }
4355
4356 /* Return the HOST_WIDE_INT least significant bits of T if it is an
4357 INTEGER_CST and there is no overflow. POS is nonzero if the result must
4358 be non-negative. We must be able to satisfy the above conditions. */
4359
4360 HOST_WIDE_INT
4361 tree_low_cst (tree t, int pos)
4362 {
4363 gcc_assert (host_integerp (t, pos));
4364 return TREE_INT_CST_LOW (t);
4365 }
4366
4367 /* Return the most significant bit of the integer constant T. */
4368
4369 int
4370 tree_int_cst_msb (tree t)
4371 {
4372 int prec;
4373 HOST_WIDE_INT h;
4374 unsigned HOST_WIDE_INT l;
4375
4376 /* Note that using TYPE_PRECISION here is wrong. We care about the
4377 actual bits, not the (arbitrary) range of the type. */
4378 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
4379 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
4380 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
4381 return (l & 1) == 1;
4382 }
4383
4384 /* Return an indication of the sign of the integer constant T.
4385 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
4386 Note that -1 will never be returned if T's type is unsigned. */
4387
4388 int
4389 tree_int_cst_sgn (tree t)
4390 {
4391 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
4392 return 0;
4393 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
4394 return 1;
4395 else if (TREE_INT_CST_HIGH (t) < 0)
4396 return -1;
4397 else
4398 return 1;
4399 }
4400
4401 /* Compare two constructor-element-type constants. Return 1 if the lists
4402 are known to be equal; otherwise return 0. */
4403
4404 int
4405 simple_cst_list_equal (tree l1, tree l2)
4406 {
4407 while (l1 != NULL_TREE && l2 != NULL_TREE)
4408 {
4409 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
4410 return 0;
4411
4412 l1 = TREE_CHAIN (l1);
4413 l2 = TREE_CHAIN (l2);
4414 }
4415
4416 return l1 == l2;
4417 }
4418
4419 /* Return truthvalue of whether T1 is the same tree structure as T2.
4420 Return 1 if they are the same.
4421 Return 0 if they are understandably different.
4422 Return -1 if either contains tree structure not understood by
4423 this function. */
4424
4425 int
4426 simple_cst_equal (tree t1, tree t2)
4427 {
4428 enum tree_code code1, code2;
4429 int cmp;
4430 int i;
4431
4432 if (t1 == t2)
4433 return 1;
4434 if (t1 == 0 || t2 == 0)
4435 return 0;
4436
4437 code1 = TREE_CODE (t1);
4438 code2 = TREE_CODE (t2);
4439
4440 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
4441 {
4442 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4443 || code2 == NON_LVALUE_EXPR)
4444 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4445 else
4446 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
4447 }
4448
4449 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
4450 || code2 == NON_LVALUE_EXPR)
4451 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
4452
4453 if (code1 != code2)
4454 return 0;
4455
4456 switch (code1)
4457 {
4458 case INTEGER_CST:
4459 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
4460 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
4461
4462 case REAL_CST:
4463 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
4464
4465 case STRING_CST:
4466 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
4467 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
4468 TREE_STRING_LENGTH (t1)));
4469
4470 case CONSTRUCTOR:
4471 {
4472 unsigned HOST_WIDE_INT idx;
4473 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
4474 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
4475
4476 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
4477 return false;
4478
4479 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
4480 /* ??? Should we handle also fields here? */
4481 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
4482 VEC_index (constructor_elt, v2, idx)->value))
4483 return false;
4484 return true;
4485 }
4486
4487 case SAVE_EXPR:
4488 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4489
4490 case CALL_EXPR:
4491 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4492 if (cmp <= 0)
4493 return cmp;
4494 return
4495 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4496
4497 case TARGET_EXPR:
4498 /* Special case: if either target is an unallocated VAR_DECL,
4499 it means that it's going to be unified with whatever the
4500 TARGET_EXPR is really supposed to initialize, so treat it
4501 as being equivalent to anything. */
4502 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4503 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4504 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
4505 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4506 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4507 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
4508 cmp = 1;
4509 else
4510 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4511
4512 if (cmp <= 0)
4513 return cmp;
4514
4515 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4516
4517 case WITH_CLEANUP_EXPR:
4518 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4519 if (cmp <= 0)
4520 return cmp;
4521
4522 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
4523
4524 case COMPONENT_REF:
4525 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4526 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4527
4528 return 0;
4529
4530 case VAR_DECL:
4531 case PARM_DECL:
4532 case CONST_DECL:
4533 case FUNCTION_DECL:
4534 return 0;
4535
4536 default:
4537 break;
4538 }
4539
4540 /* This general rule works for most tree codes. All exceptions should be
4541 handled above. If this is a language-specific tree code, we can't
4542 trust what might be in the operand, so say we don't know
4543 the situation. */
4544 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4545 return -1;
4546
4547 switch (TREE_CODE_CLASS (code1))
4548 {
4549 case tcc_unary:
4550 case tcc_binary:
4551 case tcc_comparison:
4552 case tcc_expression:
4553 case tcc_reference:
4554 case tcc_statement:
4555 cmp = 1;
4556 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4557 {
4558 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4559 if (cmp <= 0)
4560 return cmp;
4561 }
4562
4563 return cmp;
4564
4565 default:
4566 return -1;
4567 }
4568 }
4569
4570 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4571 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4572 than U, respectively. */
4573
4574 int
4575 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4576 {
4577 if (tree_int_cst_sgn (t) < 0)
4578 return -1;
4579 else if (TREE_INT_CST_HIGH (t) != 0)
4580 return 1;
4581 else if (TREE_INT_CST_LOW (t) == u)
4582 return 0;
4583 else if (TREE_INT_CST_LOW (t) < u)
4584 return -1;
4585 else
4586 return 1;
4587 }
4588
4589 /* Return true if CODE represents an associative tree code. Otherwise
4590 return false. */
4591 bool
4592 associative_tree_code (enum tree_code code)
4593 {
4594 switch (code)
4595 {
4596 case BIT_IOR_EXPR:
4597 case BIT_AND_EXPR:
4598 case BIT_XOR_EXPR:
4599 case PLUS_EXPR:
4600 case MULT_EXPR:
4601 case MIN_EXPR:
4602 case MAX_EXPR:
4603 return true;
4604
4605 default:
4606 break;
4607 }
4608 return false;
4609 }
4610
4611 /* Return true if CODE represents a commutative tree code. Otherwise
4612 return false. */
4613 bool
4614 commutative_tree_code (enum tree_code code)
4615 {
4616 switch (code)
4617 {
4618 case PLUS_EXPR:
4619 case MULT_EXPR:
4620 case MIN_EXPR:
4621 case MAX_EXPR:
4622 case BIT_IOR_EXPR:
4623 case BIT_XOR_EXPR:
4624 case BIT_AND_EXPR:
4625 case NE_EXPR:
4626 case EQ_EXPR:
4627 case UNORDERED_EXPR:
4628 case ORDERED_EXPR:
4629 case UNEQ_EXPR:
4630 case LTGT_EXPR:
4631 case TRUTH_AND_EXPR:
4632 case TRUTH_XOR_EXPR:
4633 case TRUTH_OR_EXPR:
4634 return true;
4635
4636 default:
4637 break;
4638 }
4639 return false;
4640 }
4641
4642 /* Generate a hash value for an expression. This can be used iteratively
4643 by passing a previous result as the "val" argument.
4644
4645 This function is intended to produce the same hash for expressions which
4646 would compare equal using operand_equal_p. */
4647
4648 hashval_t
4649 iterative_hash_expr (tree t, hashval_t val)
4650 {
4651 int i;
4652 enum tree_code code;
4653 char class;
4654
4655 if (t == NULL_TREE)
4656 return iterative_hash_pointer (t, val);
4657
4658 code = TREE_CODE (t);
4659
4660 switch (code)
4661 {
4662 /* Alas, constants aren't shared, so we can't rely on pointer
4663 identity. */
4664 case INTEGER_CST:
4665 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4666 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4667 case REAL_CST:
4668 {
4669 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4670
4671 return iterative_hash_hashval_t (val2, val);
4672 }
4673 case STRING_CST:
4674 return iterative_hash (TREE_STRING_POINTER (t),
4675 TREE_STRING_LENGTH (t), val);
4676 case COMPLEX_CST:
4677 val = iterative_hash_expr (TREE_REALPART (t), val);
4678 return iterative_hash_expr (TREE_IMAGPART (t), val);
4679 case VECTOR_CST:
4680 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4681
4682 case SSA_NAME:
4683 case VALUE_HANDLE:
4684 /* we can just compare by pointer. */
4685 return iterative_hash_pointer (t, val);
4686
4687 case TREE_LIST:
4688 /* A list of expressions, for a CALL_EXPR or as the elements of a
4689 VECTOR_CST. */
4690 for (; t; t = TREE_CHAIN (t))
4691 val = iterative_hash_expr (TREE_VALUE (t), val);
4692 return val;
4693 case CONSTRUCTOR:
4694 {
4695 unsigned HOST_WIDE_INT idx;
4696 tree field, value;
4697 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
4698 {
4699 val = iterative_hash_expr (field, val);
4700 val = iterative_hash_expr (value, val);
4701 }
4702 return val;
4703 }
4704 case FUNCTION_DECL:
4705 /* When referring to a built-in FUNCTION_DECL, use the
4706 __builtin__ form. Otherwise nodes that compare equal
4707 according to operand_equal_p might get different
4708 hash codes. */
4709 if (DECL_BUILT_IN (t))
4710 {
4711 val = iterative_hash_pointer (built_in_decls[DECL_FUNCTION_CODE (t)],
4712 val);
4713 return val;
4714 }
4715 /* else FALL THROUGH */
4716 default:
4717 class = TREE_CODE_CLASS (code);
4718
4719 if (class == tcc_declaration)
4720 {
4721 /* Otherwise, we can just compare decls by pointer. */
4722 val = iterative_hash_pointer (t, val);
4723 }
4724 else
4725 {
4726 gcc_assert (IS_EXPR_CODE_CLASS (class));
4727
4728 val = iterative_hash_object (code, val);
4729
4730 /* Don't hash the type, that can lead to having nodes which
4731 compare equal according to operand_equal_p, but which
4732 have different hash codes. */
4733 if (code == NOP_EXPR
4734 || code == CONVERT_EXPR
4735 || code == NON_LVALUE_EXPR)
4736 {
4737 /* Make sure to include signness in the hash computation. */
4738 val += TYPE_UNSIGNED (TREE_TYPE (t));
4739 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4740 }
4741
4742 else if (commutative_tree_code (code))
4743 {
4744 /* It's a commutative expression. We want to hash it the same
4745 however it appears. We do this by first hashing both operands
4746 and then rehashing based on the order of their independent
4747 hashes. */
4748 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4749 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4750 hashval_t t;
4751
4752 if (one > two)
4753 t = one, one = two, two = t;
4754
4755 val = iterative_hash_hashval_t (one, val);
4756 val = iterative_hash_hashval_t (two, val);
4757 }
4758 else
4759 for (i = TREE_CODE_LENGTH (code) - 1; i >= 0; --i)
4760 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4761 }
4762 return val;
4763 break;
4764 }
4765 }
4766 \f
4767 /* Constructors for pointer, array and function types.
4768 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4769 constructed by language-dependent code, not here.) */
4770
4771 /* Construct, lay out and return the type of pointers to TO_TYPE with
4772 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4773 reference all of memory. If such a type has already been
4774 constructed, reuse it. */
4775
4776 tree
4777 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4778 bool can_alias_all)
4779 {
4780 tree t;
4781
4782 if (to_type == error_mark_node)
4783 return error_mark_node;
4784
4785 /* In some cases, languages will have things that aren't a POINTER_TYPE
4786 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4787 In that case, return that type without regard to the rest of our
4788 operands.
4789
4790 ??? This is a kludge, but consistent with the way this function has
4791 always operated and there doesn't seem to be a good way to avoid this
4792 at the moment. */
4793 if (TYPE_POINTER_TO (to_type) != 0
4794 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4795 return TYPE_POINTER_TO (to_type);
4796
4797 /* First, if we already have an unqualified type for pointers to TO_TYPE
4798 and it's the proper mode, use it. */
4799 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4800 if (TYPE_MODE (t) == mode
4801 && !TYPE_QUALS (t)
4802 && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4803 return t;
4804
4805 t = make_node (POINTER_TYPE);
4806
4807 TREE_TYPE (t) = to_type;
4808 TYPE_MODE (t) = mode;
4809 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4810 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4811 TYPE_POINTER_TO (to_type) = t;
4812
4813 /* Lay out the type. This function has many callers that are concerned
4814 with expression-construction, and this simplifies them all. */
4815 layout_type (t);
4816
4817 return t;
4818 }
4819
4820 /* By default build pointers in ptr_mode. */
4821
4822 tree
4823 build_pointer_type (tree to_type)
4824 {
4825 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4826 }
4827
4828 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4829
4830 tree
4831 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4832 bool can_alias_all)
4833 {
4834 tree t;
4835
4836 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4837 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4838 In that case, return that type without regard to the rest of our
4839 operands.
4840
4841 ??? This is a kludge, but consistent with the way this function has
4842 always operated and there doesn't seem to be a good way to avoid this
4843 at the moment. */
4844 if (TYPE_REFERENCE_TO (to_type) != 0
4845 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4846 return TYPE_REFERENCE_TO (to_type);
4847
4848 /* First, if we already have an unqualified type for references to TO_TYPE
4849 and it's the proper mode, use it. */
4850 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4851 if (TYPE_MODE (t) == mode
4852 && !TYPE_QUALS (t)
4853 && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4854 return t;
4855
4856 t = make_node (REFERENCE_TYPE);
4857
4858 TREE_TYPE (t) = to_type;
4859 TYPE_MODE (t) = mode;
4860 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4861 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4862 TYPE_REFERENCE_TO (to_type) = t;
4863
4864 layout_type (t);
4865
4866 return t;
4867 }
4868
4869
4870 /* Build the node for the type of references-to-TO_TYPE by default
4871 in ptr_mode. */
4872
4873 tree
4874 build_reference_type (tree to_type)
4875 {
4876 return build_reference_type_for_mode (to_type, ptr_mode, false);
4877 }
4878
4879 /* Build a type that is compatible with t but has no cv quals anywhere
4880 in its type, thus
4881
4882 const char *const *const * -> char ***. */
4883
4884 tree
4885 build_type_no_quals (tree t)
4886 {
4887 switch (TREE_CODE (t))
4888 {
4889 case POINTER_TYPE:
4890 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4891 TYPE_MODE (t),
4892 TYPE_REF_CAN_ALIAS_ALL (t));
4893 case REFERENCE_TYPE:
4894 return
4895 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4896 TYPE_MODE (t),
4897 TYPE_REF_CAN_ALIAS_ALL (t));
4898 default:
4899 return TYPE_MAIN_VARIANT (t);
4900 }
4901 }
4902
4903 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4904 MAXVAL should be the maximum value in the domain
4905 (one less than the length of the array).
4906
4907 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4908 We don't enforce this limit, that is up to caller (e.g. language front end).
4909 The limit exists because the result is a signed type and we don't handle
4910 sizes that use more than one HOST_WIDE_INT. */
4911
4912 tree
4913 build_index_type (tree maxval)
4914 {
4915 tree itype = make_node (INTEGER_TYPE);
4916
4917 TREE_TYPE (itype) = sizetype;
4918 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4919 TYPE_MIN_VALUE (itype) = size_zero_node;
4920 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4921 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4922 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4923 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4924 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4925 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4926
4927 if (host_integerp (maxval, 1))
4928 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4929 else
4930 return itype;
4931 }
4932
4933 /* Builds a signed or unsigned integer type of precision PRECISION.
4934 Used for C bitfields whose precision does not match that of
4935 built-in target types. */
4936 tree
4937 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4938 int unsignedp)
4939 {
4940 tree itype = make_node (INTEGER_TYPE);
4941
4942 TYPE_PRECISION (itype) = precision;
4943
4944 if (unsignedp)
4945 fixup_unsigned_type (itype);
4946 else
4947 fixup_signed_type (itype);
4948
4949 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4950 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4951
4952 return itype;
4953 }
4954
4955 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4956 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4957 low bound LOWVAL and high bound HIGHVAL.
4958 if TYPE==NULL_TREE, sizetype is used. */
4959
4960 tree
4961 build_range_type (tree type, tree lowval, tree highval)
4962 {
4963 tree itype = make_node (INTEGER_TYPE);
4964
4965 TREE_TYPE (itype) = type;
4966 if (type == NULL_TREE)
4967 type = sizetype;
4968
4969 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4970 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4971
4972 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4973 TYPE_MODE (itype) = TYPE_MODE (type);
4974 TYPE_SIZE (itype) = TYPE_SIZE (type);
4975 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4976 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4977 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4978
4979 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4980 return type_hash_canon (tree_low_cst (highval, 0)
4981 - tree_low_cst (lowval, 0),
4982 itype);
4983 else
4984 return itype;
4985 }
4986
4987 /* Just like build_index_type, but takes lowval and highval instead
4988 of just highval (maxval). */
4989
4990 tree
4991 build_index_2_type (tree lowval, tree highval)
4992 {
4993 return build_range_type (sizetype, lowval, highval);
4994 }
4995
4996 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4997 and number of elements specified by the range of values of INDEX_TYPE.
4998 If such a type has already been constructed, reuse it. */
4999
5000 tree
5001 build_array_type (tree elt_type, tree index_type)
5002 {
5003 tree t;
5004 hashval_t hashcode = 0;
5005
5006 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
5007 {
5008 error ("arrays of functions are not meaningful");
5009 elt_type = integer_type_node;
5010 }
5011
5012 t = make_node (ARRAY_TYPE);
5013 TREE_TYPE (t) = elt_type;
5014 TYPE_DOMAIN (t) = index_type;
5015
5016 if (index_type == 0)
5017 {
5018 layout_type (t);
5019 return t;
5020 }
5021
5022 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
5023 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
5024 t = type_hash_canon (hashcode, t);
5025
5026 if (!COMPLETE_TYPE_P (t))
5027 layout_type (t);
5028 return t;
5029 }
5030
5031 /* Return the TYPE of the elements comprising
5032 the innermost dimension of ARRAY. */
5033
5034 tree
5035 get_inner_array_type (tree array)
5036 {
5037 tree type = TREE_TYPE (array);
5038
5039 while (TREE_CODE (type) == ARRAY_TYPE)
5040 type = TREE_TYPE (type);
5041
5042 return type;
5043 }
5044
5045 /* Construct, lay out and return
5046 the type of functions returning type VALUE_TYPE
5047 given arguments of types ARG_TYPES.
5048 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
5049 are data type nodes for the arguments of the function.
5050 If such a type has already been constructed, reuse it. */
5051
5052 tree
5053 build_function_type (tree value_type, tree arg_types)
5054 {
5055 tree t;
5056 hashval_t hashcode = 0;
5057
5058 if (TREE_CODE (value_type) == FUNCTION_TYPE)
5059 {
5060 error ("function return type cannot be function");
5061 value_type = integer_type_node;
5062 }
5063
5064 /* Make a node of the sort we want. */
5065 t = make_node (FUNCTION_TYPE);
5066 TREE_TYPE (t) = value_type;
5067 TYPE_ARG_TYPES (t) = arg_types;
5068
5069 /* If we already have such a type, use the old one. */
5070 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
5071 hashcode = type_hash_list (arg_types, hashcode);
5072 t = type_hash_canon (hashcode, t);
5073
5074 if (!COMPLETE_TYPE_P (t))
5075 layout_type (t);
5076 return t;
5077 }
5078
5079 /* Build a function type. The RETURN_TYPE is the type returned by the
5080 function. If additional arguments are provided, they are
5081 additional argument types. The list of argument types must always
5082 be terminated by NULL_TREE. */
5083
5084 tree
5085 build_function_type_list (tree return_type, ...)
5086 {
5087 tree t, args, last;
5088 va_list p;
5089
5090 va_start (p, return_type);
5091
5092 t = va_arg (p, tree);
5093 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
5094 args = tree_cons (NULL_TREE, t, args);
5095
5096 if (args == NULL_TREE)
5097 args = void_list_node;
5098 else
5099 {
5100 last = args;
5101 args = nreverse (args);
5102 TREE_CHAIN (last) = void_list_node;
5103 }
5104 args = build_function_type (return_type, args);
5105
5106 va_end (p);
5107 return args;
5108 }
5109
5110 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
5111 and ARGTYPES (a TREE_LIST) are the return type and arguments types
5112 for the method. An implicit additional parameter (of type
5113 pointer-to-BASETYPE) is added to the ARGTYPES. */
5114
5115 tree
5116 build_method_type_directly (tree basetype,
5117 tree rettype,
5118 tree argtypes)
5119 {
5120 tree t;
5121 tree ptype;
5122 int hashcode = 0;
5123
5124 /* Make a node of the sort we want. */
5125 t = make_node (METHOD_TYPE);
5126
5127 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5128 TREE_TYPE (t) = rettype;
5129 ptype = build_pointer_type (basetype);
5130
5131 /* The actual arglist for this function includes a "hidden" argument
5132 which is "this". Put it into the list of argument types. */
5133 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
5134 TYPE_ARG_TYPES (t) = argtypes;
5135
5136 /* If we already have such a type, use the old one. */
5137 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5138 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
5139 hashcode = type_hash_list (argtypes, hashcode);
5140 t = type_hash_canon (hashcode, t);
5141
5142 if (!COMPLETE_TYPE_P (t))
5143 layout_type (t);
5144
5145 return t;
5146 }
5147
5148 /* Construct, lay out and return the type of methods belonging to class
5149 BASETYPE and whose arguments and values are described by TYPE.
5150 If that type exists already, reuse it.
5151 TYPE must be a FUNCTION_TYPE node. */
5152
5153 tree
5154 build_method_type (tree basetype, tree type)
5155 {
5156 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
5157
5158 return build_method_type_directly (basetype,
5159 TREE_TYPE (type),
5160 TYPE_ARG_TYPES (type));
5161 }
5162
5163 /* Construct, lay out and return the type of offsets to a value
5164 of type TYPE, within an object of type BASETYPE.
5165 If a suitable offset type exists already, reuse it. */
5166
5167 tree
5168 build_offset_type (tree basetype, tree type)
5169 {
5170 tree t;
5171 hashval_t hashcode = 0;
5172
5173 /* Make a node of the sort we want. */
5174 t = make_node (OFFSET_TYPE);
5175
5176 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
5177 TREE_TYPE (t) = type;
5178
5179 /* If we already have such a type, use the old one. */
5180 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
5181 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
5182 t = type_hash_canon (hashcode, t);
5183
5184 if (!COMPLETE_TYPE_P (t))
5185 layout_type (t);
5186
5187 return t;
5188 }
5189
5190 /* Create a complex type whose components are COMPONENT_TYPE. */
5191
5192 tree
5193 build_complex_type (tree component_type)
5194 {
5195 tree t;
5196 hashval_t hashcode;
5197
5198 /* Make a node of the sort we want. */
5199 t = make_node (COMPLEX_TYPE);
5200
5201 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
5202
5203 /* If we already have such a type, use the old one. */
5204 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
5205 t = type_hash_canon (hashcode, t);
5206
5207 if (!COMPLETE_TYPE_P (t))
5208 layout_type (t);
5209
5210 /* If we are writing Dwarf2 output we need to create a name,
5211 since complex is a fundamental type. */
5212 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
5213 && ! TYPE_NAME (t))
5214 {
5215 const char *name;
5216 if (component_type == char_type_node)
5217 name = "complex char";
5218 else if (component_type == signed_char_type_node)
5219 name = "complex signed char";
5220 else if (component_type == unsigned_char_type_node)
5221 name = "complex unsigned char";
5222 else if (component_type == short_integer_type_node)
5223 name = "complex short int";
5224 else if (component_type == short_unsigned_type_node)
5225 name = "complex short unsigned int";
5226 else if (component_type == integer_type_node)
5227 name = "complex int";
5228 else if (component_type == unsigned_type_node)
5229 name = "complex unsigned int";
5230 else if (component_type == long_integer_type_node)
5231 name = "complex long int";
5232 else if (component_type == long_unsigned_type_node)
5233 name = "complex long unsigned int";
5234 else if (component_type == long_long_integer_type_node)
5235 name = "complex long long int";
5236 else if (component_type == long_long_unsigned_type_node)
5237 name = "complex long long unsigned int";
5238 else
5239 name = 0;
5240
5241 if (name != 0)
5242 TYPE_NAME (t) = get_identifier (name);
5243 }
5244
5245 return build_qualified_type (t, TYPE_QUALS (component_type));
5246 }
5247 \f
5248 /* Return OP, stripped of any conversions to wider types as much as is safe.
5249 Converting the value back to OP's type makes a value equivalent to OP.
5250
5251 If FOR_TYPE is nonzero, we return a value which, if converted to
5252 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
5253
5254 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
5255 narrowest type that can hold the value, even if they don't exactly fit.
5256 Otherwise, bit-field references are changed to a narrower type
5257 only if they can be fetched directly from memory in that type.
5258
5259 OP must have integer, real or enumeral type. Pointers are not allowed!
5260
5261 There are some cases where the obvious value we could return
5262 would regenerate to OP if converted to OP's type,
5263 but would not extend like OP to wider types.
5264 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
5265 For example, if OP is (unsigned short)(signed char)-1,
5266 we avoid returning (signed char)-1 if FOR_TYPE is int,
5267 even though extending that to an unsigned short would regenerate OP,
5268 since the result of extending (signed char)-1 to (int)
5269 is different from (int) OP. */
5270
5271 tree
5272 get_unwidened (tree op, tree for_type)
5273 {
5274 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
5275 tree type = TREE_TYPE (op);
5276 unsigned final_prec
5277 = TYPE_PRECISION (for_type != 0 ? for_type : type);
5278 int uns
5279 = (for_type != 0 && for_type != type
5280 && final_prec > TYPE_PRECISION (type)
5281 && TYPE_UNSIGNED (type));
5282 tree win = op;
5283
5284 while (TREE_CODE (op) == NOP_EXPR
5285 || TREE_CODE (op) == CONVERT_EXPR)
5286 {
5287 int bitschange;
5288
5289 /* TYPE_PRECISION on vector types has different meaning
5290 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
5291 so avoid them here. */
5292 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
5293 break;
5294
5295 bitschange = TYPE_PRECISION (TREE_TYPE (op))
5296 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
5297
5298 /* Truncations are many-one so cannot be removed.
5299 Unless we are later going to truncate down even farther. */
5300 if (bitschange < 0
5301 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
5302 break;
5303
5304 /* See what's inside this conversion. If we decide to strip it,
5305 we will set WIN. */
5306 op = TREE_OPERAND (op, 0);
5307
5308 /* If we have not stripped any zero-extensions (uns is 0),
5309 we can strip any kind of extension.
5310 If we have previously stripped a zero-extension,
5311 only zero-extensions can safely be stripped.
5312 Any extension can be stripped if the bits it would produce
5313 are all going to be discarded later by truncating to FOR_TYPE. */
5314
5315 if (bitschange > 0)
5316 {
5317 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
5318 win = op;
5319 /* TYPE_UNSIGNED says whether this is a zero-extension.
5320 Let's avoid computing it if it does not affect WIN
5321 and if UNS will not be needed again. */
5322 if ((uns
5323 || TREE_CODE (op) == NOP_EXPR
5324 || TREE_CODE (op) == CONVERT_EXPR)
5325 && TYPE_UNSIGNED (TREE_TYPE (op)))
5326 {
5327 uns = 1;
5328 win = op;
5329 }
5330 }
5331 }
5332
5333 if (TREE_CODE (op) == COMPONENT_REF
5334 /* Since type_for_size always gives an integer type. */
5335 && TREE_CODE (type) != REAL_TYPE
5336 /* Don't crash if field not laid out yet. */
5337 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5338 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5339 {
5340 unsigned int innerprec
5341 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5342 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5343 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5344 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5345
5346 /* We can get this structure field in the narrowest type it fits in.
5347 If FOR_TYPE is 0, do this only for a field that matches the
5348 narrower type exactly and is aligned for it
5349 The resulting extension to its nominal type (a fullword type)
5350 must fit the same conditions as for other extensions. */
5351
5352 if (type != 0
5353 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
5354 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
5355 && (! uns || final_prec <= innerprec || unsignedp))
5356 {
5357 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5358 TREE_OPERAND (op, 1), NULL_TREE);
5359 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5360 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5361 }
5362 }
5363
5364 return win;
5365 }
5366 \f
5367 /* Return OP or a simpler expression for a narrower value
5368 which can be sign-extended or zero-extended to give back OP.
5369 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
5370 or 0 if the value should be sign-extended. */
5371
5372 tree
5373 get_narrower (tree op, int *unsignedp_ptr)
5374 {
5375 int uns = 0;
5376 int first = 1;
5377 tree win = op;
5378 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
5379
5380 while (TREE_CODE (op) == NOP_EXPR)
5381 {
5382 int bitschange
5383 = (TYPE_PRECISION (TREE_TYPE (op))
5384 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
5385
5386 /* Truncations are many-one so cannot be removed. */
5387 if (bitschange < 0)
5388 break;
5389
5390 /* See what's inside this conversion. If we decide to strip it,
5391 we will set WIN. */
5392
5393 if (bitschange > 0)
5394 {
5395 op = TREE_OPERAND (op, 0);
5396 /* An extension: the outermost one can be stripped,
5397 but remember whether it is zero or sign extension. */
5398 if (first)
5399 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5400 /* Otherwise, if a sign extension has been stripped,
5401 only sign extensions can now be stripped;
5402 if a zero extension has been stripped, only zero-extensions. */
5403 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
5404 break;
5405 first = 0;
5406 }
5407 else /* bitschange == 0 */
5408 {
5409 /* A change in nominal type can always be stripped, but we must
5410 preserve the unsignedness. */
5411 if (first)
5412 uns = TYPE_UNSIGNED (TREE_TYPE (op));
5413 first = 0;
5414 op = TREE_OPERAND (op, 0);
5415 /* Keep trying to narrow, but don't assign op to win if it
5416 would turn an integral type into something else. */
5417 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
5418 continue;
5419 }
5420
5421 win = op;
5422 }
5423
5424 if (TREE_CODE (op) == COMPONENT_REF
5425 /* Since type_for_size always gives an integer type. */
5426 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
5427 /* Ensure field is laid out already. */
5428 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
5429 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
5430 {
5431 unsigned HOST_WIDE_INT innerprec
5432 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
5433 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
5434 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
5435 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
5436
5437 /* We can get this structure field in a narrower type that fits it,
5438 but the resulting extension to its nominal type (a fullword type)
5439 must satisfy the same conditions as for other extensions.
5440
5441 Do this only for fields that are aligned (not bit-fields),
5442 because when bit-field insns will be used there is no
5443 advantage in doing this. */
5444
5445 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
5446 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
5447 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
5448 && type != 0)
5449 {
5450 if (first)
5451 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
5452 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
5453 TREE_OPERAND (op, 1), NULL_TREE);
5454 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
5455 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
5456 }
5457 }
5458 *unsignedp_ptr = uns;
5459 return win;
5460 }
5461 \f
5462 /* Nonzero if integer constant C has a value that is permissible
5463 for type TYPE (an INTEGER_TYPE). */
5464
5465 int
5466 int_fits_type_p (tree c, tree type)
5467 {
5468 tree type_low_bound = TYPE_MIN_VALUE (type);
5469 tree type_high_bound = TYPE_MAX_VALUE (type);
5470 bool ok_for_low_bound, ok_for_high_bound;
5471 tree tmp;
5472
5473 /* If at least one bound of the type is a constant integer, we can check
5474 ourselves and maybe make a decision. If no such decision is possible, but
5475 this type is a subtype, try checking against that. Otherwise, use
5476 force_fit_type, which checks against the precision.
5477
5478 Compute the status for each possibly constant bound, and return if we see
5479 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
5480 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
5481 for "constant known to fit". */
5482
5483 /* Check if C >= type_low_bound. */
5484 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
5485 {
5486 if (tree_int_cst_lt (c, type_low_bound))
5487 return 0;
5488 ok_for_low_bound = true;
5489 }
5490 else
5491 ok_for_low_bound = false;
5492
5493 /* Check if c <= type_high_bound. */
5494 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
5495 {
5496 if (tree_int_cst_lt (type_high_bound, c))
5497 return 0;
5498 ok_for_high_bound = true;
5499 }
5500 else
5501 ok_for_high_bound = false;
5502
5503 /* If the constant fits both bounds, the result is known. */
5504 if (ok_for_low_bound && ok_for_high_bound)
5505 return 1;
5506
5507 /* Perform some generic filtering which may allow making a decision
5508 even if the bounds are not constant. First, negative integers
5509 never fit in unsigned types, */
5510 if (TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
5511 return 0;
5512
5513 /* Second, narrower types always fit in wider ones. */
5514 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
5515 return 1;
5516
5517 /* Third, unsigned integers with top bit set never fit signed types. */
5518 if (! TYPE_UNSIGNED (type)
5519 && TYPE_UNSIGNED (TREE_TYPE (c))
5520 && tree_int_cst_msb (c))
5521 return 0;
5522
5523 /* If we haven't been able to decide at this point, there nothing more we
5524 can check ourselves here. Look at the base type if we have one and it
5525 has the same precision. */
5526 if (TREE_CODE (type) == INTEGER_TYPE
5527 && TREE_TYPE (type) != 0
5528 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
5529 return int_fits_type_p (c, TREE_TYPE (type));
5530
5531 /* Or to force_fit_type, if nothing else. */
5532 tmp = copy_node (c);
5533 TREE_TYPE (tmp) = type;
5534 tmp = force_fit_type (tmp, -1, false, false);
5535 return TREE_INT_CST_HIGH (tmp) == TREE_INT_CST_HIGH (c)
5536 && TREE_INT_CST_LOW (tmp) == TREE_INT_CST_LOW (c);
5537 }
5538
5539 /* Subprogram of following function. Called by walk_tree.
5540
5541 Return *TP if it is an automatic variable or parameter of the
5542 function passed in as DATA. */
5543
5544 static tree
5545 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
5546 {
5547 tree fn = (tree) data;
5548
5549 if (TYPE_P (*tp))
5550 *walk_subtrees = 0;
5551
5552 else if (DECL_P (*tp)
5553 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
5554 return *tp;
5555
5556 return NULL_TREE;
5557 }
5558
5559 /* Returns true if T is, contains, or refers to a type with variable
5560 size. If FN is nonzero, only return true if a modifier of the type
5561 or position of FN is a variable or parameter inside FN.
5562
5563 This concept is more general than that of C99 'variably modified types':
5564 in C99, a struct type is never variably modified because a VLA may not
5565 appear as a structure member. However, in GNU C code like:
5566
5567 struct S { int i[f()]; };
5568
5569 is valid, and other languages may define similar constructs. */
5570
5571 bool
5572 variably_modified_type_p (tree type, tree fn)
5573 {
5574 tree t;
5575
5576 /* Test if T is either variable (if FN is zero) or an expression containing
5577 a variable in FN. */
5578 #define RETURN_TRUE_IF_VAR(T) \
5579 do { tree _t = (T); \
5580 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
5581 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
5582 return true; } while (0)
5583
5584 if (type == error_mark_node)
5585 return false;
5586
5587 /* If TYPE itself has variable size, it is variably modified.
5588
5589 We do not yet have a representation of the C99 '[*]' syntax.
5590 When a representation is chosen, this function should be modified
5591 to test for that case as well. */
5592 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5593 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
5594
5595 switch (TREE_CODE (type))
5596 {
5597 case POINTER_TYPE:
5598 case REFERENCE_TYPE:
5599 case ARRAY_TYPE:
5600 case VECTOR_TYPE:
5601 if (variably_modified_type_p (TREE_TYPE (type), fn))
5602 return true;
5603 break;
5604
5605 case FUNCTION_TYPE:
5606 case METHOD_TYPE:
5607 /* If TYPE is a function type, it is variably modified if any of the
5608 parameters or the return type are variably modified. */
5609 if (variably_modified_type_p (TREE_TYPE (type), fn))
5610 return true;
5611
5612 for (t = TYPE_ARG_TYPES (type);
5613 t && t != void_list_node;
5614 t = TREE_CHAIN (t))
5615 if (variably_modified_type_p (TREE_VALUE (t), fn))
5616 return true;
5617 break;
5618
5619 case INTEGER_TYPE:
5620 case REAL_TYPE:
5621 case ENUMERAL_TYPE:
5622 case BOOLEAN_TYPE:
5623 case CHAR_TYPE:
5624 /* Scalar types are variably modified if their end points
5625 aren't constant. */
5626 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5627 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5628 break;
5629
5630 case RECORD_TYPE:
5631 case UNION_TYPE:
5632 case QUAL_UNION_TYPE:
5633 /* We can't see if any of the field are variably-modified by the
5634 definition we normally use, since that would produce infinite
5635 recursion via pointers. */
5636 /* This is variably modified if some field's type is. */
5637 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5638 if (TREE_CODE (t) == FIELD_DECL)
5639 {
5640 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5641 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5642 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5643
5644 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5645 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5646 }
5647 break;
5648
5649 default:
5650 break;
5651 }
5652
5653 /* The current language may have other cases to check, but in general,
5654 all other types are not variably modified. */
5655 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5656
5657 #undef RETURN_TRUE_IF_VAR
5658 }
5659
5660 /* Given a DECL or TYPE, return the scope in which it was declared, or
5661 NULL_TREE if there is no containing scope. */
5662
5663 tree
5664 get_containing_scope (tree t)
5665 {
5666 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5667 }
5668
5669 /* Return the innermost context enclosing DECL that is
5670 a FUNCTION_DECL, or zero if none. */
5671
5672 tree
5673 decl_function_context (tree decl)
5674 {
5675 tree context;
5676
5677 if (TREE_CODE (decl) == ERROR_MARK)
5678 return 0;
5679
5680 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5681 where we look up the function at runtime. Such functions always take
5682 a first argument of type 'pointer to real context'.
5683
5684 C++ should really be fixed to use DECL_CONTEXT for the real context,
5685 and use something else for the "virtual context". */
5686 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5687 context
5688 = TYPE_MAIN_VARIANT
5689 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5690 else
5691 context = DECL_CONTEXT (decl);
5692
5693 while (context && TREE_CODE (context) != FUNCTION_DECL)
5694 {
5695 if (TREE_CODE (context) == BLOCK)
5696 context = BLOCK_SUPERCONTEXT (context);
5697 else
5698 context = get_containing_scope (context);
5699 }
5700
5701 return context;
5702 }
5703
5704 /* Return the innermost context enclosing DECL that is
5705 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5706 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5707
5708 tree
5709 decl_type_context (tree decl)
5710 {
5711 tree context = DECL_CONTEXT (decl);
5712
5713 while (context)
5714 switch (TREE_CODE (context))
5715 {
5716 case NAMESPACE_DECL:
5717 case TRANSLATION_UNIT_DECL:
5718 return NULL_TREE;
5719
5720 case RECORD_TYPE:
5721 case UNION_TYPE:
5722 case QUAL_UNION_TYPE:
5723 return context;
5724
5725 case TYPE_DECL:
5726 case FUNCTION_DECL:
5727 context = DECL_CONTEXT (context);
5728 break;
5729
5730 case BLOCK:
5731 context = BLOCK_SUPERCONTEXT (context);
5732 break;
5733
5734 default:
5735 gcc_unreachable ();
5736 }
5737
5738 return NULL_TREE;
5739 }
5740
5741 /* CALL is a CALL_EXPR. Return the declaration for the function
5742 called, or NULL_TREE if the called function cannot be
5743 determined. */
5744
5745 tree
5746 get_callee_fndecl (tree call)
5747 {
5748 tree addr;
5749
5750 /* It's invalid to call this function with anything but a
5751 CALL_EXPR. */
5752 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5753
5754 /* The first operand to the CALL is the address of the function
5755 called. */
5756 addr = TREE_OPERAND (call, 0);
5757
5758 STRIP_NOPS (addr);
5759
5760 /* If this is a readonly function pointer, extract its initial value. */
5761 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5762 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5763 && DECL_INITIAL (addr))
5764 addr = DECL_INITIAL (addr);
5765
5766 /* If the address is just `&f' for some function `f', then we know
5767 that `f' is being called. */
5768 if (TREE_CODE (addr) == ADDR_EXPR
5769 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5770 return TREE_OPERAND (addr, 0);
5771
5772 /* We couldn't figure out what was being called. Maybe the front
5773 end has some idea. */
5774 return lang_hooks.lang_get_callee_fndecl (call);
5775 }
5776
5777 /* Print debugging information about tree nodes generated during the compile,
5778 and any language-specific information. */
5779
5780 void
5781 dump_tree_statistics (void)
5782 {
5783 #ifdef GATHER_STATISTICS
5784 int i;
5785 int total_nodes, total_bytes;
5786 #endif
5787
5788 fprintf (stderr, "\n??? tree nodes created\n\n");
5789 #ifdef GATHER_STATISTICS
5790 fprintf (stderr, "Kind Nodes Bytes\n");
5791 fprintf (stderr, "---------------------------------------\n");
5792 total_nodes = total_bytes = 0;
5793 for (i = 0; i < (int) all_kinds; i++)
5794 {
5795 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5796 tree_node_counts[i], tree_node_sizes[i]);
5797 total_nodes += tree_node_counts[i];
5798 total_bytes += tree_node_sizes[i];
5799 }
5800 fprintf (stderr, "---------------------------------------\n");
5801 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5802 fprintf (stderr, "---------------------------------------\n");
5803 ssanames_print_statistics ();
5804 phinodes_print_statistics ();
5805 #else
5806 fprintf (stderr, "(No per-node statistics)\n");
5807 #endif
5808 print_type_hash_statistics ();
5809 print_debug_expr_statistics ();
5810 print_value_expr_statistics ();
5811 print_restrict_base_statistics ();
5812 lang_hooks.print_statistics ();
5813 }
5814 \f
5815 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5816
5817 /* Generate a crc32 of a string. */
5818
5819 unsigned
5820 crc32_string (unsigned chksum, const char *string)
5821 {
5822 do
5823 {
5824 unsigned value = *string << 24;
5825 unsigned ix;
5826
5827 for (ix = 8; ix--; value <<= 1)
5828 {
5829 unsigned feedback;
5830
5831 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5832 chksum <<= 1;
5833 chksum ^= feedback;
5834 }
5835 }
5836 while (*string++);
5837 return chksum;
5838 }
5839
5840 /* P is a string that will be used in a symbol. Mask out any characters
5841 that are not valid in that context. */
5842
5843 void
5844 clean_symbol_name (char *p)
5845 {
5846 for (; *p; p++)
5847 if (! (ISALNUM (*p)
5848 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5849 || *p == '$'
5850 #endif
5851 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5852 || *p == '.'
5853 #endif
5854 ))
5855 *p = '_';
5856 }
5857
5858 /* Generate a name for a function unique to this translation unit.
5859 TYPE is some string to identify the purpose of this function to the
5860 linker or collect2. */
5861
5862 tree
5863 get_file_function_name_long (const char *type)
5864 {
5865 char *buf;
5866 const char *p;
5867 char *q;
5868
5869 if (first_global_object_name)
5870 p = first_global_object_name;
5871 else
5872 {
5873 /* We don't have anything that we know to be unique to this translation
5874 unit, so use what we do have and throw in some randomness. */
5875 unsigned len;
5876 const char *name = weak_global_object_name;
5877 const char *file = main_input_filename;
5878
5879 if (! name)
5880 name = "";
5881 if (! file)
5882 file = input_filename;
5883
5884 len = strlen (file);
5885 q = alloca (9 * 2 + len + 1);
5886 memcpy (q, file, len + 1);
5887 clean_symbol_name (q);
5888
5889 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5890 crc32_string (0, flag_random_seed));
5891
5892 p = q;
5893 }
5894
5895 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5896
5897 /* Set up the name of the file-level functions we may need.
5898 Use a global object (which is already required to be unique over
5899 the program) rather than the file name (which imposes extra
5900 constraints). */
5901 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5902
5903 return get_identifier (buf);
5904 }
5905
5906 /* If KIND=='I', return a suitable global initializer (constructor) name.
5907 If KIND=='D', return a suitable global clean-up (destructor) name. */
5908
5909 tree
5910 get_file_function_name (int kind)
5911 {
5912 char p[2];
5913
5914 p[0] = kind;
5915 p[1] = 0;
5916
5917 return get_file_function_name_long (p);
5918 }
5919 \f
5920 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5921
5922 /* Complain that the tree code of NODE does not match the expected 0
5923 terminated list of trailing codes. The trailing code list can be
5924 empty, for a more vague error message. FILE, LINE, and FUNCTION
5925 are of the caller. */
5926
5927 void
5928 tree_check_failed (const tree node, const char *file,
5929 int line, const char *function, ...)
5930 {
5931 va_list args;
5932 char *buffer;
5933 unsigned length = 0;
5934 int code;
5935
5936 va_start (args, function);
5937 while ((code = va_arg (args, int)))
5938 length += 4 + strlen (tree_code_name[code]);
5939 va_end (args);
5940 if (length)
5941 {
5942 va_start (args, function);
5943 length += strlen ("expected ");
5944 buffer = alloca (length);
5945 length = 0;
5946 while ((code = va_arg (args, int)))
5947 {
5948 const char *prefix = length ? " or " : "expected ";
5949
5950 strcpy (buffer + length, prefix);
5951 length += strlen (prefix);
5952 strcpy (buffer + length, tree_code_name[code]);
5953 length += strlen (tree_code_name[code]);
5954 }
5955 va_end (args);
5956 }
5957 else
5958 buffer = (char *)"unexpected node";
5959
5960 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5961 buffer, tree_code_name[TREE_CODE (node)],
5962 function, trim_filename (file), line);
5963 }
5964
5965 /* Complain that the tree code of NODE does match the expected 0
5966 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5967 the caller. */
5968
5969 void
5970 tree_not_check_failed (const tree node, const char *file,
5971 int line, const char *function, ...)
5972 {
5973 va_list args;
5974 char *buffer;
5975 unsigned length = 0;
5976 int code;
5977
5978 va_start (args, function);
5979 while ((code = va_arg (args, int)))
5980 length += 4 + strlen (tree_code_name[code]);
5981 va_end (args);
5982 va_start (args, function);
5983 buffer = alloca (length);
5984 length = 0;
5985 while ((code = va_arg (args, int)))
5986 {
5987 if (length)
5988 {
5989 strcpy (buffer + length, " or ");
5990 length += 4;
5991 }
5992 strcpy (buffer + length, tree_code_name[code]);
5993 length += strlen (tree_code_name[code]);
5994 }
5995 va_end (args);
5996
5997 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5998 buffer, tree_code_name[TREE_CODE (node)],
5999 function, trim_filename (file), line);
6000 }
6001
6002 /* Similar to tree_check_failed, except that we check for a class of tree
6003 code, given in CL. */
6004
6005 void
6006 tree_class_check_failed (const tree node, const enum tree_code_class cl,
6007 const char *file, int line, const char *function)
6008 {
6009 internal_error
6010 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
6011 TREE_CODE_CLASS_STRING (cl),
6012 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
6013 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6014 }
6015 #undef DEFTREESTRUCT
6016 #define DEFTREESTRUCT(VAL, NAME) NAME,
6017
6018 static const char *ts_enum_names[] = {
6019 #include "treestruct.def"
6020 };
6021 #undef DEFTREESTRUCT
6022
6023 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
6024
6025 /* Similar to tree_class_check_failed, except that we check for
6026 whether CODE contains the tree structure identified by EN. */
6027
6028 void
6029 tree_contains_struct_check_failed (const tree node,
6030 const enum tree_node_structure_enum en,
6031 const char *file, int line,
6032 const char *function)
6033 {
6034 internal_error
6035 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
6036 TS_ENUM_NAME(en),
6037 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
6038 }
6039
6040
6041 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
6042 (dynamically sized) vector. */
6043
6044 void
6045 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
6046 const char *function)
6047 {
6048 internal_error
6049 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
6050 idx + 1, len, function, trim_filename (file), line);
6051 }
6052
6053 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
6054 (dynamically sized) vector. */
6055
6056 void
6057 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
6058 const char *function)
6059 {
6060 internal_error
6061 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
6062 idx + 1, len, function, trim_filename (file), line);
6063 }
6064
6065 /* Similar to above, except that the check is for the bounds of the operand
6066 vector of an expression node. */
6067
6068 void
6069 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
6070 int line, const char *function)
6071 {
6072 internal_error
6073 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
6074 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
6075 function, trim_filename (file), line);
6076 }
6077 #endif /* ENABLE_TREE_CHECKING */
6078 \f
6079 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
6080 and mapped to the machine mode MODE. Initialize its fields and build
6081 the information necessary for debugging output. */
6082
6083 static tree
6084 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
6085 {
6086 tree t = make_node (VECTOR_TYPE);
6087
6088 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
6089 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
6090 TYPE_MODE (t) = mode;
6091 TYPE_READONLY (t) = TYPE_READONLY (innertype);
6092 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
6093
6094 layout_type (t);
6095
6096 {
6097 tree index = build_int_cst (NULL_TREE, nunits - 1);
6098 tree array = build_array_type (innertype, build_index_type (index));
6099 tree rt = make_node (RECORD_TYPE);
6100
6101 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
6102 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
6103 layout_type (rt);
6104 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
6105 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
6106 the representation type, and we want to find that die when looking up
6107 the vector type. This is most easily achieved by making the TYPE_UID
6108 numbers equal. */
6109 TYPE_UID (rt) = TYPE_UID (t);
6110 }
6111
6112 /* Build our main variant, based on the main variant of the inner type. */
6113 if (TYPE_MAIN_VARIANT (innertype) != innertype)
6114 {
6115 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
6116 unsigned int hash = TYPE_HASH (innertype_main_variant);
6117 TYPE_MAIN_VARIANT (t)
6118 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
6119 nunits, mode));
6120 }
6121
6122 return t;
6123 }
6124
6125 static tree
6126 make_or_reuse_type (unsigned size, int unsignedp)
6127 {
6128 if (size == INT_TYPE_SIZE)
6129 return unsignedp ? unsigned_type_node : integer_type_node;
6130 if (size == CHAR_TYPE_SIZE)
6131 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
6132 if (size == SHORT_TYPE_SIZE)
6133 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
6134 if (size == LONG_TYPE_SIZE)
6135 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
6136 if (size == LONG_LONG_TYPE_SIZE)
6137 return (unsignedp ? long_long_unsigned_type_node
6138 : long_long_integer_type_node);
6139
6140 if (unsignedp)
6141 return make_unsigned_type (size);
6142 else
6143 return make_signed_type (size);
6144 }
6145
6146 /* Create nodes for all integer types (and error_mark_node) using the sizes
6147 of C datatypes. The caller should call set_sizetype soon after calling
6148 this function to select one of the types as sizetype. */
6149
6150 void
6151 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
6152 {
6153 error_mark_node = make_node (ERROR_MARK);
6154 TREE_TYPE (error_mark_node) = error_mark_node;
6155
6156 initialize_sizetypes (signed_sizetype);
6157
6158 /* Define both `signed char' and `unsigned char'. */
6159 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
6160 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
6161
6162 /* Define `char', which is like either `signed char' or `unsigned char'
6163 but not the same as either. */
6164 char_type_node
6165 = (signed_char
6166 ? make_signed_type (CHAR_TYPE_SIZE)
6167 : make_unsigned_type (CHAR_TYPE_SIZE));
6168
6169 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
6170 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
6171 integer_type_node = make_signed_type (INT_TYPE_SIZE);
6172 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
6173 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
6174 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
6175 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
6176 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
6177
6178 /* Define a boolean type. This type only represents boolean values but
6179 may be larger than char depending on the value of BOOL_TYPE_SIZE.
6180 Front ends which want to override this size (i.e. Java) can redefine
6181 boolean_type_node before calling build_common_tree_nodes_2. */
6182 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
6183 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
6184 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
6185 TYPE_PRECISION (boolean_type_node) = 1;
6186
6187 /* Fill in the rest of the sized types. Reuse existing type nodes
6188 when possible. */
6189 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
6190 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
6191 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
6192 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
6193 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
6194
6195 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
6196 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
6197 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
6198 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
6199 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
6200
6201 access_public_node = get_identifier ("public");
6202 access_protected_node = get_identifier ("protected");
6203 access_private_node = get_identifier ("private");
6204 }
6205
6206 /* Call this function after calling build_common_tree_nodes and set_sizetype.
6207 It will create several other common tree nodes. */
6208
6209 void
6210 build_common_tree_nodes_2 (int short_double)
6211 {
6212 /* Define these next since types below may used them. */
6213 integer_zero_node = build_int_cst (NULL_TREE, 0);
6214 integer_one_node = build_int_cst (NULL_TREE, 1);
6215 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
6216
6217 size_zero_node = size_int (0);
6218 size_one_node = size_int (1);
6219 bitsize_zero_node = bitsize_int (0);
6220 bitsize_one_node = bitsize_int (1);
6221 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
6222
6223 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
6224 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
6225
6226 void_type_node = make_node (VOID_TYPE);
6227 layout_type (void_type_node);
6228
6229 /* We are not going to have real types in C with less than byte alignment,
6230 so we might as well not have any types that claim to have it. */
6231 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
6232 TYPE_USER_ALIGN (void_type_node) = 0;
6233
6234 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
6235 layout_type (TREE_TYPE (null_pointer_node));
6236
6237 ptr_type_node = build_pointer_type (void_type_node);
6238 const_ptr_type_node
6239 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
6240 fileptr_type_node = ptr_type_node;
6241
6242 float_type_node = make_node (REAL_TYPE);
6243 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
6244 layout_type (float_type_node);
6245
6246 double_type_node = make_node (REAL_TYPE);
6247 if (short_double)
6248 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
6249 else
6250 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
6251 layout_type (double_type_node);
6252
6253 long_double_type_node = make_node (REAL_TYPE);
6254 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
6255 layout_type (long_double_type_node);
6256
6257 float_ptr_type_node = build_pointer_type (float_type_node);
6258 double_ptr_type_node = build_pointer_type (double_type_node);
6259 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
6260 integer_ptr_type_node = build_pointer_type (integer_type_node);
6261
6262 complex_integer_type_node = make_node (COMPLEX_TYPE);
6263 TREE_TYPE (complex_integer_type_node) = integer_type_node;
6264 layout_type (complex_integer_type_node);
6265
6266 complex_float_type_node = make_node (COMPLEX_TYPE);
6267 TREE_TYPE (complex_float_type_node) = float_type_node;
6268 layout_type (complex_float_type_node);
6269
6270 complex_double_type_node = make_node (COMPLEX_TYPE);
6271 TREE_TYPE (complex_double_type_node) = double_type_node;
6272 layout_type (complex_double_type_node);
6273
6274 complex_long_double_type_node = make_node (COMPLEX_TYPE);
6275 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
6276 layout_type (complex_long_double_type_node);
6277
6278 {
6279 tree t = targetm.build_builtin_va_list ();
6280
6281 /* Many back-ends define record types without setting TYPE_NAME.
6282 If we copied the record type here, we'd keep the original
6283 record type without a name. This breaks name mangling. So,
6284 don't copy record types and let c_common_nodes_and_builtins()
6285 declare the type to be __builtin_va_list. */
6286 if (TREE_CODE (t) != RECORD_TYPE)
6287 t = build_variant_type_copy (t);
6288
6289 va_list_type_node = t;
6290 }
6291 }
6292
6293 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
6294
6295 static void
6296 local_define_builtin (const char *name, tree type, enum built_in_function code,
6297 const char *library_name, int ecf_flags)
6298 {
6299 tree decl;
6300
6301 decl = lang_hooks.builtin_function (name, type, code, BUILT_IN_NORMAL,
6302 library_name, NULL_TREE);
6303 if (ecf_flags & ECF_CONST)
6304 TREE_READONLY (decl) = 1;
6305 if (ecf_flags & ECF_PURE)
6306 DECL_IS_PURE (decl) = 1;
6307 if (ecf_flags & ECF_NORETURN)
6308 TREE_THIS_VOLATILE (decl) = 1;
6309 if (ecf_flags & ECF_NOTHROW)
6310 TREE_NOTHROW (decl) = 1;
6311 if (ecf_flags & ECF_MALLOC)
6312 DECL_IS_MALLOC (decl) = 1;
6313
6314 built_in_decls[code] = decl;
6315 implicit_built_in_decls[code] = decl;
6316 }
6317
6318 /* Call this function after instantiating all builtins that the language
6319 front end cares about. This will build the rest of the builtins that
6320 are relied upon by the tree optimizers and the middle-end. */
6321
6322 void
6323 build_common_builtin_nodes (void)
6324 {
6325 tree tmp, ftype;
6326
6327 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
6328 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6329 {
6330 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6331 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6332 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6333 ftype = build_function_type (ptr_type_node, tmp);
6334
6335 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
6336 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
6337 "memcpy", ECF_NOTHROW);
6338 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
6339 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
6340 "memmove", ECF_NOTHROW);
6341 }
6342
6343 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
6344 {
6345 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6346 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6347 tmp = tree_cons (NULL_TREE, const_ptr_type_node, tmp);
6348 ftype = build_function_type (integer_type_node, tmp);
6349 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
6350 "memcmp", ECF_PURE | ECF_NOTHROW);
6351 }
6352
6353 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
6354 {
6355 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6356 tmp = tree_cons (NULL_TREE, integer_type_node, tmp);
6357 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6358 ftype = build_function_type (ptr_type_node, tmp);
6359 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
6360 "memset", ECF_NOTHROW);
6361 }
6362
6363 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
6364 {
6365 tmp = tree_cons (NULL_TREE, size_type_node, void_list_node);
6366 ftype = build_function_type (ptr_type_node, tmp);
6367 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
6368 "alloca", ECF_NOTHROW | ECF_MALLOC);
6369 }
6370
6371 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6372 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6373 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6374 ftype = build_function_type (void_type_node, tmp);
6375 local_define_builtin ("__builtin_init_trampoline", ftype,
6376 BUILT_IN_INIT_TRAMPOLINE,
6377 "__builtin_init_trampoline", ECF_NOTHROW);
6378
6379 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6380 ftype = build_function_type (ptr_type_node, tmp);
6381 local_define_builtin ("__builtin_adjust_trampoline", ftype,
6382 BUILT_IN_ADJUST_TRAMPOLINE,
6383 "__builtin_adjust_trampoline",
6384 ECF_CONST | ECF_NOTHROW);
6385
6386 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6387 tmp = tree_cons (NULL_TREE, ptr_type_node, tmp);
6388 ftype = build_function_type (void_type_node, tmp);
6389 local_define_builtin ("__builtin_nonlocal_goto", ftype,
6390 BUILT_IN_NONLOCAL_GOTO,
6391 "__builtin_nonlocal_goto",
6392 ECF_NORETURN | ECF_NOTHROW);
6393
6394 ftype = build_function_type (ptr_type_node, void_list_node);
6395 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
6396 "__builtin_stack_save", ECF_NOTHROW);
6397
6398 tmp = tree_cons (NULL_TREE, ptr_type_node, void_list_node);
6399 ftype = build_function_type (void_type_node, tmp);
6400 local_define_builtin ("__builtin_stack_restore", ftype,
6401 BUILT_IN_STACK_RESTORE,
6402 "__builtin_stack_restore", ECF_NOTHROW);
6403
6404 ftype = build_function_type (void_type_node, void_list_node);
6405 local_define_builtin ("__builtin_profile_func_enter", ftype,
6406 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
6407 local_define_builtin ("__builtin_profile_func_exit", ftype,
6408 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
6409
6410 /* Complex multiplication and division. These are handled as builtins
6411 rather than optabs because emit_library_call_value doesn't support
6412 complex. Further, we can do slightly better with folding these
6413 beasties if the real and complex parts of the arguments are separate. */
6414 {
6415 enum machine_mode mode;
6416
6417 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
6418 {
6419 char mode_name_buf[4], *q;
6420 const char *p;
6421 enum built_in_function mcode, dcode;
6422 tree type, inner_type;
6423
6424 type = lang_hooks.types.type_for_mode (mode, 0);
6425 if (type == NULL)
6426 continue;
6427 inner_type = TREE_TYPE (type);
6428
6429 tmp = tree_cons (NULL_TREE, inner_type, void_list_node);
6430 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6431 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6432 tmp = tree_cons (NULL_TREE, inner_type, tmp);
6433 ftype = build_function_type (type, tmp);
6434
6435 mcode = BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6436 dcode = BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT;
6437
6438 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
6439 *q = TOLOWER (*p);
6440 *q = '\0';
6441
6442 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
6443 local_define_builtin (built_in_names[mcode], ftype, mcode,
6444 built_in_names[mcode], ECF_CONST | ECF_NOTHROW);
6445
6446 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
6447 local_define_builtin (built_in_names[dcode], ftype, dcode,
6448 built_in_names[dcode], ECF_CONST | ECF_NOTHROW);
6449 }
6450 }
6451 }
6452
6453 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
6454 better way.
6455
6456 If we requested a pointer to a vector, build up the pointers that
6457 we stripped off while looking for the inner type. Similarly for
6458 return values from functions.
6459
6460 The argument TYPE is the top of the chain, and BOTTOM is the
6461 new type which we will point to. */
6462
6463 tree
6464 reconstruct_complex_type (tree type, tree bottom)
6465 {
6466 tree inner, outer;
6467
6468 if (POINTER_TYPE_P (type))
6469 {
6470 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6471 outer = build_pointer_type (inner);
6472 }
6473 else if (TREE_CODE (type) == ARRAY_TYPE)
6474 {
6475 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6476 outer = build_array_type (inner, TYPE_DOMAIN (type));
6477 }
6478 else if (TREE_CODE (type) == FUNCTION_TYPE)
6479 {
6480 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6481 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
6482 }
6483 else if (TREE_CODE (type) == METHOD_TYPE)
6484 {
6485 tree argtypes;
6486 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
6487 /* The build_method_type_directly() routine prepends 'this' to argument list,
6488 so we must compensate by getting rid of it. */
6489 argtypes = TYPE_ARG_TYPES (type);
6490 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
6491 inner,
6492 TYPE_ARG_TYPES (type));
6493 TYPE_ARG_TYPES (outer) = argtypes;
6494 }
6495 else
6496 return bottom;
6497
6498 TYPE_READONLY (outer) = TYPE_READONLY (type);
6499 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
6500
6501 return outer;
6502 }
6503
6504 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
6505 the inner type. */
6506 tree
6507 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
6508 {
6509 int nunits;
6510
6511 switch (GET_MODE_CLASS (mode))
6512 {
6513 case MODE_VECTOR_INT:
6514 case MODE_VECTOR_FLOAT:
6515 nunits = GET_MODE_NUNITS (mode);
6516 break;
6517
6518 case MODE_INT:
6519 /* Check that there are no leftover bits. */
6520 gcc_assert (GET_MODE_BITSIZE (mode)
6521 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
6522
6523 nunits = GET_MODE_BITSIZE (mode)
6524 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
6525 break;
6526
6527 default:
6528 gcc_unreachable ();
6529 }
6530
6531 return make_vector_type (innertype, nunits, mode);
6532 }
6533
6534 /* Similarly, but takes the inner type and number of units, which must be
6535 a power of two. */
6536
6537 tree
6538 build_vector_type (tree innertype, int nunits)
6539 {
6540 return make_vector_type (innertype, nunits, VOIDmode);
6541 }
6542
6543 /* Build RESX_EXPR with given REGION_NUMBER. */
6544 tree
6545 build_resx (int region_number)
6546 {
6547 tree t;
6548 t = build1 (RESX_EXPR, void_type_node,
6549 build_int_cst (NULL_TREE, region_number));
6550 return t;
6551 }
6552
6553 /* Given an initializer INIT, return TRUE if INIT is zero or some
6554 aggregate of zeros. Otherwise return FALSE. */
6555 bool
6556 initializer_zerop (tree init)
6557 {
6558 tree elt;
6559
6560 STRIP_NOPS (init);
6561
6562 switch (TREE_CODE (init))
6563 {
6564 case INTEGER_CST:
6565 return integer_zerop (init);
6566
6567 case REAL_CST:
6568 /* ??? Note that this is not correct for C4X float formats. There,
6569 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
6570 negative exponent. */
6571 return real_zerop (init)
6572 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
6573
6574 case COMPLEX_CST:
6575 return integer_zerop (init)
6576 || (real_zerop (init)
6577 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
6578 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
6579
6580 case VECTOR_CST:
6581 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
6582 if (!initializer_zerop (TREE_VALUE (elt)))
6583 return false;
6584 return true;
6585
6586 case CONSTRUCTOR:
6587 {
6588 unsigned HOST_WIDE_INT idx;
6589
6590 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
6591 if (!initializer_zerop (elt))
6592 return false;
6593 return true;
6594 }
6595
6596 default:
6597 return false;
6598 }
6599 }
6600
6601 void
6602 add_var_to_bind_expr (tree bind_expr, tree var)
6603 {
6604 BIND_EXPR_VARS (bind_expr)
6605 = chainon (BIND_EXPR_VARS (bind_expr), var);
6606 if (BIND_EXPR_BLOCK (bind_expr))
6607 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
6608 = BIND_EXPR_VARS (bind_expr);
6609 }
6610
6611 /* Build an empty statement. */
6612
6613 tree
6614 build_empty_stmt (void)
6615 {
6616 return build1 (NOP_EXPR, void_type_node, size_zero_node);
6617 }
6618
6619
6620 /* Returns true if it is possible to prove that the index of
6621 an array access REF (an ARRAY_REF expression) falls into the
6622 array bounds. */
6623
6624 bool
6625 in_array_bounds_p (tree ref)
6626 {
6627 tree idx = TREE_OPERAND (ref, 1);
6628 tree min, max;
6629
6630 if (TREE_CODE (idx) != INTEGER_CST)
6631 return false;
6632
6633 min = array_ref_low_bound (ref);
6634 max = array_ref_up_bound (ref);
6635 if (!min
6636 || !max
6637 || TREE_CODE (min) != INTEGER_CST
6638 || TREE_CODE (max) != INTEGER_CST)
6639 return false;
6640
6641 if (tree_int_cst_lt (idx, min)
6642 || tree_int_cst_lt (max, idx))
6643 return false;
6644
6645 return true;
6646 }
6647
6648 /* Return true if T (assumed to be a DECL) is a global variable. */
6649
6650 bool
6651 is_global_var (tree t)
6652 {
6653 if (MTAG_P (t))
6654 return (TREE_STATIC (t) || MTAG_GLOBAL (t));
6655 else
6656 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
6657 }
6658
6659 /* Return true if T (assumed to be a DECL) must be assigned a memory
6660 location. */
6661
6662 bool
6663 needs_to_live_in_memory (tree t)
6664 {
6665 return (TREE_ADDRESSABLE (t)
6666 || is_global_var (t)
6667 || (TREE_CODE (t) == RESULT_DECL
6668 && aggregate_value_p (t, current_function_decl)));
6669 }
6670
6671 /* There are situations in which a language considers record types
6672 compatible which have different field lists. Decide if two fields
6673 are compatible. It is assumed that the parent records are compatible. */
6674
6675 bool
6676 fields_compatible_p (tree f1, tree f2)
6677 {
6678 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
6679 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
6680 return false;
6681
6682 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
6683 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
6684 return false;
6685
6686 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
6687 return false;
6688
6689 return true;
6690 }
6691
6692 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
6693
6694 tree
6695 find_compatible_field (tree record, tree orig_field)
6696 {
6697 tree f;
6698
6699 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
6700 if (TREE_CODE (f) == FIELD_DECL
6701 && fields_compatible_p (f, orig_field))
6702 return f;
6703
6704 /* ??? Why isn't this on the main fields list? */
6705 f = TYPE_VFIELD (record);
6706 if (f && TREE_CODE (f) == FIELD_DECL
6707 && fields_compatible_p (f, orig_field))
6708 return f;
6709
6710 /* ??? We should abort here, but Java appears to do Bad Things
6711 with inherited fields. */
6712 return orig_field;
6713 }
6714
6715 /* Return value of a constant X. */
6716
6717 HOST_WIDE_INT
6718 int_cst_value (tree x)
6719 {
6720 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6721 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6722 bool negative = ((val >> (bits - 1)) & 1) != 0;
6723
6724 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6725
6726 if (negative)
6727 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6728 else
6729 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6730
6731 return val;
6732 }
6733
6734 /* Returns the greatest common divisor of A and B, which must be
6735 INTEGER_CSTs. */
6736
6737 tree
6738 tree_fold_gcd (tree a, tree b)
6739 {
6740 tree a_mod_b;
6741 tree type = TREE_TYPE (a);
6742
6743 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6744 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6745
6746 if (integer_zerop (a))
6747 return b;
6748
6749 if (integer_zerop (b))
6750 return a;
6751
6752 if (tree_int_cst_sgn (a) == -1)
6753 a = fold_build2 (MULT_EXPR, type, a,
6754 convert (type, integer_minus_one_node));
6755
6756 if (tree_int_cst_sgn (b) == -1)
6757 b = fold_build2 (MULT_EXPR, type, b,
6758 convert (type, integer_minus_one_node));
6759
6760 while (1)
6761 {
6762 a_mod_b = fold_build2 (FLOOR_MOD_EXPR, type, a, b);
6763
6764 if (!TREE_INT_CST_LOW (a_mod_b)
6765 && !TREE_INT_CST_HIGH (a_mod_b))
6766 return b;
6767
6768 a = b;
6769 b = a_mod_b;
6770 }
6771 }
6772
6773 /* Returns unsigned variant of TYPE. */
6774
6775 tree
6776 unsigned_type_for (tree type)
6777 {
6778 return lang_hooks.types.unsigned_type (type);
6779 }
6780
6781 /* Returns signed variant of TYPE. */
6782
6783 tree
6784 signed_type_for (tree type)
6785 {
6786 return lang_hooks.types.signed_type (type);
6787 }
6788
6789 /* Returns the largest value obtainable by casting something in INNER type to
6790 OUTER type. */
6791
6792 tree
6793 upper_bound_in_type (tree outer, tree inner)
6794 {
6795 unsigned HOST_WIDE_INT lo, hi;
6796 unsigned int det = 0;
6797 unsigned oprec = TYPE_PRECISION (outer);
6798 unsigned iprec = TYPE_PRECISION (inner);
6799 unsigned prec;
6800
6801 /* Compute a unique number for every combination. */
6802 det |= (oprec > iprec) ? 4 : 0;
6803 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
6804 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
6805
6806 /* Determine the exponent to use. */
6807 switch (det)
6808 {
6809 case 0:
6810 case 1:
6811 /* oprec <= iprec, outer: signed, inner: don't care. */
6812 prec = oprec - 1;
6813 break;
6814 case 2:
6815 case 3:
6816 /* oprec <= iprec, outer: unsigned, inner: don't care. */
6817 prec = oprec;
6818 break;
6819 case 4:
6820 /* oprec > iprec, outer: signed, inner: signed. */
6821 prec = iprec - 1;
6822 break;
6823 case 5:
6824 /* oprec > iprec, outer: signed, inner: unsigned. */
6825 prec = iprec;
6826 break;
6827 case 6:
6828 /* oprec > iprec, outer: unsigned, inner: signed. */
6829 prec = oprec;
6830 break;
6831 case 7:
6832 /* oprec > iprec, outer: unsigned, inner: unsigned. */
6833 prec = iprec;
6834 break;
6835 default:
6836 gcc_unreachable ();
6837 }
6838
6839 /* Compute 2^^prec - 1. */
6840 if (prec <= HOST_BITS_PER_WIDE_INT)
6841 {
6842 hi = 0;
6843 lo = ((~(unsigned HOST_WIDE_INT) 0)
6844 >> (HOST_BITS_PER_WIDE_INT - prec));
6845 }
6846 else
6847 {
6848 hi = ((~(unsigned HOST_WIDE_INT) 0)
6849 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
6850 lo = ~(unsigned HOST_WIDE_INT) 0;
6851 }
6852
6853 return build_int_cst_wide (outer, lo, hi);
6854 }
6855
6856 /* Returns the smallest value obtainable by casting something in INNER type to
6857 OUTER type. */
6858
6859 tree
6860 lower_bound_in_type (tree outer, tree inner)
6861 {
6862 unsigned HOST_WIDE_INT lo, hi;
6863 unsigned oprec = TYPE_PRECISION (outer);
6864 unsigned iprec = TYPE_PRECISION (inner);
6865
6866 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
6867 and obtain 0. */
6868 if (TYPE_UNSIGNED (outer)
6869 /* If we are widening something of an unsigned type, OUTER type
6870 contains all values of INNER type. In particular, both INNER
6871 and OUTER types have zero in common. */
6872 || (oprec > iprec && TYPE_UNSIGNED (inner)))
6873 lo = hi = 0;
6874 else
6875 {
6876 /* If we are widening a signed type to another signed type, we
6877 want to obtain -2^^(iprec-1). If we are keeping the
6878 precision or narrowing to a signed type, we want to obtain
6879 -2^(oprec-1). */
6880 unsigned prec = oprec > iprec ? iprec : oprec;
6881
6882 if (prec <= HOST_BITS_PER_WIDE_INT)
6883 {
6884 hi = ~(unsigned HOST_WIDE_INT) 0;
6885 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
6886 }
6887 else
6888 {
6889 hi = ((~(unsigned HOST_WIDE_INT) 0)
6890 << (prec - HOST_BITS_PER_WIDE_INT - 1));
6891 lo = 0;
6892 }
6893 }
6894
6895 return build_int_cst_wide (outer, lo, hi);
6896 }
6897
6898 /* Return nonzero if two operands that are suitable for PHI nodes are
6899 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6900 SSA_NAME or invariant. Note that this is strictly an optimization.
6901 That is, callers of this function can directly call operand_equal_p
6902 and get the same result, only slower. */
6903
6904 int
6905 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6906 {
6907 if (arg0 == arg1)
6908 return 1;
6909 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6910 return 0;
6911 return operand_equal_p (arg0, arg1, 0);
6912 }
6913
6914 /* Returns number of zeros at the end of binary representation of X.
6915
6916 ??? Use ffs if available? */
6917
6918 tree
6919 num_ending_zeros (tree x)
6920 {
6921 unsigned HOST_WIDE_INT fr, nfr;
6922 unsigned num, abits;
6923 tree type = TREE_TYPE (x);
6924
6925 if (TREE_INT_CST_LOW (x) == 0)
6926 {
6927 num = HOST_BITS_PER_WIDE_INT;
6928 fr = TREE_INT_CST_HIGH (x);
6929 }
6930 else
6931 {
6932 num = 0;
6933 fr = TREE_INT_CST_LOW (x);
6934 }
6935
6936 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
6937 {
6938 nfr = fr >> abits;
6939 if (nfr << abits == fr)
6940 {
6941 num += abits;
6942 fr = nfr;
6943 }
6944 }
6945
6946 if (num > TYPE_PRECISION (type))
6947 num = TYPE_PRECISION (type);
6948
6949 return build_int_cst_type (type, num);
6950 }
6951
6952
6953 #define WALK_SUBTREE(NODE) \
6954 do \
6955 { \
6956 result = walk_tree (&(NODE), func, data, pset); \
6957 if (result) \
6958 return result; \
6959 } \
6960 while (0)
6961
6962 /* This is a subroutine of walk_tree that walks field of TYPE that are to
6963 be walked whenever a type is seen in the tree. Rest of operands and return
6964 value are as for walk_tree. */
6965
6966 static tree
6967 walk_type_fields (tree type, walk_tree_fn func, void *data,
6968 struct pointer_set_t *pset)
6969 {
6970 tree result = NULL_TREE;
6971
6972 switch (TREE_CODE (type))
6973 {
6974 case POINTER_TYPE:
6975 case REFERENCE_TYPE:
6976 /* We have to worry about mutually recursive pointers. These can't
6977 be written in C. They can in Ada. It's pathological, but
6978 there's an ACATS test (c38102a) that checks it. Deal with this
6979 by checking if we're pointing to another pointer, that one
6980 points to another pointer, that one does too, and we have no htab.
6981 If so, get a hash table. We check three levels deep to avoid
6982 the cost of the hash table if we don't need one. */
6983 if (POINTER_TYPE_P (TREE_TYPE (type))
6984 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
6985 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
6986 && !pset)
6987 {
6988 result = walk_tree_without_duplicates (&TREE_TYPE (type),
6989 func, data);
6990 if (result)
6991 return result;
6992
6993 break;
6994 }
6995
6996 /* ... fall through ... */
6997
6998 case COMPLEX_TYPE:
6999 WALK_SUBTREE (TREE_TYPE (type));
7000 break;
7001
7002 case METHOD_TYPE:
7003 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
7004
7005 /* Fall through. */
7006
7007 case FUNCTION_TYPE:
7008 WALK_SUBTREE (TREE_TYPE (type));
7009 {
7010 tree arg;
7011
7012 /* We never want to walk into default arguments. */
7013 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
7014 WALK_SUBTREE (TREE_VALUE (arg));
7015 }
7016 break;
7017
7018 case ARRAY_TYPE:
7019 /* Don't follow this nodes's type if a pointer for fear that we'll
7020 have infinite recursion. Those types are uninteresting anyway. */
7021 if (!POINTER_TYPE_P (TREE_TYPE (type))
7022 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE)
7023 WALK_SUBTREE (TREE_TYPE (type));
7024 WALK_SUBTREE (TYPE_DOMAIN (type));
7025 break;
7026
7027 case BOOLEAN_TYPE:
7028 case ENUMERAL_TYPE:
7029 case INTEGER_TYPE:
7030 case CHAR_TYPE:
7031 case REAL_TYPE:
7032 WALK_SUBTREE (TYPE_MIN_VALUE (type));
7033 WALK_SUBTREE (TYPE_MAX_VALUE (type));
7034 break;
7035
7036 case OFFSET_TYPE:
7037 WALK_SUBTREE (TREE_TYPE (type));
7038 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
7039 break;
7040
7041 default:
7042 break;
7043 }
7044
7045 return NULL_TREE;
7046 }
7047
7048 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
7049 called with the DATA and the address of each sub-tree. If FUNC returns a
7050 non-NULL value, the traversal is stopped, and the value returned by FUNC
7051 is returned. If PSET is non-NULL it is used to record the nodes visited,
7052 and to avoid visiting a node more than once. */
7053
7054 tree
7055 walk_tree (tree *tp, walk_tree_fn func, void *data, struct pointer_set_t *pset)
7056 {
7057 enum tree_code code;
7058 int walk_subtrees;
7059 tree result;
7060
7061 #define WALK_SUBTREE_TAIL(NODE) \
7062 do \
7063 { \
7064 tp = & (NODE); \
7065 goto tail_recurse; \
7066 } \
7067 while (0)
7068
7069 tail_recurse:
7070 /* Skip empty subtrees. */
7071 if (!*tp)
7072 return NULL_TREE;
7073
7074 /* Don't walk the same tree twice, if the user has requested
7075 that we avoid doing so. */
7076 if (pset && pointer_set_insert (pset, *tp))
7077 return NULL_TREE;
7078
7079 /* Call the function. */
7080 walk_subtrees = 1;
7081 result = (*func) (tp, &walk_subtrees, data);
7082
7083 /* If we found something, return it. */
7084 if (result)
7085 return result;
7086
7087 code = TREE_CODE (*tp);
7088
7089 /* Even if we didn't, FUNC may have decided that there was nothing
7090 interesting below this point in the tree. */
7091 if (!walk_subtrees)
7092 {
7093 if (code == TREE_LIST)
7094 /* But we still need to check our siblings. */
7095 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7096 else
7097 return NULL_TREE;
7098 }
7099
7100 result = lang_hooks.tree_inlining.walk_subtrees (tp, &walk_subtrees, func,
7101 data, pset);
7102 if (result || ! walk_subtrees)
7103 return result;
7104
7105 /* If this is a DECL_EXPR, walk into various fields of the type that it's
7106 defining. We only want to walk into these fields of a type in this
7107 case. Note that decls get walked as part of the processing of a
7108 BIND_EXPR.
7109
7110 ??? Precisely which fields of types that we are supposed to walk in
7111 this case vs. the normal case aren't well defined. */
7112 if (code == DECL_EXPR
7113 && TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL
7114 && TREE_CODE (TREE_TYPE (DECL_EXPR_DECL (*tp))) != ERROR_MARK)
7115 {
7116 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
7117
7118 /* Call the function for the type. See if it returns anything or
7119 doesn't want us to continue. If we are to continue, walk both
7120 the normal fields and those for the declaration case. */
7121 result = (*func) (type_p, &walk_subtrees, data);
7122 if (result || !walk_subtrees)
7123 return NULL_TREE;
7124
7125 result = walk_type_fields (*type_p, func, data, pset);
7126 if (result)
7127 return result;
7128
7129 WALK_SUBTREE (TYPE_SIZE (*type_p));
7130 WALK_SUBTREE (TYPE_SIZE_UNIT (*type_p));
7131
7132 /* If this is a record type, also walk the fields. */
7133 if (TREE_CODE (*type_p) == RECORD_TYPE
7134 || TREE_CODE (*type_p) == UNION_TYPE
7135 || TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7136 {
7137 tree field;
7138
7139 for (field = TYPE_FIELDS (*type_p); field;
7140 field = TREE_CHAIN (field))
7141 {
7142 /* We'd like to look at the type of the field, but we can easily
7143 get infinite recursion. So assume it's pointed to elsewhere
7144 in the tree. Also, ignore things that aren't fields. */
7145 if (TREE_CODE (field) != FIELD_DECL)
7146 continue;
7147
7148 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
7149 WALK_SUBTREE (DECL_SIZE (field));
7150 WALK_SUBTREE (DECL_SIZE_UNIT (field));
7151 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
7152 WALK_SUBTREE (DECL_QUALIFIER (field));
7153 }
7154 }
7155 }
7156
7157 else if (code != SAVE_EXPR
7158 && code != BIND_EXPR
7159 && IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
7160 {
7161 int i, len;
7162
7163 /* Walk over all the sub-trees of this operand. */
7164 len = TREE_CODE_LENGTH (code);
7165 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
7166 But, we only want to walk once. */
7167 if (code == TARGET_EXPR
7168 && TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1))
7169 --len;
7170
7171 /* Go through the subtrees. We need to do this in forward order so
7172 that the scope of a FOR_EXPR is handled properly. */
7173 #ifdef DEBUG_WALK_TREE
7174 for (i = 0; i < len; ++i)
7175 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7176 #else
7177 for (i = 0; i < len - 1; ++i)
7178 WALK_SUBTREE (TREE_OPERAND (*tp, i));
7179
7180 if (len)
7181 {
7182 /* The common case is that we may tail recurse here. */
7183 if (code != BIND_EXPR
7184 && !TREE_CHAIN (*tp))
7185 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
7186 else
7187 WALK_SUBTREE (TREE_OPERAND (*tp, len - 1));
7188 }
7189 #endif
7190 }
7191
7192 /* If this is a type, walk the needed fields in the type. */
7193 else if (TYPE_P (*tp))
7194 {
7195 result = walk_type_fields (*tp, func, data, pset);
7196 if (result)
7197 return result;
7198 }
7199 else
7200 {
7201 /* Not one of the easy cases. We must explicitly go through the
7202 children. */
7203 switch (code)
7204 {
7205 case ERROR_MARK:
7206 case IDENTIFIER_NODE:
7207 case INTEGER_CST:
7208 case REAL_CST:
7209 case VECTOR_CST:
7210 case STRING_CST:
7211 case BLOCK:
7212 case PLACEHOLDER_EXPR:
7213 case SSA_NAME:
7214 case FIELD_DECL:
7215 case RESULT_DECL:
7216 /* None of these have subtrees other than those already walked
7217 above. */
7218 break;
7219
7220 case TREE_LIST:
7221 WALK_SUBTREE (TREE_VALUE (*tp));
7222 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
7223 break;
7224
7225 case TREE_VEC:
7226 {
7227 int len = TREE_VEC_LENGTH (*tp);
7228
7229 if (len == 0)
7230 break;
7231
7232 /* Walk all elements but the first. */
7233 while (--len)
7234 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
7235
7236 /* Now walk the first one as a tail call. */
7237 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
7238 }
7239
7240 case COMPLEX_CST:
7241 WALK_SUBTREE (TREE_REALPART (*tp));
7242 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
7243
7244 case CONSTRUCTOR:
7245 {
7246 unsigned HOST_WIDE_INT idx;
7247 constructor_elt *ce;
7248
7249 for (idx = 0;
7250 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
7251 idx++)
7252 WALK_SUBTREE (ce->value);
7253 }
7254 break;
7255
7256 case SAVE_EXPR:
7257 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
7258
7259 case BIND_EXPR:
7260 {
7261 tree decl;
7262 for (decl = BIND_EXPR_VARS (*tp); decl; decl = TREE_CHAIN (decl))
7263 {
7264 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
7265 into declarations that are just mentioned, rather than
7266 declared; they don't really belong to this part of the tree.
7267 And, we can see cycles: the initializer for a declaration
7268 can refer to the declaration itself. */
7269 WALK_SUBTREE (DECL_INITIAL (decl));
7270 WALK_SUBTREE (DECL_SIZE (decl));
7271 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
7272 }
7273 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
7274 }
7275
7276 case STATEMENT_LIST:
7277 {
7278 tree_stmt_iterator i;
7279 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
7280 WALK_SUBTREE (*tsi_stmt_ptr (i));
7281 }
7282 break;
7283
7284 default:
7285 /* ??? This could be a language-defined node. We really should make
7286 a hook for it, but right now just ignore it. */
7287 break;
7288 }
7289 }
7290
7291 /* We didn't find what we were looking for. */
7292 return NULL_TREE;
7293
7294 #undef WALK_SUBTREE_TAIL
7295 }
7296 #undef WALK_SUBTREE
7297
7298 /* Like walk_tree, but does not walk duplicate nodes more than once. */
7299
7300 tree
7301 walk_tree_without_duplicates (tree *tp, walk_tree_fn func, void *data)
7302 {
7303 tree result;
7304 struct pointer_set_t *pset;
7305
7306 pset = pointer_set_create ();
7307 result = walk_tree (tp, func, data, pset);
7308 pointer_set_destroy (pset);
7309 return result;
7310 }
7311
7312 #include "gt-tree.h"