gansidecl.h (__attribute__, [...]): Delete.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 88, 92-98, 1999 Free Software Foundation, Inc.
3
4 This file is part of GNU CC.
5
6 GNU CC is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU CC is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU CC; see the file COPYING. If not, write to
18 the Free Software Foundation, 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA. */
20
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44
45 #define obstack_chunk_alloc xmalloc
46 #define obstack_chunk_free free
47 /* obstack.[ch] explicitly declined to prototype this. */
48 extern int _obstack_allocated_p PROTO ((struct obstack *h, PTR obj));
49
50 /* Tree nodes of permanent duration are allocated in this obstack.
51 They are the identifier nodes, and everything outside of
52 the bodies and parameters of function definitions. */
53
54 struct obstack permanent_obstack;
55
56 /* The initial RTL, and all ..._TYPE nodes, in a function
57 are allocated in this obstack. Usually they are freed at the
58 end of the function, but if the function is inline they are saved.
59 For top-level functions, this is maybepermanent_obstack.
60 Separate obstacks are made for nested functions. */
61
62 struct obstack *function_maybepermanent_obstack;
63
64 /* This is the function_maybepermanent_obstack for top-level functions. */
65
66 struct obstack maybepermanent_obstack;
67
68 /* The contents of the current function definition are allocated
69 in this obstack, and all are freed at the end of the function.
70 For top-level functions, this is temporary_obstack.
71 Separate obstacks are made for nested functions. */
72
73 struct obstack *function_obstack;
74
75 /* This is used for reading initializers of global variables. */
76
77 struct obstack temporary_obstack;
78
79 /* The tree nodes of an expression are allocated
80 in this obstack, and all are freed at the end of the expression. */
81
82 struct obstack momentary_obstack;
83
84 /* The tree nodes of a declarator are allocated
85 in this obstack, and all are freed when the declarator
86 has been parsed. */
87
88 static struct obstack temp_decl_obstack;
89
90 /* This points at either permanent_obstack
91 or the current function_maybepermanent_obstack. */
92
93 struct obstack *saveable_obstack;
94
95 /* This is same as saveable_obstack during parse and expansion phase;
96 it points to the current function's obstack during optimization.
97 This is the obstack to be used for creating rtl objects. */
98
99 struct obstack *rtl_obstack;
100
101 /* This points at either permanent_obstack or the current function_obstack. */
102
103 struct obstack *current_obstack;
104
105 /* This points at either permanent_obstack or the current function_obstack
106 or momentary_obstack. */
107
108 struct obstack *expression_obstack;
109
110 /* Stack of obstack selections for push_obstacks and pop_obstacks. */
111
112 struct obstack_stack
113 {
114 struct obstack_stack *next;
115 struct obstack *current;
116 struct obstack *saveable;
117 struct obstack *expression;
118 struct obstack *rtl;
119 };
120
121 struct obstack_stack *obstack_stack;
122
123 /* Obstack for allocating struct obstack_stack entries. */
124
125 static struct obstack obstack_stack_obstack;
126
127 /* Addresses of first objects in some obstacks.
128 This is for freeing their entire contents. */
129 char *maybepermanent_firstobj;
130 char *temporary_firstobj;
131 char *momentary_firstobj;
132 char *temp_decl_firstobj;
133
134 /* This is used to preserve objects (mainly array initializers) that need to
135 live until the end of the current function, but no further. */
136 char *momentary_function_firstobj;
137
138 /* Nonzero means all ..._TYPE nodes should be allocated permanently. */
139
140 int all_types_permanent;
141
142 /* Stack of places to restore the momentary obstack back to. */
143
144 struct momentary_level
145 {
146 /* Pointer back to previous such level. */
147 struct momentary_level *prev;
148 /* First object allocated within this level. */
149 char *base;
150 /* Value of expression_obstack saved at entry to this level. */
151 struct obstack *obstack;
152 };
153
154 struct momentary_level *momentary_stack;
155
156 /* Table indexed by tree code giving a string containing a character
157 classifying the tree code. Possibilities are
158 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
159
160 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
161
162 char tree_code_type[MAX_TREE_CODES] = {
163 #include "tree.def"
164 };
165 #undef DEFTREECODE
166
167 /* Table indexed by tree code giving number of expression
168 operands beyond the fixed part of the node structure.
169 Not used for types or decls. */
170
171 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
172
173 int tree_code_length[MAX_TREE_CODES] = {
174 #include "tree.def"
175 };
176 #undef DEFTREECODE
177
178 /* Names of tree components.
179 Used for printing out the tree and error messages. */
180 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
181
182 const char *tree_code_name[MAX_TREE_CODES] = {
183 #include "tree.def"
184 };
185 #undef DEFTREECODE
186
187 /* Statistics-gathering stuff. */
188 typedef enum
189 {
190 d_kind,
191 t_kind,
192 b_kind,
193 s_kind,
194 r_kind,
195 e_kind,
196 c_kind,
197 id_kind,
198 op_id_kind,
199 perm_list_kind,
200 temp_list_kind,
201 vec_kind,
202 x_kind,
203 lang_decl,
204 lang_type,
205 all_kinds
206 } tree_node_kind;
207
208 int tree_node_counts[(int)all_kinds];
209 int tree_node_sizes[(int)all_kinds];
210 int id_string_size = 0;
211
212 const char *tree_node_kind_names[] = {
213 "decls",
214 "types",
215 "blocks",
216 "stmts",
217 "refs",
218 "exprs",
219 "constants",
220 "identifiers",
221 "op_identifiers",
222 "perm_tree_lists",
223 "temp_tree_lists",
224 "vecs",
225 "random kinds",
226 "lang_decl kinds",
227 "lang_type kinds"
228 };
229
230 /* Hash table for uniquizing IDENTIFIER_NODEs by name. */
231
232 #define MAX_HASH_TABLE 1009
233 static tree hash_table[MAX_HASH_TABLE]; /* id hash buckets */
234
235 /* 0 while creating built-in identifiers. */
236 static int do_identifier_warnings;
237
238 /* Unique id for next decl created. */
239 static int next_decl_uid;
240 /* Unique id for next type created. */
241 static int next_type_uid = 1;
242
243 /* The language-specific function for alias analysis. If NULL, the
244 language does not do any special alias analysis. */
245 int (*lang_get_alias_set) PROTO((tree));
246
247 /* Here is how primitive or already-canonicalized types' hash
248 codes are made. */
249 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
250
251 /* Each hash table slot is a bucket containing a chain
252 of these structures. */
253
254 struct type_hash
255 {
256 struct type_hash *next; /* Next structure in the bucket. */
257 int hashcode; /* Hash code of this type. */
258 tree type; /* The type recorded here. */
259 };
260
261 /* Now here is the hash table. When recording a type, it is added
262 to the slot whose index is the hash code mod the table size.
263 Note that the hash table is used for several kinds of types
264 (function types, array types and array index range types, for now).
265 While all these live in the same table, they are completely independent,
266 and the hash code is computed differently for each of these. */
267
268 #define TYPE_HASH_SIZE 59
269 struct type_hash *type_hash_table[TYPE_HASH_SIZE];
270
271 static void set_type_quals PROTO((tree, int));
272 static void append_random_chars PROTO((char *));
273 static void build_real_from_int_cst_1 PROTO((PTR));
274 static void mark_type_hash PROTO ((void *));
275
276 void gcc_obstack_init ();
277
278 /* If non-null, a language specific helper for unsave_expr_now. */
279
280 void (*lang_unsave_expr_now) PROTO((tree));
281 \f
282 /* Init the principal obstacks. */
283
284 void
285 init_obstacks ()
286 {
287 gcc_obstack_init (&obstack_stack_obstack);
288 gcc_obstack_init (&permanent_obstack);
289
290 gcc_obstack_init (&temporary_obstack);
291 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
292 gcc_obstack_init (&momentary_obstack);
293 momentary_firstobj = (char *) obstack_alloc (&momentary_obstack, 0);
294 momentary_function_firstobj = momentary_firstobj;
295 gcc_obstack_init (&maybepermanent_obstack);
296 maybepermanent_firstobj
297 = (char *) obstack_alloc (&maybepermanent_obstack, 0);
298 gcc_obstack_init (&temp_decl_obstack);
299 temp_decl_firstobj = (char *) obstack_alloc (&temp_decl_obstack, 0);
300
301 function_obstack = &temporary_obstack;
302 function_maybepermanent_obstack = &maybepermanent_obstack;
303 current_obstack = &permanent_obstack;
304 expression_obstack = &permanent_obstack;
305 rtl_obstack = saveable_obstack = &permanent_obstack;
306
307 /* Init the hash table of identifiers. */
308 bzero ((char *) hash_table, sizeof hash_table);
309
310 ggc_add_tree_root (hash_table, MAX_HASH_TABLE);
311 ggc_add_root (type_hash_table, TYPE_HASH_SIZE,
312 sizeof(struct type_hash *),
313 mark_type_hash);
314 }
315
316 void
317 gcc_obstack_init (obstack)
318 struct obstack *obstack;
319 {
320 /* Let particular systems override the size of a chunk. */
321 #ifndef OBSTACK_CHUNK_SIZE
322 #define OBSTACK_CHUNK_SIZE 0
323 #endif
324 /* Let them override the alloc and free routines too. */
325 #ifndef OBSTACK_CHUNK_ALLOC
326 #define OBSTACK_CHUNK_ALLOC xmalloc
327 #endif
328 #ifndef OBSTACK_CHUNK_FREE
329 #define OBSTACK_CHUNK_FREE free
330 #endif
331 _obstack_begin (obstack, OBSTACK_CHUNK_SIZE, 0,
332 (void *(*) ()) OBSTACK_CHUNK_ALLOC,
333 (void (*) ()) OBSTACK_CHUNK_FREE);
334 }
335
336 /* Save all variables describing the current status into the structure
337 *P. This function is called whenever we start compiling one
338 function in the midst of compiling another. For example, when
339 compiling a nested function, or, in C++, a template instantiation
340 that is required by the function we are currently compiling.
341
342 CONTEXT is the decl_function_context for the function we're about to
343 compile; if it isn't current_function_decl, we have to play some games. */
344
345 void
346 save_tree_status (p)
347 struct function *p;
348 {
349 p->all_types_permanent = all_types_permanent;
350 p->momentary_stack = momentary_stack;
351 p->maybepermanent_firstobj = maybepermanent_firstobj;
352 p->temporary_firstobj = temporary_firstobj;
353 p->momentary_firstobj = momentary_firstobj;
354 p->momentary_function_firstobj = momentary_function_firstobj;
355 p->function_obstack = function_obstack;
356 p->function_maybepermanent_obstack = function_maybepermanent_obstack;
357 p->current_obstack = current_obstack;
358 p->expression_obstack = expression_obstack;
359 p->saveable_obstack = saveable_obstack;
360 p->rtl_obstack = rtl_obstack;
361
362 function_maybepermanent_obstack
363 = (struct obstack *) xmalloc (sizeof (struct obstack));
364 gcc_obstack_init (function_maybepermanent_obstack);
365 maybepermanent_firstobj
366 = (char *) obstack_finish (function_maybepermanent_obstack);
367
368 function_obstack = (struct obstack *) xmalloc (sizeof (struct obstack));
369 gcc_obstack_init (function_obstack);
370
371 current_obstack = &permanent_obstack;
372 expression_obstack = &permanent_obstack;
373 rtl_obstack = saveable_obstack = &permanent_obstack;
374
375 temporary_firstobj = (char *) obstack_alloc (&temporary_obstack, 0);
376 momentary_firstobj = (char *) obstack_finish (&momentary_obstack);
377 momentary_function_firstobj = momentary_firstobj;
378 }
379
380 /* Restore all variables describing the current status from the structure *P.
381 This is used after a nested function. */
382
383 void
384 restore_tree_status (p)
385 struct function *p;
386 {
387 all_types_permanent = p->all_types_permanent;
388 momentary_stack = p->momentary_stack;
389
390 obstack_free (&momentary_obstack, momentary_function_firstobj);
391
392 /* Free saveable storage used by the function just compiled and not
393 saved. */
394 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
395
396 obstack_free (&temporary_obstack, temporary_firstobj);
397 obstack_free (&momentary_obstack, momentary_function_firstobj);
398
399 obstack_free (function_obstack, 0);
400
401 if (obstack_empty_p (function_maybepermanent_obstack))
402 free (function_maybepermanent_obstack);
403 free (function_obstack);
404
405 temporary_firstobj = p->temporary_firstobj;
406 momentary_firstobj = p->momentary_firstobj;
407 momentary_function_firstobj = p->momentary_function_firstobj;
408 maybepermanent_firstobj = p->maybepermanent_firstobj;
409 function_obstack = p->function_obstack;
410 function_maybepermanent_obstack = p->function_maybepermanent_obstack;
411 current_obstack = p->current_obstack;
412 expression_obstack = p->expression_obstack;
413 saveable_obstack = p->saveable_obstack;
414 rtl_obstack = p->rtl_obstack;
415 }
416 \f
417 /* Start allocating on the temporary (per function) obstack.
418 This is done in start_function before parsing the function body,
419 and before each initialization at top level, and to go back
420 to temporary allocation after doing permanent_allocation. */
421
422 void
423 temporary_allocation ()
424 {
425 /* Note that function_obstack at top level points to temporary_obstack.
426 But within a nested function context, it is a separate obstack. */
427 current_obstack = function_obstack;
428 expression_obstack = function_obstack;
429 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
430 momentary_stack = 0;
431 }
432
433 /* Start allocating on the permanent obstack but don't
434 free the temporary data. After calling this, call
435 `permanent_allocation' to fully resume permanent allocation status. */
436
437 void
438 end_temporary_allocation ()
439 {
440 current_obstack = &permanent_obstack;
441 expression_obstack = &permanent_obstack;
442 rtl_obstack = saveable_obstack = &permanent_obstack;
443 }
444
445 /* Resume allocating on the temporary obstack, undoing
446 effects of `end_temporary_allocation'. */
447
448 void
449 resume_temporary_allocation ()
450 {
451 current_obstack = function_obstack;
452 expression_obstack = function_obstack;
453 rtl_obstack = saveable_obstack = function_maybepermanent_obstack;
454 }
455
456 /* While doing temporary allocation, switch to allocating in such a
457 way as to save all nodes if the function is inlined. Call
458 resume_temporary_allocation to go back to ordinary temporary
459 allocation. */
460
461 void
462 saveable_allocation ()
463 {
464 /* Note that function_obstack at top level points to temporary_obstack.
465 But within a nested function context, it is a separate obstack. */
466 expression_obstack = current_obstack = saveable_obstack;
467 }
468
469 /* Switch to current obstack CURRENT and maybepermanent obstack SAVEABLE,
470 recording the previously current obstacks on a stack.
471 This does not free any storage in any obstack. */
472
473 void
474 push_obstacks (current, saveable)
475 struct obstack *current, *saveable;
476 {
477 struct obstack_stack *p;
478
479 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
480 (sizeof (struct obstack_stack)));
481
482 p->current = current_obstack;
483 p->saveable = saveable_obstack;
484 p->expression = expression_obstack;
485 p->rtl = rtl_obstack;
486 p->next = obstack_stack;
487 obstack_stack = p;
488
489 current_obstack = current;
490 expression_obstack = current;
491 rtl_obstack = saveable_obstack = saveable;
492 }
493
494 /* Save the current set of obstacks, but don't change them. */
495
496 void
497 push_obstacks_nochange ()
498 {
499 struct obstack_stack *p;
500
501 p = (struct obstack_stack *) obstack_alloc (&obstack_stack_obstack,
502 (sizeof (struct obstack_stack)));
503
504 p->current = current_obstack;
505 p->saveable = saveable_obstack;
506 p->expression = expression_obstack;
507 p->rtl = rtl_obstack;
508 p->next = obstack_stack;
509 obstack_stack = p;
510 }
511
512 /* Pop the obstack selection stack. */
513
514 void
515 pop_obstacks ()
516 {
517 struct obstack_stack *p;
518
519 p = obstack_stack;
520 obstack_stack = p->next;
521
522 current_obstack = p->current;
523 saveable_obstack = p->saveable;
524 expression_obstack = p->expression;
525 rtl_obstack = p->rtl;
526
527 obstack_free (&obstack_stack_obstack, p);
528 }
529
530 /* Nonzero if temporary allocation is currently in effect.
531 Zero if currently doing permanent allocation. */
532
533 int
534 allocation_temporary_p ()
535 {
536 return current_obstack != &permanent_obstack;
537 }
538
539 /* Go back to allocating on the permanent obstack
540 and free everything in the temporary obstack.
541
542 FUNCTION_END is true only if we have just finished compiling a function.
543 In that case, we also free preserved initial values on the momentary
544 obstack. */
545
546 void
547 permanent_allocation (function_end)
548 int function_end;
549 {
550 /* Free up previous temporary obstack data */
551 obstack_free (&temporary_obstack, temporary_firstobj);
552 if (function_end)
553 {
554 obstack_free (&momentary_obstack, momentary_function_firstobj);
555 momentary_firstobj = momentary_function_firstobj;
556 }
557 else
558 obstack_free (&momentary_obstack, momentary_firstobj);
559 obstack_free (function_maybepermanent_obstack, maybepermanent_firstobj);
560 obstack_free (&temp_decl_obstack, temp_decl_firstobj);
561
562 current_obstack = &permanent_obstack;
563 expression_obstack = &permanent_obstack;
564 rtl_obstack = saveable_obstack = &permanent_obstack;
565 }
566
567 /* Save permanently everything on the maybepermanent_obstack. */
568
569 void
570 preserve_data ()
571 {
572 maybepermanent_firstobj
573 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
574 }
575
576 void
577 preserve_initializer ()
578 {
579 struct momentary_level *tem;
580 char *old_momentary;
581
582 temporary_firstobj
583 = (char *) obstack_alloc (&temporary_obstack, 0);
584 maybepermanent_firstobj
585 = (char *) obstack_alloc (function_maybepermanent_obstack, 0);
586
587 old_momentary = momentary_firstobj;
588 momentary_firstobj
589 = (char *) obstack_alloc (&momentary_obstack, 0);
590 if (momentary_firstobj != old_momentary)
591 for (tem = momentary_stack; tem; tem = tem->prev)
592 tem->base = momentary_firstobj;
593 }
594
595 /* Start allocating new rtl in current_obstack.
596 Use resume_temporary_allocation
597 to go back to allocating rtl in saveable_obstack. */
598
599 void
600 rtl_in_current_obstack ()
601 {
602 rtl_obstack = current_obstack;
603 }
604
605 /* Start allocating rtl from saveable_obstack. Intended to be used after
606 a call to push_obstacks_nochange. */
607
608 void
609 rtl_in_saveable_obstack ()
610 {
611 rtl_obstack = saveable_obstack;
612 }
613 \f
614 /* Allocate SIZE bytes in the current obstack
615 and return a pointer to them.
616 In practice the current obstack is always the temporary one. */
617
618 char *
619 oballoc (size)
620 int size;
621 {
622 return (char *) obstack_alloc (current_obstack, size);
623 }
624
625 /* Free the object PTR in the current obstack
626 as well as everything allocated since PTR.
627 In practice the current obstack is always the temporary one. */
628
629 void
630 obfree (ptr)
631 char *ptr;
632 {
633 obstack_free (current_obstack, ptr);
634 }
635
636 /* Allocate SIZE bytes in the permanent obstack
637 and return a pointer to them. */
638
639 char *
640 permalloc (size)
641 int size;
642 {
643 return (char *) obstack_alloc (&permanent_obstack, size);
644 }
645
646 /* Allocate NELEM items of SIZE bytes in the permanent obstack
647 and return a pointer to them. The storage is cleared before
648 returning the value. */
649
650 char *
651 perm_calloc (nelem, size)
652 int nelem;
653 long size;
654 {
655 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
656 bzero (rval, nelem * size);
657 return rval;
658 }
659
660 /* Allocate SIZE bytes in the saveable obstack
661 and return a pointer to them. */
662
663 char *
664 savealloc (size)
665 int size;
666 {
667 return (char *) obstack_alloc (saveable_obstack, size);
668 }
669
670 /* Allocate SIZE bytes in the expression obstack
671 and return a pointer to them. */
672
673 char *
674 expralloc (size)
675 int size;
676 {
677 return (char *) obstack_alloc (expression_obstack, size);
678 }
679 \f
680 /* Print out which obstack an object is in. */
681
682 void
683 print_obstack_name (object, file, prefix)
684 char *object;
685 FILE *file;
686 const char *prefix;
687 {
688 struct obstack *obstack = NULL;
689 const char *obstack_name = NULL;
690 struct function *p;
691
692 for (p = outer_function_chain; p; p = p->next)
693 {
694 if (_obstack_allocated_p (p->function_obstack, object))
695 {
696 obstack = p->function_obstack;
697 obstack_name = "containing function obstack";
698 }
699 if (_obstack_allocated_p (p->function_maybepermanent_obstack, object))
700 {
701 obstack = p->function_maybepermanent_obstack;
702 obstack_name = "containing function maybepermanent obstack";
703 }
704 }
705
706 if (_obstack_allocated_p (&obstack_stack_obstack, object))
707 {
708 obstack = &obstack_stack_obstack;
709 obstack_name = "obstack_stack_obstack";
710 }
711 else if (_obstack_allocated_p (function_obstack, object))
712 {
713 obstack = function_obstack;
714 obstack_name = "function obstack";
715 }
716 else if (_obstack_allocated_p (&permanent_obstack, object))
717 {
718 obstack = &permanent_obstack;
719 obstack_name = "permanent_obstack";
720 }
721 else if (_obstack_allocated_p (&momentary_obstack, object))
722 {
723 obstack = &momentary_obstack;
724 obstack_name = "momentary_obstack";
725 }
726 else if (_obstack_allocated_p (function_maybepermanent_obstack, object))
727 {
728 obstack = function_maybepermanent_obstack;
729 obstack_name = "function maybepermanent obstack";
730 }
731 else if (_obstack_allocated_p (&temp_decl_obstack, object))
732 {
733 obstack = &temp_decl_obstack;
734 obstack_name = "temp_decl_obstack";
735 }
736
737 /* Check to see if the object is in the free area of the obstack. */
738 if (obstack != NULL)
739 {
740 if (object >= obstack->next_free
741 && object < obstack->chunk_limit)
742 fprintf (file, "%s in free portion of obstack %s",
743 prefix, obstack_name);
744 else
745 fprintf (file, "%s allocated from %s", prefix, obstack_name);
746 }
747 else
748 fprintf (file, "%s not allocated from any obstack", prefix);
749 }
750
751 void
752 debug_obstack (object)
753 char *object;
754 {
755 print_obstack_name (object, stderr, "object");
756 fprintf (stderr, ".\n");
757 }
758
759 /* Return 1 if OBJ is in the permanent obstack.
760 This is slow, and should be used only for debugging.
761 Use TREE_PERMANENT for other purposes. */
762
763 int
764 object_permanent_p (obj)
765 tree obj;
766 {
767 return _obstack_allocated_p (&permanent_obstack, obj);
768 }
769 \f
770 /* Start a level of momentary allocation.
771 In C, each compound statement has its own level
772 and that level is freed at the end of each statement.
773 All expression nodes are allocated in the momentary allocation level. */
774
775 void
776 push_momentary ()
777 {
778 struct momentary_level *tem
779 = (struct momentary_level *) obstack_alloc (&momentary_obstack,
780 sizeof (struct momentary_level));
781 tem->prev = momentary_stack;
782 tem->base = (char *) obstack_base (&momentary_obstack);
783 tem->obstack = expression_obstack;
784 momentary_stack = tem;
785 expression_obstack = &momentary_obstack;
786 }
787
788 /* Set things up so the next clear_momentary will only clear memory
789 past our present position in momentary_obstack. */
790
791 void
792 preserve_momentary ()
793 {
794 momentary_stack->base = (char *) obstack_base (&momentary_obstack);
795 }
796
797 /* Free all the storage in the current momentary-allocation level.
798 In C, this happens at the end of each statement. */
799
800 void
801 clear_momentary ()
802 {
803 obstack_free (&momentary_obstack, momentary_stack->base);
804 }
805
806 /* Discard a level of momentary allocation.
807 In C, this happens at the end of each compound statement.
808 Restore the status of expression node allocation
809 that was in effect before this level was created. */
810
811 void
812 pop_momentary ()
813 {
814 struct momentary_level *tem = momentary_stack;
815 momentary_stack = tem->prev;
816 expression_obstack = tem->obstack;
817 /* We can't free TEM from the momentary_obstack, because there might
818 be objects above it which have been saved. We can free back to the
819 stack of the level we are popping off though. */
820 obstack_free (&momentary_obstack, tem->base);
821 }
822
823 /* Pop back to the previous level of momentary allocation,
824 but don't free any momentary data just yet. */
825
826 void
827 pop_momentary_nofree ()
828 {
829 struct momentary_level *tem = momentary_stack;
830 momentary_stack = tem->prev;
831 expression_obstack = tem->obstack;
832 }
833
834 /* Call when starting to parse a declaration:
835 make expressions in the declaration last the length of the function.
836 Returns an argument that should be passed to resume_momentary later. */
837
838 int
839 suspend_momentary ()
840 {
841 register int tem = expression_obstack == &momentary_obstack;
842 expression_obstack = saveable_obstack;
843 return tem;
844 }
845
846 /* Call when finished parsing a declaration:
847 restore the treatment of node-allocation that was
848 in effect before the suspension.
849 YES should be the value previously returned by suspend_momentary. */
850
851 void
852 resume_momentary (yes)
853 int yes;
854 {
855 if (yes)
856 expression_obstack = &momentary_obstack;
857 }
858 \f
859 /* Init the tables indexed by tree code.
860 Note that languages can add to these tables to define their own codes. */
861
862 void
863 init_tree_codes ()
864 {
865
866 }
867
868 /* Return a newly allocated node of code CODE.
869 Initialize the node's unique id and its TREE_PERMANENT flag.
870 For decl and type nodes, some other fields are initialized.
871 The rest of the node is initialized to zero.
872
873 Achoo! I got a code in the node. */
874
875 tree
876 make_node (code)
877 enum tree_code code;
878 {
879 register tree t;
880 register int type = TREE_CODE_CLASS (code);
881 register int length = 0;
882 register struct obstack *obstack = current_obstack;
883 #ifdef GATHER_STATISTICS
884 register tree_node_kind kind;
885 #endif
886
887 switch (type)
888 {
889 case 'd': /* A decl node */
890 #ifdef GATHER_STATISTICS
891 kind = d_kind;
892 #endif
893 length = sizeof (struct tree_decl);
894 /* All decls in an inline function need to be saved. */
895 if (obstack != &permanent_obstack)
896 obstack = saveable_obstack;
897
898 /* PARM_DECLs go on the context of the parent. If this is a nested
899 function, then we must allocate the PARM_DECL on the parent's
900 obstack, so that they will live to the end of the parent's
901 closing brace. This is necessary in case we try to inline the
902 function into its parent.
903
904 PARM_DECLs of top-level functions do not have this problem. However,
905 we allocate them where we put the FUNCTION_DECL for languages such as
906 Ada that need to consult some flags in the PARM_DECLs of the function
907 when calling it.
908
909 See comment in restore_tree_status for why we can't put this
910 in function_obstack. */
911 if (code == PARM_DECL && obstack != &permanent_obstack)
912 {
913 tree context = 0;
914 if (current_function_decl)
915 context = decl_function_context (current_function_decl);
916
917 if (context)
918 obstack
919 = find_function_data (context)->function_maybepermanent_obstack;
920 }
921 break;
922
923 case 't': /* a type node */
924 #ifdef GATHER_STATISTICS
925 kind = t_kind;
926 #endif
927 length = sizeof (struct tree_type);
928 /* All data types are put where we can preserve them if nec. */
929 if (obstack != &permanent_obstack)
930 obstack = all_types_permanent ? &permanent_obstack : saveable_obstack;
931 break;
932
933 case 'b': /* a lexical block */
934 #ifdef GATHER_STATISTICS
935 kind = b_kind;
936 #endif
937 length = sizeof (struct tree_block);
938 /* All BLOCK nodes are put where we can preserve them if nec. */
939 if (obstack != &permanent_obstack)
940 obstack = saveable_obstack;
941 break;
942
943 case 's': /* an expression with side effects */
944 #ifdef GATHER_STATISTICS
945 kind = s_kind;
946 goto usual_kind;
947 #endif
948 case 'r': /* a reference */
949 #ifdef GATHER_STATISTICS
950 kind = r_kind;
951 goto usual_kind;
952 #endif
953 case 'e': /* an expression */
954 case '<': /* a comparison expression */
955 case '1': /* a unary arithmetic expression */
956 case '2': /* a binary arithmetic expression */
957 #ifdef GATHER_STATISTICS
958 kind = e_kind;
959 usual_kind:
960 #endif
961 obstack = expression_obstack;
962 /* All BIND_EXPR nodes are put where we can preserve them if nec. */
963 if (code == BIND_EXPR && obstack != &permanent_obstack)
964 obstack = saveable_obstack;
965 length = sizeof (struct tree_exp)
966 + (tree_code_length[(int) code] - 1) * sizeof (char *);
967 break;
968
969 case 'c': /* a constant */
970 #ifdef GATHER_STATISTICS
971 kind = c_kind;
972 #endif
973 obstack = expression_obstack;
974
975 /* We can't use tree_code_length for INTEGER_CST, since the number of
976 words is machine-dependent due to varying length of HOST_WIDE_INT,
977 which might be wider than a pointer (e.g., long long). Similarly
978 for REAL_CST, since the number of words is machine-dependent due
979 to varying size and alignment of `double'. */
980
981 if (code == INTEGER_CST)
982 length = sizeof (struct tree_int_cst);
983 else if (code == REAL_CST)
984 length = sizeof (struct tree_real_cst);
985 else
986 length = sizeof (struct tree_common)
987 + tree_code_length[(int) code] * sizeof (char *);
988 break;
989
990 case 'x': /* something random, like an identifier. */
991 #ifdef GATHER_STATISTICS
992 if (code == IDENTIFIER_NODE)
993 kind = id_kind;
994 else if (code == OP_IDENTIFIER)
995 kind = op_id_kind;
996 else if (code == TREE_VEC)
997 kind = vec_kind;
998 else
999 kind = x_kind;
1000 #endif
1001 length = sizeof (struct tree_common)
1002 + tree_code_length[(int) code] * sizeof (char *);
1003 /* Identifier nodes are always permanent since they are
1004 unique in a compiler run. */
1005 if (code == IDENTIFIER_NODE) obstack = &permanent_obstack;
1006 break;
1007
1008 default:
1009 abort ();
1010 }
1011
1012 if (ggc_p)
1013 t = ggc_alloc_tree (length);
1014 else
1015 {
1016 t = (tree) obstack_alloc (obstack, length);
1017 bzero ((PTR) t, length);
1018 }
1019
1020 #ifdef GATHER_STATISTICS
1021 tree_node_counts[(int)kind]++;
1022 tree_node_sizes[(int)kind] += length;
1023 #endif
1024
1025 TREE_SET_CODE (t, code);
1026 if (obstack == &permanent_obstack)
1027 TREE_PERMANENT (t) = 1;
1028
1029 switch (type)
1030 {
1031 case 's':
1032 TREE_SIDE_EFFECTS (t) = 1;
1033 TREE_TYPE (t) = void_type_node;
1034 break;
1035
1036 case 'd':
1037 if (code != FUNCTION_DECL)
1038 DECL_ALIGN (t) = 1;
1039 DECL_IN_SYSTEM_HEADER (t)
1040 = in_system_header && (obstack == &permanent_obstack);
1041 DECL_SOURCE_LINE (t) = lineno;
1042 DECL_SOURCE_FILE (t) = (input_filename) ? input_filename : "<built-in>";
1043 DECL_UID (t) = next_decl_uid++;
1044 /* Note that we have not yet computed the alias set for this
1045 declaration. */
1046 DECL_POINTER_ALIAS_SET (t) = -1;
1047 break;
1048
1049 case 't':
1050 TYPE_UID (t) = next_type_uid++;
1051 TYPE_ALIGN (t) = 1;
1052 TYPE_MAIN_VARIANT (t) = t;
1053 TYPE_OBSTACK (t) = obstack;
1054 TYPE_ATTRIBUTES (t) = NULL_TREE;
1055 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
1056 SET_DEFAULT_TYPE_ATTRIBUTES (t);
1057 #endif
1058 /* Note that we have not yet computed the alias set for this
1059 type. */
1060 TYPE_ALIAS_SET (t) = -1;
1061 break;
1062
1063 case 'c':
1064 TREE_CONSTANT (t) = 1;
1065 break;
1066 }
1067
1068 return t;
1069 }
1070 \f
1071 /* Return a new node with the same contents as NODE except that its
1072 TREE_CHAIN is zero and it has a fresh uid. Unlike make_node, this
1073 function always performs the allocation on the CURRENT_OBSTACK;
1074 it's up to the caller to pick the right obstack before calling this
1075 function. */
1076
1077 tree
1078 copy_node (node)
1079 tree node;
1080 {
1081 register tree t;
1082 register enum tree_code code = TREE_CODE (node);
1083 register int length = 0;
1084
1085 switch (TREE_CODE_CLASS (code))
1086 {
1087 case 'd': /* A decl node */
1088 length = sizeof (struct tree_decl);
1089 break;
1090
1091 case 't': /* a type node */
1092 length = sizeof (struct tree_type);
1093 break;
1094
1095 case 'b': /* a lexical block node */
1096 length = sizeof (struct tree_block);
1097 break;
1098
1099 case 'r': /* a reference */
1100 case 'e': /* an expression */
1101 case 's': /* an expression with side effects */
1102 case '<': /* a comparison expression */
1103 case '1': /* a unary arithmetic expression */
1104 case '2': /* a binary arithmetic expression */
1105 length = sizeof (struct tree_exp)
1106 + (tree_code_length[(int) code] - 1) * sizeof (char *);
1107 break;
1108
1109 case 'c': /* a constant */
1110 /* We can't use tree_code_length for INTEGER_CST, since the number of
1111 words is machine-dependent due to varying length of HOST_WIDE_INT,
1112 which might be wider than a pointer (e.g., long long). Similarly
1113 for REAL_CST, since the number of words is machine-dependent due
1114 to varying size and alignment of `double'. */
1115 if (code == INTEGER_CST)
1116 length = sizeof (struct tree_int_cst);
1117 else if (code == REAL_CST)
1118 length = sizeof (struct tree_real_cst);
1119 else
1120 length = (sizeof (struct tree_common)
1121 + tree_code_length[(int) code] * sizeof (char *));
1122 break;
1123
1124 case 'x': /* something random, like an identifier. */
1125 length = sizeof (struct tree_common)
1126 + tree_code_length[(int) code] * sizeof (char *);
1127 if (code == TREE_VEC)
1128 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
1129 }
1130
1131 if (ggc_p)
1132 t = ggc_alloc_tree (length);
1133 else
1134 t = (tree) obstack_alloc (current_obstack, length);
1135 memcpy (t, node, length);
1136
1137 /* EXPR_WITH_FILE_LOCATION must keep filename info stored in TREE_CHAIN */
1138 if (TREE_CODE (node) != EXPR_WITH_FILE_LOCATION)
1139 TREE_CHAIN (t) = 0;
1140 TREE_ASM_WRITTEN (t) = 0;
1141
1142 if (TREE_CODE_CLASS (code) == 'd')
1143 DECL_UID (t) = next_decl_uid++;
1144 else if (TREE_CODE_CLASS (code) == 't')
1145 {
1146 TYPE_UID (t) = next_type_uid++;
1147 TYPE_OBSTACK (t) = current_obstack;
1148
1149 /* The following is so that the debug code for
1150 the copy is different from the original type.
1151 The two statements usually duplicate each other
1152 (because they clear fields of the same union),
1153 but the optimizer should catch that. */
1154 TYPE_SYMTAB_POINTER (t) = 0;
1155 TYPE_SYMTAB_ADDRESS (t) = 0;
1156 }
1157
1158 TREE_PERMANENT (t) = (current_obstack == &permanent_obstack);
1159
1160 return t;
1161 }
1162
1163 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1164 For example, this can copy a list made of TREE_LIST nodes. */
1165
1166 tree
1167 copy_list (list)
1168 tree list;
1169 {
1170 tree head;
1171 register tree prev, next;
1172
1173 if (list == 0)
1174 return 0;
1175
1176 head = prev = copy_node (list);
1177 next = TREE_CHAIN (list);
1178 while (next)
1179 {
1180 TREE_CHAIN (prev) = copy_node (next);
1181 prev = TREE_CHAIN (prev);
1182 next = TREE_CHAIN (next);
1183 }
1184 return head;
1185 }
1186 \f
1187 #define HASHBITS 30
1188
1189 /* Return an IDENTIFIER_NODE whose name is TEXT (a null-terminated string).
1190 If an identifier with that name has previously been referred to,
1191 the same node is returned this time. */
1192
1193 tree
1194 get_identifier (text)
1195 register const char *text;
1196 {
1197 register int hi;
1198 register int i;
1199 register tree idp;
1200 register int len, hash_len;
1201
1202 /* Compute length of text in len. */
1203 len = strlen (text);
1204
1205 /* Decide how much of that length to hash on */
1206 hash_len = len;
1207 if (warn_id_clash && (unsigned)len > id_clash_len)
1208 hash_len = id_clash_len;
1209
1210 /* Compute hash code */
1211 hi = hash_len * 613 + (unsigned) text[0];
1212 for (i = 1; i < hash_len; i += 2)
1213 hi = ((hi * 613) + (unsigned) (text[i]));
1214
1215 hi &= (1 << HASHBITS) - 1;
1216 hi %= MAX_HASH_TABLE;
1217
1218 /* Search table for identifier */
1219 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1220 if (IDENTIFIER_LENGTH (idp) == len
1221 && IDENTIFIER_POINTER (idp)[0] == text[0]
1222 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1223 return idp; /* <-- return if found */
1224
1225 /* Not found; optionally warn about a similar identifier */
1226 if (warn_id_clash && do_identifier_warnings && (unsigned)len >= id_clash_len)
1227 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1228 if (!strncmp (IDENTIFIER_POINTER (idp), text, id_clash_len))
1229 {
1230 warning ("`%s' and `%s' identical in first %d characters",
1231 IDENTIFIER_POINTER (idp), text, id_clash_len);
1232 break;
1233 }
1234
1235 if (tree_code_length[(int) IDENTIFIER_NODE] < 0)
1236 abort (); /* set_identifier_size hasn't been called. */
1237
1238 /* Not found, create one, add to chain */
1239 idp = make_node (IDENTIFIER_NODE);
1240 IDENTIFIER_LENGTH (idp) = len;
1241 #ifdef GATHER_STATISTICS
1242 id_string_size += len;
1243 #endif
1244
1245 if (ggc_p)
1246 IDENTIFIER_POINTER (idp) = ggc_alloc_string (text, len);
1247 else
1248 IDENTIFIER_POINTER (idp) = obstack_copy0 (&permanent_obstack, text, len);
1249
1250 TREE_CHAIN (idp) = hash_table[hi];
1251 hash_table[hi] = idp;
1252 return idp; /* <-- return if created */
1253 }
1254
1255 /* If an identifier with the name TEXT (a null-terminated string) has
1256 previously been referred to, return that node; otherwise return
1257 NULL_TREE. */
1258
1259 tree
1260 maybe_get_identifier (text)
1261 register const char *text;
1262 {
1263 register int hi;
1264 register int i;
1265 register tree idp;
1266 register int len, hash_len;
1267
1268 /* Compute length of text in len. */
1269 len = strlen (text);
1270
1271 /* Decide how much of that length to hash on */
1272 hash_len = len;
1273 if (warn_id_clash && (unsigned)len > id_clash_len)
1274 hash_len = id_clash_len;
1275
1276 /* Compute hash code */
1277 hi = hash_len * 613 + (unsigned) text[0];
1278 for (i = 1; i < hash_len; i += 2)
1279 hi = ((hi * 613) + (unsigned) (text[i]));
1280
1281 hi &= (1 << HASHBITS) - 1;
1282 hi %= MAX_HASH_TABLE;
1283
1284 /* Search table for identifier */
1285 for (idp = hash_table[hi]; idp; idp = TREE_CHAIN (idp))
1286 if (IDENTIFIER_LENGTH (idp) == len
1287 && IDENTIFIER_POINTER (idp)[0] == text[0]
1288 && !bcmp (IDENTIFIER_POINTER (idp), text, len))
1289 return idp; /* <-- return if found */
1290
1291 return NULL_TREE;
1292 }
1293
1294 /* Enable warnings on similar identifiers (if requested).
1295 Done after the built-in identifiers are created. */
1296
1297 void
1298 start_identifier_warnings ()
1299 {
1300 do_identifier_warnings = 1;
1301 }
1302
1303 /* Record the size of an identifier node for the language in use.
1304 SIZE is the total size in bytes.
1305 This is called by the language-specific files. This must be
1306 called before allocating any identifiers. */
1307
1308 void
1309 set_identifier_size (size)
1310 int size;
1311 {
1312 tree_code_length[(int) IDENTIFIER_NODE]
1313 = (size - sizeof (struct tree_common)) / sizeof (tree);
1314 }
1315 \f
1316 /* Return a newly constructed INTEGER_CST node whose constant value
1317 is specified by the two ints LOW and HI.
1318 The TREE_TYPE is set to `int'.
1319
1320 This function should be used via the `build_int_2' macro. */
1321
1322 tree
1323 build_int_2_wide (low, hi)
1324 HOST_WIDE_INT low, hi;
1325 {
1326 register tree t = make_node (INTEGER_CST);
1327 TREE_INT_CST_LOW (t) = low;
1328 TREE_INT_CST_HIGH (t) = hi;
1329 TREE_TYPE (t) = integer_type_node;
1330 return t;
1331 }
1332
1333 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1334
1335 tree
1336 build_real (type, d)
1337 tree type;
1338 REAL_VALUE_TYPE d;
1339 {
1340 tree v;
1341 int overflow = 0;
1342
1343 /* Check for valid float value for this type on this target machine;
1344 if not, can print error message and store a valid value in D. */
1345 #ifdef CHECK_FLOAT_VALUE
1346 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1347 #endif
1348
1349 v = make_node (REAL_CST);
1350 TREE_TYPE (v) = type;
1351 TREE_REAL_CST (v) = d;
1352 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1353 return v;
1354 }
1355
1356 /* Return a new REAL_CST node whose type is TYPE
1357 and whose value is the integer value of the INTEGER_CST node I. */
1358
1359 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
1360
1361 REAL_VALUE_TYPE
1362 real_value_from_int_cst (type, i)
1363 tree type, i;
1364 {
1365 REAL_VALUE_TYPE d;
1366
1367 #ifdef REAL_ARITHMETIC
1368 if (! TREE_UNSIGNED (TREE_TYPE (i)))
1369 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1370 TYPE_MODE (type));
1371 else
1372 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
1373 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
1374 #else /* not REAL_ARITHMETIC */
1375 /* Some 386 compilers mishandle unsigned int to float conversions,
1376 so introduce a temporary variable E to avoid those bugs. */
1377 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
1378 {
1379 REAL_VALUE_TYPE e;
1380
1381 d = (double) (~ TREE_INT_CST_HIGH (i));
1382 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1383 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1384 d *= e;
1385 e = (double) (unsigned HOST_WIDE_INT) (~ TREE_INT_CST_LOW (i));
1386 d += e;
1387 d = (- d - 1.0);
1388 }
1389 else
1390 {
1391 REAL_VALUE_TYPE e;
1392
1393 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
1394 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
1395 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
1396 d *= e;
1397 e = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_LOW (i);
1398 d += e;
1399 }
1400 #endif /* not REAL_ARITHMETIC */
1401 return d;
1402 }
1403
1404 struct brfic_args
1405 {
1406 /* Input */
1407 tree type, i;
1408 /* Output */
1409 REAL_VALUE_TYPE d;
1410 };
1411
1412 static void
1413 build_real_from_int_cst_1 (data)
1414 PTR data;
1415 {
1416 struct brfic_args * args = (struct brfic_args *) data;
1417
1418 #ifdef REAL_ARITHMETIC
1419 args->d = real_value_from_int_cst (args->type, args->i);
1420 #else
1421 args->d =
1422 REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
1423 real_value_from_int_cst (args->type, args->i));
1424 #endif
1425 }
1426
1427 /* This function can't be implemented if we can't do arithmetic
1428 on the float representation. */
1429
1430 tree
1431 build_real_from_int_cst (type, i)
1432 tree type;
1433 tree i;
1434 {
1435 tree v;
1436 int overflow = TREE_OVERFLOW (i);
1437 REAL_VALUE_TYPE d;
1438 struct brfic_args args;
1439
1440 v = make_node (REAL_CST);
1441 TREE_TYPE (v) = type;
1442
1443 /* Setup input for build_real_from_int_cst_1() */
1444 args.type = type;
1445 args.i = i;
1446
1447 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
1448 {
1449 /* Receive output from build_real_from_int_cst_1() */
1450 d = args.d;
1451 }
1452 else
1453 {
1454 /* We got an exception from build_real_from_int_cst_1() */
1455 d = dconst0;
1456 overflow = 1;
1457 }
1458
1459 /* Check for valid float value for this type on this target machine. */
1460
1461 #ifdef CHECK_FLOAT_VALUE
1462 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
1463 #endif
1464
1465 TREE_REAL_CST (v) = d;
1466 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
1467 return v;
1468 }
1469
1470 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
1471
1472 /* Return a newly constructed STRING_CST node whose value is
1473 the LEN characters at STR.
1474 The TREE_TYPE is not initialized. */
1475
1476 tree
1477 build_string (len, str)
1478 int len;
1479 const char *str;
1480 {
1481 /* Put the string in saveable_obstack since it will be placed in the RTL
1482 for an "asm" statement and will also be kept around a while if
1483 deferring constant output in varasm.c. */
1484
1485 register tree s = make_node (STRING_CST);
1486 TREE_STRING_LENGTH (s) = len;
1487 if (ggc_p)
1488 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
1489 else
1490 TREE_STRING_POINTER (s) = obstack_copy0 (saveable_obstack, str, len);
1491 return s;
1492 }
1493
1494 /* Return a newly constructed COMPLEX_CST node whose value is
1495 specified by the real and imaginary parts REAL and IMAG.
1496 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1497 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1498
1499 tree
1500 build_complex (type, real, imag)
1501 tree type;
1502 tree real, imag;
1503 {
1504 register tree t = make_node (COMPLEX_CST);
1505
1506 TREE_REALPART (t) = real;
1507 TREE_IMAGPART (t) = imag;
1508 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1509 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1510 TREE_CONSTANT_OVERFLOW (t)
1511 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
1512 return t;
1513 }
1514
1515 /* Build a newly constructed TREE_VEC node of length LEN. */
1516
1517 tree
1518 make_tree_vec (len)
1519 int len;
1520 {
1521 register tree t;
1522 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
1523 register struct obstack *obstack = current_obstack;
1524
1525 #ifdef GATHER_STATISTICS
1526 tree_node_counts[(int)vec_kind]++;
1527 tree_node_sizes[(int)vec_kind] += length;
1528 #endif
1529
1530 if (ggc_p)
1531 t = ggc_alloc_tree (length);
1532 else
1533 {
1534 t = (tree) obstack_alloc (obstack, length);
1535 bzero ((PTR) t, length);
1536 }
1537
1538 TREE_SET_CODE (t, TREE_VEC);
1539 TREE_VEC_LENGTH (t) = len;
1540 if (obstack == &permanent_obstack)
1541 TREE_PERMANENT (t) = 1;
1542
1543 return t;
1544 }
1545 \f
1546 /* Return 1 if EXPR is the integer constant zero or a complex constant
1547 of zero. */
1548
1549 int
1550 integer_zerop (expr)
1551 tree expr;
1552 {
1553 STRIP_NOPS (expr);
1554
1555 return ((TREE_CODE (expr) == INTEGER_CST
1556 && ! TREE_CONSTANT_OVERFLOW (expr)
1557 && TREE_INT_CST_LOW (expr) == 0
1558 && TREE_INT_CST_HIGH (expr) == 0)
1559 || (TREE_CODE (expr) == COMPLEX_CST
1560 && integer_zerop (TREE_REALPART (expr))
1561 && integer_zerop (TREE_IMAGPART (expr))));
1562 }
1563
1564 /* Return 1 if EXPR is the integer constant one or the corresponding
1565 complex constant. */
1566
1567 int
1568 integer_onep (expr)
1569 tree expr;
1570 {
1571 STRIP_NOPS (expr);
1572
1573 return ((TREE_CODE (expr) == INTEGER_CST
1574 && ! TREE_CONSTANT_OVERFLOW (expr)
1575 && TREE_INT_CST_LOW (expr) == 1
1576 && TREE_INT_CST_HIGH (expr) == 0)
1577 || (TREE_CODE (expr) == COMPLEX_CST
1578 && integer_onep (TREE_REALPART (expr))
1579 && integer_zerop (TREE_IMAGPART (expr))));
1580 }
1581
1582 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1583 it contains. Likewise for the corresponding complex constant. */
1584
1585 int
1586 integer_all_onesp (expr)
1587 tree expr;
1588 {
1589 register int prec;
1590 register int uns;
1591
1592 STRIP_NOPS (expr);
1593
1594 if (TREE_CODE (expr) == COMPLEX_CST
1595 && integer_all_onesp (TREE_REALPART (expr))
1596 && integer_zerop (TREE_IMAGPART (expr)))
1597 return 1;
1598
1599 else if (TREE_CODE (expr) != INTEGER_CST
1600 || TREE_CONSTANT_OVERFLOW (expr))
1601 return 0;
1602
1603 uns = TREE_UNSIGNED (TREE_TYPE (expr));
1604 if (!uns)
1605 return TREE_INT_CST_LOW (expr) == -1 && TREE_INT_CST_HIGH (expr) == -1;
1606
1607 /* Note that using TYPE_PRECISION here is wrong. We care about the
1608 actual bits, not the (arbitrary) range of the type. */
1609 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1610 if (prec >= HOST_BITS_PER_WIDE_INT)
1611 {
1612 int high_value, shift_amount;
1613
1614 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1615
1616 if (shift_amount > HOST_BITS_PER_WIDE_INT)
1617 /* Can not handle precisions greater than twice the host int size. */
1618 abort ();
1619 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
1620 /* Shifting by the host word size is undefined according to the ANSI
1621 standard, so we must handle this as a special case. */
1622 high_value = -1;
1623 else
1624 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1625
1626 return TREE_INT_CST_LOW (expr) == -1
1627 && TREE_INT_CST_HIGH (expr) == high_value;
1628 }
1629 else
1630 return TREE_INT_CST_LOW (expr) == ((HOST_WIDE_INT) 1 << prec) - 1;
1631 }
1632
1633 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1634 one bit on). */
1635
1636 int
1637 integer_pow2p (expr)
1638 tree expr;
1639 {
1640 int prec;
1641 HOST_WIDE_INT high, low;
1642
1643 STRIP_NOPS (expr);
1644
1645 if (TREE_CODE (expr) == COMPLEX_CST
1646 && integer_pow2p (TREE_REALPART (expr))
1647 && integer_zerop (TREE_IMAGPART (expr)))
1648 return 1;
1649
1650 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1651 return 0;
1652
1653 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1654 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1655 high = TREE_INT_CST_HIGH (expr);
1656 low = TREE_INT_CST_LOW (expr);
1657
1658 /* First clear all bits that are beyond the type's precision in case
1659 we've been sign extended. */
1660
1661 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1662 ;
1663 else if (prec > HOST_BITS_PER_WIDE_INT)
1664 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1665 else
1666 {
1667 high = 0;
1668 if (prec < HOST_BITS_PER_WIDE_INT)
1669 low &= ~((HOST_WIDE_INT) (-1) << prec);
1670 }
1671
1672 if (high == 0 && low == 0)
1673 return 0;
1674
1675 return ((high == 0 && (low & (low - 1)) == 0)
1676 || (low == 0 && (high & (high - 1)) == 0));
1677 }
1678
1679 /* Return the power of two represented by a tree node known to be a
1680 power of two. */
1681
1682 int
1683 tree_log2 (expr)
1684 tree expr;
1685 {
1686 int prec;
1687 HOST_WIDE_INT high, low;
1688
1689 STRIP_NOPS (expr);
1690
1691 if (TREE_CODE (expr) == COMPLEX_CST)
1692 return tree_log2 (TREE_REALPART (expr));
1693
1694 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1695 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1696
1697 high = TREE_INT_CST_HIGH (expr);
1698 low = TREE_INT_CST_LOW (expr);
1699
1700 /* First clear all bits that are beyond the type's precision in case
1701 we've been sign extended. */
1702
1703 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1704 ;
1705 else if (prec > HOST_BITS_PER_WIDE_INT)
1706 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1707 else
1708 {
1709 high = 0;
1710 if (prec < HOST_BITS_PER_WIDE_INT)
1711 low &= ~((HOST_WIDE_INT) (-1) << prec);
1712 }
1713
1714 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1715 : exact_log2 (low));
1716 }
1717
1718 /* Return 1 if EXPR is the real constant zero. */
1719
1720 int
1721 real_zerop (expr)
1722 tree expr;
1723 {
1724 STRIP_NOPS (expr);
1725
1726 return ((TREE_CODE (expr) == REAL_CST
1727 && ! TREE_CONSTANT_OVERFLOW (expr)
1728 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1729 || (TREE_CODE (expr) == COMPLEX_CST
1730 && real_zerop (TREE_REALPART (expr))
1731 && real_zerop (TREE_IMAGPART (expr))));
1732 }
1733
1734 /* Return 1 if EXPR is the real constant one in real or complex form. */
1735
1736 int
1737 real_onep (expr)
1738 tree expr;
1739 {
1740 STRIP_NOPS (expr);
1741
1742 return ((TREE_CODE (expr) == REAL_CST
1743 && ! TREE_CONSTANT_OVERFLOW (expr)
1744 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1745 || (TREE_CODE (expr) == COMPLEX_CST
1746 && real_onep (TREE_REALPART (expr))
1747 && real_zerop (TREE_IMAGPART (expr))));
1748 }
1749
1750 /* Return 1 if EXPR is the real constant two. */
1751
1752 int
1753 real_twop (expr)
1754 tree expr;
1755 {
1756 STRIP_NOPS (expr);
1757
1758 return ((TREE_CODE (expr) == REAL_CST
1759 && ! TREE_CONSTANT_OVERFLOW (expr)
1760 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1761 || (TREE_CODE (expr) == COMPLEX_CST
1762 && real_twop (TREE_REALPART (expr))
1763 && real_zerop (TREE_IMAGPART (expr))));
1764 }
1765
1766 /* Nonzero if EXP is a constant or a cast of a constant. */
1767
1768 int
1769 really_constant_p (exp)
1770 tree exp;
1771 {
1772 /* This is not quite the same as STRIP_NOPS. It does more. */
1773 while (TREE_CODE (exp) == NOP_EXPR
1774 || TREE_CODE (exp) == CONVERT_EXPR
1775 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1776 exp = TREE_OPERAND (exp, 0);
1777 return TREE_CONSTANT (exp);
1778 }
1779 \f
1780 /* Return first list element whose TREE_VALUE is ELEM.
1781 Return 0 if ELEM is not in LIST. */
1782
1783 tree
1784 value_member (elem, list)
1785 tree elem, list;
1786 {
1787 while (list)
1788 {
1789 if (elem == TREE_VALUE (list))
1790 return list;
1791 list = TREE_CHAIN (list);
1792 }
1793 return NULL_TREE;
1794 }
1795
1796 /* Return first list element whose TREE_PURPOSE is ELEM.
1797 Return 0 if ELEM is not in LIST. */
1798
1799 tree
1800 purpose_member (elem, list)
1801 tree elem, list;
1802 {
1803 while (list)
1804 {
1805 if (elem == TREE_PURPOSE (list))
1806 return list;
1807 list = TREE_CHAIN (list);
1808 }
1809 return NULL_TREE;
1810 }
1811
1812 /* Return first list element whose BINFO_TYPE is ELEM.
1813 Return 0 if ELEM is not in LIST. */
1814
1815 tree
1816 binfo_member (elem, list)
1817 tree elem, list;
1818 {
1819 while (list)
1820 {
1821 if (elem == BINFO_TYPE (list))
1822 return list;
1823 list = TREE_CHAIN (list);
1824 }
1825 return NULL_TREE;
1826 }
1827
1828 /* Return nonzero if ELEM is part of the chain CHAIN. */
1829
1830 int
1831 chain_member (elem, chain)
1832 tree elem, chain;
1833 {
1834 while (chain)
1835 {
1836 if (elem == chain)
1837 return 1;
1838 chain = TREE_CHAIN (chain);
1839 }
1840
1841 return 0;
1842 }
1843
1844 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1845 chain CHAIN. */
1846 /* ??? This function was added for machine specific attributes but is no
1847 longer used. It could be deleted if we could confirm all front ends
1848 don't use it. */
1849
1850 int
1851 chain_member_value (elem, chain)
1852 tree elem, chain;
1853 {
1854 while (chain)
1855 {
1856 if (elem == TREE_VALUE (chain))
1857 return 1;
1858 chain = TREE_CHAIN (chain);
1859 }
1860
1861 return 0;
1862 }
1863
1864 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1865 for any piece of chain CHAIN. */
1866 /* ??? This function was added for machine specific attributes but is no
1867 longer used. It could be deleted if we could confirm all front ends
1868 don't use it. */
1869
1870 int
1871 chain_member_purpose (elem, chain)
1872 tree elem, chain;
1873 {
1874 while (chain)
1875 {
1876 if (elem == TREE_PURPOSE (chain))
1877 return 1;
1878 chain = TREE_CHAIN (chain);
1879 }
1880
1881 return 0;
1882 }
1883
1884 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1885 We expect a null pointer to mark the end of the chain.
1886 This is the Lisp primitive `length'. */
1887
1888 int
1889 list_length (t)
1890 tree t;
1891 {
1892 register tree tail;
1893 register int len = 0;
1894
1895 for (tail = t; tail; tail = TREE_CHAIN (tail))
1896 len++;
1897
1898 return len;
1899 }
1900
1901 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1902 by modifying the last node in chain 1 to point to chain 2.
1903 This is the Lisp primitive `nconc'. */
1904
1905 tree
1906 chainon (op1, op2)
1907 tree op1, op2;
1908 {
1909
1910 if (op1)
1911 {
1912 register tree t1;
1913 #ifdef ENABLE_CHECKING
1914 register tree t2;
1915 #endif
1916
1917 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1918 ;
1919 TREE_CHAIN (t1) = op2;
1920 #ifdef ENABLE_CHECKING
1921 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1922 if (t2 == t1)
1923 abort (); /* Circularity created. */
1924 #endif
1925 return op1;
1926 }
1927 else return op2;
1928 }
1929
1930 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1931
1932 tree
1933 tree_last (chain)
1934 register tree chain;
1935 {
1936 register tree next;
1937 if (chain)
1938 while ((next = TREE_CHAIN (chain)))
1939 chain = next;
1940 return chain;
1941 }
1942
1943 /* Reverse the order of elements in the chain T,
1944 and return the new head of the chain (old last element). */
1945
1946 tree
1947 nreverse (t)
1948 tree t;
1949 {
1950 register tree prev = 0, decl, next;
1951 for (decl = t; decl; decl = next)
1952 {
1953 next = TREE_CHAIN (decl);
1954 TREE_CHAIN (decl) = prev;
1955 prev = decl;
1956 }
1957 return prev;
1958 }
1959
1960 /* Given a chain CHAIN of tree nodes,
1961 construct and return a list of those nodes. */
1962
1963 tree
1964 listify (chain)
1965 tree chain;
1966 {
1967 tree result = NULL_TREE;
1968 tree in_tail = chain;
1969 tree out_tail = NULL_TREE;
1970
1971 while (in_tail)
1972 {
1973 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1974 if (out_tail)
1975 TREE_CHAIN (out_tail) = next;
1976 else
1977 result = next;
1978 out_tail = next;
1979 in_tail = TREE_CHAIN (in_tail);
1980 }
1981
1982 return result;
1983 }
1984 \f
1985 /* Return a newly created TREE_LIST node whose
1986 purpose and value fields are PARM and VALUE. */
1987
1988 tree
1989 build_tree_list (parm, value)
1990 tree parm, value;
1991 {
1992 register tree t = make_node (TREE_LIST);
1993 TREE_PURPOSE (t) = parm;
1994 TREE_VALUE (t) = value;
1995 return t;
1996 }
1997
1998 /* Similar, but build on the temp_decl_obstack. */
1999
2000 tree
2001 build_decl_list (parm, value)
2002 tree parm, value;
2003 {
2004 register tree node;
2005 register struct obstack *ambient_obstack = current_obstack;
2006 current_obstack = &temp_decl_obstack;
2007 node = build_tree_list (parm, value);
2008 current_obstack = ambient_obstack;
2009 return node;
2010 }
2011
2012 /* Similar, but build on the expression_obstack. */
2013
2014 tree
2015 build_expr_list (parm, value)
2016 tree parm, value;
2017 {
2018 register tree node;
2019 register struct obstack *ambient_obstack = current_obstack;
2020 current_obstack = expression_obstack;
2021 node = build_tree_list (parm, value);
2022 current_obstack = ambient_obstack;
2023 return node;
2024 }
2025
2026 /* Return a newly created TREE_LIST node whose
2027 purpose and value fields are PARM and VALUE
2028 and whose TREE_CHAIN is CHAIN. */
2029
2030 tree
2031 tree_cons (purpose, value, chain)
2032 tree purpose, value, chain;
2033 {
2034 #if 0
2035 register tree node = make_node (TREE_LIST);
2036 #else
2037 register tree node;
2038
2039 if (ggc_p)
2040 node = ggc_alloc_tree (sizeof (struct tree_list));
2041 else
2042 {
2043 node = (tree) obstack_alloc (current_obstack, sizeof (struct tree_list));
2044 bzero (node, sizeof (struct tree_common));
2045 }
2046
2047 #ifdef GATHER_STATISTICS
2048 tree_node_counts[(int)x_kind]++;
2049 tree_node_sizes[(int)x_kind] += sizeof (struct tree_list);
2050 #endif
2051
2052
2053 TREE_SET_CODE (node, TREE_LIST);
2054 if (current_obstack == &permanent_obstack)
2055 TREE_PERMANENT (node) = 1;
2056 #endif
2057
2058 TREE_CHAIN (node) = chain;
2059 TREE_PURPOSE (node) = purpose;
2060 TREE_VALUE (node) = value;
2061 return node;
2062 }
2063
2064 /* Similar, but build on the temp_decl_obstack. */
2065
2066 tree
2067 decl_tree_cons (purpose, value, chain)
2068 tree purpose, value, chain;
2069 {
2070 register tree node;
2071 register struct obstack *ambient_obstack = current_obstack;
2072 current_obstack = &temp_decl_obstack;
2073 node = tree_cons (purpose, value, chain);
2074 current_obstack = ambient_obstack;
2075 return node;
2076 }
2077
2078 /* Similar, but build on the expression_obstack. */
2079
2080 tree
2081 expr_tree_cons (purpose, value, chain)
2082 tree purpose, value, chain;
2083 {
2084 register tree node;
2085 register struct obstack *ambient_obstack = current_obstack;
2086 current_obstack = expression_obstack;
2087 node = tree_cons (purpose, value, chain);
2088 current_obstack = ambient_obstack;
2089 return node;
2090 }
2091
2092 /* Same as `tree_cons' but make a permanent object. */
2093
2094 tree
2095 perm_tree_cons (purpose, value, chain)
2096 tree purpose, value, chain;
2097 {
2098 register tree node;
2099 register struct obstack *ambient_obstack = current_obstack;
2100 current_obstack = &permanent_obstack;
2101
2102 node = tree_cons (purpose, value, chain);
2103 current_obstack = ambient_obstack;
2104 return node;
2105 }
2106
2107 /* Same as `tree_cons', but make this node temporary, regardless. */
2108
2109 tree
2110 temp_tree_cons (purpose, value, chain)
2111 tree purpose, value, chain;
2112 {
2113 register tree node;
2114 register struct obstack *ambient_obstack = current_obstack;
2115 current_obstack = &temporary_obstack;
2116
2117 node = tree_cons (purpose, value, chain);
2118 current_obstack = ambient_obstack;
2119 return node;
2120 }
2121
2122 /* Same as `tree_cons', but save this node if the function's RTL is saved. */
2123
2124 tree
2125 saveable_tree_cons (purpose, value, chain)
2126 tree purpose, value, chain;
2127 {
2128 register tree node;
2129 register struct obstack *ambient_obstack = current_obstack;
2130 current_obstack = saveable_obstack;
2131
2132 node = tree_cons (purpose, value, chain);
2133 current_obstack = ambient_obstack;
2134 return node;
2135 }
2136 \f
2137 /* Return the size nominally occupied by an object of type TYPE
2138 when it resides in memory. The value is measured in units of bytes,
2139 and its data type is that normally used for type sizes
2140 (which is the first type created by make_signed_type or
2141 make_unsigned_type). */
2142
2143 tree
2144 size_in_bytes (type)
2145 tree type;
2146 {
2147 tree t;
2148
2149 if (type == error_mark_node)
2150 return integer_zero_node;
2151
2152 type = TYPE_MAIN_VARIANT (type);
2153 t = TYPE_SIZE_UNIT (type);
2154 if (t == 0)
2155 {
2156 incomplete_type_error (NULL_TREE, type);
2157 return integer_zero_node;
2158 }
2159 if (TREE_CODE (t) == INTEGER_CST)
2160 force_fit_type (t, 0);
2161
2162 return t;
2163 }
2164
2165 /* Return the size of TYPE (in bytes) as a wide integer
2166 or return -1 if the size can vary or is larger than an integer. */
2167
2168 HOST_WIDE_INT
2169 int_size_in_bytes (type)
2170 tree type;
2171 {
2172 tree t;
2173
2174 if (type == error_mark_node)
2175 return 0;
2176
2177 type = TYPE_MAIN_VARIANT (type);
2178 t = TYPE_SIZE_UNIT (type);
2179 if (t == 0
2180 || TREE_CODE (t) != INTEGER_CST
2181 || TREE_INT_CST_HIGH (t) != 0)
2182 return -1;
2183
2184 return TREE_INT_CST_LOW (t);
2185 }
2186 \f
2187 /* Return, as a tree node, the number of elements for TYPE (which is an
2188 ARRAY_TYPE) minus one. This counts only elements of the top array.
2189
2190 Don't let any SAVE_EXPRs escape; if we are called as part of a cleanup
2191 action, they would get unsaved. */
2192
2193 tree
2194 array_type_nelts (type)
2195 tree type;
2196 {
2197 tree index_type, min, max;
2198
2199 /* If they did it with unspecified bounds, then we should have already
2200 given an error about it before we got here. */
2201 if (! TYPE_DOMAIN (type))
2202 return error_mark_node;
2203
2204 index_type = TYPE_DOMAIN (type);
2205 min = TYPE_MIN_VALUE (index_type);
2206 max = TYPE_MAX_VALUE (index_type);
2207
2208 if (! TREE_CONSTANT (min))
2209 {
2210 STRIP_NOPS (min);
2211 if (TREE_CODE (min) == SAVE_EXPR && SAVE_EXPR_RTL (min))
2212 min = build (RTL_EXPR, TREE_TYPE (TYPE_MIN_VALUE (index_type)), 0,
2213 SAVE_EXPR_RTL (min));
2214 else
2215 min = TYPE_MIN_VALUE (index_type);
2216 }
2217
2218 if (! TREE_CONSTANT (max))
2219 {
2220 STRIP_NOPS (max);
2221 if (TREE_CODE (max) == SAVE_EXPR && SAVE_EXPR_RTL (max))
2222 max = build (RTL_EXPR, TREE_TYPE (TYPE_MAX_VALUE (index_type)), 0,
2223 SAVE_EXPR_RTL (max));
2224 else
2225 max = TYPE_MAX_VALUE (index_type);
2226 }
2227
2228 return (integer_zerop (min)
2229 ? max
2230 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
2231 }
2232 \f
2233 /* Return nonzero if arg is static -- a reference to an object in
2234 static storage. This is not the same as the C meaning of `static'. */
2235
2236 int
2237 staticp (arg)
2238 tree arg;
2239 {
2240 switch (TREE_CODE (arg))
2241 {
2242 case FUNCTION_DECL:
2243 /* Nested functions aren't static, since taking their address
2244 involves a trampoline. */
2245 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
2246 && ! DECL_NON_ADDR_CONST_P (arg);
2247
2248 case VAR_DECL:
2249 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2250 && ! DECL_NON_ADDR_CONST_P (arg);
2251
2252 case CONSTRUCTOR:
2253 return TREE_STATIC (arg);
2254
2255 case STRING_CST:
2256 return 1;
2257
2258 /* If we are referencing a bitfield, we can't evaluate an
2259 ADDR_EXPR at compile time and so it isn't a constant. */
2260 case COMPONENT_REF:
2261 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
2262 && staticp (TREE_OPERAND (arg, 0)));
2263
2264 case BIT_FIELD_REF:
2265 return 0;
2266
2267 #if 0
2268 /* This case is technically correct, but results in setting
2269 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
2270 compile time. */
2271 case INDIRECT_REF:
2272 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
2273 #endif
2274
2275 case ARRAY_REF:
2276 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2277 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2278 return staticp (TREE_OPERAND (arg, 0));
2279
2280 default:
2281 return 0;
2282 }
2283 }
2284 \f
2285 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2286 Do this to any expression which may be used in more than one place,
2287 but must be evaluated only once.
2288
2289 Normally, expand_expr would reevaluate the expression each time.
2290 Calling save_expr produces something that is evaluated and recorded
2291 the first time expand_expr is called on it. Subsequent calls to
2292 expand_expr just reuse the recorded value.
2293
2294 The call to expand_expr that generates code that actually computes
2295 the value is the first call *at compile time*. Subsequent calls
2296 *at compile time* generate code to use the saved value.
2297 This produces correct result provided that *at run time* control
2298 always flows through the insns made by the first expand_expr
2299 before reaching the other places where the save_expr was evaluated.
2300 You, the caller of save_expr, must make sure this is so.
2301
2302 Constants, and certain read-only nodes, are returned with no
2303 SAVE_EXPR because that is safe. Expressions containing placeholders
2304 are not touched; see tree.def for an explanation of what these
2305 are used for. */
2306
2307 tree
2308 save_expr (expr)
2309 tree expr;
2310 {
2311 register tree t = fold (expr);
2312
2313 /* We don't care about whether this can be used as an lvalue in this
2314 context. */
2315 while (TREE_CODE (t) == NON_LVALUE_EXPR)
2316 t = TREE_OPERAND (t, 0);
2317
2318 /* If the tree evaluates to a constant, then we don't want to hide that
2319 fact (i.e. this allows further folding, and direct checks for constants).
2320 However, a read-only object that has side effects cannot be bypassed.
2321 Since it is no problem to reevaluate literals, we just return the
2322 literal node. */
2323
2324 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
2325 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
2326 return t;
2327
2328 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2329 it means that the size or offset of some field of an object depends on
2330 the value within another field.
2331
2332 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2333 and some variable since it would then need to be both evaluated once and
2334 evaluated more than once. Front-ends must assure this case cannot
2335 happen by surrounding any such subexpressions in their own SAVE_EXPR
2336 and forcing evaluation at the proper time. */
2337 if (contains_placeholder_p (t))
2338 return t;
2339
2340 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
2341
2342 /* This expression might be placed ahead of a jump to ensure that the
2343 value was computed on both sides of the jump. So make sure it isn't
2344 eliminated as dead. */
2345 TREE_SIDE_EFFECTS (t) = 1;
2346 return t;
2347 }
2348
2349 /* Arrange for an expression to be expanded multiple independent
2350 times. This is useful for cleanup actions, as the backend can
2351 expand them multiple times in different places. */
2352
2353 tree
2354 unsave_expr (expr)
2355 tree expr;
2356 {
2357 tree t;
2358
2359 /* If this is already protected, no sense in protecting it again. */
2360 if (TREE_CODE (expr) == UNSAVE_EXPR)
2361 return expr;
2362
2363 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
2364 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
2365 return t;
2366 }
2367
2368 /* Returns the index of the first non-tree operand for CODE, or the number
2369 of operands if all are trees. */
2370
2371 int
2372 first_rtl_op (code)
2373 enum tree_code code;
2374 {
2375 switch (code)
2376 {
2377 case SAVE_EXPR:
2378 return 2;
2379 case GOTO_SUBROUTINE_EXPR:
2380 case RTL_EXPR:
2381 return 0;
2382 case CALL_EXPR:
2383 return 2;
2384 case WITH_CLEANUP_EXPR:
2385 /* Should be defined to be 2. */
2386 return 1;
2387 case METHOD_CALL_EXPR:
2388 return 3;
2389 default:
2390 return tree_code_length [(int) code];
2391 }
2392 }
2393
2394 /* Modify a tree in place so that all the evaluate only once things
2395 are cleared out. Return the EXPR given.
2396
2397 LANG_UNSAVE_EXPR_NOW, if set, is a pointer to a function to handle
2398 language specific nodes.
2399 */
2400
2401 tree
2402 unsave_expr_now (expr)
2403 tree expr;
2404 {
2405 enum tree_code code;
2406 register int i;
2407 int first_rtl;
2408
2409 if (expr == NULL_TREE)
2410 return expr;
2411
2412 code = TREE_CODE (expr);
2413 first_rtl = first_rtl_op (code);
2414 switch (code)
2415 {
2416 case SAVE_EXPR:
2417 SAVE_EXPR_RTL (expr) = 0;
2418 break;
2419
2420 case TARGET_EXPR:
2421 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
2422 TREE_OPERAND (expr, 3) = NULL_TREE;
2423 break;
2424
2425 case RTL_EXPR:
2426 /* I don't yet know how to emit a sequence multiple times. */
2427 if (RTL_EXPR_SEQUENCE (expr) != 0)
2428 abort ();
2429 break;
2430
2431 case CALL_EXPR:
2432 CALL_EXPR_RTL (expr) = 0;
2433 if (TREE_OPERAND (expr, 1)
2434 && TREE_CODE (TREE_OPERAND (expr, 1)) == TREE_LIST)
2435 {
2436 tree exp = TREE_OPERAND (expr, 1);
2437 while (exp)
2438 {
2439 unsave_expr_now (TREE_VALUE (exp));
2440 exp = TREE_CHAIN (exp);
2441 }
2442 }
2443 break;
2444
2445 default:
2446 if (lang_unsave_expr_now)
2447 (*lang_unsave_expr_now) (expr);
2448 break;
2449 }
2450
2451 switch (TREE_CODE_CLASS (code))
2452 {
2453 case 'c': /* a constant */
2454 case 't': /* a type node */
2455 case 'x': /* something random, like an identifier or an ERROR_MARK. */
2456 case 'd': /* A decl node */
2457 case 'b': /* A block node */
2458 return expr;
2459
2460 case 'e': /* an expression */
2461 case 'r': /* a reference */
2462 case 's': /* an expression with side effects */
2463 case '<': /* a comparison expression */
2464 case '2': /* a binary arithmetic expression */
2465 case '1': /* a unary arithmetic expression */
2466 for (i = first_rtl - 1; i >= 0; i--)
2467 unsave_expr_now (TREE_OPERAND (expr, i));
2468 return expr;
2469
2470 default:
2471 abort ();
2472 }
2473 }
2474 \f
2475 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2476 or offset that depends on a field within a record. */
2477
2478 int
2479 contains_placeholder_p (exp)
2480 tree exp;
2481 {
2482 register enum tree_code code = TREE_CODE (exp);
2483 int result;
2484
2485 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
2486 in it since it is supplying a value for it. */
2487 if (code == WITH_RECORD_EXPR)
2488 return 0;
2489 else if (code == PLACEHOLDER_EXPR)
2490 return 1;
2491
2492 switch (TREE_CODE_CLASS (code))
2493 {
2494 case 'r':
2495 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2496 position computations since they will be converted into a
2497 WITH_RECORD_EXPR involving the reference, which will assume
2498 here will be valid. */
2499 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2500
2501 case 'x':
2502 if (code == TREE_LIST)
2503 return (contains_placeholder_p (TREE_VALUE (exp))
2504 || (TREE_CHAIN (exp) != 0
2505 && contains_placeholder_p (TREE_CHAIN (exp))));
2506 break;
2507
2508 case '1':
2509 case '2': case '<':
2510 case 'e':
2511 switch (code)
2512 {
2513 case COMPOUND_EXPR:
2514 /* Ignoring the first operand isn't quite right, but works best. */
2515 return contains_placeholder_p (TREE_OPERAND (exp, 1));
2516
2517 case RTL_EXPR:
2518 case CONSTRUCTOR:
2519 return 0;
2520
2521 case COND_EXPR:
2522 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2523 || contains_placeholder_p (TREE_OPERAND (exp, 1))
2524 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
2525
2526 case SAVE_EXPR:
2527 /* If we already know this doesn't have a placeholder, don't
2528 check again. */
2529 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
2530 return 0;
2531
2532 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
2533 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
2534 if (result)
2535 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
2536
2537 return result;
2538
2539 case CALL_EXPR:
2540 return (TREE_OPERAND (exp, 1) != 0
2541 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
2542
2543 default:
2544 break;
2545 }
2546
2547 switch (tree_code_length[(int) code])
2548 {
2549 case 1:
2550 return contains_placeholder_p (TREE_OPERAND (exp, 0));
2551 case 2:
2552 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
2553 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
2554 default:
2555 return 0;
2556 }
2557
2558 default:
2559 return 0;
2560 }
2561 return 0;
2562 }
2563
2564 /* Return 1 if EXP contains any expressions that produce cleanups for an
2565 outer scope to deal with. Used by fold. */
2566
2567 int
2568 has_cleanups (exp)
2569 tree exp;
2570 {
2571 int i, nops, cmp;
2572
2573 if (! TREE_SIDE_EFFECTS (exp))
2574 return 0;
2575
2576 switch (TREE_CODE (exp))
2577 {
2578 case TARGET_EXPR:
2579 case GOTO_SUBROUTINE_EXPR:
2580 case WITH_CLEANUP_EXPR:
2581 return 1;
2582
2583 case CLEANUP_POINT_EXPR:
2584 return 0;
2585
2586 case CALL_EXPR:
2587 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
2588 {
2589 cmp = has_cleanups (TREE_VALUE (exp));
2590 if (cmp)
2591 return cmp;
2592 }
2593 return 0;
2594
2595 default:
2596 break;
2597 }
2598
2599 /* This general rule works for most tree codes. All exceptions should be
2600 handled above. If this is a language-specific tree code, we can't
2601 trust what might be in the operand, so say we don't know
2602 the situation. */
2603 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
2604 return -1;
2605
2606 nops = first_rtl_op (TREE_CODE (exp));
2607 for (i = 0; i < nops; i++)
2608 if (TREE_OPERAND (exp, i) != 0)
2609 {
2610 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
2611 if (type == 'e' || type == '<' || type == '1' || type == '2'
2612 || type == 'r' || type == 's')
2613 {
2614 cmp = has_cleanups (TREE_OPERAND (exp, i));
2615 if (cmp)
2616 return cmp;
2617 }
2618 }
2619
2620 return 0;
2621 }
2622 \f
2623 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
2624 return a tree with all occurrences of references to F in a
2625 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
2626 contains only arithmetic expressions or a CALL_EXPR with a
2627 PLACEHOLDER_EXPR occurring only in its arglist. */
2628
2629 tree
2630 substitute_in_expr (exp, f, r)
2631 tree exp;
2632 tree f;
2633 tree r;
2634 {
2635 enum tree_code code = TREE_CODE (exp);
2636 tree op0, op1, op2;
2637 tree new;
2638 tree inner;
2639
2640 switch (TREE_CODE_CLASS (code))
2641 {
2642 case 'c':
2643 case 'd':
2644 return exp;
2645
2646 case 'x':
2647 if (code == PLACEHOLDER_EXPR)
2648 return exp;
2649 else if (code == TREE_LIST)
2650 {
2651 op0 = (TREE_CHAIN (exp) == 0
2652 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2653 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2654 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2655 return exp;
2656
2657 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2658 }
2659
2660 abort ();
2661
2662 case '1':
2663 case '2':
2664 case '<':
2665 case 'e':
2666 switch (tree_code_length[(int) code])
2667 {
2668 case 1:
2669 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2670 if (op0 == TREE_OPERAND (exp, 0))
2671 return exp;
2672
2673 new = fold (build1 (code, TREE_TYPE (exp), op0));
2674 break;
2675
2676 case 2:
2677 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2678 could, but we don't support it. */
2679 if (code == RTL_EXPR)
2680 return exp;
2681 else if (code == CONSTRUCTOR)
2682 abort ();
2683
2684 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2685 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2686 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2687 return exp;
2688
2689 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2690 break;
2691
2692 case 3:
2693 /* It cannot be that anything inside a SAVE_EXPR contains a
2694 PLACEHOLDER_EXPR. */
2695 if (code == SAVE_EXPR)
2696 return exp;
2697
2698 else if (code == CALL_EXPR)
2699 {
2700 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2701 if (op1 == TREE_OPERAND (exp, 1))
2702 return exp;
2703
2704 return build (code, TREE_TYPE (exp),
2705 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2706 }
2707
2708 else if (code != COND_EXPR)
2709 abort ();
2710
2711 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2712 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2713 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2714 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2715 && op2 == TREE_OPERAND (exp, 2))
2716 return exp;
2717
2718 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2719 break;
2720
2721 default:
2722 abort ();
2723 }
2724
2725 break;
2726
2727 case 'r':
2728 switch (code)
2729 {
2730 case COMPONENT_REF:
2731 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2732 and it is the right field, replace it with R. */
2733 for (inner = TREE_OPERAND (exp, 0);
2734 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2735 inner = TREE_OPERAND (inner, 0))
2736 ;
2737 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2738 && TREE_OPERAND (exp, 1) == f)
2739 return r;
2740
2741 /* If this expression hasn't been completed let, leave it
2742 alone. */
2743 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2744 && TREE_TYPE (inner) == 0)
2745 return exp;
2746
2747 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2748 if (op0 == TREE_OPERAND (exp, 0))
2749 return exp;
2750
2751 new = fold (build (code, TREE_TYPE (exp), op0,
2752 TREE_OPERAND (exp, 1)));
2753 break;
2754
2755 case BIT_FIELD_REF:
2756 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2757 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2758 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2759 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2760 && op2 == TREE_OPERAND (exp, 2))
2761 return exp;
2762
2763 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2764 break;
2765
2766 case INDIRECT_REF:
2767 case BUFFER_REF:
2768 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2769 if (op0 == TREE_OPERAND (exp, 0))
2770 return exp;
2771
2772 new = fold (build1 (code, TREE_TYPE (exp), op0));
2773 break;
2774
2775 default:
2776 abort ();
2777 }
2778 break;
2779
2780 default:
2781 abort ();
2782 }
2783
2784 TREE_READONLY (new) = TREE_READONLY (exp);
2785 return new;
2786 }
2787 \f
2788 /* Stabilize a reference so that we can use it any number of times
2789 without causing its operands to be evaluated more than once.
2790 Returns the stabilized reference. This works by means of save_expr,
2791 so see the caveats in the comments about save_expr.
2792
2793 Also allows conversion expressions whose operands are references.
2794 Any other kind of expression is returned unchanged. */
2795
2796 tree
2797 stabilize_reference (ref)
2798 tree ref;
2799 {
2800 register tree result;
2801 register enum tree_code code = TREE_CODE (ref);
2802
2803 switch (code)
2804 {
2805 case VAR_DECL:
2806 case PARM_DECL:
2807 case RESULT_DECL:
2808 /* No action is needed in this case. */
2809 return ref;
2810
2811 case NOP_EXPR:
2812 case CONVERT_EXPR:
2813 case FLOAT_EXPR:
2814 case FIX_TRUNC_EXPR:
2815 case FIX_FLOOR_EXPR:
2816 case FIX_ROUND_EXPR:
2817 case FIX_CEIL_EXPR:
2818 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2819 break;
2820
2821 case INDIRECT_REF:
2822 result = build_nt (INDIRECT_REF,
2823 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2824 break;
2825
2826 case COMPONENT_REF:
2827 result = build_nt (COMPONENT_REF,
2828 stabilize_reference (TREE_OPERAND (ref, 0)),
2829 TREE_OPERAND (ref, 1));
2830 break;
2831
2832 case BIT_FIELD_REF:
2833 result = build_nt (BIT_FIELD_REF,
2834 stabilize_reference (TREE_OPERAND (ref, 0)),
2835 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2836 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2837 break;
2838
2839 case ARRAY_REF:
2840 result = build_nt (ARRAY_REF,
2841 stabilize_reference (TREE_OPERAND (ref, 0)),
2842 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2843 break;
2844
2845 case COMPOUND_EXPR:
2846 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2847 it wouldn't be ignored. This matters when dealing with
2848 volatiles. */
2849 return stabilize_reference_1 (ref);
2850
2851 case RTL_EXPR:
2852 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2853 save_expr (build1 (ADDR_EXPR,
2854 build_pointer_type (TREE_TYPE (ref)),
2855 ref)));
2856 break;
2857
2858
2859 /* If arg isn't a kind of lvalue we recognize, make no change.
2860 Caller should recognize the error for an invalid lvalue. */
2861 default:
2862 return ref;
2863
2864 case ERROR_MARK:
2865 return error_mark_node;
2866 }
2867
2868 TREE_TYPE (result) = TREE_TYPE (ref);
2869 TREE_READONLY (result) = TREE_READONLY (ref);
2870 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2871 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2872 TREE_RAISES (result) = TREE_RAISES (ref);
2873
2874 return result;
2875 }
2876
2877 /* Subroutine of stabilize_reference; this is called for subtrees of
2878 references. Any expression with side-effects must be put in a SAVE_EXPR
2879 to ensure that it is only evaluated once.
2880
2881 We don't put SAVE_EXPR nodes around everything, because assigning very
2882 simple expressions to temporaries causes us to miss good opportunities
2883 for optimizations. Among other things, the opportunity to fold in the
2884 addition of a constant into an addressing mode often gets lost, e.g.
2885 "y[i+1] += x;". In general, we take the approach that we should not make
2886 an assignment unless we are forced into it - i.e., that any non-side effect
2887 operator should be allowed, and that cse should take care of coalescing
2888 multiple utterances of the same expression should that prove fruitful. */
2889
2890 tree
2891 stabilize_reference_1 (e)
2892 tree e;
2893 {
2894 register tree result;
2895 register enum tree_code code = TREE_CODE (e);
2896
2897 /* We cannot ignore const expressions because it might be a reference
2898 to a const array but whose index contains side-effects. But we can
2899 ignore things that are actual constant or that already have been
2900 handled by this function. */
2901
2902 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2903 return e;
2904
2905 switch (TREE_CODE_CLASS (code))
2906 {
2907 case 'x':
2908 case 't':
2909 case 'd':
2910 case 'b':
2911 case '<':
2912 case 's':
2913 case 'e':
2914 case 'r':
2915 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2916 so that it will only be evaluated once. */
2917 /* The reference (r) and comparison (<) classes could be handled as
2918 below, but it is generally faster to only evaluate them once. */
2919 if (TREE_SIDE_EFFECTS (e))
2920 return save_expr (e);
2921 return e;
2922
2923 case 'c':
2924 /* Constants need no processing. In fact, we should never reach
2925 here. */
2926 return e;
2927
2928 case '2':
2929 /* Division is slow and tends to be compiled with jumps,
2930 especially the division by powers of 2 that is often
2931 found inside of an array reference. So do it just once. */
2932 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2933 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2934 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2935 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2936 return save_expr (e);
2937 /* Recursively stabilize each operand. */
2938 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2939 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2940 break;
2941
2942 case '1':
2943 /* Recursively stabilize each operand. */
2944 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2945 break;
2946
2947 default:
2948 abort ();
2949 }
2950
2951 TREE_TYPE (result) = TREE_TYPE (e);
2952 TREE_READONLY (result) = TREE_READONLY (e);
2953 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2954 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2955 TREE_RAISES (result) = TREE_RAISES (e);
2956
2957 return result;
2958 }
2959 \f
2960 /* Low-level constructors for expressions. */
2961
2962 /* Build an expression of code CODE, data type TYPE,
2963 and operands as specified by the arguments ARG1 and following arguments.
2964 Expressions and reference nodes can be created this way.
2965 Constants, decls, types and misc nodes cannot be. */
2966
2967 tree
2968 build VPROTO((enum tree_code code, tree tt, ...))
2969 {
2970 #ifndef ANSI_PROTOTYPES
2971 enum tree_code code;
2972 tree tt;
2973 #endif
2974 va_list p;
2975 register tree t;
2976 register int length;
2977 register int i;
2978
2979 VA_START (p, tt);
2980
2981 #ifndef ANSI_PROTOTYPES
2982 code = va_arg (p, enum tree_code);
2983 tt = va_arg (p, tree);
2984 #endif
2985
2986 t = make_node (code);
2987 length = tree_code_length[(int) code];
2988 TREE_TYPE (t) = tt;
2989
2990 if (length == 2)
2991 {
2992 /* This is equivalent to the loop below, but faster. */
2993 register tree arg0 = va_arg (p, tree);
2994 register tree arg1 = va_arg (p, tree);
2995 TREE_OPERAND (t, 0) = arg0;
2996 TREE_OPERAND (t, 1) = arg1;
2997 if ((arg0 && TREE_SIDE_EFFECTS (arg0))
2998 || (arg1 && TREE_SIDE_EFFECTS (arg1)))
2999 TREE_SIDE_EFFECTS (t) = 1;
3000 TREE_RAISES (t)
3001 = (arg0 && TREE_RAISES (arg0)) || (arg1 && TREE_RAISES (arg1));
3002 }
3003 else if (length == 1)
3004 {
3005 register tree arg0 = va_arg (p, tree);
3006
3007 /* Call build1 for this! */
3008 if (TREE_CODE_CLASS (code) != 's')
3009 abort ();
3010 TREE_OPERAND (t, 0) = arg0;
3011 if (arg0 && TREE_SIDE_EFFECTS (arg0))
3012 TREE_SIDE_EFFECTS (t) = 1;
3013 TREE_RAISES (t) = (arg0 && TREE_RAISES (arg0));
3014 }
3015 else
3016 {
3017 for (i = 0; i < length; i++)
3018 {
3019 register tree operand = va_arg (p, tree);
3020 TREE_OPERAND (t, i) = operand;
3021 if (operand)
3022 {
3023 if (TREE_SIDE_EFFECTS (operand))
3024 TREE_SIDE_EFFECTS (t) = 1;
3025 if (TREE_RAISES (operand))
3026 TREE_RAISES (t) = 1;
3027 }
3028 }
3029 }
3030 va_end (p);
3031 return t;
3032 }
3033
3034 /* Same as above, but only builds for unary operators.
3035 Saves lions share of calls to `build'; cuts down use
3036 of varargs, which is expensive for RISC machines. */
3037
3038 tree
3039 build1 (code, type, node)
3040 enum tree_code code;
3041 tree type;
3042 tree node;
3043 {
3044 register struct obstack *obstack = expression_obstack;
3045 register int length;
3046 #ifdef GATHER_STATISTICS
3047 register tree_node_kind kind;
3048 #endif
3049 register tree t;
3050
3051 #ifdef GATHER_STATISTICS
3052 if (TREE_CODE_CLASS (code) == 'r')
3053 kind = r_kind;
3054 else
3055 kind = e_kind;
3056 #endif
3057
3058 length = sizeof (struct tree_exp);
3059
3060 if (ggc_p)
3061 t = ggc_alloc_tree (length);
3062 else
3063 t = (tree) obstack_alloc (obstack, length);
3064 bzero ((PTR) t, length);
3065
3066 #ifdef GATHER_STATISTICS
3067 tree_node_counts[(int)kind]++;
3068 tree_node_sizes[(int)kind] += length;
3069 #endif
3070
3071 TREE_TYPE (t) = type;
3072 TREE_SET_CODE (t, code);
3073
3074 if (obstack == &permanent_obstack)
3075 TREE_PERMANENT (t) = 1;
3076
3077 TREE_OPERAND (t, 0) = node;
3078 if (node)
3079 {
3080 if (TREE_SIDE_EFFECTS (node))
3081 TREE_SIDE_EFFECTS (t) = 1;
3082 if (TREE_RAISES (node))
3083 TREE_RAISES (t) = 1;
3084 }
3085
3086 return t;
3087 }
3088
3089 /* Similar except don't specify the TREE_TYPE
3090 and leave the TREE_SIDE_EFFECTS as 0.
3091 It is permissible for arguments to be null,
3092 or even garbage if their values do not matter. */
3093
3094 tree
3095 build_nt VPROTO((enum tree_code code, ...))
3096 {
3097 #ifndef ANSI_PROTOTYPES
3098 enum tree_code code;
3099 #endif
3100 va_list p;
3101 register tree t;
3102 register int length;
3103 register int i;
3104
3105 VA_START (p, code);
3106
3107 #ifndef ANSI_PROTOTYPES
3108 code = va_arg (p, enum tree_code);
3109 #endif
3110
3111 t = make_node (code);
3112 length = tree_code_length[(int) code];
3113
3114 for (i = 0; i < length; i++)
3115 TREE_OPERAND (t, i) = va_arg (p, tree);
3116
3117 va_end (p);
3118 return t;
3119 }
3120
3121 /* Similar to `build_nt', except we build
3122 on the temp_decl_obstack, regardless. */
3123
3124 tree
3125 build_parse_node VPROTO((enum tree_code code, ...))
3126 {
3127 #ifndef ANSI_PROTOTYPES
3128 enum tree_code code;
3129 #endif
3130 register struct obstack *ambient_obstack = expression_obstack;
3131 va_list p;
3132 register tree t;
3133 register int length;
3134 register int i;
3135
3136 VA_START (p, code);
3137
3138 #ifndef ANSI_PROTOTYPES
3139 code = va_arg (p, enum tree_code);
3140 #endif
3141
3142 expression_obstack = &temp_decl_obstack;
3143
3144 t = make_node (code);
3145 length = tree_code_length[(int) code];
3146
3147 for (i = 0; i < length; i++)
3148 TREE_OPERAND (t, i) = va_arg (p, tree);
3149
3150 va_end (p);
3151 expression_obstack = ambient_obstack;
3152 return t;
3153 }
3154
3155 #if 0
3156 /* Commented out because this wants to be done very
3157 differently. See cp-lex.c. */
3158 tree
3159 build_op_identifier (op1, op2)
3160 tree op1, op2;
3161 {
3162 register tree t = make_node (OP_IDENTIFIER);
3163 TREE_PURPOSE (t) = op1;
3164 TREE_VALUE (t) = op2;
3165 return t;
3166 }
3167 #endif
3168 \f
3169 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
3170 We do NOT enter this node in any sort of symbol table.
3171
3172 layout_decl is used to set up the decl's storage layout.
3173 Other slots are initialized to 0 or null pointers. */
3174
3175 tree
3176 build_decl (code, name, type)
3177 enum tree_code code;
3178 tree name, type;
3179 {
3180 register tree t;
3181
3182 t = make_node (code);
3183
3184 /* if (type == error_mark_node)
3185 type = integer_type_node; */
3186 /* That is not done, deliberately, so that having error_mark_node
3187 as the type can suppress useless errors in the use of this variable. */
3188
3189 DECL_NAME (t) = name;
3190 DECL_ASSEMBLER_NAME (t) = name;
3191 TREE_TYPE (t) = type;
3192
3193 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
3194 layout_decl (t, 0);
3195 else if (code == FUNCTION_DECL)
3196 DECL_MODE (t) = FUNCTION_MODE;
3197
3198 return t;
3199 }
3200 \f
3201 /* BLOCK nodes are used to represent the structure of binding contours
3202 and declarations, once those contours have been exited and their contents
3203 compiled. This information is used for outputting debugging info. */
3204
3205 tree
3206 build_block (vars, tags, subblocks, supercontext, chain)
3207 tree vars, tags, subblocks, supercontext, chain;
3208 {
3209 register tree block = make_node (BLOCK);
3210 BLOCK_VARS (block) = vars;
3211 BLOCK_TYPE_TAGS (block) = tags;
3212 BLOCK_SUBBLOCKS (block) = subblocks;
3213 BLOCK_SUPERCONTEXT (block) = supercontext;
3214 BLOCK_CHAIN (block) = chain;
3215 return block;
3216 }
3217
3218 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
3219 location where an expression or an identifier were encountered. It
3220 is necessary for languages where the frontend parser will handle
3221 recursively more than one file (Java is one of them). */
3222
3223 tree
3224 build_expr_wfl (node, file, line, col)
3225 tree node;
3226 const char *file;
3227 int line, col;
3228 {
3229 static const char *last_file = 0;
3230 static tree last_filenode = NULL_TREE;
3231 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
3232
3233 EXPR_WFL_NODE (wfl) = node;
3234 EXPR_WFL_SET_LINECOL (wfl, line, col);
3235 if (file != last_file)
3236 {
3237 last_file = file;
3238 last_filenode = file ? get_identifier (file) : NULL_TREE;
3239 }
3240 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
3241 if (node)
3242 {
3243 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
3244 TREE_TYPE (wfl) = TREE_TYPE (node);
3245 }
3246 return wfl;
3247 }
3248 \f
3249 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
3250 is ATTRIBUTE. */
3251
3252 tree
3253 build_decl_attribute_variant (ddecl, attribute)
3254 tree ddecl, attribute;
3255 {
3256 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
3257 return ddecl;
3258 }
3259
3260 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
3261 is ATTRIBUTE.
3262
3263 Record such modified types already made so we don't make duplicates. */
3264
3265 tree
3266 build_type_attribute_variant (ttype, attribute)
3267 tree ttype, attribute;
3268 {
3269 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
3270 {
3271 register int hashcode;
3272 register struct obstack *ambient_obstack = current_obstack;
3273 tree ntype;
3274
3275 if (ambient_obstack != &permanent_obstack)
3276 current_obstack = TYPE_OBSTACK (ttype);
3277
3278 ntype = copy_node (ttype);
3279
3280 TYPE_POINTER_TO (ntype) = 0;
3281 TYPE_REFERENCE_TO (ntype) = 0;
3282 TYPE_ATTRIBUTES (ntype) = attribute;
3283
3284 /* Create a new main variant of TYPE. */
3285 TYPE_MAIN_VARIANT (ntype) = ntype;
3286 TYPE_NEXT_VARIANT (ntype) = 0;
3287 set_type_quals (ntype, TYPE_UNQUALIFIED);
3288
3289 hashcode = TYPE_HASH (TREE_CODE (ntype))
3290 + TYPE_HASH (TREE_TYPE (ntype))
3291 + attribute_hash_list (attribute);
3292
3293 switch (TREE_CODE (ntype))
3294 {
3295 case FUNCTION_TYPE:
3296 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
3297 break;
3298 case ARRAY_TYPE:
3299 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
3300 break;
3301 case INTEGER_TYPE:
3302 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
3303 break;
3304 case REAL_TYPE:
3305 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
3306 break;
3307 default:
3308 break;
3309 }
3310
3311 ntype = type_hash_canon (hashcode, ntype);
3312 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3313
3314 /* We must restore the current obstack after the type_hash_canon call,
3315 because type_hash_canon calls type_hash_add for permanent types, and
3316 then type_hash_add calls oballoc expecting to get something permanent
3317 back. */
3318 current_obstack = ambient_obstack;
3319 }
3320
3321 return ttype;
3322 }
3323
3324 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
3325 or type TYPE and 0 otherwise. Validity is determined the configuration
3326 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
3327
3328 int
3329 valid_machine_attribute (attr_name, attr_args, decl, type)
3330 tree attr_name;
3331 tree attr_args ATTRIBUTE_UNUSED;
3332 tree decl ATTRIBUTE_UNUSED;
3333 tree type ATTRIBUTE_UNUSED;
3334 {
3335 int validated = 0;
3336 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3337 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
3338 #endif
3339 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3340 tree type_attr_list = TYPE_ATTRIBUTES (type);
3341 #endif
3342
3343 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
3344 abort ();
3345
3346 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
3347 if (decl != 0
3348 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name, attr_args))
3349 {
3350 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3351 decl_attr_list);
3352
3353 if (attr != NULL_TREE)
3354 {
3355 /* Override existing arguments. Declarations are unique so we can
3356 modify this in place. */
3357 TREE_VALUE (attr) = attr_args;
3358 }
3359 else
3360 {
3361 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
3362 decl = build_decl_attribute_variant (decl, decl_attr_list);
3363 }
3364
3365 validated = 1;
3366 }
3367 #endif
3368
3369 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
3370 if (validated)
3371 /* Don't apply the attribute to both the decl and the type. */;
3372 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
3373 attr_args))
3374 {
3375 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3376 type_attr_list);
3377
3378 if (attr != NULL_TREE)
3379 {
3380 /* Override existing arguments.
3381 ??? This currently works since attribute arguments are not
3382 included in `attribute_hash_list'. Something more complicated
3383 may be needed in the future. */
3384 TREE_VALUE (attr) = attr_args;
3385 }
3386 else
3387 {
3388 /* If this is part of a declaration, create a type variant,
3389 otherwise, this is part of a type definition, so add it
3390 to the base type. */
3391 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
3392 if (decl != 0)
3393 type = build_type_attribute_variant (type, type_attr_list);
3394 else
3395 TYPE_ATTRIBUTES (type) = type_attr_list;
3396 }
3397 if (decl != 0)
3398 TREE_TYPE (decl) = type;
3399 validated = 1;
3400 }
3401
3402 /* Handle putting a type attribute on pointer-to-function-type by putting
3403 the attribute on the function type. */
3404 else if (POINTER_TYPE_P (type)
3405 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
3406 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
3407 attr_name, attr_args))
3408 {
3409 tree inner_type = TREE_TYPE (type);
3410 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
3411 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
3412 type_attr_list);
3413
3414 if (attr != NULL_TREE)
3415 TREE_VALUE (attr) = attr_args;
3416 else
3417 {
3418 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
3419 inner_type = build_type_attribute_variant (inner_type,
3420 inner_attr_list);
3421 }
3422
3423 if (decl != 0)
3424 TREE_TYPE (decl) = build_pointer_type (inner_type);
3425 else
3426 {
3427 /* Clear TYPE_POINTER_TO for the old inner type, since
3428 `type' won't be pointing to it anymore. */
3429 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
3430 TREE_TYPE (type) = inner_type;
3431 }
3432
3433 validated = 1;
3434 }
3435 #endif
3436
3437 return validated;
3438 }
3439
3440 /* Return non-zero if IDENT is a valid name for attribute ATTR,
3441 or zero if not.
3442
3443 We try both `text' and `__text__', ATTR may be either one. */
3444 /* ??? It might be a reasonable simplification to require ATTR to be only
3445 `text'. One might then also require attribute lists to be stored in
3446 their canonicalized form. */
3447
3448 int
3449 is_attribute_p (attr, ident)
3450 const char *attr;
3451 tree ident;
3452 {
3453 int ident_len, attr_len;
3454 char *p;
3455
3456 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3457 return 0;
3458
3459 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
3460 return 1;
3461
3462 p = IDENTIFIER_POINTER (ident);
3463 ident_len = strlen (p);
3464 attr_len = strlen (attr);
3465
3466 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3467 if (attr[0] == '_')
3468 {
3469 if (attr[1] != '_'
3470 || attr[attr_len - 2] != '_'
3471 || attr[attr_len - 1] != '_')
3472 abort ();
3473 if (ident_len == attr_len - 4
3474 && strncmp (attr + 2, p, attr_len - 4) == 0)
3475 return 1;
3476 }
3477 else
3478 {
3479 if (ident_len == attr_len + 4
3480 && p[0] == '_' && p[1] == '_'
3481 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3482 && strncmp (attr, p + 2, attr_len) == 0)
3483 return 1;
3484 }
3485
3486 return 0;
3487 }
3488
3489 /* Given an attribute name and a list of attributes, return a pointer to the
3490 attribute's list element if the attribute is part of the list, or NULL_TREE
3491 if not found. */
3492
3493 tree
3494 lookup_attribute (attr_name, list)
3495 const char *attr_name;
3496 tree list;
3497 {
3498 tree l;
3499
3500 for (l = list; l; l = TREE_CHAIN (l))
3501 {
3502 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
3503 abort ();
3504 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
3505 return l;
3506 }
3507
3508 return NULL_TREE;
3509 }
3510
3511 /* Return an attribute list that is the union of a1 and a2. */
3512
3513 tree
3514 merge_attributes (a1, a2)
3515 register tree a1, a2;
3516 {
3517 tree attributes;
3518
3519 /* Either one unset? Take the set one. */
3520
3521 if (! (attributes = a1))
3522 attributes = a2;
3523
3524 /* One that completely contains the other? Take it. */
3525
3526 else if (a2 && ! attribute_list_contained (a1, a2))
3527 {
3528 if (attribute_list_contained (a2, a1))
3529 attributes = a2;
3530 else
3531 {
3532 /* Pick the longest list, and hang on the other list. */
3533 /* ??? For the moment we punt on the issue of attrs with args. */
3534
3535 if (list_length (a1) < list_length (a2))
3536 attributes = a2, a2 = a1;
3537
3538 for (; a2; a2 = TREE_CHAIN (a2))
3539 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3540 attributes) == NULL_TREE)
3541 {
3542 a1 = copy_node (a2);
3543 TREE_CHAIN (a1) = attributes;
3544 attributes = a1;
3545 }
3546 }
3547 }
3548 return attributes;
3549 }
3550
3551 /* Given types T1 and T2, merge their attributes and return
3552 the result. */
3553
3554 tree
3555 merge_machine_type_attributes (t1, t2)
3556 tree t1, t2;
3557 {
3558 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
3559 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
3560 #else
3561 return merge_attributes (TYPE_ATTRIBUTES (t1),
3562 TYPE_ATTRIBUTES (t2));
3563 #endif
3564 }
3565
3566 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3567 the result. */
3568
3569 tree
3570 merge_machine_decl_attributes (olddecl, newdecl)
3571 tree olddecl, newdecl;
3572 {
3573 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
3574 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
3575 #else
3576 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
3577 DECL_MACHINE_ATTRIBUTES (newdecl));
3578 #endif
3579 }
3580 \f
3581 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3582 of the various TYPE_QUAL values. */
3583
3584 static void
3585 set_type_quals (type, type_quals)
3586 tree type;
3587 int type_quals;
3588 {
3589 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3590 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3591 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3592 }
3593
3594 /* Given a type node TYPE and a TYPE_QUALIFIER_SET, return a type for
3595 the same kind of data as TYPE describes. Variants point to the
3596 "main variant" (which has no qualifiers set) via TYPE_MAIN_VARIANT,
3597 and it points to a chain of other variants so that duplicate
3598 variants are never made. Only main variants should ever appear as
3599 types of expressions. */
3600
3601 tree
3602 build_qualified_type (type, type_quals)
3603 tree type;
3604 int type_quals;
3605 {
3606 register tree t;
3607
3608 /* Search the chain of variants to see if there is already one there just
3609 like the one we need to have. If so, use that existing one. We must
3610 preserve the TYPE_NAME, since there is code that depends on this. */
3611
3612 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3613 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
3614 return t;
3615
3616 /* We need a new one. */
3617 t = build_type_copy (type);
3618 set_type_quals (t, type_quals);
3619 return t;
3620 }
3621
3622 /* Create a new variant of TYPE, equivalent but distinct.
3623 This is so the caller can modify it. */
3624
3625 tree
3626 build_type_copy (type)
3627 tree type;
3628 {
3629 register tree t, m = TYPE_MAIN_VARIANT (type);
3630 register struct obstack *ambient_obstack = current_obstack;
3631
3632 current_obstack = TYPE_OBSTACK (type);
3633 t = copy_node (type);
3634 current_obstack = ambient_obstack;
3635
3636 TYPE_POINTER_TO (t) = 0;
3637 TYPE_REFERENCE_TO (t) = 0;
3638
3639 /* Add this type to the chain of variants of TYPE. */
3640 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3641 TYPE_NEXT_VARIANT (m) = t;
3642
3643 return t;
3644 }
3645 \f
3646 /* Hashing of types so that we don't make duplicates.
3647 The entry point is `type_hash_canon'. */
3648
3649 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3650 with types in the TREE_VALUE slots), by adding the hash codes
3651 of the individual types. */
3652
3653 int
3654 type_hash_list (list)
3655 tree list;
3656 {
3657 register int hashcode;
3658 register tree tail;
3659 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3660 hashcode += TYPE_HASH (TREE_VALUE (tail));
3661 return hashcode;
3662 }
3663
3664 /* Look in the type hash table for a type isomorphic to TYPE.
3665 If one is found, return it. Otherwise return 0. */
3666
3667 tree
3668 type_hash_lookup (hashcode, type)
3669 int hashcode;
3670 tree type;
3671 {
3672 register struct type_hash *h;
3673 for (h = type_hash_table[hashcode % TYPE_HASH_SIZE]; h; h = h->next)
3674 if (h->hashcode == hashcode
3675 && TREE_CODE (h->type) == TREE_CODE (type)
3676 && TREE_TYPE (h->type) == TREE_TYPE (type)
3677 && attribute_list_equal (TYPE_ATTRIBUTES (h->type),
3678 TYPE_ATTRIBUTES (type))
3679 && (TYPE_MAX_VALUE (h->type) == TYPE_MAX_VALUE (type)
3680 || tree_int_cst_equal (TYPE_MAX_VALUE (h->type),
3681 TYPE_MAX_VALUE (type)))
3682 && (TYPE_MIN_VALUE (h->type) == TYPE_MIN_VALUE (type)
3683 || tree_int_cst_equal (TYPE_MIN_VALUE (h->type),
3684 TYPE_MIN_VALUE (type)))
3685 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3686 && (TYPE_DOMAIN (h->type) == TYPE_DOMAIN (type)
3687 || (TYPE_DOMAIN (h->type)
3688 && TREE_CODE (TYPE_DOMAIN (h->type)) == TREE_LIST
3689 && TYPE_DOMAIN (type)
3690 && TREE_CODE (TYPE_DOMAIN (type)) == TREE_LIST
3691 && type_list_equal (TYPE_DOMAIN (h->type),
3692 TYPE_DOMAIN (type)))))
3693 return h->type;
3694 return 0;
3695 }
3696
3697 /* Add an entry to the type-hash-table
3698 for a type TYPE whose hash code is HASHCODE. */
3699
3700 void
3701 type_hash_add (hashcode, type)
3702 int hashcode;
3703 tree type;
3704 {
3705 register struct type_hash *h;
3706
3707 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3708 h->hashcode = hashcode;
3709 h->type = type;
3710 h->next = type_hash_table[hashcode % TYPE_HASH_SIZE];
3711 type_hash_table[hashcode % TYPE_HASH_SIZE] = h;
3712 }
3713
3714 /* Given TYPE, and HASHCODE its hash code, return the canonical
3715 object for an identical type if one already exists.
3716 Otherwise, return TYPE, and record it as the canonical object
3717 if it is a permanent object.
3718
3719 To use this function, first create a type of the sort you want.
3720 Then compute its hash code from the fields of the type that
3721 make it different from other similar types.
3722 Then call this function and use the value.
3723 This function frees the type you pass in if it is a duplicate. */
3724
3725 /* Set to 1 to debug without canonicalization. Never set by program. */
3726 int debug_no_type_hash = 0;
3727
3728 tree
3729 type_hash_canon (hashcode, type)
3730 int hashcode;
3731 tree type;
3732 {
3733 tree t1;
3734
3735 if (debug_no_type_hash)
3736 return type;
3737
3738 t1 = type_hash_lookup (hashcode, type);
3739 if (t1 != 0)
3740 {
3741 if (!ggc_p)
3742 obstack_free (TYPE_OBSTACK (type), type);
3743 #ifdef GATHER_STATISTICS
3744 tree_node_counts[(int)t_kind]--;
3745 tree_node_sizes[(int)t_kind] -= sizeof (struct tree_type);
3746 #endif
3747 return t1;
3748 }
3749
3750 /* If this is a permanent type, record it for later reuse. */
3751 if (TREE_PERMANENT (type))
3752 type_hash_add (hashcode, type);
3753
3754 return type;
3755 }
3756
3757 /* Mark ARG (which is really a struct type_hash **) for GC. */
3758
3759 static void
3760 mark_type_hash (arg)
3761 void *arg;
3762 {
3763 struct type_hash *t = *(struct type_hash **) arg;
3764
3765 while (t)
3766 {
3767 ggc_mark_tree (t->type);
3768 t = t->next;
3769 }
3770 }
3771
3772 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3773 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3774 by adding the hash codes of the individual attributes. */
3775
3776 int
3777 attribute_hash_list (list)
3778 tree list;
3779 {
3780 register int hashcode;
3781 register tree tail;
3782 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3783 /* ??? Do we want to add in TREE_VALUE too? */
3784 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3785 return hashcode;
3786 }
3787
3788 /* Given two lists of attributes, return true if list l2 is
3789 equivalent to l1. */
3790
3791 int
3792 attribute_list_equal (l1, l2)
3793 tree l1, l2;
3794 {
3795 return attribute_list_contained (l1, l2)
3796 && attribute_list_contained (l2, l1);
3797 }
3798
3799 /* Given two lists of attributes, return true if list L2 is
3800 completely contained within L1. */
3801 /* ??? This would be faster if attribute names were stored in a canonicalized
3802 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3803 must be used to show these elements are equivalent (which they are). */
3804 /* ??? It's not clear that attributes with arguments will always be handled
3805 correctly. */
3806
3807 int
3808 attribute_list_contained (l1, l2)
3809 tree l1, l2;
3810 {
3811 register tree t1, t2;
3812
3813 /* First check the obvious, maybe the lists are identical. */
3814 if (l1 == l2)
3815 return 1;
3816
3817 /* Maybe the lists are similar. */
3818 for (t1 = l1, t2 = l2;
3819 t1 && t2
3820 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3821 && TREE_VALUE (t1) == TREE_VALUE (t2);
3822 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3823
3824 /* Maybe the lists are equal. */
3825 if (t1 == 0 && t2 == 0)
3826 return 1;
3827
3828 for (; t2; t2 = TREE_CHAIN (t2))
3829 {
3830 tree attr
3831 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3832
3833 if (attr == NULL_TREE)
3834 return 0;
3835 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3836 return 0;
3837 }
3838
3839 return 1;
3840 }
3841
3842 /* Given two lists of types
3843 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3844 return 1 if the lists contain the same types in the same order.
3845 Also, the TREE_PURPOSEs must match. */
3846
3847 int
3848 type_list_equal (l1, l2)
3849 tree l1, l2;
3850 {
3851 register tree t1, t2;
3852
3853 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3854 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3855 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3856 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3857 && (TREE_TYPE (TREE_PURPOSE (t1))
3858 == TREE_TYPE (TREE_PURPOSE (t2))))))
3859 return 0;
3860
3861 return t1 == t2;
3862 }
3863
3864 /* Nonzero if integer constants T1 and T2
3865 represent the same constant value. */
3866
3867 int
3868 tree_int_cst_equal (t1, t2)
3869 tree t1, t2;
3870 {
3871 if (t1 == t2)
3872 return 1;
3873 if (t1 == 0 || t2 == 0)
3874 return 0;
3875 if (TREE_CODE (t1) == INTEGER_CST
3876 && TREE_CODE (t2) == INTEGER_CST
3877 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3878 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3879 return 1;
3880 return 0;
3881 }
3882
3883 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3884 The precise way of comparison depends on their data type. */
3885
3886 int
3887 tree_int_cst_lt (t1, t2)
3888 tree t1, t2;
3889 {
3890 if (t1 == t2)
3891 return 0;
3892
3893 if (!TREE_UNSIGNED (TREE_TYPE (t1)))
3894 return INT_CST_LT (t1, t2);
3895 return INT_CST_LT_UNSIGNED (t1, t2);
3896 }
3897
3898 /* Return an indication of the sign of the integer constant T.
3899 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3900 Note that -1 will never be returned it T's type is unsigned. */
3901
3902 int
3903 tree_int_cst_sgn (t)
3904 tree t;
3905 {
3906 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3907 return 0;
3908 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3909 return 1;
3910 else if (TREE_INT_CST_HIGH (t) < 0)
3911 return -1;
3912 else
3913 return 1;
3914 }
3915
3916 /* Compare two constructor-element-type constants. Return 1 if the lists
3917 are known to be equal; otherwise return 0. */
3918
3919 int
3920 simple_cst_list_equal (l1, l2)
3921 tree l1, l2;
3922 {
3923 while (l1 != NULL_TREE && l2 != NULL_TREE)
3924 {
3925 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3926 return 0;
3927
3928 l1 = TREE_CHAIN (l1);
3929 l2 = TREE_CHAIN (l2);
3930 }
3931
3932 return (l1 == l2);
3933 }
3934
3935 /* Return truthvalue of whether T1 is the same tree structure as T2.
3936 Return 1 if they are the same.
3937 Return 0 if they are understandably different.
3938 Return -1 if either contains tree structure not understood by
3939 this function. */
3940
3941 int
3942 simple_cst_equal (t1, t2)
3943 tree t1, t2;
3944 {
3945 register enum tree_code code1, code2;
3946 int cmp;
3947
3948 if (t1 == t2)
3949 return 1;
3950 if (t1 == 0 || t2 == 0)
3951 return 0;
3952
3953 code1 = TREE_CODE (t1);
3954 code2 = TREE_CODE (t2);
3955
3956 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3957 {
3958 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3959 || code2 == NON_LVALUE_EXPR)
3960 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3961 else
3962 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3963 }
3964 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3965 || code2 == NON_LVALUE_EXPR)
3966 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3967
3968 if (code1 != code2)
3969 return 0;
3970
3971 switch (code1)
3972 {
3973 case INTEGER_CST:
3974 return TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3975 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2);
3976
3977 case REAL_CST:
3978 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3979
3980 case STRING_CST:
3981 return TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3982 && !bcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3983 TREE_STRING_LENGTH (t1));
3984
3985 case CONSTRUCTOR:
3986 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3987 return 1;
3988 else
3989 abort ();
3990
3991 case SAVE_EXPR:
3992 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3993
3994 case CALL_EXPR:
3995 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3996 if (cmp <= 0)
3997 return cmp;
3998 return simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3999
4000 case TARGET_EXPR:
4001 /* Special case: if either target is an unallocated VAR_DECL,
4002 it means that it's going to be unified with whatever the
4003 TARGET_EXPR is really supposed to initialize, so treat it
4004 as being equivalent to anything. */
4005 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
4006 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
4007 && DECL_RTL (TREE_OPERAND (t1, 0)) == 0)
4008 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
4009 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
4010 && DECL_RTL (TREE_OPERAND (t2, 0)) == 0))
4011 cmp = 1;
4012 else
4013 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4014 if (cmp <= 0)
4015 return cmp;
4016 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
4017
4018 case WITH_CLEANUP_EXPR:
4019 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4020 if (cmp <= 0)
4021 return cmp;
4022 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
4023
4024 case COMPONENT_REF:
4025 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
4026 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
4027 return 0;
4028
4029 case VAR_DECL:
4030 case PARM_DECL:
4031 case CONST_DECL:
4032 case FUNCTION_DECL:
4033 return 0;
4034
4035 default:
4036 break;
4037 }
4038
4039 /* This general rule works for most tree codes. All exceptions should be
4040 handled above. If this is a language-specific tree code, we can't
4041 trust what might be in the operand, so say we don't know
4042 the situation. */
4043 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4044 return -1;
4045
4046 switch (TREE_CODE_CLASS (code1))
4047 {
4048 int i;
4049 case '1':
4050 case '2':
4051 case '<':
4052 case 'e':
4053 case 'r':
4054 case 's':
4055 cmp = 1;
4056 for (i=0; i<tree_code_length[(int) code1]; ++i)
4057 {
4058 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4059 if (cmp <= 0)
4060 return cmp;
4061 }
4062 return cmp;
4063
4064 default:
4065 return -1;
4066 }
4067 }
4068 \f
4069 /* Constructors for pointer, array and function types.
4070 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4071 constructed by language-dependent code, not here.) */
4072
4073 /* Construct, lay out and return the type of pointers to TO_TYPE.
4074 If such a type has already been constructed, reuse it. */
4075
4076 tree
4077 build_pointer_type (to_type)
4078 tree to_type;
4079 {
4080 register tree t = TYPE_POINTER_TO (to_type);
4081
4082 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4083
4084 if (t)
4085 return t;
4086
4087 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4088 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4089 t = make_node (POINTER_TYPE);
4090 pop_obstacks ();
4091
4092 TREE_TYPE (t) = to_type;
4093
4094 /* Record this type as the pointer to TO_TYPE. */
4095 TYPE_POINTER_TO (to_type) = t;
4096
4097 /* Lay out the type. This function has many callers that are concerned
4098 with expression-construction, and this simplifies them all.
4099 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
4100 layout_type (t);
4101
4102 return t;
4103 }
4104
4105 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4106 MAXVAL should be the maximum value in the domain
4107 (one less than the length of the array).
4108
4109 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4110 We don't enforce this limit, that is up to caller (e.g. language front end).
4111 The limit exists because the result is a signed type and we don't handle
4112 sizes that use more than one HOST_WIDE_INT. */
4113
4114 tree
4115 build_index_type (maxval)
4116 tree maxval;
4117 {
4118 register tree itype = make_node (INTEGER_TYPE);
4119
4120 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4121 TYPE_MIN_VALUE (itype) = size_zero_node;
4122
4123 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4124 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
4125 pop_obstacks ();
4126
4127 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4128 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4129 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4130 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4131 if (TREE_CODE (maxval) == INTEGER_CST)
4132 {
4133 int maxint = (int) TREE_INT_CST_LOW (maxval);
4134 /* If the domain should be empty, make sure the maxval
4135 remains -1 and is not spoiled by truncation. */
4136 if (INT_CST_LT (maxval, integer_zero_node))
4137 {
4138 TYPE_MAX_VALUE (itype) = build_int_2 (-1, -1);
4139 TREE_TYPE (TYPE_MAX_VALUE (itype)) = sizetype;
4140 }
4141 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4142 }
4143 else
4144 return itype;
4145 }
4146
4147 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4148 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4149 low bound LOWVAL and high bound HIGHVAL.
4150 if TYPE==NULL_TREE, sizetype is used. */
4151
4152 tree
4153 build_range_type (type, lowval, highval)
4154 tree type, lowval, highval;
4155 {
4156 register tree itype = make_node (INTEGER_TYPE);
4157
4158 TREE_TYPE (itype) = type;
4159 if (type == NULL_TREE)
4160 type = sizetype;
4161
4162 push_obstacks (TYPE_OBSTACK (itype), TYPE_OBSTACK (itype));
4163 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4164 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4165 pop_obstacks ();
4166
4167 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4168 TYPE_MODE (itype) = TYPE_MODE (type);
4169 TYPE_SIZE (itype) = TYPE_SIZE (type);
4170 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4171 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4172 if (TREE_CODE (lowval) == INTEGER_CST)
4173 {
4174 HOST_WIDE_INT lowint, highint;
4175 int maxint;
4176
4177 lowint = TREE_INT_CST_LOW (lowval);
4178 if (highval && TREE_CODE (highval) == INTEGER_CST)
4179 highint = TREE_INT_CST_LOW (highval);
4180 else
4181 highint = (~(unsigned HOST_WIDE_INT)0) >> 1;
4182
4183 maxint = (int) (highint - lowint);
4184 return type_hash_canon (maxint < 0 ? ~maxint : maxint, itype);
4185 }
4186 else
4187 return itype;
4188 }
4189
4190 /* Just like build_index_type, but takes lowval and highval instead
4191 of just highval (maxval). */
4192
4193 tree
4194 build_index_2_type (lowval,highval)
4195 tree lowval, highval;
4196 {
4197 return build_range_type (NULL_TREE, lowval, highval);
4198 }
4199
4200 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
4201 Needed because when index types are not hashed, equal index types
4202 built at different times appear distinct, even though structurally,
4203 they are not. */
4204
4205 int
4206 index_type_equal (itype1, itype2)
4207 tree itype1, itype2;
4208 {
4209 if (TREE_CODE (itype1) != TREE_CODE (itype2))
4210 return 0;
4211 if (TREE_CODE (itype1) == INTEGER_TYPE)
4212 {
4213 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
4214 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
4215 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
4216 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
4217 return 0;
4218 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
4219 TYPE_MIN_VALUE (itype2))
4220 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
4221 TYPE_MAX_VALUE (itype2)))
4222 return 1;
4223 }
4224
4225 return 0;
4226 }
4227
4228 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4229 and number of elements specified by the range of values of INDEX_TYPE.
4230 If such a type has already been constructed, reuse it. */
4231
4232 tree
4233 build_array_type (elt_type, index_type)
4234 tree elt_type, index_type;
4235 {
4236 register tree t;
4237 int hashcode;
4238
4239 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4240 {
4241 error ("arrays of functions are not meaningful");
4242 elt_type = integer_type_node;
4243 }
4244
4245 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
4246 build_pointer_type (elt_type);
4247
4248 /* Allocate the array after the pointer type,
4249 in case we free it in type_hash_canon. */
4250 t = make_node (ARRAY_TYPE);
4251 TREE_TYPE (t) = elt_type;
4252 TYPE_DOMAIN (t) = index_type;
4253
4254 if (index_type == 0)
4255 {
4256 return t;
4257 }
4258
4259 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
4260 t = type_hash_canon (hashcode, t);
4261
4262 if (TYPE_SIZE (t) == 0)
4263 layout_type (t);
4264 return t;
4265 }
4266
4267 /* Return the TYPE of the elements comprising
4268 the innermost dimension of ARRAY. */
4269
4270 tree
4271 get_inner_array_type (array)
4272 tree array;
4273 {
4274 tree type = TREE_TYPE (array);
4275
4276 while (TREE_CODE (type) == ARRAY_TYPE)
4277 type = TREE_TYPE (type);
4278
4279 return type;
4280 }
4281
4282 /* Construct, lay out and return
4283 the type of functions returning type VALUE_TYPE
4284 given arguments of types ARG_TYPES.
4285 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4286 are data type nodes for the arguments of the function.
4287 If such a type has already been constructed, reuse it. */
4288
4289 tree
4290 build_function_type (value_type, arg_types)
4291 tree value_type, arg_types;
4292 {
4293 register tree t;
4294 int hashcode;
4295
4296 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4297 {
4298 error ("function return type cannot be function");
4299 value_type = integer_type_node;
4300 }
4301
4302 /* Make a node of the sort we want. */
4303 t = make_node (FUNCTION_TYPE);
4304 TREE_TYPE (t) = value_type;
4305 TYPE_ARG_TYPES (t) = arg_types;
4306
4307 /* If we already have such a type, use the old one and free this one. */
4308 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
4309 t = type_hash_canon (hashcode, t);
4310
4311 if (TYPE_SIZE (t) == 0)
4312 layout_type (t);
4313 return t;
4314 }
4315
4316 /* Build the node for the type of references-to-TO_TYPE. */
4317
4318 tree
4319 build_reference_type (to_type)
4320 tree to_type;
4321 {
4322 register tree t = TYPE_REFERENCE_TO (to_type);
4323
4324 /* First, if we already have a type for pointers to TO_TYPE, use it. */
4325
4326 if (t)
4327 return t;
4328
4329 /* We need a new one. Put this in the same obstack as TO_TYPE. */
4330 push_obstacks (TYPE_OBSTACK (to_type), TYPE_OBSTACK (to_type));
4331 t = make_node (REFERENCE_TYPE);
4332 pop_obstacks ();
4333
4334 TREE_TYPE (t) = to_type;
4335
4336 /* Record this type as the pointer to TO_TYPE. */
4337 TYPE_REFERENCE_TO (to_type) = t;
4338
4339 layout_type (t);
4340
4341 return t;
4342 }
4343
4344 /* Construct, lay out and return the type of methods belonging to class
4345 BASETYPE and whose arguments and values are described by TYPE.
4346 If that type exists already, reuse it.
4347 TYPE must be a FUNCTION_TYPE node. */
4348
4349 tree
4350 build_method_type (basetype, type)
4351 tree basetype, type;
4352 {
4353 register tree t;
4354 int hashcode;
4355
4356 /* Make a node of the sort we want. */
4357 t = make_node (METHOD_TYPE);
4358
4359 if (TREE_CODE (type) != FUNCTION_TYPE)
4360 abort ();
4361
4362 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4363 TREE_TYPE (t) = TREE_TYPE (type);
4364
4365 /* The actual arglist for this function includes a "hidden" argument
4366 which is "this". Put it into the list of argument types. */
4367
4368 TYPE_ARG_TYPES (t)
4369 = tree_cons (NULL_TREE,
4370 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
4371
4372 /* If we already have such a type, use the old one and free this one. */
4373 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4374 t = type_hash_canon (hashcode, t);
4375
4376 if (TYPE_SIZE (t) == 0)
4377 layout_type (t);
4378
4379 return t;
4380 }
4381
4382 /* Construct, lay out and return the type of offsets to a value
4383 of type TYPE, within an object of type BASETYPE.
4384 If a suitable offset type exists already, reuse it. */
4385
4386 tree
4387 build_offset_type (basetype, type)
4388 tree basetype, type;
4389 {
4390 register tree t;
4391 int hashcode;
4392
4393 /* Make a node of the sort we want. */
4394 t = make_node (OFFSET_TYPE);
4395
4396 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4397 TREE_TYPE (t) = type;
4398
4399 /* If we already have such a type, use the old one and free this one. */
4400 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
4401 t = type_hash_canon (hashcode, t);
4402
4403 if (TYPE_SIZE (t) == 0)
4404 layout_type (t);
4405
4406 return t;
4407 }
4408
4409 /* Create a complex type whose components are COMPONENT_TYPE. */
4410
4411 tree
4412 build_complex_type (component_type)
4413 tree component_type;
4414 {
4415 register tree t;
4416 int hashcode;
4417
4418 /* Make a node of the sort we want. */
4419 t = make_node (COMPLEX_TYPE);
4420
4421 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4422 set_type_quals (t, TYPE_QUALS (component_type));
4423
4424 /* If we already have such a type, use the old one and free this one. */
4425 hashcode = TYPE_HASH (component_type);
4426 t = type_hash_canon (hashcode, t);
4427
4428 if (TYPE_SIZE (t) == 0)
4429 layout_type (t);
4430
4431 return t;
4432 }
4433 \f
4434 /* Return OP, stripped of any conversions to wider types as much as is safe.
4435 Converting the value back to OP's type makes a value equivalent to OP.
4436
4437 If FOR_TYPE is nonzero, we return a value which, if converted to
4438 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4439
4440 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4441 narrowest type that can hold the value, even if they don't exactly fit.
4442 Otherwise, bit-field references are changed to a narrower type
4443 only if they can be fetched directly from memory in that type.
4444
4445 OP must have integer, real or enumeral type. Pointers are not allowed!
4446
4447 There are some cases where the obvious value we could return
4448 would regenerate to OP if converted to OP's type,
4449 but would not extend like OP to wider types.
4450 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4451 For example, if OP is (unsigned short)(signed char)-1,
4452 we avoid returning (signed char)-1 if FOR_TYPE is int,
4453 even though extending that to an unsigned short would regenerate OP,
4454 since the result of extending (signed char)-1 to (int)
4455 is different from (int) OP. */
4456
4457 tree
4458 get_unwidened (op, for_type)
4459 register tree op;
4460 tree for_type;
4461 {
4462 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4463 register tree type = TREE_TYPE (op);
4464 register unsigned final_prec
4465 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4466 register int uns
4467 = (for_type != 0 && for_type != type
4468 && final_prec > TYPE_PRECISION (type)
4469 && TREE_UNSIGNED (type));
4470 register tree win = op;
4471
4472 while (TREE_CODE (op) == NOP_EXPR)
4473 {
4474 register int bitschange
4475 = TYPE_PRECISION (TREE_TYPE (op))
4476 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4477
4478 /* Truncations are many-one so cannot be removed.
4479 Unless we are later going to truncate down even farther. */
4480 if (bitschange < 0
4481 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4482 break;
4483
4484 /* See what's inside this conversion. If we decide to strip it,
4485 we will set WIN. */
4486 op = TREE_OPERAND (op, 0);
4487
4488 /* If we have not stripped any zero-extensions (uns is 0),
4489 we can strip any kind of extension.
4490 If we have previously stripped a zero-extension,
4491 only zero-extensions can safely be stripped.
4492 Any extension can be stripped if the bits it would produce
4493 are all going to be discarded later by truncating to FOR_TYPE. */
4494
4495 if (bitschange > 0)
4496 {
4497 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4498 win = op;
4499 /* TREE_UNSIGNED says whether this is a zero-extension.
4500 Let's avoid computing it if it does not affect WIN
4501 and if UNS will not be needed again. */
4502 if ((uns || TREE_CODE (op) == NOP_EXPR)
4503 && TREE_UNSIGNED (TREE_TYPE (op)))
4504 {
4505 uns = 1;
4506 win = op;
4507 }
4508 }
4509 }
4510
4511 if (TREE_CODE (op) == COMPONENT_REF
4512 /* Since type_for_size always gives an integer type. */
4513 && TREE_CODE (type) != REAL_TYPE
4514 /* Don't crash if field not laid out yet. */
4515 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4516 {
4517 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4518 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4519
4520 /* We can get this structure field in the narrowest type it fits in.
4521 If FOR_TYPE is 0, do this only for a field that matches the
4522 narrower type exactly and is aligned for it
4523 The resulting extension to its nominal type (a fullword type)
4524 must fit the same conditions as for other extensions. */
4525
4526 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4527 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4528 && (! uns || final_prec <= innerprec
4529 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4530 && type != 0)
4531 {
4532 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4533 TREE_OPERAND (op, 1));
4534 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4535 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4536 TREE_RAISES (win) = TREE_RAISES (op);
4537 }
4538 }
4539 return win;
4540 }
4541 \f
4542 /* Return OP or a simpler expression for a narrower value
4543 which can be sign-extended or zero-extended to give back OP.
4544 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4545 or 0 if the value should be sign-extended. */
4546
4547 tree
4548 get_narrower (op, unsignedp_ptr)
4549 register tree op;
4550 int *unsignedp_ptr;
4551 {
4552 register int uns = 0;
4553 int first = 1;
4554 register tree win = op;
4555
4556 while (TREE_CODE (op) == NOP_EXPR)
4557 {
4558 register int bitschange
4559 = TYPE_PRECISION (TREE_TYPE (op))
4560 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4561
4562 /* Truncations are many-one so cannot be removed. */
4563 if (bitschange < 0)
4564 break;
4565
4566 /* See what's inside this conversion. If we decide to strip it,
4567 we will set WIN. */
4568 op = TREE_OPERAND (op, 0);
4569
4570 if (bitschange > 0)
4571 {
4572 /* An extension: the outermost one can be stripped,
4573 but remember whether it is zero or sign extension. */
4574 if (first)
4575 uns = TREE_UNSIGNED (TREE_TYPE (op));
4576 /* Otherwise, if a sign extension has been stripped,
4577 only sign extensions can now be stripped;
4578 if a zero extension has been stripped, only zero-extensions. */
4579 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4580 break;
4581 first = 0;
4582 }
4583 else /* bitschange == 0 */
4584 {
4585 /* A change in nominal type can always be stripped, but we must
4586 preserve the unsignedness. */
4587 if (first)
4588 uns = TREE_UNSIGNED (TREE_TYPE (op));
4589 first = 0;
4590 }
4591
4592 win = op;
4593 }
4594
4595 if (TREE_CODE (op) == COMPONENT_REF
4596 /* Since type_for_size always gives an integer type. */
4597 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE)
4598 {
4599 unsigned innerprec = TREE_INT_CST_LOW (DECL_SIZE (TREE_OPERAND (op, 1)));
4600 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4601
4602 /* We can get this structure field in a narrower type that fits it,
4603 but the resulting extension to its nominal type (a fullword type)
4604 must satisfy the same conditions as for other extensions.
4605
4606 Do this only for fields that are aligned (not bit-fields),
4607 because when bit-field insns will be used there is no
4608 advantage in doing this. */
4609
4610 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4611 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4612 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4613 && type != 0)
4614 {
4615 if (first)
4616 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4617 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4618 TREE_OPERAND (op, 1));
4619 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4620 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4621 TREE_RAISES (win) = TREE_RAISES (op);
4622 }
4623 }
4624 *unsignedp_ptr = uns;
4625 return win;
4626 }
4627 \f
4628 /* Nonzero if integer constant C has a value that is permissible
4629 for type TYPE (an INTEGER_TYPE). */
4630
4631 int
4632 int_fits_type_p (c, type)
4633 tree c, type;
4634 {
4635 if (TREE_UNSIGNED (type))
4636 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4637 && INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c))
4638 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4639 && INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type)))
4640 /* Negative ints never fit unsigned types. */
4641 && ! (TREE_INT_CST_HIGH (c) < 0
4642 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4643 else
4644 return (! (TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4645 && INT_CST_LT (TYPE_MAX_VALUE (type), c))
4646 && ! (TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST
4647 && INT_CST_LT (c, TYPE_MIN_VALUE (type)))
4648 /* Unsigned ints with top bit set never fit signed types. */
4649 && ! (TREE_INT_CST_HIGH (c) < 0
4650 && TREE_UNSIGNED (TREE_TYPE (c))));
4651 }
4652
4653 /* Return the innermost context enclosing DECL that is
4654 a FUNCTION_DECL, or zero if none. */
4655
4656 tree
4657 decl_function_context (decl)
4658 tree decl;
4659 {
4660 tree context;
4661
4662 if (TREE_CODE (decl) == ERROR_MARK)
4663 return 0;
4664
4665 if (TREE_CODE (decl) == SAVE_EXPR)
4666 context = SAVE_EXPR_CONTEXT (decl);
4667 else
4668 context = DECL_CONTEXT (decl);
4669
4670 while (context && TREE_CODE (context) != FUNCTION_DECL)
4671 {
4672 if (TREE_CODE_CLASS (TREE_CODE (context)) == 't')
4673 context = TYPE_CONTEXT (context);
4674 else if (TREE_CODE_CLASS (TREE_CODE (context)) == 'd')
4675 context = DECL_CONTEXT (context);
4676 else if (TREE_CODE (context) == BLOCK)
4677 context = BLOCK_SUPERCONTEXT (context);
4678 else
4679 /* Unhandled CONTEXT !? */
4680 abort ();
4681 }
4682
4683 return context;
4684 }
4685
4686 /* Return the innermost context enclosing DECL that is
4687 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4688 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4689
4690 tree
4691 decl_type_context (decl)
4692 tree decl;
4693 {
4694 tree context = DECL_CONTEXT (decl);
4695
4696 while (context)
4697 {
4698 if (TREE_CODE (context) == RECORD_TYPE
4699 || TREE_CODE (context) == UNION_TYPE
4700 || TREE_CODE (context) == QUAL_UNION_TYPE)
4701 return context;
4702 if (TREE_CODE (context) == TYPE_DECL
4703 || TREE_CODE (context) == FUNCTION_DECL)
4704 context = DECL_CONTEXT (context);
4705 else if (TREE_CODE (context) == BLOCK)
4706 context = BLOCK_SUPERCONTEXT (context);
4707 else
4708 /* Unhandled CONTEXT!? */
4709 abort ();
4710 }
4711 return NULL_TREE;
4712 }
4713
4714 /* Print debugging information about the obstack O, named STR. */
4715
4716 void
4717 print_obstack_statistics (str, o)
4718 const char *str;
4719 struct obstack *o;
4720 {
4721 struct _obstack_chunk *chunk = o->chunk;
4722 int n_chunks = 1;
4723 int n_alloc = 0;
4724
4725 n_alloc += o->next_free - chunk->contents;
4726 chunk = chunk->prev;
4727 while (chunk)
4728 {
4729 n_chunks += 1;
4730 n_alloc += chunk->limit - &chunk->contents[0];
4731 chunk = chunk->prev;
4732 }
4733 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4734 str, n_alloc, n_chunks);
4735 }
4736
4737 /* Print debugging information about tree nodes generated during the compile,
4738 and any language-specific information. */
4739
4740 void
4741 dump_tree_statistics ()
4742 {
4743 #ifdef GATHER_STATISTICS
4744 int i;
4745 int total_nodes, total_bytes;
4746 #endif
4747
4748 fprintf (stderr, "\n??? tree nodes created\n\n");
4749 #ifdef GATHER_STATISTICS
4750 fprintf (stderr, "Kind Nodes Bytes\n");
4751 fprintf (stderr, "-------------------------------------\n");
4752 total_nodes = total_bytes = 0;
4753 for (i = 0; i < (int) all_kinds; i++)
4754 {
4755 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4756 tree_node_counts[i], tree_node_sizes[i]);
4757 total_nodes += tree_node_counts[i];
4758 total_bytes += tree_node_sizes[i];
4759 }
4760 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4761 fprintf (stderr, "-------------------------------------\n");
4762 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4763 fprintf (stderr, "-------------------------------------\n");
4764 #else
4765 fprintf (stderr, "(No per-node statistics)\n");
4766 #endif
4767 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4768 print_obstack_statistics ("maybepermanent_obstack", &maybepermanent_obstack);
4769 print_obstack_statistics ("temporary_obstack", &temporary_obstack);
4770 print_obstack_statistics ("momentary_obstack", &momentary_obstack);
4771 print_obstack_statistics ("temp_decl_obstack", &temp_decl_obstack);
4772 print_lang_statistics ();
4773 }
4774 \f
4775 #define FILE_FUNCTION_PREFIX_LEN 9
4776
4777 #ifndef NO_DOLLAR_IN_LABEL
4778 #define FILE_FUNCTION_FORMAT "_GLOBAL_$%s$%s"
4779 #else /* NO_DOLLAR_IN_LABEL */
4780 #ifndef NO_DOT_IN_LABEL
4781 #define FILE_FUNCTION_FORMAT "_GLOBAL_.%s.%s"
4782 #else /* NO_DOT_IN_LABEL */
4783 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4784 #endif /* NO_DOT_IN_LABEL */
4785 #endif /* NO_DOLLAR_IN_LABEL */
4786
4787 extern char * first_global_object_name;
4788 extern char * weak_global_object_name;
4789
4790 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4791 clashes in cases where we can't reliably choose a unique name.
4792
4793 Derived from mkstemp.c in libiberty. */
4794
4795 static void
4796 append_random_chars (template)
4797 char *template;
4798 {
4799 static const char letters[]
4800 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4801 static unsigned HOST_WIDE_INT value;
4802 unsigned HOST_WIDE_INT v;
4803
4804 #ifdef HAVE_GETTIMEOFDAY
4805 struct timeval tv;
4806 #endif
4807
4808 template += strlen (template);
4809
4810 #ifdef HAVE_GETTIMEOFDAY
4811 /* Get some more or less random data. */
4812 gettimeofday (&tv, NULL);
4813 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4814 #else
4815 value += getpid ();
4816 #endif
4817
4818 v = value;
4819
4820 /* Fill in the random bits. */
4821 template[0] = letters[v % 62];
4822 v /= 62;
4823 template[1] = letters[v % 62];
4824 v /= 62;
4825 template[2] = letters[v % 62];
4826 v /= 62;
4827 template[3] = letters[v % 62];
4828 v /= 62;
4829 template[4] = letters[v % 62];
4830 v /= 62;
4831 template[5] = letters[v % 62];
4832
4833 template[6] = '\0';
4834 }
4835
4836 /* Generate a name for a function unique to this translation unit.
4837 TYPE is some string to identify the purpose of this function to the
4838 linker or collect2. */
4839
4840 tree
4841 get_file_function_name_long (type)
4842 const char *type;
4843 {
4844 char *buf;
4845 register char *p;
4846
4847 if (first_global_object_name)
4848 p = first_global_object_name;
4849 else
4850 {
4851 /* We don't have anything that we know to be unique to this translation
4852 unit, so use what we do have and throw in some randomness. */
4853
4854 const char *name = weak_global_object_name;
4855 const char *file = main_input_filename;
4856
4857 if (! name)
4858 name = "";
4859 if (! file)
4860 file = input_filename;
4861
4862 p = (char *) alloca (7 + strlen (name) + strlen (file));
4863
4864 sprintf (p, "%s%s", name, file);
4865 append_random_chars (p);
4866 }
4867
4868 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4869 + strlen (type));
4870
4871 /* Set up the name of the file-level functions we may need. */
4872 /* Use a global object (which is already required to be unique over
4873 the program) rather than the file name (which imposes extra
4874 constraints). -- Raeburn@MIT.EDU, 10 Jan 1990. */
4875 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4876
4877 /* Don't need to pull weird characters out of global names. */
4878 if (p != first_global_object_name)
4879 {
4880 for (p = buf+11; *p; p++)
4881 if (! ( ISDIGIT(*p)
4882 #if 0 /* we always want labels, which are valid C++ identifiers (+ `$') */
4883 #ifndef ASM_IDENTIFY_GCC /* this is required if `.' is invalid -- k. raeburn */
4884 || *p == '.'
4885 #endif
4886 #endif
4887 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4888 || *p == '$'
4889 #endif
4890 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4891 || *p == '.'
4892 #endif
4893 || ISUPPER(*p)
4894 || ISLOWER(*p)))
4895 *p = '_';
4896 }
4897
4898 return get_identifier (buf);
4899 }
4900
4901 /* If KIND=='I', return a suitable global initializer (constructor) name.
4902 If KIND=='D', return a suitable global clean-up (destructor) name. */
4903
4904 tree
4905 get_file_function_name (kind)
4906 int kind;
4907 {
4908 char p[2];
4909 p[0] = kind;
4910 p[1] = 0;
4911
4912 return get_file_function_name_long (p);
4913 }
4914
4915 \f
4916 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4917 The result is placed in BUFFER (which has length BIT_SIZE),
4918 with one bit in each char ('\000' or '\001').
4919
4920 If the constructor is constant, NULL_TREE is returned.
4921 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4922
4923 tree
4924 get_set_constructor_bits (init, buffer, bit_size)
4925 tree init;
4926 char *buffer;
4927 int bit_size;
4928 {
4929 int i;
4930 tree vals;
4931 HOST_WIDE_INT domain_min
4932 = TREE_INT_CST_LOW (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))));
4933 tree non_const_bits = NULL_TREE;
4934 for (i = 0; i < bit_size; i++)
4935 buffer[i] = 0;
4936
4937 for (vals = TREE_OPERAND (init, 1);
4938 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4939 {
4940 if (TREE_CODE (TREE_VALUE (vals)) != INTEGER_CST
4941 || (TREE_PURPOSE (vals) != NULL_TREE
4942 && TREE_CODE (TREE_PURPOSE (vals)) != INTEGER_CST))
4943 non_const_bits
4944 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4945 else if (TREE_PURPOSE (vals) != NULL_TREE)
4946 {
4947 /* Set a range of bits to ones. */
4948 HOST_WIDE_INT lo_index
4949 = TREE_INT_CST_LOW (TREE_PURPOSE (vals)) - domain_min;
4950 HOST_WIDE_INT hi_index
4951 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4952 if (lo_index < 0 || lo_index >= bit_size
4953 || hi_index < 0 || hi_index >= bit_size)
4954 abort ();
4955 for ( ; lo_index <= hi_index; lo_index++)
4956 buffer[lo_index] = 1;
4957 }
4958 else
4959 {
4960 /* Set a single bit to one. */
4961 HOST_WIDE_INT index
4962 = TREE_INT_CST_LOW (TREE_VALUE (vals)) - domain_min;
4963 if (index < 0 || index >= bit_size)
4964 {
4965 error ("invalid initializer for bit string");
4966 return NULL_TREE;
4967 }
4968 buffer[index] = 1;
4969 }
4970 }
4971 return non_const_bits;
4972 }
4973
4974 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4975 The result is placed in BUFFER (which is an array of bytes).
4976 If the constructor is constant, NULL_TREE is returned.
4977 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4978
4979 tree
4980 get_set_constructor_bytes (init, buffer, wd_size)
4981 tree init;
4982 unsigned char *buffer;
4983 int wd_size;
4984 {
4985 int i;
4986 int set_word_size = BITS_PER_UNIT;
4987 int bit_size = wd_size * set_word_size;
4988 int bit_pos = 0;
4989 unsigned char *bytep = buffer;
4990 char *bit_buffer = (char *) alloca(bit_size);
4991 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4992
4993 for (i = 0; i < wd_size; i++)
4994 buffer[i] = 0;
4995
4996 for (i = 0; i < bit_size; i++)
4997 {
4998 if (bit_buffer[i])
4999 {
5000 if (BYTES_BIG_ENDIAN)
5001 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5002 else
5003 *bytep |= 1 << bit_pos;
5004 }
5005 bit_pos++;
5006 if (bit_pos >= set_word_size)
5007 bit_pos = 0, bytep++;
5008 }
5009 return non_const_bits;
5010 }
5011 \f
5012 #if defined ENABLE_CHECKING && (__GNUC__ > 2 || __GNUC_MINOR__ > 6)
5013 /* Complain that the tree code of NODE does not match the expected CODE.
5014 FILE, LINE, and FUNCTION are of the caller. */
5015 void
5016 tree_check_failed (node, code, file, line, function)
5017 const tree node;
5018 enum tree_code code;
5019 const char *file;
5020 int line;
5021 const char *function;
5022 {
5023 error ("Tree check: expected %s, have %s",
5024 tree_code_name[code], tree_code_name[TREE_CODE (node)]);
5025 fancy_abort (file, line, function);
5026 }
5027
5028 /* Similar to above, except that we check for a class of tree
5029 code, given in CL. */
5030 void
5031 tree_class_check_failed (node, cl, file, line, function)
5032 const tree node;
5033 char cl;
5034 const char *file;
5035 int line;
5036 const char *function;
5037 {
5038 error ("Tree check: expected class '%c', have '%c' (%s)",
5039 cl, TREE_CODE_CLASS (TREE_CODE (node)),
5040 tree_code_name[TREE_CODE (node)]);
5041 fancy_abort (file, line, function);
5042 }
5043
5044 #endif /* ENABLE_CHECKING */
5045
5046 /* Return the alias set for T, which may be either a type or an
5047 expression. */
5048
5049 int
5050 get_alias_set (t)
5051 tree t;
5052 {
5053 if (!flag_strict_aliasing || !lang_get_alias_set)
5054 /* If we're not doing any lanaguage-specific alias analysis, just
5055 assume everything aliases everything else. */
5056 return 0;
5057 else
5058 return (*lang_get_alias_set) (t);
5059 }
5060
5061 /* Return a brand-new alias set. */
5062
5063 int
5064 new_alias_set ()
5065 {
5066 static int last_alias_set;
5067 if (flag_strict_aliasing)
5068 return ++last_alias_set;
5069 else
5070 return 0;
5071 }