re PR lto/44950 (ICE in dwarf2out_finish, at dwarf2out.c:22271)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case NULLPTR_TYPE:
1182 gcc_assert (hi == 0 && low == 0);
1183 /* Fallthru. */
1184
1185 case POINTER_TYPE:
1186 case REFERENCE_TYPE:
1187 /* Cache NULL pointer. */
1188 if (!hi && !low)
1189 {
1190 limit = 1;
1191 ix = 0;
1192 }
1193 break;
1194
1195 case BOOLEAN_TYPE:
1196 /* Cache false or true. */
1197 limit = 2;
1198 if (!hi && low < 2)
1199 ix = low;
1200 break;
1201
1202 case INTEGER_TYPE:
1203 case OFFSET_TYPE:
1204 if (TYPE_UNSIGNED (type))
1205 {
1206 /* Cache 0..N */
1207 limit = INTEGER_SHARE_LIMIT;
1208 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1209 ix = low;
1210 }
1211 else
1212 {
1213 /* Cache -1..N */
1214 limit = INTEGER_SHARE_LIMIT + 1;
1215 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1216 ix = low + 1;
1217 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1218 ix = 0;
1219 }
1220 break;
1221
1222 case ENUMERAL_TYPE:
1223 break;
1224
1225 default:
1226 gcc_unreachable ();
1227 }
1228
1229 if (ix >= 0)
1230 {
1231 /* Look for it in the type's vector of small shared ints. */
1232 if (!TYPE_CACHED_VALUES_P (type))
1233 {
1234 TYPE_CACHED_VALUES_P (type) = 1;
1235 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1236 }
1237
1238 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1239 if (t)
1240 {
1241 /* Make sure no one is clobbering the shared constant. */
1242 gcc_assert (TREE_TYPE (t) == type);
1243 gcc_assert (TREE_INT_CST_LOW (t) == low);
1244 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1245 }
1246 else
1247 {
1248 /* Create a new shared int. */
1249 t = make_node (INTEGER_CST);
1250
1251 TREE_INT_CST_LOW (t) = low;
1252 TREE_INT_CST_HIGH (t) = hi;
1253 TREE_TYPE (t) = type;
1254
1255 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1256 }
1257 }
1258 else
1259 {
1260 /* Use the cache of larger shared ints. */
1261 void **slot;
1262
1263 TREE_INT_CST_LOW (int_cst_node) = low;
1264 TREE_INT_CST_HIGH (int_cst_node) = hi;
1265 TREE_TYPE (int_cst_node) = type;
1266
1267 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1268 t = (tree) *slot;
1269 if (!t)
1270 {
1271 /* Insert this one into the hash table. */
1272 t = int_cst_node;
1273 *slot = t;
1274 /* Make a new node for next time round. */
1275 int_cst_node = make_node (INTEGER_CST);
1276 }
1277 }
1278
1279 return t;
1280 }
1281
1282 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1283 and the rest are zeros. */
1284
1285 tree
1286 build_low_bits_mask (tree type, unsigned bits)
1287 {
1288 double_int mask;
1289
1290 gcc_assert (bits <= TYPE_PRECISION (type));
1291
1292 if (bits == TYPE_PRECISION (type)
1293 && !TYPE_UNSIGNED (type))
1294 /* Sign extended all-ones mask. */
1295 mask = double_int_minus_one;
1296 else
1297 mask = double_int_mask (bits);
1298
1299 return build_int_cst_wide (type, mask.low, mask.high);
1300 }
1301
1302 /* Checks that X is integer constant that can be expressed in (unsigned)
1303 HOST_WIDE_INT without loss of precision. */
1304
1305 bool
1306 cst_and_fits_in_hwi (const_tree x)
1307 {
1308 if (TREE_CODE (x) != INTEGER_CST)
1309 return false;
1310
1311 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1312 return false;
1313
1314 return (TREE_INT_CST_HIGH (x) == 0
1315 || TREE_INT_CST_HIGH (x) == -1);
1316 }
1317
1318 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1319 are in a list pointed to by VALS. */
1320
1321 tree
1322 build_vector (tree type, tree vals)
1323 {
1324 tree v = make_node (VECTOR_CST);
1325 int over = 0;
1326 tree link;
1327 unsigned cnt = 0;
1328
1329 TREE_VECTOR_CST_ELTS (v) = vals;
1330 TREE_TYPE (v) = type;
1331
1332 /* Iterate through elements and check for overflow. */
1333 for (link = vals; link; link = TREE_CHAIN (link))
1334 {
1335 tree value = TREE_VALUE (link);
1336 cnt++;
1337
1338 /* Don't crash if we get an address constant. */
1339 if (!CONSTANT_CLASS_P (value))
1340 continue;
1341
1342 over |= TREE_OVERFLOW (value);
1343 }
1344
1345 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1346
1347 TREE_OVERFLOW (v) = over;
1348 return v;
1349 }
1350
1351 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1352 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1353
1354 tree
1355 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1356 {
1357 tree list = NULL_TREE;
1358 unsigned HOST_WIDE_INT idx;
1359 tree value;
1360
1361 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1362 list = tree_cons (NULL_TREE, value, list);
1363 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1364 list = tree_cons (NULL_TREE,
1365 fold_convert (TREE_TYPE (type), integer_zero_node), list);
1366 return build_vector (type, nreverse (list));
1367 }
1368
1369 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1370 are in the VEC pointed to by VALS. */
1371 tree
1372 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1373 {
1374 tree c = make_node (CONSTRUCTOR);
1375 unsigned int i;
1376 constructor_elt *elt;
1377 bool constant_p = true;
1378
1379 TREE_TYPE (c) = type;
1380 CONSTRUCTOR_ELTS (c) = vals;
1381
1382 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1383 if (!TREE_CONSTANT (elt->value))
1384 {
1385 constant_p = false;
1386 break;
1387 }
1388
1389 TREE_CONSTANT (c) = constant_p;
1390
1391 return c;
1392 }
1393
1394 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1395 INDEX and VALUE. */
1396 tree
1397 build_constructor_single (tree type, tree index, tree value)
1398 {
1399 VEC(constructor_elt,gc) *v;
1400 constructor_elt *elt;
1401
1402 v = VEC_alloc (constructor_elt, gc, 1);
1403 elt = VEC_quick_push (constructor_elt, v, NULL);
1404 elt->index = index;
1405 elt->value = value;
1406
1407 return build_constructor (type, v);
1408 }
1409
1410
1411 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1412 are in a list pointed to by VALS. */
1413 tree
1414 build_constructor_from_list (tree type, tree vals)
1415 {
1416 tree t;
1417 VEC(constructor_elt,gc) *v = NULL;
1418
1419 if (vals)
1420 {
1421 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1422 for (t = vals; t; t = TREE_CHAIN (t))
1423 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1424 }
1425
1426 return build_constructor (type, v);
1427 }
1428
1429 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1430
1431 tree
1432 build_fixed (tree type, FIXED_VALUE_TYPE f)
1433 {
1434 tree v;
1435 FIXED_VALUE_TYPE *fp;
1436
1437 v = make_node (FIXED_CST);
1438 fp = ggc_alloc_fixed_value ();
1439 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1440
1441 TREE_TYPE (v) = type;
1442 TREE_FIXED_CST_PTR (v) = fp;
1443 return v;
1444 }
1445
1446 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1447
1448 tree
1449 build_real (tree type, REAL_VALUE_TYPE d)
1450 {
1451 tree v;
1452 REAL_VALUE_TYPE *dp;
1453 int overflow = 0;
1454
1455 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1456 Consider doing it via real_convert now. */
1457
1458 v = make_node (REAL_CST);
1459 dp = ggc_alloc_real_value ();
1460 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1461
1462 TREE_TYPE (v) = type;
1463 TREE_REAL_CST_PTR (v) = dp;
1464 TREE_OVERFLOW (v) = overflow;
1465 return v;
1466 }
1467
1468 /* Return a new REAL_CST node whose type is TYPE
1469 and whose value is the integer value of the INTEGER_CST node I. */
1470
1471 REAL_VALUE_TYPE
1472 real_value_from_int_cst (const_tree type, const_tree i)
1473 {
1474 REAL_VALUE_TYPE d;
1475
1476 /* Clear all bits of the real value type so that we can later do
1477 bitwise comparisons to see if two values are the same. */
1478 memset (&d, 0, sizeof d);
1479
1480 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1481 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1482 TYPE_UNSIGNED (TREE_TYPE (i)));
1483 return d;
1484 }
1485
1486 /* Given a tree representing an integer constant I, return a tree
1487 representing the same value as a floating-point constant of type TYPE. */
1488
1489 tree
1490 build_real_from_int_cst (tree type, const_tree i)
1491 {
1492 tree v;
1493 int overflow = TREE_OVERFLOW (i);
1494
1495 v = build_real (type, real_value_from_int_cst (type, i));
1496
1497 TREE_OVERFLOW (v) |= overflow;
1498 return v;
1499 }
1500
1501 /* Return a newly constructed STRING_CST node whose value is
1502 the LEN characters at STR.
1503 The TREE_TYPE is not initialized. */
1504
1505 tree
1506 build_string (int len, const char *str)
1507 {
1508 tree s;
1509 size_t length;
1510
1511 /* Do not waste bytes provided by padding of struct tree_string. */
1512 length = len + offsetof (struct tree_string, str) + 1;
1513
1514 #ifdef GATHER_STATISTICS
1515 tree_node_counts[(int) c_kind]++;
1516 tree_node_sizes[(int) c_kind] += length;
1517 #endif
1518
1519 s = ggc_alloc_tree_node (length);
1520
1521 memset (s, 0, sizeof (struct tree_common));
1522 TREE_SET_CODE (s, STRING_CST);
1523 TREE_CONSTANT (s) = 1;
1524 TREE_STRING_LENGTH (s) = len;
1525 memcpy (s->string.str, str, len);
1526 s->string.str[len] = '\0';
1527
1528 return s;
1529 }
1530
1531 /* Return a newly constructed COMPLEX_CST node whose value is
1532 specified by the real and imaginary parts REAL and IMAG.
1533 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1534 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1535
1536 tree
1537 build_complex (tree type, tree real, tree imag)
1538 {
1539 tree t = make_node (COMPLEX_CST);
1540
1541 TREE_REALPART (t) = real;
1542 TREE_IMAGPART (t) = imag;
1543 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1544 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1545 return t;
1546 }
1547
1548 /* Return a constant of arithmetic type TYPE which is the
1549 multiplicative identity of the set TYPE. */
1550
1551 tree
1552 build_one_cst (tree type)
1553 {
1554 switch (TREE_CODE (type))
1555 {
1556 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1557 case POINTER_TYPE: case REFERENCE_TYPE:
1558 case OFFSET_TYPE:
1559 return build_int_cst (type, 1);
1560
1561 case REAL_TYPE:
1562 return build_real (type, dconst1);
1563
1564 case FIXED_POINT_TYPE:
1565 /* We can only generate 1 for accum types. */
1566 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1567 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1568
1569 case VECTOR_TYPE:
1570 {
1571 tree scalar, cst;
1572 int i;
1573
1574 scalar = build_one_cst (TREE_TYPE (type));
1575
1576 /* Create 'vect_cst_ = {cst,cst,...,cst}' */
1577 cst = NULL_TREE;
1578 for (i = TYPE_VECTOR_SUBPARTS (type); --i >= 0; )
1579 cst = tree_cons (NULL_TREE, scalar, cst);
1580
1581 return build_vector (type, cst);
1582 }
1583
1584 case COMPLEX_TYPE:
1585 return build_complex (type,
1586 build_one_cst (TREE_TYPE (type)),
1587 fold_convert (TREE_TYPE (type), integer_zero_node));
1588
1589 default:
1590 gcc_unreachable ();
1591 }
1592 }
1593
1594 /* Build 0 constant of type TYPE. This is used by constructor folding and thus
1595 the constant should correspond zero in memory representation. */
1596
1597 tree
1598 build_zero_cst (tree type)
1599 {
1600 if (!AGGREGATE_TYPE_P (type))
1601 return fold_convert (type, integer_zero_node);
1602 return build_constructor (type, NULL);
1603 }
1604
1605
1606 /* Build a BINFO with LEN language slots. */
1607
1608 tree
1609 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1610 {
1611 tree t;
1612 size_t length = (offsetof (struct tree_binfo, base_binfos)
1613 + VEC_embedded_size (tree, base_binfos));
1614
1615 #ifdef GATHER_STATISTICS
1616 tree_node_counts[(int) binfo_kind]++;
1617 tree_node_sizes[(int) binfo_kind] += length;
1618 #endif
1619
1620 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1621
1622 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1623
1624 TREE_SET_CODE (t, TREE_BINFO);
1625
1626 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1627
1628 return t;
1629 }
1630
1631
1632 /* Build a newly constructed TREE_VEC node of length LEN. */
1633
1634 tree
1635 make_tree_vec_stat (int len MEM_STAT_DECL)
1636 {
1637 tree t;
1638 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1639
1640 #ifdef GATHER_STATISTICS
1641 tree_node_counts[(int) vec_kind]++;
1642 tree_node_sizes[(int) vec_kind] += length;
1643 #endif
1644
1645 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1646
1647 TREE_SET_CODE (t, TREE_VEC);
1648 TREE_VEC_LENGTH (t) = len;
1649
1650 return t;
1651 }
1652 \f
1653 /* Return 1 if EXPR is the integer constant zero or a complex constant
1654 of zero. */
1655
1656 int
1657 integer_zerop (const_tree expr)
1658 {
1659 STRIP_NOPS (expr);
1660
1661 return ((TREE_CODE (expr) == INTEGER_CST
1662 && TREE_INT_CST_LOW (expr) == 0
1663 && TREE_INT_CST_HIGH (expr) == 0)
1664 || (TREE_CODE (expr) == COMPLEX_CST
1665 && integer_zerop (TREE_REALPART (expr))
1666 && integer_zerop (TREE_IMAGPART (expr))));
1667 }
1668
1669 /* Return 1 if EXPR is the integer constant one or the corresponding
1670 complex constant. */
1671
1672 int
1673 integer_onep (const_tree expr)
1674 {
1675 STRIP_NOPS (expr);
1676
1677 return ((TREE_CODE (expr) == INTEGER_CST
1678 && TREE_INT_CST_LOW (expr) == 1
1679 && TREE_INT_CST_HIGH (expr) == 0)
1680 || (TREE_CODE (expr) == COMPLEX_CST
1681 && integer_onep (TREE_REALPART (expr))
1682 && integer_zerop (TREE_IMAGPART (expr))));
1683 }
1684
1685 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1686 it contains. Likewise for the corresponding complex constant. */
1687
1688 int
1689 integer_all_onesp (const_tree expr)
1690 {
1691 int prec;
1692 int uns;
1693
1694 STRIP_NOPS (expr);
1695
1696 if (TREE_CODE (expr) == COMPLEX_CST
1697 && integer_all_onesp (TREE_REALPART (expr))
1698 && integer_zerop (TREE_IMAGPART (expr)))
1699 return 1;
1700
1701 else if (TREE_CODE (expr) != INTEGER_CST)
1702 return 0;
1703
1704 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1705 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1706 && TREE_INT_CST_HIGH (expr) == -1)
1707 return 1;
1708 if (!uns)
1709 return 0;
1710
1711 /* Note that using TYPE_PRECISION here is wrong. We care about the
1712 actual bits, not the (arbitrary) range of the type. */
1713 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1714 if (prec >= HOST_BITS_PER_WIDE_INT)
1715 {
1716 HOST_WIDE_INT high_value;
1717 int shift_amount;
1718
1719 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1720
1721 /* Can not handle precisions greater than twice the host int size. */
1722 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1723 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1724 /* Shifting by the host word size is undefined according to the ANSI
1725 standard, so we must handle this as a special case. */
1726 high_value = -1;
1727 else
1728 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1729
1730 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1731 && TREE_INT_CST_HIGH (expr) == high_value);
1732 }
1733 else
1734 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1735 }
1736
1737 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1738 one bit on). */
1739
1740 int
1741 integer_pow2p (const_tree expr)
1742 {
1743 int prec;
1744 HOST_WIDE_INT high, low;
1745
1746 STRIP_NOPS (expr);
1747
1748 if (TREE_CODE (expr) == COMPLEX_CST
1749 && integer_pow2p (TREE_REALPART (expr))
1750 && integer_zerop (TREE_IMAGPART (expr)))
1751 return 1;
1752
1753 if (TREE_CODE (expr) != INTEGER_CST)
1754 return 0;
1755
1756 prec = TYPE_PRECISION (TREE_TYPE (expr));
1757 high = TREE_INT_CST_HIGH (expr);
1758 low = TREE_INT_CST_LOW (expr);
1759
1760 /* First clear all bits that are beyond the type's precision in case
1761 we've been sign extended. */
1762
1763 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1764 ;
1765 else if (prec > HOST_BITS_PER_WIDE_INT)
1766 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1767 else
1768 {
1769 high = 0;
1770 if (prec < HOST_BITS_PER_WIDE_INT)
1771 low &= ~((HOST_WIDE_INT) (-1) << prec);
1772 }
1773
1774 if (high == 0 && low == 0)
1775 return 0;
1776
1777 return ((high == 0 && (low & (low - 1)) == 0)
1778 || (low == 0 && (high & (high - 1)) == 0));
1779 }
1780
1781 /* Return 1 if EXPR is an integer constant other than zero or a
1782 complex constant other than zero. */
1783
1784 int
1785 integer_nonzerop (const_tree expr)
1786 {
1787 STRIP_NOPS (expr);
1788
1789 return ((TREE_CODE (expr) == INTEGER_CST
1790 && (TREE_INT_CST_LOW (expr) != 0
1791 || TREE_INT_CST_HIGH (expr) != 0))
1792 || (TREE_CODE (expr) == COMPLEX_CST
1793 && (integer_nonzerop (TREE_REALPART (expr))
1794 || integer_nonzerop (TREE_IMAGPART (expr)))));
1795 }
1796
1797 /* Return 1 if EXPR is the fixed-point constant zero. */
1798
1799 int
1800 fixed_zerop (const_tree expr)
1801 {
1802 return (TREE_CODE (expr) == FIXED_CST
1803 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1804 }
1805
1806 /* Return the power of two represented by a tree node known to be a
1807 power of two. */
1808
1809 int
1810 tree_log2 (const_tree expr)
1811 {
1812 int prec;
1813 HOST_WIDE_INT high, low;
1814
1815 STRIP_NOPS (expr);
1816
1817 if (TREE_CODE (expr) == COMPLEX_CST)
1818 return tree_log2 (TREE_REALPART (expr));
1819
1820 prec = TYPE_PRECISION (TREE_TYPE (expr));
1821 high = TREE_INT_CST_HIGH (expr);
1822 low = TREE_INT_CST_LOW (expr);
1823
1824 /* First clear all bits that are beyond the type's precision in case
1825 we've been sign extended. */
1826
1827 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1828 ;
1829 else if (prec > HOST_BITS_PER_WIDE_INT)
1830 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1831 else
1832 {
1833 high = 0;
1834 if (prec < HOST_BITS_PER_WIDE_INT)
1835 low &= ~((HOST_WIDE_INT) (-1) << prec);
1836 }
1837
1838 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1839 : exact_log2 (low));
1840 }
1841
1842 /* Similar, but return the largest integer Y such that 2 ** Y is less
1843 than or equal to EXPR. */
1844
1845 int
1846 tree_floor_log2 (const_tree expr)
1847 {
1848 int prec;
1849 HOST_WIDE_INT high, low;
1850
1851 STRIP_NOPS (expr);
1852
1853 if (TREE_CODE (expr) == COMPLEX_CST)
1854 return tree_log2 (TREE_REALPART (expr));
1855
1856 prec = TYPE_PRECISION (TREE_TYPE (expr));
1857 high = TREE_INT_CST_HIGH (expr);
1858 low = TREE_INT_CST_LOW (expr);
1859
1860 /* First clear all bits that are beyond the type's precision in case
1861 we've been sign extended. Ignore if type's precision hasn't been set
1862 since what we are doing is setting it. */
1863
1864 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1865 ;
1866 else if (prec > HOST_BITS_PER_WIDE_INT)
1867 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1868 else
1869 {
1870 high = 0;
1871 if (prec < HOST_BITS_PER_WIDE_INT)
1872 low &= ~((HOST_WIDE_INT) (-1) << prec);
1873 }
1874
1875 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1876 : floor_log2 (low));
1877 }
1878
1879 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1880 decimal float constants, so don't return 1 for them. */
1881
1882 int
1883 real_zerop (const_tree expr)
1884 {
1885 STRIP_NOPS (expr);
1886
1887 return ((TREE_CODE (expr) == REAL_CST
1888 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1889 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1890 || (TREE_CODE (expr) == COMPLEX_CST
1891 && real_zerop (TREE_REALPART (expr))
1892 && real_zerop (TREE_IMAGPART (expr))));
1893 }
1894
1895 /* Return 1 if EXPR is the real constant one in real or complex form.
1896 Trailing zeroes matter for decimal float constants, so don't return
1897 1 for them. */
1898
1899 int
1900 real_onep (const_tree expr)
1901 {
1902 STRIP_NOPS (expr);
1903
1904 return ((TREE_CODE (expr) == REAL_CST
1905 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1906 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1907 || (TREE_CODE (expr) == COMPLEX_CST
1908 && real_onep (TREE_REALPART (expr))
1909 && real_zerop (TREE_IMAGPART (expr))));
1910 }
1911
1912 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1913 for decimal float constants, so don't return 1 for them. */
1914
1915 int
1916 real_twop (const_tree expr)
1917 {
1918 STRIP_NOPS (expr);
1919
1920 return ((TREE_CODE (expr) == REAL_CST
1921 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1922 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1923 || (TREE_CODE (expr) == COMPLEX_CST
1924 && real_twop (TREE_REALPART (expr))
1925 && real_zerop (TREE_IMAGPART (expr))));
1926 }
1927
1928 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1929 matter for decimal float constants, so don't return 1 for them. */
1930
1931 int
1932 real_minus_onep (const_tree expr)
1933 {
1934 STRIP_NOPS (expr);
1935
1936 return ((TREE_CODE (expr) == REAL_CST
1937 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1938 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1939 || (TREE_CODE (expr) == COMPLEX_CST
1940 && real_minus_onep (TREE_REALPART (expr))
1941 && real_zerop (TREE_IMAGPART (expr))));
1942 }
1943
1944 /* Nonzero if EXP is a constant or a cast of a constant. */
1945
1946 int
1947 really_constant_p (const_tree exp)
1948 {
1949 /* This is not quite the same as STRIP_NOPS. It does more. */
1950 while (CONVERT_EXPR_P (exp)
1951 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1952 exp = TREE_OPERAND (exp, 0);
1953 return TREE_CONSTANT (exp);
1954 }
1955 \f
1956 /* Return first list element whose TREE_VALUE is ELEM.
1957 Return 0 if ELEM is not in LIST. */
1958
1959 tree
1960 value_member (tree elem, tree list)
1961 {
1962 while (list)
1963 {
1964 if (elem == TREE_VALUE (list))
1965 return list;
1966 list = TREE_CHAIN (list);
1967 }
1968 return NULL_TREE;
1969 }
1970
1971 /* Return first list element whose TREE_PURPOSE is ELEM.
1972 Return 0 if ELEM is not in LIST. */
1973
1974 tree
1975 purpose_member (const_tree elem, tree list)
1976 {
1977 while (list)
1978 {
1979 if (elem == TREE_PURPOSE (list))
1980 return list;
1981 list = TREE_CHAIN (list);
1982 }
1983 return NULL_TREE;
1984 }
1985
1986 /* Return true if ELEM is in V. */
1987
1988 bool
1989 vec_member (const_tree elem, VEC(tree,gc) *v)
1990 {
1991 unsigned ix;
1992 tree t;
1993 FOR_EACH_VEC_ELT (tree, v, ix, t)
1994 if (elem == t)
1995 return true;
1996 return false;
1997 }
1998
1999 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2000 NULL_TREE. */
2001
2002 tree
2003 chain_index (int idx, tree chain)
2004 {
2005 for (; chain && idx > 0; --idx)
2006 chain = TREE_CHAIN (chain);
2007 return chain;
2008 }
2009
2010 /* Return nonzero if ELEM is part of the chain CHAIN. */
2011
2012 int
2013 chain_member (const_tree elem, const_tree chain)
2014 {
2015 while (chain)
2016 {
2017 if (elem == chain)
2018 return 1;
2019 chain = DECL_CHAIN (chain);
2020 }
2021
2022 return 0;
2023 }
2024
2025 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2026 We expect a null pointer to mark the end of the chain.
2027 This is the Lisp primitive `length'. */
2028
2029 int
2030 list_length (const_tree t)
2031 {
2032 const_tree p = t;
2033 #ifdef ENABLE_TREE_CHECKING
2034 const_tree q = t;
2035 #endif
2036 int len = 0;
2037
2038 while (p)
2039 {
2040 p = TREE_CHAIN (p);
2041 #ifdef ENABLE_TREE_CHECKING
2042 if (len % 2)
2043 q = TREE_CHAIN (q);
2044 gcc_assert (p != q);
2045 #endif
2046 len++;
2047 }
2048
2049 return len;
2050 }
2051
2052 /* Returns the number of FIELD_DECLs in TYPE. */
2053
2054 int
2055 fields_length (const_tree type)
2056 {
2057 tree t = TYPE_FIELDS (type);
2058 int count = 0;
2059
2060 for (; t; t = DECL_CHAIN (t))
2061 if (TREE_CODE (t) == FIELD_DECL)
2062 ++count;
2063
2064 return count;
2065 }
2066
2067 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2068 UNION_TYPE TYPE, or NULL_TREE if none. */
2069
2070 tree
2071 first_field (const_tree type)
2072 {
2073 tree t = TYPE_FIELDS (type);
2074 while (t && TREE_CODE (t) != FIELD_DECL)
2075 t = TREE_CHAIN (t);
2076 return t;
2077 }
2078
2079 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2080 by modifying the last node in chain 1 to point to chain 2.
2081 This is the Lisp primitive `nconc'. */
2082
2083 tree
2084 chainon (tree op1, tree op2)
2085 {
2086 tree t1;
2087
2088 if (!op1)
2089 return op2;
2090 if (!op2)
2091 return op1;
2092
2093 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2094 continue;
2095 TREE_CHAIN (t1) = op2;
2096
2097 #ifdef ENABLE_TREE_CHECKING
2098 {
2099 tree t2;
2100 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2101 gcc_assert (t2 != t1);
2102 }
2103 #endif
2104
2105 return op1;
2106 }
2107
2108 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2109
2110 tree
2111 tree_last (tree chain)
2112 {
2113 tree next;
2114 if (chain)
2115 while ((next = TREE_CHAIN (chain)))
2116 chain = next;
2117 return chain;
2118 }
2119
2120 /* Reverse the order of elements in the chain T,
2121 and return the new head of the chain (old last element). */
2122
2123 tree
2124 nreverse (tree t)
2125 {
2126 tree prev = 0, decl, next;
2127 for (decl = t; decl; decl = next)
2128 {
2129 /* We shouldn't be using this function to reverse BLOCK chains; we
2130 have blocks_nreverse for that. */
2131 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2132 next = TREE_CHAIN (decl);
2133 TREE_CHAIN (decl) = prev;
2134 prev = decl;
2135 }
2136 return prev;
2137 }
2138 \f
2139 /* Return a newly created TREE_LIST node whose
2140 purpose and value fields are PARM and VALUE. */
2141
2142 tree
2143 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2144 {
2145 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2146 TREE_PURPOSE (t) = parm;
2147 TREE_VALUE (t) = value;
2148 return t;
2149 }
2150
2151 /* Build a chain of TREE_LIST nodes from a vector. */
2152
2153 tree
2154 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2155 {
2156 tree ret = NULL_TREE;
2157 tree *pp = &ret;
2158 unsigned int i;
2159 tree t;
2160 FOR_EACH_VEC_ELT (tree, vec, i, t)
2161 {
2162 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2163 pp = &TREE_CHAIN (*pp);
2164 }
2165 return ret;
2166 }
2167
2168 /* Return a newly created TREE_LIST node whose
2169 purpose and value fields are PURPOSE and VALUE
2170 and whose TREE_CHAIN is CHAIN. */
2171
2172 tree
2173 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2174 {
2175 tree node;
2176
2177 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2178 PASS_MEM_STAT);
2179 memset (node, 0, sizeof (struct tree_common));
2180
2181 #ifdef GATHER_STATISTICS
2182 tree_node_counts[(int) x_kind]++;
2183 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2184 #endif
2185
2186 TREE_SET_CODE (node, TREE_LIST);
2187 TREE_CHAIN (node) = chain;
2188 TREE_PURPOSE (node) = purpose;
2189 TREE_VALUE (node) = value;
2190 return node;
2191 }
2192
2193 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2194 trees. */
2195
2196 VEC(tree,gc) *
2197 ctor_to_vec (tree ctor)
2198 {
2199 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2200 unsigned int ix;
2201 tree val;
2202
2203 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2204 VEC_quick_push (tree, vec, val);
2205
2206 return vec;
2207 }
2208 \f
2209 /* Return the size nominally occupied by an object of type TYPE
2210 when it resides in memory. The value is measured in units of bytes,
2211 and its data type is that normally used for type sizes
2212 (which is the first type created by make_signed_type or
2213 make_unsigned_type). */
2214
2215 tree
2216 size_in_bytes (const_tree type)
2217 {
2218 tree t;
2219
2220 if (type == error_mark_node)
2221 return integer_zero_node;
2222
2223 type = TYPE_MAIN_VARIANT (type);
2224 t = TYPE_SIZE_UNIT (type);
2225
2226 if (t == 0)
2227 {
2228 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2229 return size_zero_node;
2230 }
2231
2232 return t;
2233 }
2234
2235 /* Return the size of TYPE (in bytes) as a wide integer
2236 or return -1 if the size can vary or is larger than an integer. */
2237
2238 HOST_WIDE_INT
2239 int_size_in_bytes (const_tree type)
2240 {
2241 tree t;
2242
2243 if (type == error_mark_node)
2244 return 0;
2245
2246 type = TYPE_MAIN_VARIANT (type);
2247 t = TYPE_SIZE_UNIT (type);
2248 if (t == 0
2249 || TREE_CODE (t) != INTEGER_CST
2250 || TREE_INT_CST_HIGH (t) != 0
2251 /* If the result would appear negative, it's too big to represent. */
2252 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2253 return -1;
2254
2255 return TREE_INT_CST_LOW (t);
2256 }
2257
2258 /* Return the maximum size of TYPE (in bytes) as a wide integer
2259 or return -1 if the size can vary or is larger than an integer. */
2260
2261 HOST_WIDE_INT
2262 max_int_size_in_bytes (const_tree type)
2263 {
2264 HOST_WIDE_INT size = -1;
2265 tree size_tree;
2266
2267 /* If this is an array type, check for a possible MAX_SIZE attached. */
2268
2269 if (TREE_CODE (type) == ARRAY_TYPE)
2270 {
2271 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2272
2273 if (size_tree && host_integerp (size_tree, 1))
2274 size = tree_low_cst (size_tree, 1);
2275 }
2276
2277 /* If we still haven't been able to get a size, see if the language
2278 can compute a maximum size. */
2279
2280 if (size == -1)
2281 {
2282 size_tree = lang_hooks.types.max_size (type);
2283
2284 if (size_tree && host_integerp (size_tree, 1))
2285 size = tree_low_cst (size_tree, 1);
2286 }
2287
2288 return size;
2289 }
2290
2291 /* Returns a tree for the size of EXP in bytes. */
2292
2293 tree
2294 tree_expr_size (const_tree exp)
2295 {
2296 if (DECL_P (exp)
2297 && DECL_SIZE_UNIT (exp) != 0)
2298 return DECL_SIZE_UNIT (exp);
2299 else
2300 return size_in_bytes (TREE_TYPE (exp));
2301 }
2302 \f
2303 /* Return the bit position of FIELD, in bits from the start of the record.
2304 This is a tree of type bitsizetype. */
2305
2306 tree
2307 bit_position (const_tree field)
2308 {
2309 return bit_from_pos (DECL_FIELD_OFFSET (field),
2310 DECL_FIELD_BIT_OFFSET (field));
2311 }
2312
2313 /* Likewise, but return as an integer. It must be representable in
2314 that way (since it could be a signed value, we don't have the
2315 option of returning -1 like int_size_in_byte can. */
2316
2317 HOST_WIDE_INT
2318 int_bit_position (const_tree field)
2319 {
2320 return tree_low_cst (bit_position (field), 0);
2321 }
2322 \f
2323 /* Return the byte position of FIELD, in bytes from the start of the record.
2324 This is a tree of type sizetype. */
2325
2326 tree
2327 byte_position (const_tree field)
2328 {
2329 return byte_from_pos (DECL_FIELD_OFFSET (field),
2330 DECL_FIELD_BIT_OFFSET (field));
2331 }
2332
2333 /* Likewise, but return as an integer. It must be representable in
2334 that way (since it could be a signed value, we don't have the
2335 option of returning -1 like int_size_in_byte can. */
2336
2337 HOST_WIDE_INT
2338 int_byte_position (const_tree field)
2339 {
2340 return tree_low_cst (byte_position (field), 0);
2341 }
2342 \f
2343 /* Return the strictest alignment, in bits, that T is known to have. */
2344
2345 unsigned int
2346 expr_align (const_tree t)
2347 {
2348 unsigned int align0, align1;
2349
2350 switch (TREE_CODE (t))
2351 {
2352 CASE_CONVERT: case NON_LVALUE_EXPR:
2353 /* If we have conversions, we know that the alignment of the
2354 object must meet each of the alignments of the types. */
2355 align0 = expr_align (TREE_OPERAND (t, 0));
2356 align1 = TYPE_ALIGN (TREE_TYPE (t));
2357 return MAX (align0, align1);
2358
2359 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2360 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2361 case CLEANUP_POINT_EXPR:
2362 /* These don't change the alignment of an object. */
2363 return expr_align (TREE_OPERAND (t, 0));
2364
2365 case COND_EXPR:
2366 /* The best we can do is say that the alignment is the least aligned
2367 of the two arms. */
2368 align0 = expr_align (TREE_OPERAND (t, 1));
2369 align1 = expr_align (TREE_OPERAND (t, 2));
2370 return MIN (align0, align1);
2371
2372 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2373 meaningfully, it's always 1. */
2374 case LABEL_DECL: case CONST_DECL:
2375 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2376 case FUNCTION_DECL:
2377 gcc_assert (DECL_ALIGN (t) != 0);
2378 return DECL_ALIGN (t);
2379
2380 default:
2381 break;
2382 }
2383
2384 /* Otherwise take the alignment from that of the type. */
2385 return TYPE_ALIGN (TREE_TYPE (t));
2386 }
2387 \f
2388 /* Return, as a tree node, the number of elements for TYPE (which is an
2389 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2390
2391 tree
2392 array_type_nelts (const_tree type)
2393 {
2394 tree index_type, min, max;
2395
2396 /* If they did it with unspecified bounds, then we should have already
2397 given an error about it before we got here. */
2398 if (! TYPE_DOMAIN (type))
2399 return error_mark_node;
2400
2401 index_type = TYPE_DOMAIN (type);
2402 min = TYPE_MIN_VALUE (index_type);
2403 max = TYPE_MAX_VALUE (index_type);
2404
2405 return (integer_zerop (min)
2406 ? max
2407 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2408 }
2409 \f
2410 /* If arg is static -- a reference to an object in static storage -- then
2411 return the object. This is not the same as the C meaning of `static'.
2412 If arg isn't static, return NULL. */
2413
2414 tree
2415 staticp (tree arg)
2416 {
2417 switch (TREE_CODE (arg))
2418 {
2419 case FUNCTION_DECL:
2420 /* Nested functions are static, even though taking their address will
2421 involve a trampoline as we unnest the nested function and create
2422 the trampoline on the tree level. */
2423 return arg;
2424
2425 case VAR_DECL:
2426 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2427 && ! DECL_THREAD_LOCAL_P (arg)
2428 && ! DECL_DLLIMPORT_P (arg)
2429 ? arg : NULL);
2430
2431 case CONST_DECL:
2432 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2433 ? arg : NULL);
2434
2435 case CONSTRUCTOR:
2436 return TREE_STATIC (arg) ? arg : NULL;
2437
2438 case LABEL_DECL:
2439 case STRING_CST:
2440 return arg;
2441
2442 case COMPONENT_REF:
2443 /* If the thing being referenced is not a field, then it is
2444 something language specific. */
2445 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2446
2447 /* If we are referencing a bitfield, we can't evaluate an
2448 ADDR_EXPR at compile time and so it isn't a constant. */
2449 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2450 return NULL;
2451
2452 return staticp (TREE_OPERAND (arg, 0));
2453
2454 case BIT_FIELD_REF:
2455 return NULL;
2456
2457 case INDIRECT_REF:
2458 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2459
2460 case ARRAY_REF:
2461 case ARRAY_RANGE_REF:
2462 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2463 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2464 return staticp (TREE_OPERAND (arg, 0));
2465 else
2466 return NULL;
2467
2468 case COMPOUND_LITERAL_EXPR:
2469 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2470
2471 default:
2472 return NULL;
2473 }
2474 }
2475
2476 \f
2477
2478
2479 /* Return whether OP is a DECL whose address is function-invariant. */
2480
2481 bool
2482 decl_address_invariant_p (const_tree op)
2483 {
2484 /* The conditions below are slightly less strict than the one in
2485 staticp. */
2486
2487 switch (TREE_CODE (op))
2488 {
2489 case PARM_DECL:
2490 case RESULT_DECL:
2491 case LABEL_DECL:
2492 case FUNCTION_DECL:
2493 return true;
2494
2495 case VAR_DECL:
2496 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2497 || DECL_THREAD_LOCAL_P (op)
2498 || DECL_CONTEXT (op) == current_function_decl
2499 || decl_function_context (op) == current_function_decl)
2500 return true;
2501 break;
2502
2503 case CONST_DECL:
2504 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2505 || decl_function_context (op) == current_function_decl)
2506 return true;
2507 break;
2508
2509 default:
2510 break;
2511 }
2512
2513 return false;
2514 }
2515
2516 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2517
2518 bool
2519 decl_address_ip_invariant_p (const_tree op)
2520 {
2521 /* The conditions below are slightly less strict than the one in
2522 staticp. */
2523
2524 switch (TREE_CODE (op))
2525 {
2526 case LABEL_DECL:
2527 case FUNCTION_DECL:
2528 case STRING_CST:
2529 return true;
2530
2531 case VAR_DECL:
2532 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2533 && !DECL_DLLIMPORT_P (op))
2534 || DECL_THREAD_LOCAL_P (op))
2535 return true;
2536 break;
2537
2538 case CONST_DECL:
2539 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2540 return true;
2541 break;
2542
2543 default:
2544 break;
2545 }
2546
2547 return false;
2548 }
2549
2550
2551 /* Return true if T is function-invariant (internal function, does
2552 not handle arithmetic; that's handled in skip_simple_arithmetic and
2553 tree_invariant_p). */
2554
2555 static bool tree_invariant_p (tree t);
2556
2557 static bool
2558 tree_invariant_p_1 (tree t)
2559 {
2560 tree op;
2561
2562 if (TREE_CONSTANT (t)
2563 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2564 return true;
2565
2566 switch (TREE_CODE (t))
2567 {
2568 case SAVE_EXPR:
2569 return true;
2570
2571 case ADDR_EXPR:
2572 op = TREE_OPERAND (t, 0);
2573 while (handled_component_p (op))
2574 {
2575 switch (TREE_CODE (op))
2576 {
2577 case ARRAY_REF:
2578 case ARRAY_RANGE_REF:
2579 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2580 || TREE_OPERAND (op, 2) != NULL_TREE
2581 || TREE_OPERAND (op, 3) != NULL_TREE)
2582 return false;
2583 break;
2584
2585 case COMPONENT_REF:
2586 if (TREE_OPERAND (op, 2) != NULL_TREE)
2587 return false;
2588 break;
2589
2590 default:;
2591 }
2592 op = TREE_OPERAND (op, 0);
2593 }
2594
2595 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2596
2597 default:
2598 break;
2599 }
2600
2601 return false;
2602 }
2603
2604 /* Return true if T is function-invariant. */
2605
2606 static bool
2607 tree_invariant_p (tree t)
2608 {
2609 tree inner = skip_simple_arithmetic (t);
2610 return tree_invariant_p_1 (inner);
2611 }
2612
2613 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2614 Do this to any expression which may be used in more than one place,
2615 but must be evaluated only once.
2616
2617 Normally, expand_expr would reevaluate the expression each time.
2618 Calling save_expr produces something that is evaluated and recorded
2619 the first time expand_expr is called on it. Subsequent calls to
2620 expand_expr just reuse the recorded value.
2621
2622 The call to expand_expr that generates code that actually computes
2623 the value is the first call *at compile time*. Subsequent calls
2624 *at compile time* generate code to use the saved value.
2625 This produces correct result provided that *at run time* control
2626 always flows through the insns made by the first expand_expr
2627 before reaching the other places where the save_expr was evaluated.
2628 You, the caller of save_expr, must make sure this is so.
2629
2630 Constants, and certain read-only nodes, are returned with no
2631 SAVE_EXPR because that is safe. Expressions containing placeholders
2632 are not touched; see tree.def for an explanation of what these
2633 are used for. */
2634
2635 tree
2636 save_expr (tree expr)
2637 {
2638 tree t = fold (expr);
2639 tree inner;
2640
2641 /* If the tree evaluates to a constant, then we don't want to hide that
2642 fact (i.e. this allows further folding, and direct checks for constants).
2643 However, a read-only object that has side effects cannot be bypassed.
2644 Since it is no problem to reevaluate literals, we just return the
2645 literal node. */
2646 inner = skip_simple_arithmetic (t);
2647 if (TREE_CODE (inner) == ERROR_MARK)
2648 return inner;
2649
2650 if (tree_invariant_p_1 (inner))
2651 return t;
2652
2653 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2654 it means that the size or offset of some field of an object depends on
2655 the value within another field.
2656
2657 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2658 and some variable since it would then need to be both evaluated once and
2659 evaluated more than once. Front-ends must assure this case cannot
2660 happen by surrounding any such subexpressions in their own SAVE_EXPR
2661 and forcing evaluation at the proper time. */
2662 if (contains_placeholder_p (inner))
2663 return t;
2664
2665 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2666 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2667
2668 /* This expression might be placed ahead of a jump to ensure that the
2669 value was computed on both sides of the jump. So make sure it isn't
2670 eliminated as dead. */
2671 TREE_SIDE_EFFECTS (t) = 1;
2672 return t;
2673 }
2674
2675 /* Look inside EXPR and into any simple arithmetic operations. Return
2676 the innermost non-arithmetic node. */
2677
2678 tree
2679 skip_simple_arithmetic (tree expr)
2680 {
2681 tree inner;
2682
2683 /* We don't care about whether this can be used as an lvalue in this
2684 context. */
2685 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2686 expr = TREE_OPERAND (expr, 0);
2687
2688 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2689 a constant, it will be more efficient to not make another SAVE_EXPR since
2690 it will allow better simplification and GCSE will be able to merge the
2691 computations if they actually occur. */
2692 inner = expr;
2693 while (1)
2694 {
2695 if (UNARY_CLASS_P (inner))
2696 inner = TREE_OPERAND (inner, 0);
2697 else if (BINARY_CLASS_P (inner))
2698 {
2699 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2700 inner = TREE_OPERAND (inner, 0);
2701 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2702 inner = TREE_OPERAND (inner, 1);
2703 else
2704 break;
2705 }
2706 else
2707 break;
2708 }
2709
2710 return inner;
2711 }
2712
2713
2714 /* Return which tree structure is used by T. */
2715
2716 enum tree_node_structure_enum
2717 tree_node_structure (const_tree t)
2718 {
2719 const enum tree_code code = TREE_CODE (t);
2720 return tree_node_structure_for_code (code);
2721 }
2722
2723 /* Set various status flags when building a CALL_EXPR object T. */
2724
2725 static void
2726 process_call_operands (tree t)
2727 {
2728 bool side_effects = TREE_SIDE_EFFECTS (t);
2729 bool read_only = false;
2730 int i = call_expr_flags (t);
2731
2732 /* Calls have side-effects, except those to const or pure functions. */
2733 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2734 side_effects = true;
2735 /* Propagate TREE_READONLY of arguments for const functions. */
2736 if (i & ECF_CONST)
2737 read_only = true;
2738
2739 if (!side_effects || read_only)
2740 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2741 {
2742 tree op = TREE_OPERAND (t, i);
2743 if (op && TREE_SIDE_EFFECTS (op))
2744 side_effects = true;
2745 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2746 read_only = false;
2747 }
2748
2749 TREE_SIDE_EFFECTS (t) = side_effects;
2750 TREE_READONLY (t) = read_only;
2751 }
2752 \f
2753 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2754 or offset that depends on a field within a record. */
2755
2756 bool
2757 contains_placeholder_p (const_tree exp)
2758 {
2759 enum tree_code code;
2760
2761 if (!exp)
2762 return 0;
2763
2764 code = TREE_CODE (exp);
2765 if (code == PLACEHOLDER_EXPR)
2766 return 1;
2767
2768 switch (TREE_CODE_CLASS (code))
2769 {
2770 case tcc_reference:
2771 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2772 position computations since they will be converted into a
2773 WITH_RECORD_EXPR involving the reference, which will assume
2774 here will be valid. */
2775 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2776
2777 case tcc_exceptional:
2778 if (code == TREE_LIST)
2779 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2780 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2781 break;
2782
2783 case tcc_unary:
2784 case tcc_binary:
2785 case tcc_comparison:
2786 case tcc_expression:
2787 switch (code)
2788 {
2789 case COMPOUND_EXPR:
2790 /* Ignoring the first operand isn't quite right, but works best. */
2791 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2792
2793 case COND_EXPR:
2794 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2795 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2796 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2797
2798 case SAVE_EXPR:
2799 /* The save_expr function never wraps anything containing
2800 a PLACEHOLDER_EXPR. */
2801 return 0;
2802
2803 default:
2804 break;
2805 }
2806
2807 switch (TREE_CODE_LENGTH (code))
2808 {
2809 case 1:
2810 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2811 case 2:
2812 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2813 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2814 default:
2815 return 0;
2816 }
2817
2818 case tcc_vl_exp:
2819 switch (code)
2820 {
2821 case CALL_EXPR:
2822 {
2823 const_tree arg;
2824 const_call_expr_arg_iterator iter;
2825 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2826 if (CONTAINS_PLACEHOLDER_P (arg))
2827 return 1;
2828 return 0;
2829 }
2830 default:
2831 return 0;
2832 }
2833
2834 default:
2835 return 0;
2836 }
2837 return 0;
2838 }
2839
2840 /* Return true if any part of the computation of TYPE involves a
2841 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2842 (for QUAL_UNION_TYPE) and field positions. */
2843
2844 static bool
2845 type_contains_placeholder_1 (const_tree type)
2846 {
2847 /* If the size contains a placeholder or the parent type (component type in
2848 the case of arrays) type involves a placeholder, this type does. */
2849 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2850 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2851 || (TREE_TYPE (type) != 0
2852 && type_contains_placeholder_p (TREE_TYPE (type))))
2853 return true;
2854
2855 /* Now do type-specific checks. Note that the last part of the check above
2856 greatly limits what we have to do below. */
2857 switch (TREE_CODE (type))
2858 {
2859 case VOID_TYPE:
2860 case COMPLEX_TYPE:
2861 case ENUMERAL_TYPE:
2862 case BOOLEAN_TYPE:
2863 case POINTER_TYPE:
2864 case OFFSET_TYPE:
2865 case REFERENCE_TYPE:
2866 case METHOD_TYPE:
2867 case FUNCTION_TYPE:
2868 case VECTOR_TYPE:
2869 return false;
2870
2871 case INTEGER_TYPE:
2872 case REAL_TYPE:
2873 case FIXED_POINT_TYPE:
2874 /* Here we just check the bounds. */
2875 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2876 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2877
2878 case ARRAY_TYPE:
2879 /* We're already checked the component type (TREE_TYPE), so just check
2880 the index type. */
2881 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2882
2883 case RECORD_TYPE:
2884 case UNION_TYPE:
2885 case QUAL_UNION_TYPE:
2886 {
2887 tree field;
2888
2889 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2890 if (TREE_CODE (field) == FIELD_DECL
2891 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2892 || (TREE_CODE (type) == QUAL_UNION_TYPE
2893 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2894 || type_contains_placeholder_p (TREE_TYPE (field))))
2895 return true;
2896
2897 return false;
2898 }
2899
2900 default:
2901 gcc_unreachable ();
2902 }
2903 }
2904
2905 bool
2906 type_contains_placeholder_p (tree type)
2907 {
2908 bool result;
2909
2910 /* If the contains_placeholder_bits field has been initialized,
2911 then we know the answer. */
2912 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2913 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2914
2915 /* Indicate that we've seen this type node, and the answer is false.
2916 This is what we want to return if we run into recursion via fields. */
2917 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2918
2919 /* Compute the real value. */
2920 result = type_contains_placeholder_1 (type);
2921
2922 /* Store the real value. */
2923 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2924
2925 return result;
2926 }
2927 \f
2928 /* Push tree EXP onto vector QUEUE if it is not already present. */
2929
2930 static void
2931 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2932 {
2933 unsigned int i;
2934 tree iter;
2935
2936 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2937 if (simple_cst_equal (iter, exp) == 1)
2938 break;
2939
2940 if (!iter)
2941 VEC_safe_push (tree, heap, *queue, exp);
2942 }
2943
2944 /* Given a tree EXP, find all occurences of references to fields
2945 in a PLACEHOLDER_EXPR and place them in vector REFS without
2946 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2947 we assume here that EXP contains only arithmetic expressions
2948 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2949 argument list. */
2950
2951 void
2952 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2953 {
2954 enum tree_code code = TREE_CODE (exp);
2955 tree inner;
2956 int i;
2957
2958 /* We handle TREE_LIST and COMPONENT_REF separately. */
2959 if (code == TREE_LIST)
2960 {
2961 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2962 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2963 }
2964 else if (code == COMPONENT_REF)
2965 {
2966 for (inner = TREE_OPERAND (exp, 0);
2967 REFERENCE_CLASS_P (inner);
2968 inner = TREE_OPERAND (inner, 0))
2969 ;
2970
2971 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2972 push_without_duplicates (exp, refs);
2973 else
2974 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2975 }
2976 else
2977 switch (TREE_CODE_CLASS (code))
2978 {
2979 case tcc_constant:
2980 break;
2981
2982 case tcc_declaration:
2983 /* Variables allocated to static storage can stay. */
2984 if (!TREE_STATIC (exp))
2985 push_without_duplicates (exp, refs);
2986 break;
2987
2988 case tcc_expression:
2989 /* This is the pattern built in ada/make_aligning_type. */
2990 if (code == ADDR_EXPR
2991 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
2992 {
2993 push_without_duplicates (exp, refs);
2994 break;
2995 }
2996
2997 /* Fall through... */
2998
2999 case tcc_exceptional:
3000 case tcc_unary:
3001 case tcc_binary:
3002 case tcc_comparison:
3003 case tcc_reference:
3004 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3005 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3006 break;
3007
3008 case tcc_vl_exp:
3009 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3010 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3011 break;
3012
3013 default:
3014 gcc_unreachable ();
3015 }
3016 }
3017
3018 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3019 return a tree with all occurrences of references to F in a
3020 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3021 CONST_DECLs. Note that we assume here that EXP contains only
3022 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3023 occurring only in their argument list. */
3024
3025 tree
3026 substitute_in_expr (tree exp, tree f, tree r)
3027 {
3028 enum tree_code code = TREE_CODE (exp);
3029 tree op0, op1, op2, op3;
3030 tree new_tree;
3031
3032 /* We handle TREE_LIST and COMPONENT_REF separately. */
3033 if (code == TREE_LIST)
3034 {
3035 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3036 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3037 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3038 return exp;
3039
3040 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3041 }
3042 else if (code == COMPONENT_REF)
3043 {
3044 tree inner;
3045
3046 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3047 and it is the right field, replace it with R. */
3048 for (inner = TREE_OPERAND (exp, 0);
3049 REFERENCE_CLASS_P (inner);
3050 inner = TREE_OPERAND (inner, 0))
3051 ;
3052
3053 /* The field. */
3054 op1 = TREE_OPERAND (exp, 1);
3055
3056 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3057 return r;
3058
3059 /* If this expression hasn't been completed let, leave it alone. */
3060 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3061 return exp;
3062
3063 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3064 if (op0 == TREE_OPERAND (exp, 0))
3065 return exp;
3066
3067 new_tree
3068 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3069 }
3070 else
3071 switch (TREE_CODE_CLASS (code))
3072 {
3073 case tcc_constant:
3074 return exp;
3075
3076 case tcc_declaration:
3077 if (exp == f)
3078 return r;
3079 else
3080 return exp;
3081
3082 case tcc_expression:
3083 if (exp == f)
3084 return r;
3085
3086 /* Fall through... */
3087
3088 case tcc_exceptional:
3089 case tcc_unary:
3090 case tcc_binary:
3091 case tcc_comparison:
3092 case tcc_reference:
3093 switch (TREE_CODE_LENGTH (code))
3094 {
3095 case 0:
3096 return exp;
3097
3098 case 1:
3099 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3100 if (op0 == TREE_OPERAND (exp, 0))
3101 return exp;
3102
3103 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3104 break;
3105
3106 case 2:
3107 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3108 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3109
3110 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3111 return exp;
3112
3113 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3114 break;
3115
3116 case 3:
3117 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3118 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3119 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3120
3121 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3122 && op2 == TREE_OPERAND (exp, 2))
3123 return exp;
3124
3125 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3126 break;
3127
3128 case 4:
3129 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3130 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3131 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3132 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3133
3134 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3135 && op2 == TREE_OPERAND (exp, 2)
3136 && op3 == TREE_OPERAND (exp, 3))
3137 return exp;
3138
3139 new_tree
3140 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3141 break;
3142
3143 default:
3144 gcc_unreachable ();
3145 }
3146 break;
3147
3148 case tcc_vl_exp:
3149 {
3150 int i;
3151
3152 new_tree = NULL_TREE;
3153
3154 /* If we are trying to replace F with a constant, inline back
3155 functions which do nothing else than computing a value from
3156 the arguments they are passed. This makes it possible to
3157 fold partially or entirely the replacement expression. */
3158 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3159 {
3160 tree t = maybe_inline_call_in_expr (exp);
3161 if (t)
3162 return SUBSTITUTE_IN_EXPR (t, f, r);
3163 }
3164
3165 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3166 {
3167 tree op = TREE_OPERAND (exp, i);
3168 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3169 if (new_op != op)
3170 {
3171 if (!new_tree)
3172 new_tree = copy_node (exp);
3173 TREE_OPERAND (new_tree, i) = new_op;
3174 }
3175 }
3176
3177 if (new_tree)
3178 {
3179 new_tree = fold (new_tree);
3180 if (TREE_CODE (new_tree) == CALL_EXPR)
3181 process_call_operands (new_tree);
3182 }
3183 else
3184 return exp;
3185 }
3186 break;
3187
3188 default:
3189 gcc_unreachable ();
3190 }
3191
3192 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3193
3194 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3195 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3196
3197 return new_tree;
3198 }
3199
3200 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3201 for it within OBJ, a tree that is an object or a chain of references. */
3202
3203 tree
3204 substitute_placeholder_in_expr (tree exp, tree obj)
3205 {
3206 enum tree_code code = TREE_CODE (exp);
3207 tree op0, op1, op2, op3;
3208 tree new_tree;
3209
3210 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3211 in the chain of OBJ. */
3212 if (code == PLACEHOLDER_EXPR)
3213 {
3214 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3215 tree elt;
3216
3217 for (elt = obj; elt != 0;
3218 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3219 || TREE_CODE (elt) == COND_EXPR)
3220 ? TREE_OPERAND (elt, 1)
3221 : (REFERENCE_CLASS_P (elt)
3222 || UNARY_CLASS_P (elt)
3223 || BINARY_CLASS_P (elt)
3224 || VL_EXP_CLASS_P (elt)
3225 || EXPRESSION_CLASS_P (elt))
3226 ? TREE_OPERAND (elt, 0) : 0))
3227 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3228 return elt;
3229
3230 for (elt = obj; elt != 0;
3231 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3232 || TREE_CODE (elt) == COND_EXPR)
3233 ? TREE_OPERAND (elt, 1)
3234 : (REFERENCE_CLASS_P (elt)
3235 || UNARY_CLASS_P (elt)
3236 || BINARY_CLASS_P (elt)
3237 || VL_EXP_CLASS_P (elt)
3238 || EXPRESSION_CLASS_P (elt))
3239 ? TREE_OPERAND (elt, 0) : 0))
3240 if (POINTER_TYPE_P (TREE_TYPE (elt))
3241 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3242 == need_type))
3243 return fold_build1 (INDIRECT_REF, need_type, elt);
3244
3245 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3246 survives until RTL generation, there will be an error. */
3247 return exp;
3248 }
3249
3250 /* TREE_LIST is special because we need to look at TREE_VALUE
3251 and TREE_CHAIN, not TREE_OPERANDS. */
3252 else if (code == TREE_LIST)
3253 {
3254 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3255 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3256 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3257 return exp;
3258
3259 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3260 }
3261 else
3262 switch (TREE_CODE_CLASS (code))
3263 {
3264 case tcc_constant:
3265 case tcc_declaration:
3266 return exp;
3267
3268 case tcc_exceptional:
3269 case tcc_unary:
3270 case tcc_binary:
3271 case tcc_comparison:
3272 case tcc_expression:
3273 case tcc_reference:
3274 case tcc_statement:
3275 switch (TREE_CODE_LENGTH (code))
3276 {
3277 case 0:
3278 return exp;
3279
3280 case 1:
3281 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3282 if (op0 == TREE_OPERAND (exp, 0))
3283 return exp;
3284
3285 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3286 break;
3287
3288 case 2:
3289 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3290 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3291
3292 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3293 return exp;
3294
3295 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3296 break;
3297
3298 case 3:
3299 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3300 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3301 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3302
3303 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3304 && op2 == TREE_OPERAND (exp, 2))
3305 return exp;
3306
3307 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3308 break;
3309
3310 case 4:
3311 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3312 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3313 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3314 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3315
3316 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3317 && op2 == TREE_OPERAND (exp, 2)
3318 && op3 == TREE_OPERAND (exp, 3))
3319 return exp;
3320
3321 new_tree
3322 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3323 break;
3324
3325 default:
3326 gcc_unreachable ();
3327 }
3328 break;
3329
3330 case tcc_vl_exp:
3331 {
3332 int i;
3333
3334 new_tree = NULL_TREE;
3335
3336 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3337 {
3338 tree op = TREE_OPERAND (exp, i);
3339 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3340 if (new_op != op)
3341 {
3342 if (!new_tree)
3343 new_tree = copy_node (exp);
3344 TREE_OPERAND (new_tree, i) = new_op;
3345 }
3346 }
3347
3348 if (new_tree)
3349 {
3350 new_tree = fold (new_tree);
3351 if (TREE_CODE (new_tree) == CALL_EXPR)
3352 process_call_operands (new_tree);
3353 }
3354 else
3355 return exp;
3356 }
3357 break;
3358
3359 default:
3360 gcc_unreachable ();
3361 }
3362
3363 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3364
3365 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3366 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3367
3368 return new_tree;
3369 }
3370 \f
3371 /* Stabilize a reference so that we can use it any number of times
3372 without causing its operands to be evaluated more than once.
3373 Returns the stabilized reference. This works by means of save_expr,
3374 so see the caveats in the comments about save_expr.
3375
3376 Also allows conversion expressions whose operands are references.
3377 Any other kind of expression is returned unchanged. */
3378
3379 tree
3380 stabilize_reference (tree ref)
3381 {
3382 tree result;
3383 enum tree_code code = TREE_CODE (ref);
3384
3385 switch (code)
3386 {
3387 case VAR_DECL:
3388 case PARM_DECL:
3389 case RESULT_DECL:
3390 /* No action is needed in this case. */
3391 return ref;
3392
3393 CASE_CONVERT:
3394 case FLOAT_EXPR:
3395 case FIX_TRUNC_EXPR:
3396 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3397 break;
3398
3399 case INDIRECT_REF:
3400 result = build_nt (INDIRECT_REF,
3401 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3402 break;
3403
3404 case COMPONENT_REF:
3405 result = build_nt (COMPONENT_REF,
3406 stabilize_reference (TREE_OPERAND (ref, 0)),
3407 TREE_OPERAND (ref, 1), NULL_TREE);
3408 break;
3409
3410 case BIT_FIELD_REF:
3411 result = build_nt (BIT_FIELD_REF,
3412 stabilize_reference (TREE_OPERAND (ref, 0)),
3413 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3414 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3415 break;
3416
3417 case ARRAY_REF:
3418 result = build_nt (ARRAY_REF,
3419 stabilize_reference (TREE_OPERAND (ref, 0)),
3420 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3421 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3422 break;
3423
3424 case ARRAY_RANGE_REF:
3425 result = build_nt (ARRAY_RANGE_REF,
3426 stabilize_reference (TREE_OPERAND (ref, 0)),
3427 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3428 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3429 break;
3430
3431 case COMPOUND_EXPR:
3432 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3433 it wouldn't be ignored. This matters when dealing with
3434 volatiles. */
3435 return stabilize_reference_1 (ref);
3436
3437 /* If arg isn't a kind of lvalue we recognize, make no change.
3438 Caller should recognize the error for an invalid lvalue. */
3439 default:
3440 return ref;
3441
3442 case ERROR_MARK:
3443 return error_mark_node;
3444 }
3445
3446 TREE_TYPE (result) = TREE_TYPE (ref);
3447 TREE_READONLY (result) = TREE_READONLY (ref);
3448 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3449 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3450
3451 return result;
3452 }
3453
3454 /* Subroutine of stabilize_reference; this is called for subtrees of
3455 references. Any expression with side-effects must be put in a SAVE_EXPR
3456 to ensure that it is only evaluated once.
3457
3458 We don't put SAVE_EXPR nodes around everything, because assigning very
3459 simple expressions to temporaries causes us to miss good opportunities
3460 for optimizations. Among other things, the opportunity to fold in the
3461 addition of a constant into an addressing mode often gets lost, e.g.
3462 "y[i+1] += x;". In general, we take the approach that we should not make
3463 an assignment unless we are forced into it - i.e., that any non-side effect
3464 operator should be allowed, and that cse should take care of coalescing
3465 multiple utterances of the same expression should that prove fruitful. */
3466
3467 tree
3468 stabilize_reference_1 (tree e)
3469 {
3470 tree result;
3471 enum tree_code code = TREE_CODE (e);
3472
3473 /* We cannot ignore const expressions because it might be a reference
3474 to a const array but whose index contains side-effects. But we can
3475 ignore things that are actual constant or that already have been
3476 handled by this function. */
3477
3478 if (tree_invariant_p (e))
3479 return e;
3480
3481 switch (TREE_CODE_CLASS (code))
3482 {
3483 case tcc_exceptional:
3484 case tcc_type:
3485 case tcc_declaration:
3486 case tcc_comparison:
3487 case tcc_statement:
3488 case tcc_expression:
3489 case tcc_reference:
3490 case tcc_vl_exp:
3491 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3492 so that it will only be evaluated once. */
3493 /* The reference (r) and comparison (<) classes could be handled as
3494 below, but it is generally faster to only evaluate them once. */
3495 if (TREE_SIDE_EFFECTS (e))
3496 return save_expr (e);
3497 return e;
3498
3499 case tcc_constant:
3500 /* Constants need no processing. In fact, we should never reach
3501 here. */
3502 return e;
3503
3504 case tcc_binary:
3505 /* Division is slow and tends to be compiled with jumps,
3506 especially the division by powers of 2 that is often
3507 found inside of an array reference. So do it just once. */
3508 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3509 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3510 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3511 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3512 return save_expr (e);
3513 /* Recursively stabilize each operand. */
3514 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3515 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3516 break;
3517
3518 case tcc_unary:
3519 /* Recursively stabilize each operand. */
3520 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3521 break;
3522
3523 default:
3524 gcc_unreachable ();
3525 }
3526
3527 TREE_TYPE (result) = TREE_TYPE (e);
3528 TREE_READONLY (result) = TREE_READONLY (e);
3529 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3530 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3531
3532 return result;
3533 }
3534 \f
3535 /* Low-level constructors for expressions. */
3536
3537 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3538 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3539
3540 void
3541 recompute_tree_invariant_for_addr_expr (tree t)
3542 {
3543 tree node;
3544 bool tc = true, se = false;
3545
3546 /* We started out assuming this address is both invariant and constant, but
3547 does not have side effects. Now go down any handled components and see if
3548 any of them involve offsets that are either non-constant or non-invariant.
3549 Also check for side-effects.
3550
3551 ??? Note that this code makes no attempt to deal with the case where
3552 taking the address of something causes a copy due to misalignment. */
3553
3554 #define UPDATE_FLAGS(NODE) \
3555 do { tree _node = (NODE); \
3556 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3557 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3558
3559 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3560 node = TREE_OPERAND (node, 0))
3561 {
3562 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3563 array reference (probably made temporarily by the G++ front end),
3564 so ignore all the operands. */
3565 if ((TREE_CODE (node) == ARRAY_REF
3566 || TREE_CODE (node) == ARRAY_RANGE_REF)
3567 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3568 {
3569 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3570 if (TREE_OPERAND (node, 2))
3571 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3572 if (TREE_OPERAND (node, 3))
3573 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3574 }
3575 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3576 FIELD_DECL, apparently. The G++ front end can put something else
3577 there, at least temporarily. */
3578 else if (TREE_CODE (node) == COMPONENT_REF
3579 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3580 {
3581 if (TREE_OPERAND (node, 2))
3582 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3583 }
3584 else if (TREE_CODE (node) == BIT_FIELD_REF)
3585 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3586 }
3587
3588 node = lang_hooks.expr_to_decl (node, &tc, &se);
3589
3590 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3591 the address, since &(*a)->b is a form of addition. If it's a constant, the
3592 address is constant too. If it's a decl, its address is constant if the
3593 decl is static. Everything else is not constant and, furthermore,
3594 taking the address of a volatile variable is not volatile. */
3595 if (TREE_CODE (node) == INDIRECT_REF
3596 || TREE_CODE (node) == MEM_REF)
3597 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3598 else if (CONSTANT_CLASS_P (node))
3599 ;
3600 else if (DECL_P (node))
3601 tc &= (staticp (node) != NULL_TREE);
3602 else
3603 {
3604 tc = false;
3605 se |= TREE_SIDE_EFFECTS (node);
3606 }
3607
3608
3609 TREE_CONSTANT (t) = tc;
3610 TREE_SIDE_EFFECTS (t) = se;
3611 #undef UPDATE_FLAGS
3612 }
3613
3614 /* Build an expression of code CODE, data type TYPE, and operands as
3615 specified. Expressions and reference nodes can be created this way.
3616 Constants, decls, types and misc nodes cannot be.
3617
3618 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3619 enough for all extant tree codes. */
3620
3621 tree
3622 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3623 {
3624 tree t;
3625
3626 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3627
3628 t = make_node_stat (code PASS_MEM_STAT);
3629 TREE_TYPE (t) = tt;
3630
3631 return t;
3632 }
3633
3634 tree
3635 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3636 {
3637 int length = sizeof (struct tree_exp);
3638 #ifdef GATHER_STATISTICS
3639 tree_node_kind kind;
3640 #endif
3641 tree t;
3642
3643 #ifdef GATHER_STATISTICS
3644 switch (TREE_CODE_CLASS (code))
3645 {
3646 case tcc_statement: /* an expression with side effects */
3647 kind = s_kind;
3648 break;
3649 case tcc_reference: /* a reference */
3650 kind = r_kind;
3651 break;
3652 default:
3653 kind = e_kind;
3654 break;
3655 }
3656
3657 tree_node_counts[(int) kind]++;
3658 tree_node_sizes[(int) kind] += length;
3659 #endif
3660
3661 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3662
3663 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3664
3665 memset (t, 0, sizeof (struct tree_common));
3666
3667 TREE_SET_CODE (t, code);
3668
3669 TREE_TYPE (t) = type;
3670 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3671 TREE_OPERAND (t, 0) = node;
3672 TREE_BLOCK (t) = NULL_TREE;
3673 if (node && !TYPE_P (node))
3674 {
3675 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3676 TREE_READONLY (t) = TREE_READONLY (node);
3677 }
3678
3679 if (TREE_CODE_CLASS (code) == tcc_statement)
3680 TREE_SIDE_EFFECTS (t) = 1;
3681 else switch (code)
3682 {
3683 case VA_ARG_EXPR:
3684 /* All of these have side-effects, no matter what their
3685 operands are. */
3686 TREE_SIDE_EFFECTS (t) = 1;
3687 TREE_READONLY (t) = 0;
3688 break;
3689
3690 case INDIRECT_REF:
3691 /* Whether a dereference is readonly has nothing to do with whether
3692 its operand is readonly. */
3693 TREE_READONLY (t) = 0;
3694 break;
3695
3696 case ADDR_EXPR:
3697 if (node)
3698 recompute_tree_invariant_for_addr_expr (t);
3699 break;
3700
3701 default:
3702 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3703 && node && !TYPE_P (node)
3704 && TREE_CONSTANT (node))
3705 TREE_CONSTANT (t) = 1;
3706 if (TREE_CODE_CLASS (code) == tcc_reference
3707 && node && TREE_THIS_VOLATILE (node))
3708 TREE_THIS_VOLATILE (t) = 1;
3709 break;
3710 }
3711
3712 return t;
3713 }
3714
3715 #define PROCESS_ARG(N) \
3716 do { \
3717 TREE_OPERAND (t, N) = arg##N; \
3718 if (arg##N &&!TYPE_P (arg##N)) \
3719 { \
3720 if (TREE_SIDE_EFFECTS (arg##N)) \
3721 side_effects = 1; \
3722 if (!TREE_READONLY (arg##N) \
3723 && !CONSTANT_CLASS_P (arg##N)) \
3724 (void) (read_only = 0); \
3725 if (!TREE_CONSTANT (arg##N)) \
3726 (void) (constant = 0); \
3727 } \
3728 } while (0)
3729
3730 tree
3731 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3732 {
3733 bool constant, read_only, side_effects;
3734 tree t;
3735
3736 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3737
3738 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3739 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3740 /* When sizetype precision doesn't match that of pointers
3741 we need to be able to build explicit extensions or truncations
3742 of the offset argument. */
3743 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3744 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3745 && TREE_CODE (arg1) == INTEGER_CST);
3746
3747 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3748 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3749 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3750 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3751
3752 t = make_node_stat (code PASS_MEM_STAT);
3753 TREE_TYPE (t) = tt;
3754
3755 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3756 result based on those same flags for the arguments. But if the
3757 arguments aren't really even `tree' expressions, we shouldn't be trying
3758 to do this. */
3759
3760 /* Expressions without side effects may be constant if their
3761 arguments are as well. */
3762 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3763 || TREE_CODE_CLASS (code) == tcc_binary);
3764 read_only = 1;
3765 side_effects = TREE_SIDE_EFFECTS (t);
3766
3767 PROCESS_ARG(0);
3768 PROCESS_ARG(1);
3769
3770 TREE_READONLY (t) = read_only;
3771 TREE_CONSTANT (t) = constant;
3772 TREE_SIDE_EFFECTS (t) = side_effects;
3773 TREE_THIS_VOLATILE (t)
3774 = (TREE_CODE_CLASS (code) == tcc_reference
3775 && arg0 && TREE_THIS_VOLATILE (arg0));
3776
3777 return t;
3778 }
3779
3780
3781 tree
3782 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3783 tree arg2 MEM_STAT_DECL)
3784 {
3785 bool constant, read_only, side_effects;
3786 tree t;
3787
3788 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3789 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3790
3791 t = make_node_stat (code PASS_MEM_STAT);
3792 TREE_TYPE (t) = tt;
3793
3794 read_only = 1;
3795
3796 /* As a special exception, if COND_EXPR has NULL branches, we
3797 assume that it is a gimple statement and always consider
3798 it to have side effects. */
3799 if (code == COND_EXPR
3800 && tt == void_type_node
3801 && arg1 == NULL_TREE
3802 && arg2 == NULL_TREE)
3803 side_effects = true;
3804 else
3805 side_effects = TREE_SIDE_EFFECTS (t);
3806
3807 PROCESS_ARG(0);
3808 PROCESS_ARG(1);
3809 PROCESS_ARG(2);
3810
3811 if (code == COND_EXPR)
3812 TREE_READONLY (t) = read_only;
3813
3814 TREE_SIDE_EFFECTS (t) = side_effects;
3815 TREE_THIS_VOLATILE (t)
3816 = (TREE_CODE_CLASS (code) == tcc_reference
3817 && arg0 && TREE_THIS_VOLATILE (arg0));
3818
3819 return t;
3820 }
3821
3822 tree
3823 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3824 tree arg2, tree arg3 MEM_STAT_DECL)
3825 {
3826 bool constant, read_only, side_effects;
3827 tree t;
3828
3829 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3830
3831 t = make_node_stat (code PASS_MEM_STAT);
3832 TREE_TYPE (t) = tt;
3833
3834 side_effects = TREE_SIDE_EFFECTS (t);
3835
3836 PROCESS_ARG(0);
3837 PROCESS_ARG(1);
3838 PROCESS_ARG(2);
3839 PROCESS_ARG(3);
3840
3841 TREE_SIDE_EFFECTS (t) = side_effects;
3842 TREE_THIS_VOLATILE (t)
3843 = (TREE_CODE_CLASS (code) == tcc_reference
3844 && arg0 && TREE_THIS_VOLATILE (arg0));
3845
3846 return t;
3847 }
3848
3849 tree
3850 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3851 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3852 {
3853 bool constant, read_only, side_effects;
3854 tree t;
3855
3856 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3857
3858 t = make_node_stat (code PASS_MEM_STAT);
3859 TREE_TYPE (t) = tt;
3860
3861 side_effects = TREE_SIDE_EFFECTS (t);
3862
3863 PROCESS_ARG(0);
3864 PROCESS_ARG(1);
3865 PROCESS_ARG(2);
3866 PROCESS_ARG(3);
3867 PROCESS_ARG(4);
3868
3869 TREE_SIDE_EFFECTS (t) = side_effects;
3870 TREE_THIS_VOLATILE (t)
3871 = (TREE_CODE_CLASS (code) == tcc_reference
3872 && arg0 && TREE_THIS_VOLATILE (arg0));
3873
3874 return t;
3875 }
3876
3877 tree
3878 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3879 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3880 {
3881 bool constant, read_only, side_effects;
3882 tree t;
3883
3884 gcc_assert (code == TARGET_MEM_REF);
3885
3886 t = make_node_stat (code PASS_MEM_STAT);
3887 TREE_TYPE (t) = tt;
3888
3889 side_effects = TREE_SIDE_EFFECTS (t);
3890
3891 PROCESS_ARG(0);
3892 PROCESS_ARG(1);
3893 PROCESS_ARG(2);
3894 PROCESS_ARG(3);
3895 PROCESS_ARG(4);
3896 if (code == TARGET_MEM_REF)
3897 side_effects = 0;
3898 PROCESS_ARG(5);
3899
3900 TREE_SIDE_EFFECTS (t) = side_effects;
3901 TREE_THIS_VOLATILE (t)
3902 = (code == TARGET_MEM_REF
3903 && arg5 && TREE_THIS_VOLATILE (arg5));
3904
3905 return t;
3906 }
3907
3908 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3909 on the pointer PTR. */
3910
3911 tree
3912 build_simple_mem_ref_loc (location_t loc, tree ptr)
3913 {
3914 HOST_WIDE_INT offset = 0;
3915 tree ptype = TREE_TYPE (ptr);
3916 tree tem;
3917 /* For convenience allow addresses that collapse to a simple base
3918 and offset. */
3919 if (TREE_CODE (ptr) == ADDR_EXPR
3920 && (handled_component_p (TREE_OPERAND (ptr, 0))
3921 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3922 {
3923 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3924 gcc_assert (ptr);
3925 ptr = build_fold_addr_expr (ptr);
3926 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3927 }
3928 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3929 ptr, build_int_cst (ptype, offset));
3930 SET_EXPR_LOCATION (tem, loc);
3931 return tem;
3932 }
3933
3934 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3935
3936 double_int
3937 mem_ref_offset (const_tree t)
3938 {
3939 tree toff = TREE_OPERAND (t, 1);
3940 return double_int_sext (tree_to_double_int (toff),
3941 TYPE_PRECISION (TREE_TYPE (toff)));
3942 }
3943
3944 /* Return the pointer-type relevant for TBAA purposes from the
3945 gimple memory reference tree T. This is the type to be used for
3946 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3947
3948 tree
3949 reference_alias_ptr_type (const_tree t)
3950 {
3951 const_tree base = t;
3952 while (handled_component_p (base))
3953 base = TREE_OPERAND (base, 0);
3954 if (TREE_CODE (base) == MEM_REF)
3955 return TREE_TYPE (TREE_OPERAND (base, 1));
3956 else if (TREE_CODE (base) == TARGET_MEM_REF)
3957 return TREE_TYPE (TMR_OFFSET (base));
3958 else
3959 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3960 }
3961
3962 /* Similar except don't specify the TREE_TYPE
3963 and leave the TREE_SIDE_EFFECTS as 0.
3964 It is permissible for arguments to be null,
3965 or even garbage if their values do not matter. */
3966
3967 tree
3968 build_nt (enum tree_code code, ...)
3969 {
3970 tree t;
3971 int length;
3972 int i;
3973 va_list p;
3974
3975 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3976
3977 va_start (p, code);
3978
3979 t = make_node (code);
3980 length = TREE_CODE_LENGTH (code);
3981
3982 for (i = 0; i < length; i++)
3983 TREE_OPERAND (t, i) = va_arg (p, tree);
3984
3985 va_end (p);
3986 return t;
3987 }
3988
3989 /* Similar to build_nt, but for creating a CALL_EXPR object with a
3990 tree VEC. */
3991
3992 tree
3993 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
3994 {
3995 tree ret, t;
3996 unsigned int ix;
3997
3998 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
3999 CALL_EXPR_FN (ret) = fn;
4000 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4001 FOR_EACH_VEC_ELT (tree, args, ix, t)
4002 CALL_EXPR_ARG (ret, ix) = t;
4003 return ret;
4004 }
4005 \f
4006 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4007 We do NOT enter this node in any sort of symbol table.
4008
4009 LOC is the location of the decl.
4010
4011 layout_decl is used to set up the decl's storage layout.
4012 Other slots are initialized to 0 or null pointers. */
4013
4014 tree
4015 build_decl_stat (location_t loc, enum tree_code code, tree name,
4016 tree type MEM_STAT_DECL)
4017 {
4018 tree t;
4019
4020 t = make_node_stat (code PASS_MEM_STAT);
4021 DECL_SOURCE_LOCATION (t) = loc;
4022
4023 /* if (type == error_mark_node)
4024 type = integer_type_node; */
4025 /* That is not done, deliberately, so that having error_mark_node
4026 as the type can suppress useless errors in the use of this variable. */
4027
4028 DECL_NAME (t) = name;
4029 TREE_TYPE (t) = type;
4030
4031 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4032 layout_decl (t, 0);
4033
4034 return t;
4035 }
4036
4037 /* Builds and returns function declaration with NAME and TYPE. */
4038
4039 tree
4040 build_fn_decl (const char *name, tree type)
4041 {
4042 tree id = get_identifier (name);
4043 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4044
4045 DECL_EXTERNAL (decl) = 1;
4046 TREE_PUBLIC (decl) = 1;
4047 DECL_ARTIFICIAL (decl) = 1;
4048 TREE_NOTHROW (decl) = 1;
4049
4050 return decl;
4051 }
4052
4053 VEC(tree,gc) *all_translation_units;
4054
4055 /* Builds a new translation-unit decl with name NAME, queues it in the
4056 global list of translation-unit decls and returns it. */
4057
4058 tree
4059 build_translation_unit_decl (tree name)
4060 {
4061 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4062 name, NULL_TREE);
4063 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4064 VEC_safe_push (tree, gc, all_translation_units, tu);
4065 return tu;
4066 }
4067
4068 \f
4069 /* BLOCK nodes are used to represent the structure of binding contours
4070 and declarations, once those contours have been exited and their contents
4071 compiled. This information is used for outputting debugging info. */
4072
4073 tree
4074 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4075 {
4076 tree block = make_node (BLOCK);
4077
4078 BLOCK_VARS (block) = vars;
4079 BLOCK_SUBBLOCKS (block) = subblocks;
4080 BLOCK_SUPERCONTEXT (block) = supercontext;
4081 BLOCK_CHAIN (block) = chain;
4082 return block;
4083 }
4084
4085 \f
4086 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4087
4088 LOC is the location to use in tree T. */
4089
4090 void
4091 protected_set_expr_location (tree t, location_t loc)
4092 {
4093 if (t && CAN_HAVE_LOCATION_P (t))
4094 SET_EXPR_LOCATION (t, loc);
4095 }
4096 \f
4097 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4098 is ATTRIBUTE. */
4099
4100 tree
4101 build_decl_attribute_variant (tree ddecl, tree attribute)
4102 {
4103 DECL_ATTRIBUTES (ddecl) = attribute;
4104 return ddecl;
4105 }
4106
4107 /* Borrowed from hashtab.c iterative_hash implementation. */
4108 #define mix(a,b,c) \
4109 { \
4110 a -= b; a -= c; a ^= (c>>13); \
4111 b -= c; b -= a; b ^= (a<< 8); \
4112 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4113 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4114 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4115 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4116 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4117 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4118 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4119 }
4120
4121
4122 /* Produce good hash value combining VAL and VAL2. */
4123 hashval_t
4124 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4125 {
4126 /* the golden ratio; an arbitrary value. */
4127 hashval_t a = 0x9e3779b9;
4128
4129 mix (a, val, val2);
4130 return val2;
4131 }
4132
4133 /* Produce good hash value combining VAL and VAL2. */
4134 hashval_t
4135 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4136 {
4137 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4138 return iterative_hash_hashval_t (val, val2);
4139 else
4140 {
4141 hashval_t a = (hashval_t) val;
4142 /* Avoid warnings about shifting of more than the width of the type on
4143 hosts that won't execute this path. */
4144 int zero = 0;
4145 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4146 mix (a, b, val2);
4147 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4148 {
4149 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4150 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4151 mix (a, b, val2);
4152 }
4153 return val2;
4154 }
4155 }
4156
4157 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4158 is ATTRIBUTE and its qualifiers are QUALS.
4159
4160 Record such modified types already made so we don't make duplicates. */
4161
4162 tree
4163 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4164 {
4165 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4166 {
4167 hashval_t hashcode = 0;
4168 tree ntype;
4169 enum tree_code code = TREE_CODE (ttype);
4170
4171 /* Building a distinct copy of a tagged type is inappropriate; it
4172 causes breakage in code that expects there to be a one-to-one
4173 relationship between a struct and its fields.
4174 build_duplicate_type is another solution (as used in
4175 handle_transparent_union_attribute), but that doesn't play well
4176 with the stronger C++ type identity model. */
4177 if (TREE_CODE (ttype) == RECORD_TYPE
4178 || TREE_CODE (ttype) == UNION_TYPE
4179 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4180 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4181 {
4182 warning (OPT_Wattributes,
4183 "ignoring attributes applied to %qT after definition",
4184 TYPE_MAIN_VARIANT (ttype));
4185 return build_qualified_type (ttype, quals);
4186 }
4187
4188 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4189 ntype = build_distinct_type_copy (ttype);
4190
4191 TYPE_ATTRIBUTES (ntype) = attribute;
4192
4193 hashcode = iterative_hash_object (code, hashcode);
4194 if (TREE_TYPE (ntype))
4195 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4196 hashcode);
4197 hashcode = attribute_hash_list (attribute, hashcode);
4198
4199 switch (TREE_CODE (ntype))
4200 {
4201 case FUNCTION_TYPE:
4202 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4203 break;
4204 case ARRAY_TYPE:
4205 if (TYPE_DOMAIN (ntype))
4206 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4207 hashcode);
4208 break;
4209 case INTEGER_TYPE:
4210 hashcode = iterative_hash_object
4211 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4212 hashcode = iterative_hash_object
4213 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4214 break;
4215 case REAL_TYPE:
4216 case FIXED_POINT_TYPE:
4217 {
4218 unsigned int precision = TYPE_PRECISION (ntype);
4219 hashcode = iterative_hash_object (precision, hashcode);
4220 }
4221 break;
4222 default:
4223 break;
4224 }
4225
4226 ntype = type_hash_canon (hashcode, ntype);
4227
4228 /* If the target-dependent attributes make NTYPE different from
4229 its canonical type, we will need to use structural equality
4230 checks for this type. */
4231 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4232 || !targetm.comp_type_attributes (ntype, ttype))
4233 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4234 else if (TYPE_CANONICAL (ntype) == ntype)
4235 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4236
4237 ttype = build_qualified_type (ntype, quals);
4238 }
4239 else if (TYPE_QUALS (ttype) != quals)
4240 ttype = build_qualified_type (ttype, quals);
4241
4242 return ttype;
4243 }
4244
4245
4246 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4247 is ATTRIBUTE.
4248
4249 Record such modified types already made so we don't make duplicates. */
4250
4251 tree
4252 build_type_attribute_variant (tree ttype, tree attribute)
4253 {
4254 return build_type_attribute_qual_variant (ttype, attribute,
4255 TYPE_QUALS (ttype));
4256 }
4257
4258
4259 /* Reset the expression *EXPR_P, a size or position.
4260
4261 ??? We could reset all non-constant sizes or positions. But it's cheap
4262 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4263
4264 We need to reset self-referential sizes or positions because they cannot
4265 be gimplified and thus can contain a CALL_EXPR after the gimplification
4266 is finished, which will run afoul of LTO streaming. And they need to be
4267 reset to something essentially dummy but not constant, so as to preserve
4268 the properties of the object they are attached to. */
4269
4270 static inline void
4271 free_lang_data_in_one_sizepos (tree *expr_p)
4272 {
4273 tree expr = *expr_p;
4274 if (CONTAINS_PLACEHOLDER_P (expr))
4275 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4276 }
4277
4278
4279 /* Reset all the fields in a binfo node BINFO. We only keep
4280 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4281
4282 static void
4283 free_lang_data_in_binfo (tree binfo)
4284 {
4285 unsigned i;
4286 tree t;
4287
4288 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4289
4290 BINFO_VTABLE (binfo) = NULL_TREE;
4291 BINFO_BASE_ACCESSES (binfo) = NULL;
4292 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4293 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4294
4295 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4296 free_lang_data_in_binfo (t);
4297 }
4298
4299
4300 /* Reset all language specific information still present in TYPE. */
4301
4302 static void
4303 free_lang_data_in_type (tree type)
4304 {
4305 gcc_assert (TYPE_P (type));
4306
4307 /* Give the FE a chance to remove its own data first. */
4308 lang_hooks.free_lang_data (type);
4309
4310 TREE_LANG_FLAG_0 (type) = 0;
4311 TREE_LANG_FLAG_1 (type) = 0;
4312 TREE_LANG_FLAG_2 (type) = 0;
4313 TREE_LANG_FLAG_3 (type) = 0;
4314 TREE_LANG_FLAG_4 (type) = 0;
4315 TREE_LANG_FLAG_5 (type) = 0;
4316 TREE_LANG_FLAG_6 (type) = 0;
4317
4318 if (TREE_CODE (type) == FUNCTION_TYPE)
4319 {
4320 /* Remove the const and volatile qualifiers from arguments. The
4321 C++ front end removes them, but the C front end does not,
4322 leading to false ODR violation errors when merging two
4323 instances of the same function signature compiled by
4324 different front ends. */
4325 tree p;
4326
4327 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4328 {
4329 tree arg_type = TREE_VALUE (p);
4330
4331 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4332 {
4333 int quals = TYPE_QUALS (arg_type)
4334 & ~TYPE_QUAL_CONST
4335 & ~TYPE_QUAL_VOLATILE;
4336 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4337 free_lang_data_in_type (TREE_VALUE (p));
4338 }
4339 }
4340 }
4341
4342 /* Remove members that are not actually FIELD_DECLs from the field
4343 list of an aggregate. These occur in C++. */
4344 if (RECORD_OR_UNION_TYPE_P (type))
4345 {
4346 tree prev, member;
4347
4348 /* Note that TYPE_FIELDS can be shared across distinct
4349 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4350 to be removed, we cannot set its TREE_CHAIN to NULL.
4351 Otherwise, we would not be able to find all the other fields
4352 in the other instances of this TREE_TYPE.
4353
4354 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4355 prev = NULL_TREE;
4356 member = TYPE_FIELDS (type);
4357 while (member)
4358 {
4359 if (TREE_CODE (member) == FIELD_DECL)
4360 {
4361 if (prev)
4362 TREE_CHAIN (prev) = member;
4363 else
4364 TYPE_FIELDS (type) = member;
4365 prev = member;
4366 }
4367
4368 member = TREE_CHAIN (member);
4369 }
4370
4371 if (prev)
4372 TREE_CHAIN (prev) = NULL_TREE;
4373 else
4374 TYPE_FIELDS (type) = NULL_TREE;
4375
4376 TYPE_METHODS (type) = NULL_TREE;
4377 if (TYPE_BINFO (type))
4378 free_lang_data_in_binfo (TYPE_BINFO (type));
4379 }
4380 else
4381 {
4382 /* For non-aggregate types, clear out the language slot (which
4383 overloads TYPE_BINFO). */
4384 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4385
4386 if (INTEGRAL_TYPE_P (type)
4387 || SCALAR_FLOAT_TYPE_P (type)
4388 || FIXED_POINT_TYPE_P (type))
4389 {
4390 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4391 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4392 }
4393 }
4394
4395 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4396 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4397
4398 if (debug_info_level < DINFO_LEVEL_TERSE
4399 || (TYPE_CONTEXT (type)
4400 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4401 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4402 TYPE_CONTEXT (type) = NULL_TREE;
4403
4404 if (debug_info_level < DINFO_LEVEL_TERSE)
4405 TYPE_STUB_DECL (type) = NULL_TREE;
4406 }
4407
4408
4409 /* Return true if DECL may need an assembler name to be set. */
4410
4411 static inline bool
4412 need_assembler_name_p (tree decl)
4413 {
4414 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4415 if (TREE_CODE (decl) != FUNCTION_DECL
4416 && TREE_CODE (decl) != VAR_DECL)
4417 return false;
4418
4419 /* If DECL already has its assembler name set, it does not need a
4420 new one. */
4421 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4422 || DECL_ASSEMBLER_NAME_SET_P (decl))
4423 return false;
4424
4425 /* Abstract decls do not need an assembler name. */
4426 if (DECL_ABSTRACT (decl))
4427 return false;
4428
4429 /* For VAR_DECLs, only static, public and external symbols need an
4430 assembler name. */
4431 if (TREE_CODE (decl) == VAR_DECL
4432 && !TREE_STATIC (decl)
4433 && !TREE_PUBLIC (decl)
4434 && !DECL_EXTERNAL (decl))
4435 return false;
4436
4437 if (TREE_CODE (decl) == FUNCTION_DECL)
4438 {
4439 /* Do not set assembler name on builtins. Allow RTL expansion to
4440 decide whether to expand inline or via a regular call. */
4441 if (DECL_BUILT_IN (decl)
4442 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4443 return false;
4444
4445 /* Functions represented in the callgraph need an assembler name. */
4446 if (cgraph_get_node (decl) != NULL)
4447 return true;
4448
4449 /* Unused and not public functions don't need an assembler name. */
4450 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4451 return false;
4452 }
4453
4454 return true;
4455 }
4456
4457
4458 /* Reset all language specific information still present in symbol
4459 DECL. */
4460
4461 static void
4462 free_lang_data_in_decl (tree decl)
4463 {
4464 gcc_assert (DECL_P (decl));
4465
4466 /* Give the FE a chance to remove its own data first. */
4467 lang_hooks.free_lang_data (decl);
4468
4469 TREE_LANG_FLAG_0 (decl) = 0;
4470 TREE_LANG_FLAG_1 (decl) = 0;
4471 TREE_LANG_FLAG_2 (decl) = 0;
4472 TREE_LANG_FLAG_3 (decl) = 0;
4473 TREE_LANG_FLAG_4 (decl) = 0;
4474 TREE_LANG_FLAG_5 (decl) = 0;
4475 TREE_LANG_FLAG_6 (decl) = 0;
4476
4477 /* Identifiers need not have a type. */
4478 if (DECL_NAME (decl))
4479 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4480
4481 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4482 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4483 if (TREE_CODE (decl) == FIELD_DECL)
4484 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4485
4486 /* DECL_FCONTEXT is only used for debug info generation. */
4487 if (TREE_CODE (decl) == FIELD_DECL
4488 && debug_info_level < DINFO_LEVEL_TERSE)
4489 DECL_FCONTEXT (decl) = NULL_TREE;
4490
4491 if (TREE_CODE (decl) == FUNCTION_DECL)
4492 {
4493 if (gimple_has_body_p (decl))
4494 {
4495 tree t;
4496
4497 /* If DECL has a gimple body, then the context for its
4498 arguments must be DECL. Otherwise, it doesn't really
4499 matter, as we will not be emitting any code for DECL. In
4500 general, there may be other instances of DECL created by
4501 the front end and since PARM_DECLs are generally shared,
4502 their DECL_CONTEXT changes as the replicas of DECL are
4503 created. The only time where DECL_CONTEXT is important
4504 is for the FUNCTION_DECLs that have a gimple body (since
4505 the PARM_DECL will be used in the function's body). */
4506 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4507 DECL_CONTEXT (t) = decl;
4508 }
4509
4510 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4511 At this point, it is not needed anymore. */
4512 DECL_SAVED_TREE (decl) = NULL_TREE;
4513
4514 /* Clear the abstract origin if it refers to a method. Otherwise
4515 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4516 origin will not be output correctly. */
4517 if (DECL_ABSTRACT_ORIGIN (decl)
4518 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4519 && RECORD_OR_UNION_TYPE_P
4520 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4521 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4522 }
4523 else if (TREE_CODE (decl) == VAR_DECL)
4524 {
4525 if ((DECL_EXTERNAL (decl)
4526 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4527 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4528 DECL_INITIAL (decl) = NULL_TREE;
4529 }
4530 else if (TREE_CODE (decl) == TYPE_DECL)
4531 DECL_INITIAL (decl) = NULL_TREE;
4532 }
4533
4534
4535 /* Data used when collecting DECLs and TYPEs for language data removal. */
4536
4537 struct free_lang_data_d
4538 {
4539 /* Worklist to avoid excessive recursion. */
4540 VEC(tree,heap) *worklist;
4541
4542 /* Set of traversed objects. Used to avoid duplicate visits. */
4543 struct pointer_set_t *pset;
4544
4545 /* Array of symbols to process with free_lang_data_in_decl. */
4546 VEC(tree,heap) *decls;
4547
4548 /* Array of types to process with free_lang_data_in_type. */
4549 VEC(tree,heap) *types;
4550 };
4551
4552
4553 /* Save all language fields needed to generate proper debug information
4554 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4555
4556 static void
4557 save_debug_info_for_decl (tree t)
4558 {
4559 /*struct saved_debug_info_d *sdi;*/
4560
4561 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4562
4563 /* FIXME. Partial implementation for saving debug info removed. */
4564 }
4565
4566
4567 /* Save all language fields needed to generate proper debug information
4568 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4569
4570 static void
4571 save_debug_info_for_type (tree t)
4572 {
4573 /*struct saved_debug_info_d *sdi;*/
4574
4575 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4576
4577 /* FIXME. Partial implementation for saving debug info removed. */
4578 }
4579
4580
4581 /* Add type or decl T to one of the list of tree nodes that need their
4582 language data removed. The lists are held inside FLD. */
4583
4584 static void
4585 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4586 {
4587 if (DECL_P (t))
4588 {
4589 VEC_safe_push (tree, heap, fld->decls, t);
4590 if (debug_info_level > DINFO_LEVEL_TERSE)
4591 save_debug_info_for_decl (t);
4592 }
4593 else if (TYPE_P (t))
4594 {
4595 VEC_safe_push (tree, heap, fld->types, t);
4596 if (debug_info_level > DINFO_LEVEL_TERSE)
4597 save_debug_info_for_type (t);
4598 }
4599 else
4600 gcc_unreachable ();
4601 }
4602
4603 /* Push tree node T into FLD->WORKLIST. */
4604
4605 static inline void
4606 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4607 {
4608 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4609 VEC_safe_push (tree, heap, fld->worklist, (t));
4610 }
4611
4612
4613 /* Operand callback helper for free_lang_data_in_node. *TP is the
4614 subtree operand being considered. */
4615
4616 static tree
4617 find_decls_types_r (tree *tp, int *ws, void *data)
4618 {
4619 tree t = *tp;
4620 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4621
4622 if (TREE_CODE (t) == TREE_LIST)
4623 return NULL_TREE;
4624
4625 /* Language specific nodes will be removed, so there is no need
4626 to gather anything under them. */
4627 if (is_lang_specific (t))
4628 {
4629 *ws = 0;
4630 return NULL_TREE;
4631 }
4632
4633 if (DECL_P (t))
4634 {
4635 /* Note that walk_tree does not traverse every possible field in
4636 decls, so we have to do our own traversals here. */
4637 add_tree_to_fld_list (t, fld);
4638
4639 fld_worklist_push (DECL_NAME (t), fld);
4640 fld_worklist_push (DECL_CONTEXT (t), fld);
4641 fld_worklist_push (DECL_SIZE (t), fld);
4642 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4643
4644 /* We are going to remove everything under DECL_INITIAL for
4645 TYPE_DECLs. No point walking them. */
4646 if (TREE_CODE (t) != TYPE_DECL)
4647 fld_worklist_push (DECL_INITIAL (t), fld);
4648
4649 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4650 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4651
4652 if (TREE_CODE (t) == FUNCTION_DECL)
4653 {
4654 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4655 fld_worklist_push (DECL_RESULT (t), fld);
4656 }
4657 else if (TREE_CODE (t) == TYPE_DECL)
4658 {
4659 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4660 fld_worklist_push (DECL_VINDEX (t), fld);
4661 }
4662 else if (TREE_CODE (t) == FIELD_DECL)
4663 {
4664 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4665 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4666 fld_worklist_push (DECL_QUALIFIER (t), fld);
4667 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4668 fld_worklist_push (DECL_FCONTEXT (t), fld);
4669 }
4670 else if (TREE_CODE (t) == VAR_DECL)
4671 {
4672 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4673 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4674 }
4675
4676 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4677 && DECL_HAS_VALUE_EXPR_P (t))
4678 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4679
4680 if (TREE_CODE (t) != FIELD_DECL
4681 && TREE_CODE (t) != TYPE_DECL)
4682 fld_worklist_push (TREE_CHAIN (t), fld);
4683 *ws = 0;
4684 }
4685 else if (TYPE_P (t))
4686 {
4687 /* Note that walk_tree does not traverse every possible field in
4688 types, so we have to do our own traversals here. */
4689 add_tree_to_fld_list (t, fld);
4690
4691 if (!RECORD_OR_UNION_TYPE_P (t))
4692 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4693 fld_worklist_push (TYPE_SIZE (t), fld);
4694 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4695 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4696 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4697 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4698 fld_worklist_push (TYPE_NAME (t), fld);
4699 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4700 them and thus do not and want not to reach unused pointer types
4701 this way. */
4702 if (!POINTER_TYPE_P (t))
4703 fld_worklist_push (TYPE_MINVAL (t), fld);
4704 if (!RECORD_OR_UNION_TYPE_P (t))
4705 fld_worklist_push (TYPE_MAXVAL (t), fld);
4706 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4707 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4708 do not and want not to reach unused variants this way. */
4709 fld_worklist_push (TYPE_CONTEXT (t), fld);
4710 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4711 and want not to reach unused types this way. */
4712
4713 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4714 {
4715 unsigned i;
4716 tree tem;
4717 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4718 i, tem); ++i)
4719 fld_worklist_push (TREE_TYPE (tem), fld);
4720 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4721 if (tem
4722 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4723 && TREE_CODE (tem) == TREE_LIST)
4724 do
4725 {
4726 fld_worklist_push (TREE_VALUE (tem), fld);
4727 tem = TREE_CHAIN (tem);
4728 }
4729 while (tem);
4730 }
4731 if (RECORD_OR_UNION_TYPE_P (t))
4732 {
4733 tree tem;
4734 /* Push all TYPE_FIELDS - there can be interleaving interesting
4735 and non-interesting things. */
4736 tem = TYPE_FIELDS (t);
4737 while (tem)
4738 {
4739 if (TREE_CODE (tem) == FIELD_DECL)
4740 fld_worklist_push (tem, fld);
4741 tem = TREE_CHAIN (tem);
4742 }
4743 }
4744
4745 fld_worklist_push (TREE_CHAIN (t), fld);
4746 *ws = 0;
4747 }
4748 else if (TREE_CODE (t) == BLOCK)
4749 {
4750 tree tem;
4751 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4752 fld_worklist_push (tem, fld);
4753 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4754 fld_worklist_push (tem, fld);
4755 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4756 }
4757
4758 fld_worklist_push (TREE_TYPE (t), fld);
4759
4760 return NULL_TREE;
4761 }
4762
4763
4764 /* Find decls and types in T. */
4765
4766 static void
4767 find_decls_types (tree t, struct free_lang_data_d *fld)
4768 {
4769 while (1)
4770 {
4771 if (!pointer_set_contains (fld->pset, t))
4772 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4773 if (VEC_empty (tree, fld->worklist))
4774 break;
4775 t = VEC_pop (tree, fld->worklist);
4776 }
4777 }
4778
4779 /* Translate all the types in LIST with the corresponding runtime
4780 types. */
4781
4782 static tree
4783 get_eh_types_for_runtime (tree list)
4784 {
4785 tree head, prev;
4786
4787 if (list == NULL_TREE)
4788 return NULL_TREE;
4789
4790 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4791 prev = head;
4792 list = TREE_CHAIN (list);
4793 while (list)
4794 {
4795 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4796 TREE_CHAIN (prev) = n;
4797 prev = TREE_CHAIN (prev);
4798 list = TREE_CHAIN (list);
4799 }
4800
4801 return head;
4802 }
4803
4804
4805 /* Find decls and types referenced in EH region R and store them in
4806 FLD->DECLS and FLD->TYPES. */
4807
4808 static void
4809 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4810 {
4811 switch (r->type)
4812 {
4813 case ERT_CLEANUP:
4814 break;
4815
4816 case ERT_TRY:
4817 {
4818 eh_catch c;
4819
4820 /* The types referenced in each catch must first be changed to the
4821 EH types used at runtime. This removes references to FE types
4822 in the region. */
4823 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4824 {
4825 c->type_list = get_eh_types_for_runtime (c->type_list);
4826 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4827 }
4828 }
4829 break;
4830
4831 case ERT_ALLOWED_EXCEPTIONS:
4832 r->u.allowed.type_list
4833 = get_eh_types_for_runtime (r->u.allowed.type_list);
4834 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4835 break;
4836
4837 case ERT_MUST_NOT_THROW:
4838 walk_tree (&r->u.must_not_throw.failure_decl,
4839 find_decls_types_r, fld, fld->pset);
4840 break;
4841 }
4842 }
4843
4844
4845 /* Find decls and types referenced in cgraph node N and store them in
4846 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4847 look for *every* kind of DECL and TYPE node reachable from N,
4848 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4849 NAMESPACE_DECLs, etc). */
4850
4851 static void
4852 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4853 {
4854 basic_block bb;
4855 struct function *fn;
4856 unsigned ix;
4857 tree t;
4858
4859 find_decls_types (n->decl, fld);
4860
4861 if (!gimple_has_body_p (n->decl))
4862 return;
4863
4864 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4865
4866 fn = DECL_STRUCT_FUNCTION (n->decl);
4867
4868 /* Traverse locals. */
4869 FOR_EACH_LOCAL_DECL (fn, ix, t)
4870 find_decls_types (t, fld);
4871
4872 /* Traverse EH regions in FN. */
4873 {
4874 eh_region r;
4875 FOR_ALL_EH_REGION_FN (r, fn)
4876 find_decls_types_in_eh_region (r, fld);
4877 }
4878
4879 /* Traverse every statement in FN. */
4880 FOR_EACH_BB_FN (bb, fn)
4881 {
4882 gimple_stmt_iterator si;
4883 unsigned i;
4884
4885 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4886 {
4887 gimple phi = gsi_stmt (si);
4888
4889 for (i = 0; i < gimple_phi_num_args (phi); i++)
4890 {
4891 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4892 find_decls_types (*arg_p, fld);
4893 }
4894 }
4895
4896 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4897 {
4898 gimple stmt = gsi_stmt (si);
4899
4900 for (i = 0; i < gimple_num_ops (stmt); i++)
4901 {
4902 tree arg = gimple_op (stmt, i);
4903 find_decls_types (arg, fld);
4904 }
4905 }
4906 }
4907 }
4908
4909
4910 /* Find decls and types referenced in varpool node N and store them in
4911 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4912 look for *every* kind of DECL and TYPE node reachable from N,
4913 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4914 NAMESPACE_DECLs, etc). */
4915
4916 static void
4917 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4918 {
4919 find_decls_types (v->decl, fld);
4920 }
4921
4922 /* If T needs an assembler name, have one created for it. */
4923
4924 void
4925 assign_assembler_name_if_neeeded (tree t)
4926 {
4927 if (need_assembler_name_p (t))
4928 {
4929 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4930 diagnostics that use input_location to show locus
4931 information. The problem here is that, at this point,
4932 input_location is generally anchored to the end of the file
4933 (since the parser is long gone), so we don't have a good
4934 position to pin it to.
4935
4936 To alleviate this problem, this uses the location of T's
4937 declaration. Examples of this are
4938 testsuite/g++.dg/template/cond2.C and
4939 testsuite/g++.dg/template/pr35240.C. */
4940 location_t saved_location = input_location;
4941 input_location = DECL_SOURCE_LOCATION (t);
4942
4943 decl_assembler_name (t);
4944
4945 input_location = saved_location;
4946 }
4947 }
4948
4949
4950 /* Free language specific information for every operand and expression
4951 in every node of the call graph. This process operates in three stages:
4952
4953 1- Every callgraph node and varpool node is traversed looking for
4954 decls and types embedded in them. This is a more exhaustive
4955 search than that done by find_referenced_vars, because it will
4956 also collect individual fields, decls embedded in types, etc.
4957
4958 2- All the decls found are sent to free_lang_data_in_decl.
4959
4960 3- All the types found are sent to free_lang_data_in_type.
4961
4962 The ordering between decls and types is important because
4963 free_lang_data_in_decl sets assembler names, which includes
4964 mangling. So types cannot be freed up until assembler names have
4965 been set up. */
4966
4967 static void
4968 free_lang_data_in_cgraph (void)
4969 {
4970 struct cgraph_node *n;
4971 struct varpool_node *v;
4972 struct free_lang_data_d fld;
4973 tree t;
4974 unsigned i;
4975 alias_pair *p;
4976
4977 /* Initialize sets and arrays to store referenced decls and types. */
4978 fld.pset = pointer_set_create ();
4979 fld.worklist = NULL;
4980 fld.decls = VEC_alloc (tree, heap, 100);
4981 fld.types = VEC_alloc (tree, heap, 100);
4982
4983 /* Find decls and types in the body of every function in the callgraph. */
4984 for (n = cgraph_nodes; n; n = n->next)
4985 find_decls_types_in_node (n, &fld);
4986
4987 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
4988 find_decls_types (p->decl, &fld);
4989
4990 /* Find decls and types in every varpool symbol. */
4991 for (v = varpool_nodes; v; v = v->next)
4992 find_decls_types_in_var (v, &fld);
4993
4994 /* Set the assembler name on every decl found. We need to do this
4995 now because free_lang_data_in_decl will invalidate data needed
4996 for mangling. This breaks mangling on interdependent decls. */
4997 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
4998 assign_assembler_name_if_neeeded (t);
4999
5000 /* Traverse every decl found freeing its language data. */
5001 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5002 free_lang_data_in_decl (t);
5003
5004 /* Traverse every type found freeing its language data. */
5005 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5006 free_lang_data_in_type (t);
5007
5008 pointer_set_destroy (fld.pset);
5009 VEC_free (tree, heap, fld.worklist);
5010 VEC_free (tree, heap, fld.decls);
5011 VEC_free (tree, heap, fld.types);
5012 }
5013
5014
5015 /* Free resources that are used by FE but are not needed once they are done. */
5016
5017 static unsigned
5018 free_lang_data (void)
5019 {
5020 unsigned i;
5021
5022 /* If we are the LTO frontend we have freed lang-specific data already. */
5023 if (in_lto_p
5024 || !flag_generate_lto)
5025 return 0;
5026
5027 /* Allocate and assign alias sets to the standard integer types
5028 while the slots are still in the way the frontends generated them. */
5029 for (i = 0; i < itk_none; ++i)
5030 if (integer_types[i])
5031 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5032
5033 /* Traverse the IL resetting language specific information for
5034 operands, expressions, etc. */
5035 free_lang_data_in_cgraph ();
5036
5037 /* Create gimple variants for common types. */
5038 ptrdiff_type_node = integer_type_node;
5039 fileptr_type_node = ptr_type_node;
5040 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5041 || (TYPE_MODE (boolean_type_node)
5042 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5043 || TYPE_PRECISION (boolean_type_node) != 1
5044 || !TYPE_UNSIGNED (boolean_type_node))
5045 {
5046 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5047 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5048 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5049 TYPE_PRECISION (boolean_type_node) = 1;
5050 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5051 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5052 }
5053
5054 /* Unify char_type_node with its properly signed variant. */
5055 if (TYPE_UNSIGNED (char_type_node))
5056 unsigned_char_type_node = char_type_node;
5057 else
5058 signed_char_type_node = char_type_node;
5059
5060 /* Reset some langhooks. Do not reset types_compatible_p, it may
5061 still be used indirectly via the get_alias_set langhook. */
5062 lang_hooks.callgraph.analyze_expr = NULL;
5063 lang_hooks.dwarf_name = lhd_dwarf_name;
5064 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5065 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5066
5067 /* Reset diagnostic machinery. */
5068 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5069 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5070 diagnostic_format_decoder (global_dc) = default_tree_printer;
5071
5072 return 0;
5073 }
5074
5075
5076 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5077 {
5078 {
5079 SIMPLE_IPA_PASS,
5080 "*free_lang_data", /* name */
5081 NULL, /* gate */
5082 free_lang_data, /* execute */
5083 NULL, /* sub */
5084 NULL, /* next */
5085 0, /* static_pass_number */
5086 TV_IPA_FREE_LANG_DATA, /* tv_id */
5087 0, /* properties_required */
5088 0, /* properties_provided */
5089 0, /* properties_destroyed */
5090 0, /* todo_flags_start */
5091 TODO_ggc_collect /* todo_flags_finish */
5092 }
5093 };
5094
5095 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5096 or zero if not.
5097
5098 We try both `text' and `__text__', ATTR may be either one. */
5099 /* ??? It might be a reasonable simplification to require ATTR to be only
5100 `text'. One might then also require attribute lists to be stored in
5101 their canonicalized form. */
5102
5103 static int
5104 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5105 {
5106 int ident_len;
5107 const char *p;
5108
5109 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5110 return 0;
5111
5112 p = IDENTIFIER_POINTER (ident);
5113 ident_len = IDENTIFIER_LENGTH (ident);
5114
5115 if (ident_len == attr_len
5116 && strcmp (attr, p) == 0)
5117 return 1;
5118
5119 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5120 if (attr[0] == '_')
5121 {
5122 gcc_assert (attr[1] == '_');
5123 gcc_assert (attr[attr_len - 2] == '_');
5124 gcc_assert (attr[attr_len - 1] == '_');
5125 if (ident_len == attr_len - 4
5126 && strncmp (attr + 2, p, attr_len - 4) == 0)
5127 return 1;
5128 }
5129 else
5130 {
5131 if (ident_len == attr_len + 4
5132 && p[0] == '_' && p[1] == '_'
5133 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5134 && strncmp (attr, p + 2, attr_len) == 0)
5135 return 1;
5136 }
5137
5138 return 0;
5139 }
5140
5141 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5142 or zero if not.
5143
5144 We try both `text' and `__text__', ATTR may be either one. */
5145
5146 int
5147 is_attribute_p (const char *attr, const_tree ident)
5148 {
5149 return is_attribute_with_length_p (attr, strlen (attr), ident);
5150 }
5151
5152 /* Given an attribute name and a list of attributes, return a pointer to the
5153 attribute's list element if the attribute is part of the list, or NULL_TREE
5154 if not found. If the attribute appears more than once, this only
5155 returns the first occurrence; the TREE_CHAIN of the return value should
5156 be passed back in if further occurrences are wanted. */
5157
5158 tree
5159 lookup_attribute (const char *attr_name, tree list)
5160 {
5161 tree l;
5162 size_t attr_len = strlen (attr_name);
5163
5164 for (l = list; l; l = TREE_CHAIN (l))
5165 {
5166 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5167 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5168 return l;
5169 }
5170 return NULL_TREE;
5171 }
5172
5173 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5174 modified list. */
5175
5176 tree
5177 remove_attribute (const char *attr_name, tree list)
5178 {
5179 tree *p;
5180 size_t attr_len = strlen (attr_name);
5181
5182 for (p = &list; *p; )
5183 {
5184 tree l = *p;
5185 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5186 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5187 *p = TREE_CHAIN (l);
5188 else
5189 p = &TREE_CHAIN (l);
5190 }
5191
5192 return list;
5193 }
5194
5195 /* Return an attribute list that is the union of a1 and a2. */
5196
5197 tree
5198 merge_attributes (tree a1, tree a2)
5199 {
5200 tree attributes;
5201
5202 /* Either one unset? Take the set one. */
5203
5204 if ((attributes = a1) == 0)
5205 attributes = a2;
5206
5207 /* One that completely contains the other? Take it. */
5208
5209 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5210 {
5211 if (attribute_list_contained (a2, a1))
5212 attributes = a2;
5213 else
5214 {
5215 /* Pick the longest list, and hang on the other list. */
5216
5217 if (list_length (a1) < list_length (a2))
5218 attributes = a2, a2 = a1;
5219
5220 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5221 {
5222 tree a;
5223 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5224 attributes);
5225 a != NULL_TREE;
5226 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5227 TREE_CHAIN (a)))
5228 {
5229 if (TREE_VALUE (a) != NULL
5230 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5231 && TREE_VALUE (a2) != NULL
5232 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5233 {
5234 if (simple_cst_list_equal (TREE_VALUE (a),
5235 TREE_VALUE (a2)) == 1)
5236 break;
5237 }
5238 else if (simple_cst_equal (TREE_VALUE (a),
5239 TREE_VALUE (a2)) == 1)
5240 break;
5241 }
5242 if (a == NULL_TREE)
5243 {
5244 a1 = copy_node (a2);
5245 TREE_CHAIN (a1) = attributes;
5246 attributes = a1;
5247 }
5248 }
5249 }
5250 }
5251 return attributes;
5252 }
5253
5254 /* Given types T1 and T2, merge their attributes and return
5255 the result. */
5256
5257 tree
5258 merge_type_attributes (tree t1, tree t2)
5259 {
5260 return merge_attributes (TYPE_ATTRIBUTES (t1),
5261 TYPE_ATTRIBUTES (t2));
5262 }
5263
5264 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5265 the result. */
5266
5267 tree
5268 merge_decl_attributes (tree olddecl, tree newdecl)
5269 {
5270 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5271 DECL_ATTRIBUTES (newdecl));
5272 }
5273
5274 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5275
5276 /* Specialization of merge_decl_attributes for various Windows targets.
5277
5278 This handles the following situation:
5279
5280 __declspec (dllimport) int foo;
5281 int foo;
5282
5283 The second instance of `foo' nullifies the dllimport. */
5284
5285 tree
5286 merge_dllimport_decl_attributes (tree old, tree new_tree)
5287 {
5288 tree a;
5289 int delete_dllimport_p = 1;
5290
5291 /* What we need to do here is remove from `old' dllimport if it doesn't
5292 appear in `new'. dllimport behaves like extern: if a declaration is
5293 marked dllimport and a definition appears later, then the object
5294 is not dllimport'd. We also remove a `new' dllimport if the old list
5295 contains dllexport: dllexport always overrides dllimport, regardless
5296 of the order of declaration. */
5297 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5298 delete_dllimport_p = 0;
5299 else if (DECL_DLLIMPORT_P (new_tree)
5300 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5301 {
5302 DECL_DLLIMPORT_P (new_tree) = 0;
5303 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5304 "dllimport ignored", new_tree);
5305 }
5306 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5307 {
5308 /* Warn about overriding a symbol that has already been used, e.g.:
5309 extern int __attribute__ ((dllimport)) foo;
5310 int* bar () {return &foo;}
5311 int foo;
5312 */
5313 if (TREE_USED (old))
5314 {
5315 warning (0, "%q+D redeclared without dllimport attribute "
5316 "after being referenced with dll linkage", new_tree);
5317 /* If we have used a variable's address with dllimport linkage,
5318 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5319 decl may already have had TREE_CONSTANT computed.
5320 We still remove the attribute so that assembler code refers
5321 to '&foo rather than '_imp__foo'. */
5322 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5323 DECL_DLLIMPORT_P (new_tree) = 1;
5324 }
5325
5326 /* Let an inline definition silently override the external reference,
5327 but otherwise warn about attribute inconsistency. */
5328 else if (TREE_CODE (new_tree) == VAR_DECL
5329 || !DECL_DECLARED_INLINE_P (new_tree))
5330 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5331 "previous dllimport ignored", new_tree);
5332 }
5333 else
5334 delete_dllimport_p = 0;
5335
5336 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5337
5338 if (delete_dllimport_p)
5339 {
5340 tree prev, t;
5341 const size_t attr_len = strlen ("dllimport");
5342
5343 /* Scan the list for dllimport and delete it. */
5344 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5345 {
5346 if (is_attribute_with_length_p ("dllimport", attr_len,
5347 TREE_PURPOSE (t)))
5348 {
5349 if (prev == NULL_TREE)
5350 a = TREE_CHAIN (a);
5351 else
5352 TREE_CHAIN (prev) = TREE_CHAIN (t);
5353 break;
5354 }
5355 }
5356 }
5357
5358 return a;
5359 }
5360
5361 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5362 struct attribute_spec.handler. */
5363
5364 tree
5365 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5366 bool *no_add_attrs)
5367 {
5368 tree node = *pnode;
5369 bool is_dllimport;
5370
5371 /* These attributes may apply to structure and union types being created,
5372 but otherwise should pass to the declaration involved. */
5373 if (!DECL_P (node))
5374 {
5375 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5376 | (int) ATTR_FLAG_ARRAY_NEXT))
5377 {
5378 *no_add_attrs = true;
5379 return tree_cons (name, args, NULL_TREE);
5380 }
5381 if (TREE_CODE (node) == RECORD_TYPE
5382 || TREE_CODE (node) == UNION_TYPE)
5383 {
5384 node = TYPE_NAME (node);
5385 if (!node)
5386 return NULL_TREE;
5387 }
5388 else
5389 {
5390 warning (OPT_Wattributes, "%qE attribute ignored",
5391 name);
5392 *no_add_attrs = true;
5393 return NULL_TREE;
5394 }
5395 }
5396
5397 if (TREE_CODE (node) != FUNCTION_DECL
5398 && TREE_CODE (node) != VAR_DECL
5399 && TREE_CODE (node) != TYPE_DECL)
5400 {
5401 *no_add_attrs = true;
5402 warning (OPT_Wattributes, "%qE attribute ignored",
5403 name);
5404 return NULL_TREE;
5405 }
5406
5407 if (TREE_CODE (node) == TYPE_DECL
5408 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5409 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5410 {
5411 *no_add_attrs = true;
5412 warning (OPT_Wattributes, "%qE attribute ignored",
5413 name);
5414 return NULL_TREE;
5415 }
5416
5417 is_dllimport = is_attribute_p ("dllimport", name);
5418
5419 /* Report error on dllimport ambiguities seen now before they cause
5420 any damage. */
5421 if (is_dllimport)
5422 {
5423 /* Honor any target-specific overrides. */
5424 if (!targetm.valid_dllimport_attribute_p (node))
5425 *no_add_attrs = true;
5426
5427 else if (TREE_CODE (node) == FUNCTION_DECL
5428 && DECL_DECLARED_INLINE_P (node))
5429 {
5430 warning (OPT_Wattributes, "inline function %q+D declared as "
5431 " dllimport: attribute ignored", node);
5432 *no_add_attrs = true;
5433 }
5434 /* Like MS, treat definition of dllimported variables and
5435 non-inlined functions on declaration as syntax errors. */
5436 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5437 {
5438 error ("function %q+D definition is marked dllimport", node);
5439 *no_add_attrs = true;
5440 }
5441
5442 else if (TREE_CODE (node) == VAR_DECL)
5443 {
5444 if (DECL_INITIAL (node))
5445 {
5446 error ("variable %q+D definition is marked dllimport",
5447 node);
5448 *no_add_attrs = true;
5449 }
5450
5451 /* `extern' needn't be specified with dllimport.
5452 Specify `extern' now and hope for the best. Sigh. */
5453 DECL_EXTERNAL (node) = 1;
5454 /* Also, implicitly give dllimport'd variables declared within
5455 a function global scope, unless declared static. */
5456 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5457 TREE_PUBLIC (node) = 1;
5458 }
5459
5460 if (*no_add_attrs == false)
5461 DECL_DLLIMPORT_P (node) = 1;
5462 }
5463 else if (TREE_CODE (node) == FUNCTION_DECL
5464 && DECL_DECLARED_INLINE_P (node))
5465 /* An exported function, even if inline, must be emitted. */
5466 DECL_EXTERNAL (node) = 0;
5467
5468 /* Report error if symbol is not accessible at global scope. */
5469 if (!TREE_PUBLIC (node)
5470 && (TREE_CODE (node) == VAR_DECL
5471 || TREE_CODE (node) == FUNCTION_DECL))
5472 {
5473 error ("external linkage required for symbol %q+D because of "
5474 "%qE attribute", node, name);
5475 *no_add_attrs = true;
5476 }
5477
5478 /* A dllexport'd entity must have default visibility so that other
5479 program units (shared libraries or the main executable) can see
5480 it. A dllimport'd entity must have default visibility so that
5481 the linker knows that undefined references within this program
5482 unit can be resolved by the dynamic linker. */
5483 if (!*no_add_attrs)
5484 {
5485 if (DECL_VISIBILITY_SPECIFIED (node)
5486 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5487 error ("%qE implies default visibility, but %qD has already "
5488 "been declared with a different visibility",
5489 name, node);
5490 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5491 DECL_VISIBILITY_SPECIFIED (node) = 1;
5492 }
5493
5494 return NULL_TREE;
5495 }
5496
5497 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5498 \f
5499 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5500 of the various TYPE_QUAL values. */
5501
5502 static void
5503 set_type_quals (tree type, int type_quals)
5504 {
5505 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5506 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5507 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5508 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5509 }
5510
5511 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5512
5513 bool
5514 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5515 {
5516 return (TYPE_QUALS (cand) == type_quals
5517 && TYPE_NAME (cand) == TYPE_NAME (base)
5518 /* Apparently this is needed for Objective-C. */
5519 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5520 /* Check alignment. */
5521 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5522 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5523 TYPE_ATTRIBUTES (base)));
5524 }
5525
5526 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5527
5528 static bool
5529 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5530 {
5531 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5532 && TYPE_NAME (cand) == TYPE_NAME (base)
5533 /* Apparently this is needed for Objective-C. */
5534 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5535 /* Check alignment. */
5536 && TYPE_ALIGN (cand) == align
5537 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5538 TYPE_ATTRIBUTES (base)));
5539 }
5540
5541 /* Return a version of the TYPE, qualified as indicated by the
5542 TYPE_QUALS, if one exists. If no qualified version exists yet,
5543 return NULL_TREE. */
5544
5545 tree
5546 get_qualified_type (tree type, int type_quals)
5547 {
5548 tree t;
5549
5550 if (TYPE_QUALS (type) == type_quals)
5551 return type;
5552
5553 /* Search the chain of variants to see if there is already one there just
5554 like the one we need to have. If so, use that existing one. We must
5555 preserve the TYPE_NAME, since there is code that depends on this. */
5556 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5557 if (check_qualified_type (t, type, type_quals))
5558 return t;
5559
5560 return NULL_TREE;
5561 }
5562
5563 /* Like get_qualified_type, but creates the type if it does not
5564 exist. This function never returns NULL_TREE. */
5565
5566 tree
5567 build_qualified_type (tree type, int type_quals)
5568 {
5569 tree t;
5570
5571 /* See if we already have the appropriate qualified variant. */
5572 t = get_qualified_type (type, type_quals);
5573
5574 /* If not, build it. */
5575 if (!t)
5576 {
5577 t = build_variant_type_copy (type);
5578 set_type_quals (t, type_quals);
5579
5580 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5581 /* Propagate structural equality. */
5582 SET_TYPE_STRUCTURAL_EQUALITY (t);
5583 else if (TYPE_CANONICAL (type) != type)
5584 /* Build the underlying canonical type, since it is different
5585 from TYPE. */
5586 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5587 type_quals);
5588 else
5589 /* T is its own canonical type. */
5590 TYPE_CANONICAL (t) = t;
5591
5592 }
5593
5594 return t;
5595 }
5596
5597 /* Create a variant of type T with alignment ALIGN. */
5598
5599 tree
5600 build_aligned_type (tree type, unsigned int align)
5601 {
5602 tree t;
5603
5604 if (TYPE_PACKED (type)
5605 || TYPE_ALIGN (type) == align)
5606 return type;
5607
5608 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5609 if (check_aligned_type (t, type, align))
5610 return t;
5611
5612 t = build_variant_type_copy (type);
5613 TYPE_ALIGN (t) = align;
5614
5615 return t;
5616 }
5617
5618 /* Create a new distinct copy of TYPE. The new type is made its own
5619 MAIN_VARIANT. If TYPE requires structural equality checks, the
5620 resulting type requires structural equality checks; otherwise, its
5621 TYPE_CANONICAL points to itself. */
5622
5623 tree
5624 build_distinct_type_copy (tree type)
5625 {
5626 tree t = copy_node (type);
5627
5628 TYPE_POINTER_TO (t) = 0;
5629 TYPE_REFERENCE_TO (t) = 0;
5630
5631 /* Set the canonical type either to a new equivalence class, or
5632 propagate the need for structural equality checks. */
5633 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5634 SET_TYPE_STRUCTURAL_EQUALITY (t);
5635 else
5636 TYPE_CANONICAL (t) = t;
5637
5638 /* Make it its own variant. */
5639 TYPE_MAIN_VARIANT (t) = t;
5640 TYPE_NEXT_VARIANT (t) = 0;
5641
5642 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5643 whose TREE_TYPE is not t. This can also happen in the Ada
5644 frontend when using subtypes. */
5645
5646 return t;
5647 }
5648
5649 /* Create a new variant of TYPE, equivalent but distinct. This is so
5650 the caller can modify it. TYPE_CANONICAL for the return type will
5651 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5652 are considered equal by the language itself (or that both types
5653 require structural equality checks). */
5654
5655 tree
5656 build_variant_type_copy (tree type)
5657 {
5658 tree t, m = TYPE_MAIN_VARIANT (type);
5659
5660 t = build_distinct_type_copy (type);
5661
5662 /* Since we're building a variant, assume that it is a non-semantic
5663 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5664 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5665
5666 /* Add the new type to the chain of variants of TYPE. */
5667 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5668 TYPE_NEXT_VARIANT (m) = t;
5669 TYPE_MAIN_VARIANT (t) = m;
5670
5671 return t;
5672 }
5673 \f
5674 /* Return true if the from tree in both tree maps are equal. */
5675
5676 int
5677 tree_map_base_eq (const void *va, const void *vb)
5678 {
5679 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5680 *const b = (const struct tree_map_base *) vb;
5681 return (a->from == b->from);
5682 }
5683
5684 /* Hash a from tree in a tree_base_map. */
5685
5686 unsigned int
5687 tree_map_base_hash (const void *item)
5688 {
5689 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5690 }
5691
5692 /* Return true if this tree map structure is marked for garbage collection
5693 purposes. We simply return true if the from tree is marked, so that this
5694 structure goes away when the from tree goes away. */
5695
5696 int
5697 tree_map_base_marked_p (const void *p)
5698 {
5699 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5700 }
5701
5702 /* Hash a from tree in a tree_map. */
5703
5704 unsigned int
5705 tree_map_hash (const void *item)
5706 {
5707 return (((const struct tree_map *) item)->hash);
5708 }
5709
5710 /* Hash a from tree in a tree_decl_map. */
5711
5712 unsigned int
5713 tree_decl_map_hash (const void *item)
5714 {
5715 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5716 }
5717
5718 /* Return the initialization priority for DECL. */
5719
5720 priority_type
5721 decl_init_priority_lookup (tree decl)
5722 {
5723 struct tree_priority_map *h;
5724 struct tree_map_base in;
5725
5726 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5727 in.from = decl;
5728 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5729 return h ? h->init : DEFAULT_INIT_PRIORITY;
5730 }
5731
5732 /* Return the finalization priority for DECL. */
5733
5734 priority_type
5735 decl_fini_priority_lookup (tree decl)
5736 {
5737 struct tree_priority_map *h;
5738 struct tree_map_base in;
5739
5740 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5741 in.from = decl;
5742 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5743 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5744 }
5745
5746 /* Return the initialization and finalization priority information for
5747 DECL. If there is no previous priority information, a freshly
5748 allocated structure is returned. */
5749
5750 static struct tree_priority_map *
5751 decl_priority_info (tree decl)
5752 {
5753 struct tree_priority_map in;
5754 struct tree_priority_map *h;
5755 void **loc;
5756
5757 in.base.from = decl;
5758 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5759 h = (struct tree_priority_map *) *loc;
5760 if (!h)
5761 {
5762 h = ggc_alloc_cleared_tree_priority_map ();
5763 *loc = h;
5764 h->base.from = decl;
5765 h->init = DEFAULT_INIT_PRIORITY;
5766 h->fini = DEFAULT_INIT_PRIORITY;
5767 }
5768
5769 return h;
5770 }
5771
5772 /* Set the initialization priority for DECL to PRIORITY. */
5773
5774 void
5775 decl_init_priority_insert (tree decl, priority_type priority)
5776 {
5777 struct tree_priority_map *h;
5778
5779 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5780 h = decl_priority_info (decl);
5781 h->init = priority;
5782 }
5783
5784 /* Set the finalization priority for DECL to PRIORITY. */
5785
5786 void
5787 decl_fini_priority_insert (tree decl, priority_type priority)
5788 {
5789 struct tree_priority_map *h;
5790
5791 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5792 h = decl_priority_info (decl);
5793 h->fini = priority;
5794 }
5795
5796 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5797
5798 static void
5799 print_debug_expr_statistics (void)
5800 {
5801 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5802 (long) htab_size (debug_expr_for_decl),
5803 (long) htab_elements (debug_expr_for_decl),
5804 htab_collisions (debug_expr_for_decl));
5805 }
5806
5807 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5808
5809 static void
5810 print_value_expr_statistics (void)
5811 {
5812 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5813 (long) htab_size (value_expr_for_decl),
5814 (long) htab_elements (value_expr_for_decl),
5815 htab_collisions (value_expr_for_decl));
5816 }
5817
5818 /* Lookup a debug expression for FROM, and return it if we find one. */
5819
5820 tree
5821 decl_debug_expr_lookup (tree from)
5822 {
5823 struct tree_decl_map *h, in;
5824 in.base.from = from;
5825
5826 h = (struct tree_decl_map *)
5827 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5828 if (h)
5829 return h->to;
5830 return NULL_TREE;
5831 }
5832
5833 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5834
5835 void
5836 decl_debug_expr_insert (tree from, tree to)
5837 {
5838 struct tree_decl_map *h;
5839 void **loc;
5840
5841 h = ggc_alloc_tree_decl_map ();
5842 h->base.from = from;
5843 h->to = to;
5844 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5845 INSERT);
5846 *(struct tree_decl_map **) loc = h;
5847 }
5848
5849 /* Lookup a value expression for FROM, and return it if we find one. */
5850
5851 tree
5852 decl_value_expr_lookup (tree from)
5853 {
5854 struct tree_decl_map *h, in;
5855 in.base.from = from;
5856
5857 h = (struct tree_decl_map *)
5858 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5859 if (h)
5860 return h->to;
5861 return NULL_TREE;
5862 }
5863
5864 /* Insert a mapping FROM->TO in the value expression hashtable. */
5865
5866 void
5867 decl_value_expr_insert (tree from, tree to)
5868 {
5869 struct tree_decl_map *h;
5870 void **loc;
5871
5872 h = ggc_alloc_tree_decl_map ();
5873 h->base.from = from;
5874 h->to = to;
5875 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5876 INSERT);
5877 *(struct tree_decl_map **) loc = h;
5878 }
5879
5880 /* Hashing of types so that we don't make duplicates.
5881 The entry point is `type_hash_canon'. */
5882
5883 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5884 with types in the TREE_VALUE slots), by adding the hash codes
5885 of the individual types. */
5886
5887 static unsigned int
5888 type_hash_list (const_tree list, hashval_t hashcode)
5889 {
5890 const_tree tail;
5891
5892 for (tail = list; tail; tail = TREE_CHAIN (tail))
5893 if (TREE_VALUE (tail) != error_mark_node)
5894 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5895 hashcode);
5896
5897 return hashcode;
5898 }
5899
5900 /* These are the Hashtable callback functions. */
5901
5902 /* Returns true iff the types are equivalent. */
5903
5904 static int
5905 type_hash_eq (const void *va, const void *vb)
5906 {
5907 const struct type_hash *const a = (const struct type_hash *) va,
5908 *const b = (const struct type_hash *) vb;
5909
5910 /* First test the things that are the same for all types. */
5911 if (a->hash != b->hash
5912 || TREE_CODE (a->type) != TREE_CODE (b->type)
5913 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5914 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5915 TYPE_ATTRIBUTES (b->type))
5916 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5917 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5918 || (TREE_CODE (a->type) != COMPLEX_TYPE
5919 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5920 return 0;
5921
5922 switch (TREE_CODE (a->type))
5923 {
5924 case VOID_TYPE:
5925 case COMPLEX_TYPE:
5926 case POINTER_TYPE:
5927 case REFERENCE_TYPE:
5928 return 1;
5929
5930 case VECTOR_TYPE:
5931 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5932
5933 case ENUMERAL_TYPE:
5934 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5935 && !(TYPE_VALUES (a->type)
5936 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5937 && TYPE_VALUES (b->type)
5938 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5939 && type_list_equal (TYPE_VALUES (a->type),
5940 TYPE_VALUES (b->type))))
5941 return 0;
5942
5943 /* ... fall through ... */
5944
5945 case INTEGER_TYPE:
5946 case REAL_TYPE:
5947 case BOOLEAN_TYPE:
5948 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5949 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5950 TYPE_MAX_VALUE (b->type)))
5951 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5952 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5953 TYPE_MIN_VALUE (b->type))));
5954
5955 case FIXED_POINT_TYPE:
5956 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5957
5958 case OFFSET_TYPE:
5959 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5960
5961 case METHOD_TYPE:
5962 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5963 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5964 || (TYPE_ARG_TYPES (a->type)
5965 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5966 && TYPE_ARG_TYPES (b->type)
5967 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5968 && type_list_equal (TYPE_ARG_TYPES (a->type),
5969 TYPE_ARG_TYPES (b->type)))));
5970
5971 case ARRAY_TYPE:
5972 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5973
5974 case RECORD_TYPE:
5975 case UNION_TYPE:
5976 case QUAL_UNION_TYPE:
5977 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5978 || (TYPE_FIELDS (a->type)
5979 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5980 && TYPE_FIELDS (b->type)
5981 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5982 && type_list_equal (TYPE_FIELDS (a->type),
5983 TYPE_FIELDS (b->type))));
5984
5985 case FUNCTION_TYPE:
5986 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5987 || (TYPE_ARG_TYPES (a->type)
5988 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5989 && TYPE_ARG_TYPES (b->type)
5990 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5991 && type_list_equal (TYPE_ARG_TYPES (a->type),
5992 TYPE_ARG_TYPES (b->type))))
5993 break;
5994 return 0;
5995
5996 default:
5997 return 0;
5998 }
5999
6000 if (lang_hooks.types.type_hash_eq != NULL)
6001 return lang_hooks.types.type_hash_eq (a->type, b->type);
6002
6003 return 1;
6004 }
6005
6006 /* Return the cached hash value. */
6007
6008 static hashval_t
6009 type_hash_hash (const void *item)
6010 {
6011 return ((const struct type_hash *) item)->hash;
6012 }
6013
6014 /* Look in the type hash table for a type isomorphic to TYPE.
6015 If one is found, return it. Otherwise return 0. */
6016
6017 tree
6018 type_hash_lookup (hashval_t hashcode, tree type)
6019 {
6020 struct type_hash *h, in;
6021
6022 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6023 must call that routine before comparing TYPE_ALIGNs. */
6024 layout_type (type);
6025
6026 in.hash = hashcode;
6027 in.type = type;
6028
6029 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6030 hashcode);
6031 if (h)
6032 return h->type;
6033 return NULL_TREE;
6034 }
6035
6036 /* Add an entry to the type-hash-table
6037 for a type TYPE whose hash code is HASHCODE. */
6038
6039 void
6040 type_hash_add (hashval_t hashcode, tree type)
6041 {
6042 struct type_hash *h;
6043 void **loc;
6044
6045 h = ggc_alloc_type_hash ();
6046 h->hash = hashcode;
6047 h->type = type;
6048 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6049 *loc = (void *)h;
6050 }
6051
6052 /* Given TYPE, and HASHCODE its hash code, return the canonical
6053 object for an identical type if one already exists.
6054 Otherwise, return TYPE, and record it as the canonical object.
6055
6056 To use this function, first create a type of the sort you want.
6057 Then compute its hash code from the fields of the type that
6058 make it different from other similar types.
6059 Then call this function and use the value. */
6060
6061 tree
6062 type_hash_canon (unsigned int hashcode, tree type)
6063 {
6064 tree t1;
6065
6066 /* The hash table only contains main variants, so ensure that's what we're
6067 being passed. */
6068 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6069
6070 /* See if the type is in the hash table already. If so, return it.
6071 Otherwise, add the type. */
6072 t1 = type_hash_lookup (hashcode, type);
6073 if (t1 != 0)
6074 {
6075 #ifdef GATHER_STATISTICS
6076 tree_node_counts[(int) t_kind]--;
6077 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6078 #endif
6079 return t1;
6080 }
6081 else
6082 {
6083 type_hash_add (hashcode, type);
6084 return type;
6085 }
6086 }
6087
6088 /* See if the data pointed to by the type hash table is marked. We consider
6089 it marked if the type is marked or if a debug type number or symbol
6090 table entry has been made for the type. */
6091
6092 static int
6093 type_hash_marked_p (const void *p)
6094 {
6095 const_tree const type = ((const struct type_hash *) p)->type;
6096
6097 return ggc_marked_p (type);
6098 }
6099
6100 static void
6101 print_type_hash_statistics (void)
6102 {
6103 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6104 (long) htab_size (type_hash_table),
6105 (long) htab_elements (type_hash_table),
6106 htab_collisions (type_hash_table));
6107 }
6108
6109 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6110 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6111 by adding the hash codes of the individual attributes. */
6112
6113 static unsigned int
6114 attribute_hash_list (const_tree list, hashval_t hashcode)
6115 {
6116 const_tree tail;
6117
6118 for (tail = list; tail; tail = TREE_CHAIN (tail))
6119 /* ??? Do we want to add in TREE_VALUE too? */
6120 hashcode = iterative_hash_object
6121 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6122 return hashcode;
6123 }
6124
6125 /* Given two lists of attributes, return true if list l2 is
6126 equivalent to l1. */
6127
6128 int
6129 attribute_list_equal (const_tree l1, const_tree l2)
6130 {
6131 return attribute_list_contained (l1, l2)
6132 && attribute_list_contained (l2, l1);
6133 }
6134
6135 /* Given two lists of attributes, return true if list L2 is
6136 completely contained within L1. */
6137 /* ??? This would be faster if attribute names were stored in a canonicalized
6138 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6139 must be used to show these elements are equivalent (which they are). */
6140 /* ??? It's not clear that attributes with arguments will always be handled
6141 correctly. */
6142
6143 int
6144 attribute_list_contained (const_tree l1, const_tree l2)
6145 {
6146 const_tree t1, t2;
6147
6148 /* First check the obvious, maybe the lists are identical. */
6149 if (l1 == l2)
6150 return 1;
6151
6152 /* Maybe the lists are similar. */
6153 for (t1 = l1, t2 = l2;
6154 t1 != 0 && t2 != 0
6155 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6156 && TREE_VALUE (t1) == TREE_VALUE (t2);
6157 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6158
6159 /* Maybe the lists are equal. */
6160 if (t1 == 0 && t2 == 0)
6161 return 1;
6162
6163 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6164 {
6165 const_tree attr;
6166 /* This CONST_CAST is okay because lookup_attribute does not
6167 modify its argument and the return value is assigned to a
6168 const_tree. */
6169 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6170 CONST_CAST_TREE(l1));
6171 attr != NULL_TREE;
6172 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6173 TREE_CHAIN (attr)))
6174 {
6175 if (TREE_VALUE (t2) != NULL
6176 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6177 && TREE_VALUE (attr) != NULL
6178 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6179 {
6180 if (simple_cst_list_equal (TREE_VALUE (t2),
6181 TREE_VALUE (attr)) == 1)
6182 break;
6183 }
6184 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6185 break;
6186 }
6187
6188 if (attr == 0)
6189 return 0;
6190 }
6191
6192 return 1;
6193 }
6194
6195 /* Given two lists of types
6196 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6197 return 1 if the lists contain the same types in the same order.
6198 Also, the TREE_PURPOSEs must match. */
6199
6200 int
6201 type_list_equal (const_tree l1, const_tree l2)
6202 {
6203 const_tree t1, t2;
6204
6205 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6206 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6207 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6208 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6209 && (TREE_TYPE (TREE_PURPOSE (t1))
6210 == TREE_TYPE (TREE_PURPOSE (t2))))))
6211 return 0;
6212
6213 return t1 == t2;
6214 }
6215
6216 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6217 given by TYPE. If the argument list accepts variable arguments,
6218 then this function counts only the ordinary arguments. */
6219
6220 int
6221 type_num_arguments (const_tree type)
6222 {
6223 int i = 0;
6224 tree t;
6225
6226 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6227 /* If the function does not take a variable number of arguments,
6228 the last element in the list will have type `void'. */
6229 if (VOID_TYPE_P (TREE_VALUE (t)))
6230 break;
6231 else
6232 ++i;
6233
6234 return i;
6235 }
6236
6237 /* Nonzero if integer constants T1 and T2
6238 represent the same constant value. */
6239
6240 int
6241 tree_int_cst_equal (const_tree t1, const_tree t2)
6242 {
6243 if (t1 == t2)
6244 return 1;
6245
6246 if (t1 == 0 || t2 == 0)
6247 return 0;
6248
6249 if (TREE_CODE (t1) == INTEGER_CST
6250 && TREE_CODE (t2) == INTEGER_CST
6251 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6252 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6253 return 1;
6254
6255 return 0;
6256 }
6257
6258 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6259 The precise way of comparison depends on their data type. */
6260
6261 int
6262 tree_int_cst_lt (const_tree t1, const_tree t2)
6263 {
6264 if (t1 == t2)
6265 return 0;
6266
6267 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6268 {
6269 int t1_sgn = tree_int_cst_sgn (t1);
6270 int t2_sgn = tree_int_cst_sgn (t2);
6271
6272 if (t1_sgn < t2_sgn)
6273 return 1;
6274 else if (t1_sgn > t2_sgn)
6275 return 0;
6276 /* Otherwise, both are non-negative, so we compare them as
6277 unsigned just in case one of them would overflow a signed
6278 type. */
6279 }
6280 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6281 return INT_CST_LT (t1, t2);
6282
6283 return INT_CST_LT_UNSIGNED (t1, t2);
6284 }
6285
6286 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6287
6288 int
6289 tree_int_cst_compare (const_tree t1, const_tree t2)
6290 {
6291 if (tree_int_cst_lt (t1, t2))
6292 return -1;
6293 else if (tree_int_cst_lt (t2, t1))
6294 return 1;
6295 else
6296 return 0;
6297 }
6298
6299 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6300 the host. If POS is zero, the value can be represented in a single
6301 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6302 be represented in a single unsigned HOST_WIDE_INT. */
6303
6304 int
6305 host_integerp (const_tree t, int pos)
6306 {
6307 if (t == NULL_TREE)
6308 return 0;
6309
6310 return (TREE_CODE (t) == INTEGER_CST
6311 && ((TREE_INT_CST_HIGH (t) == 0
6312 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6313 || (! pos && TREE_INT_CST_HIGH (t) == -1
6314 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6315 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6316 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6317 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6318 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6319 }
6320
6321 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6322 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6323 be non-negative. We must be able to satisfy the above conditions. */
6324
6325 HOST_WIDE_INT
6326 tree_low_cst (const_tree t, int pos)
6327 {
6328 gcc_assert (host_integerp (t, pos));
6329 return TREE_INT_CST_LOW (t);
6330 }
6331
6332 /* Return the most significant bit of the integer constant T. */
6333
6334 int
6335 tree_int_cst_msb (const_tree t)
6336 {
6337 int prec;
6338 HOST_WIDE_INT h;
6339 unsigned HOST_WIDE_INT l;
6340
6341 /* Note that using TYPE_PRECISION here is wrong. We care about the
6342 actual bits, not the (arbitrary) range of the type. */
6343 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6344 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6345 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6346 return (l & 1) == 1;
6347 }
6348
6349 /* Return an indication of the sign of the integer constant T.
6350 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6351 Note that -1 will never be returned if T's type is unsigned. */
6352
6353 int
6354 tree_int_cst_sgn (const_tree t)
6355 {
6356 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6357 return 0;
6358 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6359 return 1;
6360 else if (TREE_INT_CST_HIGH (t) < 0)
6361 return -1;
6362 else
6363 return 1;
6364 }
6365
6366 /* Return the minimum number of bits needed to represent VALUE in a
6367 signed or unsigned type, UNSIGNEDP says which. */
6368
6369 unsigned int
6370 tree_int_cst_min_precision (tree value, bool unsignedp)
6371 {
6372 int log;
6373
6374 /* If the value is negative, compute its negative minus 1. The latter
6375 adjustment is because the absolute value of the largest negative value
6376 is one larger than the largest positive value. This is equivalent to
6377 a bit-wise negation, so use that operation instead. */
6378
6379 if (tree_int_cst_sgn (value) < 0)
6380 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6381
6382 /* Return the number of bits needed, taking into account the fact
6383 that we need one more bit for a signed than unsigned type. */
6384
6385 if (integer_zerop (value))
6386 log = 0;
6387 else
6388 log = tree_floor_log2 (value);
6389
6390 return log + 1 + !unsignedp;
6391 }
6392
6393 /* Compare two constructor-element-type constants. Return 1 if the lists
6394 are known to be equal; otherwise return 0. */
6395
6396 int
6397 simple_cst_list_equal (const_tree l1, const_tree l2)
6398 {
6399 while (l1 != NULL_TREE && l2 != NULL_TREE)
6400 {
6401 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6402 return 0;
6403
6404 l1 = TREE_CHAIN (l1);
6405 l2 = TREE_CHAIN (l2);
6406 }
6407
6408 return l1 == l2;
6409 }
6410
6411 /* Return truthvalue of whether T1 is the same tree structure as T2.
6412 Return 1 if they are the same.
6413 Return 0 if they are understandably different.
6414 Return -1 if either contains tree structure not understood by
6415 this function. */
6416
6417 int
6418 simple_cst_equal (const_tree t1, const_tree t2)
6419 {
6420 enum tree_code code1, code2;
6421 int cmp;
6422 int i;
6423
6424 if (t1 == t2)
6425 return 1;
6426 if (t1 == 0 || t2 == 0)
6427 return 0;
6428
6429 code1 = TREE_CODE (t1);
6430 code2 = TREE_CODE (t2);
6431
6432 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6433 {
6434 if (CONVERT_EXPR_CODE_P (code2)
6435 || code2 == NON_LVALUE_EXPR)
6436 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6437 else
6438 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6439 }
6440
6441 else if (CONVERT_EXPR_CODE_P (code2)
6442 || code2 == NON_LVALUE_EXPR)
6443 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6444
6445 if (code1 != code2)
6446 return 0;
6447
6448 switch (code1)
6449 {
6450 case INTEGER_CST:
6451 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6452 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6453
6454 case REAL_CST:
6455 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6456
6457 case FIXED_CST:
6458 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6459
6460 case STRING_CST:
6461 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6462 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6463 TREE_STRING_LENGTH (t1)));
6464
6465 case CONSTRUCTOR:
6466 {
6467 unsigned HOST_WIDE_INT idx;
6468 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6469 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6470
6471 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6472 return false;
6473
6474 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6475 /* ??? Should we handle also fields here? */
6476 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6477 VEC_index (constructor_elt, v2, idx)->value))
6478 return false;
6479 return true;
6480 }
6481
6482 case SAVE_EXPR:
6483 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6484
6485 case CALL_EXPR:
6486 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6487 if (cmp <= 0)
6488 return cmp;
6489 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6490 return 0;
6491 {
6492 const_tree arg1, arg2;
6493 const_call_expr_arg_iterator iter1, iter2;
6494 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6495 arg2 = first_const_call_expr_arg (t2, &iter2);
6496 arg1 && arg2;
6497 arg1 = next_const_call_expr_arg (&iter1),
6498 arg2 = next_const_call_expr_arg (&iter2))
6499 {
6500 cmp = simple_cst_equal (arg1, arg2);
6501 if (cmp <= 0)
6502 return cmp;
6503 }
6504 return arg1 == arg2;
6505 }
6506
6507 case TARGET_EXPR:
6508 /* Special case: if either target is an unallocated VAR_DECL,
6509 it means that it's going to be unified with whatever the
6510 TARGET_EXPR is really supposed to initialize, so treat it
6511 as being equivalent to anything. */
6512 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6513 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6514 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6515 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6516 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6517 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6518 cmp = 1;
6519 else
6520 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6521
6522 if (cmp <= 0)
6523 return cmp;
6524
6525 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6526
6527 case WITH_CLEANUP_EXPR:
6528 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6529 if (cmp <= 0)
6530 return cmp;
6531
6532 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6533
6534 case COMPONENT_REF:
6535 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6536 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6537
6538 return 0;
6539
6540 case VAR_DECL:
6541 case PARM_DECL:
6542 case CONST_DECL:
6543 case FUNCTION_DECL:
6544 return 0;
6545
6546 default:
6547 break;
6548 }
6549
6550 /* This general rule works for most tree codes. All exceptions should be
6551 handled above. If this is a language-specific tree code, we can't
6552 trust what might be in the operand, so say we don't know
6553 the situation. */
6554 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6555 return -1;
6556
6557 switch (TREE_CODE_CLASS (code1))
6558 {
6559 case tcc_unary:
6560 case tcc_binary:
6561 case tcc_comparison:
6562 case tcc_expression:
6563 case tcc_reference:
6564 case tcc_statement:
6565 cmp = 1;
6566 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6567 {
6568 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6569 if (cmp <= 0)
6570 return cmp;
6571 }
6572
6573 return cmp;
6574
6575 default:
6576 return -1;
6577 }
6578 }
6579
6580 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6581 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6582 than U, respectively. */
6583
6584 int
6585 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6586 {
6587 if (tree_int_cst_sgn (t) < 0)
6588 return -1;
6589 else if (TREE_INT_CST_HIGH (t) != 0)
6590 return 1;
6591 else if (TREE_INT_CST_LOW (t) == u)
6592 return 0;
6593 else if (TREE_INT_CST_LOW (t) < u)
6594 return -1;
6595 else
6596 return 1;
6597 }
6598
6599 /* Return true if CODE represents an associative tree code. Otherwise
6600 return false. */
6601 bool
6602 associative_tree_code (enum tree_code code)
6603 {
6604 switch (code)
6605 {
6606 case BIT_IOR_EXPR:
6607 case BIT_AND_EXPR:
6608 case BIT_XOR_EXPR:
6609 case PLUS_EXPR:
6610 case MULT_EXPR:
6611 case MIN_EXPR:
6612 case MAX_EXPR:
6613 return true;
6614
6615 default:
6616 break;
6617 }
6618 return false;
6619 }
6620
6621 /* Return true if CODE represents a commutative tree code. Otherwise
6622 return false. */
6623 bool
6624 commutative_tree_code (enum tree_code code)
6625 {
6626 switch (code)
6627 {
6628 case PLUS_EXPR:
6629 case MULT_EXPR:
6630 case MIN_EXPR:
6631 case MAX_EXPR:
6632 case BIT_IOR_EXPR:
6633 case BIT_XOR_EXPR:
6634 case BIT_AND_EXPR:
6635 case NE_EXPR:
6636 case EQ_EXPR:
6637 case UNORDERED_EXPR:
6638 case ORDERED_EXPR:
6639 case UNEQ_EXPR:
6640 case LTGT_EXPR:
6641 case TRUTH_AND_EXPR:
6642 case TRUTH_XOR_EXPR:
6643 case TRUTH_OR_EXPR:
6644 return true;
6645
6646 default:
6647 break;
6648 }
6649 return false;
6650 }
6651
6652 /* Return true if CODE represents a ternary tree code for which the
6653 first two operands are commutative. Otherwise return false. */
6654 bool
6655 commutative_ternary_tree_code (enum tree_code code)
6656 {
6657 switch (code)
6658 {
6659 case WIDEN_MULT_PLUS_EXPR:
6660 case WIDEN_MULT_MINUS_EXPR:
6661 return true;
6662
6663 default:
6664 break;
6665 }
6666 return false;
6667 }
6668
6669 /* Generate a hash value for an expression. This can be used iteratively
6670 by passing a previous result as the VAL argument.
6671
6672 This function is intended to produce the same hash for expressions which
6673 would compare equal using operand_equal_p. */
6674
6675 hashval_t
6676 iterative_hash_expr (const_tree t, hashval_t val)
6677 {
6678 int i;
6679 enum tree_code code;
6680 char tclass;
6681
6682 if (t == NULL_TREE)
6683 return iterative_hash_hashval_t (0, val);
6684
6685 code = TREE_CODE (t);
6686
6687 switch (code)
6688 {
6689 /* Alas, constants aren't shared, so we can't rely on pointer
6690 identity. */
6691 case INTEGER_CST:
6692 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6693 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6694 case REAL_CST:
6695 {
6696 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6697
6698 return iterative_hash_hashval_t (val2, val);
6699 }
6700 case FIXED_CST:
6701 {
6702 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6703
6704 return iterative_hash_hashval_t (val2, val);
6705 }
6706 case STRING_CST:
6707 return iterative_hash (TREE_STRING_POINTER (t),
6708 TREE_STRING_LENGTH (t), val);
6709 case COMPLEX_CST:
6710 val = iterative_hash_expr (TREE_REALPART (t), val);
6711 return iterative_hash_expr (TREE_IMAGPART (t), val);
6712 case VECTOR_CST:
6713 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6714 case SSA_NAME:
6715 /* We can just compare by pointer. */
6716 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6717 case PLACEHOLDER_EXPR:
6718 /* The node itself doesn't matter. */
6719 return val;
6720 case TREE_LIST:
6721 /* A list of expressions, for a CALL_EXPR or as the elements of a
6722 VECTOR_CST. */
6723 for (; t; t = TREE_CHAIN (t))
6724 val = iterative_hash_expr (TREE_VALUE (t), val);
6725 return val;
6726 case CONSTRUCTOR:
6727 {
6728 unsigned HOST_WIDE_INT idx;
6729 tree field, value;
6730 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6731 {
6732 val = iterative_hash_expr (field, val);
6733 val = iterative_hash_expr (value, val);
6734 }
6735 return val;
6736 }
6737 case MEM_REF:
6738 {
6739 /* The type of the second operand is relevant, except for
6740 its top-level qualifiers. */
6741 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6742
6743 val = iterative_hash_object (TYPE_HASH (type), val);
6744
6745 /* We could use the standard hash computation from this point
6746 on. */
6747 val = iterative_hash_object (code, val);
6748 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6749 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6750 return val;
6751 }
6752 case FUNCTION_DECL:
6753 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6754 Otherwise nodes that compare equal according to operand_equal_p might
6755 get different hash codes. However, don't do this for machine specific
6756 or front end builtins, since the function code is overloaded in those
6757 cases. */
6758 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6759 && built_in_decls[DECL_FUNCTION_CODE (t)])
6760 {
6761 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6762 code = TREE_CODE (t);
6763 }
6764 /* FALL THROUGH */
6765 default:
6766 tclass = TREE_CODE_CLASS (code);
6767
6768 if (tclass == tcc_declaration)
6769 {
6770 /* DECL's have a unique ID */
6771 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6772 }
6773 else
6774 {
6775 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6776
6777 val = iterative_hash_object (code, val);
6778
6779 /* Don't hash the type, that can lead to having nodes which
6780 compare equal according to operand_equal_p, but which
6781 have different hash codes. */
6782 if (CONVERT_EXPR_CODE_P (code)
6783 || code == NON_LVALUE_EXPR)
6784 {
6785 /* Make sure to include signness in the hash computation. */
6786 val += TYPE_UNSIGNED (TREE_TYPE (t));
6787 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6788 }
6789
6790 else if (commutative_tree_code (code))
6791 {
6792 /* It's a commutative expression. We want to hash it the same
6793 however it appears. We do this by first hashing both operands
6794 and then rehashing based on the order of their independent
6795 hashes. */
6796 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6797 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6798 hashval_t t;
6799
6800 if (one > two)
6801 t = one, one = two, two = t;
6802
6803 val = iterative_hash_hashval_t (one, val);
6804 val = iterative_hash_hashval_t (two, val);
6805 }
6806 else
6807 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6808 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6809 }
6810 return val;
6811 break;
6812 }
6813 }
6814
6815 /* Generate a hash value for a pair of expressions. This can be used
6816 iteratively by passing a previous result as the VAL argument.
6817
6818 The same hash value is always returned for a given pair of expressions,
6819 regardless of the order in which they are presented. This is useful in
6820 hashing the operands of commutative functions. */
6821
6822 hashval_t
6823 iterative_hash_exprs_commutative (const_tree t1,
6824 const_tree t2, hashval_t val)
6825 {
6826 hashval_t one = iterative_hash_expr (t1, 0);
6827 hashval_t two = iterative_hash_expr (t2, 0);
6828 hashval_t t;
6829
6830 if (one > two)
6831 t = one, one = two, two = t;
6832 val = iterative_hash_hashval_t (one, val);
6833 val = iterative_hash_hashval_t (two, val);
6834
6835 return val;
6836 }
6837 \f
6838 /* Constructors for pointer, array and function types.
6839 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6840 constructed by language-dependent code, not here.) */
6841
6842 /* Construct, lay out and return the type of pointers to TO_TYPE with
6843 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6844 reference all of memory. If such a type has already been
6845 constructed, reuse it. */
6846
6847 tree
6848 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6849 bool can_alias_all)
6850 {
6851 tree t;
6852
6853 if (to_type == error_mark_node)
6854 return error_mark_node;
6855
6856 /* If the pointed-to type has the may_alias attribute set, force
6857 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6858 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6859 can_alias_all = true;
6860
6861 /* In some cases, languages will have things that aren't a POINTER_TYPE
6862 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6863 In that case, return that type without regard to the rest of our
6864 operands.
6865
6866 ??? This is a kludge, but consistent with the way this function has
6867 always operated and there doesn't seem to be a good way to avoid this
6868 at the moment. */
6869 if (TYPE_POINTER_TO (to_type) != 0
6870 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6871 return TYPE_POINTER_TO (to_type);
6872
6873 /* First, if we already have a type for pointers to TO_TYPE and it's
6874 the proper mode, use it. */
6875 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6876 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6877 return t;
6878
6879 t = make_node (POINTER_TYPE);
6880
6881 TREE_TYPE (t) = to_type;
6882 SET_TYPE_MODE (t, mode);
6883 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6884 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6885 TYPE_POINTER_TO (to_type) = t;
6886
6887 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6888 SET_TYPE_STRUCTURAL_EQUALITY (t);
6889 else if (TYPE_CANONICAL (to_type) != to_type)
6890 TYPE_CANONICAL (t)
6891 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6892 mode, can_alias_all);
6893
6894 /* Lay out the type. This function has many callers that are concerned
6895 with expression-construction, and this simplifies them all. */
6896 layout_type (t);
6897
6898 return t;
6899 }
6900
6901 /* By default build pointers in ptr_mode. */
6902
6903 tree
6904 build_pointer_type (tree to_type)
6905 {
6906 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6907 : TYPE_ADDR_SPACE (to_type);
6908 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6909 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6910 }
6911
6912 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6913
6914 tree
6915 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6916 bool can_alias_all)
6917 {
6918 tree t;
6919
6920 if (to_type == error_mark_node)
6921 return error_mark_node;
6922
6923 /* If the pointed-to type has the may_alias attribute set, force
6924 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6925 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6926 can_alias_all = true;
6927
6928 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6929 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6930 In that case, return that type without regard to the rest of our
6931 operands.
6932
6933 ??? This is a kludge, but consistent with the way this function has
6934 always operated and there doesn't seem to be a good way to avoid this
6935 at the moment. */
6936 if (TYPE_REFERENCE_TO (to_type) != 0
6937 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6938 return TYPE_REFERENCE_TO (to_type);
6939
6940 /* First, if we already have a type for pointers to TO_TYPE and it's
6941 the proper mode, use it. */
6942 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6943 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6944 return t;
6945
6946 t = make_node (REFERENCE_TYPE);
6947
6948 TREE_TYPE (t) = to_type;
6949 SET_TYPE_MODE (t, mode);
6950 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6951 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6952 TYPE_REFERENCE_TO (to_type) = t;
6953
6954 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6955 SET_TYPE_STRUCTURAL_EQUALITY (t);
6956 else if (TYPE_CANONICAL (to_type) != to_type)
6957 TYPE_CANONICAL (t)
6958 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6959 mode, can_alias_all);
6960
6961 layout_type (t);
6962
6963 return t;
6964 }
6965
6966
6967 /* Build the node for the type of references-to-TO_TYPE by default
6968 in ptr_mode. */
6969
6970 tree
6971 build_reference_type (tree to_type)
6972 {
6973 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6974 : TYPE_ADDR_SPACE (to_type);
6975 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6976 return build_reference_type_for_mode (to_type, pointer_mode, false);
6977 }
6978
6979 /* Build a type that is compatible with t but has no cv quals anywhere
6980 in its type, thus
6981
6982 const char *const *const * -> char ***. */
6983
6984 tree
6985 build_type_no_quals (tree t)
6986 {
6987 switch (TREE_CODE (t))
6988 {
6989 case POINTER_TYPE:
6990 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6991 TYPE_MODE (t),
6992 TYPE_REF_CAN_ALIAS_ALL (t));
6993 case REFERENCE_TYPE:
6994 return
6995 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
6996 TYPE_MODE (t),
6997 TYPE_REF_CAN_ALIAS_ALL (t));
6998 default:
6999 return TYPE_MAIN_VARIANT (t);
7000 }
7001 }
7002
7003 #define MAX_INT_CACHED_PREC \
7004 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7005 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7006
7007 /* Builds a signed or unsigned integer type of precision PRECISION.
7008 Used for C bitfields whose precision does not match that of
7009 built-in target types. */
7010 tree
7011 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7012 int unsignedp)
7013 {
7014 tree itype, ret;
7015
7016 if (unsignedp)
7017 unsignedp = MAX_INT_CACHED_PREC + 1;
7018
7019 if (precision <= MAX_INT_CACHED_PREC)
7020 {
7021 itype = nonstandard_integer_type_cache[precision + unsignedp];
7022 if (itype)
7023 return itype;
7024 }
7025
7026 itype = make_node (INTEGER_TYPE);
7027 TYPE_PRECISION (itype) = precision;
7028
7029 if (unsignedp)
7030 fixup_unsigned_type (itype);
7031 else
7032 fixup_signed_type (itype);
7033
7034 ret = itype;
7035 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7036 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7037 if (precision <= MAX_INT_CACHED_PREC)
7038 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7039
7040 return ret;
7041 }
7042
7043 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7044 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7045 is true, reuse such a type that has already been constructed. */
7046
7047 static tree
7048 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7049 {
7050 tree itype = make_node (INTEGER_TYPE);
7051
7052 TREE_TYPE (itype) = type;
7053
7054 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7055 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7056
7057 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7058 SET_TYPE_MODE (itype, TYPE_MODE (type));
7059 TYPE_SIZE (itype) = TYPE_SIZE (type);
7060 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7061 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7062 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7063
7064 if ((TYPE_MIN_VALUE (itype)
7065 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7066 || (TYPE_MAX_VALUE (itype)
7067 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7068 {
7069 /* Since we cannot reliably merge this type, we need to compare it using
7070 structural equality checks. */
7071 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7072 return itype;
7073 }
7074
7075 if (shared)
7076 {
7077 hashval_t hash = iterative_hash_expr (TYPE_MIN_VALUE (itype), 0);
7078 hash = iterative_hash_expr (TYPE_MAX_VALUE (itype), hash);
7079 hash = iterative_hash_hashval_t (TYPE_HASH (type), hash);
7080 itype = type_hash_canon (hash, itype);
7081 }
7082
7083 return itype;
7084 }
7085
7086 /* Wrapper around build_range_type_1 with SHARED set to true. */
7087
7088 tree
7089 build_range_type (tree type, tree lowval, tree highval)
7090 {
7091 return build_range_type_1 (type, lowval, highval, true);
7092 }
7093
7094 /* Wrapper around build_range_type_1 with SHARED set to false. */
7095
7096 tree
7097 build_nonshared_range_type (tree type, tree lowval, tree highval)
7098 {
7099 return build_range_type_1 (type, lowval, highval, false);
7100 }
7101
7102 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7103 MAXVAL should be the maximum value in the domain
7104 (one less than the length of the array).
7105
7106 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7107 We don't enforce this limit, that is up to caller (e.g. language front end).
7108 The limit exists because the result is a signed type and we don't handle
7109 sizes that use more than one HOST_WIDE_INT. */
7110
7111 tree
7112 build_index_type (tree maxval)
7113 {
7114 return build_range_type (sizetype, size_zero_node, maxval);
7115 }
7116
7117 /* Return true if the debug information for TYPE, a subtype, should be emitted
7118 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7119 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7120 debug info and doesn't reflect the source code. */
7121
7122 bool
7123 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7124 {
7125 tree base_type = TREE_TYPE (type), low, high;
7126
7127 /* Subrange types have a base type which is an integral type. */
7128 if (!INTEGRAL_TYPE_P (base_type))
7129 return false;
7130
7131 /* Get the real bounds of the subtype. */
7132 if (lang_hooks.types.get_subrange_bounds)
7133 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7134 else
7135 {
7136 low = TYPE_MIN_VALUE (type);
7137 high = TYPE_MAX_VALUE (type);
7138 }
7139
7140 /* If the type and its base type have the same representation and the same
7141 name, then the type is not a subrange but a copy of the base type. */
7142 if ((TREE_CODE (base_type) == INTEGER_TYPE
7143 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7144 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7145 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7146 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7147 {
7148 tree type_name = TYPE_NAME (type);
7149 tree base_type_name = TYPE_NAME (base_type);
7150
7151 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7152 type_name = DECL_NAME (type_name);
7153
7154 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7155 base_type_name = DECL_NAME (base_type_name);
7156
7157 if (type_name == base_type_name)
7158 return false;
7159 }
7160
7161 if (lowval)
7162 *lowval = low;
7163 if (highval)
7164 *highval = high;
7165 return true;
7166 }
7167
7168 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7169 and number of elements specified by the range of values of INDEX_TYPE.
7170 If SHARED is true, reuse such a type that has already been constructed. */
7171
7172 static tree
7173 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7174 {
7175 tree t;
7176
7177 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7178 {
7179 error ("arrays of functions are not meaningful");
7180 elt_type = integer_type_node;
7181 }
7182
7183 t = make_node (ARRAY_TYPE);
7184 TREE_TYPE (t) = elt_type;
7185 TYPE_DOMAIN (t) = index_type;
7186 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7187 layout_type (t);
7188
7189 /* If the element type is incomplete at this point we get marked for
7190 structural equality. Do not record these types in the canonical
7191 type hashtable. */
7192 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7193 return t;
7194
7195 if (shared)
7196 {
7197 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7198 if (index_type)
7199 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7200 t = type_hash_canon (hashcode, t);
7201 }
7202
7203 if (TYPE_CANONICAL (t) == t)
7204 {
7205 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7206 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7207 SET_TYPE_STRUCTURAL_EQUALITY (t);
7208 else if (TYPE_CANONICAL (elt_type) != elt_type
7209 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7210 TYPE_CANONICAL (t)
7211 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7212 index_type
7213 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7214 shared);
7215 }
7216
7217 return t;
7218 }
7219
7220 /* Wrapper around build_array_type_1 with SHARED set to true. */
7221
7222 tree
7223 build_array_type (tree elt_type, tree index_type)
7224 {
7225 return build_array_type_1 (elt_type, index_type, true);
7226 }
7227
7228 /* Wrapper around build_array_type_1 with SHARED set to false. */
7229
7230 tree
7231 build_nonshared_array_type (tree elt_type, tree index_type)
7232 {
7233 return build_array_type_1 (elt_type, index_type, false);
7234 }
7235
7236 /* Recursively examines the array elements of TYPE, until a non-array
7237 element type is found. */
7238
7239 tree
7240 strip_array_types (tree type)
7241 {
7242 while (TREE_CODE (type) == ARRAY_TYPE)
7243 type = TREE_TYPE (type);
7244
7245 return type;
7246 }
7247
7248 /* Computes the canonical argument types from the argument type list
7249 ARGTYPES.
7250
7251 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7252 on entry to this function, or if any of the ARGTYPES are
7253 structural.
7254
7255 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7256 true on entry to this function, or if any of the ARGTYPES are
7257 non-canonical.
7258
7259 Returns a canonical argument list, which may be ARGTYPES when the
7260 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7261 true) or would not differ from ARGTYPES. */
7262
7263 static tree
7264 maybe_canonicalize_argtypes(tree argtypes,
7265 bool *any_structural_p,
7266 bool *any_noncanonical_p)
7267 {
7268 tree arg;
7269 bool any_noncanonical_argtypes_p = false;
7270
7271 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7272 {
7273 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7274 /* Fail gracefully by stating that the type is structural. */
7275 *any_structural_p = true;
7276 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7277 *any_structural_p = true;
7278 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7279 || TREE_PURPOSE (arg))
7280 /* If the argument has a default argument, we consider it
7281 non-canonical even though the type itself is canonical.
7282 That way, different variants of function and method types
7283 with default arguments will all point to the variant with
7284 no defaults as their canonical type. */
7285 any_noncanonical_argtypes_p = true;
7286 }
7287
7288 if (*any_structural_p)
7289 return argtypes;
7290
7291 if (any_noncanonical_argtypes_p)
7292 {
7293 /* Build the canonical list of argument types. */
7294 tree canon_argtypes = NULL_TREE;
7295 bool is_void = false;
7296
7297 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7298 {
7299 if (arg == void_list_node)
7300 is_void = true;
7301 else
7302 canon_argtypes = tree_cons (NULL_TREE,
7303 TYPE_CANONICAL (TREE_VALUE (arg)),
7304 canon_argtypes);
7305 }
7306
7307 canon_argtypes = nreverse (canon_argtypes);
7308 if (is_void)
7309 canon_argtypes = chainon (canon_argtypes, void_list_node);
7310
7311 /* There is a non-canonical type. */
7312 *any_noncanonical_p = true;
7313 return canon_argtypes;
7314 }
7315
7316 /* The canonical argument types are the same as ARGTYPES. */
7317 return argtypes;
7318 }
7319
7320 /* Construct, lay out and return
7321 the type of functions returning type VALUE_TYPE
7322 given arguments of types ARG_TYPES.
7323 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7324 are data type nodes for the arguments of the function.
7325 If such a type has already been constructed, reuse it. */
7326
7327 tree
7328 build_function_type (tree value_type, tree arg_types)
7329 {
7330 tree t;
7331 hashval_t hashcode = 0;
7332 bool any_structural_p, any_noncanonical_p;
7333 tree canon_argtypes;
7334
7335 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7336 {
7337 error ("function return type cannot be function");
7338 value_type = integer_type_node;
7339 }
7340
7341 /* Make a node of the sort we want. */
7342 t = make_node (FUNCTION_TYPE);
7343 TREE_TYPE (t) = value_type;
7344 TYPE_ARG_TYPES (t) = arg_types;
7345
7346 /* If we already have such a type, use the old one. */
7347 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7348 hashcode = type_hash_list (arg_types, hashcode);
7349 t = type_hash_canon (hashcode, t);
7350
7351 /* Set up the canonical type. */
7352 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7353 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7354 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7355 &any_structural_p,
7356 &any_noncanonical_p);
7357 if (any_structural_p)
7358 SET_TYPE_STRUCTURAL_EQUALITY (t);
7359 else if (any_noncanonical_p)
7360 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7361 canon_argtypes);
7362
7363 if (!COMPLETE_TYPE_P (t))
7364 layout_type (t);
7365 return t;
7366 }
7367
7368 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7369
7370 tree
7371 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7372 {
7373 tree new_type = NULL;
7374 tree args, new_args = NULL, t;
7375 tree new_reversed;
7376 int i = 0;
7377
7378 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7379 args = TREE_CHAIN (args), i++)
7380 if (!bitmap_bit_p (args_to_skip, i))
7381 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7382
7383 new_reversed = nreverse (new_args);
7384 if (args)
7385 {
7386 if (new_reversed)
7387 TREE_CHAIN (new_args) = void_list_node;
7388 else
7389 new_reversed = void_list_node;
7390 }
7391
7392 /* Use copy_node to preserve as much as possible from original type
7393 (debug info, attribute lists etc.)
7394 Exception is METHOD_TYPEs must have THIS argument.
7395 When we are asked to remove it, we need to build new FUNCTION_TYPE
7396 instead. */
7397 if (TREE_CODE (orig_type) != METHOD_TYPE
7398 || !bitmap_bit_p (args_to_skip, 0))
7399 {
7400 new_type = build_distinct_type_copy (orig_type);
7401 TYPE_ARG_TYPES (new_type) = new_reversed;
7402 }
7403 else
7404 {
7405 new_type
7406 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7407 new_reversed));
7408 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7409 }
7410
7411 /* This is a new type, not a copy of an old type. Need to reassociate
7412 variants. We can handle everything except the main variant lazily. */
7413 t = TYPE_MAIN_VARIANT (orig_type);
7414 if (orig_type != t)
7415 {
7416 TYPE_MAIN_VARIANT (new_type) = t;
7417 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7418 TYPE_NEXT_VARIANT (t) = new_type;
7419 }
7420 else
7421 {
7422 TYPE_MAIN_VARIANT (new_type) = new_type;
7423 TYPE_NEXT_VARIANT (new_type) = NULL;
7424 }
7425 return new_type;
7426 }
7427
7428 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7429
7430 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7431 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7432 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7433
7434 tree
7435 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7436 {
7437 tree new_decl = copy_node (orig_decl);
7438 tree new_type;
7439
7440 new_type = TREE_TYPE (orig_decl);
7441 if (prototype_p (new_type))
7442 new_type = build_function_type_skip_args (new_type, args_to_skip);
7443 TREE_TYPE (new_decl) = new_type;
7444
7445 /* For declarations setting DECL_VINDEX (i.e. methods)
7446 we expect first argument to be THIS pointer. */
7447 if (bitmap_bit_p (args_to_skip, 0))
7448 DECL_VINDEX (new_decl) = NULL_TREE;
7449
7450 /* When signature changes, we need to clear builtin info. */
7451 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7452 {
7453 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7454 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7455 }
7456 return new_decl;
7457 }
7458
7459 /* Build a function type. The RETURN_TYPE is the type returned by the
7460 function. If VAARGS is set, no void_type_node is appended to the
7461 the list. ARGP must be always be terminated be a NULL_TREE. */
7462
7463 static tree
7464 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7465 {
7466 tree t, args, last;
7467
7468 t = va_arg (argp, tree);
7469 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7470 args = tree_cons (NULL_TREE, t, args);
7471
7472 if (vaargs)
7473 {
7474 last = args;
7475 if (args != NULL_TREE)
7476 args = nreverse (args);
7477 gcc_assert (last != void_list_node);
7478 }
7479 else if (args == NULL_TREE)
7480 args = void_list_node;
7481 else
7482 {
7483 last = args;
7484 args = nreverse (args);
7485 TREE_CHAIN (last) = void_list_node;
7486 }
7487 args = build_function_type (return_type, args);
7488
7489 return args;
7490 }
7491
7492 /* Build a function type. The RETURN_TYPE is the type returned by the
7493 function. If additional arguments are provided, they are
7494 additional argument types. The list of argument types must always
7495 be terminated by NULL_TREE. */
7496
7497 tree
7498 build_function_type_list (tree return_type, ...)
7499 {
7500 tree args;
7501 va_list p;
7502
7503 va_start (p, return_type);
7504 args = build_function_type_list_1 (false, return_type, p);
7505 va_end (p);
7506 return args;
7507 }
7508
7509 /* Build a variable argument function type. The RETURN_TYPE is the
7510 type returned by the function. If additional arguments are provided,
7511 they are additional argument types. The list of argument types must
7512 always be terminated by NULL_TREE. */
7513
7514 tree
7515 build_varargs_function_type_list (tree return_type, ...)
7516 {
7517 tree args;
7518 va_list p;
7519
7520 va_start (p, return_type);
7521 args = build_function_type_list_1 (true, return_type, p);
7522 va_end (p);
7523
7524 return args;
7525 }
7526
7527 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7528 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7529 for the method. An implicit additional parameter (of type
7530 pointer-to-BASETYPE) is added to the ARGTYPES. */
7531
7532 tree
7533 build_method_type_directly (tree basetype,
7534 tree rettype,
7535 tree argtypes)
7536 {
7537 tree t;
7538 tree ptype;
7539 int hashcode = 0;
7540 bool any_structural_p, any_noncanonical_p;
7541 tree canon_argtypes;
7542
7543 /* Make a node of the sort we want. */
7544 t = make_node (METHOD_TYPE);
7545
7546 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7547 TREE_TYPE (t) = rettype;
7548 ptype = build_pointer_type (basetype);
7549
7550 /* The actual arglist for this function includes a "hidden" argument
7551 which is "this". Put it into the list of argument types. */
7552 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7553 TYPE_ARG_TYPES (t) = argtypes;
7554
7555 /* If we already have such a type, use the old one. */
7556 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7557 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7558 hashcode = type_hash_list (argtypes, hashcode);
7559 t = type_hash_canon (hashcode, t);
7560
7561 /* Set up the canonical type. */
7562 any_structural_p
7563 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7564 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7565 any_noncanonical_p
7566 = (TYPE_CANONICAL (basetype) != basetype
7567 || TYPE_CANONICAL (rettype) != rettype);
7568 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7569 &any_structural_p,
7570 &any_noncanonical_p);
7571 if (any_structural_p)
7572 SET_TYPE_STRUCTURAL_EQUALITY (t);
7573 else if (any_noncanonical_p)
7574 TYPE_CANONICAL (t)
7575 = build_method_type_directly (TYPE_CANONICAL (basetype),
7576 TYPE_CANONICAL (rettype),
7577 canon_argtypes);
7578 if (!COMPLETE_TYPE_P (t))
7579 layout_type (t);
7580
7581 return t;
7582 }
7583
7584 /* Construct, lay out and return the type of methods belonging to class
7585 BASETYPE and whose arguments and values are described by TYPE.
7586 If that type exists already, reuse it.
7587 TYPE must be a FUNCTION_TYPE node. */
7588
7589 tree
7590 build_method_type (tree basetype, tree type)
7591 {
7592 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7593
7594 return build_method_type_directly (basetype,
7595 TREE_TYPE (type),
7596 TYPE_ARG_TYPES (type));
7597 }
7598
7599 /* Construct, lay out and return the type of offsets to a value
7600 of type TYPE, within an object of type BASETYPE.
7601 If a suitable offset type exists already, reuse it. */
7602
7603 tree
7604 build_offset_type (tree basetype, tree type)
7605 {
7606 tree t;
7607 hashval_t hashcode = 0;
7608
7609 /* Make a node of the sort we want. */
7610 t = make_node (OFFSET_TYPE);
7611
7612 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7613 TREE_TYPE (t) = type;
7614
7615 /* If we already have such a type, use the old one. */
7616 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7617 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7618 t = type_hash_canon (hashcode, t);
7619
7620 if (!COMPLETE_TYPE_P (t))
7621 layout_type (t);
7622
7623 if (TYPE_CANONICAL (t) == t)
7624 {
7625 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7626 || TYPE_STRUCTURAL_EQUALITY_P (type))
7627 SET_TYPE_STRUCTURAL_EQUALITY (t);
7628 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7629 || TYPE_CANONICAL (type) != type)
7630 TYPE_CANONICAL (t)
7631 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7632 TYPE_CANONICAL (type));
7633 }
7634
7635 return t;
7636 }
7637
7638 /* Create a complex type whose components are COMPONENT_TYPE. */
7639
7640 tree
7641 build_complex_type (tree component_type)
7642 {
7643 tree t;
7644 hashval_t hashcode;
7645
7646 gcc_assert (INTEGRAL_TYPE_P (component_type)
7647 || SCALAR_FLOAT_TYPE_P (component_type)
7648 || FIXED_POINT_TYPE_P (component_type));
7649
7650 /* Make a node of the sort we want. */
7651 t = make_node (COMPLEX_TYPE);
7652
7653 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7654
7655 /* If we already have such a type, use the old one. */
7656 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7657 t = type_hash_canon (hashcode, t);
7658
7659 if (!COMPLETE_TYPE_P (t))
7660 layout_type (t);
7661
7662 if (TYPE_CANONICAL (t) == t)
7663 {
7664 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7665 SET_TYPE_STRUCTURAL_EQUALITY (t);
7666 else if (TYPE_CANONICAL (component_type) != component_type)
7667 TYPE_CANONICAL (t)
7668 = build_complex_type (TYPE_CANONICAL (component_type));
7669 }
7670
7671 /* We need to create a name, since complex is a fundamental type. */
7672 if (! TYPE_NAME (t))
7673 {
7674 const char *name;
7675 if (component_type == char_type_node)
7676 name = "complex char";
7677 else if (component_type == signed_char_type_node)
7678 name = "complex signed char";
7679 else if (component_type == unsigned_char_type_node)
7680 name = "complex unsigned char";
7681 else if (component_type == short_integer_type_node)
7682 name = "complex short int";
7683 else if (component_type == short_unsigned_type_node)
7684 name = "complex short unsigned int";
7685 else if (component_type == integer_type_node)
7686 name = "complex int";
7687 else if (component_type == unsigned_type_node)
7688 name = "complex unsigned int";
7689 else if (component_type == long_integer_type_node)
7690 name = "complex long int";
7691 else if (component_type == long_unsigned_type_node)
7692 name = "complex long unsigned int";
7693 else if (component_type == long_long_integer_type_node)
7694 name = "complex long long int";
7695 else if (component_type == long_long_unsigned_type_node)
7696 name = "complex long long unsigned int";
7697 else
7698 name = 0;
7699
7700 if (name != 0)
7701 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7702 get_identifier (name), t);
7703 }
7704
7705 return build_qualified_type (t, TYPE_QUALS (component_type));
7706 }
7707
7708 /* If TYPE is a real or complex floating-point type and the target
7709 does not directly support arithmetic on TYPE then return the wider
7710 type to be used for arithmetic on TYPE. Otherwise, return
7711 NULL_TREE. */
7712
7713 tree
7714 excess_precision_type (tree type)
7715 {
7716 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7717 {
7718 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7719 switch (TREE_CODE (type))
7720 {
7721 case REAL_TYPE:
7722 switch (flt_eval_method)
7723 {
7724 case 1:
7725 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7726 return double_type_node;
7727 break;
7728 case 2:
7729 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7730 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7731 return long_double_type_node;
7732 break;
7733 default:
7734 gcc_unreachable ();
7735 }
7736 break;
7737 case COMPLEX_TYPE:
7738 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7739 return NULL_TREE;
7740 switch (flt_eval_method)
7741 {
7742 case 1:
7743 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7744 return complex_double_type_node;
7745 break;
7746 case 2:
7747 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7748 || (TYPE_MODE (TREE_TYPE (type))
7749 == TYPE_MODE (double_type_node)))
7750 return complex_long_double_type_node;
7751 break;
7752 default:
7753 gcc_unreachable ();
7754 }
7755 break;
7756 default:
7757 break;
7758 }
7759 }
7760 return NULL_TREE;
7761 }
7762 \f
7763 /* Return OP, stripped of any conversions to wider types as much as is safe.
7764 Converting the value back to OP's type makes a value equivalent to OP.
7765
7766 If FOR_TYPE is nonzero, we return a value which, if converted to
7767 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7768
7769 OP must have integer, real or enumeral type. Pointers are not allowed!
7770
7771 There are some cases where the obvious value we could return
7772 would regenerate to OP if converted to OP's type,
7773 but would not extend like OP to wider types.
7774 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7775 For example, if OP is (unsigned short)(signed char)-1,
7776 we avoid returning (signed char)-1 if FOR_TYPE is int,
7777 even though extending that to an unsigned short would regenerate OP,
7778 since the result of extending (signed char)-1 to (int)
7779 is different from (int) OP. */
7780
7781 tree
7782 get_unwidened (tree op, tree for_type)
7783 {
7784 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7785 tree type = TREE_TYPE (op);
7786 unsigned final_prec
7787 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7788 int uns
7789 = (for_type != 0 && for_type != type
7790 && final_prec > TYPE_PRECISION (type)
7791 && TYPE_UNSIGNED (type));
7792 tree win = op;
7793
7794 while (CONVERT_EXPR_P (op))
7795 {
7796 int bitschange;
7797
7798 /* TYPE_PRECISION on vector types has different meaning
7799 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7800 so avoid them here. */
7801 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7802 break;
7803
7804 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7805 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7806
7807 /* Truncations are many-one so cannot be removed.
7808 Unless we are later going to truncate down even farther. */
7809 if (bitschange < 0
7810 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7811 break;
7812
7813 /* See what's inside this conversion. If we decide to strip it,
7814 we will set WIN. */
7815 op = TREE_OPERAND (op, 0);
7816
7817 /* If we have not stripped any zero-extensions (uns is 0),
7818 we can strip any kind of extension.
7819 If we have previously stripped a zero-extension,
7820 only zero-extensions can safely be stripped.
7821 Any extension can be stripped if the bits it would produce
7822 are all going to be discarded later by truncating to FOR_TYPE. */
7823
7824 if (bitschange > 0)
7825 {
7826 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7827 win = op;
7828 /* TYPE_UNSIGNED says whether this is a zero-extension.
7829 Let's avoid computing it if it does not affect WIN
7830 and if UNS will not be needed again. */
7831 if ((uns
7832 || CONVERT_EXPR_P (op))
7833 && TYPE_UNSIGNED (TREE_TYPE (op)))
7834 {
7835 uns = 1;
7836 win = op;
7837 }
7838 }
7839 }
7840
7841 /* If we finally reach a constant see if it fits in for_type and
7842 in that case convert it. */
7843 if (for_type
7844 && TREE_CODE (win) == INTEGER_CST
7845 && TREE_TYPE (win) != for_type
7846 && int_fits_type_p (win, for_type))
7847 win = fold_convert (for_type, win);
7848
7849 return win;
7850 }
7851 \f
7852 /* Return OP or a simpler expression for a narrower value
7853 which can be sign-extended or zero-extended to give back OP.
7854 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7855 or 0 if the value should be sign-extended. */
7856
7857 tree
7858 get_narrower (tree op, int *unsignedp_ptr)
7859 {
7860 int uns = 0;
7861 int first = 1;
7862 tree win = op;
7863 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7864
7865 while (TREE_CODE (op) == NOP_EXPR)
7866 {
7867 int bitschange
7868 = (TYPE_PRECISION (TREE_TYPE (op))
7869 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7870
7871 /* Truncations are many-one so cannot be removed. */
7872 if (bitschange < 0)
7873 break;
7874
7875 /* See what's inside this conversion. If we decide to strip it,
7876 we will set WIN. */
7877
7878 if (bitschange > 0)
7879 {
7880 op = TREE_OPERAND (op, 0);
7881 /* An extension: the outermost one can be stripped,
7882 but remember whether it is zero or sign extension. */
7883 if (first)
7884 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7885 /* Otherwise, if a sign extension has been stripped,
7886 only sign extensions can now be stripped;
7887 if a zero extension has been stripped, only zero-extensions. */
7888 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7889 break;
7890 first = 0;
7891 }
7892 else /* bitschange == 0 */
7893 {
7894 /* A change in nominal type can always be stripped, but we must
7895 preserve the unsignedness. */
7896 if (first)
7897 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7898 first = 0;
7899 op = TREE_OPERAND (op, 0);
7900 /* Keep trying to narrow, but don't assign op to win if it
7901 would turn an integral type into something else. */
7902 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7903 continue;
7904 }
7905
7906 win = op;
7907 }
7908
7909 if (TREE_CODE (op) == COMPONENT_REF
7910 /* Since type_for_size always gives an integer type. */
7911 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7912 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7913 /* Ensure field is laid out already. */
7914 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7915 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7916 {
7917 unsigned HOST_WIDE_INT innerprec
7918 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7919 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7920 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7921 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7922
7923 /* We can get this structure field in a narrower type that fits it,
7924 but the resulting extension to its nominal type (a fullword type)
7925 must satisfy the same conditions as for other extensions.
7926
7927 Do this only for fields that are aligned (not bit-fields),
7928 because when bit-field insns will be used there is no
7929 advantage in doing this. */
7930
7931 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7932 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7933 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7934 && type != 0)
7935 {
7936 if (first)
7937 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7938 win = fold_convert (type, op);
7939 }
7940 }
7941
7942 *unsignedp_ptr = uns;
7943 return win;
7944 }
7945 \f
7946 /* Returns true if integer constant C has a value that is permissible
7947 for type TYPE (an INTEGER_TYPE). */
7948
7949 bool
7950 int_fits_type_p (const_tree c, const_tree type)
7951 {
7952 tree type_low_bound, type_high_bound;
7953 bool ok_for_low_bound, ok_for_high_bound, unsc;
7954 double_int dc, dd;
7955
7956 dc = tree_to_double_int (c);
7957 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7958
7959 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7960 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7961 && unsc)
7962 /* So c is an unsigned integer whose type is sizetype and type is not.
7963 sizetype'd integers are sign extended even though they are
7964 unsigned. If the integer value fits in the lower end word of c,
7965 and if the higher end word has all its bits set to 1, that
7966 means the higher end bits are set to 1 only for sign extension.
7967 So let's convert c into an equivalent zero extended unsigned
7968 integer. */
7969 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7970
7971 retry:
7972 type_low_bound = TYPE_MIN_VALUE (type);
7973 type_high_bound = TYPE_MAX_VALUE (type);
7974
7975 /* If at least one bound of the type is a constant integer, we can check
7976 ourselves and maybe make a decision. If no such decision is possible, but
7977 this type is a subtype, try checking against that. Otherwise, use
7978 double_int_fits_to_tree_p, which checks against the precision.
7979
7980 Compute the status for each possibly constant bound, and return if we see
7981 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7982 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7983 for "constant known to fit". */
7984
7985 /* Check if c >= type_low_bound. */
7986 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
7987 {
7988 dd = tree_to_double_int (type_low_bound);
7989 if (TREE_CODE (type) == INTEGER_TYPE
7990 && TYPE_IS_SIZETYPE (type)
7991 && TYPE_UNSIGNED (type))
7992 dd = double_int_zext (dd, TYPE_PRECISION (type));
7993 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
7994 {
7995 int c_neg = (!unsc && double_int_negative_p (dc));
7996 int t_neg = (unsc && double_int_negative_p (dd));
7997
7998 if (c_neg && !t_neg)
7999 return false;
8000 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8001 return false;
8002 }
8003 else if (double_int_cmp (dc, dd, unsc) < 0)
8004 return false;
8005 ok_for_low_bound = true;
8006 }
8007 else
8008 ok_for_low_bound = false;
8009
8010 /* Check if c <= type_high_bound. */
8011 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8012 {
8013 dd = tree_to_double_int (type_high_bound);
8014 if (TREE_CODE (type) == INTEGER_TYPE
8015 && TYPE_IS_SIZETYPE (type)
8016 && TYPE_UNSIGNED (type))
8017 dd = double_int_zext (dd, TYPE_PRECISION (type));
8018 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8019 {
8020 int c_neg = (!unsc && double_int_negative_p (dc));
8021 int t_neg = (unsc && double_int_negative_p (dd));
8022
8023 if (t_neg && !c_neg)
8024 return false;
8025 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8026 return false;
8027 }
8028 else if (double_int_cmp (dc, dd, unsc) > 0)
8029 return false;
8030 ok_for_high_bound = true;
8031 }
8032 else
8033 ok_for_high_bound = false;
8034
8035 /* If the constant fits both bounds, the result is known. */
8036 if (ok_for_low_bound && ok_for_high_bound)
8037 return true;
8038
8039 /* Perform some generic filtering which may allow making a decision
8040 even if the bounds are not constant. First, negative integers
8041 never fit in unsigned types, */
8042 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8043 return false;
8044
8045 /* Second, narrower types always fit in wider ones. */
8046 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8047 return true;
8048
8049 /* Third, unsigned integers with top bit set never fit signed types. */
8050 if (! TYPE_UNSIGNED (type) && unsc)
8051 {
8052 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8053 if (prec < HOST_BITS_PER_WIDE_INT)
8054 {
8055 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8056 return false;
8057 }
8058 else if (((((unsigned HOST_WIDE_INT) 1)
8059 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8060 return false;
8061 }
8062
8063 /* If we haven't been able to decide at this point, there nothing more we
8064 can check ourselves here. Look at the base type if we have one and it
8065 has the same precision. */
8066 if (TREE_CODE (type) == INTEGER_TYPE
8067 && TREE_TYPE (type) != 0
8068 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8069 {
8070 type = TREE_TYPE (type);
8071 goto retry;
8072 }
8073
8074 /* Or to double_int_fits_to_tree_p, if nothing else. */
8075 return double_int_fits_to_tree_p (type, dc);
8076 }
8077
8078 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8079 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8080 represented (assuming two's-complement arithmetic) within the bit
8081 precision of the type are returned instead. */
8082
8083 void
8084 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8085 {
8086 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8087 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8088 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8089 TYPE_UNSIGNED (type));
8090 else
8091 {
8092 if (TYPE_UNSIGNED (type))
8093 mpz_set_ui (min, 0);
8094 else
8095 {
8096 double_int mn;
8097 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8098 mn = double_int_sext (double_int_add (mn, double_int_one),
8099 TYPE_PRECISION (type));
8100 mpz_set_double_int (min, mn, false);
8101 }
8102 }
8103
8104 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8105 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8106 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8107 TYPE_UNSIGNED (type));
8108 else
8109 {
8110 if (TYPE_UNSIGNED (type))
8111 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8112 true);
8113 else
8114 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8115 true);
8116 }
8117 }
8118
8119 /* Return true if VAR is an automatic variable defined in function FN. */
8120
8121 bool
8122 auto_var_in_fn_p (const_tree var, const_tree fn)
8123 {
8124 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8125 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8126 || TREE_CODE (var) == PARM_DECL)
8127 && ! TREE_STATIC (var))
8128 || TREE_CODE (var) == LABEL_DECL
8129 || TREE_CODE (var) == RESULT_DECL));
8130 }
8131
8132 /* Subprogram of following function. Called by walk_tree.
8133
8134 Return *TP if it is an automatic variable or parameter of the
8135 function passed in as DATA. */
8136
8137 static tree
8138 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8139 {
8140 tree fn = (tree) data;
8141
8142 if (TYPE_P (*tp))
8143 *walk_subtrees = 0;
8144
8145 else if (DECL_P (*tp)
8146 && auto_var_in_fn_p (*tp, fn))
8147 return *tp;
8148
8149 return NULL_TREE;
8150 }
8151
8152 /* Returns true if T is, contains, or refers to a type with variable
8153 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8154 arguments, but not the return type. If FN is nonzero, only return
8155 true if a modifier of the type or position of FN is a variable or
8156 parameter inside FN.
8157
8158 This concept is more general than that of C99 'variably modified types':
8159 in C99, a struct type is never variably modified because a VLA may not
8160 appear as a structure member. However, in GNU C code like:
8161
8162 struct S { int i[f()]; };
8163
8164 is valid, and other languages may define similar constructs. */
8165
8166 bool
8167 variably_modified_type_p (tree type, tree fn)
8168 {
8169 tree t;
8170
8171 /* Test if T is either variable (if FN is zero) or an expression containing
8172 a variable in FN. */
8173 #define RETURN_TRUE_IF_VAR(T) \
8174 do { tree _t = (T); \
8175 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8176 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8177 return true; } while (0)
8178
8179 if (type == error_mark_node)
8180 return false;
8181
8182 /* If TYPE itself has variable size, it is variably modified. */
8183 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8184 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8185
8186 switch (TREE_CODE (type))
8187 {
8188 case POINTER_TYPE:
8189 case REFERENCE_TYPE:
8190 case VECTOR_TYPE:
8191 if (variably_modified_type_p (TREE_TYPE (type), fn))
8192 return true;
8193 break;
8194
8195 case FUNCTION_TYPE:
8196 case METHOD_TYPE:
8197 /* If TYPE is a function type, it is variably modified if the
8198 return type is variably modified. */
8199 if (variably_modified_type_p (TREE_TYPE (type), fn))
8200 return true;
8201 break;
8202
8203 case INTEGER_TYPE:
8204 case REAL_TYPE:
8205 case FIXED_POINT_TYPE:
8206 case ENUMERAL_TYPE:
8207 case BOOLEAN_TYPE:
8208 /* Scalar types are variably modified if their end points
8209 aren't constant. */
8210 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8211 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8212 break;
8213
8214 case RECORD_TYPE:
8215 case UNION_TYPE:
8216 case QUAL_UNION_TYPE:
8217 /* We can't see if any of the fields are variably-modified by the
8218 definition we normally use, since that would produce infinite
8219 recursion via pointers. */
8220 /* This is variably modified if some field's type is. */
8221 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8222 if (TREE_CODE (t) == FIELD_DECL)
8223 {
8224 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8225 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8226 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8227
8228 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8229 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8230 }
8231 break;
8232
8233 case ARRAY_TYPE:
8234 /* Do not call ourselves to avoid infinite recursion. This is
8235 variably modified if the element type is. */
8236 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8237 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8238 break;
8239
8240 default:
8241 break;
8242 }
8243
8244 /* The current language may have other cases to check, but in general,
8245 all other types are not variably modified. */
8246 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8247
8248 #undef RETURN_TRUE_IF_VAR
8249 }
8250
8251 /* Given a DECL or TYPE, return the scope in which it was declared, or
8252 NULL_TREE if there is no containing scope. */
8253
8254 tree
8255 get_containing_scope (const_tree t)
8256 {
8257 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8258 }
8259
8260 /* Return the innermost context enclosing DECL that is
8261 a FUNCTION_DECL, or zero if none. */
8262
8263 tree
8264 decl_function_context (const_tree decl)
8265 {
8266 tree context;
8267
8268 if (TREE_CODE (decl) == ERROR_MARK)
8269 return 0;
8270
8271 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8272 where we look up the function at runtime. Such functions always take
8273 a first argument of type 'pointer to real context'.
8274
8275 C++ should really be fixed to use DECL_CONTEXT for the real context,
8276 and use something else for the "virtual context". */
8277 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8278 context
8279 = TYPE_MAIN_VARIANT
8280 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8281 else
8282 context = DECL_CONTEXT (decl);
8283
8284 while (context && TREE_CODE (context) != FUNCTION_DECL)
8285 {
8286 if (TREE_CODE (context) == BLOCK)
8287 context = BLOCK_SUPERCONTEXT (context);
8288 else
8289 context = get_containing_scope (context);
8290 }
8291
8292 return context;
8293 }
8294
8295 /* Return the innermost context enclosing DECL that is
8296 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8297 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8298
8299 tree
8300 decl_type_context (const_tree decl)
8301 {
8302 tree context = DECL_CONTEXT (decl);
8303
8304 while (context)
8305 switch (TREE_CODE (context))
8306 {
8307 case NAMESPACE_DECL:
8308 case TRANSLATION_UNIT_DECL:
8309 return NULL_TREE;
8310
8311 case RECORD_TYPE:
8312 case UNION_TYPE:
8313 case QUAL_UNION_TYPE:
8314 return context;
8315
8316 case TYPE_DECL:
8317 case FUNCTION_DECL:
8318 context = DECL_CONTEXT (context);
8319 break;
8320
8321 case BLOCK:
8322 context = BLOCK_SUPERCONTEXT (context);
8323 break;
8324
8325 default:
8326 gcc_unreachable ();
8327 }
8328
8329 return NULL_TREE;
8330 }
8331
8332 /* CALL is a CALL_EXPR. Return the declaration for the function
8333 called, or NULL_TREE if the called function cannot be
8334 determined. */
8335
8336 tree
8337 get_callee_fndecl (const_tree call)
8338 {
8339 tree addr;
8340
8341 if (call == error_mark_node)
8342 return error_mark_node;
8343
8344 /* It's invalid to call this function with anything but a
8345 CALL_EXPR. */
8346 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8347
8348 /* The first operand to the CALL is the address of the function
8349 called. */
8350 addr = CALL_EXPR_FN (call);
8351
8352 STRIP_NOPS (addr);
8353
8354 /* If this is a readonly function pointer, extract its initial value. */
8355 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8356 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8357 && DECL_INITIAL (addr))
8358 addr = DECL_INITIAL (addr);
8359
8360 /* If the address is just `&f' for some function `f', then we know
8361 that `f' is being called. */
8362 if (TREE_CODE (addr) == ADDR_EXPR
8363 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8364 return TREE_OPERAND (addr, 0);
8365
8366 /* We couldn't figure out what was being called. */
8367 return NULL_TREE;
8368 }
8369
8370 /* Print debugging information about tree nodes generated during the compile,
8371 and any language-specific information. */
8372
8373 void
8374 dump_tree_statistics (void)
8375 {
8376 #ifdef GATHER_STATISTICS
8377 int i;
8378 int total_nodes, total_bytes;
8379 #endif
8380
8381 fprintf (stderr, "\n??? tree nodes created\n\n");
8382 #ifdef GATHER_STATISTICS
8383 fprintf (stderr, "Kind Nodes Bytes\n");
8384 fprintf (stderr, "---------------------------------------\n");
8385 total_nodes = total_bytes = 0;
8386 for (i = 0; i < (int) all_kinds; i++)
8387 {
8388 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8389 tree_node_counts[i], tree_node_sizes[i]);
8390 total_nodes += tree_node_counts[i];
8391 total_bytes += tree_node_sizes[i];
8392 }
8393 fprintf (stderr, "---------------------------------------\n");
8394 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8395 fprintf (stderr, "---------------------------------------\n");
8396 ssanames_print_statistics ();
8397 phinodes_print_statistics ();
8398 #else
8399 fprintf (stderr, "(No per-node statistics)\n");
8400 #endif
8401 print_type_hash_statistics ();
8402 print_debug_expr_statistics ();
8403 print_value_expr_statistics ();
8404 lang_hooks.print_statistics ();
8405 }
8406 \f
8407 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8408
8409 /* Generate a crc32 of a string. */
8410
8411 unsigned
8412 crc32_string (unsigned chksum, const char *string)
8413 {
8414 do
8415 {
8416 unsigned value = *string << 24;
8417 unsigned ix;
8418
8419 for (ix = 8; ix--; value <<= 1)
8420 {
8421 unsigned feedback;
8422
8423 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8424 chksum <<= 1;
8425 chksum ^= feedback;
8426 }
8427 }
8428 while (*string++);
8429 return chksum;
8430 }
8431
8432 /* P is a string that will be used in a symbol. Mask out any characters
8433 that are not valid in that context. */
8434
8435 void
8436 clean_symbol_name (char *p)
8437 {
8438 for (; *p; p++)
8439 if (! (ISALNUM (*p)
8440 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8441 || *p == '$'
8442 #endif
8443 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8444 || *p == '.'
8445 #endif
8446 ))
8447 *p = '_';
8448 }
8449
8450 /* Generate a name for a special-purpose function function.
8451 The generated name may need to be unique across the whole link.
8452 TYPE is some string to identify the purpose of this function to the
8453 linker or collect2; it must start with an uppercase letter,
8454 one of:
8455 I - for constructors
8456 D - for destructors
8457 N - for C++ anonymous namespaces
8458 F - for DWARF unwind frame information. */
8459
8460 tree
8461 get_file_function_name (const char *type)
8462 {
8463 char *buf;
8464 const char *p;
8465 char *q;
8466
8467 /* If we already have a name we know to be unique, just use that. */
8468 if (first_global_object_name)
8469 p = q = ASTRDUP (first_global_object_name);
8470 /* If the target is handling the constructors/destructors, they
8471 will be local to this file and the name is only necessary for
8472 debugging purposes. */
8473 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8474 {
8475 const char *file = main_input_filename;
8476 if (! file)
8477 file = input_filename;
8478 /* Just use the file's basename, because the full pathname
8479 might be quite long. */
8480 p = strrchr (file, '/');
8481 if (p)
8482 p++;
8483 else
8484 p = file;
8485 p = q = ASTRDUP (p);
8486 }
8487 else
8488 {
8489 /* Otherwise, the name must be unique across the entire link.
8490 We don't have anything that we know to be unique to this translation
8491 unit, so use what we do have and throw in some randomness. */
8492 unsigned len;
8493 const char *name = weak_global_object_name;
8494 const char *file = main_input_filename;
8495
8496 if (! name)
8497 name = "";
8498 if (! file)
8499 file = input_filename;
8500
8501 len = strlen (file);
8502 q = (char *) alloca (9 * 2 + len + 1);
8503 memcpy (q, file, len + 1);
8504
8505 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8506 crc32_string (0, get_random_seed (false)));
8507
8508 p = q;
8509 }
8510
8511 clean_symbol_name (q);
8512 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8513 + strlen (type));
8514
8515 /* Set up the name of the file-level functions we may need.
8516 Use a global object (which is already required to be unique over
8517 the program) rather than the file name (which imposes extra
8518 constraints). */
8519 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8520
8521 return get_identifier (buf);
8522 }
8523 \f
8524 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8525
8526 /* Complain that the tree code of NODE does not match the expected 0
8527 terminated list of trailing codes. The trailing code list can be
8528 empty, for a more vague error message. FILE, LINE, and FUNCTION
8529 are of the caller. */
8530
8531 void
8532 tree_check_failed (const_tree node, const char *file,
8533 int line, const char *function, ...)
8534 {
8535 va_list args;
8536 const char *buffer;
8537 unsigned length = 0;
8538 int code;
8539
8540 va_start (args, function);
8541 while ((code = va_arg (args, int)))
8542 length += 4 + strlen (tree_code_name[code]);
8543 va_end (args);
8544 if (length)
8545 {
8546 char *tmp;
8547 va_start (args, function);
8548 length += strlen ("expected ");
8549 buffer = tmp = (char *) alloca (length);
8550 length = 0;
8551 while ((code = va_arg (args, int)))
8552 {
8553 const char *prefix = length ? " or " : "expected ";
8554
8555 strcpy (tmp + length, prefix);
8556 length += strlen (prefix);
8557 strcpy (tmp + length, tree_code_name[code]);
8558 length += strlen (tree_code_name[code]);
8559 }
8560 va_end (args);
8561 }
8562 else
8563 buffer = "unexpected node";
8564
8565 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8566 buffer, tree_code_name[TREE_CODE (node)],
8567 function, trim_filename (file), line);
8568 }
8569
8570 /* Complain that the tree code of NODE does match the expected 0
8571 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8572 the caller. */
8573
8574 void
8575 tree_not_check_failed (const_tree node, const char *file,
8576 int line, const char *function, ...)
8577 {
8578 va_list args;
8579 char *buffer;
8580 unsigned length = 0;
8581 int code;
8582
8583 va_start (args, function);
8584 while ((code = va_arg (args, int)))
8585 length += 4 + strlen (tree_code_name[code]);
8586 va_end (args);
8587 va_start (args, function);
8588 buffer = (char *) alloca (length);
8589 length = 0;
8590 while ((code = va_arg (args, int)))
8591 {
8592 if (length)
8593 {
8594 strcpy (buffer + length, " or ");
8595 length += 4;
8596 }
8597 strcpy (buffer + length, tree_code_name[code]);
8598 length += strlen (tree_code_name[code]);
8599 }
8600 va_end (args);
8601
8602 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8603 buffer, tree_code_name[TREE_CODE (node)],
8604 function, trim_filename (file), line);
8605 }
8606
8607 /* Similar to tree_check_failed, except that we check for a class of tree
8608 code, given in CL. */
8609
8610 void
8611 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8612 const char *file, int line, const char *function)
8613 {
8614 internal_error
8615 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8616 TREE_CODE_CLASS_STRING (cl),
8617 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8618 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8619 }
8620
8621 /* Similar to tree_check_failed, except that instead of specifying a
8622 dozen codes, use the knowledge that they're all sequential. */
8623
8624 void
8625 tree_range_check_failed (const_tree node, const char *file, int line,
8626 const char *function, enum tree_code c1,
8627 enum tree_code c2)
8628 {
8629 char *buffer;
8630 unsigned length = 0;
8631 unsigned int c;
8632
8633 for (c = c1; c <= c2; ++c)
8634 length += 4 + strlen (tree_code_name[c]);
8635
8636 length += strlen ("expected ");
8637 buffer = (char *) alloca (length);
8638 length = 0;
8639
8640 for (c = c1; c <= c2; ++c)
8641 {
8642 const char *prefix = length ? " or " : "expected ";
8643
8644 strcpy (buffer + length, prefix);
8645 length += strlen (prefix);
8646 strcpy (buffer + length, tree_code_name[c]);
8647 length += strlen (tree_code_name[c]);
8648 }
8649
8650 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8651 buffer, tree_code_name[TREE_CODE (node)],
8652 function, trim_filename (file), line);
8653 }
8654
8655
8656 /* Similar to tree_check_failed, except that we check that a tree does
8657 not have the specified code, given in CL. */
8658
8659 void
8660 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8661 const char *file, int line, const char *function)
8662 {
8663 internal_error
8664 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8665 TREE_CODE_CLASS_STRING (cl),
8666 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8667 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8668 }
8669
8670
8671 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8672
8673 void
8674 omp_clause_check_failed (const_tree node, const char *file, int line,
8675 const char *function, enum omp_clause_code code)
8676 {
8677 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8678 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8679 function, trim_filename (file), line);
8680 }
8681
8682
8683 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8684
8685 void
8686 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8687 const char *function, enum omp_clause_code c1,
8688 enum omp_clause_code c2)
8689 {
8690 char *buffer;
8691 unsigned length = 0;
8692 unsigned int c;
8693
8694 for (c = c1; c <= c2; ++c)
8695 length += 4 + strlen (omp_clause_code_name[c]);
8696
8697 length += strlen ("expected ");
8698 buffer = (char *) alloca (length);
8699 length = 0;
8700
8701 for (c = c1; c <= c2; ++c)
8702 {
8703 const char *prefix = length ? " or " : "expected ";
8704
8705 strcpy (buffer + length, prefix);
8706 length += strlen (prefix);
8707 strcpy (buffer + length, omp_clause_code_name[c]);
8708 length += strlen (omp_clause_code_name[c]);
8709 }
8710
8711 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8712 buffer, omp_clause_code_name[TREE_CODE (node)],
8713 function, trim_filename (file), line);
8714 }
8715
8716
8717 #undef DEFTREESTRUCT
8718 #define DEFTREESTRUCT(VAL, NAME) NAME,
8719
8720 static const char *ts_enum_names[] = {
8721 #include "treestruct.def"
8722 };
8723 #undef DEFTREESTRUCT
8724
8725 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8726
8727 /* Similar to tree_class_check_failed, except that we check for
8728 whether CODE contains the tree structure identified by EN. */
8729
8730 void
8731 tree_contains_struct_check_failed (const_tree node,
8732 const enum tree_node_structure_enum en,
8733 const char *file, int line,
8734 const char *function)
8735 {
8736 internal_error
8737 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8738 TS_ENUM_NAME(en),
8739 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8740 }
8741
8742
8743 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8744 (dynamically sized) vector. */
8745
8746 void
8747 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8748 const char *function)
8749 {
8750 internal_error
8751 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8752 idx + 1, len, function, trim_filename (file), line);
8753 }
8754
8755 /* Similar to above, except that the check is for the bounds of the operand
8756 vector of an expression node EXP. */
8757
8758 void
8759 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8760 int line, const char *function)
8761 {
8762 int code = TREE_CODE (exp);
8763 internal_error
8764 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8765 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8766 function, trim_filename (file), line);
8767 }
8768
8769 /* Similar to above, except that the check is for the number of
8770 operands of an OMP_CLAUSE node. */
8771
8772 void
8773 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8774 int line, const char *function)
8775 {
8776 internal_error
8777 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8778 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8779 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8780 trim_filename (file), line);
8781 }
8782 #endif /* ENABLE_TREE_CHECKING */
8783 \f
8784 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8785 and mapped to the machine mode MODE. Initialize its fields and build
8786 the information necessary for debugging output. */
8787
8788 static tree
8789 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8790 {
8791 tree t;
8792 hashval_t hashcode = 0;
8793
8794 t = make_node (VECTOR_TYPE);
8795 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8796 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8797 SET_TYPE_MODE (t, mode);
8798
8799 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8800 SET_TYPE_STRUCTURAL_EQUALITY (t);
8801 else if (TYPE_CANONICAL (innertype) != innertype
8802 || mode != VOIDmode)
8803 TYPE_CANONICAL (t)
8804 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8805
8806 layout_type (t);
8807
8808 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8809 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8810 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8811 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8812 t = type_hash_canon (hashcode, t);
8813
8814 /* We have built a main variant, based on the main variant of the
8815 inner type. Use it to build the variant we return. */
8816 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8817 && TREE_TYPE (t) != innertype)
8818 return build_type_attribute_qual_variant (t,
8819 TYPE_ATTRIBUTES (innertype),
8820 TYPE_QUALS (innertype));
8821
8822 return t;
8823 }
8824
8825 static tree
8826 make_or_reuse_type (unsigned size, int unsignedp)
8827 {
8828 if (size == INT_TYPE_SIZE)
8829 return unsignedp ? unsigned_type_node : integer_type_node;
8830 if (size == CHAR_TYPE_SIZE)
8831 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8832 if (size == SHORT_TYPE_SIZE)
8833 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8834 if (size == LONG_TYPE_SIZE)
8835 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8836 if (size == LONG_LONG_TYPE_SIZE)
8837 return (unsignedp ? long_long_unsigned_type_node
8838 : long_long_integer_type_node);
8839 if (size == 128 && int128_integer_type_node)
8840 return (unsignedp ? int128_unsigned_type_node
8841 : int128_integer_type_node);
8842
8843 if (unsignedp)
8844 return make_unsigned_type (size);
8845 else
8846 return make_signed_type (size);
8847 }
8848
8849 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8850
8851 static tree
8852 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8853 {
8854 if (satp)
8855 {
8856 if (size == SHORT_FRACT_TYPE_SIZE)
8857 return unsignedp ? sat_unsigned_short_fract_type_node
8858 : sat_short_fract_type_node;
8859 if (size == FRACT_TYPE_SIZE)
8860 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8861 if (size == LONG_FRACT_TYPE_SIZE)
8862 return unsignedp ? sat_unsigned_long_fract_type_node
8863 : sat_long_fract_type_node;
8864 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8865 return unsignedp ? sat_unsigned_long_long_fract_type_node
8866 : sat_long_long_fract_type_node;
8867 }
8868 else
8869 {
8870 if (size == SHORT_FRACT_TYPE_SIZE)
8871 return unsignedp ? unsigned_short_fract_type_node
8872 : short_fract_type_node;
8873 if (size == FRACT_TYPE_SIZE)
8874 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8875 if (size == LONG_FRACT_TYPE_SIZE)
8876 return unsignedp ? unsigned_long_fract_type_node
8877 : long_fract_type_node;
8878 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8879 return unsignedp ? unsigned_long_long_fract_type_node
8880 : long_long_fract_type_node;
8881 }
8882
8883 return make_fract_type (size, unsignedp, satp);
8884 }
8885
8886 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8887
8888 static tree
8889 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8890 {
8891 if (satp)
8892 {
8893 if (size == SHORT_ACCUM_TYPE_SIZE)
8894 return unsignedp ? sat_unsigned_short_accum_type_node
8895 : sat_short_accum_type_node;
8896 if (size == ACCUM_TYPE_SIZE)
8897 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8898 if (size == LONG_ACCUM_TYPE_SIZE)
8899 return unsignedp ? sat_unsigned_long_accum_type_node
8900 : sat_long_accum_type_node;
8901 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8902 return unsignedp ? sat_unsigned_long_long_accum_type_node
8903 : sat_long_long_accum_type_node;
8904 }
8905 else
8906 {
8907 if (size == SHORT_ACCUM_TYPE_SIZE)
8908 return unsignedp ? unsigned_short_accum_type_node
8909 : short_accum_type_node;
8910 if (size == ACCUM_TYPE_SIZE)
8911 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8912 if (size == LONG_ACCUM_TYPE_SIZE)
8913 return unsignedp ? unsigned_long_accum_type_node
8914 : long_accum_type_node;
8915 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8916 return unsignedp ? unsigned_long_long_accum_type_node
8917 : long_long_accum_type_node;
8918 }
8919
8920 return make_accum_type (size, unsignedp, satp);
8921 }
8922
8923 /* Create nodes for all integer types (and error_mark_node) using the sizes
8924 of C datatypes. The caller should call set_sizetype soon after calling
8925 this function to select one of the types as sizetype. */
8926
8927 void
8928 build_common_tree_nodes (bool signed_char)
8929 {
8930 error_mark_node = make_node (ERROR_MARK);
8931 TREE_TYPE (error_mark_node) = error_mark_node;
8932
8933 initialize_sizetypes ();
8934
8935 /* Define both `signed char' and `unsigned char'. */
8936 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8937 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8938 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8939 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8940
8941 /* Define `char', which is like either `signed char' or `unsigned char'
8942 but not the same as either. */
8943 char_type_node
8944 = (signed_char
8945 ? make_signed_type (CHAR_TYPE_SIZE)
8946 : make_unsigned_type (CHAR_TYPE_SIZE));
8947 TYPE_STRING_FLAG (char_type_node) = 1;
8948
8949 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8950 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8951 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8952 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8953 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8954 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8955 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8956 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8957 #if HOST_BITS_PER_WIDE_INT >= 64
8958 /* TODO: This isn't correct, but as logic depends at the moment on
8959 host's instead of target's wide-integer.
8960 If there is a target not supporting TImode, but has an 128-bit
8961 integer-scalar register, this target check needs to be adjusted. */
8962 if (targetm.scalar_mode_supported_p (TImode))
8963 {
8964 int128_integer_type_node = make_signed_type (128);
8965 int128_unsigned_type_node = make_unsigned_type (128);
8966 }
8967 #endif
8968 /* Define a boolean type. This type only represents boolean values but
8969 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8970 Front ends which want to override this size (i.e. Java) can redefine
8971 boolean_type_node before calling build_common_tree_nodes_2. */
8972 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8973 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8974 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8975 TYPE_PRECISION (boolean_type_node) = 1;
8976
8977 /* Fill in the rest of the sized types. Reuse existing type nodes
8978 when possible. */
8979 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8980 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8981 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8982 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8983 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8984
8985 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
8986 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
8987 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
8988 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
8989 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
8990
8991 access_public_node = get_identifier ("public");
8992 access_protected_node = get_identifier ("protected");
8993 access_private_node = get_identifier ("private");
8994 }
8995
8996 /* Call this function after calling build_common_tree_nodes and set_sizetype.
8997 It will create several other common tree nodes. */
8998
8999 void
9000 build_common_tree_nodes_2 (int short_double)
9001 {
9002 /* Define these next since types below may used them. */
9003 integer_zero_node = build_int_cst (integer_type_node, 0);
9004 integer_one_node = build_int_cst (integer_type_node, 1);
9005 integer_three_node = build_int_cst (integer_type_node, 3);
9006 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9007
9008 size_zero_node = size_int (0);
9009 size_one_node = size_int (1);
9010 bitsize_zero_node = bitsize_int (0);
9011 bitsize_one_node = bitsize_int (1);
9012 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9013
9014 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9015 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9016
9017 void_type_node = make_node (VOID_TYPE);
9018 layout_type (void_type_node);
9019
9020 /* We are not going to have real types in C with less than byte alignment,
9021 so we might as well not have any types that claim to have it. */
9022 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9023 TYPE_USER_ALIGN (void_type_node) = 0;
9024
9025 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9026 layout_type (TREE_TYPE (null_pointer_node));
9027
9028 ptr_type_node = build_pointer_type (void_type_node);
9029 const_ptr_type_node
9030 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9031 fileptr_type_node = ptr_type_node;
9032
9033 float_type_node = make_node (REAL_TYPE);
9034 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9035 layout_type (float_type_node);
9036
9037 double_type_node = make_node (REAL_TYPE);
9038 if (short_double)
9039 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9040 else
9041 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9042 layout_type (double_type_node);
9043
9044 long_double_type_node = make_node (REAL_TYPE);
9045 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9046 layout_type (long_double_type_node);
9047
9048 float_ptr_type_node = build_pointer_type (float_type_node);
9049 double_ptr_type_node = build_pointer_type (double_type_node);
9050 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9051 integer_ptr_type_node = build_pointer_type (integer_type_node);
9052
9053 /* Fixed size integer types. */
9054 uint32_type_node = build_nonstandard_integer_type (32, true);
9055 uint64_type_node = build_nonstandard_integer_type (64, true);
9056
9057 /* Decimal float types. */
9058 dfloat32_type_node = make_node (REAL_TYPE);
9059 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9060 layout_type (dfloat32_type_node);
9061 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9062 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9063
9064 dfloat64_type_node = make_node (REAL_TYPE);
9065 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9066 layout_type (dfloat64_type_node);
9067 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9068 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9069
9070 dfloat128_type_node = make_node (REAL_TYPE);
9071 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9072 layout_type (dfloat128_type_node);
9073 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9074 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9075
9076 complex_integer_type_node = build_complex_type (integer_type_node);
9077 complex_float_type_node = build_complex_type (float_type_node);
9078 complex_double_type_node = build_complex_type (double_type_node);
9079 complex_long_double_type_node = build_complex_type (long_double_type_node);
9080
9081 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9082 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9083 sat_ ## KIND ## _type_node = \
9084 make_sat_signed_ ## KIND ## _type (SIZE); \
9085 sat_unsigned_ ## KIND ## _type_node = \
9086 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9087 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9088 unsigned_ ## KIND ## _type_node = \
9089 make_unsigned_ ## KIND ## _type (SIZE);
9090
9091 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9092 sat_ ## WIDTH ## KIND ## _type_node = \
9093 make_sat_signed_ ## KIND ## _type (SIZE); \
9094 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9095 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9096 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9097 unsigned_ ## WIDTH ## KIND ## _type_node = \
9098 make_unsigned_ ## KIND ## _type (SIZE);
9099
9100 /* Make fixed-point type nodes based on four different widths. */
9101 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9102 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9103 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9104 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9105 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9106
9107 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9108 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9109 NAME ## _type_node = \
9110 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9111 u ## NAME ## _type_node = \
9112 make_or_reuse_unsigned_ ## KIND ## _type \
9113 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9114 sat_ ## NAME ## _type_node = \
9115 make_or_reuse_sat_signed_ ## KIND ## _type \
9116 (GET_MODE_BITSIZE (MODE ## mode)); \
9117 sat_u ## NAME ## _type_node = \
9118 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9119 (GET_MODE_BITSIZE (U ## MODE ## mode));
9120
9121 /* Fixed-point type and mode nodes. */
9122 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9123 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9124 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9125 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9126 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9127 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9128 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9129 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9130 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9131 MAKE_FIXED_MODE_NODE (accum, da, DA)
9132 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9133
9134 {
9135 tree t = targetm.build_builtin_va_list ();
9136
9137 /* Many back-ends define record types without setting TYPE_NAME.
9138 If we copied the record type here, we'd keep the original
9139 record type without a name. This breaks name mangling. So,
9140 don't copy record types and let c_common_nodes_and_builtins()
9141 declare the type to be __builtin_va_list. */
9142 if (TREE_CODE (t) != RECORD_TYPE)
9143 t = build_variant_type_copy (t);
9144
9145 va_list_type_node = t;
9146 }
9147 }
9148
9149 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9150
9151 static void
9152 local_define_builtin (const char *name, tree type, enum built_in_function code,
9153 const char *library_name, int ecf_flags)
9154 {
9155 tree decl;
9156
9157 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9158 library_name, NULL_TREE);
9159 if (ecf_flags & ECF_CONST)
9160 TREE_READONLY (decl) = 1;
9161 if (ecf_flags & ECF_PURE)
9162 DECL_PURE_P (decl) = 1;
9163 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9164 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9165 if (ecf_flags & ECF_NORETURN)
9166 TREE_THIS_VOLATILE (decl) = 1;
9167 if (ecf_flags & ECF_NOTHROW)
9168 TREE_NOTHROW (decl) = 1;
9169 if (ecf_flags & ECF_MALLOC)
9170 DECL_IS_MALLOC (decl) = 1;
9171 if (ecf_flags & ECF_LEAF)
9172 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9173 NULL, DECL_ATTRIBUTES (decl));
9174
9175 built_in_decls[code] = decl;
9176 implicit_built_in_decls[code] = decl;
9177 }
9178
9179 /* Call this function after instantiating all builtins that the language
9180 front end cares about. This will build the rest of the builtins that
9181 are relied upon by the tree optimizers and the middle-end. */
9182
9183 void
9184 build_common_builtin_nodes (void)
9185 {
9186 tree tmp, ftype;
9187
9188 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9189 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9190 {
9191 ftype = build_function_type_list (ptr_type_node,
9192 ptr_type_node, const_ptr_type_node,
9193 size_type_node, NULL_TREE);
9194
9195 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9196 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9197 "memcpy", ECF_NOTHROW | ECF_LEAF);
9198 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9199 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9200 "memmove", ECF_NOTHROW | ECF_LEAF);
9201 }
9202
9203 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9204 {
9205 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9206 const_ptr_type_node, size_type_node,
9207 NULL_TREE);
9208 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9209 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9210 }
9211
9212 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9213 {
9214 ftype = build_function_type_list (ptr_type_node,
9215 ptr_type_node, integer_type_node,
9216 size_type_node, NULL_TREE);
9217 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9218 "memset", ECF_NOTHROW | ECF_LEAF);
9219 }
9220
9221 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9222 {
9223 ftype = build_function_type_list (ptr_type_node,
9224 size_type_node, NULL_TREE);
9225 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9226 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9227 }
9228
9229 /* If we're checking the stack, `alloca' can throw. */
9230 if (flag_stack_check)
9231 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9232
9233 ftype = build_function_type_list (void_type_node,
9234 ptr_type_node, ptr_type_node,
9235 ptr_type_node, NULL_TREE);
9236 local_define_builtin ("__builtin_init_trampoline", ftype,
9237 BUILT_IN_INIT_TRAMPOLINE,
9238 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9239
9240 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9241 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9242 BUILT_IN_ADJUST_TRAMPOLINE,
9243 "__builtin_adjust_trampoline",
9244 ECF_CONST | ECF_NOTHROW);
9245
9246 ftype = build_function_type_list (void_type_node,
9247 ptr_type_node, ptr_type_node, NULL_TREE);
9248 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9249 BUILT_IN_NONLOCAL_GOTO,
9250 "__builtin_nonlocal_goto",
9251 ECF_NORETURN | ECF_NOTHROW);
9252
9253 ftype = build_function_type_list (void_type_node,
9254 ptr_type_node, ptr_type_node, NULL_TREE);
9255 local_define_builtin ("__builtin_setjmp_setup", ftype,
9256 BUILT_IN_SETJMP_SETUP,
9257 "__builtin_setjmp_setup", ECF_NOTHROW);
9258
9259 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9260 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9261 BUILT_IN_SETJMP_DISPATCHER,
9262 "__builtin_setjmp_dispatcher",
9263 ECF_PURE | ECF_NOTHROW);
9264
9265 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9266 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9267 BUILT_IN_SETJMP_RECEIVER,
9268 "__builtin_setjmp_receiver", ECF_NOTHROW);
9269
9270 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9271 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9272 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9273
9274 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9275 local_define_builtin ("__builtin_stack_restore", ftype,
9276 BUILT_IN_STACK_RESTORE,
9277 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9278
9279 ftype = build_function_type_list (void_type_node, NULL_TREE);
9280 local_define_builtin ("__builtin_profile_func_enter", ftype,
9281 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9282 local_define_builtin ("__builtin_profile_func_exit", ftype,
9283 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9284
9285 /* If there's a possibility that we might use the ARM EABI, build the
9286 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9287 if (targetm.arm_eabi_unwinder)
9288 {
9289 ftype = build_function_type_list (void_type_node, NULL_TREE);
9290 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9291 BUILT_IN_CXA_END_CLEANUP,
9292 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9293 }
9294
9295 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9296 local_define_builtin ("__builtin_unwind_resume", ftype,
9297 BUILT_IN_UNWIND_RESUME,
9298 (targetm.except_unwind_info () == UI_SJLJ
9299 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9300 ECF_NORETURN);
9301
9302 /* The exception object and filter values from the runtime. The argument
9303 must be zero before exception lowering, i.e. from the front end. After
9304 exception lowering, it will be the region number for the exception
9305 landing pad. These functions are PURE instead of CONST to prevent
9306 them from being hoisted past the exception edge that will initialize
9307 its value in the landing pad. */
9308 ftype = build_function_type_list (ptr_type_node,
9309 integer_type_node, NULL_TREE);
9310 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9311 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9312
9313 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9314 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9315 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9316 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9317
9318 ftype = build_function_type_list (void_type_node,
9319 integer_type_node, integer_type_node,
9320 NULL_TREE);
9321 local_define_builtin ("__builtin_eh_copy_values", ftype,
9322 BUILT_IN_EH_COPY_VALUES,
9323 "__builtin_eh_copy_values", ECF_NOTHROW);
9324
9325 /* Complex multiplication and division. These are handled as builtins
9326 rather than optabs because emit_library_call_value doesn't support
9327 complex. Further, we can do slightly better with folding these
9328 beasties if the real and complex parts of the arguments are separate. */
9329 {
9330 int mode;
9331
9332 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9333 {
9334 char mode_name_buf[4], *q;
9335 const char *p;
9336 enum built_in_function mcode, dcode;
9337 tree type, inner_type;
9338
9339 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9340 if (type == NULL)
9341 continue;
9342 inner_type = TREE_TYPE (type);
9343
9344 ftype = build_function_type_list (type, inner_type, inner_type,
9345 inner_type, inner_type, NULL_TREE);
9346
9347 mcode = ((enum built_in_function)
9348 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9349 dcode = ((enum built_in_function)
9350 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9351
9352 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9353 *q = TOLOWER (*p);
9354 *q = '\0';
9355
9356 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9357 local_define_builtin (built_in_names[mcode], ftype, mcode,
9358 built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9359
9360 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9361 local_define_builtin (built_in_names[dcode], ftype, dcode,
9362 built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9363 }
9364 }
9365 }
9366
9367 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9368 better way.
9369
9370 If we requested a pointer to a vector, build up the pointers that
9371 we stripped off while looking for the inner type. Similarly for
9372 return values from functions.
9373
9374 The argument TYPE is the top of the chain, and BOTTOM is the
9375 new type which we will point to. */
9376
9377 tree
9378 reconstruct_complex_type (tree type, tree bottom)
9379 {
9380 tree inner, outer;
9381
9382 if (TREE_CODE (type) == POINTER_TYPE)
9383 {
9384 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9385 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9386 TYPE_REF_CAN_ALIAS_ALL (type));
9387 }
9388 else if (TREE_CODE (type) == REFERENCE_TYPE)
9389 {
9390 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9391 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9392 TYPE_REF_CAN_ALIAS_ALL (type));
9393 }
9394 else if (TREE_CODE (type) == ARRAY_TYPE)
9395 {
9396 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9397 outer = build_array_type (inner, TYPE_DOMAIN (type));
9398 }
9399 else if (TREE_CODE (type) == FUNCTION_TYPE)
9400 {
9401 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9402 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9403 }
9404 else if (TREE_CODE (type) == METHOD_TYPE)
9405 {
9406 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9407 /* The build_method_type_directly() routine prepends 'this' to argument list,
9408 so we must compensate by getting rid of it. */
9409 outer
9410 = build_method_type_directly
9411 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9412 inner,
9413 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9414 }
9415 else if (TREE_CODE (type) == OFFSET_TYPE)
9416 {
9417 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9418 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9419 }
9420 else
9421 return bottom;
9422
9423 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9424 TYPE_QUALS (type));
9425 }
9426
9427 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9428 the inner type. */
9429 tree
9430 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9431 {
9432 int nunits;
9433
9434 switch (GET_MODE_CLASS (mode))
9435 {
9436 case MODE_VECTOR_INT:
9437 case MODE_VECTOR_FLOAT:
9438 case MODE_VECTOR_FRACT:
9439 case MODE_VECTOR_UFRACT:
9440 case MODE_VECTOR_ACCUM:
9441 case MODE_VECTOR_UACCUM:
9442 nunits = GET_MODE_NUNITS (mode);
9443 break;
9444
9445 case MODE_INT:
9446 /* Check that there are no leftover bits. */
9447 gcc_assert (GET_MODE_BITSIZE (mode)
9448 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9449
9450 nunits = GET_MODE_BITSIZE (mode)
9451 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9452 break;
9453
9454 default:
9455 gcc_unreachable ();
9456 }
9457
9458 return make_vector_type (innertype, nunits, mode);
9459 }
9460
9461 /* Similarly, but takes the inner type and number of units, which must be
9462 a power of two. */
9463
9464 tree
9465 build_vector_type (tree innertype, int nunits)
9466 {
9467 return make_vector_type (innertype, nunits, VOIDmode);
9468 }
9469
9470 /* Similarly, but takes the inner type and number of units, which must be
9471 a power of two. */
9472
9473 tree
9474 build_opaque_vector_type (tree innertype, int nunits)
9475 {
9476 tree t;
9477 innertype = build_distinct_type_copy (innertype);
9478 t = make_vector_type (innertype, nunits, VOIDmode);
9479 TYPE_VECTOR_OPAQUE (t) = true;
9480 return t;
9481 }
9482
9483
9484 /* Given an initializer INIT, return TRUE if INIT is zero or some
9485 aggregate of zeros. Otherwise return FALSE. */
9486 bool
9487 initializer_zerop (const_tree init)
9488 {
9489 tree elt;
9490
9491 STRIP_NOPS (init);
9492
9493 switch (TREE_CODE (init))
9494 {
9495 case INTEGER_CST:
9496 return integer_zerop (init);
9497
9498 case REAL_CST:
9499 /* ??? Note that this is not correct for C4X float formats. There,
9500 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9501 negative exponent. */
9502 return real_zerop (init)
9503 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9504
9505 case FIXED_CST:
9506 return fixed_zerop (init);
9507
9508 case COMPLEX_CST:
9509 return integer_zerop (init)
9510 || (real_zerop (init)
9511 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9512 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9513
9514 case VECTOR_CST:
9515 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9516 if (!initializer_zerop (TREE_VALUE (elt)))
9517 return false;
9518 return true;
9519
9520 case CONSTRUCTOR:
9521 {
9522 unsigned HOST_WIDE_INT idx;
9523
9524 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9525 if (!initializer_zerop (elt))
9526 return false;
9527 return true;
9528 }
9529
9530 case STRING_CST:
9531 {
9532 int i;
9533
9534 /* We need to loop through all elements to handle cases like
9535 "\0" and "\0foobar". */
9536 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9537 if (TREE_STRING_POINTER (init)[i] != '\0')
9538 return false;
9539
9540 return true;
9541 }
9542
9543 default:
9544 return false;
9545 }
9546 }
9547
9548 /* Build an empty statement at location LOC. */
9549
9550 tree
9551 build_empty_stmt (location_t loc)
9552 {
9553 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9554 SET_EXPR_LOCATION (t, loc);
9555 return t;
9556 }
9557
9558
9559 /* Build an OpenMP clause with code CODE. LOC is the location of the
9560 clause. */
9561
9562 tree
9563 build_omp_clause (location_t loc, enum omp_clause_code code)
9564 {
9565 tree t;
9566 int size, length;
9567
9568 length = omp_clause_num_ops[code];
9569 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9570
9571 t = ggc_alloc_tree_node (size);
9572 memset (t, 0, size);
9573 TREE_SET_CODE (t, OMP_CLAUSE);
9574 OMP_CLAUSE_SET_CODE (t, code);
9575 OMP_CLAUSE_LOCATION (t) = loc;
9576
9577 #ifdef GATHER_STATISTICS
9578 tree_node_counts[(int) omp_clause_kind]++;
9579 tree_node_sizes[(int) omp_clause_kind] += size;
9580 #endif
9581
9582 return t;
9583 }
9584
9585 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9586 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9587 Except for the CODE and operand count field, other storage for the
9588 object is initialized to zeros. */
9589
9590 tree
9591 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9592 {
9593 tree t;
9594 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9595
9596 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9597 gcc_assert (len >= 1);
9598
9599 #ifdef GATHER_STATISTICS
9600 tree_node_counts[(int) e_kind]++;
9601 tree_node_sizes[(int) e_kind] += length;
9602 #endif
9603
9604 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9605
9606 TREE_SET_CODE (t, code);
9607
9608 /* Can't use TREE_OPERAND to store the length because if checking is
9609 enabled, it will try to check the length before we store it. :-P */
9610 t->exp.operands[0] = build_int_cst (sizetype, len);
9611
9612 return t;
9613 }
9614
9615 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9616 FN and a null static chain slot. NARGS is the number of call arguments
9617 which are specified as "..." arguments. */
9618
9619 tree
9620 build_call_nary (tree return_type, tree fn, int nargs, ...)
9621 {
9622 tree ret;
9623 va_list args;
9624 va_start (args, nargs);
9625 ret = build_call_valist (return_type, fn, nargs, args);
9626 va_end (args);
9627 return ret;
9628 }
9629
9630 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9631 FN and a null static chain slot. NARGS is the number of call arguments
9632 which are specified as a va_list ARGS. */
9633
9634 tree
9635 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9636 {
9637 tree t;
9638 int i;
9639
9640 t = build_vl_exp (CALL_EXPR, nargs + 3);
9641 TREE_TYPE (t) = return_type;
9642 CALL_EXPR_FN (t) = fn;
9643 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9644 for (i = 0; i < nargs; i++)
9645 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9646 process_call_operands (t);
9647 return t;
9648 }
9649
9650 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9651 FN and a null static chain slot. NARGS is the number of call arguments
9652 which are specified as a tree array ARGS. */
9653
9654 tree
9655 build_call_array_loc (location_t loc, tree return_type, tree fn,
9656 int nargs, const tree *args)
9657 {
9658 tree t;
9659 int i;
9660
9661 t = build_vl_exp (CALL_EXPR, nargs + 3);
9662 TREE_TYPE (t) = return_type;
9663 CALL_EXPR_FN (t) = fn;
9664 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9665 for (i = 0; i < nargs; i++)
9666 CALL_EXPR_ARG (t, i) = args[i];
9667 process_call_operands (t);
9668 SET_EXPR_LOCATION (t, loc);
9669 return t;
9670 }
9671
9672 /* Like build_call_array, but takes a VEC. */
9673
9674 tree
9675 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9676 {
9677 tree ret, t;
9678 unsigned int ix;
9679
9680 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9681 TREE_TYPE (ret) = return_type;
9682 CALL_EXPR_FN (ret) = fn;
9683 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9684 FOR_EACH_VEC_ELT (tree, args, ix, t)
9685 CALL_EXPR_ARG (ret, ix) = t;
9686 process_call_operands (ret);
9687 return ret;
9688 }
9689
9690
9691 /* Returns true if it is possible to prove that the index of
9692 an array access REF (an ARRAY_REF expression) falls into the
9693 array bounds. */
9694
9695 bool
9696 in_array_bounds_p (tree ref)
9697 {
9698 tree idx = TREE_OPERAND (ref, 1);
9699 tree min, max;
9700
9701 if (TREE_CODE (idx) != INTEGER_CST)
9702 return false;
9703
9704 min = array_ref_low_bound (ref);
9705 max = array_ref_up_bound (ref);
9706 if (!min
9707 || !max
9708 || TREE_CODE (min) != INTEGER_CST
9709 || TREE_CODE (max) != INTEGER_CST)
9710 return false;
9711
9712 if (tree_int_cst_lt (idx, min)
9713 || tree_int_cst_lt (max, idx))
9714 return false;
9715
9716 return true;
9717 }
9718
9719 /* Returns true if it is possible to prove that the range of
9720 an array access REF (an ARRAY_RANGE_REF expression) falls
9721 into the array bounds. */
9722
9723 bool
9724 range_in_array_bounds_p (tree ref)
9725 {
9726 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9727 tree range_min, range_max, min, max;
9728
9729 range_min = TYPE_MIN_VALUE (domain_type);
9730 range_max = TYPE_MAX_VALUE (domain_type);
9731 if (!range_min
9732 || !range_max
9733 || TREE_CODE (range_min) != INTEGER_CST
9734 || TREE_CODE (range_max) != INTEGER_CST)
9735 return false;
9736
9737 min = array_ref_low_bound (ref);
9738 max = array_ref_up_bound (ref);
9739 if (!min
9740 || !max
9741 || TREE_CODE (min) != INTEGER_CST
9742 || TREE_CODE (max) != INTEGER_CST)
9743 return false;
9744
9745 if (tree_int_cst_lt (range_min, min)
9746 || tree_int_cst_lt (max, range_max))
9747 return false;
9748
9749 return true;
9750 }
9751
9752 /* Return true if T (assumed to be a DECL) must be assigned a memory
9753 location. */
9754
9755 bool
9756 needs_to_live_in_memory (const_tree t)
9757 {
9758 if (TREE_CODE (t) == SSA_NAME)
9759 t = SSA_NAME_VAR (t);
9760
9761 return (TREE_ADDRESSABLE (t)
9762 || is_global_var (t)
9763 || (TREE_CODE (t) == RESULT_DECL
9764 && !DECL_BY_REFERENCE (t)
9765 && aggregate_value_p (t, current_function_decl)));
9766 }
9767
9768 /* There are situations in which a language considers record types
9769 compatible which have different field lists. Decide if two fields
9770 are compatible. It is assumed that the parent records are compatible. */
9771
9772 bool
9773 fields_compatible_p (const_tree f1, const_tree f2)
9774 {
9775 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9776 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9777 return false;
9778
9779 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9780 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9781 return false;
9782
9783 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9784 return false;
9785
9786 return true;
9787 }
9788
9789 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9790
9791 tree
9792 find_compatible_field (tree record, tree orig_field)
9793 {
9794 tree f;
9795
9796 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9797 if (TREE_CODE (f) == FIELD_DECL
9798 && fields_compatible_p (f, orig_field))
9799 return f;
9800
9801 /* ??? Why isn't this on the main fields list? */
9802 f = TYPE_VFIELD (record);
9803 if (f && TREE_CODE (f) == FIELD_DECL
9804 && fields_compatible_p (f, orig_field))
9805 return f;
9806
9807 /* ??? We should abort here, but Java appears to do Bad Things
9808 with inherited fields. */
9809 return orig_field;
9810 }
9811
9812 /* Return value of a constant X and sign-extend it. */
9813
9814 HOST_WIDE_INT
9815 int_cst_value (const_tree x)
9816 {
9817 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9818 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9819
9820 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9821 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9822 || TREE_INT_CST_HIGH (x) == -1);
9823
9824 if (bits < HOST_BITS_PER_WIDE_INT)
9825 {
9826 bool negative = ((val >> (bits - 1)) & 1) != 0;
9827 if (negative)
9828 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9829 else
9830 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9831 }
9832
9833 return val;
9834 }
9835
9836 /* Return value of a constant X and sign-extend it. */
9837
9838 HOST_WIDEST_INT
9839 widest_int_cst_value (const_tree x)
9840 {
9841 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9842 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9843
9844 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9845 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9846 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9847 << HOST_BITS_PER_WIDE_INT);
9848 #else
9849 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9850 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9851 || TREE_INT_CST_HIGH (x) == -1);
9852 #endif
9853
9854 if (bits < HOST_BITS_PER_WIDEST_INT)
9855 {
9856 bool negative = ((val >> (bits - 1)) & 1) != 0;
9857 if (negative)
9858 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9859 else
9860 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9861 }
9862
9863 return val;
9864 }
9865
9866 /* If TYPE is an integral type, return an equivalent type which is
9867 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9868 return TYPE itself. */
9869
9870 tree
9871 signed_or_unsigned_type_for (int unsignedp, tree type)
9872 {
9873 tree t = type;
9874 if (POINTER_TYPE_P (type))
9875 {
9876 /* If the pointer points to the normal address space, use the
9877 size_type_node. Otherwise use an appropriate size for the pointer
9878 based on the named address space it points to. */
9879 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9880 t = size_type_node;
9881 else
9882 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9883 }
9884
9885 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9886 return t;
9887
9888 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9889 }
9890
9891 /* Returns unsigned variant of TYPE. */
9892
9893 tree
9894 unsigned_type_for (tree type)
9895 {
9896 return signed_or_unsigned_type_for (1, type);
9897 }
9898
9899 /* Returns signed variant of TYPE. */
9900
9901 tree
9902 signed_type_for (tree type)
9903 {
9904 return signed_or_unsigned_type_for (0, type);
9905 }
9906
9907 /* Returns the largest value obtainable by casting something in INNER type to
9908 OUTER type. */
9909
9910 tree
9911 upper_bound_in_type (tree outer, tree inner)
9912 {
9913 unsigned HOST_WIDE_INT lo, hi;
9914 unsigned int det = 0;
9915 unsigned oprec = TYPE_PRECISION (outer);
9916 unsigned iprec = TYPE_PRECISION (inner);
9917 unsigned prec;
9918
9919 /* Compute a unique number for every combination. */
9920 det |= (oprec > iprec) ? 4 : 0;
9921 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9922 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9923
9924 /* Determine the exponent to use. */
9925 switch (det)
9926 {
9927 case 0:
9928 case 1:
9929 /* oprec <= iprec, outer: signed, inner: don't care. */
9930 prec = oprec - 1;
9931 break;
9932 case 2:
9933 case 3:
9934 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9935 prec = oprec;
9936 break;
9937 case 4:
9938 /* oprec > iprec, outer: signed, inner: signed. */
9939 prec = iprec - 1;
9940 break;
9941 case 5:
9942 /* oprec > iprec, outer: signed, inner: unsigned. */
9943 prec = iprec;
9944 break;
9945 case 6:
9946 /* oprec > iprec, outer: unsigned, inner: signed. */
9947 prec = oprec;
9948 break;
9949 case 7:
9950 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9951 prec = iprec;
9952 break;
9953 default:
9954 gcc_unreachable ();
9955 }
9956
9957 /* Compute 2^^prec - 1. */
9958 if (prec <= HOST_BITS_PER_WIDE_INT)
9959 {
9960 hi = 0;
9961 lo = ((~(unsigned HOST_WIDE_INT) 0)
9962 >> (HOST_BITS_PER_WIDE_INT - prec));
9963 }
9964 else
9965 {
9966 hi = ((~(unsigned HOST_WIDE_INT) 0)
9967 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9968 lo = ~(unsigned HOST_WIDE_INT) 0;
9969 }
9970
9971 return build_int_cst_wide (outer, lo, hi);
9972 }
9973
9974 /* Returns the smallest value obtainable by casting something in INNER type to
9975 OUTER type. */
9976
9977 tree
9978 lower_bound_in_type (tree outer, tree inner)
9979 {
9980 unsigned HOST_WIDE_INT lo, hi;
9981 unsigned oprec = TYPE_PRECISION (outer);
9982 unsigned iprec = TYPE_PRECISION (inner);
9983
9984 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
9985 and obtain 0. */
9986 if (TYPE_UNSIGNED (outer)
9987 /* If we are widening something of an unsigned type, OUTER type
9988 contains all values of INNER type. In particular, both INNER
9989 and OUTER types have zero in common. */
9990 || (oprec > iprec && TYPE_UNSIGNED (inner)))
9991 lo = hi = 0;
9992 else
9993 {
9994 /* If we are widening a signed type to another signed type, we
9995 want to obtain -2^^(iprec-1). If we are keeping the
9996 precision or narrowing to a signed type, we want to obtain
9997 -2^(oprec-1). */
9998 unsigned prec = oprec > iprec ? iprec : oprec;
9999
10000 if (prec <= HOST_BITS_PER_WIDE_INT)
10001 {
10002 hi = ~(unsigned HOST_WIDE_INT) 0;
10003 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10004 }
10005 else
10006 {
10007 hi = ((~(unsigned HOST_WIDE_INT) 0)
10008 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10009 lo = 0;
10010 }
10011 }
10012
10013 return build_int_cst_wide (outer, lo, hi);
10014 }
10015
10016 /* Return nonzero if two operands that are suitable for PHI nodes are
10017 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10018 SSA_NAME or invariant. Note that this is strictly an optimization.
10019 That is, callers of this function can directly call operand_equal_p
10020 and get the same result, only slower. */
10021
10022 int
10023 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10024 {
10025 if (arg0 == arg1)
10026 return 1;
10027 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10028 return 0;
10029 return operand_equal_p (arg0, arg1, 0);
10030 }
10031
10032 /* Returns number of zeros at the end of binary representation of X.
10033
10034 ??? Use ffs if available? */
10035
10036 tree
10037 num_ending_zeros (const_tree x)
10038 {
10039 unsigned HOST_WIDE_INT fr, nfr;
10040 unsigned num, abits;
10041 tree type = TREE_TYPE (x);
10042
10043 if (TREE_INT_CST_LOW (x) == 0)
10044 {
10045 num = HOST_BITS_PER_WIDE_INT;
10046 fr = TREE_INT_CST_HIGH (x);
10047 }
10048 else
10049 {
10050 num = 0;
10051 fr = TREE_INT_CST_LOW (x);
10052 }
10053
10054 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10055 {
10056 nfr = fr >> abits;
10057 if (nfr << abits == fr)
10058 {
10059 num += abits;
10060 fr = nfr;
10061 }
10062 }
10063
10064 if (num > TYPE_PRECISION (type))
10065 num = TYPE_PRECISION (type);
10066
10067 return build_int_cst_type (type, num);
10068 }
10069
10070
10071 #define WALK_SUBTREE(NODE) \
10072 do \
10073 { \
10074 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10075 if (result) \
10076 return result; \
10077 } \
10078 while (0)
10079
10080 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10081 be walked whenever a type is seen in the tree. Rest of operands and return
10082 value are as for walk_tree. */
10083
10084 static tree
10085 walk_type_fields (tree type, walk_tree_fn func, void *data,
10086 struct pointer_set_t *pset, walk_tree_lh lh)
10087 {
10088 tree result = NULL_TREE;
10089
10090 switch (TREE_CODE (type))
10091 {
10092 case POINTER_TYPE:
10093 case REFERENCE_TYPE:
10094 /* We have to worry about mutually recursive pointers. These can't
10095 be written in C. They can in Ada. It's pathological, but
10096 there's an ACATS test (c38102a) that checks it. Deal with this
10097 by checking if we're pointing to another pointer, that one
10098 points to another pointer, that one does too, and we have no htab.
10099 If so, get a hash table. We check three levels deep to avoid
10100 the cost of the hash table if we don't need one. */
10101 if (POINTER_TYPE_P (TREE_TYPE (type))
10102 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10103 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10104 && !pset)
10105 {
10106 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10107 func, data);
10108 if (result)
10109 return result;
10110
10111 break;
10112 }
10113
10114 /* ... fall through ... */
10115
10116 case COMPLEX_TYPE:
10117 WALK_SUBTREE (TREE_TYPE (type));
10118 break;
10119
10120 case METHOD_TYPE:
10121 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10122
10123 /* Fall through. */
10124
10125 case FUNCTION_TYPE:
10126 WALK_SUBTREE (TREE_TYPE (type));
10127 {
10128 tree arg;
10129
10130 /* We never want to walk into default arguments. */
10131 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10132 WALK_SUBTREE (TREE_VALUE (arg));
10133 }
10134 break;
10135
10136 case ARRAY_TYPE:
10137 /* Don't follow this nodes's type if a pointer for fear that
10138 we'll have infinite recursion. If we have a PSET, then we
10139 need not fear. */
10140 if (pset
10141 || (!POINTER_TYPE_P (TREE_TYPE (type))
10142 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10143 WALK_SUBTREE (TREE_TYPE (type));
10144 WALK_SUBTREE (TYPE_DOMAIN (type));
10145 break;
10146
10147 case OFFSET_TYPE:
10148 WALK_SUBTREE (TREE_TYPE (type));
10149 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10150 break;
10151
10152 default:
10153 break;
10154 }
10155
10156 return NULL_TREE;
10157 }
10158
10159 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10160 called with the DATA and the address of each sub-tree. If FUNC returns a
10161 non-NULL value, the traversal is stopped, and the value returned by FUNC
10162 is returned. If PSET is non-NULL it is used to record the nodes visited,
10163 and to avoid visiting a node more than once. */
10164
10165 tree
10166 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10167 struct pointer_set_t *pset, walk_tree_lh lh)
10168 {
10169 enum tree_code code;
10170 int walk_subtrees;
10171 tree result;
10172
10173 #define WALK_SUBTREE_TAIL(NODE) \
10174 do \
10175 { \
10176 tp = & (NODE); \
10177 goto tail_recurse; \
10178 } \
10179 while (0)
10180
10181 tail_recurse:
10182 /* Skip empty subtrees. */
10183 if (!*tp)
10184 return NULL_TREE;
10185
10186 /* Don't walk the same tree twice, if the user has requested
10187 that we avoid doing so. */
10188 if (pset && pointer_set_insert (pset, *tp))
10189 return NULL_TREE;
10190
10191 /* Call the function. */
10192 walk_subtrees = 1;
10193 result = (*func) (tp, &walk_subtrees, data);
10194
10195 /* If we found something, return it. */
10196 if (result)
10197 return result;
10198
10199 code = TREE_CODE (*tp);
10200
10201 /* Even if we didn't, FUNC may have decided that there was nothing
10202 interesting below this point in the tree. */
10203 if (!walk_subtrees)
10204 {
10205 /* But we still need to check our siblings. */
10206 if (code == TREE_LIST)
10207 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10208 else if (code == OMP_CLAUSE)
10209 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10210 else
10211 return NULL_TREE;
10212 }
10213
10214 if (lh)
10215 {
10216 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10217 if (result || !walk_subtrees)
10218 return result;
10219 }
10220
10221 switch (code)
10222 {
10223 case ERROR_MARK:
10224 case IDENTIFIER_NODE:
10225 case INTEGER_CST:
10226 case REAL_CST:
10227 case FIXED_CST:
10228 case VECTOR_CST:
10229 case STRING_CST:
10230 case BLOCK:
10231 case PLACEHOLDER_EXPR:
10232 case SSA_NAME:
10233 case FIELD_DECL:
10234 case RESULT_DECL:
10235 /* None of these have subtrees other than those already walked
10236 above. */
10237 break;
10238
10239 case TREE_LIST:
10240 WALK_SUBTREE (TREE_VALUE (*tp));
10241 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10242 break;
10243
10244 case TREE_VEC:
10245 {
10246 int len = TREE_VEC_LENGTH (*tp);
10247
10248 if (len == 0)
10249 break;
10250
10251 /* Walk all elements but the first. */
10252 while (--len)
10253 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10254
10255 /* Now walk the first one as a tail call. */
10256 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10257 }
10258
10259 case COMPLEX_CST:
10260 WALK_SUBTREE (TREE_REALPART (*tp));
10261 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10262
10263 case CONSTRUCTOR:
10264 {
10265 unsigned HOST_WIDE_INT idx;
10266 constructor_elt *ce;
10267
10268 for (idx = 0;
10269 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10270 idx++)
10271 WALK_SUBTREE (ce->value);
10272 }
10273 break;
10274
10275 case SAVE_EXPR:
10276 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10277
10278 case BIND_EXPR:
10279 {
10280 tree decl;
10281 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10282 {
10283 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10284 into declarations that are just mentioned, rather than
10285 declared; they don't really belong to this part of the tree.
10286 And, we can see cycles: the initializer for a declaration
10287 can refer to the declaration itself. */
10288 WALK_SUBTREE (DECL_INITIAL (decl));
10289 WALK_SUBTREE (DECL_SIZE (decl));
10290 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10291 }
10292 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10293 }
10294
10295 case STATEMENT_LIST:
10296 {
10297 tree_stmt_iterator i;
10298 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10299 WALK_SUBTREE (*tsi_stmt_ptr (i));
10300 }
10301 break;
10302
10303 case OMP_CLAUSE:
10304 switch (OMP_CLAUSE_CODE (*tp))
10305 {
10306 case OMP_CLAUSE_PRIVATE:
10307 case OMP_CLAUSE_SHARED:
10308 case OMP_CLAUSE_FIRSTPRIVATE:
10309 case OMP_CLAUSE_COPYIN:
10310 case OMP_CLAUSE_COPYPRIVATE:
10311 case OMP_CLAUSE_IF:
10312 case OMP_CLAUSE_NUM_THREADS:
10313 case OMP_CLAUSE_SCHEDULE:
10314 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10315 /* FALLTHRU */
10316
10317 case OMP_CLAUSE_NOWAIT:
10318 case OMP_CLAUSE_ORDERED:
10319 case OMP_CLAUSE_DEFAULT:
10320 case OMP_CLAUSE_UNTIED:
10321 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10322
10323 case OMP_CLAUSE_LASTPRIVATE:
10324 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10325 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10326 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10327
10328 case OMP_CLAUSE_COLLAPSE:
10329 {
10330 int i;
10331 for (i = 0; i < 3; i++)
10332 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10333 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10334 }
10335
10336 case OMP_CLAUSE_REDUCTION:
10337 {
10338 int i;
10339 for (i = 0; i < 4; i++)
10340 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10341 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10342 }
10343
10344 default:
10345 gcc_unreachable ();
10346 }
10347 break;
10348
10349 case TARGET_EXPR:
10350 {
10351 int i, len;
10352
10353 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10354 But, we only want to walk once. */
10355 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10356 for (i = 0; i < len; ++i)
10357 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10358 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10359 }
10360
10361 case DECL_EXPR:
10362 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10363 defining. We only want to walk into these fields of a type in this
10364 case and not in the general case of a mere reference to the type.
10365
10366 The criterion is as follows: if the field can be an expression, it
10367 must be walked only here. This should be in keeping with the fields
10368 that are directly gimplified in gimplify_type_sizes in order for the
10369 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10370 variable-sized types.
10371
10372 Note that DECLs get walked as part of processing the BIND_EXPR. */
10373 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10374 {
10375 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10376 if (TREE_CODE (*type_p) == ERROR_MARK)
10377 return NULL_TREE;
10378
10379 /* Call the function for the type. See if it returns anything or
10380 doesn't want us to continue. If we are to continue, walk both
10381 the normal fields and those for the declaration case. */
10382 result = (*func) (type_p, &walk_subtrees, data);
10383 if (result || !walk_subtrees)
10384 return result;
10385
10386 result = walk_type_fields (*type_p, func, data, pset, lh);
10387 if (result)
10388 return result;
10389
10390 /* If this is a record type, also walk the fields. */
10391 if (RECORD_OR_UNION_TYPE_P (*type_p))
10392 {
10393 tree field;
10394
10395 for (field = TYPE_FIELDS (*type_p); field;
10396 field = DECL_CHAIN (field))
10397 {
10398 /* We'd like to look at the type of the field, but we can
10399 easily get infinite recursion. So assume it's pointed
10400 to elsewhere in the tree. Also, ignore things that
10401 aren't fields. */
10402 if (TREE_CODE (field) != FIELD_DECL)
10403 continue;
10404
10405 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10406 WALK_SUBTREE (DECL_SIZE (field));
10407 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10408 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10409 WALK_SUBTREE (DECL_QUALIFIER (field));
10410 }
10411 }
10412
10413 /* Same for scalar types. */
10414 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10415 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10416 || TREE_CODE (*type_p) == INTEGER_TYPE
10417 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10418 || TREE_CODE (*type_p) == REAL_TYPE)
10419 {
10420 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10421 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10422 }
10423
10424 WALK_SUBTREE (TYPE_SIZE (*type_p));
10425 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10426 }
10427 /* FALLTHRU */
10428
10429 default:
10430 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10431 {
10432 int i, len;
10433
10434 /* Walk over all the sub-trees of this operand. */
10435 len = TREE_OPERAND_LENGTH (*tp);
10436
10437 /* Go through the subtrees. We need to do this in forward order so
10438 that the scope of a FOR_EXPR is handled properly. */
10439 if (len)
10440 {
10441 for (i = 0; i < len - 1; ++i)
10442 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10443 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10444 }
10445 }
10446 /* If this is a type, walk the needed fields in the type. */
10447 else if (TYPE_P (*tp))
10448 return walk_type_fields (*tp, func, data, pset, lh);
10449 break;
10450 }
10451
10452 /* We didn't find what we were looking for. */
10453 return NULL_TREE;
10454
10455 #undef WALK_SUBTREE_TAIL
10456 }
10457 #undef WALK_SUBTREE
10458
10459 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10460
10461 tree
10462 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10463 walk_tree_lh lh)
10464 {
10465 tree result;
10466 struct pointer_set_t *pset;
10467
10468 pset = pointer_set_create ();
10469 result = walk_tree_1 (tp, func, data, pset, lh);
10470 pointer_set_destroy (pset);
10471 return result;
10472 }
10473
10474
10475 tree *
10476 tree_block (tree t)
10477 {
10478 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10479
10480 if (IS_EXPR_CODE_CLASS (c))
10481 return &t->exp.block;
10482 gcc_unreachable ();
10483 return NULL;
10484 }
10485
10486 /* Create a nameless artificial label and put it in the current
10487 function context. The label has a location of LOC. Returns the
10488 newly created label. */
10489
10490 tree
10491 create_artificial_label (location_t loc)
10492 {
10493 tree lab = build_decl (loc,
10494 LABEL_DECL, NULL_TREE, void_type_node);
10495
10496 DECL_ARTIFICIAL (lab) = 1;
10497 DECL_IGNORED_P (lab) = 1;
10498 DECL_CONTEXT (lab) = current_function_decl;
10499 return lab;
10500 }
10501
10502 /* Given a tree, try to return a useful variable name that we can use
10503 to prefix a temporary that is being assigned the value of the tree.
10504 I.E. given <temp> = &A, return A. */
10505
10506 const char *
10507 get_name (tree t)
10508 {
10509 tree stripped_decl;
10510
10511 stripped_decl = t;
10512 STRIP_NOPS (stripped_decl);
10513 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10514 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10515 else
10516 {
10517 switch (TREE_CODE (stripped_decl))
10518 {
10519 case ADDR_EXPR:
10520 return get_name (TREE_OPERAND (stripped_decl, 0));
10521 default:
10522 return NULL;
10523 }
10524 }
10525 }
10526
10527 /* Return true if TYPE has a variable argument list. */
10528
10529 bool
10530 stdarg_p (const_tree fntype)
10531 {
10532 function_args_iterator args_iter;
10533 tree n = NULL_TREE, t;
10534
10535 if (!fntype)
10536 return false;
10537
10538 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10539 {
10540 n = t;
10541 }
10542
10543 return n != NULL_TREE && n != void_type_node;
10544 }
10545
10546 /* Return true if TYPE has a prototype. */
10547
10548 bool
10549 prototype_p (tree fntype)
10550 {
10551 tree t;
10552
10553 gcc_assert (fntype != NULL_TREE);
10554
10555 t = TYPE_ARG_TYPES (fntype);
10556 return (t != NULL_TREE);
10557 }
10558
10559 /* If BLOCK is inlined from an __attribute__((__artificial__))
10560 routine, return pointer to location from where it has been
10561 called. */
10562 location_t *
10563 block_nonartificial_location (tree block)
10564 {
10565 location_t *ret = NULL;
10566
10567 while (block && TREE_CODE (block) == BLOCK
10568 && BLOCK_ABSTRACT_ORIGIN (block))
10569 {
10570 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10571
10572 while (TREE_CODE (ao) == BLOCK
10573 && BLOCK_ABSTRACT_ORIGIN (ao)
10574 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10575 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10576
10577 if (TREE_CODE (ao) == FUNCTION_DECL)
10578 {
10579 /* If AO is an artificial inline, point RET to the
10580 call site locus at which it has been inlined and continue
10581 the loop, in case AO's caller is also an artificial
10582 inline. */
10583 if (DECL_DECLARED_INLINE_P (ao)
10584 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10585 ret = &BLOCK_SOURCE_LOCATION (block);
10586 else
10587 break;
10588 }
10589 else if (TREE_CODE (ao) != BLOCK)
10590 break;
10591
10592 block = BLOCK_SUPERCONTEXT (block);
10593 }
10594 return ret;
10595 }
10596
10597
10598 /* If EXP is inlined from an __attribute__((__artificial__))
10599 function, return the location of the original call expression. */
10600
10601 location_t
10602 tree_nonartificial_location (tree exp)
10603 {
10604 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10605
10606 if (loc)
10607 return *loc;
10608 else
10609 return EXPR_LOCATION (exp);
10610 }
10611
10612
10613 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10614 nodes. */
10615
10616 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10617
10618 static hashval_t
10619 cl_option_hash_hash (const void *x)
10620 {
10621 const_tree const t = (const_tree) x;
10622 const char *p;
10623 size_t i;
10624 size_t len = 0;
10625 hashval_t hash = 0;
10626
10627 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10628 {
10629 p = (const char *)TREE_OPTIMIZATION (t);
10630 len = sizeof (struct cl_optimization);
10631 }
10632
10633 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10634 {
10635 p = (const char *)TREE_TARGET_OPTION (t);
10636 len = sizeof (struct cl_target_option);
10637 }
10638
10639 else
10640 gcc_unreachable ();
10641
10642 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10643 something else. */
10644 for (i = 0; i < len; i++)
10645 if (p[i])
10646 hash = (hash << 4) ^ ((i << 2) | p[i]);
10647
10648 return hash;
10649 }
10650
10651 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10652 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10653 same. */
10654
10655 static int
10656 cl_option_hash_eq (const void *x, const void *y)
10657 {
10658 const_tree const xt = (const_tree) x;
10659 const_tree const yt = (const_tree) y;
10660 const char *xp;
10661 const char *yp;
10662 size_t len;
10663
10664 if (TREE_CODE (xt) != TREE_CODE (yt))
10665 return 0;
10666
10667 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10668 {
10669 xp = (const char *)TREE_OPTIMIZATION (xt);
10670 yp = (const char *)TREE_OPTIMIZATION (yt);
10671 len = sizeof (struct cl_optimization);
10672 }
10673
10674 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10675 {
10676 xp = (const char *)TREE_TARGET_OPTION (xt);
10677 yp = (const char *)TREE_TARGET_OPTION (yt);
10678 len = sizeof (struct cl_target_option);
10679 }
10680
10681 else
10682 gcc_unreachable ();
10683
10684 return (memcmp (xp, yp, len) == 0);
10685 }
10686
10687 /* Build an OPTIMIZATION_NODE based on the current options. */
10688
10689 tree
10690 build_optimization_node (void)
10691 {
10692 tree t;
10693 void **slot;
10694
10695 /* Use the cache of optimization nodes. */
10696
10697 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10698 &global_options);
10699
10700 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10701 t = (tree) *slot;
10702 if (!t)
10703 {
10704 /* Insert this one into the hash table. */
10705 t = cl_optimization_node;
10706 *slot = t;
10707
10708 /* Make a new node for next time round. */
10709 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10710 }
10711
10712 return t;
10713 }
10714
10715 /* Build a TARGET_OPTION_NODE based on the current options. */
10716
10717 tree
10718 build_target_option_node (void)
10719 {
10720 tree t;
10721 void **slot;
10722
10723 /* Use the cache of optimization nodes. */
10724
10725 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10726 &global_options);
10727
10728 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10729 t = (tree) *slot;
10730 if (!t)
10731 {
10732 /* Insert this one into the hash table. */
10733 t = cl_target_option_node;
10734 *slot = t;
10735
10736 /* Make a new node for next time round. */
10737 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10738 }
10739
10740 return t;
10741 }
10742
10743 /* Determine the "ultimate origin" of a block. The block may be an inlined
10744 instance of an inlined instance of a block which is local to an inline
10745 function, so we have to trace all of the way back through the origin chain
10746 to find out what sort of node actually served as the original seed for the
10747 given block. */
10748
10749 tree
10750 block_ultimate_origin (const_tree block)
10751 {
10752 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10753
10754 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10755 nodes in the function to point to themselves; ignore that if
10756 we're trying to output the abstract instance of this function. */
10757 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10758 return NULL_TREE;
10759
10760 if (immediate_origin == NULL_TREE)
10761 return NULL_TREE;
10762 else
10763 {
10764 tree ret_val;
10765 tree lookahead = immediate_origin;
10766
10767 do
10768 {
10769 ret_val = lookahead;
10770 lookahead = (TREE_CODE (ret_val) == BLOCK
10771 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10772 }
10773 while (lookahead != NULL && lookahead != ret_val);
10774
10775 /* The block's abstract origin chain may not be the *ultimate* origin of
10776 the block. It could lead to a DECL that has an abstract origin set.
10777 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10778 will give us if it has one). Note that DECL's abstract origins are
10779 supposed to be the most distant ancestor (or so decl_ultimate_origin
10780 claims), so we don't need to loop following the DECL origins. */
10781 if (DECL_P (ret_val))
10782 return DECL_ORIGIN (ret_val);
10783
10784 return ret_val;
10785 }
10786 }
10787
10788 /* Return true if T1 and T2 are equivalent lists. */
10789
10790 bool
10791 list_equal_p (const_tree t1, const_tree t2)
10792 {
10793 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10794 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10795 return false;
10796 return !t1 && !t2;
10797 }
10798
10799 /* Return true iff conversion in EXP generates no instruction. Mark
10800 it inline so that we fully inline into the stripping functions even
10801 though we have two uses of this function. */
10802
10803 static inline bool
10804 tree_nop_conversion (const_tree exp)
10805 {
10806 tree outer_type, inner_type;
10807
10808 if (!CONVERT_EXPR_P (exp)
10809 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10810 return false;
10811 if (TREE_OPERAND (exp, 0) == error_mark_node)
10812 return false;
10813
10814 outer_type = TREE_TYPE (exp);
10815 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10816
10817 if (!inner_type)
10818 return false;
10819
10820 /* Use precision rather then machine mode when we can, which gives
10821 the correct answer even for submode (bit-field) types. */
10822 if ((INTEGRAL_TYPE_P (outer_type)
10823 || POINTER_TYPE_P (outer_type)
10824 || TREE_CODE (outer_type) == OFFSET_TYPE)
10825 && (INTEGRAL_TYPE_P (inner_type)
10826 || POINTER_TYPE_P (inner_type)
10827 || TREE_CODE (inner_type) == OFFSET_TYPE))
10828 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10829
10830 /* Otherwise fall back on comparing machine modes (e.g. for
10831 aggregate types, floats). */
10832 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10833 }
10834
10835 /* Return true iff conversion in EXP generates no instruction. Don't
10836 consider conversions changing the signedness. */
10837
10838 static bool
10839 tree_sign_nop_conversion (const_tree exp)
10840 {
10841 tree outer_type, inner_type;
10842
10843 if (!tree_nop_conversion (exp))
10844 return false;
10845
10846 outer_type = TREE_TYPE (exp);
10847 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10848
10849 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10850 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10851 }
10852
10853 /* Strip conversions from EXP according to tree_nop_conversion and
10854 return the resulting expression. */
10855
10856 tree
10857 tree_strip_nop_conversions (tree exp)
10858 {
10859 while (tree_nop_conversion (exp))
10860 exp = TREE_OPERAND (exp, 0);
10861 return exp;
10862 }
10863
10864 /* Strip conversions from EXP according to tree_sign_nop_conversion
10865 and return the resulting expression. */
10866
10867 tree
10868 tree_strip_sign_nop_conversions (tree exp)
10869 {
10870 while (tree_sign_nop_conversion (exp))
10871 exp = TREE_OPERAND (exp, 0);
10872 return exp;
10873 }
10874
10875 static GTY(()) tree gcc_eh_personality_decl;
10876
10877 /* Return the GCC personality function decl. */
10878
10879 tree
10880 lhd_gcc_personality (void)
10881 {
10882 if (!gcc_eh_personality_decl)
10883 gcc_eh_personality_decl = build_personality_function ("gcc");
10884 return gcc_eh_personality_decl;
10885 }
10886
10887 /* Try to find a base info of BINFO that would have its field decl at offset
10888 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10889 found, return, otherwise return NULL_TREE. */
10890
10891 tree
10892 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10893 {
10894 tree type;
10895
10896 if (offset == 0)
10897 return binfo;
10898
10899 type = TREE_TYPE (binfo);
10900 while (offset > 0)
10901 {
10902 tree base_binfo, found_binfo;
10903 HOST_WIDE_INT pos, size;
10904 tree fld;
10905 int i;
10906
10907 if (TREE_CODE (type) != RECORD_TYPE)
10908 return NULL_TREE;
10909
10910 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10911 {
10912 if (TREE_CODE (fld) != FIELD_DECL)
10913 continue;
10914
10915 pos = int_bit_position (fld);
10916 size = tree_low_cst (DECL_SIZE (fld), 1);
10917 if (pos <= offset && (pos + size) > offset)
10918 break;
10919 }
10920 if (!fld)
10921 return NULL_TREE;
10922
10923 found_binfo = NULL_TREE;
10924 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10925 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10926 {
10927 found_binfo = base_binfo;
10928 break;
10929 }
10930
10931 if (!found_binfo)
10932 return NULL_TREE;
10933
10934 type = TREE_TYPE (fld);
10935 binfo = found_binfo;
10936 offset -= pos;
10937 }
10938 if (type != expected_type)
10939 return NULL_TREE;
10940 return binfo;
10941 }
10942
10943 /* Returns true if X is a typedef decl. */
10944
10945 bool
10946 is_typedef_decl (tree x)
10947 {
10948 return (x && TREE_CODE (x) == TYPE_DECL
10949 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10950 }
10951
10952 /* Returns true iff TYPE is a type variant created for a typedef. */
10953
10954 bool
10955 typedef_variant_p (tree type)
10956 {
10957 return is_typedef_decl (TYPE_NAME (type));
10958 }
10959
10960 #include "gt-tree.h"