tree.c (is_attribute_p): Split out to ..
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52
53 /* Each tree code class has an associated string representation.
54 These must correspond to the tree_code_class entries. */
55
56 const char *const tree_code_class_strings[] =
57 {
58 "exceptional",
59 "constant",
60 "type",
61 "declaration",
62 "reference",
63 "comparison",
64 "unary",
65 "binary",
66 "statement",
67 "expression",
68 };
69
70 /* obstack.[ch] explicitly declined to prototype this. */
71 extern int _obstack_allocated_p (struct obstack *h, void *obj);
72
73 #ifdef GATHER_STATISTICS
74 /* Statistics-gathering stuff. */
75
76 int tree_node_counts[(int) all_kinds];
77 int tree_node_sizes[(int) all_kinds];
78
79 /* Keep in sync with tree.h:enum tree_node_kind. */
80 static const char * const tree_node_kind_names[] = {
81 "decls",
82 "types",
83 "blocks",
84 "stmts",
85 "refs",
86 "exprs",
87 "constants",
88 "identifiers",
89 "perm_tree_lists",
90 "temp_tree_lists",
91 "vecs",
92 "binfos",
93 "phi_nodes",
94 "ssa names",
95 "random kinds",
96 "lang_decl kinds",
97 "lang_type kinds"
98 };
99 #endif /* GATHER_STATISTICS */
100
101 /* Unique id for next decl created. */
102 static GTY(()) int next_decl_uid;
103 /* Unique id for next type created. */
104 static GTY(()) int next_type_uid = 1;
105
106 /* Since we cannot rehash a type after it is in the table, we have to
107 keep the hash code. */
108
109 struct type_hash GTY(())
110 {
111 unsigned long hash;
112 tree type;
113 };
114
115 /* Initial size of the hash table (rounded to next prime). */
116 #define TYPE_HASH_INITIAL_SIZE 1000
117
118 /* Now here is the hash table. When recording a type, it is added to
119 the slot whose index is the hash code. Note that the hash table is
120 used for several kinds of types (function types, array types and
121 array index range types, for now). While all these live in the
122 same table, they are completely independent, and the hash code is
123 computed differently for each of these. */
124
125 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
126 htab_t type_hash_table;
127
128 /* Hash table and temporary node for larger integer const values. */
129 static GTY (()) tree int_cst_node;
130 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
131 htab_t int_cst_hash_table;
132
133 static void set_type_quals (tree, int);
134 static int type_hash_eq (const void *, const void *);
135 static hashval_t type_hash_hash (const void *);
136 static hashval_t int_cst_hash_hash (const void *);
137 static int int_cst_hash_eq (const void *, const void *);
138 static void print_type_hash_statistics (void);
139 static tree make_vector_type (tree, int, enum machine_mode);
140 static int type_hash_marked_p (const void *);
141 static unsigned int type_hash_list (tree, hashval_t);
142 static unsigned int attribute_hash_list (tree, hashval_t);
143
144 tree global_trees[TI_MAX];
145 tree integer_types[itk_none];
146 \f
147 /* Init tree.c. */
148
149 void
150 init_ttree (void)
151 {
152 /* Initialize the hash table of types. */
153 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
154 type_hash_eq, 0);
155 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
156 int_cst_hash_eq, NULL);
157 int_cst_node = make_node (INTEGER_CST);
158 }
159
160 \f
161 /* The name of the object as the assembler will see it (but before any
162 translations made by ASM_OUTPUT_LABELREF). Often this is the same
163 as DECL_NAME. It is an IDENTIFIER_NODE. */
164 tree
165 decl_assembler_name (tree decl)
166 {
167 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
168 lang_hooks.set_decl_assembler_name (decl);
169 return DECL_CHECK (decl)->decl.assembler_name;
170 }
171
172 /* Compute the number of bytes occupied by a tree with code CODE.
173 This function cannot be used for TREE_VEC, PHI_NODE, or STRING_CST
174 codes, which are of variable length. */
175 size_t
176 tree_code_size (enum tree_code code)
177 {
178 switch (TREE_CODE_CLASS (code))
179 {
180 case tcc_declaration: /* A decl node */
181 return sizeof (struct tree_decl);
182
183 case tcc_type: /* a type node */
184 return sizeof (struct tree_type);
185
186 case tcc_reference: /* a reference */
187 case tcc_expression: /* an expression */
188 case tcc_statement: /* an expression with side effects */
189 case tcc_comparison: /* a comparison expression */
190 case tcc_unary: /* a unary arithmetic expression */
191 case tcc_binary: /* a binary arithmetic expression */
192 return (sizeof (struct tree_exp)
193 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
194
195 case tcc_constant: /* a constant */
196 switch (code)
197 {
198 case INTEGER_CST: return sizeof (struct tree_int_cst);
199 case REAL_CST: return sizeof (struct tree_real_cst);
200 case COMPLEX_CST: return sizeof (struct tree_complex);
201 case VECTOR_CST: return sizeof (struct tree_vector);
202 case STRING_CST: gcc_unreachable ();
203 default:
204 return lang_hooks.tree_size (code);
205 }
206
207 case tcc_exceptional: /* something random, like an identifier. */
208 switch (code)
209 {
210 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
211 case TREE_LIST: return sizeof (struct tree_list);
212
213 case ERROR_MARK:
214 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
215
216 case TREE_VEC:
217 case PHI_NODE: gcc_unreachable ();
218
219 case SSA_NAME: return sizeof (struct tree_ssa_name);
220
221 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
222 case BLOCK: return sizeof (struct tree_block);
223 case VALUE_HANDLE: return sizeof (struct tree_value_handle);
224
225 default:
226 return lang_hooks.tree_size (code);
227 }
228
229 default:
230 gcc_unreachable ();
231 }
232 }
233
234 /* Compute the number of bytes occupied by NODE. This routine only
235 looks at TREE_CODE, except for PHI_NODE and TREE_VEC nodes. */
236 size_t
237 tree_size (tree node)
238 {
239 enum tree_code code = TREE_CODE (node);
240 switch (code)
241 {
242 case PHI_NODE:
243 return (sizeof (struct tree_phi_node)
244 + (PHI_ARG_CAPACITY (node) - 1) * sizeof (struct phi_arg_d));
245
246 case TREE_VEC:
247 return (sizeof (struct tree_vec)
248 + (TREE_VEC_LENGTH (node) - 1) * sizeof(char *));
249
250 case STRING_CST:
251 return sizeof (struct tree_string) + TREE_STRING_LENGTH (node) - 1;
252
253 default:
254 return tree_code_size (code);
255 }
256 }
257
258 /* Return a newly allocated node of code CODE. For decl and type
259 nodes, some other fields are initialized. The rest of the node is
260 initialized to zero. This function cannot be used for PHI_NODE or
261 TREE_VEC nodes, which is enforced by asserts in tree_code_size.
262
263 Achoo! I got a code in the node. */
264
265 tree
266 make_node_stat (enum tree_code code MEM_STAT_DECL)
267 {
268 tree t;
269 enum tree_code_class type = TREE_CODE_CLASS (code);
270 size_t length = tree_code_size (code);
271 #ifdef GATHER_STATISTICS
272 tree_node_kind kind;
273
274 switch (type)
275 {
276 case tcc_declaration: /* A decl node */
277 kind = d_kind;
278 break;
279
280 case tcc_type: /* a type node */
281 kind = t_kind;
282 break;
283
284 case tcc_statement: /* an expression with side effects */
285 kind = s_kind;
286 break;
287
288 case tcc_reference: /* a reference */
289 kind = r_kind;
290 break;
291
292 case tcc_expression: /* an expression */
293 case tcc_comparison: /* a comparison expression */
294 case tcc_unary: /* a unary arithmetic expression */
295 case tcc_binary: /* a binary arithmetic expression */
296 kind = e_kind;
297 break;
298
299 case tcc_constant: /* a constant */
300 kind = c_kind;
301 break;
302
303 case tcc_exceptional: /* something random, like an identifier. */
304 switch (code)
305 {
306 case IDENTIFIER_NODE:
307 kind = id_kind;
308 break;
309
310 case TREE_VEC:;
311 kind = vec_kind;
312 break;
313
314 case TREE_BINFO:
315 kind = binfo_kind;
316 break;
317
318 case PHI_NODE:
319 kind = phi_kind;
320 break;
321
322 case SSA_NAME:
323 kind = ssa_name_kind;
324 break;
325
326 case BLOCK:
327 kind = b_kind;
328 break;
329
330 default:
331 kind = x_kind;
332 break;
333 }
334 break;
335
336 default:
337 gcc_unreachable ();
338 }
339
340 tree_node_counts[(int) kind]++;
341 tree_node_sizes[(int) kind] += length;
342 #endif
343
344 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
345
346 memset (t, 0, length);
347
348 TREE_SET_CODE (t, code);
349
350 switch (type)
351 {
352 case tcc_statement:
353 TREE_SIDE_EFFECTS (t) = 1;
354 break;
355
356 case tcc_declaration:
357 if (code != FUNCTION_DECL)
358 DECL_ALIGN (t) = 1;
359 DECL_USER_ALIGN (t) = 0;
360 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
361 DECL_SOURCE_LOCATION (t) = input_location;
362 DECL_UID (t) = next_decl_uid++;
363
364 /* We have not yet computed the alias set for this declaration. */
365 DECL_POINTER_ALIAS_SET (t) = -1;
366 break;
367
368 case tcc_type:
369 TYPE_UID (t) = next_type_uid++;
370 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
371 TYPE_USER_ALIGN (t) = 0;
372 TYPE_MAIN_VARIANT (t) = t;
373
374 /* Default to no attributes for type, but let target change that. */
375 TYPE_ATTRIBUTES (t) = NULL_TREE;
376 targetm.set_default_type_attributes (t);
377
378 /* We have not yet computed the alias set for this type. */
379 TYPE_ALIAS_SET (t) = -1;
380 break;
381
382 case tcc_constant:
383 TREE_CONSTANT (t) = 1;
384 TREE_INVARIANT (t) = 1;
385 break;
386
387 case tcc_expression:
388 switch (code)
389 {
390 case INIT_EXPR:
391 case MODIFY_EXPR:
392 case VA_ARG_EXPR:
393 case PREDECREMENT_EXPR:
394 case PREINCREMENT_EXPR:
395 case POSTDECREMENT_EXPR:
396 case POSTINCREMENT_EXPR:
397 /* All of these have side-effects, no matter what their
398 operands are. */
399 TREE_SIDE_EFFECTS (t) = 1;
400 break;
401
402 default:
403 break;
404 }
405 break;
406
407 default:
408 /* Other classes need no special treatment. */
409 break;
410 }
411
412 return t;
413 }
414 \f
415 /* Return a new node with the same contents as NODE except that its
416 TREE_CHAIN is zero and it has a fresh uid. */
417
418 tree
419 copy_node_stat (tree node MEM_STAT_DECL)
420 {
421 tree t;
422 enum tree_code code = TREE_CODE (node);
423 size_t length;
424
425 gcc_assert (code != STATEMENT_LIST);
426
427 length = tree_size (node);
428 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
429 memcpy (t, node, length);
430
431 TREE_CHAIN (t) = 0;
432 TREE_ASM_WRITTEN (t) = 0;
433 TREE_VISITED (t) = 0;
434 t->common.ann = 0;
435
436 if (TREE_CODE_CLASS (code) == tcc_declaration)
437 DECL_UID (t) = next_decl_uid++;
438 else if (TREE_CODE_CLASS (code) == tcc_type)
439 {
440 TYPE_UID (t) = next_type_uid++;
441 /* The following is so that the debug code for
442 the copy is different from the original type.
443 The two statements usually duplicate each other
444 (because they clear fields of the same union),
445 but the optimizer should catch that. */
446 TYPE_SYMTAB_POINTER (t) = 0;
447 TYPE_SYMTAB_ADDRESS (t) = 0;
448
449 /* Do not copy the values cache. */
450 if (TYPE_CACHED_VALUES_P(t))
451 {
452 TYPE_CACHED_VALUES_P (t) = 0;
453 TYPE_CACHED_VALUES (t) = NULL_TREE;
454 }
455 }
456
457 return t;
458 }
459
460 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
461 For example, this can copy a list made of TREE_LIST nodes. */
462
463 tree
464 copy_list (tree list)
465 {
466 tree head;
467 tree prev, next;
468
469 if (list == 0)
470 return 0;
471
472 head = prev = copy_node (list);
473 next = TREE_CHAIN (list);
474 while (next)
475 {
476 TREE_CHAIN (prev) = copy_node (next);
477 prev = TREE_CHAIN (prev);
478 next = TREE_CHAIN (next);
479 }
480 return head;
481 }
482
483 \f
484 /* Create an INT_CST node with a LOW value sign extended. */
485
486 tree
487 build_int_cst (tree type, HOST_WIDE_INT low)
488 {
489 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
490 }
491
492 /* Create an INT_CST node with a LOW value zero extended. */
493
494 tree
495 build_int_cstu (tree type, unsigned HOST_WIDE_INT low)
496 {
497 return build_int_cst_wide (type, low, 0);
498 }
499
500 /* Create an INT_CST node with a LOW value zero or sign extended depending
501 on the type. */
502
503 tree
504 build_int_cst_type (tree type, HOST_WIDE_INT low)
505 {
506 unsigned HOST_WIDE_INT val = (unsigned HOST_WIDE_INT) low;
507 unsigned bits;
508 bool signed_p;
509 bool negative;
510 tree ret;
511
512 if (!type)
513 type = integer_type_node;
514
515 bits = TYPE_PRECISION (type);
516 signed_p = !TYPE_UNSIGNED (type);
517 negative = ((val >> (bits - 1)) & 1) != 0;
518
519 if (signed_p && negative)
520 {
521 if (bits < HOST_BITS_PER_WIDE_INT)
522 val = val | ((~(unsigned HOST_WIDE_INT) 0) << bits);
523 ret = build_int_cst_wide (type, val, ~(unsigned HOST_WIDE_INT) 0);
524 }
525 else
526 {
527 if (bits < HOST_BITS_PER_WIDE_INT)
528 val = val & ~((~(unsigned HOST_WIDE_INT) 0) << bits);
529 ret = build_int_cst_wide (type, val, 0);
530 }
531
532 return ret;
533 }
534
535 /* These are the hash table functions for the hash table of INTEGER_CST
536 nodes of a sizetype. */
537
538 /* Return the hash code code X, an INTEGER_CST. */
539
540 static hashval_t
541 int_cst_hash_hash (const void *x)
542 {
543 tree t = (tree) x;
544
545 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
546 ^ htab_hash_pointer (TREE_TYPE (t)));
547 }
548
549 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
550 is the same as that given by *Y, which is the same. */
551
552 static int
553 int_cst_hash_eq (const void *x, const void *y)
554 {
555 tree xt = (tree) x;
556 tree yt = (tree) y;
557
558 return (TREE_TYPE (xt) == TREE_TYPE (yt)
559 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
560 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
561 }
562
563 /* Create an INT_CST node of TYPE and value HI:LOW. If TYPE is NULL,
564 integer_type_node is used. The returned node is always shared.
565 For small integers we use a per-type vector cache, for larger ones
566 we use a single hash table. */
567
568 tree
569 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
570 {
571 tree t;
572 int ix = -1;
573 int limit = 0;
574
575 if (!type)
576 type = integer_type_node;
577
578 switch (TREE_CODE (type))
579 {
580 case POINTER_TYPE:
581 case REFERENCE_TYPE:
582 /* Cache NULL pointer. */
583 if (!hi && !low)
584 {
585 limit = 1;
586 ix = 0;
587 }
588 break;
589
590 case BOOLEAN_TYPE:
591 /* Cache false or true. */
592 limit = 2;
593 if (!hi && low < 2)
594 ix = low;
595 break;
596
597 case INTEGER_TYPE:
598 case CHAR_TYPE:
599 case OFFSET_TYPE:
600 if (TYPE_UNSIGNED (type))
601 {
602 /* Cache 0..N */
603 limit = INTEGER_SHARE_LIMIT;
604 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
605 ix = low;
606 }
607 else
608 {
609 /* Cache -1..N */
610 limit = INTEGER_SHARE_LIMIT + 1;
611 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
612 ix = low + 1;
613 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
614 ix = 0;
615 }
616 break;
617 default:
618 break;
619 }
620
621 if (ix >= 0)
622 {
623 /* Look for it in the type's vector of small shared ints. */
624 if (!TYPE_CACHED_VALUES_P (type))
625 {
626 TYPE_CACHED_VALUES_P (type) = 1;
627 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
628 }
629
630 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
631 if (t)
632 {
633 /* Make sure no one is clobbering the shared constant. */
634 gcc_assert (TREE_TYPE (t) == type);
635 gcc_assert (TREE_INT_CST_LOW (t) == low);
636 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
637 }
638 else
639 {
640 /* Create a new shared int. */
641 t = make_node (INTEGER_CST);
642
643 TREE_INT_CST_LOW (t) = low;
644 TREE_INT_CST_HIGH (t) = hi;
645 TREE_TYPE (t) = type;
646
647 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
648 }
649 }
650 else
651 {
652 /* Use the cache of larger shared ints. */
653 void **slot;
654
655 TREE_INT_CST_LOW (int_cst_node) = low;
656 TREE_INT_CST_HIGH (int_cst_node) = hi;
657 TREE_TYPE (int_cst_node) = type;
658
659 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
660 t = *slot;
661 if (!t)
662 {
663 /* Insert this one into the hash table. */
664 t = int_cst_node;
665 *slot = t;
666 /* Make a new node for next time round. */
667 int_cst_node = make_node (INTEGER_CST);
668 }
669 }
670
671 return t;
672 }
673
674 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
675 and the rest are zeros. */
676
677 tree
678 build_low_bits_mask (tree type, unsigned bits)
679 {
680 unsigned HOST_WIDE_INT low;
681 HOST_WIDE_INT high;
682 unsigned HOST_WIDE_INT all_ones = ~(unsigned HOST_WIDE_INT) 0;
683
684 gcc_assert (bits <= TYPE_PRECISION (type));
685
686 if (bits == TYPE_PRECISION (type)
687 && !TYPE_UNSIGNED (type))
688 {
689 /* Sign extended all-ones mask. */
690 low = all_ones;
691 high = -1;
692 }
693 else if (bits <= HOST_BITS_PER_WIDE_INT)
694 {
695 low = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
696 high = 0;
697 }
698 else
699 {
700 bits -= HOST_BITS_PER_WIDE_INT;
701 low = all_ones;
702 high = all_ones >> (HOST_BITS_PER_WIDE_INT - bits);
703 }
704
705 return build_int_cst_wide (type, low, high);
706 }
707
708 /* Checks that X is integer constant that can be expressed in (unsigned)
709 HOST_WIDE_INT without loss of precision. */
710
711 bool
712 cst_and_fits_in_hwi (tree x)
713 {
714 if (TREE_CODE (x) != INTEGER_CST)
715 return false;
716
717 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
718 return false;
719
720 return (TREE_INT_CST_HIGH (x) == 0
721 || TREE_INT_CST_HIGH (x) == -1);
722 }
723
724 /* Return a new VECTOR_CST node whose type is TYPE and whose values
725 are in a list pointed by VALS. */
726
727 tree
728 build_vector (tree type, tree vals)
729 {
730 tree v = make_node (VECTOR_CST);
731 int over1 = 0, over2 = 0;
732 tree link;
733
734 TREE_VECTOR_CST_ELTS (v) = vals;
735 TREE_TYPE (v) = type;
736
737 /* Iterate through elements and check for overflow. */
738 for (link = vals; link; link = TREE_CHAIN (link))
739 {
740 tree value = TREE_VALUE (link);
741
742 over1 |= TREE_OVERFLOW (value);
743 over2 |= TREE_CONSTANT_OVERFLOW (value);
744 }
745
746 TREE_OVERFLOW (v) = over1;
747 TREE_CONSTANT_OVERFLOW (v) = over2;
748
749 return v;
750 }
751
752 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
753 are in a list pointed to by VALS. */
754 tree
755 build_constructor (tree type, tree vals)
756 {
757 tree c = make_node (CONSTRUCTOR);
758 TREE_TYPE (c) = type;
759 CONSTRUCTOR_ELTS (c) = vals;
760
761 /* ??? May not be necessary. Mirrors what build does. */
762 if (vals)
763 {
764 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
765 TREE_READONLY (c) = TREE_READONLY (vals);
766 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
767 TREE_INVARIANT (c) = TREE_INVARIANT (vals);
768 }
769
770 return c;
771 }
772
773 /* Return a new REAL_CST node whose type is TYPE and value is D. */
774
775 tree
776 build_real (tree type, REAL_VALUE_TYPE d)
777 {
778 tree v;
779 REAL_VALUE_TYPE *dp;
780 int overflow = 0;
781
782 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
783 Consider doing it via real_convert now. */
784
785 v = make_node (REAL_CST);
786 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
787 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
788
789 TREE_TYPE (v) = type;
790 TREE_REAL_CST_PTR (v) = dp;
791 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
792 return v;
793 }
794
795 /* Return a new REAL_CST node whose type is TYPE
796 and whose value is the integer value of the INTEGER_CST node I. */
797
798 REAL_VALUE_TYPE
799 real_value_from_int_cst (tree type, tree i)
800 {
801 REAL_VALUE_TYPE d;
802
803 /* Clear all bits of the real value type so that we can later do
804 bitwise comparisons to see if two values are the same. */
805 memset (&d, 0, sizeof d);
806
807 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
808 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
809 TYPE_UNSIGNED (TREE_TYPE (i)));
810 return d;
811 }
812
813 /* Given a tree representing an integer constant I, return a tree
814 representing the same value as a floating-point constant of type TYPE. */
815
816 tree
817 build_real_from_int_cst (tree type, tree i)
818 {
819 tree v;
820 int overflow = TREE_OVERFLOW (i);
821
822 v = build_real (type, real_value_from_int_cst (type, i));
823
824 TREE_OVERFLOW (v) |= overflow;
825 TREE_CONSTANT_OVERFLOW (v) |= overflow;
826 return v;
827 }
828
829 /* Return a newly constructed STRING_CST node whose value is
830 the LEN characters at STR.
831 The TREE_TYPE is not initialized. */
832
833 tree
834 build_string (int len, const char *str)
835 {
836 tree s;
837 size_t length;
838
839 length = len + sizeof (struct tree_string);
840
841 #ifdef GATHER_STATISTICS
842 tree_node_counts[(int) c_kind]++;
843 tree_node_sizes[(int) c_kind] += length;
844 #endif
845
846 s = ggc_alloc_tree (length);
847
848 memset (s, 0, sizeof (struct tree_common));
849 TREE_SET_CODE (s, STRING_CST);
850 TREE_STRING_LENGTH (s) = len;
851 memcpy ((char *) TREE_STRING_POINTER (s), str, len);
852 ((char *) TREE_STRING_POINTER (s))[len] = '\0';
853
854 return s;
855 }
856
857 /* Return a newly constructed COMPLEX_CST node whose value is
858 specified by the real and imaginary parts REAL and IMAG.
859 Both REAL and IMAG should be constant nodes. TYPE, if specified,
860 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
861
862 tree
863 build_complex (tree type, tree real, tree imag)
864 {
865 tree t = make_node (COMPLEX_CST);
866
867 TREE_REALPART (t) = real;
868 TREE_IMAGPART (t) = imag;
869 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
870 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
871 TREE_CONSTANT_OVERFLOW (t)
872 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
873 return t;
874 }
875
876 /* Build a BINFO with LEN language slots. */
877
878 tree
879 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
880 {
881 tree t;
882 size_t length = (offsetof (struct tree_binfo, base_binfos)
883 + VEC_embedded_size (tree, base_binfos));
884
885 #ifdef GATHER_STATISTICS
886 tree_node_counts[(int) binfo_kind]++;
887 tree_node_sizes[(int) binfo_kind] += length;
888 #endif
889
890 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
891
892 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
893
894 TREE_SET_CODE (t, TREE_BINFO);
895
896 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
897
898 return t;
899 }
900
901
902 /* Build a newly constructed TREE_VEC node of length LEN. */
903
904 tree
905 make_tree_vec_stat (int len MEM_STAT_DECL)
906 {
907 tree t;
908 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
909
910 #ifdef GATHER_STATISTICS
911 tree_node_counts[(int) vec_kind]++;
912 tree_node_sizes[(int) vec_kind] += length;
913 #endif
914
915 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
916
917 memset (t, 0, length);
918
919 TREE_SET_CODE (t, TREE_VEC);
920 TREE_VEC_LENGTH (t) = len;
921
922 return t;
923 }
924 \f
925 /* Return 1 if EXPR is the integer constant zero or a complex constant
926 of zero. */
927
928 int
929 integer_zerop (tree expr)
930 {
931 STRIP_NOPS (expr);
932
933 return ((TREE_CODE (expr) == INTEGER_CST
934 && ! TREE_CONSTANT_OVERFLOW (expr)
935 && TREE_INT_CST_LOW (expr) == 0
936 && TREE_INT_CST_HIGH (expr) == 0)
937 || (TREE_CODE (expr) == COMPLEX_CST
938 && integer_zerop (TREE_REALPART (expr))
939 && integer_zerop (TREE_IMAGPART (expr))));
940 }
941
942 /* Return 1 if EXPR is the integer constant one or the corresponding
943 complex constant. */
944
945 int
946 integer_onep (tree expr)
947 {
948 STRIP_NOPS (expr);
949
950 return ((TREE_CODE (expr) == INTEGER_CST
951 && ! TREE_CONSTANT_OVERFLOW (expr)
952 && TREE_INT_CST_LOW (expr) == 1
953 && TREE_INT_CST_HIGH (expr) == 0)
954 || (TREE_CODE (expr) == COMPLEX_CST
955 && integer_onep (TREE_REALPART (expr))
956 && integer_zerop (TREE_IMAGPART (expr))));
957 }
958
959 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
960 it contains. Likewise for the corresponding complex constant. */
961
962 int
963 integer_all_onesp (tree expr)
964 {
965 int prec;
966 int uns;
967
968 STRIP_NOPS (expr);
969
970 if (TREE_CODE (expr) == COMPLEX_CST
971 && integer_all_onesp (TREE_REALPART (expr))
972 && integer_zerop (TREE_IMAGPART (expr)))
973 return 1;
974
975 else if (TREE_CODE (expr) != INTEGER_CST
976 || TREE_CONSTANT_OVERFLOW (expr))
977 return 0;
978
979 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
980 if (!uns)
981 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
982 && TREE_INT_CST_HIGH (expr) == -1);
983
984 /* Note that using TYPE_PRECISION here is wrong. We care about the
985 actual bits, not the (arbitrary) range of the type. */
986 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
987 if (prec >= HOST_BITS_PER_WIDE_INT)
988 {
989 HOST_WIDE_INT high_value;
990 int shift_amount;
991
992 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
993
994 /* Can not handle precisions greater than twice the host int size. */
995 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
996 if (shift_amount == HOST_BITS_PER_WIDE_INT)
997 /* Shifting by the host word size is undefined according to the ANSI
998 standard, so we must handle this as a special case. */
999 high_value = -1;
1000 else
1001 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1002
1003 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1004 && TREE_INT_CST_HIGH (expr) == high_value);
1005 }
1006 else
1007 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1008 }
1009
1010 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1011 one bit on). */
1012
1013 int
1014 integer_pow2p (tree expr)
1015 {
1016 int prec;
1017 HOST_WIDE_INT high, low;
1018
1019 STRIP_NOPS (expr);
1020
1021 if (TREE_CODE (expr) == COMPLEX_CST
1022 && integer_pow2p (TREE_REALPART (expr))
1023 && integer_zerop (TREE_IMAGPART (expr)))
1024 return 1;
1025
1026 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
1027 return 0;
1028
1029 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1030 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1031 high = TREE_INT_CST_HIGH (expr);
1032 low = TREE_INT_CST_LOW (expr);
1033
1034 /* First clear all bits that are beyond the type's precision in case
1035 we've been sign extended. */
1036
1037 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1038 ;
1039 else if (prec > HOST_BITS_PER_WIDE_INT)
1040 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1041 else
1042 {
1043 high = 0;
1044 if (prec < HOST_BITS_PER_WIDE_INT)
1045 low &= ~((HOST_WIDE_INT) (-1) << prec);
1046 }
1047
1048 if (high == 0 && low == 0)
1049 return 0;
1050
1051 return ((high == 0 && (low & (low - 1)) == 0)
1052 || (low == 0 && (high & (high - 1)) == 0));
1053 }
1054
1055 /* Return 1 if EXPR is an integer constant other than zero or a
1056 complex constant other than zero. */
1057
1058 int
1059 integer_nonzerop (tree expr)
1060 {
1061 STRIP_NOPS (expr);
1062
1063 return ((TREE_CODE (expr) == INTEGER_CST
1064 && ! TREE_CONSTANT_OVERFLOW (expr)
1065 && (TREE_INT_CST_LOW (expr) != 0
1066 || TREE_INT_CST_HIGH (expr) != 0))
1067 || (TREE_CODE (expr) == COMPLEX_CST
1068 && (integer_nonzerop (TREE_REALPART (expr))
1069 || integer_nonzerop (TREE_IMAGPART (expr)))));
1070 }
1071
1072 /* Return the power of two represented by a tree node known to be a
1073 power of two. */
1074
1075 int
1076 tree_log2 (tree expr)
1077 {
1078 int prec;
1079 HOST_WIDE_INT high, low;
1080
1081 STRIP_NOPS (expr);
1082
1083 if (TREE_CODE (expr) == COMPLEX_CST)
1084 return tree_log2 (TREE_REALPART (expr));
1085
1086 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1087 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1088
1089 high = TREE_INT_CST_HIGH (expr);
1090 low = TREE_INT_CST_LOW (expr);
1091
1092 /* First clear all bits that are beyond the type's precision in case
1093 we've been sign extended. */
1094
1095 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1096 ;
1097 else if (prec > HOST_BITS_PER_WIDE_INT)
1098 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1099 else
1100 {
1101 high = 0;
1102 if (prec < HOST_BITS_PER_WIDE_INT)
1103 low &= ~((HOST_WIDE_INT) (-1) << prec);
1104 }
1105
1106 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1107 : exact_log2 (low));
1108 }
1109
1110 /* Similar, but return the largest integer Y such that 2 ** Y is less
1111 than or equal to EXPR. */
1112
1113 int
1114 tree_floor_log2 (tree expr)
1115 {
1116 int prec;
1117 HOST_WIDE_INT high, low;
1118
1119 STRIP_NOPS (expr);
1120
1121 if (TREE_CODE (expr) == COMPLEX_CST)
1122 return tree_log2 (TREE_REALPART (expr));
1123
1124 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
1125 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
1126
1127 high = TREE_INT_CST_HIGH (expr);
1128 low = TREE_INT_CST_LOW (expr);
1129
1130 /* First clear all bits that are beyond the type's precision in case
1131 we've been sign extended. Ignore if type's precision hasn't been set
1132 since what we are doing is setting it. */
1133
1134 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1135 ;
1136 else if (prec > HOST_BITS_PER_WIDE_INT)
1137 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1138 else
1139 {
1140 high = 0;
1141 if (prec < HOST_BITS_PER_WIDE_INT)
1142 low &= ~((HOST_WIDE_INT) (-1) << prec);
1143 }
1144
1145 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1146 : floor_log2 (low));
1147 }
1148
1149 /* Return 1 if EXPR is the real constant zero. */
1150
1151 int
1152 real_zerop (tree expr)
1153 {
1154 STRIP_NOPS (expr);
1155
1156 return ((TREE_CODE (expr) == REAL_CST
1157 && ! TREE_CONSTANT_OVERFLOW (expr)
1158 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
1159 || (TREE_CODE (expr) == COMPLEX_CST
1160 && real_zerop (TREE_REALPART (expr))
1161 && real_zerop (TREE_IMAGPART (expr))));
1162 }
1163
1164 /* Return 1 if EXPR is the real constant one in real or complex form. */
1165
1166 int
1167 real_onep (tree expr)
1168 {
1169 STRIP_NOPS (expr);
1170
1171 return ((TREE_CODE (expr) == REAL_CST
1172 && ! TREE_CONSTANT_OVERFLOW (expr)
1173 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1174 || (TREE_CODE (expr) == COMPLEX_CST
1175 && real_onep (TREE_REALPART (expr))
1176 && real_zerop (TREE_IMAGPART (expr))));
1177 }
1178
1179 /* Return 1 if EXPR is the real constant two. */
1180
1181 int
1182 real_twop (tree expr)
1183 {
1184 STRIP_NOPS (expr);
1185
1186 return ((TREE_CODE (expr) == REAL_CST
1187 && ! TREE_CONSTANT_OVERFLOW (expr)
1188 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1189 || (TREE_CODE (expr) == COMPLEX_CST
1190 && real_twop (TREE_REALPART (expr))
1191 && real_zerop (TREE_IMAGPART (expr))));
1192 }
1193
1194 /* Return 1 if EXPR is the real constant minus one. */
1195
1196 int
1197 real_minus_onep (tree expr)
1198 {
1199 STRIP_NOPS (expr);
1200
1201 return ((TREE_CODE (expr) == REAL_CST
1202 && ! TREE_CONSTANT_OVERFLOW (expr)
1203 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
1204 || (TREE_CODE (expr) == COMPLEX_CST
1205 && real_minus_onep (TREE_REALPART (expr))
1206 && real_zerop (TREE_IMAGPART (expr))));
1207 }
1208
1209 /* Nonzero if EXP is a constant or a cast of a constant. */
1210
1211 int
1212 really_constant_p (tree exp)
1213 {
1214 /* This is not quite the same as STRIP_NOPS. It does more. */
1215 while (TREE_CODE (exp) == NOP_EXPR
1216 || TREE_CODE (exp) == CONVERT_EXPR
1217 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1218 exp = TREE_OPERAND (exp, 0);
1219 return TREE_CONSTANT (exp);
1220 }
1221 \f
1222 /* Return first list element whose TREE_VALUE is ELEM.
1223 Return 0 if ELEM is not in LIST. */
1224
1225 tree
1226 value_member (tree elem, tree list)
1227 {
1228 while (list)
1229 {
1230 if (elem == TREE_VALUE (list))
1231 return list;
1232 list = TREE_CHAIN (list);
1233 }
1234 return NULL_TREE;
1235 }
1236
1237 /* Return first list element whose TREE_PURPOSE is ELEM.
1238 Return 0 if ELEM is not in LIST. */
1239
1240 tree
1241 purpose_member (tree elem, tree list)
1242 {
1243 while (list)
1244 {
1245 if (elem == TREE_PURPOSE (list))
1246 return list;
1247 list = TREE_CHAIN (list);
1248 }
1249 return NULL_TREE;
1250 }
1251
1252 /* Return nonzero if ELEM is part of the chain CHAIN. */
1253
1254 int
1255 chain_member (tree elem, tree chain)
1256 {
1257 while (chain)
1258 {
1259 if (elem == chain)
1260 return 1;
1261 chain = TREE_CHAIN (chain);
1262 }
1263
1264 return 0;
1265 }
1266
1267 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1268 We expect a null pointer to mark the end of the chain.
1269 This is the Lisp primitive `length'. */
1270
1271 int
1272 list_length (tree t)
1273 {
1274 tree p = t;
1275 #ifdef ENABLE_TREE_CHECKING
1276 tree q = t;
1277 #endif
1278 int len = 0;
1279
1280 while (p)
1281 {
1282 p = TREE_CHAIN (p);
1283 #ifdef ENABLE_TREE_CHECKING
1284 if (len % 2)
1285 q = TREE_CHAIN (q);
1286 gcc_assert (p != q);
1287 #endif
1288 len++;
1289 }
1290
1291 return len;
1292 }
1293
1294 /* Returns the number of FIELD_DECLs in TYPE. */
1295
1296 int
1297 fields_length (tree type)
1298 {
1299 tree t = TYPE_FIELDS (type);
1300 int count = 0;
1301
1302 for (; t; t = TREE_CHAIN (t))
1303 if (TREE_CODE (t) == FIELD_DECL)
1304 ++count;
1305
1306 return count;
1307 }
1308
1309 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1310 by modifying the last node in chain 1 to point to chain 2.
1311 This is the Lisp primitive `nconc'. */
1312
1313 tree
1314 chainon (tree op1, tree op2)
1315 {
1316 tree t1;
1317
1318 if (!op1)
1319 return op2;
1320 if (!op2)
1321 return op1;
1322
1323 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1324 continue;
1325 TREE_CHAIN (t1) = op2;
1326
1327 #ifdef ENABLE_TREE_CHECKING
1328 {
1329 tree t2;
1330 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1331 gcc_assert (t2 != t1);
1332 }
1333 #endif
1334
1335 return op1;
1336 }
1337
1338 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1339
1340 tree
1341 tree_last (tree chain)
1342 {
1343 tree next;
1344 if (chain)
1345 while ((next = TREE_CHAIN (chain)))
1346 chain = next;
1347 return chain;
1348 }
1349
1350 /* Reverse the order of elements in the chain T,
1351 and return the new head of the chain (old last element). */
1352
1353 tree
1354 nreverse (tree t)
1355 {
1356 tree prev = 0, decl, next;
1357 for (decl = t; decl; decl = next)
1358 {
1359 next = TREE_CHAIN (decl);
1360 TREE_CHAIN (decl) = prev;
1361 prev = decl;
1362 }
1363 return prev;
1364 }
1365 \f
1366 /* Return a newly created TREE_LIST node whose
1367 purpose and value fields are PARM and VALUE. */
1368
1369 tree
1370 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
1371 {
1372 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
1373 TREE_PURPOSE (t) = parm;
1374 TREE_VALUE (t) = value;
1375 return t;
1376 }
1377
1378 /* Return a newly created TREE_LIST node whose
1379 purpose and value fields are PURPOSE and VALUE
1380 and whose TREE_CHAIN is CHAIN. */
1381
1382 tree
1383 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
1384 {
1385 tree node;
1386
1387 node = ggc_alloc_zone_stat (sizeof (struct tree_list),
1388 tree_zone PASS_MEM_STAT);
1389
1390 memset (node, 0, sizeof (struct tree_common));
1391
1392 #ifdef GATHER_STATISTICS
1393 tree_node_counts[(int) x_kind]++;
1394 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1395 #endif
1396
1397 TREE_SET_CODE (node, TREE_LIST);
1398 TREE_CHAIN (node) = chain;
1399 TREE_PURPOSE (node) = purpose;
1400 TREE_VALUE (node) = value;
1401 return node;
1402 }
1403
1404 \f
1405 /* Return the size nominally occupied by an object of type TYPE
1406 when it resides in memory. The value is measured in units of bytes,
1407 and its data type is that normally used for type sizes
1408 (which is the first type created by make_signed_type or
1409 make_unsigned_type). */
1410
1411 tree
1412 size_in_bytes (tree type)
1413 {
1414 tree t;
1415
1416 if (type == error_mark_node)
1417 return integer_zero_node;
1418
1419 type = TYPE_MAIN_VARIANT (type);
1420 t = TYPE_SIZE_UNIT (type);
1421
1422 if (t == 0)
1423 {
1424 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
1425 return size_zero_node;
1426 }
1427
1428 if (TREE_CODE (t) == INTEGER_CST)
1429 t = force_fit_type (t, 0, false, false);
1430
1431 return t;
1432 }
1433
1434 /* Return the size of TYPE (in bytes) as a wide integer
1435 or return -1 if the size can vary or is larger than an integer. */
1436
1437 HOST_WIDE_INT
1438 int_size_in_bytes (tree type)
1439 {
1440 tree t;
1441
1442 if (type == error_mark_node)
1443 return 0;
1444
1445 type = TYPE_MAIN_VARIANT (type);
1446 t = TYPE_SIZE_UNIT (type);
1447 if (t == 0
1448 || TREE_CODE (t) != INTEGER_CST
1449 || TREE_OVERFLOW (t)
1450 || TREE_INT_CST_HIGH (t) != 0
1451 /* If the result would appear negative, it's too big to represent. */
1452 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1453 return -1;
1454
1455 return TREE_INT_CST_LOW (t);
1456 }
1457 \f
1458 /* Return the bit position of FIELD, in bits from the start of the record.
1459 This is a tree of type bitsizetype. */
1460
1461 tree
1462 bit_position (tree field)
1463 {
1464 return bit_from_pos (DECL_FIELD_OFFSET (field),
1465 DECL_FIELD_BIT_OFFSET (field));
1466 }
1467
1468 /* Likewise, but return as an integer. Abort if it cannot be represented
1469 in that way (since it could be a signed value, we don't have the option
1470 of returning -1 like int_size_in_byte can. */
1471
1472 HOST_WIDE_INT
1473 int_bit_position (tree field)
1474 {
1475 return tree_low_cst (bit_position (field), 0);
1476 }
1477 \f
1478 /* Return the byte position of FIELD, in bytes from the start of the record.
1479 This is a tree of type sizetype. */
1480
1481 tree
1482 byte_position (tree field)
1483 {
1484 return byte_from_pos (DECL_FIELD_OFFSET (field),
1485 DECL_FIELD_BIT_OFFSET (field));
1486 }
1487
1488 /* Likewise, but return as an integer. Abort if it cannot be represented
1489 in that way (since it could be a signed value, we don't have the option
1490 of returning -1 like int_size_in_byte can. */
1491
1492 HOST_WIDE_INT
1493 int_byte_position (tree field)
1494 {
1495 return tree_low_cst (byte_position (field), 0);
1496 }
1497 \f
1498 /* Return the strictest alignment, in bits, that T is known to have. */
1499
1500 unsigned int
1501 expr_align (tree t)
1502 {
1503 unsigned int align0, align1;
1504
1505 switch (TREE_CODE (t))
1506 {
1507 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1508 /* If we have conversions, we know that the alignment of the
1509 object must meet each of the alignments of the types. */
1510 align0 = expr_align (TREE_OPERAND (t, 0));
1511 align1 = TYPE_ALIGN (TREE_TYPE (t));
1512 return MAX (align0, align1);
1513
1514 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1515 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1516 case CLEANUP_POINT_EXPR:
1517 /* These don't change the alignment of an object. */
1518 return expr_align (TREE_OPERAND (t, 0));
1519
1520 case COND_EXPR:
1521 /* The best we can do is say that the alignment is the least aligned
1522 of the two arms. */
1523 align0 = expr_align (TREE_OPERAND (t, 1));
1524 align1 = expr_align (TREE_OPERAND (t, 2));
1525 return MIN (align0, align1);
1526
1527 case LABEL_DECL: case CONST_DECL:
1528 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1529 if (DECL_ALIGN (t) != 0)
1530 return DECL_ALIGN (t);
1531 break;
1532
1533 case FUNCTION_DECL:
1534 return FUNCTION_BOUNDARY;
1535
1536 default:
1537 break;
1538 }
1539
1540 /* Otherwise take the alignment from that of the type. */
1541 return TYPE_ALIGN (TREE_TYPE (t));
1542 }
1543 \f
1544 /* Return, as a tree node, the number of elements for TYPE (which is an
1545 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1546
1547 tree
1548 array_type_nelts (tree type)
1549 {
1550 tree index_type, min, max;
1551
1552 /* If they did it with unspecified bounds, then we should have already
1553 given an error about it before we got here. */
1554 if (! TYPE_DOMAIN (type))
1555 return error_mark_node;
1556
1557 index_type = TYPE_DOMAIN (type);
1558 min = TYPE_MIN_VALUE (index_type);
1559 max = TYPE_MAX_VALUE (index_type);
1560
1561 return (integer_zerop (min)
1562 ? max
1563 : fold (build2 (MINUS_EXPR, TREE_TYPE (max), max, min)));
1564 }
1565 \f
1566 /* If arg is static -- a reference to an object in static storage -- then
1567 return the object. This is not the same as the C meaning of `static'.
1568 If arg isn't static, return NULL. */
1569
1570 tree
1571 staticp (tree arg)
1572 {
1573 switch (TREE_CODE (arg))
1574 {
1575 case FUNCTION_DECL:
1576 /* Nested functions are static, even though taking their address will
1577 involve a trampoline as we unnest the nested function and create
1578 the trampoline on the tree level. */
1579 return arg;
1580
1581 case VAR_DECL:
1582 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1583 && ! DECL_THREAD_LOCAL (arg)
1584 && ! DECL_NON_ADDR_CONST_P (arg)
1585 ? arg : NULL);
1586
1587 case CONST_DECL:
1588 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1589 ? arg : NULL);
1590
1591 case CONSTRUCTOR:
1592 return TREE_STATIC (arg) ? arg : NULL;
1593
1594 case LABEL_DECL:
1595 case STRING_CST:
1596 return arg;
1597
1598 case COMPONENT_REF:
1599 /* If the thing being referenced is not a field, then it is
1600 something language specific. */
1601 if (TREE_CODE (TREE_OPERAND (arg, 1)) != FIELD_DECL)
1602 return (*lang_hooks.staticp) (arg);
1603
1604 /* If we are referencing a bitfield, we can't evaluate an
1605 ADDR_EXPR at compile time and so it isn't a constant. */
1606 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
1607 return NULL;
1608
1609 return staticp (TREE_OPERAND (arg, 0));
1610
1611 case BIT_FIELD_REF:
1612 return NULL;
1613
1614 case MISALIGNED_INDIRECT_REF:
1615 case ALIGN_INDIRECT_REF:
1616 case INDIRECT_REF:
1617 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
1618
1619 case ARRAY_REF:
1620 case ARRAY_RANGE_REF:
1621 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1622 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1623 return staticp (TREE_OPERAND (arg, 0));
1624 else
1625 return false;
1626
1627 default:
1628 if ((unsigned int) TREE_CODE (arg)
1629 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1630 return lang_hooks.staticp (arg);
1631 else
1632 return NULL;
1633 }
1634 }
1635 \f
1636 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1637 Do this to any expression which may be used in more than one place,
1638 but must be evaluated only once.
1639
1640 Normally, expand_expr would reevaluate the expression each time.
1641 Calling save_expr produces something that is evaluated and recorded
1642 the first time expand_expr is called on it. Subsequent calls to
1643 expand_expr just reuse the recorded value.
1644
1645 The call to expand_expr that generates code that actually computes
1646 the value is the first call *at compile time*. Subsequent calls
1647 *at compile time* generate code to use the saved value.
1648 This produces correct result provided that *at run time* control
1649 always flows through the insns made by the first expand_expr
1650 before reaching the other places where the save_expr was evaluated.
1651 You, the caller of save_expr, must make sure this is so.
1652
1653 Constants, and certain read-only nodes, are returned with no
1654 SAVE_EXPR because that is safe. Expressions containing placeholders
1655 are not touched; see tree.def for an explanation of what these
1656 are used for. */
1657
1658 tree
1659 save_expr (tree expr)
1660 {
1661 tree t = fold (expr);
1662 tree inner;
1663
1664 /* If the tree evaluates to a constant, then we don't want to hide that
1665 fact (i.e. this allows further folding, and direct checks for constants).
1666 However, a read-only object that has side effects cannot be bypassed.
1667 Since it is no problem to reevaluate literals, we just return the
1668 literal node. */
1669 inner = skip_simple_arithmetic (t);
1670
1671 if (TREE_INVARIANT (inner)
1672 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1673 || TREE_CODE (inner) == SAVE_EXPR
1674 || TREE_CODE (inner) == ERROR_MARK)
1675 return t;
1676
1677 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1678 it means that the size or offset of some field of an object depends on
1679 the value within another field.
1680
1681 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1682 and some variable since it would then need to be both evaluated once and
1683 evaluated more than once. Front-ends must assure this case cannot
1684 happen by surrounding any such subexpressions in their own SAVE_EXPR
1685 and forcing evaluation at the proper time. */
1686 if (contains_placeholder_p (inner))
1687 return t;
1688
1689 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
1690
1691 /* This expression might be placed ahead of a jump to ensure that the
1692 value was computed on both sides of the jump. So make sure it isn't
1693 eliminated as dead. */
1694 TREE_SIDE_EFFECTS (t) = 1;
1695 TREE_INVARIANT (t) = 1;
1696 return t;
1697 }
1698
1699 /* Look inside EXPR and into any simple arithmetic operations. Return
1700 the innermost non-arithmetic node. */
1701
1702 tree
1703 skip_simple_arithmetic (tree expr)
1704 {
1705 tree inner;
1706
1707 /* We don't care about whether this can be used as an lvalue in this
1708 context. */
1709 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1710 expr = TREE_OPERAND (expr, 0);
1711
1712 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1713 a constant, it will be more efficient to not make another SAVE_EXPR since
1714 it will allow better simplification and GCSE will be able to merge the
1715 computations if they actually occur. */
1716 inner = expr;
1717 while (1)
1718 {
1719 if (UNARY_CLASS_P (inner))
1720 inner = TREE_OPERAND (inner, 0);
1721 else if (BINARY_CLASS_P (inner))
1722 {
1723 if (TREE_INVARIANT (TREE_OPERAND (inner, 1)))
1724 inner = TREE_OPERAND (inner, 0);
1725 else if (TREE_INVARIANT (TREE_OPERAND (inner, 0)))
1726 inner = TREE_OPERAND (inner, 1);
1727 else
1728 break;
1729 }
1730 else
1731 break;
1732 }
1733
1734 return inner;
1735 }
1736
1737 /* Returns the index of the first non-tree operand for CODE, or the number
1738 of operands if all are trees. */
1739
1740 int
1741 first_rtl_op (enum tree_code code)
1742 {
1743 switch (code)
1744 {
1745 default:
1746 return TREE_CODE_LENGTH (code);
1747 }
1748 }
1749
1750 /* Return which tree structure is used by T. */
1751
1752 enum tree_node_structure_enum
1753 tree_node_structure (tree t)
1754 {
1755 enum tree_code code = TREE_CODE (t);
1756
1757 switch (TREE_CODE_CLASS (code))
1758 {
1759 case tcc_declaration:
1760 return TS_DECL;
1761 case tcc_type:
1762 return TS_TYPE;
1763 case tcc_reference:
1764 case tcc_comparison:
1765 case tcc_unary:
1766 case tcc_binary:
1767 case tcc_expression:
1768 case tcc_statement:
1769 return TS_EXP;
1770 default: /* tcc_constant and tcc_exceptional */
1771 break;
1772 }
1773 switch (code)
1774 {
1775 /* tcc_constant cases. */
1776 case INTEGER_CST: return TS_INT_CST;
1777 case REAL_CST: return TS_REAL_CST;
1778 case COMPLEX_CST: return TS_COMPLEX;
1779 case VECTOR_CST: return TS_VECTOR;
1780 case STRING_CST: return TS_STRING;
1781 /* tcc_exceptional cases. */
1782 case ERROR_MARK: return TS_COMMON;
1783 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1784 case TREE_LIST: return TS_LIST;
1785 case TREE_VEC: return TS_VEC;
1786 case PHI_NODE: return TS_PHI_NODE;
1787 case SSA_NAME: return TS_SSA_NAME;
1788 case PLACEHOLDER_EXPR: return TS_COMMON;
1789 case STATEMENT_LIST: return TS_STATEMENT_LIST;
1790 case BLOCK: return TS_BLOCK;
1791 case TREE_BINFO: return TS_BINFO;
1792 case VALUE_HANDLE: return TS_VALUE_HANDLE;
1793
1794 default:
1795 gcc_unreachable ();
1796 }
1797 }
1798 \f
1799 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1800 or offset that depends on a field within a record. */
1801
1802 bool
1803 contains_placeholder_p (tree exp)
1804 {
1805 enum tree_code code;
1806
1807 if (!exp)
1808 return 0;
1809
1810 code = TREE_CODE (exp);
1811 if (code == PLACEHOLDER_EXPR)
1812 return 1;
1813
1814 switch (TREE_CODE_CLASS (code))
1815 {
1816 case tcc_reference:
1817 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1818 position computations since they will be converted into a
1819 WITH_RECORD_EXPR involving the reference, which will assume
1820 here will be valid. */
1821 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1822
1823 case tcc_exceptional:
1824 if (code == TREE_LIST)
1825 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1826 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1827 break;
1828
1829 case tcc_unary:
1830 case tcc_binary:
1831 case tcc_comparison:
1832 case tcc_expression:
1833 switch (code)
1834 {
1835 case COMPOUND_EXPR:
1836 /* Ignoring the first operand isn't quite right, but works best. */
1837 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1838
1839 case COND_EXPR:
1840 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1841 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1842 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1843
1844 default:
1845 break;
1846 }
1847
1848 switch (first_rtl_op (code))
1849 {
1850 case 1:
1851 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1852 case 2:
1853 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1854 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1855 default:
1856 return 0;
1857 }
1858
1859 default:
1860 return 0;
1861 }
1862 return 0;
1863 }
1864
1865 /* Return true if any part of the computation of TYPE involves a
1866 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
1867 (for QUAL_UNION_TYPE) and field positions. */
1868
1869 static bool
1870 type_contains_placeholder_1 (tree type)
1871 {
1872 /* If the size contains a placeholder or the parent type (component type in
1873 the case of arrays) type involves a placeholder, this type does. */
1874 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1875 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1876 || (TREE_TYPE (type) != 0
1877 && type_contains_placeholder_p (TREE_TYPE (type))))
1878 return true;
1879
1880 /* Now do type-specific checks. Note that the last part of the check above
1881 greatly limits what we have to do below. */
1882 switch (TREE_CODE (type))
1883 {
1884 case VOID_TYPE:
1885 case COMPLEX_TYPE:
1886 case ENUMERAL_TYPE:
1887 case BOOLEAN_TYPE:
1888 case CHAR_TYPE:
1889 case POINTER_TYPE:
1890 case OFFSET_TYPE:
1891 case REFERENCE_TYPE:
1892 case METHOD_TYPE:
1893 case FILE_TYPE:
1894 case FUNCTION_TYPE:
1895 return false;
1896
1897 case INTEGER_TYPE:
1898 case REAL_TYPE:
1899 /* Here we just check the bounds. */
1900 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1901 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1902
1903 case ARRAY_TYPE:
1904 case SET_TYPE:
1905 case VECTOR_TYPE:
1906 /* We're already checked the component type (TREE_TYPE), so just check
1907 the index type. */
1908 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1909
1910 case RECORD_TYPE:
1911 case UNION_TYPE:
1912 case QUAL_UNION_TYPE:
1913 {
1914 tree field;
1915
1916 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1917 if (TREE_CODE (field) == FIELD_DECL
1918 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1919 || (TREE_CODE (type) == QUAL_UNION_TYPE
1920 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1921 || type_contains_placeholder_p (TREE_TYPE (field))))
1922 return true;
1923
1924 return false;
1925 }
1926
1927 default:
1928 gcc_unreachable ();
1929 }
1930 }
1931
1932 bool
1933 type_contains_placeholder_p (tree type)
1934 {
1935 bool result;
1936
1937 /* If the contains_placeholder_bits field has been initialized,
1938 then we know the answer. */
1939 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
1940 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
1941
1942 /* Indicate that we've seen this type node, and the answer is false.
1943 This is what we want to return if we run into recursion via fields. */
1944 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
1945
1946 /* Compute the real value. */
1947 result = type_contains_placeholder_1 (type);
1948
1949 /* Store the real value. */
1950 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
1951
1952 return result;
1953 }
1954 \f
1955 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1956 return a tree with all occurrences of references to F in a
1957 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1958 contains only arithmetic expressions or a CALL_EXPR with a
1959 PLACEHOLDER_EXPR occurring only in its arglist. */
1960
1961 tree
1962 substitute_in_expr (tree exp, tree f, tree r)
1963 {
1964 enum tree_code code = TREE_CODE (exp);
1965 tree op0, op1, op2;
1966 tree new;
1967 tree inner;
1968
1969 /* We handle TREE_LIST and COMPONENT_REF separately. */
1970 if (code == TREE_LIST)
1971 {
1972 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
1973 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
1974 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1975 return exp;
1976
1977 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1978 }
1979 else if (code == COMPONENT_REF)
1980 {
1981 /* If this expression is getting a value from a PLACEHOLDER_EXPR
1982 and it is the right field, replace it with R. */
1983 for (inner = TREE_OPERAND (exp, 0);
1984 REFERENCE_CLASS_P (inner);
1985 inner = TREE_OPERAND (inner, 0))
1986 ;
1987 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
1988 && TREE_OPERAND (exp, 1) == f)
1989 return r;
1990
1991 /* If this expression hasn't been completed let, leave it alone. */
1992 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && TREE_TYPE (inner) == 0)
1993 return exp;
1994
1995 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
1996 if (op0 == TREE_OPERAND (exp, 0))
1997 return exp;
1998
1999 new = fold (build3 (COMPONENT_REF, TREE_TYPE (exp),
2000 op0, TREE_OPERAND (exp, 1), NULL_TREE));
2001 }
2002 else
2003 switch (TREE_CODE_CLASS (code))
2004 {
2005 case tcc_constant:
2006 case tcc_declaration:
2007 return exp;
2008
2009 case tcc_exceptional:
2010 case tcc_unary:
2011 case tcc_binary:
2012 case tcc_comparison:
2013 case tcc_expression:
2014 case tcc_reference:
2015 switch (first_rtl_op (code))
2016 {
2017 case 0:
2018 return exp;
2019
2020 case 1:
2021 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2022 if (op0 == TREE_OPERAND (exp, 0))
2023 return exp;
2024
2025 new = fold (build1 (code, TREE_TYPE (exp), op0));
2026 break;
2027
2028 case 2:
2029 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2030 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2031
2032 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2033 return exp;
2034
2035 new = fold (build2 (code, TREE_TYPE (exp), op0, op1));
2036 break;
2037
2038 case 3:
2039 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
2040 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
2041 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
2042
2043 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2044 && op2 == TREE_OPERAND (exp, 2))
2045 return exp;
2046
2047 new = fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2048 break;
2049
2050 default:
2051 gcc_unreachable ();
2052 }
2053 break;
2054
2055 default:
2056 gcc_unreachable ();
2057 }
2058
2059 TREE_READONLY (new) = TREE_READONLY (exp);
2060 return new;
2061 }
2062
2063 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
2064 for it within OBJ, a tree that is an object or a chain of references. */
2065
2066 tree
2067 substitute_placeholder_in_expr (tree exp, tree obj)
2068 {
2069 enum tree_code code = TREE_CODE (exp);
2070 tree op0, op1, op2, op3;
2071
2072 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
2073 in the chain of OBJ. */
2074 if (code == PLACEHOLDER_EXPR)
2075 {
2076 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
2077 tree elt;
2078
2079 for (elt = obj; elt != 0;
2080 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2081 || TREE_CODE (elt) == COND_EXPR)
2082 ? TREE_OPERAND (elt, 1)
2083 : (REFERENCE_CLASS_P (elt)
2084 || UNARY_CLASS_P (elt)
2085 || BINARY_CLASS_P (elt)
2086 || EXPRESSION_CLASS_P (elt))
2087 ? TREE_OPERAND (elt, 0) : 0))
2088 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
2089 return elt;
2090
2091 for (elt = obj; elt != 0;
2092 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
2093 || TREE_CODE (elt) == COND_EXPR)
2094 ? TREE_OPERAND (elt, 1)
2095 : (REFERENCE_CLASS_P (elt)
2096 || UNARY_CLASS_P (elt)
2097 || BINARY_CLASS_P (elt)
2098 || EXPRESSION_CLASS_P (elt))
2099 ? TREE_OPERAND (elt, 0) : 0))
2100 if (POINTER_TYPE_P (TREE_TYPE (elt))
2101 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
2102 == need_type))
2103 return fold (build1 (INDIRECT_REF, need_type, elt));
2104
2105 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
2106 survives until RTL generation, there will be an error. */
2107 return exp;
2108 }
2109
2110 /* TREE_LIST is special because we need to look at TREE_VALUE
2111 and TREE_CHAIN, not TREE_OPERANDS. */
2112 else if (code == TREE_LIST)
2113 {
2114 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
2115 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
2116 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2117 return exp;
2118
2119 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2120 }
2121 else
2122 switch (TREE_CODE_CLASS (code))
2123 {
2124 case tcc_constant:
2125 case tcc_declaration:
2126 return exp;
2127
2128 case tcc_exceptional:
2129 case tcc_unary:
2130 case tcc_binary:
2131 case tcc_comparison:
2132 case tcc_expression:
2133 case tcc_reference:
2134 case tcc_statement:
2135 switch (first_rtl_op (code))
2136 {
2137 case 0:
2138 return exp;
2139
2140 case 1:
2141 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2142 if (op0 == TREE_OPERAND (exp, 0))
2143 return exp;
2144 else
2145 return fold (build1 (code, TREE_TYPE (exp), op0));
2146
2147 case 2:
2148 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2149 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2150
2151 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2152 return exp;
2153 else
2154 return fold (build2 (code, TREE_TYPE (exp), op0, op1));
2155
2156 case 3:
2157 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2158 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2159 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2160
2161 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2162 && op2 == TREE_OPERAND (exp, 2))
2163 return exp;
2164 else
2165 return fold (build3 (code, TREE_TYPE (exp), op0, op1, op2));
2166
2167 case 4:
2168 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
2169 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
2170 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
2171 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
2172
2173 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2174 && op2 == TREE_OPERAND (exp, 2)
2175 && op3 == TREE_OPERAND (exp, 3))
2176 return exp;
2177 else
2178 return fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
2179
2180 default:
2181 gcc_unreachable ();
2182 }
2183 break;
2184
2185 default:
2186 gcc_unreachable ();
2187 }
2188 }
2189 \f
2190 /* Stabilize a reference so that we can use it any number of times
2191 without causing its operands to be evaluated more than once.
2192 Returns the stabilized reference. This works by means of save_expr,
2193 so see the caveats in the comments about save_expr.
2194
2195 Also allows conversion expressions whose operands are references.
2196 Any other kind of expression is returned unchanged. */
2197
2198 tree
2199 stabilize_reference (tree ref)
2200 {
2201 tree result;
2202 enum tree_code code = TREE_CODE (ref);
2203
2204 switch (code)
2205 {
2206 case VAR_DECL:
2207 case PARM_DECL:
2208 case RESULT_DECL:
2209 /* No action is needed in this case. */
2210 return ref;
2211
2212 case NOP_EXPR:
2213 case CONVERT_EXPR:
2214 case FLOAT_EXPR:
2215 case FIX_TRUNC_EXPR:
2216 case FIX_FLOOR_EXPR:
2217 case FIX_ROUND_EXPR:
2218 case FIX_CEIL_EXPR:
2219 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2220 break;
2221
2222 case INDIRECT_REF:
2223 result = build_nt (INDIRECT_REF,
2224 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2225 break;
2226
2227 case COMPONENT_REF:
2228 result = build_nt (COMPONENT_REF,
2229 stabilize_reference (TREE_OPERAND (ref, 0)),
2230 TREE_OPERAND (ref, 1), NULL_TREE);
2231 break;
2232
2233 case BIT_FIELD_REF:
2234 result = build_nt (BIT_FIELD_REF,
2235 stabilize_reference (TREE_OPERAND (ref, 0)),
2236 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2237 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2238 break;
2239
2240 case ARRAY_REF:
2241 result = build_nt (ARRAY_REF,
2242 stabilize_reference (TREE_OPERAND (ref, 0)),
2243 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2244 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2245 break;
2246
2247 case ARRAY_RANGE_REF:
2248 result = build_nt (ARRAY_RANGE_REF,
2249 stabilize_reference (TREE_OPERAND (ref, 0)),
2250 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2251 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
2252 break;
2253
2254 case COMPOUND_EXPR:
2255 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2256 it wouldn't be ignored. This matters when dealing with
2257 volatiles. */
2258 return stabilize_reference_1 (ref);
2259
2260 /* If arg isn't a kind of lvalue we recognize, make no change.
2261 Caller should recognize the error for an invalid lvalue. */
2262 default:
2263 return ref;
2264
2265 case ERROR_MARK:
2266 return error_mark_node;
2267 }
2268
2269 TREE_TYPE (result) = TREE_TYPE (ref);
2270 TREE_READONLY (result) = TREE_READONLY (ref);
2271 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2272 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2273
2274 return result;
2275 }
2276
2277 /* Subroutine of stabilize_reference; this is called for subtrees of
2278 references. Any expression with side-effects must be put in a SAVE_EXPR
2279 to ensure that it is only evaluated once.
2280
2281 We don't put SAVE_EXPR nodes around everything, because assigning very
2282 simple expressions to temporaries causes us to miss good opportunities
2283 for optimizations. Among other things, the opportunity to fold in the
2284 addition of a constant into an addressing mode often gets lost, e.g.
2285 "y[i+1] += x;". In general, we take the approach that we should not make
2286 an assignment unless we are forced into it - i.e., that any non-side effect
2287 operator should be allowed, and that cse should take care of coalescing
2288 multiple utterances of the same expression should that prove fruitful. */
2289
2290 tree
2291 stabilize_reference_1 (tree e)
2292 {
2293 tree result;
2294 enum tree_code code = TREE_CODE (e);
2295
2296 /* We cannot ignore const expressions because it might be a reference
2297 to a const array but whose index contains side-effects. But we can
2298 ignore things that are actual constant or that already have been
2299 handled by this function. */
2300
2301 if (TREE_INVARIANT (e))
2302 return e;
2303
2304 switch (TREE_CODE_CLASS (code))
2305 {
2306 case tcc_exceptional:
2307 case tcc_type:
2308 case tcc_declaration:
2309 case tcc_comparison:
2310 case tcc_statement:
2311 case tcc_expression:
2312 case tcc_reference:
2313 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2314 so that it will only be evaluated once. */
2315 /* The reference (r) and comparison (<) classes could be handled as
2316 below, but it is generally faster to only evaluate them once. */
2317 if (TREE_SIDE_EFFECTS (e))
2318 return save_expr (e);
2319 return e;
2320
2321 case tcc_constant:
2322 /* Constants need no processing. In fact, we should never reach
2323 here. */
2324 return e;
2325
2326 case tcc_binary:
2327 /* Division is slow and tends to be compiled with jumps,
2328 especially the division by powers of 2 that is often
2329 found inside of an array reference. So do it just once. */
2330 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2331 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2332 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2333 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2334 return save_expr (e);
2335 /* Recursively stabilize each operand. */
2336 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2337 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2338 break;
2339
2340 case tcc_unary:
2341 /* Recursively stabilize each operand. */
2342 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2343 break;
2344
2345 default:
2346 gcc_unreachable ();
2347 }
2348
2349 TREE_TYPE (result) = TREE_TYPE (e);
2350 TREE_READONLY (result) = TREE_READONLY (e);
2351 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2352 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2353 TREE_INVARIANT (result) = 1;
2354
2355 return result;
2356 }
2357 \f
2358 /* Low-level constructors for expressions. */
2359
2360 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
2361 TREE_INVARIANT, and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
2362
2363 void
2364 recompute_tree_invarant_for_addr_expr (tree t)
2365 {
2366 tree node;
2367 bool tc = true, ti = true, se = false;
2368
2369 /* We started out assuming this address is both invariant and constant, but
2370 does not have side effects. Now go down any handled components and see if
2371 any of them involve offsets that are either non-constant or non-invariant.
2372 Also check for side-effects.
2373
2374 ??? Note that this code makes no attempt to deal with the case where
2375 taking the address of something causes a copy due to misalignment. */
2376
2377 #define UPDATE_TITCSE(NODE) \
2378 do { tree _node = (NODE); \
2379 if (_node && !TREE_INVARIANT (_node)) ti = false; \
2380 if (_node && !TREE_CONSTANT (_node)) tc = false; \
2381 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
2382
2383 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
2384 node = TREE_OPERAND (node, 0))
2385 {
2386 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
2387 array reference (probably made temporarily by the G++ front end),
2388 so ignore all the operands. */
2389 if ((TREE_CODE (node) == ARRAY_REF
2390 || TREE_CODE (node) == ARRAY_RANGE_REF)
2391 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
2392 {
2393 UPDATE_TITCSE (TREE_OPERAND (node, 1));
2394 if (TREE_OPERAND (node, 2))
2395 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2396 if (TREE_OPERAND (node, 3))
2397 UPDATE_TITCSE (TREE_OPERAND (node, 3));
2398 }
2399 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
2400 FIELD_DECL, apparently. The G++ front end can put something else
2401 there, at least temporarily. */
2402 else if (TREE_CODE (node) == COMPONENT_REF
2403 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
2404 {
2405 if (TREE_OPERAND (node, 2))
2406 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2407 }
2408 else if (TREE_CODE (node) == BIT_FIELD_REF)
2409 UPDATE_TITCSE (TREE_OPERAND (node, 2));
2410 }
2411
2412 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
2413 the address, since &(*a)->b is a form of addition. If it's a decl, it's
2414 invariant and constant if the decl is static. It's also invariant if it's
2415 a decl in the current function. Taking the address of a volatile variable
2416 is not volatile. If it's a constant, the address is both invariant and
2417 constant. Otherwise it's neither. */
2418 if (TREE_CODE (node) == INDIRECT_REF)
2419 UPDATE_TITCSE (TREE_OPERAND (node, 0));
2420 else if (DECL_P (node))
2421 {
2422 if (staticp (node))
2423 ;
2424 else if (decl_function_context (node) == current_function_decl
2425 /* Addresses of thread-local variables are invariant. */
2426 || (TREE_CODE (node) == VAR_DECL && DECL_THREAD_LOCAL (node)))
2427 tc = false;
2428 else
2429 ti = tc = false;
2430 }
2431 else if (CONSTANT_CLASS_P (node))
2432 ;
2433 else
2434 {
2435 ti = tc = false;
2436 se |= TREE_SIDE_EFFECTS (node);
2437 }
2438
2439 TREE_CONSTANT (t) = tc;
2440 TREE_INVARIANT (t) = ti;
2441 TREE_SIDE_EFFECTS (t) = se;
2442 #undef UPDATE_TITCSE
2443 }
2444
2445 /* Build an expression of code CODE, data type TYPE, and operands as
2446 specified. Expressions and reference nodes can be created this way.
2447 Constants, decls, types and misc nodes cannot be.
2448
2449 We define 5 non-variadic functions, from 0 to 4 arguments. This is
2450 enough for all extant tree codes. These functions can be called
2451 directly (preferably!), but can also be obtained via GCC preprocessor
2452 magic within the build macro. */
2453
2454 tree
2455 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
2456 {
2457 tree t;
2458
2459 gcc_assert (TREE_CODE_LENGTH (code) == 0);
2460
2461 t = make_node_stat (code PASS_MEM_STAT);
2462 TREE_TYPE (t) = tt;
2463
2464 return t;
2465 }
2466
2467 tree
2468 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
2469 {
2470 int length = sizeof (struct tree_exp);
2471 #ifdef GATHER_STATISTICS
2472 tree_node_kind kind;
2473 #endif
2474 tree t;
2475
2476 #ifdef GATHER_STATISTICS
2477 switch (TREE_CODE_CLASS (code))
2478 {
2479 case tcc_statement: /* an expression with side effects */
2480 kind = s_kind;
2481 break;
2482 case tcc_reference: /* a reference */
2483 kind = r_kind;
2484 break;
2485 default:
2486 kind = e_kind;
2487 break;
2488 }
2489
2490 tree_node_counts[(int) kind]++;
2491 tree_node_sizes[(int) kind] += length;
2492 #endif
2493
2494 gcc_assert (TREE_CODE_LENGTH (code) == 1);
2495
2496 t = ggc_alloc_zone_stat (length, tree_zone PASS_MEM_STAT);
2497
2498 memset (t, 0, sizeof (struct tree_common));
2499
2500 TREE_SET_CODE (t, code);
2501
2502 TREE_TYPE (t) = type;
2503 #ifdef USE_MAPPED_LOCATION
2504 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
2505 #else
2506 SET_EXPR_LOCUS (t, NULL);
2507 #endif
2508 TREE_COMPLEXITY (t) = 0;
2509 TREE_OPERAND (t, 0) = node;
2510 TREE_BLOCK (t) = NULL_TREE;
2511 if (node && !TYPE_P (node) && first_rtl_op (code) != 0)
2512 {
2513 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2514 TREE_READONLY (t) = TREE_READONLY (node);
2515 }
2516
2517 if (TREE_CODE_CLASS (code) == tcc_statement)
2518 TREE_SIDE_EFFECTS (t) = 1;
2519 else switch (code)
2520 {
2521 case INIT_EXPR:
2522 case MODIFY_EXPR:
2523 case VA_ARG_EXPR:
2524 case PREDECREMENT_EXPR:
2525 case PREINCREMENT_EXPR:
2526 case POSTDECREMENT_EXPR:
2527 case POSTINCREMENT_EXPR:
2528 /* All of these have side-effects, no matter what their
2529 operands are. */
2530 TREE_SIDE_EFFECTS (t) = 1;
2531 TREE_READONLY (t) = 0;
2532 break;
2533
2534 case MISALIGNED_INDIRECT_REF:
2535 case ALIGN_INDIRECT_REF:
2536 case INDIRECT_REF:
2537 /* Whether a dereference is readonly has nothing to do with whether
2538 its operand is readonly. */
2539 TREE_READONLY (t) = 0;
2540 break;
2541
2542 case ADDR_EXPR:
2543 if (node)
2544 recompute_tree_invarant_for_addr_expr (t);
2545 break;
2546
2547 default:
2548 if (TREE_CODE_CLASS (code) == tcc_unary
2549 && node && !TYPE_P (node)
2550 && TREE_CONSTANT (node))
2551 TREE_CONSTANT (t) = 1;
2552 if (TREE_CODE_CLASS (code) == tcc_unary
2553 && node && TREE_INVARIANT (node))
2554 TREE_INVARIANT (t) = 1;
2555 if (TREE_CODE_CLASS (code) == tcc_reference
2556 && node && TREE_THIS_VOLATILE (node))
2557 TREE_THIS_VOLATILE (t) = 1;
2558 break;
2559 }
2560
2561 return t;
2562 }
2563
2564 #define PROCESS_ARG(N) \
2565 do { \
2566 TREE_OPERAND (t, N) = arg##N; \
2567 if (arg##N &&!TYPE_P (arg##N) && fro > N) \
2568 { \
2569 if (TREE_SIDE_EFFECTS (arg##N)) \
2570 side_effects = 1; \
2571 if (!TREE_READONLY (arg##N)) \
2572 read_only = 0; \
2573 if (!TREE_CONSTANT (arg##N)) \
2574 constant = 0; \
2575 if (!TREE_INVARIANT (arg##N)) \
2576 invariant = 0; \
2577 } \
2578 } while (0)
2579
2580 tree
2581 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
2582 {
2583 bool constant, read_only, side_effects, invariant;
2584 tree t;
2585 int fro;
2586
2587 gcc_assert (TREE_CODE_LENGTH (code) == 2);
2588
2589 t = make_node_stat (code PASS_MEM_STAT);
2590 TREE_TYPE (t) = tt;
2591
2592 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2593 result based on those same flags for the arguments. But if the
2594 arguments aren't really even `tree' expressions, we shouldn't be trying
2595 to do this. */
2596 fro = first_rtl_op (code);
2597
2598 /* Expressions without side effects may be constant if their
2599 arguments are as well. */
2600 constant = (TREE_CODE_CLASS (code) == tcc_comparison
2601 || TREE_CODE_CLASS (code) == tcc_binary);
2602 read_only = 1;
2603 side_effects = TREE_SIDE_EFFECTS (t);
2604 invariant = constant;
2605
2606 PROCESS_ARG(0);
2607 PROCESS_ARG(1);
2608
2609 TREE_READONLY (t) = read_only;
2610 TREE_CONSTANT (t) = constant;
2611 TREE_INVARIANT (t) = invariant;
2612 TREE_SIDE_EFFECTS (t) = side_effects;
2613 TREE_THIS_VOLATILE (t)
2614 = (TREE_CODE_CLASS (code) == tcc_reference
2615 && arg0 && TREE_THIS_VOLATILE (arg0));
2616
2617 return t;
2618 }
2619
2620 tree
2621 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2622 tree arg2 MEM_STAT_DECL)
2623 {
2624 bool constant, read_only, side_effects, invariant;
2625 tree t;
2626 int fro;
2627
2628 gcc_assert (TREE_CODE_LENGTH (code) == 3);
2629
2630 t = make_node_stat (code PASS_MEM_STAT);
2631 TREE_TYPE (t) = tt;
2632
2633 fro = first_rtl_op (code);
2634
2635 side_effects = TREE_SIDE_EFFECTS (t);
2636
2637 PROCESS_ARG(0);
2638 PROCESS_ARG(1);
2639 PROCESS_ARG(2);
2640
2641 if (code == CALL_EXPR && !side_effects)
2642 {
2643 tree node;
2644 int i;
2645
2646 /* Calls have side-effects, except those to const or
2647 pure functions. */
2648 i = call_expr_flags (t);
2649 if (!(i & (ECF_CONST | ECF_PURE)))
2650 side_effects = 1;
2651
2652 /* And even those have side-effects if their arguments do. */
2653 else for (node = arg1; node; node = TREE_CHAIN (node))
2654 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2655 {
2656 side_effects = 1;
2657 break;
2658 }
2659 }
2660
2661 TREE_SIDE_EFFECTS (t) = side_effects;
2662 TREE_THIS_VOLATILE (t)
2663 = (TREE_CODE_CLASS (code) == tcc_reference
2664 && arg0 && TREE_THIS_VOLATILE (arg0));
2665
2666 return t;
2667 }
2668
2669 tree
2670 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
2671 tree arg2, tree arg3 MEM_STAT_DECL)
2672 {
2673 bool constant, read_only, side_effects, invariant;
2674 tree t;
2675 int fro;
2676
2677 gcc_assert (TREE_CODE_LENGTH (code) == 4);
2678
2679 t = make_node_stat (code PASS_MEM_STAT);
2680 TREE_TYPE (t) = tt;
2681
2682 fro = first_rtl_op (code);
2683
2684 side_effects = TREE_SIDE_EFFECTS (t);
2685
2686 PROCESS_ARG(0);
2687 PROCESS_ARG(1);
2688 PROCESS_ARG(2);
2689 PROCESS_ARG(3);
2690
2691 TREE_SIDE_EFFECTS (t) = side_effects;
2692 TREE_THIS_VOLATILE (t)
2693 = (TREE_CODE_CLASS (code) == tcc_reference
2694 && arg0 && TREE_THIS_VOLATILE (arg0));
2695
2696 return t;
2697 }
2698
2699 /* Backup definition for non-gcc build compilers. */
2700
2701 tree
2702 (build) (enum tree_code code, tree tt, ...)
2703 {
2704 tree t, arg0, arg1, arg2, arg3;
2705 int length = TREE_CODE_LENGTH (code);
2706 va_list p;
2707
2708 va_start (p, tt);
2709 switch (length)
2710 {
2711 case 0:
2712 t = build0 (code, tt);
2713 break;
2714 case 1:
2715 arg0 = va_arg (p, tree);
2716 t = build1 (code, tt, arg0);
2717 break;
2718 case 2:
2719 arg0 = va_arg (p, tree);
2720 arg1 = va_arg (p, tree);
2721 t = build2 (code, tt, arg0, arg1);
2722 break;
2723 case 3:
2724 arg0 = va_arg (p, tree);
2725 arg1 = va_arg (p, tree);
2726 arg2 = va_arg (p, tree);
2727 t = build3 (code, tt, arg0, arg1, arg2);
2728 break;
2729 case 4:
2730 arg0 = va_arg (p, tree);
2731 arg1 = va_arg (p, tree);
2732 arg2 = va_arg (p, tree);
2733 arg3 = va_arg (p, tree);
2734 t = build4 (code, tt, arg0, arg1, arg2, arg3);
2735 break;
2736 default:
2737 gcc_unreachable ();
2738 }
2739 va_end (p);
2740
2741 return t;
2742 }
2743
2744 /* Similar except don't specify the TREE_TYPE
2745 and leave the TREE_SIDE_EFFECTS as 0.
2746 It is permissible for arguments to be null,
2747 or even garbage if their values do not matter. */
2748
2749 tree
2750 build_nt (enum tree_code code, ...)
2751 {
2752 tree t;
2753 int length;
2754 int i;
2755 va_list p;
2756
2757 va_start (p, code);
2758
2759 t = make_node (code);
2760 length = TREE_CODE_LENGTH (code);
2761
2762 for (i = 0; i < length; i++)
2763 TREE_OPERAND (t, i) = va_arg (p, tree);
2764
2765 va_end (p);
2766 return t;
2767 }
2768 \f
2769 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2770 We do NOT enter this node in any sort of symbol table.
2771
2772 layout_decl is used to set up the decl's storage layout.
2773 Other slots are initialized to 0 or null pointers. */
2774
2775 tree
2776 build_decl_stat (enum tree_code code, tree name, tree type MEM_STAT_DECL)
2777 {
2778 tree t;
2779
2780 t = make_node_stat (code PASS_MEM_STAT);
2781
2782 /* if (type == error_mark_node)
2783 type = integer_type_node; */
2784 /* That is not done, deliberately, so that having error_mark_node
2785 as the type can suppress useless errors in the use of this variable. */
2786
2787 DECL_NAME (t) = name;
2788 TREE_TYPE (t) = type;
2789
2790 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2791 layout_decl (t, 0);
2792 else if (code == FUNCTION_DECL)
2793 DECL_MODE (t) = FUNCTION_MODE;
2794
2795 /* Set default visibility to whatever the user supplied with
2796 visibility_specified depending on #pragma GCC visibility. */
2797 DECL_VISIBILITY (t) = default_visibility;
2798 DECL_VISIBILITY_SPECIFIED (t) = visibility_options.inpragma;
2799
2800 return t;
2801 }
2802 \f
2803 /* BLOCK nodes are used to represent the structure of binding contours
2804 and declarations, once those contours have been exited and their contents
2805 compiled. This information is used for outputting debugging info. */
2806
2807 tree
2808 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2809 tree supercontext, tree chain)
2810 {
2811 tree block = make_node (BLOCK);
2812
2813 BLOCK_VARS (block) = vars;
2814 BLOCK_SUBBLOCKS (block) = subblocks;
2815 BLOCK_SUPERCONTEXT (block) = supercontext;
2816 BLOCK_CHAIN (block) = chain;
2817 return block;
2818 }
2819
2820 #if 1 /* ! defined(USE_MAPPED_LOCATION) */
2821 /* ??? gengtype doesn't handle conditionals */
2822 static GTY(()) tree last_annotated_node;
2823 #endif
2824
2825 #ifdef USE_MAPPED_LOCATION
2826
2827 expanded_location
2828 expand_location (source_location loc)
2829 {
2830 expanded_location xloc;
2831 if (loc == 0) { xloc.file = NULL; xloc.line = 0; xloc.column = 0; }
2832 else
2833 {
2834 const struct line_map *map = linemap_lookup (&line_table, loc);
2835 xloc.file = map->to_file;
2836 xloc.line = SOURCE_LINE (map, loc);
2837 xloc.column = SOURCE_COLUMN (map, loc);
2838 };
2839 return xloc;
2840 }
2841
2842 #else
2843
2844 /* Record the exact location where an expression or an identifier were
2845 encountered. */
2846
2847 void
2848 annotate_with_file_line (tree node, const char *file, int line)
2849 {
2850 /* Roughly one percent of the calls to this function are to annotate
2851 a node with the same information already attached to that node!
2852 Just return instead of wasting memory. */
2853 if (EXPR_LOCUS (node)
2854 && (EXPR_FILENAME (node) == file
2855 || ! strcmp (EXPR_FILENAME (node), file))
2856 && EXPR_LINENO (node) == line)
2857 {
2858 last_annotated_node = node;
2859 return;
2860 }
2861
2862 /* In heavily macroized code (such as GCC itself) this single
2863 entry cache can reduce the number of allocations by more
2864 than half. */
2865 if (last_annotated_node
2866 && EXPR_LOCUS (last_annotated_node)
2867 && (EXPR_FILENAME (last_annotated_node) == file
2868 || ! strcmp (EXPR_FILENAME (last_annotated_node), file))
2869 && EXPR_LINENO (last_annotated_node) == line)
2870 {
2871 SET_EXPR_LOCUS (node, EXPR_LOCUS (last_annotated_node));
2872 return;
2873 }
2874
2875 SET_EXPR_LOCUS (node, ggc_alloc (sizeof (location_t)));
2876 EXPR_LINENO (node) = line;
2877 EXPR_FILENAME (node) = file;
2878 last_annotated_node = node;
2879 }
2880
2881 void
2882 annotate_with_locus (tree node, location_t locus)
2883 {
2884 annotate_with_file_line (node, locus.file, locus.line);
2885 }
2886 #endif
2887 \f
2888 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2889 is ATTRIBUTE. */
2890
2891 tree
2892 build_decl_attribute_variant (tree ddecl, tree attribute)
2893 {
2894 DECL_ATTRIBUTES (ddecl) = attribute;
2895 return ddecl;
2896 }
2897
2898 /* Borrowed from hashtab.c iterative_hash implementation. */
2899 #define mix(a,b,c) \
2900 { \
2901 a -= b; a -= c; a ^= (c>>13); \
2902 b -= c; b -= a; b ^= (a<< 8); \
2903 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
2904 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
2905 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
2906 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
2907 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
2908 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
2909 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
2910 }
2911
2912
2913 /* Produce good hash value combining VAL and VAL2. */
2914 static inline hashval_t
2915 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
2916 {
2917 /* the golden ratio; an arbitrary value. */
2918 hashval_t a = 0x9e3779b9;
2919
2920 mix (a, val, val2);
2921 return val2;
2922 }
2923
2924 /* Produce good hash value combining PTR and VAL2. */
2925 static inline hashval_t
2926 iterative_hash_pointer (void *ptr, hashval_t val2)
2927 {
2928 if (sizeof (ptr) == sizeof (hashval_t))
2929 return iterative_hash_hashval_t ((size_t) ptr, val2);
2930 else
2931 {
2932 hashval_t a = (hashval_t) (size_t) ptr;
2933 /* Avoid warnings about shifting of more than the width of the type on
2934 hosts that won't execute this path. */
2935 int zero = 0;
2936 hashval_t b = (hashval_t) ((size_t) ptr >> (sizeof (hashval_t) * 8 + zero));
2937 mix (a, b, val2);
2938 return val2;
2939 }
2940 }
2941
2942 /* Produce good hash value combining VAL and VAL2. */
2943 static inline hashval_t
2944 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
2945 {
2946 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
2947 return iterative_hash_hashval_t (val, val2);
2948 else
2949 {
2950 hashval_t a = (hashval_t) val;
2951 /* Avoid warnings about shifting of more than the width of the type on
2952 hosts that won't execute this path. */
2953 int zero = 0;
2954 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
2955 mix (a, b, val2);
2956 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
2957 {
2958 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
2959 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
2960 mix (a, b, val2);
2961 }
2962 return val2;
2963 }
2964 }
2965
2966 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2967 is ATTRIBUTE.
2968
2969 Record such modified types already made so we don't make duplicates. */
2970
2971 tree
2972 build_type_attribute_variant (tree ttype, tree attribute)
2973 {
2974 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2975 {
2976 hashval_t hashcode = 0;
2977 tree ntype;
2978 enum tree_code code = TREE_CODE (ttype);
2979
2980 ntype = copy_node (ttype);
2981
2982 TYPE_POINTER_TO (ntype) = 0;
2983 TYPE_REFERENCE_TO (ntype) = 0;
2984 TYPE_ATTRIBUTES (ntype) = attribute;
2985
2986 /* Create a new main variant of TYPE. */
2987 TYPE_MAIN_VARIANT (ntype) = ntype;
2988 TYPE_NEXT_VARIANT (ntype) = 0;
2989 set_type_quals (ntype, TYPE_UNQUALIFIED);
2990
2991 hashcode = iterative_hash_object (code, hashcode);
2992 if (TREE_TYPE (ntype))
2993 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
2994 hashcode);
2995 hashcode = attribute_hash_list (attribute, hashcode);
2996
2997 switch (TREE_CODE (ntype))
2998 {
2999 case FUNCTION_TYPE:
3000 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
3001 break;
3002 case ARRAY_TYPE:
3003 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
3004 hashcode);
3005 break;
3006 case INTEGER_TYPE:
3007 hashcode = iterative_hash_object
3008 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
3009 hashcode = iterative_hash_object
3010 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
3011 break;
3012 case REAL_TYPE:
3013 {
3014 unsigned int precision = TYPE_PRECISION (ntype);
3015 hashcode = iterative_hash_object (precision, hashcode);
3016 }
3017 break;
3018 default:
3019 break;
3020 }
3021
3022 ntype = type_hash_canon (hashcode, ntype);
3023 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
3024 }
3025
3026 return ttype;
3027 }
3028
3029
3030 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3031 or zero if not.
3032
3033 We try both `text' and `__text__', ATTR may be either one. */
3034 /* ??? It might be a reasonable simplification to require ATTR to be only
3035 `text'. One might then also require attribute lists to be stored in
3036 their canonicalized form. */
3037
3038 static int
3039 is_attribute_with_length_p (const char *attr, int attr_len, tree ident)
3040 {
3041 int ident_len;
3042 const char *p;
3043
3044 if (TREE_CODE (ident) != IDENTIFIER_NODE)
3045 return 0;
3046
3047 p = IDENTIFIER_POINTER (ident);
3048 ident_len = IDENTIFIER_LENGTH (ident);
3049
3050 if (ident_len == attr_len
3051 && strcmp (attr, p) == 0)
3052 return 1;
3053
3054 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
3055 if (attr[0] == '_')
3056 {
3057 gcc_assert (attr[1] == '_');
3058 gcc_assert (attr[attr_len - 2] == '_');
3059 gcc_assert (attr[attr_len - 1] == '_');
3060 gcc_assert (attr[1] == '_');
3061 if (ident_len == attr_len - 4
3062 && strncmp (attr + 2, p, attr_len - 4) == 0)
3063 return 1;
3064 }
3065 else
3066 {
3067 if (ident_len == attr_len + 4
3068 && p[0] == '_' && p[1] == '_'
3069 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
3070 && strncmp (attr, p + 2, attr_len) == 0)
3071 return 1;
3072 }
3073
3074 return 0;
3075 }
3076
3077 /* Return nonzero if IDENT is a valid name for attribute ATTR,
3078 or zero if not.
3079
3080 We try both `text' and `__text__', ATTR may be either one. */
3081
3082 int
3083 is_attribute_p (const char *attr, tree ident)
3084 {
3085 return is_attribute_with_length_p (attr, strlen (attr), ident);
3086 }
3087
3088 /* Given an attribute name and a list of attributes, return a pointer to the
3089 attribute's list element if the attribute is part of the list, or NULL_TREE
3090 if not found. If the attribute appears more than once, this only
3091 returns the first occurrence; the TREE_CHAIN of the return value should
3092 be passed back in if further occurrences are wanted. */
3093
3094 tree
3095 lookup_attribute (const char *attr_name, tree list)
3096 {
3097 tree l;
3098 size_t attr_len = strlen (attr_name);
3099
3100 for (l = list; l; l = TREE_CHAIN (l))
3101 {
3102 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
3103 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
3104 return l;
3105 }
3106
3107 return NULL_TREE;
3108 }
3109
3110 /* Return an attribute list that is the union of a1 and a2. */
3111
3112 tree
3113 merge_attributes (tree a1, tree a2)
3114 {
3115 tree attributes;
3116
3117 /* Either one unset? Take the set one. */
3118
3119 if ((attributes = a1) == 0)
3120 attributes = a2;
3121
3122 /* One that completely contains the other? Take it. */
3123
3124 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
3125 {
3126 if (attribute_list_contained (a2, a1))
3127 attributes = a2;
3128 else
3129 {
3130 /* Pick the longest list, and hang on the other list. */
3131
3132 if (list_length (a1) < list_length (a2))
3133 attributes = a2, a2 = a1;
3134
3135 for (; a2 != 0; a2 = TREE_CHAIN (a2))
3136 {
3137 tree a;
3138 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3139 attributes);
3140 a != NULL_TREE;
3141 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
3142 TREE_CHAIN (a)))
3143 {
3144 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
3145 break;
3146 }
3147 if (a == NULL_TREE)
3148 {
3149 a1 = copy_node (a2);
3150 TREE_CHAIN (a1) = attributes;
3151 attributes = a1;
3152 }
3153 }
3154 }
3155 }
3156 return attributes;
3157 }
3158
3159 /* Given types T1 and T2, merge their attributes and return
3160 the result. */
3161
3162 tree
3163 merge_type_attributes (tree t1, tree t2)
3164 {
3165 return merge_attributes (TYPE_ATTRIBUTES (t1),
3166 TYPE_ATTRIBUTES (t2));
3167 }
3168
3169 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
3170 the result. */
3171
3172 tree
3173 merge_decl_attributes (tree olddecl, tree newdecl)
3174 {
3175 return merge_attributes (DECL_ATTRIBUTES (olddecl),
3176 DECL_ATTRIBUTES (newdecl));
3177 }
3178
3179 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
3180
3181 /* Specialization of merge_decl_attributes for various Windows targets.
3182
3183 This handles the following situation:
3184
3185 __declspec (dllimport) int foo;
3186 int foo;
3187
3188 The second instance of `foo' nullifies the dllimport. */
3189
3190 tree
3191 merge_dllimport_decl_attributes (tree old, tree new)
3192 {
3193 tree a;
3194 int delete_dllimport_p;
3195
3196 old = DECL_ATTRIBUTES (old);
3197 new = DECL_ATTRIBUTES (new);
3198
3199 /* What we need to do here is remove from `old' dllimport if it doesn't
3200 appear in `new'. dllimport behaves like extern: if a declaration is
3201 marked dllimport and a definition appears later, then the object
3202 is not dllimport'd. */
3203 if (lookup_attribute ("dllimport", old) != NULL_TREE
3204 && lookup_attribute ("dllimport", new) == NULL_TREE)
3205 delete_dllimport_p = 1;
3206 else
3207 delete_dllimport_p = 0;
3208
3209 a = merge_attributes (old, new);
3210
3211 if (delete_dllimport_p)
3212 {
3213 tree prev, t;
3214
3215 /* Scan the list for dllimport and delete it. */
3216 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
3217 {
3218 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
3219 {
3220 if (prev == NULL_TREE)
3221 a = TREE_CHAIN (a);
3222 else
3223 TREE_CHAIN (prev) = TREE_CHAIN (t);
3224 break;
3225 }
3226 }
3227 }
3228
3229 return a;
3230 }
3231
3232 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
3233 struct attribute_spec.handler. */
3234
3235 tree
3236 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
3237 bool *no_add_attrs)
3238 {
3239 tree node = *pnode;
3240
3241 /* These attributes may apply to structure and union types being created,
3242 but otherwise should pass to the declaration involved. */
3243 if (!DECL_P (node))
3244 {
3245 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
3246 | (int) ATTR_FLAG_ARRAY_NEXT))
3247 {
3248 *no_add_attrs = true;
3249 return tree_cons (name, args, NULL_TREE);
3250 }
3251 if (TREE_CODE (node) != RECORD_TYPE && TREE_CODE (node) != UNION_TYPE)
3252 {
3253 warning ("%qs attribute ignored", IDENTIFIER_POINTER (name));
3254 *no_add_attrs = true;
3255 }
3256
3257 return NULL_TREE;
3258 }
3259
3260 /* Report error on dllimport ambiguities seen now before they cause
3261 any damage. */
3262 if (is_attribute_p ("dllimport", name))
3263 {
3264 /* Like MS, treat definition of dllimported variables and
3265 non-inlined functions on declaration as syntax errors. We
3266 allow the attribute for function definitions if declared
3267 inline. */
3268 if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node)
3269 && !DECL_DECLARED_INLINE_P (node))
3270 {
3271 error ("%Jfunction %qD definition is marked dllimport.", node, node);
3272 *no_add_attrs = true;
3273 }
3274
3275 else if (TREE_CODE (node) == VAR_DECL)
3276 {
3277 if (DECL_INITIAL (node))
3278 {
3279 error ("%Jvariable %qD definition is marked dllimport.",
3280 node, node);
3281 *no_add_attrs = true;
3282 }
3283
3284 /* `extern' needn't be specified with dllimport.
3285 Specify `extern' now and hope for the best. Sigh. */
3286 DECL_EXTERNAL (node) = 1;
3287 /* Also, implicitly give dllimport'd variables declared within
3288 a function global scope, unless declared static. */
3289 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
3290 TREE_PUBLIC (node) = 1;
3291 }
3292 }
3293
3294 /* Report error if symbol is not accessible at global scope. */
3295 if (!TREE_PUBLIC (node)
3296 && (TREE_CODE (node) == VAR_DECL
3297 || TREE_CODE (node) == FUNCTION_DECL))
3298 {
3299 error ("%Jexternal linkage required for symbol %qD because of "
3300 "%qs attribute.", node, node, IDENTIFIER_POINTER (name));
3301 *no_add_attrs = true;
3302 }
3303
3304 return NULL_TREE;
3305 }
3306
3307 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
3308 \f
3309 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
3310 of the various TYPE_QUAL values. */
3311
3312 static void
3313 set_type_quals (tree type, int type_quals)
3314 {
3315 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
3316 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
3317 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
3318 }
3319
3320 /* Returns true iff cand is equivalent to base with type_quals. */
3321
3322 bool
3323 check_qualified_type (tree cand, tree base, int type_quals)
3324 {
3325 return (TYPE_QUALS (cand) == type_quals
3326 && TYPE_NAME (cand) == TYPE_NAME (base)
3327 /* Apparently this is needed for Objective-C. */
3328 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
3329 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
3330 TYPE_ATTRIBUTES (base)));
3331 }
3332
3333 /* Return a version of the TYPE, qualified as indicated by the
3334 TYPE_QUALS, if one exists. If no qualified version exists yet,
3335 return NULL_TREE. */
3336
3337 tree
3338 get_qualified_type (tree type, int type_quals)
3339 {
3340 tree t;
3341
3342 if (TYPE_QUALS (type) == type_quals)
3343 return type;
3344
3345 /* Search the chain of variants to see if there is already one there just
3346 like the one we need to have. If so, use that existing one. We must
3347 preserve the TYPE_NAME, since there is code that depends on this. */
3348 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
3349 if (check_qualified_type (t, type, type_quals))
3350 return t;
3351
3352 return NULL_TREE;
3353 }
3354
3355 /* Like get_qualified_type, but creates the type if it does not
3356 exist. This function never returns NULL_TREE. */
3357
3358 tree
3359 build_qualified_type (tree type, int type_quals)
3360 {
3361 tree t;
3362
3363 /* See if we already have the appropriate qualified variant. */
3364 t = get_qualified_type (type, type_quals);
3365
3366 /* If not, build it. */
3367 if (!t)
3368 {
3369 t = build_variant_type_copy (type);
3370 set_type_quals (t, type_quals);
3371 }
3372
3373 return t;
3374 }
3375
3376 /* Create a new distinct copy of TYPE. The new type is made its own
3377 MAIN_VARIANT. */
3378
3379 tree
3380 build_distinct_type_copy (tree type)
3381 {
3382 tree t = copy_node (type);
3383
3384 TYPE_POINTER_TO (t) = 0;
3385 TYPE_REFERENCE_TO (t) = 0;
3386
3387 /* Make it its own variant. */
3388 TYPE_MAIN_VARIANT (t) = t;
3389 TYPE_NEXT_VARIANT (t) = 0;
3390
3391 return t;
3392 }
3393
3394 /* Create a new variant of TYPE, equivalent but distinct.
3395 This is so the caller can modify it. */
3396
3397 tree
3398 build_variant_type_copy (tree type)
3399 {
3400 tree t, m = TYPE_MAIN_VARIANT (type);
3401
3402 t = build_distinct_type_copy (type);
3403
3404 /* Add the new type to the chain of variants of TYPE. */
3405 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3406 TYPE_NEXT_VARIANT (m) = t;
3407 TYPE_MAIN_VARIANT (t) = m;
3408
3409 return t;
3410 }
3411 \f
3412 /* Hashing of types so that we don't make duplicates.
3413 The entry point is `type_hash_canon'. */
3414
3415 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3416 with types in the TREE_VALUE slots), by adding the hash codes
3417 of the individual types. */
3418
3419 unsigned int
3420 type_hash_list (tree list, hashval_t hashcode)
3421 {
3422 tree tail;
3423
3424 for (tail = list; tail; tail = TREE_CHAIN (tail))
3425 if (TREE_VALUE (tail) != error_mark_node)
3426 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
3427 hashcode);
3428
3429 return hashcode;
3430 }
3431
3432 /* These are the Hashtable callback functions. */
3433
3434 /* Returns true iff the types are equivalent. */
3435
3436 static int
3437 type_hash_eq (const void *va, const void *vb)
3438 {
3439 const struct type_hash *a = va, *b = vb;
3440
3441 /* First test the things that are the same for all types. */
3442 if (a->hash != b->hash
3443 || TREE_CODE (a->type) != TREE_CODE (b->type)
3444 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
3445 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3446 TYPE_ATTRIBUTES (b->type))
3447 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
3448 || TYPE_MODE (a->type) != TYPE_MODE (b->type))
3449 return 0;
3450
3451 switch (TREE_CODE (a->type))
3452 {
3453 case VOID_TYPE:
3454 case COMPLEX_TYPE:
3455 case POINTER_TYPE:
3456 case REFERENCE_TYPE:
3457 return 1;
3458
3459 case VECTOR_TYPE:
3460 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
3461
3462 case ENUMERAL_TYPE:
3463 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
3464 && !(TYPE_VALUES (a->type)
3465 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
3466 && TYPE_VALUES (b->type)
3467 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
3468 && type_list_equal (TYPE_VALUES (a->type),
3469 TYPE_VALUES (b->type))))
3470 return 0;
3471
3472 /* ... fall through ... */
3473
3474 case INTEGER_TYPE:
3475 case REAL_TYPE:
3476 case BOOLEAN_TYPE:
3477 case CHAR_TYPE:
3478 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3479 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3480 TYPE_MAX_VALUE (b->type)))
3481 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3482 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3483 TYPE_MIN_VALUE (b->type))));
3484
3485 case OFFSET_TYPE:
3486 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
3487
3488 case METHOD_TYPE:
3489 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
3490 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3491 || (TYPE_ARG_TYPES (a->type)
3492 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3493 && TYPE_ARG_TYPES (b->type)
3494 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3495 && type_list_equal (TYPE_ARG_TYPES (a->type),
3496 TYPE_ARG_TYPES (b->type)))));
3497
3498 case ARRAY_TYPE:
3499 case SET_TYPE:
3500 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
3501
3502 case RECORD_TYPE:
3503 case UNION_TYPE:
3504 case QUAL_UNION_TYPE:
3505 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
3506 || (TYPE_FIELDS (a->type)
3507 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
3508 && TYPE_FIELDS (b->type)
3509 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
3510 && type_list_equal (TYPE_FIELDS (a->type),
3511 TYPE_FIELDS (b->type))));
3512
3513 case FUNCTION_TYPE:
3514 return (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
3515 || (TYPE_ARG_TYPES (a->type)
3516 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
3517 && TYPE_ARG_TYPES (b->type)
3518 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
3519 && type_list_equal (TYPE_ARG_TYPES (a->type),
3520 TYPE_ARG_TYPES (b->type))));
3521
3522 default:
3523 return 0;
3524 }
3525 }
3526
3527 /* Return the cached hash value. */
3528
3529 static hashval_t
3530 type_hash_hash (const void *item)
3531 {
3532 return ((const struct type_hash *) item)->hash;
3533 }
3534
3535 /* Look in the type hash table for a type isomorphic to TYPE.
3536 If one is found, return it. Otherwise return 0. */
3537
3538 tree
3539 type_hash_lookup (hashval_t hashcode, tree type)
3540 {
3541 struct type_hash *h, in;
3542
3543 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3544 must call that routine before comparing TYPE_ALIGNs. */
3545 layout_type (type);
3546
3547 in.hash = hashcode;
3548 in.type = type;
3549
3550 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3551 if (h)
3552 return h->type;
3553 return NULL_TREE;
3554 }
3555
3556 /* Add an entry to the type-hash-table
3557 for a type TYPE whose hash code is HASHCODE. */
3558
3559 void
3560 type_hash_add (hashval_t hashcode, tree type)
3561 {
3562 struct type_hash *h;
3563 void **loc;
3564
3565 h = ggc_alloc (sizeof (struct type_hash));
3566 h->hash = hashcode;
3567 h->type = type;
3568 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3569 *(struct type_hash **) loc = h;
3570 }
3571
3572 /* Given TYPE, and HASHCODE its hash code, return the canonical
3573 object for an identical type if one already exists.
3574 Otherwise, return TYPE, and record it as the canonical object.
3575
3576 To use this function, first create a type of the sort you want.
3577 Then compute its hash code from the fields of the type that
3578 make it different from other similar types.
3579 Then call this function and use the value. */
3580
3581 tree
3582 type_hash_canon (unsigned int hashcode, tree type)
3583 {
3584 tree t1;
3585
3586 /* The hash table only contains main variants, so ensure that's what we're
3587 being passed. */
3588 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
3589
3590 if (!lang_hooks.types.hash_types)
3591 return type;
3592
3593 /* See if the type is in the hash table already. If so, return it.
3594 Otherwise, add the type. */
3595 t1 = type_hash_lookup (hashcode, type);
3596 if (t1 != 0)
3597 {
3598 #ifdef GATHER_STATISTICS
3599 tree_node_counts[(int) t_kind]--;
3600 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3601 #endif
3602 return t1;
3603 }
3604 else
3605 {
3606 type_hash_add (hashcode, type);
3607 return type;
3608 }
3609 }
3610
3611 /* See if the data pointed to by the type hash table is marked. We consider
3612 it marked if the type is marked or if a debug type number or symbol
3613 table entry has been made for the type. This reduces the amount of
3614 debugging output and eliminates that dependency of the debug output on
3615 the number of garbage collections. */
3616
3617 static int
3618 type_hash_marked_p (const void *p)
3619 {
3620 tree type = ((struct type_hash *) p)->type;
3621
3622 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3623 }
3624
3625 static void
3626 print_type_hash_statistics (void)
3627 {
3628 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3629 (long) htab_size (type_hash_table),
3630 (long) htab_elements (type_hash_table),
3631 htab_collisions (type_hash_table));
3632 }
3633
3634 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3635 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3636 by adding the hash codes of the individual attributes. */
3637
3638 unsigned int
3639 attribute_hash_list (tree list, hashval_t hashcode)
3640 {
3641 tree tail;
3642
3643 for (tail = list; tail; tail = TREE_CHAIN (tail))
3644 /* ??? Do we want to add in TREE_VALUE too? */
3645 hashcode = iterative_hash_object
3646 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
3647 return hashcode;
3648 }
3649
3650 /* Given two lists of attributes, return true if list l2 is
3651 equivalent to l1. */
3652
3653 int
3654 attribute_list_equal (tree l1, tree l2)
3655 {
3656 return attribute_list_contained (l1, l2)
3657 && attribute_list_contained (l2, l1);
3658 }
3659
3660 /* Given two lists of attributes, return true if list L2 is
3661 completely contained within L1. */
3662 /* ??? This would be faster if attribute names were stored in a canonicalized
3663 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3664 must be used to show these elements are equivalent (which they are). */
3665 /* ??? It's not clear that attributes with arguments will always be handled
3666 correctly. */
3667
3668 int
3669 attribute_list_contained (tree l1, tree l2)
3670 {
3671 tree t1, t2;
3672
3673 /* First check the obvious, maybe the lists are identical. */
3674 if (l1 == l2)
3675 return 1;
3676
3677 /* Maybe the lists are similar. */
3678 for (t1 = l1, t2 = l2;
3679 t1 != 0 && t2 != 0
3680 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3681 && TREE_VALUE (t1) == TREE_VALUE (t2);
3682 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3683
3684 /* Maybe the lists are equal. */
3685 if (t1 == 0 && t2 == 0)
3686 return 1;
3687
3688 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3689 {
3690 tree attr;
3691 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3692 attr != NULL_TREE;
3693 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3694 TREE_CHAIN (attr)))
3695 {
3696 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3697 break;
3698 }
3699
3700 if (attr == 0)
3701 return 0;
3702
3703 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3704 return 0;
3705 }
3706
3707 return 1;
3708 }
3709
3710 /* Given two lists of types
3711 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3712 return 1 if the lists contain the same types in the same order.
3713 Also, the TREE_PURPOSEs must match. */
3714
3715 int
3716 type_list_equal (tree l1, tree l2)
3717 {
3718 tree t1, t2;
3719
3720 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3721 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3722 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3723 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3724 && (TREE_TYPE (TREE_PURPOSE (t1))
3725 == TREE_TYPE (TREE_PURPOSE (t2))))))
3726 return 0;
3727
3728 return t1 == t2;
3729 }
3730
3731 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3732 given by TYPE. If the argument list accepts variable arguments,
3733 then this function counts only the ordinary arguments. */
3734
3735 int
3736 type_num_arguments (tree type)
3737 {
3738 int i = 0;
3739 tree t;
3740
3741 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3742 /* If the function does not take a variable number of arguments,
3743 the last element in the list will have type `void'. */
3744 if (VOID_TYPE_P (TREE_VALUE (t)))
3745 break;
3746 else
3747 ++i;
3748
3749 return i;
3750 }
3751
3752 /* Nonzero if integer constants T1 and T2
3753 represent the same constant value. */
3754
3755 int
3756 tree_int_cst_equal (tree t1, tree t2)
3757 {
3758 if (t1 == t2)
3759 return 1;
3760
3761 if (t1 == 0 || t2 == 0)
3762 return 0;
3763
3764 if (TREE_CODE (t1) == INTEGER_CST
3765 && TREE_CODE (t2) == INTEGER_CST
3766 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3767 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3768 return 1;
3769
3770 return 0;
3771 }
3772
3773 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3774 The precise way of comparison depends on their data type. */
3775
3776 int
3777 tree_int_cst_lt (tree t1, tree t2)
3778 {
3779 if (t1 == t2)
3780 return 0;
3781
3782 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
3783 {
3784 int t1_sgn = tree_int_cst_sgn (t1);
3785 int t2_sgn = tree_int_cst_sgn (t2);
3786
3787 if (t1_sgn < t2_sgn)
3788 return 1;
3789 else if (t1_sgn > t2_sgn)
3790 return 0;
3791 /* Otherwise, both are non-negative, so we compare them as
3792 unsigned just in case one of them would overflow a signed
3793 type. */
3794 }
3795 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
3796 return INT_CST_LT (t1, t2);
3797
3798 return INT_CST_LT_UNSIGNED (t1, t2);
3799 }
3800
3801 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3802
3803 int
3804 tree_int_cst_compare (tree t1, tree t2)
3805 {
3806 if (tree_int_cst_lt (t1, t2))
3807 return -1;
3808 else if (tree_int_cst_lt (t2, t1))
3809 return 1;
3810 else
3811 return 0;
3812 }
3813
3814 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3815 the host. If POS is zero, the value can be represented in a single
3816 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3817 be represented in a single unsigned HOST_WIDE_INT. */
3818
3819 int
3820 host_integerp (tree t, int pos)
3821 {
3822 return (TREE_CODE (t) == INTEGER_CST
3823 && ! TREE_OVERFLOW (t)
3824 && ((TREE_INT_CST_HIGH (t) == 0
3825 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3826 || (! pos && TREE_INT_CST_HIGH (t) == -1
3827 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3828 && !TYPE_UNSIGNED (TREE_TYPE (t)))
3829 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3830 }
3831
3832 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3833 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3834 be positive. Abort if we cannot satisfy the above conditions. */
3835
3836 HOST_WIDE_INT
3837 tree_low_cst (tree t, int pos)
3838 {
3839 gcc_assert (host_integerp (t, pos));
3840 return TREE_INT_CST_LOW (t);
3841 }
3842
3843 /* Return the most significant bit of the integer constant T. */
3844
3845 int
3846 tree_int_cst_msb (tree t)
3847 {
3848 int prec;
3849 HOST_WIDE_INT h;
3850 unsigned HOST_WIDE_INT l;
3851
3852 /* Note that using TYPE_PRECISION here is wrong. We care about the
3853 actual bits, not the (arbitrary) range of the type. */
3854 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3855 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3856 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3857 return (l & 1) == 1;
3858 }
3859
3860 /* Return an indication of the sign of the integer constant T.
3861 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3862 Note that -1 will never be returned it T's type is unsigned. */
3863
3864 int
3865 tree_int_cst_sgn (tree t)
3866 {
3867 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3868 return 0;
3869 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
3870 return 1;
3871 else if (TREE_INT_CST_HIGH (t) < 0)
3872 return -1;
3873 else
3874 return 1;
3875 }
3876
3877 /* Compare two constructor-element-type constants. Return 1 if the lists
3878 are known to be equal; otherwise return 0. */
3879
3880 int
3881 simple_cst_list_equal (tree l1, tree l2)
3882 {
3883 while (l1 != NULL_TREE && l2 != NULL_TREE)
3884 {
3885 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3886 return 0;
3887
3888 l1 = TREE_CHAIN (l1);
3889 l2 = TREE_CHAIN (l2);
3890 }
3891
3892 return l1 == l2;
3893 }
3894
3895 /* Return truthvalue of whether T1 is the same tree structure as T2.
3896 Return 1 if they are the same.
3897 Return 0 if they are understandably different.
3898 Return -1 if either contains tree structure not understood by
3899 this function. */
3900
3901 int
3902 simple_cst_equal (tree t1, tree t2)
3903 {
3904 enum tree_code code1, code2;
3905 int cmp;
3906 int i;
3907
3908 if (t1 == t2)
3909 return 1;
3910 if (t1 == 0 || t2 == 0)
3911 return 0;
3912
3913 code1 = TREE_CODE (t1);
3914 code2 = TREE_CODE (t2);
3915
3916 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3917 {
3918 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3919 || code2 == NON_LVALUE_EXPR)
3920 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3921 else
3922 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3923 }
3924
3925 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3926 || code2 == NON_LVALUE_EXPR)
3927 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3928
3929 if (code1 != code2)
3930 return 0;
3931
3932 switch (code1)
3933 {
3934 case INTEGER_CST:
3935 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3936 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3937
3938 case REAL_CST:
3939 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3940
3941 case STRING_CST:
3942 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3943 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3944 TREE_STRING_LENGTH (t1)));
3945
3946 case CONSTRUCTOR:
3947 return simple_cst_list_equal (CONSTRUCTOR_ELTS (t1),
3948 CONSTRUCTOR_ELTS (t2));
3949
3950 case SAVE_EXPR:
3951 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3952
3953 case CALL_EXPR:
3954 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3955 if (cmp <= 0)
3956 return cmp;
3957 return
3958 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3959
3960 case TARGET_EXPR:
3961 /* Special case: if either target is an unallocated VAR_DECL,
3962 it means that it's going to be unified with whatever the
3963 TARGET_EXPR is really supposed to initialize, so treat it
3964 as being equivalent to anything. */
3965 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3966 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3967 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3968 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3969 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3970 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3971 cmp = 1;
3972 else
3973 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3974
3975 if (cmp <= 0)
3976 return cmp;
3977
3978 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3979
3980 case WITH_CLEANUP_EXPR:
3981 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3982 if (cmp <= 0)
3983 return cmp;
3984
3985 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3986
3987 case COMPONENT_REF:
3988 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3989 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3990
3991 return 0;
3992
3993 case VAR_DECL:
3994 case PARM_DECL:
3995 case CONST_DECL:
3996 case FUNCTION_DECL:
3997 return 0;
3998
3999 default:
4000 break;
4001 }
4002
4003 /* This general rule works for most tree codes. All exceptions should be
4004 handled above. If this is a language-specific tree code, we can't
4005 trust what might be in the operand, so say we don't know
4006 the situation. */
4007 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
4008 return -1;
4009
4010 switch (TREE_CODE_CLASS (code1))
4011 {
4012 case tcc_unary:
4013 case tcc_binary:
4014 case tcc_comparison:
4015 case tcc_expression:
4016 case tcc_reference:
4017 case tcc_statement:
4018 cmp = 1;
4019 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
4020 {
4021 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
4022 if (cmp <= 0)
4023 return cmp;
4024 }
4025
4026 return cmp;
4027
4028 default:
4029 return -1;
4030 }
4031 }
4032
4033 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
4034 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
4035 than U, respectively. */
4036
4037 int
4038 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
4039 {
4040 if (tree_int_cst_sgn (t) < 0)
4041 return -1;
4042 else if (TREE_INT_CST_HIGH (t) != 0)
4043 return 1;
4044 else if (TREE_INT_CST_LOW (t) == u)
4045 return 0;
4046 else if (TREE_INT_CST_LOW (t) < u)
4047 return -1;
4048 else
4049 return 1;
4050 }
4051
4052 /* Return true if CODE represents an associative tree code. Otherwise
4053 return false. */
4054 bool
4055 associative_tree_code (enum tree_code code)
4056 {
4057 switch (code)
4058 {
4059 case BIT_IOR_EXPR:
4060 case BIT_AND_EXPR:
4061 case BIT_XOR_EXPR:
4062 case PLUS_EXPR:
4063 case MULT_EXPR:
4064 case MIN_EXPR:
4065 case MAX_EXPR:
4066 return true;
4067
4068 default:
4069 break;
4070 }
4071 return false;
4072 }
4073
4074 /* Return true if CODE represents a commutative tree code. Otherwise
4075 return false. */
4076 bool
4077 commutative_tree_code (enum tree_code code)
4078 {
4079 switch (code)
4080 {
4081 case PLUS_EXPR:
4082 case MULT_EXPR:
4083 case MIN_EXPR:
4084 case MAX_EXPR:
4085 case BIT_IOR_EXPR:
4086 case BIT_XOR_EXPR:
4087 case BIT_AND_EXPR:
4088 case NE_EXPR:
4089 case EQ_EXPR:
4090 case UNORDERED_EXPR:
4091 case ORDERED_EXPR:
4092 case UNEQ_EXPR:
4093 case LTGT_EXPR:
4094 case TRUTH_AND_EXPR:
4095 case TRUTH_XOR_EXPR:
4096 case TRUTH_OR_EXPR:
4097 return true;
4098
4099 default:
4100 break;
4101 }
4102 return false;
4103 }
4104
4105 /* Generate a hash value for an expression. This can be used iteratively
4106 by passing a previous result as the "val" argument.
4107
4108 This function is intended to produce the same hash for expressions which
4109 would compare equal using operand_equal_p. */
4110
4111 hashval_t
4112 iterative_hash_expr (tree t, hashval_t val)
4113 {
4114 int i;
4115 enum tree_code code;
4116 char class;
4117
4118 if (t == NULL_TREE)
4119 return iterative_hash_pointer (t, val);
4120
4121 code = TREE_CODE (t);
4122
4123 switch (code)
4124 {
4125 /* Alas, constants aren't shared, so we can't rely on pointer
4126 identity. */
4127 case INTEGER_CST:
4128 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
4129 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
4130 case REAL_CST:
4131 {
4132 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
4133
4134 return iterative_hash_hashval_t (val2, val);
4135 }
4136 case STRING_CST:
4137 return iterative_hash (TREE_STRING_POINTER (t),
4138 TREE_STRING_LENGTH (t), val);
4139 case COMPLEX_CST:
4140 val = iterative_hash_expr (TREE_REALPART (t), val);
4141 return iterative_hash_expr (TREE_IMAGPART (t), val);
4142 case VECTOR_CST:
4143 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
4144
4145 case SSA_NAME:
4146 case VALUE_HANDLE:
4147 /* we can just compare by pointer. */
4148 return iterative_hash_pointer (t, val);
4149
4150 case TREE_LIST:
4151 /* A list of expressions, for a CALL_EXPR or as the elements of a
4152 VECTOR_CST. */
4153 for (; t; t = TREE_CHAIN (t))
4154 val = iterative_hash_expr (TREE_VALUE (t), val);
4155 return val;
4156 default:
4157 class = TREE_CODE_CLASS (code);
4158
4159 if (class == tcc_declaration)
4160 {
4161 /* Decls we can just compare by pointer. */
4162 val = iterative_hash_pointer (t, val);
4163 }
4164 else
4165 {
4166 gcc_assert (IS_EXPR_CODE_CLASS (class));
4167
4168 val = iterative_hash_object (code, val);
4169
4170 /* Don't hash the type, that can lead to having nodes which
4171 compare equal according to operand_equal_p, but which
4172 have different hash codes. */
4173 if (code == NOP_EXPR
4174 || code == CONVERT_EXPR
4175 || code == NON_LVALUE_EXPR)
4176 {
4177 /* Make sure to include signness in the hash computation. */
4178 val += TYPE_UNSIGNED (TREE_TYPE (t));
4179 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
4180 }
4181
4182 else if (commutative_tree_code (code))
4183 {
4184 /* It's a commutative expression. We want to hash it the same
4185 however it appears. We do this by first hashing both operands
4186 and then rehashing based on the order of their independent
4187 hashes. */
4188 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
4189 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
4190 hashval_t t;
4191
4192 if (one > two)
4193 t = one, one = two, two = t;
4194
4195 val = iterative_hash_hashval_t (one, val);
4196 val = iterative_hash_hashval_t (two, val);
4197 }
4198 else
4199 for (i = first_rtl_op (code) - 1; i >= 0; --i)
4200 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
4201 }
4202 return val;
4203 break;
4204 }
4205 }
4206 \f
4207 /* Constructors for pointer, array and function types.
4208 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
4209 constructed by language-dependent code, not here.) */
4210
4211 /* Construct, lay out and return the type of pointers to TO_TYPE with
4212 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
4213 reference all of memory. If such a type has already been
4214 constructed, reuse it. */
4215
4216 tree
4217 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
4218 bool can_alias_all)
4219 {
4220 tree t;
4221
4222 /* In some cases, languages will have things that aren't a POINTER_TYPE
4223 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
4224 In that case, return that type without regard to the rest of our
4225 operands.
4226
4227 ??? This is a kludge, but consistent with the way this function has
4228 always operated and there doesn't seem to be a good way to avoid this
4229 at the moment. */
4230 if (TYPE_POINTER_TO (to_type) != 0
4231 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
4232 return TYPE_POINTER_TO (to_type);
4233
4234 /* First, if we already have a type for pointers to TO_TYPE and it's
4235 the proper mode, use it. */
4236 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
4237 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4238 return t;
4239
4240 t = make_node (POINTER_TYPE);
4241
4242 TREE_TYPE (t) = to_type;
4243 TYPE_MODE (t) = mode;
4244 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4245 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
4246 TYPE_POINTER_TO (to_type) = t;
4247
4248 /* Lay out the type. This function has many callers that are concerned
4249 with expression-construction, and this simplifies them all. */
4250 layout_type (t);
4251
4252 return t;
4253 }
4254
4255 /* By default build pointers in ptr_mode. */
4256
4257 tree
4258 build_pointer_type (tree to_type)
4259 {
4260 return build_pointer_type_for_mode (to_type, ptr_mode, false);
4261 }
4262
4263 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
4264
4265 tree
4266 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
4267 bool can_alias_all)
4268 {
4269 tree t;
4270
4271 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
4272 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
4273 In that case, return that type without regard to the rest of our
4274 operands.
4275
4276 ??? This is a kludge, but consistent with the way this function has
4277 always operated and there doesn't seem to be a good way to avoid this
4278 at the moment. */
4279 if (TYPE_REFERENCE_TO (to_type) != 0
4280 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
4281 return TYPE_REFERENCE_TO (to_type);
4282
4283 /* First, if we already have a type for pointers to TO_TYPE and it's
4284 the proper mode, use it. */
4285 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
4286 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
4287 return t;
4288
4289 t = make_node (REFERENCE_TYPE);
4290
4291 TREE_TYPE (t) = to_type;
4292 TYPE_MODE (t) = mode;
4293 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
4294 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
4295 TYPE_REFERENCE_TO (to_type) = t;
4296
4297 layout_type (t);
4298
4299 return t;
4300 }
4301
4302
4303 /* Build the node for the type of references-to-TO_TYPE by default
4304 in ptr_mode. */
4305
4306 tree
4307 build_reference_type (tree to_type)
4308 {
4309 return build_reference_type_for_mode (to_type, ptr_mode, false);
4310 }
4311
4312 /* Build a type that is compatible with t but has no cv quals anywhere
4313 in its type, thus
4314
4315 const char *const *const * -> char ***. */
4316
4317 tree
4318 build_type_no_quals (tree t)
4319 {
4320 switch (TREE_CODE (t))
4321 {
4322 case POINTER_TYPE:
4323 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4324 TYPE_MODE (t),
4325 TYPE_REF_CAN_ALIAS_ALL (t));
4326 case REFERENCE_TYPE:
4327 return
4328 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
4329 TYPE_MODE (t),
4330 TYPE_REF_CAN_ALIAS_ALL (t));
4331 default:
4332 return TYPE_MAIN_VARIANT (t);
4333 }
4334 }
4335
4336 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
4337 MAXVAL should be the maximum value in the domain
4338 (one less than the length of the array).
4339
4340 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
4341 We don't enforce this limit, that is up to caller (e.g. language front end).
4342 The limit exists because the result is a signed type and we don't handle
4343 sizes that use more than one HOST_WIDE_INT. */
4344
4345 tree
4346 build_index_type (tree maxval)
4347 {
4348 tree itype = make_node (INTEGER_TYPE);
4349
4350 TREE_TYPE (itype) = sizetype;
4351 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
4352 TYPE_MIN_VALUE (itype) = size_zero_node;
4353 TYPE_MAX_VALUE (itype) = fold_convert (sizetype, maxval);
4354 TYPE_MODE (itype) = TYPE_MODE (sizetype);
4355 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
4356 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
4357 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
4358 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
4359
4360 if (host_integerp (maxval, 1))
4361 return type_hash_canon (tree_low_cst (maxval, 1), itype);
4362 else
4363 return itype;
4364 }
4365
4366 /* Builds a signed or unsigned integer type of precision PRECISION.
4367 Used for C bitfields whose precision does not match that of
4368 built-in target types. */
4369 tree
4370 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
4371 int unsignedp)
4372 {
4373 tree itype = make_node (INTEGER_TYPE);
4374
4375 TYPE_PRECISION (itype) = precision;
4376
4377 if (unsignedp)
4378 fixup_unsigned_type (itype);
4379 else
4380 fixup_signed_type (itype);
4381
4382 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
4383 return type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
4384
4385 return itype;
4386 }
4387
4388 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
4389 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
4390 low bound LOWVAL and high bound HIGHVAL.
4391 if TYPE==NULL_TREE, sizetype is used. */
4392
4393 tree
4394 build_range_type (tree type, tree lowval, tree highval)
4395 {
4396 tree itype = make_node (INTEGER_TYPE);
4397
4398 TREE_TYPE (itype) = type;
4399 if (type == NULL_TREE)
4400 type = sizetype;
4401
4402 TYPE_MIN_VALUE (itype) = convert (type, lowval);
4403 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
4404
4405 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
4406 TYPE_MODE (itype) = TYPE_MODE (type);
4407 TYPE_SIZE (itype) = TYPE_SIZE (type);
4408 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
4409 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
4410 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
4411
4412 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
4413 return type_hash_canon (tree_low_cst (highval, 0)
4414 - tree_low_cst (lowval, 0),
4415 itype);
4416 else
4417 return itype;
4418 }
4419
4420 /* Just like build_index_type, but takes lowval and highval instead
4421 of just highval (maxval). */
4422
4423 tree
4424 build_index_2_type (tree lowval, tree highval)
4425 {
4426 return build_range_type (sizetype, lowval, highval);
4427 }
4428
4429 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
4430 and number of elements specified by the range of values of INDEX_TYPE.
4431 If such a type has already been constructed, reuse it. */
4432
4433 tree
4434 build_array_type (tree elt_type, tree index_type)
4435 {
4436 tree t;
4437 hashval_t hashcode = 0;
4438
4439 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
4440 {
4441 error ("arrays of functions are not meaningful");
4442 elt_type = integer_type_node;
4443 }
4444
4445 t = make_node (ARRAY_TYPE);
4446 TREE_TYPE (t) = elt_type;
4447 TYPE_DOMAIN (t) = index_type;
4448
4449 if (index_type == 0)
4450 {
4451 layout_type (t);
4452 return t;
4453 }
4454
4455 hashcode = iterative_hash_object (TYPE_HASH (elt_type), hashcode);
4456 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
4457 t = type_hash_canon (hashcode, t);
4458
4459 if (!COMPLETE_TYPE_P (t))
4460 layout_type (t);
4461 return t;
4462 }
4463
4464 /* Return the TYPE of the elements comprising
4465 the innermost dimension of ARRAY. */
4466
4467 tree
4468 get_inner_array_type (tree array)
4469 {
4470 tree type = TREE_TYPE (array);
4471
4472 while (TREE_CODE (type) == ARRAY_TYPE)
4473 type = TREE_TYPE (type);
4474
4475 return type;
4476 }
4477
4478 /* Construct, lay out and return
4479 the type of functions returning type VALUE_TYPE
4480 given arguments of types ARG_TYPES.
4481 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
4482 are data type nodes for the arguments of the function.
4483 If such a type has already been constructed, reuse it. */
4484
4485 tree
4486 build_function_type (tree value_type, tree arg_types)
4487 {
4488 tree t;
4489 hashval_t hashcode = 0;
4490
4491 if (TREE_CODE (value_type) == FUNCTION_TYPE)
4492 {
4493 error ("function return type cannot be function");
4494 value_type = integer_type_node;
4495 }
4496
4497 /* Make a node of the sort we want. */
4498 t = make_node (FUNCTION_TYPE);
4499 TREE_TYPE (t) = value_type;
4500 TYPE_ARG_TYPES (t) = arg_types;
4501
4502 /* If we already have such a type, use the old one. */
4503 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
4504 hashcode = type_hash_list (arg_types, hashcode);
4505 t = type_hash_canon (hashcode, t);
4506
4507 if (!COMPLETE_TYPE_P (t))
4508 layout_type (t);
4509 return t;
4510 }
4511
4512 /* Build a function type. The RETURN_TYPE is the type returned by the
4513 function. If additional arguments are provided, they are
4514 additional argument types. The list of argument types must always
4515 be terminated by NULL_TREE. */
4516
4517 tree
4518 build_function_type_list (tree return_type, ...)
4519 {
4520 tree t, args, last;
4521 va_list p;
4522
4523 va_start (p, return_type);
4524
4525 t = va_arg (p, tree);
4526 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
4527 args = tree_cons (NULL_TREE, t, args);
4528
4529 last = args;
4530 args = nreverse (args);
4531 TREE_CHAIN (last) = void_list_node;
4532 args = build_function_type (return_type, args);
4533
4534 va_end (p);
4535 return args;
4536 }
4537
4538 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
4539 and ARGTYPES (a TREE_LIST) are the return type and arguments types
4540 for the method. An implicit additional parameter (of type
4541 pointer-to-BASETYPE) is added to the ARGTYPES. */
4542
4543 tree
4544 build_method_type_directly (tree basetype,
4545 tree rettype,
4546 tree argtypes)
4547 {
4548 tree t;
4549 tree ptype;
4550 int hashcode = 0;
4551
4552 /* Make a node of the sort we want. */
4553 t = make_node (METHOD_TYPE);
4554
4555 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4556 TREE_TYPE (t) = rettype;
4557 ptype = build_pointer_type (basetype);
4558
4559 /* The actual arglist for this function includes a "hidden" argument
4560 which is "this". Put it into the list of argument types. */
4561 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
4562 TYPE_ARG_TYPES (t) = argtypes;
4563
4564 /* If we already have such a type, use the old one. */
4565 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4566 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
4567 hashcode = type_hash_list (argtypes, hashcode);
4568 t = type_hash_canon (hashcode, t);
4569
4570 if (!COMPLETE_TYPE_P (t))
4571 layout_type (t);
4572
4573 return t;
4574 }
4575
4576 /* Construct, lay out and return the type of methods belonging to class
4577 BASETYPE and whose arguments and values are described by TYPE.
4578 If that type exists already, reuse it.
4579 TYPE must be a FUNCTION_TYPE node. */
4580
4581 tree
4582 build_method_type (tree basetype, tree type)
4583 {
4584 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
4585
4586 return build_method_type_directly (basetype,
4587 TREE_TYPE (type),
4588 TYPE_ARG_TYPES (type));
4589 }
4590
4591 /* Construct, lay out and return the type of offsets to a value
4592 of type TYPE, within an object of type BASETYPE.
4593 If a suitable offset type exists already, reuse it. */
4594
4595 tree
4596 build_offset_type (tree basetype, tree type)
4597 {
4598 tree t;
4599 hashval_t hashcode = 0;
4600
4601 /* Make a node of the sort we want. */
4602 t = make_node (OFFSET_TYPE);
4603
4604 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
4605 TREE_TYPE (t) = type;
4606
4607 /* If we already have such a type, use the old one. */
4608 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
4609 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
4610 t = type_hash_canon (hashcode, t);
4611
4612 if (!COMPLETE_TYPE_P (t))
4613 layout_type (t);
4614
4615 return t;
4616 }
4617
4618 /* Create a complex type whose components are COMPONENT_TYPE. */
4619
4620 tree
4621 build_complex_type (tree component_type)
4622 {
4623 tree t;
4624 hashval_t hashcode;
4625
4626 /* Make a node of the sort we want. */
4627 t = make_node (COMPLEX_TYPE);
4628
4629 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4630
4631 /* If we already have such a type, use the old one. */
4632 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
4633 t = type_hash_canon (hashcode, t);
4634
4635 if (!COMPLETE_TYPE_P (t))
4636 layout_type (t);
4637
4638 /* If we are writing Dwarf2 output we need to create a name,
4639 since complex is a fundamental type. */
4640 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
4641 && ! TYPE_NAME (t))
4642 {
4643 const char *name;
4644 if (component_type == char_type_node)
4645 name = "complex char";
4646 else if (component_type == signed_char_type_node)
4647 name = "complex signed char";
4648 else if (component_type == unsigned_char_type_node)
4649 name = "complex unsigned char";
4650 else if (component_type == short_integer_type_node)
4651 name = "complex short int";
4652 else if (component_type == short_unsigned_type_node)
4653 name = "complex short unsigned int";
4654 else if (component_type == integer_type_node)
4655 name = "complex int";
4656 else if (component_type == unsigned_type_node)
4657 name = "complex unsigned int";
4658 else if (component_type == long_integer_type_node)
4659 name = "complex long int";
4660 else if (component_type == long_unsigned_type_node)
4661 name = "complex long unsigned int";
4662 else if (component_type == long_long_integer_type_node)
4663 name = "complex long long int";
4664 else if (component_type == long_long_unsigned_type_node)
4665 name = "complex long long unsigned int";
4666 else
4667 name = 0;
4668
4669 if (name != 0)
4670 TYPE_NAME (t) = get_identifier (name);
4671 }
4672
4673 return build_qualified_type (t, TYPE_QUALS (component_type));
4674 }
4675 \f
4676 /* Return OP, stripped of any conversions to wider types as much as is safe.
4677 Converting the value back to OP's type makes a value equivalent to OP.
4678
4679 If FOR_TYPE is nonzero, we return a value which, if converted to
4680 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4681
4682 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4683 narrowest type that can hold the value, even if they don't exactly fit.
4684 Otherwise, bit-field references are changed to a narrower type
4685 only if they can be fetched directly from memory in that type.
4686
4687 OP must have integer, real or enumeral type. Pointers are not allowed!
4688
4689 There are some cases where the obvious value we could return
4690 would regenerate to OP if converted to OP's type,
4691 but would not extend like OP to wider types.
4692 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4693 For example, if OP is (unsigned short)(signed char)-1,
4694 we avoid returning (signed char)-1 if FOR_TYPE is int,
4695 even though extending that to an unsigned short would regenerate OP,
4696 since the result of extending (signed char)-1 to (int)
4697 is different from (int) OP. */
4698
4699 tree
4700 get_unwidened (tree op, tree for_type)
4701 {
4702 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4703 tree type = TREE_TYPE (op);
4704 unsigned final_prec
4705 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4706 int uns
4707 = (for_type != 0 && for_type != type
4708 && final_prec > TYPE_PRECISION (type)
4709 && TYPE_UNSIGNED (type));
4710 tree win = op;
4711
4712 while (TREE_CODE (op) == NOP_EXPR)
4713 {
4714 int bitschange
4715 = TYPE_PRECISION (TREE_TYPE (op))
4716 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4717
4718 /* Truncations are many-one so cannot be removed.
4719 Unless we are later going to truncate down even farther. */
4720 if (bitschange < 0
4721 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4722 break;
4723
4724 /* See what's inside this conversion. If we decide to strip it,
4725 we will set WIN. */
4726 op = TREE_OPERAND (op, 0);
4727
4728 /* If we have not stripped any zero-extensions (uns is 0),
4729 we can strip any kind of extension.
4730 If we have previously stripped a zero-extension,
4731 only zero-extensions can safely be stripped.
4732 Any extension can be stripped if the bits it would produce
4733 are all going to be discarded later by truncating to FOR_TYPE. */
4734
4735 if (bitschange > 0)
4736 {
4737 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4738 win = op;
4739 /* TYPE_UNSIGNED says whether this is a zero-extension.
4740 Let's avoid computing it if it does not affect WIN
4741 and if UNS will not be needed again. */
4742 if ((uns || TREE_CODE (op) == NOP_EXPR)
4743 && TYPE_UNSIGNED (TREE_TYPE (op)))
4744 {
4745 uns = 1;
4746 win = op;
4747 }
4748 }
4749 }
4750
4751 if (TREE_CODE (op) == COMPONENT_REF
4752 /* Since type_for_size always gives an integer type. */
4753 && TREE_CODE (type) != REAL_TYPE
4754 /* Don't crash if field not laid out yet. */
4755 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4756 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4757 {
4758 unsigned int innerprec
4759 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4760 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4761 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4762 type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4763
4764 /* We can get this structure field in the narrowest type it fits in.
4765 If FOR_TYPE is 0, do this only for a field that matches the
4766 narrower type exactly and is aligned for it
4767 The resulting extension to its nominal type (a fullword type)
4768 must fit the same conditions as for other extensions. */
4769
4770 if (type != 0
4771 && INT_CST_LT_UNSIGNED (TYPE_SIZE (type), TYPE_SIZE (TREE_TYPE (op)))
4772 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4773 && (! uns || final_prec <= innerprec || unsignedp))
4774 {
4775 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4776 TREE_OPERAND (op, 1), NULL_TREE);
4777 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4778 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4779 }
4780 }
4781
4782 return win;
4783 }
4784 \f
4785 /* Return OP or a simpler expression for a narrower value
4786 which can be sign-extended or zero-extended to give back OP.
4787 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4788 or 0 if the value should be sign-extended. */
4789
4790 tree
4791 get_narrower (tree op, int *unsignedp_ptr)
4792 {
4793 int uns = 0;
4794 int first = 1;
4795 tree win = op;
4796 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
4797
4798 while (TREE_CODE (op) == NOP_EXPR)
4799 {
4800 int bitschange
4801 = (TYPE_PRECISION (TREE_TYPE (op))
4802 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4803
4804 /* Truncations are many-one so cannot be removed. */
4805 if (bitschange < 0)
4806 break;
4807
4808 /* See what's inside this conversion. If we decide to strip it,
4809 we will set WIN. */
4810
4811 if (bitschange > 0)
4812 {
4813 op = TREE_OPERAND (op, 0);
4814 /* An extension: the outermost one can be stripped,
4815 but remember whether it is zero or sign extension. */
4816 if (first)
4817 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4818 /* Otherwise, if a sign extension has been stripped,
4819 only sign extensions can now be stripped;
4820 if a zero extension has been stripped, only zero-extensions. */
4821 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
4822 break;
4823 first = 0;
4824 }
4825 else /* bitschange == 0 */
4826 {
4827 /* A change in nominal type can always be stripped, but we must
4828 preserve the unsignedness. */
4829 if (first)
4830 uns = TYPE_UNSIGNED (TREE_TYPE (op));
4831 first = 0;
4832 op = TREE_OPERAND (op, 0);
4833 /* Keep trying to narrow, but don't assign op to win if it
4834 would turn an integral type into something else. */
4835 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
4836 continue;
4837 }
4838
4839 win = op;
4840 }
4841
4842 if (TREE_CODE (op) == COMPONENT_REF
4843 /* Since type_for_size always gives an integer type. */
4844 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4845 /* Ensure field is laid out already. */
4846 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4847 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4848 {
4849 unsigned HOST_WIDE_INT innerprec
4850 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4851 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
4852 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4853 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
4854
4855 /* We can get this structure field in a narrower type that fits it,
4856 but the resulting extension to its nominal type (a fullword type)
4857 must satisfy the same conditions as for other extensions.
4858
4859 Do this only for fields that are aligned (not bit-fields),
4860 because when bit-field insns will be used there is no
4861 advantage in doing this. */
4862
4863 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4864 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4865 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
4866 && type != 0)
4867 {
4868 if (first)
4869 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
4870 win = build3 (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4871 TREE_OPERAND (op, 1), NULL_TREE);
4872 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4873 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4874 }
4875 }
4876 *unsignedp_ptr = uns;
4877 return win;
4878 }
4879 \f
4880 /* Nonzero if integer constant C has a value that is permissible
4881 for type TYPE (an INTEGER_TYPE). */
4882
4883 int
4884 int_fits_type_p (tree c, tree type)
4885 {
4886 tree type_low_bound = TYPE_MIN_VALUE (type);
4887 tree type_high_bound = TYPE_MAX_VALUE (type);
4888 int ok_for_low_bound, ok_for_high_bound;
4889
4890 /* Perform some generic filtering first, which may allow making a decision
4891 even if the bounds are not constant. First, negative integers never fit
4892 in unsigned types, */
4893 if ((TYPE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4894 /* Also, unsigned integers with top bit set never fit signed types. */
4895 || (! TYPE_UNSIGNED (type)
4896 && TYPE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4897 return 0;
4898
4899 /* If at least one bound of the type is a constant integer, we can check
4900 ourselves and maybe make a decision. If no such decision is possible, but
4901 this type is a subtype, try checking against that. Otherwise, use
4902 force_fit_type, which checks against the precision.
4903
4904 Compute the status for each possibly constant bound, and return if we see
4905 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4906 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4907 for "constant known to fit". */
4908
4909 ok_for_low_bound = -1;
4910 ok_for_high_bound = -1;
4911
4912 /* Check if C >= type_low_bound. */
4913 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4914 {
4915 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4916 if (! ok_for_low_bound)
4917 return 0;
4918 }
4919
4920 /* Check if c <= type_high_bound. */
4921 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4922 {
4923 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4924 if (! ok_for_high_bound)
4925 return 0;
4926 }
4927
4928 /* If the constant fits both bounds, the result is known. */
4929 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4930 return 1;
4931
4932 /* If we haven't been able to decide at this point, there nothing more we
4933 can check ourselves here. Look at the base type if we have one. */
4934 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4935 return int_fits_type_p (c, TREE_TYPE (type));
4936
4937 /* Or to force_fit_type, if nothing else. */
4938 else
4939 {
4940 c = copy_node (c);
4941 TREE_TYPE (c) = type;
4942 c = force_fit_type (c, -1, false, false);
4943 return !TREE_OVERFLOW (c);
4944 }
4945 }
4946
4947 /* Subprogram of following function. Called by walk_tree.
4948
4949 Return *TP if it is an automatic variable or parameter of the
4950 function passed in as DATA. */
4951
4952 static tree
4953 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
4954 {
4955 tree fn = (tree) data;
4956
4957 if (TYPE_P (*tp))
4958 *walk_subtrees = 0;
4959
4960 else if (DECL_P (*tp)
4961 && lang_hooks.tree_inlining.auto_var_in_fn_p (*tp, fn))
4962 return *tp;
4963
4964 return NULL_TREE;
4965 }
4966
4967 /* Returns true if T is, contains, or refers to a type with variable
4968 size. If FN is nonzero, only return true if a modifier of the type
4969 or position of FN is a variable or parameter inside FN.
4970
4971 This concept is more general than that of C99 'variably modified types':
4972 in C99, a struct type is never variably modified because a VLA may not
4973 appear as a structure member. However, in GNU C code like:
4974
4975 struct S { int i[f()]; };
4976
4977 is valid, and other languages may define similar constructs. */
4978
4979 bool
4980 variably_modified_type_p (tree type, tree fn)
4981 {
4982 tree t;
4983
4984 /* Test if T is either variable (if FN is zero) or an expression containing
4985 a variable in FN. */
4986 #define RETURN_TRUE_IF_VAR(T) \
4987 do { tree _t = (T); \
4988 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
4989 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
4990 return true; } while (0)
4991
4992 if (type == error_mark_node)
4993 return false;
4994
4995 /* If TYPE itself has variable size, it is variably modified.
4996
4997 We do not yet have a representation of the C99 '[*]' syntax.
4998 When a representation is chosen, this function should be modified
4999 to test for that case as well. */
5000 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
5001 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT(type));
5002
5003 switch (TREE_CODE (type))
5004 {
5005 case POINTER_TYPE:
5006 case REFERENCE_TYPE:
5007 case ARRAY_TYPE:
5008 case SET_TYPE:
5009 case VECTOR_TYPE:
5010 if (variably_modified_type_p (TREE_TYPE (type), fn))
5011 return true;
5012 break;
5013
5014 case FUNCTION_TYPE:
5015 case METHOD_TYPE:
5016 /* If TYPE is a function type, it is variably modified if any of the
5017 parameters or the return type are variably modified. */
5018 if (variably_modified_type_p (TREE_TYPE (type), fn))
5019 return true;
5020
5021 for (t = TYPE_ARG_TYPES (type);
5022 t && t != void_list_node;
5023 t = TREE_CHAIN (t))
5024 if (variably_modified_type_p (TREE_VALUE (t), fn))
5025 return true;
5026 break;
5027
5028 case INTEGER_TYPE:
5029 case REAL_TYPE:
5030 case ENUMERAL_TYPE:
5031 case BOOLEAN_TYPE:
5032 case CHAR_TYPE:
5033 /* Scalar types are variably modified if their end points
5034 aren't constant. */
5035 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
5036 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
5037 break;
5038
5039 case RECORD_TYPE:
5040 case UNION_TYPE:
5041 case QUAL_UNION_TYPE:
5042 /* We can't see if any of the field are variably-modified by the
5043 definition we normally use, since that would produce infinite
5044 recursion via pointers. */
5045 /* This is variably modified if some field's type is. */
5046 for (t = TYPE_FIELDS (type); t; t = TREE_CHAIN (t))
5047 if (TREE_CODE (t) == FIELD_DECL)
5048 {
5049 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
5050 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
5051 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
5052
5053 if (TREE_CODE (type) == QUAL_UNION_TYPE)
5054 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
5055 }
5056 break;
5057
5058 default:
5059 break;
5060 }
5061
5062 /* The current language may have other cases to check, but in general,
5063 all other types are not variably modified. */
5064 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
5065
5066 #undef RETURN_TRUE_IF_VAR
5067 }
5068
5069 /* Given a DECL or TYPE, return the scope in which it was declared, or
5070 NULL_TREE if there is no containing scope. */
5071
5072 tree
5073 get_containing_scope (tree t)
5074 {
5075 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
5076 }
5077
5078 /* Return the innermost context enclosing DECL that is
5079 a FUNCTION_DECL, or zero if none. */
5080
5081 tree
5082 decl_function_context (tree decl)
5083 {
5084 tree context;
5085
5086 if (TREE_CODE (decl) == ERROR_MARK)
5087 return 0;
5088
5089 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
5090 where we look up the function at runtime. Such functions always take
5091 a first argument of type 'pointer to real context'.
5092
5093 C++ should really be fixed to use DECL_CONTEXT for the real context,
5094 and use something else for the "virtual context". */
5095 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
5096 context
5097 = TYPE_MAIN_VARIANT
5098 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
5099 else
5100 context = DECL_CONTEXT (decl);
5101
5102 while (context && TREE_CODE (context) != FUNCTION_DECL)
5103 {
5104 if (TREE_CODE (context) == BLOCK)
5105 context = BLOCK_SUPERCONTEXT (context);
5106 else
5107 context = get_containing_scope (context);
5108 }
5109
5110 return context;
5111 }
5112
5113 /* Return the innermost context enclosing DECL that is
5114 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
5115 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
5116
5117 tree
5118 decl_type_context (tree decl)
5119 {
5120 tree context = DECL_CONTEXT (decl);
5121
5122 while (context)
5123 switch (TREE_CODE (context))
5124 {
5125 case NAMESPACE_DECL:
5126 case TRANSLATION_UNIT_DECL:
5127 return NULL_TREE;
5128
5129 case RECORD_TYPE:
5130 case UNION_TYPE:
5131 case QUAL_UNION_TYPE:
5132 return context;
5133
5134 case TYPE_DECL:
5135 case FUNCTION_DECL:
5136 context = DECL_CONTEXT (context);
5137 break;
5138
5139 case BLOCK:
5140 context = BLOCK_SUPERCONTEXT (context);
5141 break;
5142
5143 default:
5144 gcc_unreachable ();
5145 }
5146
5147 return NULL_TREE;
5148 }
5149
5150 /* CALL is a CALL_EXPR. Return the declaration for the function
5151 called, or NULL_TREE if the called function cannot be
5152 determined. */
5153
5154 tree
5155 get_callee_fndecl (tree call)
5156 {
5157 tree addr;
5158
5159 /* It's invalid to call this function with anything but a
5160 CALL_EXPR. */
5161 gcc_assert (TREE_CODE (call) == CALL_EXPR);
5162
5163 /* The first operand to the CALL is the address of the function
5164 called. */
5165 addr = TREE_OPERAND (call, 0);
5166
5167 STRIP_NOPS (addr);
5168
5169 /* If this is a readonly function pointer, extract its initial value. */
5170 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
5171 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
5172 && DECL_INITIAL (addr))
5173 addr = DECL_INITIAL (addr);
5174
5175 /* If the address is just `&f' for some function `f', then we know
5176 that `f' is being called. */
5177 if (TREE_CODE (addr) == ADDR_EXPR
5178 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
5179 return TREE_OPERAND (addr, 0);
5180
5181 /* We couldn't figure out what was being called. Maybe the front
5182 end has some idea. */
5183 return lang_hooks.lang_get_callee_fndecl (call);
5184 }
5185
5186 /* Print debugging information about tree nodes generated during the compile,
5187 and any language-specific information. */
5188
5189 void
5190 dump_tree_statistics (void)
5191 {
5192 #ifdef GATHER_STATISTICS
5193 int i;
5194 int total_nodes, total_bytes;
5195 #endif
5196
5197 fprintf (stderr, "\n??? tree nodes created\n\n");
5198 #ifdef GATHER_STATISTICS
5199 fprintf (stderr, "Kind Nodes Bytes\n");
5200 fprintf (stderr, "---------------------------------------\n");
5201 total_nodes = total_bytes = 0;
5202 for (i = 0; i < (int) all_kinds; i++)
5203 {
5204 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
5205 tree_node_counts[i], tree_node_sizes[i]);
5206 total_nodes += tree_node_counts[i];
5207 total_bytes += tree_node_sizes[i];
5208 }
5209 fprintf (stderr, "---------------------------------------\n");
5210 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
5211 fprintf (stderr, "---------------------------------------\n");
5212 ssanames_print_statistics ();
5213 phinodes_print_statistics ();
5214 #else
5215 fprintf (stderr, "(No per-node statistics)\n");
5216 #endif
5217 print_type_hash_statistics ();
5218 lang_hooks.print_statistics ();
5219 }
5220 \f
5221 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
5222
5223 /* Generate a crc32 of a string. */
5224
5225 unsigned
5226 crc32_string (unsigned chksum, const char *string)
5227 {
5228 do
5229 {
5230 unsigned value = *string << 24;
5231 unsigned ix;
5232
5233 for (ix = 8; ix--; value <<= 1)
5234 {
5235 unsigned feedback;
5236
5237 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
5238 chksum <<= 1;
5239 chksum ^= feedback;
5240 }
5241 }
5242 while (*string++);
5243 return chksum;
5244 }
5245
5246 /* P is a string that will be used in a symbol. Mask out any characters
5247 that are not valid in that context. */
5248
5249 void
5250 clean_symbol_name (char *p)
5251 {
5252 for (; *p; p++)
5253 if (! (ISALNUM (*p)
5254 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
5255 || *p == '$'
5256 #endif
5257 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
5258 || *p == '.'
5259 #endif
5260 ))
5261 *p = '_';
5262 }
5263
5264 /* Generate a name for a function unique to this translation unit.
5265 TYPE is some string to identify the purpose of this function to the
5266 linker or collect2. */
5267
5268 tree
5269 get_file_function_name_long (const char *type)
5270 {
5271 char *buf;
5272 const char *p;
5273 char *q;
5274
5275 if (first_global_object_name)
5276 p = first_global_object_name;
5277 else
5278 {
5279 /* We don't have anything that we know to be unique to this translation
5280 unit, so use what we do have and throw in some randomness. */
5281 unsigned len;
5282 const char *name = weak_global_object_name;
5283 const char *file = main_input_filename;
5284
5285 if (! name)
5286 name = "";
5287 if (! file)
5288 file = input_filename;
5289
5290 len = strlen (file);
5291 q = alloca (9 * 2 + len + 1);
5292 memcpy (q, file, len + 1);
5293 clean_symbol_name (q);
5294
5295 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
5296 crc32_string (0, flag_random_seed));
5297
5298 p = q;
5299 }
5300
5301 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
5302
5303 /* Set up the name of the file-level functions we may need.
5304 Use a global object (which is already required to be unique over
5305 the program) rather than the file name (which imposes extra
5306 constraints). */
5307 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
5308
5309 return get_identifier (buf);
5310 }
5311
5312 /* If KIND=='I', return a suitable global initializer (constructor) name.
5313 If KIND=='D', return a suitable global clean-up (destructor) name. */
5314
5315 tree
5316 get_file_function_name (int kind)
5317 {
5318 char p[2];
5319
5320 p[0] = kind;
5321 p[1] = 0;
5322
5323 return get_file_function_name_long (p);
5324 }
5325 \f
5326 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5327 The result is placed in BUFFER (which has length BIT_SIZE),
5328 with one bit in each char ('\000' or '\001').
5329
5330 If the constructor is constant, NULL_TREE is returned.
5331 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5332
5333 tree
5334 get_set_constructor_bits (tree init, char *buffer, int bit_size)
5335 {
5336 int i;
5337 tree vals;
5338 HOST_WIDE_INT domain_min
5339 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
5340 tree non_const_bits = NULL_TREE;
5341
5342 for (i = 0; i < bit_size; i++)
5343 buffer[i] = 0;
5344
5345 for (vals = TREE_OPERAND (init, 1);
5346 vals != NULL_TREE; vals = TREE_CHAIN (vals))
5347 {
5348 if (!host_integerp (TREE_VALUE (vals), 0)
5349 || (TREE_PURPOSE (vals) != NULL_TREE
5350 && !host_integerp (TREE_PURPOSE (vals), 0)))
5351 non_const_bits
5352 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
5353 else if (TREE_PURPOSE (vals) != NULL_TREE)
5354 {
5355 /* Set a range of bits to ones. */
5356 HOST_WIDE_INT lo_index
5357 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
5358 HOST_WIDE_INT hi_index
5359 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5360
5361 gcc_assert (lo_index >= 0);
5362 gcc_assert (lo_index < bit_size);
5363 gcc_assert (hi_index >= 0);
5364 gcc_assert (hi_index < bit_size);
5365 for (; lo_index <= hi_index; lo_index++)
5366 buffer[lo_index] = 1;
5367 }
5368 else
5369 {
5370 /* Set a single bit to one. */
5371 HOST_WIDE_INT index
5372 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
5373 if (index < 0 || index >= bit_size)
5374 {
5375 error ("invalid initializer for bit string");
5376 return NULL_TREE;
5377 }
5378 buffer[index] = 1;
5379 }
5380 }
5381 return non_const_bits;
5382 }
5383
5384 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
5385 The result is placed in BUFFER (which is an array of bytes).
5386 If the constructor is constant, NULL_TREE is returned.
5387 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
5388
5389 tree
5390 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
5391 {
5392 int i;
5393 int set_word_size = BITS_PER_UNIT;
5394 int bit_size = wd_size * set_word_size;
5395 int bit_pos = 0;
5396 unsigned char *bytep = buffer;
5397 char *bit_buffer = alloca (bit_size);
5398 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
5399
5400 for (i = 0; i < wd_size; i++)
5401 buffer[i] = 0;
5402
5403 for (i = 0; i < bit_size; i++)
5404 {
5405 if (bit_buffer[i])
5406 {
5407 if (BYTES_BIG_ENDIAN)
5408 *bytep |= (1 << (set_word_size - 1 - bit_pos));
5409 else
5410 *bytep |= 1 << bit_pos;
5411 }
5412 bit_pos++;
5413 if (bit_pos >= set_word_size)
5414 bit_pos = 0, bytep++;
5415 }
5416 return non_const_bits;
5417 }
5418 \f
5419 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
5420
5421 /* Complain that the tree code of NODE does not match the expected 0
5422 terminated list of trailing codes. The trailing code list can be
5423 empty, for a more vague error message. FILE, LINE, and FUNCTION
5424 are of the caller. */
5425
5426 void
5427 tree_check_failed (const tree node, const char *file,
5428 int line, const char *function, ...)
5429 {
5430 va_list args;
5431 char *buffer;
5432 unsigned length = 0;
5433 int code;
5434
5435 va_start (args, function);
5436 while ((code = va_arg (args, int)))
5437 length += 4 + strlen (tree_code_name[code]);
5438 va_end (args);
5439 if (length)
5440 {
5441 va_start (args, function);
5442 length += strlen ("expected ");
5443 buffer = alloca (length);
5444 length = 0;
5445 while ((code = va_arg (args, int)))
5446 {
5447 const char *prefix = length ? " or " : "expected ";
5448
5449 strcpy (buffer + length, prefix);
5450 length += strlen (prefix);
5451 strcpy (buffer + length, tree_code_name[code]);
5452 length += strlen (tree_code_name[code]);
5453 }
5454 va_end (args);
5455 }
5456 else
5457 buffer = (char *)"unexpected node";
5458
5459 internal_error ("tree check: %s, have %s in %s, at %s:%d",
5460 buffer, tree_code_name[TREE_CODE (node)],
5461 function, trim_filename (file), line);
5462 }
5463
5464 /* Complain that the tree code of NODE does match the expected 0
5465 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
5466 the caller. */
5467
5468 void
5469 tree_not_check_failed (const tree node, const char *file,
5470 int line, const char *function, ...)
5471 {
5472 va_list args;
5473 char *buffer;
5474 unsigned length = 0;
5475 int code;
5476
5477 va_start (args, function);
5478 while ((code = va_arg (args, int)))
5479 length += 4 + strlen (tree_code_name[code]);
5480 va_end (args);
5481 va_start (args, function);
5482 buffer = alloca (length);
5483 length = 0;
5484 while ((code = va_arg (args, int)))
5485 {
5486 if (length)
5487 {
5488 strcpy (buffer + length, " or ");
5489 length += 4;
5490 }
5491 strcpy (buffer + length, tree_code_name[code]);
5492 length += strlen (tree_code_name[code]);
5493 }
5494 va_end (args);
5495
5496 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
5497 buffer, tree_code_name[TREE_CODE (node)],
5498 function, trim_filename (file), line);
5499 }
5500
5501 /* Similar to tree_check_failed, except that we check for a class of tree
5502 code, given in CL. */
5503
5504 void
5505 tree_class_check_failed (const tree node, const enum tree_code_class cl,
5506 const char *file, int line, const char *function)
5507 {
5508 internal_error
5509 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
5510 TREE_CODE_CLASS_STRING (cl),
5511 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
5512 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
5513 }
5514
5515 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
5516 (dynamically sized) vector. */
5517
5518 void
5519 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
5520 const char *function)
5521 {
5522 internal_error
5523 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
5524 idx + 1, len, function, trim_filename (file), line);
5525 }
5526
5527 /* Similar to above, except that the check is for the bounds of a PHI_NODE's
5528 (dynamically sized) vector. */
5529
5530 void
5531 phi_node_elt_check_failed (int idx, int len, const char *file, int line,
5532 const char *function)
5533 {
5534 internal_error
5535 ("tree check: accessed elt %d of phi_node with %d elts in %s, at %s:%d",
5536 idx + 1, len, function, trim_filename (file), line);
5537 }
5538
5539 /* Similar to above, except that the check is for the bounds of the operand
5540 vector of an expression node. */
5541
5542 void
5543 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
5544 int line, const char *function)
5545 {
5546 internal_error
5547 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
5548 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
5549 function, trim_filename (file), line);
5550 }
5551 #endif /* ENABLE_TREE_CHECKING */
5552 \f
5553 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
5554 and mapped to the machine mode MODE. Initialize its fields and build
5555 the information necessary for debugging output. */
5556
5557 static tree
5558 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
5559 {
5560 tree t = make_node (VECTOR_TYPE);
5561
5562 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
5563 TYPE_VECTOR_SUBPARTS (t) = nunits;
5564 TYPE_MODE (t) = mode;
5565 TYPE_READONLY (t) = TYPE_READONLY (innertype);
5566 TYPE_VOLATILE (t) = TYPE_VOLATILE (innertype);
5567
5568 layout_type (t);
5569
5570 {
5571 tree index = build_int_cst (NULL_TREE, nunits - 1);
5572 tree array = build_array_type (innertype, build_index_type (index));
5573 tree rt = make_node (RECORD_TYPE);
5574
5575 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
5576 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
5577 layout_type (rt);
5578 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
5579 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
5580 the representation type, and we want to find that die when looking up
5581 the vector type. This is most easily achieved by making the TYPE_UID
5582 numbers equal. */
5583 TYPE_UID (rt) = TYPE_UID (t);
5584 }
5585
5586 /* Build our main variant, based on the main variant of the inner type. */
5587 if (TYPE_MAIN_VARIANT (innertype) != innertype)
5588 {
5589 tree innertype_main_variant = TYPE_MAIN_VARIANT (innertype);
5590 unsigned int hash = TYPE_HASH (innertype_main_variant);
5591 TYPE_MAIN_VARIANT (t)
5592 = type_hash_canon (hash, make_vector_type (innertype_main_variant,
5593 nunits, mode));
5594 }
5595
5596 return t;
5597 }
5598
5599 static tree
5600 make_or_reuse_type (unsigned size, int unsignedp)
5601 {
5602 if (size == INT_TYPE_SIZE)
5603 return unsignedp ? unsigned_type_node : integer_type_node;
5604 if (size == CHAR_TYPE_SIZE)
5605 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
5606 if (size == SHORT_TYPE_SIZE)
5607 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
5608 if (size == LONG_TYPE_SIZE)
5609 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
5610 if (size == LONG_LONG_TYPE_SIZE)
5611 return (unsignedp ? long_long_unsigned_type_node
5612 : long_long_integer_type_node);
5613
5614 if (unsignedp)
5615 return make_unsigned_type (size);
5616 else
5617 return make_signed_type (size);
5618 }
5619
5620 /* Create nodes for all integer types (and error_mark_node) using the sizes
5621 of C datatypes. The caller should call set_sizetype soon after calling
5622 this function to select one of the types as sizetype. */
5623
5624 void
5625 build_common_tree_nodes (bool signed_char, bool signed_sizetype)
5626 {
5627 error_mark_node = make_node (ERROR_MARK);
5628 TREE_TYPE (error_mark_node) = error_mark_node;
5629
5630 initialize_sizetypes (signed_sizetype);
5631
5632 /* Define both `signed char' and `unsigned char'. */
5633 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
5634 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
5635
5636 /* Define `char', which is like either `signed char' or `unsigned char'
5637 but not the same as either. */
5638 char_type_node
5639 = (signed_char
5640 ? make_signed_type (CHAR_TYPE_SIZE)
5641 : make_unsigned_type (CHAR_TYPE_SIZE));
5642
5643 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
5644 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
5645 integer_type_node = make_signed_type (INT_TYPE_SIZE);
5646 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
5647 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
5648 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
5649 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
5650 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
5651
5652 /* Define a boolean type. This type only represents boolean values but
5653 may be larger than char depending on the value of BOOL_TYPE_SIZE.
5654 Front ends which want to override this size (i.e. Java) can redefine
5655 boolean_type_node before calling build_common_tree_nodes_2. */
5656 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5657 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5658 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5659 TYPE_PRECISION (boolean_type_node) = 1;
5660
5661 /* Fill in the rest of the sized types. Reuse existing type nodes
5662 when possible. */
5663 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
5664 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
5665 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
5666 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
5667 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
5668
5669 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
5670 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
5671 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
5672 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
5673 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
5674
5675 access_public_node = get_identifier ("public");
5676 access_protected_node = get_identifier ("protected");
5677 access_private_node = get_identifier ("private");
5678 }
5679
5680 /* Call this function after calling build_common_tree_nodes and set_sizetype.
5681 It will create several other common tree nodes. */
5682
5683 void
5684 build_common_tree_nodes_2 (int short_double)
5685 {
5686 /* Define these next since types below may used them. */
5687 integer_zero_node = build_int_cst (NULL_TREE, 0);
5688 integer_one_node = build_int_cst (NULL_TREE, 1);
5689 integer_minus_one_node = build_int_cst (NULL_TREE, -1);
5690
5691 size_zero_node = size_int (0);
5692 size_one_node = size_int (1);
5693 bitsize_zero_node = bitsize_int (0);
5694 bitsize_one_node = bitsize_int (1);
5695 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
5696
5697 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5698 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5699
5700 void_type_node = make_node (VOID_TYPE);
5701 layout_type (void_type_node);
5702
5703 /* We are not going to have real types in C with less than byte alignment,
5704 so we might as well not have any types that claim to have it. */
5705 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
5706 TYPE_USER_ALIGN (void_type_node) = 0;
5707
5708 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
5709 layout_type (TREE_TYPE (null_pointer_node));
5710
5711 ptr_type_node = build_pointer_type (void_type_node);
5712 const_ptr_type_node
5713 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
5714 fileptr_type_node = ptr_type_node;
5715
5716 float_type_node = make_node (REAL_TYPE);
5717 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
5718 layout_type (float_type_node);
5719
5720 double_type_node = make_node (REAL_TYPE);
5721 if (short_double)
5722 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
5723 else
5724 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
5725 layout_type (double_type_node);
5726
5727 long_double_type_node = make_node (REAL_TYPE);
5728 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
5729 layout_type (long_double_type_node);
5730
5731 float_ptr_type_node = build_pointer_type (float_type_node);
5732 double_ptr_type_node = build_pointer_type (double_type_node);
5733 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
5734 integer_ptr_type_node = build_pointer_type (integer_type_node);
5735
5736 complex_integer_type_node = make_node (COMPLEX_TYPE);
5737 TREE_TYPE (complex_integer_type_node) = integer_type_node;
5738 layout_type (complex_integer_type_node);
5739
5740 complex_float_type_node = make_node (COMPLEX_TYPE);
5741 TREE_TYPE (complex_float_type_node) = float_type_node;
5742 layout_type (complex_float_type_node);
5743
5744 complex_double_type_node = make_node (COMPLEX_TYPE);
5745 TREE_TYPE (complex_double_type_node) = double_type_node;
5746 layout_type (complex_double_type_node);
5747
5748 complex_long_double_type_node = make_node (COMPLEX_TYPE);
5749 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
5750 layout_type (complex_long_double_type_node);
5751
5752 {
5753 tree t = targetm.build_builtin_va_list ();
5754
5755 /* Many back-ends define record types without setting TYPE_NAME.
5756 If we copied the record type here, we'd keep the original
5757 record type without a name. This breaks name mangling. So,
5758 don't copy record types and let c_common_nodes_and_builtins()
5759 declare the type to be __builtin_va_list. */
5760 if (TREE_CODE (t) != RECORD_TYPE)
5761 t = build_variant_type_copy (t);
5762
5763 va_list_type_node = t;
5764 }
5765 }
5766
5767 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
5768 better way.
5769
5770 If we requested a pointer to a vector, build up the pointers that
5771 we stripped off while looking for the inner type. Similarly for
5772 return values from functions.
5773
5774 The argument TYPE is the top of the chain, and BOTTOM is the
5775 new type which we will point to. */
5776
5777 tree
5778 reconstruct_complex_type (tree type, tree bottom)
5779 {
5780 tree inner, outer;
5781
5782 if (POINTER_TYPE_P (type))
5783 {
5784 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5785 outer = build_pointer_type (inner);
5786 }
5787 else if (TREE_CODE (type) == ARRAY_TYPE)
5788 {
5789 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5790 outer = build_array_type (inner, TYPE_DOMAIN (type));
5791 }
5792 else if (TREE_CODE (type) == FUNCTION_TYPE)
5793 {
5794 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5795 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
5796 }
5797 else if (TREE_CODE (type) == METHOD_TYPE)
5798 {
5799 tree argtypes;
5800 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
5801 /* The build_method_type_directly() routine prepends 'this' to argument list,
5802 so we must compensate by getting rid of it. */
5803 argtypes = TYPE_ARG_TYPES (type);
5804 outer = build_method_type_directly (TYPE_METHOD_BASETYPE (type),
5805 inner,
5806 TYPE_ARG_TYPES (type));
5807 TYPE_ARG_TYPES (outer) = argtypes;
5808 }
5809 else
5810 return bottom;
5811
5812 TYPE_READONLY (outer) = TYPE_READONLY (type);
5813 TYPE_VOLATILE (outer) = TYPE_VOLATILE (type);
5814
5815 return outer;
5816 }
5817
5818 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
5819 the inner type. */
5820 tree
5821 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
5822 {
5823 int nunits;
5824
5825 switch (GET_MODE_CLASS (mode))
5826 {
5827 case MODE_VECTOR_INT:
5828 case MODE_VECTOR_FLOAT:
5829 nunits = GET_MODE_NUNITS (mode);
5830 break;
5831
5832 case MODE_INT:
5833 /* Check that there are no leftover bits. */
5834 gcc_assert (GET_MODE_BITSIZE (mode)
5835 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
5836
5837 nunits = GET_MODE_BITSIZE (mode)
5838 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
5839 break;
5840
5841 default:
5842 gcc_unreachable ();
5843 }
5844
5845 return make_vector_type (innertype, nunits, mode);
5846 }
5847
5848 /* Similarly, but takes the inner type and number of units, which must be
5849 a power of two. */
5850
5851 tree
5852 build_vector_type (tree innertype, int nunits)
5853 {
5854 return make_vector_type (innertype, nunits, VOIDmode);
5855 }
5856
5857 /* Given an initializer INIT, return TRUE if INIT is zero or some
5858 aggregate of zeros. Otherwise return FALSE. */
5859 bool
5860 initializer_zerop (tree init)
5861 {
5862 tree elt;
5863
5864 STRIP_NOPS (init);
5865
5866 switch (TREE_CODE (init))
5867 {
5868 case INTEGER_CST:
5869 return integer_zerop (init);
5870
5871 case REAL_CST:
5872 /* ??? Note that this is not correct for C4X float formats. There,
5873 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
5874 negative exponent. */
5875 return real_zerop (init)
5876 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5877
5878 case COMPLEX_CST:
5879 return integer_zerop (init)
5880 || (real_zerop (init)
5881 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5882 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5883
5884 case VECTOR_CST:
5885 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
5886 if (!initializer_zerop (TREE_VALUE (elt)))
5887 return false;
5888 return true;
5889
5890 case CONSTRUCTOR:
5891 elt = CONSTRUCTOR_ELTS (init);
5892 if (elt == NULL_TREE)
5893 return true;
5894
5895 /* A set is empty only if it has no elements. */
5896 if (TREE_CODE (TREE_TYPE (init)) == SET_TYPE)
5897 return false;
5898
5899 for (; elt ; elt = TREE_CHAIN (elt))
5900 if (! initializer_zerop (TREE_VALUE (elt)))
5901 return false;
5902 return true;
5903
5904 default:
5905 return false;
5906 }
5907 }
5908
5909 void
5910 add_var_to_bind_expr (tree bind_expr, tree var)
5911 {
5912 BIND_EXPR_VARS (bind_expr)
5913 = chainon (BIND_EXPR_VARS (bind_expr), var);
5914 if (BIND_EXPR_BLOCK (bind_expr))
5915 BLOCK_VARS (BIND_EXPR_BLOCK (bind_expr))
5916 = BIND_EXPR_VARS (bind_expr);
5917 }
5918
5919 /* Build an empty statement. */
5920
5921 tree
5922 build_empty_stmt (void)
5923 {
5924 return build1 (NOP_EXPR, void_type_node, size_zero_node);
5925 }
5926
5927
5928 /* Returns true if it is possible to prove that the index of
5929 an array access REF (an ARRAY_REF expression) falls into the
5930 array bounds. */
5931
5932 bool
5933 in_array_bounds_p (tree ref)
5934 {
5935 tree idx = TREE_OPERAND (ref, 1);
5936 tree min, max;
5937
5938 if (TREE_CODE (idx) != INTEGER_CST)
5939 return false;
5940
5941 min = array_ref_low_bound (ref);
5942 max = array_ref_up_bound (ref);
5943 if (!min
5944 || !max
5945 || TREE_CODE (min) != INTEGER_CST
5946 || TREE_CODE (max) != INTEGER_CST)
5947 return false;
5948
5949 if (tree_int_cst_lt (idx, min)
5950 || tree_int_cst_lt (max, idx))
5951 return false;
5952
5953 return true;
5954 }
5955
5956 /* Return true if T (assumed to be a DECL) is a global variable. */
5957
5958 bool
5959 is_global_var (tree t)
5960 {
5961 return (TREE_STATIC (t) || DECL_EXTERNAL (t));
5962 }
5963
5964 /* Return true if T (assumed to be a DECL) must be assigned a memory
5965 location. */
5966
5967 bool
5968 needs_to_live_in_memory (tree t)
5969 {
5970 return (TREE_ADDRESSABLE (t)
5971 || is_global_var (t)
5972 || (TREE_CODE (t) == RESULT_DECL
5973 && aggregate_value_p (t, current_function_decl)));
5974 }
5975
5976 /* There are situations in which a language considers record types
5977 compatible which have different field lists. Decide if two fields
5978 are compatible. It is assumed that the parent records are compatible. */
5979
5980 bool
5981 fields_compatible_p (tree f1, tree f2)
5982 {
5983 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
5984 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
5985 return false;
5986
5987 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
5988 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
5989 return false;
5990
5991 if (!lang_hooks.types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
5992 return false;
5993
5994 return true;
5995 }
5996
5997 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
5998
5999 tree
6000 find_compatible_field (tree record, tree orig_field)
6001 {
6002 tree f;
6003
6004 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
6005 if (TREE_CODE (f) == FIELD_DECL
6006 && fields_compatible_p (f, orig_field))
6007 return f;
6008
6009 /* ??? Why isn't this on the main fields list? */
6010 f = TYPE_VFIELD (record);
6011 if (f && TREE_CODE (f) == FIELD_DECL
6012 && fields_compatible_p (f, orig_field))
6013 return f;
6014
6015 /* ??? We should abort here, but Java appears to do Bad Things
6016 with inherited fields. */
6017 return orig_field;
6018 }
6019
6020 /* Return value of a constant X. */
6021
6022 HOST_WIDE_INT
6023 int_cst_value (tree x)
6024 {
6025 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
6026 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
6027 bool negative = ((val >> (bits - 1)) & 1) != 0;
6028
6029 gcc_assert (bits <= HOST_BITS_PER_WIDE_INT);
6030
6031 if (negative)
6032 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
6033 else
6034 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
6035
6036 return val;
6037 }
6038
6039 /* Returns the greatest common divisor of A and B, which must be
6040 INTEGER_CSTs. */
6041
6042 tree
6043 tree_fold_gcd (tree a, tree b)
6044 {
6045 tree a_mod_b;
6046 tree type = TREE_TYPE (a);
6047
6048 gcc_assert (TREE_CODE (a) == INTEGER_CST);
6049 gcc_assert (TREE_CODE (b) == INTEGER_CST);
6050
6051 if (integer_zerop (a))
6052 return b;
6053
6054 if (integer_zerop (b))
6055 return a;
6056
6057 if (tree_int_cst_sgn (a) == -1)
6058 a = fold (build2 (MULT_EXPR, type, a,
6059 convert (type, integer_minus_one_node)));
6060
6061 if (tree_int_cst_sgn (b) == -1)
6062 b = fold (build2 (MULT_EXPR, type, b,
6063 convert (type, integer_minus_one_node)));
6064
6065 while (1)
6066 {
6067 a_mod_b = fold (build2 (FLOOR_MOD_EXPR, type, a, b));
6068
6069 if (!TREE_INT_CST_LOW (a_mod_b)
6070 && !TREE_INT_CST_HIGH (a_mod_b))
6071 return b;
6072
6073 a = b;
6074 b = a_mod_b;
6075 }
6076 }
6077
6078 /* Returns unsigned variant of TYPE. */
6079
6080 tree
6081 unsigned_type_for (tree type)
6082 {
6083 return lang_hooks.types.unsigned_type (type);
6084 }
6085
6086 /* Returns signed variant of TYPE. */
6087
6088 tree
6089 signed_type_for (tree type)
6090 {
6091 return lang_hooks.types.signed_type (type);
6092 }
6093
6094 /* Returns the largest value obtainable by casting something in INNER type to
6095 OUTER type. */
6096
6097 tree
6098 upper_bound_in_type (tree outer, tree inner)
6099 {
6100 unsigned HOST_WIDE_INT lo, hi;
6101 unsigned bits = TYPE_PRECISION (inner);
6102
6103 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6104 {
6105 /* Zero extending in these cases. */
6106 if (bits <= HOST_BITS_PER_WIDE_INT)
6107 {
6108 hi = 0;
6109 lo = (~(unsigned HOST_WIDE_INT) 0)
6110 >> (HOST_BITS_PER_WIDE_INT - bits);
6111 }
6112 else
6113 {
6114 hi = (~(unsigned HOST_WIDE_INT) 0)
6115 >> (2 * HOST_BITS_PER_WIDE_INT - bits);
6116 lo = ~(unsigned HOST_WIDE_INT) 0;
6117 }
6118 }
6119 else
6120 {
6121 /* Sign extending in these cases. */
6122 if (bits <= HOST_BITS_PER_WIDE_INT)
6123 {
6124 hi = 0;
6125 lo = (~(unsigned HOST_WIDE_INT) 0)
6126 >> (HOST_BITS_PER_WIDE_INT - bits) >> 1;
6127 }
6128 else
6129 {
6130 hi = (~(unsigned HOST_WIDE_INT) 0)
6131 >> (2 * HOST_BITS_PER_WIDE_INT - bits) >> 1;
6132 lo = ~(unsigned HOST_WIDE_INT) 0;
6133 }
6134 }
6135
6136 return fold_convert (outer,
6137 build_int_cst_wide (inner, lo, hi));
6138 }
6139
6140 /* Returns the smallest value obtainable by casting something in INNER type to
6141 OUTER type. */
6142
6143 tree
6144 lower_bound_in_type (tree outer, tree inner)
6145 {
6146 unsigned HOST_WIDE_INT lo, hi;
6147 unsigned bits = TYPE_PRECISION (inner);
6148
6149 if (TYPE_UNSIGNED (outer) || TYPE_UNSIGNED (inner))
6150 lo = hi = 0;
6151 else if (bits <= HOST_BITS_PER_WIDE_INT)
6152 {
6153 hi = ~(unsigned HOST_WIDE_INT) 0;
6154 lo = (~(unsigned HOST_WIDE_INT) 0) << (bits - 1);
6155 }
6156 else
6157 {
6158 hi = (~(unsigned HOST_WIDE_INT) 0) << (bits - HOST_BITS_PER_WIDE_INT - 1);
6159 lo = 0;
6160 }
6161
6162 return fold_convert (outer,
6163 build_int_cst_wide (inner, lo, hi));
6164 }
6165
6166 /* Return nonzero if two operands that are suitable for PHI nodes are
6167 necessarily equal. Specifically, both ARG0 and ARG1 must be either
6168 SSA_NAME or invariant. Note that this is strictly an optimization.
6169 That is, callers of this function can directly call operand_equal_p
6170 and get the same result, only slower. */
6171
6172 int
6173 operand_equal_for_phi_arg_p (tree arg0, tree arg1)
6174 {
6175 if (arg0 == arg1)
6176 return 1;
6177 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
6178 return 0;
6179 return operand_equal_p (arg0, arg1, 0);
6180 }
6181
6182 #include "gt-tree.h"