tree.c (get_unwidened): Check TREE_UNSIGNED on the field's type.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static tree make_vector (enum machine_mode, tree, int);
110 static int type_hash_marked_p (const void *);
111
112 tree global_trees[TI_MAX];
113 tree integer_types[itk_none];
114 \f
115 /* Init tree.c. */
116
117 void
118 init_ttree (void)
119 {
120 /* Initialize the hash table of types. */
121 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
122 type_hash_eq, 0);
123 }
124
125 \f
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
129 tree
130 decl_assembler_name (tree decl)
131 {
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
133 (*lang_hooks.set_decl_assembler_name) (decl);
134 return DECL_CHECK (decl)->decl.assembler_name;
135 }
136
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
139 size_t
140 tree_size (tree node)
141 {
142 enum tree_code code = TREE_CODE (node);
143
144 switch (TREE_CODE_CLASS (code))
145 {
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl);
148
149 case 't': /* a type node */
150 return sizeof (struct tree_type);
151
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block);
154
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp)
162 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
163
164 case 'c': /* a constant */
165 switch (code)
166 {
167 case INTEGER_CST: return sizeof (struct tree_int_cst);
168 case REAL_CST: return sizeof (struct tree_real_cst);
169 case COMPLEX_CST: return sizeof (struct tree_complex);
170 case VECTOR_CST: return sizeof (struct tree_vector);
171 case STRING_CST: return sizeof (struct tree_string);
172 default:
173 return (*lang_hooks.tree_size) (code);
174 }
175
176 case 'x': /* something random, like an identifier. */
177 switch (code)
178 {
179 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
180 case TREE_LIST: return sizeof (struct tree_list);
181 case TREE_VEC: return (sizeof (struct tree_vec)
182 + TREE_VEC_LENGTH(node) * sizeof(char *)
183 - sizeof (char *));
184
185 case ERROR_MARK:
186 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
187
188 default:
189 return (*lang_hooks.tree_size) (code);
190 }
191
192 default:
193 abort ();
194 }
195 }
196
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
200
201 Achoo! I got a code in the node. */
202
203 tree
204 make_node (enum tree_code code)
205 {
206 tree t;
207 int type = TREE_CODE_CLASS (code);
208 size_t length;
209 #ifdef GATHER_STATISTICS
210 tree_node_kind kind;
211 #endif
212 struct tree_common ttmp;
213
214 /* We can't allocate a TREE_VEC without knowing how many elements
215 it will have. */
216 if (code == TREE_VEC)
217 abort ();
218
219 TREE_SET_CODE ((tree)&ttmp, code);
220 length = tree_size ((tree)&ttmp);
221
222 #ifdef GATHER_STATISTICS
223 switch (type)
224 {
225 case 'd': /* A decl node */
226 kind = d_kind;
227 break;
228
229 case 't': /* a type node */
230 kind = t_kind;
231 break;
232
233 case 'b': /* a lexical block */
234 kind = b_kind;
235 break;
236
237 case 's': /* an expression with side effects */
238 kind = s_kind;
239 break;
240
241 case 'r': /* a reference */
242 kind = r_kind;
243 break;
244
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
249 kind = e_kind;
250 break;
251
252 case 'c': /* a constant */
253 kind = c_kind;
254 break;
255
256 case 'x': /* something random, like an identifier. */
257 if (code == IDENTIFIER_NODE)
258 kind = id_kind;
259 else if (code == TREE_VEC)
260 kind = vec_kind;
261 else
262 kind = x_kind;
263 break;
264
265 default:
266 abort ();
267 }
268
269 tree_node_counts[(int) kind]++;
270 tree_node_sizes[(int) kind] += length;
271 #endif
272
273 t = ggc_alloc_tree (length);
274
275 memset (t, 0, length);
276
277 TREE_SET_CODE (t, code);
278
279 switch (type)
280 {
281 case 's':
282 TREE_SIDE_EFFECTS (t) = 1;
283 break;
284
285 case 'd':
286 if (code != FUNCTION_DECL)
287 DECL_ALIGN (t) = 1;
288 DECL_USER_ALIGN (t) = 0;
289 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
290 DECL_SOURCE_LOCATION (t) = input_location;
291 DECL_UID (t) = next_decl_uid++;
292
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t) = -1;
295 break;
296
297 case 't':
298 TYPE_UID (t) = next_type_uid++;
299 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
300 TYPE_USER_ALIGN (t) = 0;
301 TYPE_MAIN_VARIANT (t) = t;
302
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t) = NULL_TREE;
305 (*targetm.set_default_type_attributes) (t);
306
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t) = -1;
309 break;
310
311 case 'c':
312 TREE_CONSTANT (t) = 1;
313 break;
314
315 case 'e':
316 switch (code)
317 {
318 case INIT_EXPR:
319 case MODIFY_EXPR:
320 case VA_ARG_EXPR:
321 case RTL_EXPR:
322 case PREDECREMENT_EXPR:
323 case PREINCREMENT_EXPR:
324 case POSTDECREMENT_EXPR:
325 case POSTINCREMENT_EXPR:
326 /* All of these have side-effects, no matter what their
327 operands are. */
328 TREE_SIDE_EFFECTS (t) = 1;
329 break;
330
331 default:
332 break;
333 }
334 break;
335 }
336
337 return t;
338 }
339 \f
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
342
343 tree
344 copy_node (tree node)
345 {
346 tree t;
347 enum tree_code code = TREE_CODE (node);
348 size_t length;
349
350 length = tree_size (node);
351 t = ggc_alloc_tree (length);
352 memcpy (t, node, length);
353
354 TREE_CHAIN (t) = 0;
355 TREE_ASM_WRITTEN (t) = 0;
356
357 if (TREE_CODE_CLASS (code) == 'd')
358 DECL_UID (t) = next_decl_uid++;
359 else if (TREE_CODE_CLASS (code) == 't')
360 {
361 TYPE_UID (t) = next_type_uid++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t) = 0;
368 TYPE_SYMTAB_ADDRESS (t) = 0;
369 }
370
371 return t;
372 }
373
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
376
377 tree
378 copy_list (tree list)
379 {
380 tree head;
381 tree prev, next;
382
383 if (list == 0)
384 return 0;
385
386 head = prev = copy_node (list);
387 next = TREE_CHAIN (list);
388 while (next)
389 {
390 TREE_CHAIN (prev) = copy_node (next);
391 prev = TREE_CHAIN (prev);
392 next = TREE_CHAIN (next);
393 }
394 return head;
395 }
396
397 \f
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
401
402 This function should be used via the `build_int_2' macro. */
403
404 tree
405 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
406 {
407 tree t = make_node (INTEGER_CST);
408
409 TREE_INT_CST_LOW (t) = low;
410 TREE_INT_CST_HIGH (t) = hi;
411 TREE_TYPE (t) = integer_type_node;
412 return t;
413 }
414
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
417
418 tree
419 build_vector (tree type, tree vals)
420 {
421 tree v = make_node (VECTOR_CST);
422 int over1 = 0, over2 = 0;
423 tree link;
424
425 TREE_VECTOR_CST_ELTS (v) = vals;
426 TREE_TYPE (v) = type;
427
428 /* Iterate through elements and check for overflow. */
429 for (link = vals; link; link = TREE_CHAIN (link))
430 {
431 tree value = TREE_VALUE (link);
432
433 over1 |= TREE_OVERFLOW (value);
434 over2 |= TREE_CONSTANT_OVERFLOW (value);
435 }
436
437 TREE_OVERFLOW (v) = over1;
438 TREE_CONSTANT_OVERFLOW (v) = over2;
439
440 return v;
441 }
442
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
445 tree
446 build_constructor (tree type, tree vals)
447 {
448 tree c = make_node (CONSTRUCTOR);
449 TREE_TYPE (c) = type;
450 CONSTRUCTOR_ELTS (c) = vals;
451
452 /* ??? May not be necessary. Mirrors what build does. */
453 if (vals)
454 {
455 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
456 TREE_READONLY (c) = TREE_READONLY (vals);
457 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
458 }
459 else
460 TREE_CONSTANT (c) = 0; /* safe side */
461
462 return c;
463 }
464
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
466
467 tree
468 build_real (tree type, REAL_VALUE_TYPE d)
469 {
470 tree v;
471 REAL_VALUE_TYPE *dp;
472 int overflow = 0;
473
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
476
477 v = make_node (REAL_CST);
478 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
479 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
480
481 TREE_TYPE (v) = type;
482 TREE_REAL_CST_PTR (v) = dp;
483 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
484 return v;
485 }
486
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
489
490 REAL_VALUE_TYPE
491 real_value_from_int_cst (tree type, tree i)
492 {
493 REAL_VALUE_TYPE d;
494
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d, 0, sizeof d);
498
499 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
500 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
501 TREE_UNSIGNED (TREE_TYPE (i)));
502 return d;
503 }
504
505 /* Given a tree representing an integer constant I, return a tree
506 representing the same value as a floating-point constant of type TYPE. */
507
508 tree
509 build_real_from_int_cst (tree type, tree i)
510 {
511 tree v;
512 int overflow = TREE_OVERFLOW (i);
513
514 v = build_real (type, real_value_from_int_cst (type, i));
515
516 TREE_OVERFLOW (v) |= overflow;
517 TREE_CONSTANT_OVERFLOW (v) |= overflow;
518 return v;
519 }
520
521 /* Return a newly constructed STRING_CST node whose value is
522 the LEN characters at STR.
523 The TREE_TYPE is not initialized. */
524
525 tree
526 build_string (int len, const char *str)
527 {
528 tree s = make_node (STRING_CST);
529
530 TREE_STRING_LENGTH (s) = len;
531 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
532
533 return s;
534 }
535
536 /* Return a newly constructed COMPLEX_CST node whose value is
537 specified by the real and imaginary parts REAL and IMAG.
538 Both REAL and IMAG should be constant nodes. TYPE, if specified,
539 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
540
541 tree
542 build_complex (tree type, tree real, tree imag)
543 {
544 tree t = make_node (COMPLEX_CST);
545
546 TREE_REALPART (t) = real;
547 TREE_IMAGPART (t) = imag;
548 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
549 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
550 TREE_CONSTANT_OVERFLOW (t)
551 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
552 return t;
553 }
554
555 /* Build a newly constructed TREE_VEC node of length LEN. */
556
557 tree
558 make_tree_vec (int len)
559 {
560 tree t;
561 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
562
563 #ifdef GATHER_STATISTICS
564 tree_node_counts[(int) vec_kind]++;
565 tree_node_sizes[(int) vec_kind] += length;
566 #endif
567
568 t = ggc_alloc_tree (length);
569
570 memset (t, 0, length);
571 TREE_SET_CODE (t, TREE_VEC);
572 TREE_VEC_LENGTH (t) = len;
573
574 return t;
575 }
576 \f
577 /* Return 1 if EXPR is the integer constant zero or a complex constant
578 of zero. */
579
580 int
581 integer_zerop (tree expr)
582 {
583 STRIP_NOPS (expr);
584
585 return ((TREE_CODE (expr) == INTEGER_CST
586 && ! TREE_CONSTANT_OVERFLOW (expr)
587 && TREE_INT_CST_LOW (expr) == 0
588 && TREE_INT_CST_HIGH (expr) == 0)
589 || (TREE_CODE (expr) == COMPLEX_CST
590 && integer_zerop (TREE_REALPART (expr))
591 && integer_zerop (TREE_IMAGPART (expr))));
592 }
593
594 /* Return 1 if EXPR is the integer constant one or the corresponding
595 complex constant. */
596
597 int
598 integer_onep (tree expr)
599 {
600 STRIP_NOPS (expr);
601
602 return ((TREE_CODE (expr) == INTEGER_CST
603 && ! TREE_CONSTANT_OVERFLOW (expr)
604 && TREE_INT_CST_LOW (expr) == 1
605 && TREE_INT_CST_HIGH (expr) == 0)
606 || (TREE_CODE (expr) == COMPLEX_CST
607 && integer_onep (TREE_REALPART (expr))
608 && integer_zerop (TREE_IMAGPART (expr))));
609 }
610
611 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
612 it contains. Likewise for the corresponding complex constant. */
613
614 int
615 integer_all_onesp (tree expr)
616 {
617 int prec;
618 int uns;
619
620 STRIP_NOPS (expr);
621
622 if (TREE_CODE (expr) == COMPLEX_CST
623 && integer_all_onesp (TREE_REALPART (expr))
624 && integer_zerop (TREE_IMAGPART (expr)))
625 return 1;
626
627 else if (TREE_CODE (expr) != INTEGER_CST
628 || TREE_CONSTANT_OVERFLOW (expr))
629 return 0;
630
631 uns = TREE_UNSIGNED (TREE_TYPE (expr));
632 if (!uns)
633 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
634 && TREE_INT_CST_HIGH (expr) == -1);
635
636 /* Note that using TYPE_PRECISION here is wrong. We care about the
637 actual bits, not the (arbitrary) range of the type. */
638 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
639 if (prec >= HOST_BITS_PER_WIDE_INT)
640 {
641 HOST_WIDE_INT high_value;
642 int shift_amount;
643
644 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
645
646 if (shift_amount > HOST_BITS_PER_WIDE_INT)
647 /* Can not handle precisions greater than twice the host int size. */
648 abort ();
649 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
650 /* Shifting by the host word size is undefined according to the ANSI
651 standard, so we must handle this as a special case. */
652 high_value = -1;
653 else
654 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
655
656 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
657 && TREE_INT_CST_HIGH (expr) == high_value);
658 }
659 else
660 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
661 }
662
663 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
664 one bit on). */
665
666 int
667 integer_pow2p (tree expr)
668 {
669 int prec;
670 HOST_WIDE_INT high, low;
671
672 STRIP_NOPS (expr);
673
674 if (TREE_CODE (expr) == COMPLEX_CST
675 && integer_pow2p (TREE_REALPART (expr))
676 && integer_zerop (TREE_IMAGPART (expr)))
677 return 1;
678
679 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
680 return 0;
681
682 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
683 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
684 high = TREE_INT_CST_HIGH (expr);
685 low = TREE_INT_CST_LOW (expr);
686
687 /* First clear all bits that are beyond the type's precision in case
688 we've been sign extended. */
689
690 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
691 ;
692 else if (prec > HOST_BITS_PER_WIDE_INT)
693 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
694 else
695 {
696 high = 0;
697 if (prec < HOST_BITS_PER_WIDE_INT)
698 low &= ~((HOST_WIDE_INT) (-1) << prec);
699 }
700
701 if (high == 0 && low == 0)
702 return 0;
703
704 return ((high == 0 && (low & (low - 1)) == 0)
705 || (low == 0 && (high & (high - 1)) == 0));
706 }
707
708 /* Return 1 if EXPR is an integer constant other than zero or a
709 complex constant other than zero. */
710
711 int
712 integer_nonzerop (tree expr)
713 {
714 STRIP_NOPS (expr);
715
716 return ((TREE_CODE (expr) == INTEGER_CST
717 && ! TREE_CONSTANT_OVERFLOW (expr)
718 && (TREE_INT_CST_LOW (expr) != 0
719 || TREE_INT_CST_HIGH (expr) != 0))
720 || (TREE_CODE (expr) == COMPLEX_CST
721 && (integer_nonzerop (TREE_REALPART (expr))
722 || integer_nonzerop (TREE_IMAGPART (expr)))));
723 }
724
725 /* Return the power of two represented by a tree node known to be a
726 power of two. */
727
728 int
729 tree_log2 (tree expr)
730 {
731 int prec;
732 HOST_WIDE_INT high, low;
733
734 STRIP_NOPS (expr);
735
736 if (TREE_CODE (expr) == COMPLEX_CST)
737 return tree_log2 (TREE_REALPART (expr));
738
739 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
740 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
741
742 high = TREE_INT_CST_HIGH (expr);
743 low = TREE_INT_CST_LOW (expr);
744
745 /* First clear all bits that are beyond the type's precision in case
746 we've been sign extended. */
747
748 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
749 ;
750 else if (prec > HOST_BITS_PER_WIDE_INT)
751 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
752 else
753 {
754 high = 0;
755 if (prec < HOST_BITS_PER_WIDE_INT)
756 low &= ~((HOST_WIDE_INT) (-1) << prec);
757 }
758
759 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
760 : exact_log2 (low));
761 }
762
763 /* Similar, but return the largest integer Y such that 2 ** Y is less
764 than or equal to EXPR. */
765
766 int
767 tree_floor_log2 (tree expr)
768 {
769 int prec;
770 HOST_WIDE_INT high, low;
771
772 STRIP_NOPS (expr);
773
774 if (TREE_CODE (expr) == COMPLEX_CST)
775 return tree_log2 (TREE_REALPART (expr));
776
777 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
778 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
779
780 high = TREE_INT_CST_HIGH (expr);
781 low = TREE_INT_CST_LOW (expr);
782
783 /* First clear all bits that are beyond the type's precision in case
784 we've been sign extended. Ignore if type's precision hasn't been set
785 since what we are doing is setting it. */
786
787 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
788 ;
789 else if (prec > HOST_BITS_PER_WIDE_INT)
790 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
791 else
792 {
793 high = 0;
794 if (prec < HOST_BITS_PER_WIDE_INT)
795 low &= ~((HOST_WIDE_INT) (-1) << prec);
796 }
797
798 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
799 : floor_log2 (low));
800 }
801
802 /* Return 1 if EXPR is the real constant zero. */
803
804 int
805 real_zerop (tree expr)
806 {
807 STRIP_NOPS (expr);
808
809 return ((TREE_CODE (expr) == REAL_CST
810 && ! TREE_CONSTANT_OVERFLOW (expr)
811 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
812 || (TREE_CODE (expr) == COMPLEX_CST
813 && real_zerop (TREE_REALPART (expr))
814 && real_zerop (TREE_IMAGPART (expr))));
815 }
816
817 /* Return 1 if EXPR is the real constant one in real or complex form. */
818
819 int
820 real_onep (tree expr)
821 {
822 STRIP_NOPS (expr);
823
824 return ((TREE_CODE (expr) == REAL_CST
825 && ! TREE_CONSTANT_OVERFLOW (expr)
826 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
827 || (TREE_CODE (expr) == COMPLEX_CST
828 && real_onep (TREE_REALPART (expr))
829 && real_zerop (TREE_IMAGPART (expr))));
830 }
831
832 /* Return 1 if EXPR is the real constant two. */
833
834 int
835 real_twop (tree expr)
836 {
837 STRIP_NOPS (expr);
838
839 return ((TREE_CODE (expr) == REAL_CST
840 && ! TREE_CONSTANT_OVERFLOW (expr)
841 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
842 || (TREE_CODE (expr) == COMPLEX_CST
843 && real_twop (TREE_REALPART (expr))
844 && real_zerop (TREE_IMAGPART (expr))));
845 }
846
847 /* Return 1 if EXPR is the real constant minus one. */
848
849 int
850 real_minus_onep (tree expr)
851 {
852 STRIP_NOPS (expr);
853
854 return ((TREE_CODE (expr) == REAL_CST
855 && ! TREE_CONSTANT_OVERFLOW (expr)
856 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
857 || (TREE_CODE (expr) == COMPLEX_CST
858 && real_minus_onep (TREE_REALPART (expr))
859 && real_zerop (TREE_IMAGPART (expr))));
860 }
861
862 /* Nonzero if EXP is a constant or a cast of a constant. */
863
864 int
865 really_constant_p (tree exp)
866 {
867 /* This is not quite the same as STRIP_NOPS. It does more. */
868 while (TREE_CODE (exp) == NOP_EXPR
869 || TREE_CODE (exp) == CONVERT_EXPR
870 || TREE_CODE (exp) == NON_LVALUE_EXPR)
871 exp = TREE_OPERAND (exp, 0);
872 return TREE_CONSTANT (exp);
873 }
874 \f
875 /* Return first list element whose TREE_VALUE is ELEM.
876 Return 0 if ELEM is not in LIST. */
877
878 tree
879 value_member (tree elem, tree list)
880 {
881 while (list)
882 {
883 if (elem == TREE_VALUE (list))
884 return list;
885 list = TREE_CHAIN (list);
886 }
887 return NULL_TREE;
888 }
889
890 /* Return first list element whose TREE_PURPOSE is ELEM.
891 Return 0 if ELEM is not in LIST. */
892
893 tree
894 purpose_member (tree elem, tree list)
895 {
896 while (list)
897 {
898 if (elem == TREE_PURPOSE (list))
899 return list;
900 list = TREE_CHAIN (list);
901 }
902 return NULL_TREE;
903 }
904
905 /* Return first list element whose BINFO_TYPE is ELEM.
906 Return 0 if ELEM is not in LIST. */
907
908 tree
909 binfo_member (tree elem, tree list)
910 {
911 while (list)
912 {
913 if (elem == BINFO_TYPE (list))
914 return list;
915 list = TREE_CHAIN (list);
916 }
917 return NULL_TREE;
918 }
919
920 /* Return nonzero if ELEM is part of the chain CHAIN. */
921
922 int
923 chain_member (tree elem, tree chain)
924 {
925 while (chain)
926 {
927 if (elem == chain)
928 return 1;
929 chain = TREE_CHAIN (chain);
930 }
931
932 return 0;
933 }
934
935 /* Return the length of a chain of nodes chained through TREE_CHAIN.
936 We expect a null pointer to mark the end of the chain.
937 This is the Lisp primitive `length'. */
938
939 int
940 list_length (tree t)
941 {
942 tree tail;
943 int len = 0;
944
945 for (tail = t; tail; tail = TREE_CHAIN (tail))
946 len++;
947
948 return len;
949 }
950
951 /* Returns the number of FIELD_DECLs in TYPE. */
952
953 int
954 fields_length (tree type)
955 {
956 tree t = TYPE_FIELDS (type);
957 int count = 0;
958
959 for (; t; t = TREE_CHAIN (t))
960 if (TREE_CODE (t) == FIELD_DECL)
961 ++count;
962
963 return count;
964 }
965
966 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
967 by modifying the last node in chain 1 to point to chain 2.
968 This is the Lisp primitive `nconc'. */
969
970 tree
971 chainon (tree op1, tree op2)
972 {
973 tree t1;
974
975 if (!op1)
976 return op2;
977 if (!op2)
978 return op1;
979
980 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
981 continue;
982 TREE_CHAIN (t1) = op2;
983
984 #ifdef ENABLE_TREE_CHECKING
985 {
986 tree t2;
987 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
988 if (t2 == t1)
989 abort (); /* Circularity created. */
990 }
991 #endif
992
993 return op1;
994 }
995
996 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
997
998 tree
999 tree_last (tree chain)
1000 {
1001 tree next;
1002 if (chain)
1003 while ((next = TREE_CHAIN (chain)))
1004 chain = next;
1005 return chain;
1006 }
1007
1008 /* Reverse the order of elements in the chain T,
1009 and return the new head of the chain (old last element). */
1010
1011 tree
1012 nreverse (tree t)
1013 {
1014 tree prev = 0, decl, next;
1015 for (decl = t; decl; decl = next)
1016 {
1017 next = TREE_CHAIN (decl);
1018 TREE_CHAIN (decl) = prev;
1019 prev = decl;
1020 }
1021 return prev;
1022 }
1023 \f
1024 /* Return a newly created TREE_LIST node whose
1025 purpose and value fields are PARM and VALUE. */
1026
1027 tree
1028 build_tree_list (tree parm, tree value)
1029 {
1030 tree t = make_node (TREE_LIST);
1031 TREE_PURPOSE (t) = parm;
1032 TREE_VALUE (t) = value;
1033 return t;
1034 }
1035
1036 /* Return a newly created TREE_LIST node whose
1037 purpose and value fields are PURPOSE and VALUE
1038 and whose TREE_CHAIN is CHAIN. */
1039
1040 tree
1041 tree_cons (tree purpose, tree value, tree chain)
1042 {
1043 tree node;
1044
1045 node = ggc_alloc_tree (sizeof (struct tree_list));
1046
1047 memset (node, 0, sizeof (struct tree_common));
1048
1049 #ifdef GATHER_STATISTICS
1050 tree_node_counts[(int) x_kind]++;
1051 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1052 #endif
1053
1054 TREE_SET_CODE (node, TREE_LIST);
1055 TREE_CHAIN (node) = chain;
1056 TREE_PURPOSE (node) = purpose;
1057 TREE_VALUE (node) = value;
1058 return node;
1059 }
1060
1061 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1062
1063 tree
1064 expr_first (tree expr)
1065 {
1066 if (expr == NULL_TREE)
1067 return expr;
1068 while (TREE_CODE (expr) == COMPOUND_EXPR)
1069 expr = TREE_OPERAND (expr, 0);
1070 return expr;
1071 }
1072
1073 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1074
1075 tree
1076 expr_last (tree expr)
1077 {
1078 if (expr == NULL_TREE)
1079 return expr;
1080 while (TREE_CODE (expr) == COMPOUND_EXPR)
1081 expr = TREE_OPERAND (expr, 1);
1082 return expr;
1083 }
1084
1085 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1086
1087 int
1088 expr_length (tree expr)
1089 {
1090 int len = 0;
1091
1092 if (expr == NULL_TREE)
1093 return 0;
1094 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1095 len += expr_length (TREE_OPERAND (expr, 0));
1096 ++len;
1097 return len;
1098 }
1099 \f
1100 /* Return the size nominally occupied by an object of type TYPE
1101 when it resides in memory. The value is measured in units of bytes,
1102 and its data type is that normally used for type sizes
1103 (which is the first type created by make_signed_type or
1104 make_unsigned_type). */
1105
1106 tree
1107 size_in_bytes (tree type)
1108 {
1109 tree t;
1110
1111 if (type == error_mark_node)
1112 return integer_zero_node;
1113
1114 type = TYPE_MAIN_VARIANT (type);
1115 t = TYPE_SIZE_UNIT (type);
1116
1117 if (t == 0)
1118 {
1119 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1120 return size_zero_node;
1121 }
1122
1123 if (TREE_CODE (t) == INTEGER_CST)
1124 force_fit_type (t, 0);
1125
1126 return t;
1127 }
1128
1129 /* Return the size of TYPE (in bytes) as a wide integer
1130 or return -1 if the size can vary or is larger than an integer. */
1131
1132 HOST_WIDE_INT
1133 int_size_in_bytes (tree type)
1134 {
1135 tree t;
1136
1137 if (type == error_mark_node)
1138 return 0;
1139
1140 type = TYPE_MAIN_VARIANT (type);
1141 t = TYPE_SIZE_UNIT (type);
1142 if (t == 0
1143 || TREE_CODE (t) != INTEGER_CST
1144 || TREE_OVERFLOW (t)
1145 || TREE_INT_CST_HIGH (t) != 0
1146 /* If the result would appear negative, it's too big to represent. */
1147 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1148 return -1;
1149
1150 return TREE_INT_CST_LOW (t);
1151 }
1152 \f
1153 /* Return the bit position of FIELD, in bits from the start of the record.
1154 This is a tree of type bitsizetype. */
1155
1156 tree
1157 bit_position (tree field)
1158 {
1159 return bit_from_pos (DECL_FIELD_OFFSET (field),
1160 DECL_FIELD_BIT_OFFSET (field));
1161 }
1162
1163 /* Likewise, but return as an integer. Abort if it cannot be represented
1164 in that way (since it could be a signed value, we don't have the option
1165 of returning -1 like int_size_in_byte can. */
1166
1167 HOST_WIDE_INT
1168 int_bit_position (tree field)
1169 {
1170 return tree_low_cst (bit_position (field), 0);
1171 }
1172 \f
1173 /* Return the byte position of FIELD, in bytes from the start of the record.
1174 This is a tree of type sizetype. */
1175
1176 tree
1177 byte_position (tree field)
1178 {
1179 return byte_from_pos (DECL_FIELD_OFFSET (field),
1180 DECL_FIELD_BIT_OFFSET (field));
1181 }
1182
1183 /* Likewise, but return as an integer. Abort if it cannot be represented
1184 in that way (since it could be a signed value, we don't have the option
1185 of returning -1 like int_size_in_byte can. */
1186
1187 HOST_WIDE_INT
1188 int_byte_position (tree field)
1189 {
1190 return tree_low_cst (byte_position (field), 0);
1191 }
1192 \f
1193 /* Return the strictest alignment, in bits, that T is known to have. */
1194
1195 unsigned int
1196 expr_align (tree t)
1197 {
1198 unsigned int align0, align1;
1199
1200 switch (TREE_CODE (t))
1201 {
1202 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1203 /* If we have conversions, we know that the alignment of the
1204 object must meet each of the alignments of the types. */
1205 align0 = expr_align (TREE_OPERAND (t, 0));
1206 align1 = TYPE_ALIGN (TREE_TYPE (t));
1207 return MAX (align0, align1);
1208
1209 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1210 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1211 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1212 /* These don't change the alignment of an object. */
1213 return expr_align (TREE_OPERAND (t, 0));
1214
1215 case COND_EXPR:
1216 /* The best we can do is say that the alignment is the least aligned
1217 of the two arms. */
1218 align0 = expr_align (TREE_OPERAND (t, 1));
1219 align1 = expr_align (TREE_OPERAND (t, 2));
1220 return MIN (align0, align1);
1221
1222 case LABEL_DECL: case CONST_DECL:
1223 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1224 if (DECL_ALIGN (t) != 0)
1225 return DECL_ALIGN (t);
1226 break;
1227
1228 case FUNCTION_DECL:
1229 return FUNCTION_BOUNDARY;
1230
1231 default:
1232 break;
1233 }
1234
1235 /* Otherwise take the alignment from that of the type. */
1236 return TYPE_ALIGN (TREE_TYPE (t));
1237 }
1238 \f
1239 /* Return, as a tree node, the number of elements for TYPE (which is an
1240 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1241
1242 tree
1243 array_type_nelts (tree type)
1244 {
1245 tree index_type, min, max;
1246
1247 /* If they did it with unspecified bounds, then we should have already
1248 given an error about it before we got here. */
1249 if (! TYPE_DOMAIN (type))
1250 return error_mark_node;
1251
1252 index_type = TYPE_DOMAIN (type);
1253 min = TYPE_MIN_VALUE (index_type);
1254 max = TYPE_MAX_VALUE (index_type);
1255
1256 return (integer_zerop (min)
1257 ? max
1258 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1259 }
1260 \f
1261 /* Return nonzero if arg is static -- a reference to an object in
1262 static storage. This is not the same as the C meaning of `static'. */
1263
1264 int
1265 staticp (tree arg)
1266 {
1267 switch (TREE_CODE (arg))
1268 {
1269 case FUNCTION_DECL:
1270 /* Nested functions aren't static, since taking their address
1271 involves a trampoline. */
1272 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1273 && ! DECL_NON_ADDR_CONST_P (arg));
1274
1275 case VAR_DECL:
1276 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1277 && ! DECL_THREAD_LOCAL (arg)
1278 && ! DECL_NON_ADDR_CONST_P (arg));
1279
1280 case CONSTRUCTOR:
1281 return TREE_STATIC (arg);
1282
1283 case LABEL_DECL:
1284 case STRING_CST:
1285 return 1;
1286
1287 /* If we are referencing a bitfield, we can't evaluate an
1288 ADDR_EXPR at compile time and so it isn't a constant. */
1289 case COMPONENT_REF:
1290 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1291 && staticp (TREE_OPERAND (arg, 0)));
1292
1293 case BIT_FIELD_REF:
1294 return 0;
1295
1296 #if 0
1297 /* This case is technically correct, but results in setting
1298 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1299 compile time. */
1300 case INDIRECT_REF:
1301 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1302 #endif
1303
1304 case ARRAY_REF:
1305 case ARRAY_RANGE_REF:
1306 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1307 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1308 return staticp (TREE_OPERAND (arg, 0));
1309
1310 default:
1311 if ((unsigned int) TREE_CODE (arg)
1312 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1313 return (*lang_hooks.staticp) (arg);
1314 else
1315 return 0;
1316 }
1317 }
1318 \f
1319 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1320 Do this to any expression which may be used in more than one place,
1321 but must be evaluated only once.
1322
1323 Normally, expand_expr would reevaluate the expression each time.
1324 Calling save_expr produces something that is evaluated and recorded
1325 the first time expand_expr is called on it. Subsequent calls to
1326 expand_expr just reuse the recorded value.
1327
1328 The call to expand_expr that generates code that actually computes
1329 the value is the first call *at compile time*. Subsequent calls
1330 *at compile time* generate code to use the saved value.
1331 This produces correct result provided that *at run time* control
1332 always flows through the insns made by the first expand_expr
1333 before reaching the other places where the save_expr was evaluated.
1334 You, the caller of save_expr, must make sure this is so.
1335
1336 Constants, and certain read-only nodes, are returned with no
1337 SAVE_EXPR because that is safe. Expressions containing placeholders
1338 are not touched; see tree.def for an explanation of what these
1339 are used for. */
1340
1341 tree
1342 save_expr (tree expr)
1343 {
1344 tree t = fold (expr);
1345 tree inner;
1346
1347 /* If the tree evaluates to a constant, then we don't want to hide that
1348 fact (i.e. this allows further folding, and direct checks for constants).
1349 However, a read-only object that has side effects cannot be bypassed.
1350 Since it is no problem to reevaluate literals, we just return the
1351 literal node. */
1352 inner = skip_simple_arithmetic (t);
1353 if (TREE_CONSTANT (inner)
1354 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1355 || TREE_CODE (inner) == SAVE_EXPR
1356 || TREE_CODE (inner) == ERROR_MARK)
1357 return t;
1358
1359 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1360 it means that the size or offset of some field of an object depends on
1361 the value within another field.
1362
1363 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1364 and some variable since it would then need to be both evaluated once and
1365 evaluated more than once. Front-ends must assure this case cannot
1366 happen by surrounding any such subexpressions in their own SAVE_EXPR
1367 and forcing evaluation at the proper time. */
1368 if (contains_placeholder_p (inner))
1369 return t;
1370
1371 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1372
1373 /* This expression might be placed ahead of a jump to ensure that the
1374 value was computed on both sides of the jump. So make sure it isn't
1375 eliminated as dead. */
1376 TREE_SIDE_EFFECTS (t) = 1;
1377 TREE_READONLY (t) = 1;
1378 return t;
1379 }
1380
1381 /* Look inside EXPR and into any simple arithmetic operations. Return
1382 the innermost non-arithmetic node. */
1383
1384 tree
1385 skip_simple_arithmetic (tree expr)
1386 {
1387 tree inner;
1388
1389 /* We don't care about whether this can be used as an lvalue in this
1390 context. */
1391 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1392 expr = TREE_OPERAND (expr, 0);
1393
1394 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1395 a constant, it will be more efficient to not make another SAVE_EXPR since
1396 it will allow better simplification and GCSE will be able to merge the
1397 computations if they actually occur. */
1398 inner = expr;
1399 while (1)
1400 {
1401 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1402 inner = TREE_OPERAND (inner, 0);
1403 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1404 {
1405 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1406 inner = TREE_OPERAND (inner, 0);
1407 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1408 inner = TREE_OPERAND (inner, 1);
1409 else
1410 break;
1411 }
1412 else
1413 break;
1414 }
1415
1416 return inner;
1417 }
1418
1419 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1420 SAVE_EXPR. Return FALSE otherwise. */
1421
1422 bool
1423 saved_expr_p (tree expr)
1424 {
1425 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1426 }
1427
1428 /* Arrange for an expression to be expanded multiple independent
1429 times. This is useful for cleanup actions, as the backend can
1430 expand them multiple times in different places. */
1431
1432 tree
1433 unsave_expr (tree expr)
1434 {
1435 tree t;
1436
1437 /* If this is already protected, no sense in protecting it again. */
1438 if (TREE_CODE (expr) == UNSAVE_EXPR)
1439 return expr;
1440
1441 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1442 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1443 return t;
1444 }
1445
1446 /* Returns the index of the first non-tree operand for CODE, or the number
1447 of operands if all are trees. */
1448
1449 int
1450 first_rtl_op (enum tree_code code)
1451 {
1452 switch (code)
1453 {
1454 case SAVE_EXPR:
1455 return 2;
1456 case GOTO_SUBROUTINE_EXPR:
1457 case RTL_EXPR:
1458 return 0;
1459 case WITH_CLEANUP_EXPR:
1460 return 2;
1461 default:
1462 return TREE_CODE_LENGTH (code);
1463 }
1464 }
1465
1466 /* Return which tree structure is used by T. */
1467
1468 enum tree_node_structure_enum
1469 tree_node_structure (tree t)
1470 {
1471 enum tree_code code = TREE_CODE (t);
1472
1473 switch (TREE_CODE_CLASS (code))
1474 {
1475 case 'd': return TS_DECL;
1476 case 't': return TS_TYPE;
1477 case 'b': return TS_BLOCK;
1478 case 'r': case '<': case '1': case '2': case 'e': case 's':
1479 return TS_EXP;
1480 default: /* 'c' and 'x' */
1481 break;
1482 }
1483 switch (code)
1484 {
1485 /* 'c' cases. */
1486 case INTEGER_CST: return TS_INT_CST;
1487 case REAL_CST: return TS_REAL_CST;
1488 case COMPLEX_CST: return TS_COMPLEX;
1489 case VECTOR_CST: return TS_VECTOR;
1490 case STRING_CST: return TS_STRING;
1491 /* 'x' cases. */
1492 case ERROR_MARK: return TS_COMMON;
1493 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1494 case TREE_LIST: return TS_LIST;
1495 case TREE_VEC: return TS_VEC;
1496 case PLACEHOLDER_EXPR: return TS_COMMON;
1497
1498 default:
1499 abort ();
1500 }
1501 }
1502
1503 /* Perform any modifications to EXPR required when it is unsaved. Does
1504 not recurse into EXPR's subtrees. */
1505
1506 void
1507 unsave_expr_1 (tree expr)
1508 {
1509 switch (TREE_CODE (expr))
1510 {
1511 case SAVE_EXPR:
1512 if (! SAVE_EXPR_PERSISTENT_P (expr))
1513 SAVE_EXPR_RTL (expr) = 0;
1514 break;
1515
1516 case TARGET_EXPR:
1517 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1518 It's OK for this to happen if it was part of a subtree that
1519 isn't immediately expanded, such as operand 2 of another
1520 TARGET_EXPR. */
1521 if (TREE_OPERAND (expr, 1))
1522 break;
1523
1524 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1525 TREE_OPERAND (expr, 3) = NULL_TREE;
1526 break;
1527
1528 case RTL_EXPR:
1529 /* I don't yet know how to emit a sequence multiple times. */
1530 if (RTL_EXPR_SEQUENCE (expr) != 0)
1531 abort ();
1532 break;
1533
1534 default:
1535 break;
1536 }
1537 }
1538
1539 /* Default lang hook for "unsave_expr_now". */
1540
1541 tree
1542 lhd_unsave_expr_now (tree expr)
1543 {
1544 enum tree_code code;
1545
1546 /* There's nothing to do for NULL_TREE. */
1547 if (expr == 0)
1548 return expr;
1549
1550 unsave_expr_1 (expr);
1551
1552 code = TREE_CODE (expr);
1553 switch (TREE_CODE_CLASS (code))
1554 {
1555 case 'c': /* a constant */
1556 case 't': /* a type node */
1557 case 'd': /* A decl node */
1558 case 'b': /* A block node */
1559 break;
1560
1561 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1562 if (code == TREE_LIST)
1563 {
1564 lhd_unsave_expr_now (TREE_VALUE (expr));
1565 lhd_unsave_expr_now (TREE_CHAIN (expr));
1566 }
1567 break;
1568
1569 case 'e': /* an expression */
1570 case 'r': /* a reference */
1571 case 's': /* an expression with side effects */
1572 case '<': /* a comparison expression */
1573 case '2': /* a binary arithmetic expression */
1574 case '1': /* a unary arithmetic expression */
1575 {
1576 int i;
1577
1578 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1579 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1580 }
1581 break;
1582
1583 default:
1584 abort ();
1585 }
1586
1587 return expr;
1588 }
1589
1590 /* Return 0 if it is safe to evaluate EXPR multiple times,
1591 return 1 if it is safe if EXPR is unsaved afterward, or
1592 return 2 if it is completely unsafe.
1593
1594 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1595 an expression tree, so that it safe to unsave them and the surrounding
1596 context will be correct.
1597
1598 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1599 occasionally across the whole of a function. It is therefore only
1600 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1601 below the UNSAVE_EXPR.
1602
1603 RTL_EXPRs consume their rtl during evaluation. It is therefore
1604 never possible to unsave them. */
1605
1606 int
1607 unsafe_for_reeval (tree expr)
1608 {
1609 int unsafeness = 0;
1610 enum tree_code code;
1611 int i, tmp, tmp2;
1612 tree exp;
1613 int first_rtl;
1614
1615 if (expr == NULL_TREE)
1616 return 1;
1617
1618 code = TREE_CODE (expr);
1619 first_rtl = first_rtl_op (code);
1620
1621 switch (code)
1622 {
1623 case SAVE_EXPR:
1624 case RTL_EXPR:
1625 return 2;
1626
1627 case TREE_LIST:
1628 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1629 {
1630 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1631 unsafeness = MAX (tmp, unsafeness);
1632 }
1633
1634 return unsafeness;
1635
1636 case CALL_EXPR:
1637 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1638 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1639 return MAX (MAX (tmp, 1), tmp2);
1640
1641 case TARGET_EXPR:
1642 unsafeness = 1;
1643 break;
1644
1645 default:
1646 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1647 if (tmp >= 0)
1648 return tmp;
1649 break;
1650 }
1651
1652 switch (TREE_CODE_CLASS (code))
1653 {
1654 case 'c': /* a constant */
1655 case 't': /* a type node */
1656 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1657 case 'd': /* A decl node */
1658 case 'b': /* A block node */
1659 return 0;
1660
1661 case 'e': /* an expression */
1662 case 'r': /* a reference */
1663 case 's': /* an expression with side effects */
1664 case '<': /* a comparison expression */
1665 case '2': /* a binary arithmetic expression */
1666 case '1': /* a unary arithmetic expression */
1667 for (i = first_rtl - 1; i >= 0; i--)
1668 {
1669 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1670 unsafeness = MAX (tmp, unsafeness);
1671 }
1672
1673 return unsafeness;
1674
1675 default:
1676 return 2;
1677 }
1678 }
1679 \f
1680 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1681 or offset that depends on a field within a record. */
1682
1683 bool
1684 contains_placeholder_p (tree exp)
1685 {
1686 enum tree_code code;
1687 int result;
1688
1689 if (!exp)
1690 return 0;
1691
1692 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1693 in it since it is supplying a value for it. */
1694 code = TREE_CODE (exp);
1695 if (code == WITH_RECORD_EXPR)
1696 return 0;
1697 else if (code == PLACEHOLDER_EXPR)
1698 return 1;
1699
1700 switch (TREE_CODE_CLASS (code))
1701 {
1702 case 'r':
1703 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1704 position computations since they will be converted into a
1705 WITH_RECORD_EXPR involving the reference, which will assume
1706 here will be valid. */
1707 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1708
1709 case 'x':
1710 if (code == TREE_LIST)
1711 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1712 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1713 break;
1714
1715 case '1':
1716 case '2': case '<':
1717 case 'e':
1718 switch (code)
1719 {
1720 case COMPOUND_EXPR:
1721 /* Ignoring the first operand isn't quite right, but works best. */
1722 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1723
1724 case RTL_EXPR:
1725 case CONSTRUCTOR:
1726 return 0;
1727
1728 case COND_EXPR:
1729 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1730 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1731 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1732
1733 case SAVE_EXPR:
1734 /* If we already know this doesn't have a placeholder, don't
1735 check again. */
1736 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1737 return 0;
1738
1739 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1740 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1741 if (result)
1742 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1743
1744 return result;
1745
1746 case CALL_EXPR:
1747 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1748
1749 default:
1750 break;
1751 }
1752
1753 switch (TREE_CODE_LENGTH (code))
1754 {
1755 case 1:
1756 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1757 case 2:
1758 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1759 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1760 default:
1761 return 0;
1762 }
1763
1764 default:
1765 return 0;
1766 }
1767 return 0;
1768 }
1769
1770 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1771 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1772 positions. */
1773
1774 bool
1775 type_contains_placeholder_p (tree type)
1776 {
1777 /* If the size contains a placeholder or the parent type (component type in
1778 the case of arrays) type involves a placeholder, this type does. */
1779 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1780 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1781 || (TREE_TYPE (type) != 0
1782 && type_contains_placeholder_p (TREE_TYPE (type))))
1783 return 1;
1784
1785 /* Now do type-specific checks. Note that the last part of the check above
1786 greatly limits what we have to do below. */
1787 switch (TREE_CODE (type))
1788 {
1789 case VOID_TYPE:
1790 case COMPLEX_TYPE:
1791 case VECTOR_TYPE:
1792 case ENUMERAL_TYPE:
1793 case BOOLEAN_TYPE:
1794 case CHAR_TYPE:
1795 case POINTER_TYPE:
1796 case OFFSET_TYPE:
1797 case REFERENCE_TYPE:
1798 case METHOD_TYPE:
1799 case FILE_TYPE:
1800 case FUNCTION_TYPE:
1801 return 0;
1802
1803 case INTEGER_TYPE:
1804 case REAL_TYPE:
1805 /* Here we just check the bounds. */
1806 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1807 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1808
1809 case ARRAY_TYPE:
1810 case SET_TYPE:
1811 /* We're already checked the component type (TREE_TYPE), so just check
1812 the index type. */
1813 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1814
1815 case RECORD_TYPE:
1816 case UNION_TYPE:
1817 case QUAL_UNION_TYPE:
1818 {
1819 static tree seen_types = 0;
1820 tree field;
1821 bool ret = 0;
1822
1823 /* We have to be careful here that we don't end up in infinite
1824 recursions due to a field of a type being a pointer to that type
1825 or to a mutually-recursive type. So we store a list of record
1826 types that we've seen and see if this type is in them. To save
1827 memory, we don't use a list for just one type. Here we check
1828 whether we've seen this type before and store it if not. */
1829 if (seen_types == 0)
1830 seen_types = type;
1831 else if (TREE_CODE (seen_types) != TREE_LIST)
1832 {
1833 if (seen_types == type)
1834 return 0;
1835
1836 seen_types = tree_cons (NULL_TREE, type,
1837 build_tree_list (NULL_TREE, seen_types));
1838 }
1839 else
1840 {
1841 if (value_member (type, seen_types) != 0)
1842 return 0;
1843
1844 seen_types = tree_cons (NULL_TREE, type, seen_types);
1845 }
1846
1847 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1848 if (TREE_CODE (field) == FIELD_DECL
1849 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1850 || (TREE_CODE (type) == QUAL_UNION_TYPE
1851 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1852 || type_contains_placeholder_p (TREE_TYPE (field))))
1853 {
1854 ret = true;
1855 break;
1856 }
1857
1858 /* Now remove us from seen_types and return the result. */
1859 if (seen_types == type)
1860 seen_types = 0;
1861 else
1862 seen_types = TREE_CHAIN (seen_types);
1863
1864 return ret;
1865 }
1866
1867 default:
1868 abort ();
1869 }
1870 }
1871
1872 /* Return 1 if EXP contains any expressions that produce cleanups for an
1873 outer scope to deal with. Used by fold. */
1874
1875 int
1876 has_cleanups (tree exp)
1877 {
1878 int i, nops, cmp;
1879
1880 if (! TREE_SIDE_EFFECTS (exp))
1881 return 0;
1882
1883 switch (TREE_CODE (exp))
1884 {
1885 case TARGET_EXPR:
1886 case GOTO_SUBROUTINE_EXPR:
1887 case WITH_CLEANUP_EXPR:
1888 return 1;
1889
1890 case CLEANUP_POINT_EXPR:
1891 return 0;
1892
1893 case CALL_EXPR:
1894 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1895 {
1896 cmp = has_cleanups (TREE_VALUE (exp));
1897 if (cmp)
1898 return cmp;
1899 }
1900 return 0;
1901
1902 default:
1903 break;
1904 }
1905
1906 /* This general rule works for most tree codes. All exceptions should be
1907 handled above. If this is a language-specific tree code, we can't
1908 trust what might be in the operand, so say we don't know
1909 the situation. */
1910 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1911 return -1;
1912
1913 nops = first_rtl_op (TREE_CODE (exp));
1914 for (i = 0; i < nops; i++)
1915 if (TREE_OPERAND (exp, i) != 0)
1916 {
1917 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1918 if (type == 'e' || type == '<' || type == '1' || type == '2'
1919 || type == 'r' || type == 's')
1920 {
1921 cmp = has_cleanups (TREE_OPERAND (exp, i));
1922 if (cmp)
1923 return cmp;
1924 }
1925 }
1926
1927 return 0;
1928 }
1929 \f
1930 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1931 return a tree with all occurrences of references to F in a
1932 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1933 contains only arithmetic expressions or a CALL_EXPR with a
1934 PLACEHOLDER_EXPR occurring only in its arglist. */
1935
1936 tree
1937 substitute_in_expr (tree exp, tree f, tree r)
1938 {
1939 enum tree_code code = TREE_CODE (exp);
1940 tree op0, op1, op2;
1941 tree new;
1942 tree inner;
1943
1944 switch (TREE_CODE_CLASS (code))
1945 {
1946 case 'c':
1947 case 'd':
1948 return exp;
1949
1950 case 'x':
1951 if (code == PLACEHOLDER_EXPR)
1952 return exp;
1953 else if (code == TREE_LIST)
1954 {
1955 op0 = (TREE_CHAIN (exp) == 0
1956 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1957 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1958 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1959 return exp;
1960
1961 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1962 }
1963
1964 abort ();
1965
1966 case '1':
1967 case '2':
1968 case '<':
1969 case 'e':
1970 switch (TREE_CODE_LENGTH (code))
1971 {
1972 case 1:
1973 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1974 if (op0 == TREE_OPERAND (exp, 0))
1975 return exp;
1976
1977 if (code == NON_LVALUE_EXPR)
1978 return op0;
1979
1980 new = fold (build1 (code, TREE_TYPE (exp), op0));
1981 break;
1982
1983 case 2:
1984 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1985 could, but we don't support it. */
1986 if (code == RTL_EXPR)
1987 return exp;
1988 else if (code == CONSTRUCTOR)
1989 abort ();
1990
1991 op0 = TREE_OPERAND (exp, 0);
1992 op1 = TREE_OPERAND (exp, 1);
1993 if (CONTAINS_PLACEHOLDER_P (op0))
1994 op0 = substitute_in_expr (op0, f, r);
1995 if (CONTAINS_PLACEHOLDER_P (op1))
1996 op1 = substitute_in_expr (op1, f, r);
1997
1998 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1999 return exp;
2000
2001 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2002 break;
2003
2004 case 3:
2005 /* It cannot be that anything inside a SAVE_EXPR contains a
2006 PLACEHOLDER_EXPR. */
2007 if (code == SAVE_EXPR)
2008 return exp;
2009
2010 else if (code == CALL_EXPR)
2011 {
2012 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2013 if (op1 == TREE_OPERAND (exp, 1))
2014 return exp;
2015
2016 return build (code, TREE_TYPE (exp),
2017 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2018 }
2019
2020 else if (code != COND_EXPR)
2021 abort ();
2022
2023 op0 = TREE_OPERAND (exp, 0);
2024 op1 = TREE_OPERAND (exp, 1);
2025 op2 = TREE_OPERAND (exp, 2);
2026
2027 if (CONTAINS_PLACEHOLDER_P (op0))
2028 op0 = substitute_in_expr (op0, f, r);
2029 if (CONTAINS_PLACEHOLDER_P (op1))
2030 op1 = substitute_in_expr (op1, f, r);
2031 if (CONTAINS_PLACEHOLDER_P (op2))
2032 op2 = substitute_in_expr (op2, f, r);
2033
2034 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2035 && op2 == TREE_OPERAND (exp, 2))
2036 return exp;
2037
2038 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2039 break;
2040
2041 default:
2042 abort ();
2043 }
2044
2045 break;
2046
2047 case 'r':
2048 switch (code)
2049 {
2050 case COMPONENT_REF:
2051 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2052 and it is the right field, replace it with R. */
2053 for (inner = TREE_OPERAND (exp, 0);
2054 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2055 inner = TREE_OPERAND (inner, 0))
2056 ;
2057 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2058 && TREE_OPERAND (exp, 1) == f)
2059 return r;
2060
2061 /* If this expression hasn't been completed let, leave it
2062 alone. */
2063 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2064 && TREE_TYPE (inner) == 0)
2065 return exp;
2066
2067 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2068 if (op0 == TREE_OPERAND (exp, 0))
2069 return exp;
2070
2071 new = fold (build (code, TREE_TYPE (exp), op0,
2072 TREE_OPERAND (exp, 1)));
2073 break;
2074
2075 case BIT_FIELD_REF:
2076 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2077 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2078 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2079 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2080 && op2 == TREE_OPERAND (exp, 2))
2081 return exp;
2082
2083 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2084 break;
2085
2086 case INDIRECT_REF:
2087 case BUFFER_REF:
2088 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2089 if (op0 == TREE_OPERAND (exp, 0))
2090 return exp;
2091
2092 new = fold (build1 (code, TREE_TYPE (exp), op0));
2093 break;
2094
2095 default:
2096 abort ();
2097 }
2098 break;
2099
2100 default:
2101 abort ();
2102 }
2103
2104 TREE_READONLY (new) = TREE_READONLY (exp);
2105 return new;
2106 }
2107 \f
2108 /* Stabilize a reference so that we can use it any number of times
2109 without causing its operands to be evaluated more than once.
2110 Returns the stabilized reference. This works by means of save_expr,
2111 so see the caveats in the comments about save_expr.
2112
2113 Also allows conversion expressions whose operands are references.
2114 Any other kind of expression is returned unchanged. */
2115
2116 tree
2117 stabilize_reference (tree ref)
2118 {
2119 tree result;
2120 enum tree_code code = TREE_CODE (ref);
2121
2122 switch (code)
2123 {
2124 case VAR_DECL:
2125 case PARM_DECL:
2126 case RESULT_DECL:
2127 /* No action is needed in this case. */
2128 return ref;
2129
2130 case NOP_EXPR:
2131 case CONVERT_EXPR:
2132 case FLOAT_EXPR:
2133 case FIX_TRUNC_EXPR:
2134 case FIX_FLOOR_EXPR:
2135 case FIX_ROUND_EXPR:
2136 case FIX_CEIL_EXPR:
2137 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2138 break;
2139
2140 case INDIRECT_REF:
2141 result = build_nt (INDIRECT_REF,
2142 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2143 break;
2144
2145 case COMPONENT_REF:
2146 result = build_nt (COMPONENT_REF,
2147 stabilize_reference (TREE_OPERAND (ref, 0)),
2148 TREE_OPERAND (ref, 1));
2149 break;
2150
2151 case BIT_FIELD_REF:
2152 result = build_nt (BIT_FIELD_REF,
2153 stabilize_reference (TREE_OPERAND (ref, 0)),
2154 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2155 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2156 break;
2157
2158 case ARRAY_REF:
2159 result = build_nt (ARRAY_REF,
2160 stabilize_reference (TREE_OPERAND (ref, 0)),
2161 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2162 break;
2163
2164 case ARRAY_RANGE_REF:
2165 result = build_nt (ARRAY_RANGE_REF,
2166 stabilize_reference (TREE_OPERAND (ref, 0)),
2167 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2168 break;
2169
2170 case COMPOUND_EXPR:
2171 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2172 it wouldn't be ignored. This matters when dealing with
2173 volatiles. */
2174 return stabilize_reference_1 (ref);
2175
2176 case RTL_EXPR:
2177 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2178 save_expr (build1 (ADDR_EXPR,
2179 build_pointer_type (TREE_TYPE (ref)),
2180 ref)));
2181 break;
2182
2183 /* If arg isn't a kind of lvalue we recognize, make no change.
2184 Caller should recognize the error for an invalid lvalue. */
2185 default:
2186 return ref;
2187
2188 case ERROR_MARK:
2189 return error_mark_node;
2190 }
2191
2192 TREE_TYPE (result) = TREE_TYPE (ref);
2193 TREE_READONLY (result) = TREE_READONLY (ref);
2194 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2195 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2196
2197 return result;
2198 }
2199
2200 /* Subroutine of stabilize_reference; this is called for subtrees of
2201 references. Any expression with side-effects must be put in a SAVE_EXPR
2202 to ensure that it is only evaluated once.
2203
2204 We don't put SAVE_EXPR nodes around everything, because assigning very
2205 simple expressions to temporaries causes us to miss good opportunities
2206 for optimizations. Among other things, the opportunity to fold in the
2207 addition of a constant into an addressing mode often gets lost, e.g.
2208 "y[i+1] += x;". In general, we take the approach that we should not make
2209 an assignment unless we are forced into it - i.e., that any non-side effect
2210 operator should be allowed, and that cse should take care of coalescing
2211 multiple utterances of the same expression should that prove fruitful. */
2212
2213 tree
2214 stabilize_reference_1 (tree e)
2215 {
2216 tree result;
2217 enum tree_code code = TREE_CODE (e);
2218
2219 /* We cannot ignore const expressions because it might be a reference
2220 to a const array but whose index contains side-effects. But we can
2221 ignore things that are actual constant or that already have been
2222 handled by this function. */
2223
2224 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2225 return e;
2226
2227 switch (TREE_CODE_CLASS (code))
2228 {
2229 case 'x':
2230 case 't':
2231 case 'd':
2232 case 'b':
2233 case '<':
2234 case 's':
2235 case 'e':
2236 case 'r':
2237 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2238 so that it will only be evaluated once. */
2239 /* The reference (r) and comparison (<) classes could be handled as
2240 below, but it is generally faster to only evaluate them once. */
2241 if (TREE_SIDE_EFFECTS (e))
2242 return save_expr (e);
2243 return e;
2244
2245 case 'c':
2246 /* Constants need no processing. In fact, we should never reach
2247 here. */
2248 return e;
2249
2250 case '2':
2251 /* Division is slow and tends to be compiled with jumps,
2252 especially the division by powers of 2 that is often
2253 found inside of an array reference. So do it just once. */
2254 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2255 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2256 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2257 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2258 return save_expr (e);
2259 /* Recursively stabilize each operand. */
2260 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2261 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2262 break;
2263
2264 case '1':
2265 /* Recursively stabilize each operand. */
2266 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2267 break;
2268
2269 default:
2270 abort ();
2271 }
2272
2273 TREE_TYPE (result) = TREE_TYPE (e);
2274 TREE_READONLY (result) = TREE_READONLY (e);
2275 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2276 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2277
2278 return result;
2279 }
2280 \f
2281 /* Low-level constructors for expressions. */
2282
2283 /* Build an expression of code CODE, data type TYPE,
2284 and operands as specified by the arguments ARG1 and following arguments.
2285 Expressions and reference nodes can be created this way.
2286 Constants, decls, types and misc nodes cannot be. */
2287
2288 tree
2289 build (enum tree_code code, tree tt, ...)
2290 {
2291 tree t;
2292 int length;
2293 int i;
2294 int fro;
2295 int constant;
2296 va_list p;
2297
2298 va_start (p, tt);
2299
2300 t = make_node (code);
2301 length = TREE_CODE_LENGTH (code);
2302 TREE_TYPE (t) = tt;
2303
2304 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2305 result based on those same flags for the arguments. But if the
2306 arguments aren't really even `tree' expressions, we shouldn't be trying
2307 to do this. */
2308 fro = first_rtl_op (code);
2309
2310 /* Expressions without side effects may be constant if their
2311 arguments are as well. */
2312 constant = (TREE_CODE_CLASS (code) == '<'
2313 || TREE_CODE_CLASS (code) == '1'
2314 || TREE_CODE_CLASS (code) == '2'
2315 || TREE_CODE_CLASS (code) == 'c');
2316
2317 if (length == 2)
2318 {
2319 /* This is equivalent to the loop below, but faster. */
2320 tree arg0 = va_arg (p, tree);
2321 tree arg1 = va_arg (p, tree);
2322
2323 TREE_OPERAND (t, 0) = arg0;
2324 TREE_OPERAND (t, 1) = arg1;
2325 TREE_READONLY (t) = 1;
2326 if (arg0 && fro > 0)
2327 {
2328 if (TREE_SIDE_EFFECTS (arg0))
2329 TREE_SIDE_EFFECTS (t) = 1;
2330 if (!TREE_READONLY (arg0))
2331 TREE_READONLY (t) = 0;
2332 if (!TREE_CONSTANT (arg0))
2333 constant = 0;
2334 }
2335
2336 if (arg1 && fro > 1)
2337 {
2338 if (TREE_SIDE_EFFECTS (arg1))
2339 TREE_SIDE_EFFECTS (t) = 1;
2340 if (!TREE_READONLY (arg1))
2341 TREE_READONLY (t) = 0;
2342 if (!TREE_CONSTANT (arg1))
2343 constant = 0;
2344 }
2345 }
2346 else if (length == 1)
2347 {
2348 tree arg0 = va_arg (p, tree);
2349
2350 /* The only one-operand cases we handle here are those with side-effects.
2351 Others are handled with build1. So don't bother checked if the
2352 arg has side-effects since we'll already have set it.
2353
2354 ??? This really should use build1 too. */
2355 if (TREE_CODE_CLASS (code) != 's')
2356 abort ();
2357 TREE_OPERAND (t, 0) = arg0;
2358 }
2359 else
2360 {
2361 for (i = 0; i < length; i++)
2362 {
2363 tree operand = va_arg (p, tree);
2364
2365 TREE_OPERAND (t, i) = operand;
2366 if (operand && fro > i)
2367 {
2368 if (TREE_SIDE_EFFECTS (operand))
2369 TREE_SIDE_EFFECTS (t) = 1;
2370 if (!TREE_CONSTANT (operand))
2371 constant = 0;
2372 }
2373 }
2374 }
2375 va_end (p);
2376
2377 TREE_CONSTANT (t) = constant;
2378
2379 if (code == CALL_EXPR && !TREE_SIDE_EFFECTS (t))
2380 {
2381 /* Calls have side-effects, except those to const or
2382 pure functions. */
2383 tree fn = get_callee_fndecl (t);
2384
2385 if (!fn || (!DECL_IS_PURE (fn) && !TREE_READONLY (fn)))
2386 TREE_SIDE_EFFECTS (t) = 1;
2387 }
2388
2389 return t;
2390 }
2391
2392 /* Same as above, but only builds for unary operators.
2393 Saves lions share of calls to `build'; cuts down use
2394 of varargs, which is expensive for RISC machines. */
2395
2396 tree
2397 build1 (enum tree_code code, tree type, tree node)
2398 {
2399 int length = sizeof (struct tree_exp);
2400 #ifdef GATHER_STATISTICS
2401 tree_node_kind kind;
2402 #endif
2403 tree t;
2404
2405 #ifdef GATHER_STATISTICS
2406 switch (TREE_CODE_CLASS (code))
2407 {
2408 case 's': /* an expression with side effects */
2409 kind = s_kind;
2410 break;
2411 case 'r': /* a reference */
2412 kind = r_kind;
2413 break;
2414 default:
2415 kind = e_kind;
2416 break;
2417 }
2418
2419 tree_node_counts[(int) kind]++;
2420 tree_node_sizes[(int) kind] += length;
2421 #endif
2422
2423 #ifdef ENABLE_CHECKING
2424 if (TREE_CODE_CLASS (code) == '2'
2425 || TREE_CODE_CLASS (code) == '<'
2426 || TREE_CODE_LENGTH (code) != 1)
2427 abort ();
2428 #endif /* ENABLE_CHECKING */
2429
2430 t = ggc_alloc_tree (length);
2431
2432 memset (t, 0, sizeof (struct tree_common));
2433
2434 TREE_SET_CODE (t, code);
2435
2436 TREE_TYPE (t) = type;
2437 TREE_COMPLEXITY (t) = 0;
2438 TREE_OPERAND (t, 0) = node;
2439 if (node && first_rtl_op (code) != 0)
2440 {
2441 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2442 TREE_READONLY (t) = TREE_READONLY (node);
2443 }
2444
2445 if (TREE_CODE_CLASS (code) == 's')
2446 TREE_SIDE_EFFECTS (t) = 1;
2447 else switch (code)
2448 {
2449 case INIT_EXPR:
2450 case MODIFY_EXPR:
2451 case VA_ARG_EXPR:
2452 case RTL_EXPR:
2453 case PREDECREMENT_EXPR:
2454 case PREINCREMENT_EXPR:
2455 case POSTDECREMENT_EXPR:
2456 case POSTINCREMENT_EXPR:
2457 /* All of these have side-effects, no matter what their
2458 operands are. */
2459 TREE_SIDE_EFFECTS (t) = 1;
2460 TREE_READONLY (t) = 0;
2461 break;
2462
2463 case INDIRECT_REF:
2464 /* Whether a dereference is readonly has nothing to do with whether
2465 its operand is readonly. */
2466 TREE_READONLY (t) = 0;
2467 break;
2468
2469 case ADDR_EXPR:
2470 if (node)
2471 {
2472 /* The address of a volatile decl or reference does not have
2473 side-effects. But be careful not to ignore side-effects from
2474 other sources deeper in the expression--if node is a _REF and
2475 one of its operands has side-effects, so do we. */
2476 if (TREE_THIS_VOLATILE (node))
2477 {
2478 TREE_SIDE_EFFECTS (t) = 0;
2479 if (!DECL_P (node))
2480 {
2481 int i = first_rtl_op (TREE_CODE (node)) - 1;
2482 for (; i >= 0; --i)
2483 {
2484 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2485 TREE_SIDE_EFFECTS (t) = 1;
2486 }
2487 }
2488 }
2489 }
2490 break;
2491
2492 default:
2493 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2494 TREE_CONSTANT (t) = 1;
2495 break;
2496 }
2497
2498 return t;
2499 }
2500
2501 /* Similar except don't specify the TREE_TYPE
2502 and leave the TREE_SIDE_EFFECTS as 0.
2503 It is permissible for arguments to be null,
2504 or even garbage if their values do not matter. */
2505
2506 tree
2507 build_nt (enum tree_code code, ...)
2508 {
2509 tree t;
2510 int length;
2511 int i;
2512 va_list p;
2513
2514 va_start (p, code);
2515
2516 t = make_node (code);
2517 length = TREE_CODE_LENGTH (code);
2518
2519 for (i = 0; i < length; i++)
2520 TREE_OPERAND (t, i) = va_arg (p, tree);
2521
2522 va_end (p);
2523 return t;
2524 }
2525 \f
2526 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2527 We do NOT enter this node in any sort of symbol table.
2528
2529 layout_decl is used to set up the decl's storage layout.
2530 Other slots are initialized to 0 or null pointers. */
2531
2532 tree
2533 build_decl (enum tree_code code, tree name, tree type)
2534 {
2535 tree t;
2536
2537 t = make_node (code);
2538
2539 /* if (type == error_mark_node)
2540 type = integer_type_node; */
2541 /* That is not done, deliberately, so that having error_mark_node
2542 as the type can suppress useless errors in the use of this variable. */
2543
2544 DECL_NAME (t) = name;
2545 TREE_TYPE (t) = type;
2546
2547 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2548 layout_decl (t, 0);
2549 else if (code == FUNCTION_DECL)
2550 DECL_MODE (t) = FUNCTION_MODE;
2551
2552 return t;
2553 }
2554 \f
2555 /* BLOCK nodes are used to represent the structure of binding contours
2556 and declarations, once those contours have been exited and their contents
2557 compiled. This information is used for outputting debugging info. */
2558
2559 tree
2560 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2561 tree supercontext, tree chain)
2562 {
2563 tree block = make_node (BLOCK);
2564
2565 BLOCK_VARS (block) = vars;
2566 BLOCK_SUBBLOCKS (block) = subblocks;
2567 BLOCK_SUPERCONTEXT (block) = supercontext;
2568 BLOCK_CHAIN (block) = chain;
2569 return block;
2570 }
2571
2572 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2573 location where an expression or an identifier were encountered. It
2574 is necessary for languages where the frontend parser will handle
2575 recursively more than one file (Java is one of them). */
2576
2577 tree
2578 build_expr_wfl (tree node, const char *file, int line, int col)
2579 {
2580 static const char *last_file = 0;
2581 static tree last_filenode = NULL_TREE;
2582 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2583
2584 EXPR_WFL_NODE (wfl) = node;
2585 EXPR_WFL_SET_LINECOL (wfl, line, col);
2586 if (file != last_file)
2587 {
2588 last_file = file;
2589 last_filenode = file ? get_identifier (file) : NULL_TREE;
2590 }
2591
2592 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2593 if (node)
2594 {
2595 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2596 TREE_TYPE (wfl) = TREE_TYPE (node);
2597 }
2598
2599 return wfl;
2600 }
2601 \f
2602 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2603 is ATTRIBUTE. */
2604
2605 tree
2606 build_decl_attribute_variant (tree ddecl, tree attribute)
2607 {
2608 DECL_ATTRIBUTES (ddecl) = attribute;
2609 return ddecl;
2610 }
2611
2612 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2613 is ATTRIBUTE.
2614
2615 Record such modified types already made so we don't make duplicates. */
2616
2617 tree
2618 build_type_attribute_variant (tree ttype, tree attribute)
2619 {
2620 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2621 {
2622 unsigned int hashcode;
2623 tree ntype;
2624
2625 ntype = copy_node (ttype);
2626
2627 TYPE_POINTER_TO (ntype) = 0;
2628 TYPE_REFERENCE_TO (ntype) = 0;
2629 TYPE_ATTRIBUTES (ntype) = attribute;
2630
2631 /* Create a new main variant of TYPE. */
2632 TYPE_MAIN_VARIANT (ntype) = ntype;
2633 TYPE_NEXT_VARIANT (ntype) = 0;
2634 set_type_quals (ntype, TYPE_UNQUALIFIED);
2635
2636 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2637 + TYPE_HASH (TREE_TYPE (ntype))
2638 + attribute_hash_list (attribute));
2639
2640 switch (TREE_CODE (ntype))
2641 {
2642 case FUNCTION_TYPE:
2643 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2644 break;
2645 case ARRAY_TYPE:
2646 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2647 break;
2648 case INTEGER_TYPE:
2649 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2650 break;
2651 case REAL_TYPE:
2652 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2653 break;
2654 default:
2655 break;
2656 }
2657
2658 ntype = type_hash_canon (hashcode, ntype);
2659 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2660 }
2661
2662 return ttype;
2663 }
2664
2665 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2666 or zero if not.
2667
2668 We try both `text' and `__text__', ATTR may be either one. */
2669 /* ??? It might be a reasonable simplification to require ATTR to be only
2670 `text'. One might then also require attribute lists to be stored in
2671 their canonicalized form. */
2672
2673 int
2674 is_attribute_p (const char *attr, tree ident)
2675 {
2676 int ident_len, attr_len;
2677 const char *p;
2678
2679 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2680 return 0;
2681
2682 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2683 return 1;
2684
2685 p = IDENTIFIER_POINTER (ident);
2686 ident_len = strlen (p);
2687 attr_len = strlen (attr);
2688
2689 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2690 if (attr[0] == '_')
2691 {
2692 if (attr[1] != '_'
2693 || attr[attr_len - 2] != '_'
2694 || attr[attr_len - 1] != '_')
2695 abort ();
2696 if (ident_len == attr_len - 4
2697 && strncmp (attr + 2, p, attr_len - 4) == 0)
2698 return 1;
2699 }
2700 else
2701 {
2702 if (ident_len == attr_len + 4
2703 && p[0] == '_' && p[1] == '_'
2704 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2705 && strncmp (attr, p + 2, attr_len) == 0)
2706 return 1;
2707 }
2708
2709 return 0;
2710 }
2711
2712 /* Given an attribute name and a list of attributes, return a pointer to the
2713 attribute's list element if the attribute is part of the list, or NULL_TREE
2714 if not found. If the attribute appears more than once, this only
2715 returns the first occurrence; the TREE_CHAIN of the return value should
2716 be passed back in if further occurrences are wanted. */
2717
2718 tree
2719 lookup_attribute (const char *attr_name, tree list)
2720 {
2721 tree l;
2722
2723 for (l = list; l; l = TREE_CHAIN (l))
2724 {
2725 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2726 abort ();
2727 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2728 return l;
2729 }
2730
2731 return NULL_TREE;
2732 }
2733
2734 /* Return an attribute list that is the union of a1 and a2. */
2735
2736 tree
2737 merge_attributes (tree a1, tree a2)
2738 {
2739 tree attributes;
2740
2741 /* Either one unset? Take the set one. */
2742
2743 if ((attributes = a1) == 0)
2744 attributes = a2;
2745
2746 /* One that completely contains the other? Take it. */
2747
2748 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2749 {
2750 if (attribute_list_contained (a2, a1))
2751 attributes = a2;
2752 else
2753 {
2754 /* Pick the longest list, and hang on the other list. */
2755
2756 if (list_length (a1) < list_length (a2))
2757 attributes = a2, a2 = a1;
2758
2759 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2760 {
2761 tree a;
2762 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2763 attributes);
2764 a != NULL_TREE;
2765 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2766 TREE_CHAIN (a)))
2767 {
2768 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2769 break;
2770 }
2771 if (a == NULL_TREE)
2772 {
2773 a1 = copy_node (a2);
2774 TREE_CHAIN (a1) = attributes;
2775 attributes = a1;
2776 }
2777 }
2778 }
2779 }
2780 return attributes;
2781 }
2782
2783 /* Given types T1 and T2, merge their attributes and return
2784 the result. */
2785
2786 tree
2787 merge_type_attributes (tree t1, tree t2)
2788 {
2789 return merge_attributes (TYPE_ATTRIBUTES (t1),
2790 TYPE_ATTRIBUTES (t2));
2791 }
2792
2793 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2794 the result. */
2795
2796 tree
2797 merge_decl_attributes (tree olddecl, tree newdecl)
2798 {
2799 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2800 DECL_ATTRIBUTES (newdecl));
2801 }
2802
2803 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2804
2805 /* Specialization of merge_decl_attributes for various Windows targets.
2806
2807 This handles the following situation:
2808
2809 __declspec (dllimport) int foo;
2810 int foo;
2811
2812 The second instance of `foo' nullifies the dllimport. */
2813
2814 tree
2815 merge_dllimport_decl_attributes (tree old, tree new)
2816 {
2817 tree a;
2818 int delete_dllimport_p;
2819
2820 old = DECL_ATTRIBUTES (old);
2821 new = DECL_ATTRIBUTES (new);
2822
2823 /* What we need to do here is remove from `old' dllimport if it doesn't
2824 appear in `new'. dllimport behaves like extern: if a declaration is
2825 marked dllimport and a definition appears later, then the object
2826 is not dllimport'd. */
2827 if (lookup_attribute ("dllimport", old) != NULL_TREE
2828 && lookup_attribute ("dllimport", new) == NULL_TREE)
2829 delete_dllimport_p = 1;
2830 else
2831 delete_dllimport_p = 0;
2832
2833 a = merge_attributes (old, new);
2834
2835 if (delete_dllimport_p)
2836 {
2837 tree prev, t;
2838
2839 /* Scan the list for dllimport and delete it. */
2840 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2841 {
2842 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2843 {
2844 if (prev == NULL_TREE)
2845 a = TREE_CHAIN (a);
2846 else
2847 TREE_CHAIN (prev) = TREE_CHAIN (t);
2848 break;
2849 }
2850 }
2851 }
2852
2853 return a;
2854 }
2855
2856 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2857 \f
2858 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2859 of the various TYPE_QUAL values. */
2860
2861 static void
2862 set_type_quals (tree type, int type_quals)
2863 {
2864 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2865 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2866 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2867 }
2868
2869 /* Return a version of the TYPE, qualified as indicated by the
2870 TYPE_QUALS, if one exists. If no qualified version exists yet,
2871 return NULL_TREE. */
2872
2873 tree
2874 get_qualified_type (tree type, int type_quals)
2875 {
2876 tree t;
2877
2878 /* Search the chain of variants to see if there is already one there just
2879 like the one we need to have. If so, use that existing one. We must
2880 preserve the TYPE_NAME, since there is code that depends on this. */
2881 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2882 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2883 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
2884 && attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type)))
2885 return t;
2886
2887 return NULL_TREE;
2888 }
2889
2890 /* Like get_qualified_type, but creates the type if it does not
2891 exist. This function never returns NULL_TREE. */
2892
2893 tree
2894 build_qualified_type (tree type, int type_quals)
2895 {
2896 tree t;
2897
2898 /* See if we already have the appropriate qualified variant. */
2899 t = get_qualified_type (type, type_quals);
2900
2901 /* If not, build it. */
2902 if (!t)
2903 {
2904 t = build_type_copy (type);
2905 set_type_quals (t, type_quals);
2906 }
2907
2908 return t;
2909 }
2910
2911 /* Create a new variant of TYPE, equivalent but distinct.
2912 This is so the caller can modify it. */
2913
2914 tree
2915 build_type_copy (tree type)
2916 {
2917 tree t, m = TYPE_MAIN_VARIANT (type);
2918
2919 t = copy_node (type);
2920
2921 TYPE_POINTER_TO (t) = 0;
2922 TYPE_REFERENCE_TO (t) = 0;
2923
2924 /* Add this type to the chain of variants of TYPE. */
2925 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2926 TYPE_NEXT_VARIANT (m) = t;
2927
2928 return t;
2929 }
2930 \f
2931 /* Hashing of types so that we don't make duplicates.
2932 The entry point is `type_hash_canon'. */
2933
2934 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2935 with types in the TREE_VALUE slots), by adding the hash codes
2936 of the individual types. */
2937
2938 unsigned int
2939 type_hash_list (tree list)
2940 {
2941 unsigned int hashcode;
2942 tree tail;
2943
2944 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2945 hashcode += TYPE_HASH (TREE_VALUE (tail));
2946
2947 return hashcode;
2948 }
2949
2950 /* These are the Hashtable callback functions. */
2951
2952 /* Returns true if the types are equal. */
2953
2954 static int
2955 type_hash_eq (const void *va, const void *vb)
2956 {
2957 const struct type_hash *a = va, *b = vb;
2958 if (a->hash == b->hash
2959 && TREE_CODE (a->type) == TREE_CODE (b->type)
2960 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2961 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2962 TYPE_ATTRIBUTES (b->type))
2963 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2964 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2965 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2966 TYPE_MAX_VALUE (b->type)))
2967 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2968 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2969 TYPE_MIN_VALUE (b->type)))
2970 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2971 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2972 || (TYPE_DOMAIN (a->type)
2973 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2974 && TYPE_DOMAIN (b->type)
2975 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2976 && type_list_equal (TYPE_DOMAIN (a->type),
2977 TYPE_DOMAIN (b->type)))))
2978 return 1;
2979 return 0;
2980 }
2981
2982 /* Return the cached hash value. */
2983
2984 static hashval_t
2985 type_hash_hash (const void *item)
2986 {
2987 return ((const struct type_hash *) item)->hash;
2988 }
2989
2990 /* Look in the type hash table for a type isomorphic to TYPE.
2991 If one is found, return it. Otherwise return 0. */
2992
2993 tree
2994 type_hash_lookup (unsigned int hashcode, tree type)
2995 {
2996 struct type_hash *h, in;
2997
2998 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
2999 must call that routine before comparing TYPE_ALIGNs. */
3000 layout_type (type);
3001
3002 in.hash = hashcode;
3003 in.type = type;
3004
3005 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3006 if (h)
3007 return h->type;
3008 return NULL_TREE;
3009 }
3010
3011 /* Add an entry to the type-hash-table
3012 for a type TYPE whose hash code is HASHCODE. */
3013
3014 void
3015 type_hash_add (unsigned int hashcode, tree type)
3016 {
3017 struct type_hash *h;
3018 void **loc;
3019
3020 h = ggc_alloc (sizeof (struct type_hash));
3021 h->hash = hashcode;
3022 h->type = type;
3023 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3024 *(struct type_hash **) loc = h;
3025 }
3026
3027 /* Given TYPE, and HASHCODE its hash code, return the canonical
3028 object for an identical type if one already exists.
3029 Otherwise, return TYPE, and record it as the canonical object
3030 if it is a permanent object.
3031
3032 To use this function, first create a type of the sort you want.
3033 Then compute its hash code from the fields of the type that
3034 make it different from other similar types.
3035 Then call this function and use the value.
3036 This function frees the type you pass in if it is a duplicate. */
3037
3038 /* Set to 1 to debug without canonicalization. Never set by program. */
3039 int debug_no_type_hash = 0;
3040
3041 tree
3042 type_hash_canon (unsigned int hashcode, tree type)
3043 {
3044 tree t1;
3045
3046 if (debug_no_type_hash)
3047 return type;
3048
3049 /* See if the type is in the hash table already. If so, return it.
3050 Otherwise, add the type. */
3051 t1 = type_hash_lookup (hashcode, type);
3052 if (t1 != 0)
3053 {
3054 #ifdef GATHER_STATISTICS
3055 tree_node_counts[(int) t_kind]--;
3056 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3057 #endif
3058 return t1;
3059 }
3060 else
3061 {
3062 type_hash_add (hashcode, type);
3063 return type;
3064 }
3065 }
3066
3067 /* See if the data pointed to by the type hash table is marked. We consider
3068 it marked if the type is marked or if a debug type number or symbol
3069 table entry has been made for the type. This reduces the amount of
3070 debugging output and eliminates that dependency of the debug output on
3071 the number of garbage collections. */
3072
3073 static int
3074 type_hash_marked_p (const void *p)
3075 {
3076 tree type = ((struct type_hash *) p)->type;
3077
3078 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3079 }
3080
3081 static void
3082 print_type_hash_statistics (void)
3083 {
3084 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3085 (long) htab_size (type_hash_table),
3086 (long) htab_elements (type_hash_table),
3087 htab_collisions (type_hash_table));
3088 }
3089
3090 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3091 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3092 by adding the hash codes of the individual attributes. */
3093
3094 unsigned int
3095 attribute_hash_list (tree list)
3096 {
3097 unsigned int hashcode;
3098 tree tail;
3099
3100 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3101 /* ??? Do we want to add in TREE_VALUE too? */
3102 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3103 return hashcode;
3104 }
3105
3106 /* Given two lists of attributes, return true if list l2 is
3107 equivalent to l1. */
3108
3109 int
3110 attribute_list_equal (tree l1, tree l2)
3111 {
3112 return attribute_list_contained (l1, l2)
3113 && attribute_list_contained (l2, l1);
3114 }
3115
3116 /* Given two lists of attributes, return true if list L2 is
3117 completely contained within L1. */
3118 /* ??? This would be faster if attribute names were stored in a canonicalized
3119 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3120 must be used to show these elements are equivalent (which they are). */
3121 /* ??? It's not clear that attributes with arguments will always be handled
3122 correctly. */
3123
3124 int
3125 attribute_list_contained (tree l1, tree l2)
3126 {
3127 tree t1, t2;
3128
3129 /* First check the obvious, maybe the lists are identical. */
3130 if (l1 == l2)
3131 return 1;
3132
3133 /* Maybe the lists are similar. */
3134 for (t1 = l1, t2 = l2;
3135 t1 != 0 && t2 != 0
3136 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3137 && TREE_VALUE (t1) == TREE_VALUE (t2);
3138 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3139
3140 /* Maybe the lists are equal. */
3141 if (t1 == 0 && t2 == 0)
3142 return 1;
3143
3144 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3145 {
3146 tree attr;
3147 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3148 attr != NULL_TREE;
3149 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3150 TREE_CHAIN (attr)))
3151 {
3152 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3153 break;
3154 }
3155
3156 if (attr == 0)
3157 return 0;
3158
3159 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3160 return 0;
3161 }
3162
3163 return 1;
3164 }
3165
3166 /* Given two lists of types
3167 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3168 return 1 if the lists contain the same types in the same order.
3169 Also, the TREE_PURPOSEs must match. */
3170
3171 int
3172 type_list_equal (tree l1, tree l2)
3173 {
3174 tree t1, t2;
3175
3176 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3177 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3178 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3179 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3180 && (TREE_TYPE (TREE_PURPOSE (t1))
3181 == TREE_TYPE (TREE_PURPOSE (t2))))))
3182 return 0;
3183
3184 return t1 == t2;
3185 }
3186
3187 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3188 given by TYPE. If the argument list accepts variable arguments,
3189 then this function counts only the ordinary arguments. */
3190
3191 int
3192 type_num_arguments (tree type)
3193 {
3194 int i = 0;
3195 tree t;
3196
3197 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3198 /* If the function does not take a variable number of arguments,
3199 the last element in the list will have type `void'. */
3200 if (VOID_TYPE_P (TREE_VALUE (t)))
3201 break;
3202 else
3203 ++i;
3204
3205 return i;
3206 }
3207
3208 /* Nonzero if integer constants T1 and T2
3209 represent the same constant value. */
3210
3211 int
3212 tree_int_cst_equal (tree t1, tree t2)
3213 {
3214 if (t1 == t2)
3215 return 1;
3216
3217 if (t1 == 0 || t2 == 0)
3218 return 0;
3219
3220 if (TREE_CODE (t1) == INTEGER_CST
3221 && TREE_CODE (t2) == INTEGER_CST
3222 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3223 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3224 return 1;
3225
3226 return 0;
3227 }
3228
3229 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3230 The precise way of comparison depends on their data type. */
3231
3232 int
3233 tree_int_cst_lt (tree t1, tree t2)
3234 {
3235 if (t1 == t2)
3236 return 0;
3237
3238 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3239 {
3240 int t1_sgn = tree_int_cst_sgn (t1);
3241 int t2_sgn = tree_int_cst_sgn (t2);
3242
3243 if (t1_sgn < t2_sgn)
3244 return 1;
3245 else if (t1_sgn > t2_sgn)
3246 return 0;
3247 /* Otherwise, both are non-negative, so we compare them as
3248 unsigned just in case one of them would overflow a signed
3249 type. */
3250 }
3251 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3252 return INT_CST_LT (t1, t2);
3253
3254 return INT_CST_LT_UNSIGNED (t1, t2);
3255 }
3256
3257 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3258
3259 int
3260 tree_int_cst_compare (tree t1, tree t2)
3261 {
3262 if (tree_int_cst_lt (t1, t2))
3263 return -1;
3264 else if (tree_int_cst_lt (t2, t1))
3265 return 1;
3266 else
3267 return 0;
3268 }
3269
3270 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3271 the host. If POS is zero, the value can be represented in a single
3272 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3273 be represented in a single unsigned HOST_WIDE_INT. */
3274
3275 int
3276 host_integerp (tree t, int pos)
3277 {
3278 return (TREE_CODE (t) == INTEGER_CST
3279 && ! TREE_OVERFLOW (t)
3280 && ((TREE_INT_CST_HIGH (t) == 0
3281 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3282 || (! pos && TREE_INT_CST_HIGH (t) == -1
3283 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3284 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3285 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3286 }
3287
3288 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3289 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3290 be positive. Abort if we cannot satisfy the above conditions. */
3291
3292 HOST_WIDE_INT
3293 tree_low_cst (tree t, int pos)
3294 {
3295 if (host_integerp (t, pos))
3296 return TREE_INT_CST_LOW (t);
3297 else
3298 abort ();
3299 }
3300
3301 /* Return the most significant bit of the integer constant T. */
3302
3303 int
3304 tree_int_cst_msb (tree t)
3305 {
3306 int prec;
3307 HOST_WIDE_INT h;
3308 unsigned HOST_WIDE_INT l;
3309
3310 /* Note that using TYPE_PRECISION here is wrong. We care about the
3311 actual bits, not the (arbitrary) range of the type. */
3312 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3313 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3314 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3315 return (l & 1) == 1;
3316 }
3317
3318 /* Return an indication of the sign of the integer constant T.
3319 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3320 Note that -1 will never be returned it T's type is unsigned. */
3321
3322 int
3323 tree_int_cst_sgn (tree t)
3324 {
3325 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3326 return 0;
3327 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3328 return 1;
3329 else if (TREE_INT_CST_HIGH (t) < 0)
3330 return -1;
3331 else
3332 return 1;
3333 }
3334
3335 /* Compare two constructor-element-type constants. Return 1 if the lists
3336 are known to be equal; otherwise return 0. */
3337
3338 int
3339 simple_cst_list_equal (tree l1, tree l2)
3340 {
3341 while (l1 != NULL_TREE && l2 != NULL_TREE)
3342 {
3343 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3344 return 0;
3345
3346 l1 = TREE_CHAIN (l1);
3347 l2 = TREE_CHAIN (l2);
3348 }
3349
3350 return l1 == l2;
3351 }
3352
3353 /* Return truthvalue of whether T1 is the same tree structure as T2.
3354 Return 1 if they are the same.
3355 Return 0 if they are understandably different.
3356 Return -1 if either contains tree structure not understood by
3357 this function. */
3358
3359 int
3360 simple_cst_equal (tree t1, tree t2)
3361 {
3362 enum tree_code code1, code2;
3363 int cmp;
3364 int i;
3365
3366 if (t1 == t2)
3367 return 1;
3368 if (t1 == 0 || t2 == 0)
3369 return 0;
3370
3371 code1 = TREE_CODE (t1);
3372 code2 = TREE_CODE (t2);
3373
3374 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3375 {
3376 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3377 || code2 == NON_LVALUE_EXPR)
3378 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3379 else
3380 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3381 }
3382
3383 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3384 || code2 == NON_LVALUE_EXPR)
3385 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3386
3387 if (code1 != code2)
3388 return 0;
3389
3390 switch (code1)
3391 {
3392 case INTEGER_CST:
3393 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3394 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3395
3396 case REAL_CST:
3397 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3398
3399 case STRING_CST:
3400 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3401 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3402 TREE_STRING_LENGTH (t1)));
3403
3404 case CONSTRUCTOR:
3405 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3406 return 1;
3407 else
3408 abort ();
3409
3410 case SAVE_EXPR:
3411 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3412
3413 case CALL_EXPR:
3414 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3415 if (cmp <= 0)
3416 return cmp;
3417 return
3418 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3419
3420 case TARGET_EXPR:
3421 /* Special case: if either target is an unallocated VAR_DECL,
3422 it means that it's going to be unified with whatever the
3423 TARGET_EXPR is really supposed to initialize, so treat it
3424 as being equivalent to anything. */
3425 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3426 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3427 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3428 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3429 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3430 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3431 cmp = 1;
3432 else
3433 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3434
3435 if (cmp <= 0)
3436 return cmp;
3437
3438 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3439
3440 case WITH_CLEANUP_EXPR:
3441 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3442 if (cmp <= 0)
3443 return cmp;
3444
3445 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3446
3447 case COMPONENT_REF:
3448 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3449 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3450
3451 return 0;
3452
3453 case VAR_DECL:
3454 case PARM_DECL:
3455 case CONST_DECL:
3456 case FUNCTION_DECL:
3457 return 0;
3458
3459 default:
3460 break;
3461 }
3462
3463 /* This general rule works for most tree codes. All exceptions should be
3464 handled above. If this is a language-specific tree code, we can't
3465 trust what might be in the operand, so say we don't know
3466 the situation. */
3467 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3468 return -1;
3469
3470 switch (TREE_CODE_CLASS (code1))
3471 {
3472 case '1':
3473 case '2':
3474 case '<':
3475 case 'e':
3476 case 'r':
3477 case 's':
3478 cmp = 1;
3479 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3480 {
3481 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3482 if (cmp <= 0)
3483 return cmp;
3484 }
3485
3486 return cmp;
3487
3488 default:
3489 return -1;
3490 }
3491 }
3492
3493 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3494 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3495 than U, respectively. */
3496
3497 int
3498 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3499 {
3500 if (tree_int_cst_sgn (t) < 0)
3501 return -1;
3502 else if (TREE_INT_CST_HIGH (t) != 0)
3503 return 1;
3504 else if (TREE_INT_CST_LOW (t) == u)
3505 return 0;
3506 else if (TREE_INT_CST_LOW (t) < u)
3507 return -1;
3508 else
3509 return 1;
3510 }
3511
3512 /* Generate a hash value for an expression. This can be used iteratively
3513 by passing a previous result as the "val" argument.
3514
3515 This function is intended to produce the same hash for expressions which
3516 would compare equal using operand_equal_p. */
3517
3518 hashval_t
3519 iterative_hash_expr (tree t, hashval_t val)
3520 {
3521 int i;
3522 enum tree_code code;
3523 char class;
3524
3525 if (t == NULL_TREE)
3526 return iterative_hash_object (t, val);
3527
3528 code = TREE_CODE (t);
3529 class = TREE_CODE_CLASS (code);
3530
3531 if (class == 'd')
3532 {
3533 /* Decls we can just compare by pointer. */
3534 val = iterative_hash_object (t, val);
3535 }
3536 else if (class == 'c')
3537 {
3538 /* Alas, constants aren't shared, so we can't rely on pointer
3539 identity. */
3540 if (code == INTEGER_CST)
3541 {
3542 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3543 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3544 }
3545 else if (code == REAL_CST)
3546 val = iterative_hash (TREE_REAL_CST_PTR (t),
3547 sizeof (REAL_VALUE_TYPE), val);
3548 else if (code == STRING_CST)
3549 val = iterative_hash (TREE_STRING_POINTER (t),
3550 TREE_STRING_LENGTH (t), val);
3551 else if (code == COMPLEX_CST)
3552 {
3553 val = iterative_hash_expr (TREE_REALPART (t), val);
3554 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3555 }
3556 else if (code == VECTOR_CST)
3557 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3558 else
3559 abort ();
3560 }
3561 else if (IS_EXPR_CODE_CLASS (class))
3562 {
3563 val = iterative_hash_object (code, val);
3564
3565 if (code == NOP_EXPR || code == CONVERT_EXPR
3566 || code == NON_LVALUE_EXPR)
3567 val = iterative_hash_object (TREE_TYPE (t), val);
3568
3569 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3570 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3571 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3572 {
3573 /* It's a commutative expression. We want to hash it the same
3574 however it appears. We do this by first hashing both operands
3575 and then rehashing based on the order of their independent
3576 hashes. */
3577 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3578 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3579 hashval_t t;
3580
3581 if (one > two)
3582 t = one, one = two, two = t;
3583
3584 val = iterative_hash_object (one, val);
3585 val = iterative_hash_object (two, val);
3586 }
3587 else
3588 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3589 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3590 }
3591 else if (code == TREE_LIST)
3592 {
3593 /* A list of expressions, for a CALL_EXPR or as the elements of a
3594 VECTOR_CST. */
3595 for (; t; t = TREE_CHAIN (t))
3596 val = iterative_hash_expr (TREE_VALUE (t), val);
3597 }
3598 else
3599 abort ();
3600
3601 return val;
3602 }
3603 \f
3604 /* Constructors for pointer, array and function types.
3605 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3606 constructed by language-dependent code, not here.) */
3607
3608 /* Construct, lay out and return the type of pointers to TO_TYPE
3609 with mode MODE. If such a type has already been constructed,
3610 reuse it. */
3611
3612 tree
3613 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3614 {
3615 tree t = TYPE_POINTER_TO (to_type);
3616
3617 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3618 if (t != 0 && mode == ptr_mode)
3619 return t;
3620
3621 t = make_node (POINTER_TYPE);
3622
3623 TREE_TYPE (t) = to_type;
3624 TYPE_MODE (t) = mode;
3625
3626 /* Record this type as the pointer to TO_TYPE. */
3627 if (mode == ptr_mode)
3628 TYPE_POINTER_TO (to_type) = t;
3629
3630 /* Lay out the type. This function has many callers that are concerned
3631 with expression-construction, and this simplifies them all.
3632 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3633 layout_type (t);
3634
3635 return t;
3636 }
3637
3638 /* By default build pointers in ptr_mode. */
3639
3640 tree
3641 build_pointer_type (tree to_type)
3642 {
3643 return build_pointer_type_for_mode (to_type, ptr_mode);
3644 }
3645
3646 /* Construct, lay out and return the type of references to TO_TYPE
3647 with mode MODE. If such a type has already been constructed,
3648 reuse it. */
3649
3650 tree
3651 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3652 {
3653 tree t = TYPE_REFERENCE_TO (to_type);
3654
3655 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3656 if (t != 0 && mode == ptr_mode)
3657 return t;
3658
3659 t = make_node (REFERENCE_TYPE);
3660
3661 TREE_TYPE (t) = to_type;
3662 TYPE_MODE (t) = mode;
3663
3664 /* Record this type as the pointer to TO_TYPE. */
3665 if (mode == ptr_mode)
3666 TYPE_REFERENCE_TO (to_type) = t;
3667
3668 layout_type (t);
3669
3670 return t;
3671 }
3672
3673
3674 /* Build the node for the type of references-to-TO_TYPE by default
3675 in ptr_mode. */
3676
3677 tree
3678 build_reference_type (tree to_type)
3679 {
3680 return build_reference_type_for_mode (to_type, ptr_mode);
3681 }
3682
3683 /* Build a type that is compatible with t but has no cv quals anywhere
3684 in its type, thus
3685
3686 const char *const *const * -> char ***. */
3687
3688 tree
3689 build_type_no_quals (tree t)
3690 {
3691 switch (TREE_CODE (t))
3692 {
3693 case POINTER_TYPE:
3694 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3695 case REFERENCE_TYPE:
3696 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3697 default:
3698 return TYPE_MAIN_VARIANT (t);
3699 }
3700 }
3701
3702 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3703 MAXVAL should be the maximum value in the domain
3704 (one less than the length of the array).
3705
3706 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3707 We don't enforce this limit, that is up to caller (e.g. language front end).
3708 The limit exists because the result is a signed type and we don't handle
3709 sizes that use more than one HOST_WIDE_INT. */
3710
3711 tree
3712 build_index_type (tree maxval)
3713 {
3714 tree itype = make_node (INTEGER_TYPE);
3715
3716 TREE_TYPE (itype) = sizetype;
3717 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3718 TYPE_MIN_VALUE (itype) = size_zero_node;
3719 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3720 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3721 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3722 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3723 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3724 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3725
3726 if (host_integerp (maxval, 1))
3727 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3728 else
3729 return itype;
3730 }
3731
3732 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3733 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3734 low bound LOWVAL and high bound HIGHVAL.
3735 if TYPE==NULL_TREE, sizetype is used. */
3736
3737 tree
3738 build_range_type (tree type, tree lowval, tree highval)
3739 {
3740 tree itype = make_node (INTEGER_TYPE);
3741
3742 TREE_TYPE (itype) = type;
3743 if (type == NULL_TREE)
3744 type = sizetype;
3745
3746 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3747 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3748
3749 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3750 TYPE_MODE (itype) = TYPE_MODE (type);
3751 TYPE_SIZE (itype) = TYPE_SIZE (type);
3752 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3753 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3754 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3755
3756 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3757 return type_hash_canon (tree_low_cst (highval, 0)
3758 - tree_low_cst (lowval, 0),
3759 itype);
3760 else
3761 return itype;
3762 }
3763
3764 /* Just like build_index_type, but takes lowval and highval instead
3765 of just highval (maxval). */
3766
3767 tree
3768 build_index_2_type (tree lowval, tree highval)
3769 {
3770 return build_range_type (sizetype, lowval, highval);
3771 }
3772
3773 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3774 and number of elements specified by the range of values of INDEX_TYPE.
3775 If such a type has already been constructed, reuse it. */
3776
3777 tree
3778 build_array_type (tree elt_type, tree index_type)
3779 {
3780 tree t;
3781 unsigned int hashcode;
3782
3783 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3784 {
3785 error ("arrays of functions are not meaningful");
3786 elt_type = integer_type_node;
3787 }
3788
3789 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3790 build_pointer_type (elt_type);
3791
3792 /* Allocate the array after the pointer type,
3793 in case we free it in type_hash_canon. */
3794 t = make_node (ARRAY_TYPE);
3795 TREE_TYPE (t) = elt_type;
3796 TYPE_DOMAIN (t) = index_type;
3797
3798 if (index_type == 0)
3799 {
3800 return t;
3801 }
3802
3803 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3804 t = type_hash_canon (hashcode, t);
3805
3806 if (!COMPLETE_TYPE_P (t))
3807 layout_type (t);
3808 return t;
3809 }
3810
3811 /* Return the TYPE of the elements comprising
3812 the innermost dimension of ARRAY. */
3813
3814 tree
3815 get_inner_array_type (tree array)
3816 {
3817 tree type = TREE_TYPE (array);
3818
3819 while (TREE_CODE (type) == ARRAY_TYPE)
3820 type = TREE_TYPE (type);
3821
3822 return type;
3823 }
3824
3825 /* Construct, lay out and return
3826 the type of functions returning type VALUE_TYPE
3827 given arguments of types ARG_TYPES.
3828 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3829 are data type nodes for the arguments of the function.
3830 If such a type has already been constructed, reuse it. */
3831
3832 tree
3833 build_function_type (tree value_type, tree arg_types)
3834 {
3835 tree t;
3836 unsigned int hashcode;
3837
3838 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3839 {
3840 error ("function return type cannot be function");
3841 value_type = integer_type_node;
3842 }
3843
3844 /* Make a node of the sort we want. */
3845 t = make_node (FUNCTION_TYPE);
3846 TREE_TYPE (t) = value_type;
3847 TYPE_ARG_TYPES (t) = arg_types;
3848
3849 /* If we already have such a type, use the old one and free this one. */
3850 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3851 t = type_hash_canon (hashcode, t);
3852
3853 if (!COMPLETE_TYPE_P (t))
3854 layout_type (t);
3855 return t;
3856 }
3857
3858 /* Build a function type. The RETURN_TYPE is the type returned by the
3859 function. If additional arguments are provided, they are
3860 additional argument types. The list of argument types must always
3861 be terminated by NULL_TREE. */
3862
3863 tree
3864 build_function_type_list (tree return_type, ...)
3865 {
3866 tree t, args, last;
3867 va_list p;
3868
3869 va_start (p, return_type);
3870
3871 t = va_arg (p, tree);
3872 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3873 args = tree_cons (NULL_TREE, t, args);
3874
3875 last = args;
3876 args = nreverse (args);
3877 TREE_CHAIN (last) = void_list_node;
3878 args = build_function_type (return_type, args);
3879
3880 va_end (p);
3881 return args;
3882 }
3883
3884 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
3885 and ARGTYPES (a TREE_LIST) are the return type and arguments types
3886 for the method. An implicit additional parameter (of type
3887 pointer-to-BASETYPE) is added to the ARGTYPES. */
3888
3889 tree
3890 build_method_type_directly (tree basetype,
3891 tree rettype,
3892 tree argtypes)
3893 {
3894 tree t;
3895 tree ptype;
3896 int hashcode;
3897
3898 /* Make a node of the sort we want. */
3899 t = make_node (METHOD_TYPE);
3900
3901 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3902 TREE_TYPE (t) = rettype;
3903 ptype = build_pointer_type (basetype);
3904
3905 /* The actual arglist for this function includes a "hidden" argument
3906 which is "this". Put it into the list of argument types. */
3907 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
3908 TYPE_ARG_TYPES (t) = argtypes;
3909
3910 /* If we already have such a type, use the old one and free this one.
3911 Note that it also frees up the above cons cell if found. */
3912 hashcode = TYPE_HASH (basetype) + TYPE_HASH (rettype) +
3913 type_hash_list (argtypes);
3914
3915 t = type_hash_canon (hashcode, t);
3916
3917 if (!COMPLETE_TYPE_P (t))
3918 layout_type (t);
3919
3920 return t;
3921 }
3922
3923 /* Construct, lay out and return the type of methods belonging to class
3924 BASETYPE and whose arguments and values are described by TYPE.
3925 If that type exists already, reuse it.
3926 TYPE must be a FUNCTION_TYPE node. */
3927
3928 tree
3929 build_method_type (tree basetype, tree type)
3930 {
3931 if (TREE_CODE (type) != FUNCTION_TYPE)
3932 abort ();
3933
3934 return build_method_type_directly (basetype,
3935 TREE_TYPE (type),
3936 TYPE_ARG_TYPES (type));
3937 }
3938
3939 /* Construct, lay out and return the type of offsets to a value
3940 of type TYPE, within an object of type BASETYPE.
3941 If a suitable offset type exists already, reuse it. */
3942
3943 tree
3944 build_offset_type (tree basetype, tree type)
3945 {
3946 tree t;
3947 unsigned int hashcode;
3948
3949 /* Make a node of the sort we want. */
3950 t = make_node (OFFSET_TYPE);
3951
3952 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3953 TREE_TYPE (t) = type;
3954
3955 /* If we already have such a type, use the old one and free this one. */
3956 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3957 t = type_hash_canon (hashcode, t);
3958
3959 if (!COMPLETE_TYPE_P (t))
3960 layout_type (t);
3961
3962 return t;
3963 }
3964
3965 /* Create a complex type whose components are COMPONENT_TYPE. */
3966
3967 tree
3968 build_complex_type (tree component_type)
3969 {
3970 tree t;
3971 unsigned int hashcode;
3972
3973 /* Make a node of the sort we want. */
3974 t = make_node (COMPLEX_TYPE);
3975
3976 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3977 set_type_quals (t, TYPE_QUALS (component_type));
3978
3979 /* If we already have such a type, use the old one and free this one. */
3980 hashcode = TYPE_HASH (component_type);
3981 t = type_hash_canon (hashcode, t);
3982
3983 if (!COMPLETE_TYPE_P (t))
3984 layout_type (t);
3985
3986 /* If we are writing Dwarf2 output we need to create a name,
3987 since complex is a fundamental type. */
3988 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3989 && ! TYPE_NAME (t))
3990 {
3991 const char *name;
3992 if (component_type == char_type_node)
3993 name = "complex char";
3994 else if (component_type == signed_char_type_node)
3995 name = "complex signed char";
3996 else if (component_type == unsigned_char_type_node)
3997 name = "complex unsigned char";
3998 else if (component_type == short_integer_type_node)
3999 name = "complex short int";
4000 else if (component_type == short_unsigned_type_node)
4001 name = "complex short unsigned int";
4002 else if (component_type == integer_type_node)
4003 name = "complex int";
4004 else if (component_type == unsigned_type_node)
4005 name = "complex unsigned int";
4006 else if (component_type == long_integer_type_node)
4007 name = "complex long int";
4008 else if (component_type == long_unsigned_type_node)
4009 name = "complex long unsigned int";
4010 else if (component_type == long_long_integer_type_node)
4011 name = "complex long long int";
4012 else if (component_type == long_long_unsigned_type_node)
4013 name = "complex long long unsigned int";
4014 else
4015 name = 0;
4016
4017 if (name != 0)
4018 TYPE_NAME (t) = get_identifier (name);
4019 }
4020
4021 return t;
4022 }
4023 \f
4024 /* Return OP, stripped of any conversions to wider types as much as is safe.
4025 Converting the value back to OP's type makes a value equivalent to OP.
4026
4027 If FOR_TYPE is nonzero, we return a value which, if converted to
4028 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4029
4030 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4031 narrowest type that can hold the value, even if they don't exactly fit.
4032 Otherwise, bit-field references are changed to a narrower type
4033 only if they can be fetched directly from memory in that type.
4034
4035 OP must have integer, real or enumeral type. Pointers are not allowed!
4036
4037 There are some cases where the obvious value we could return
4038 would regenerate to OP if converted to OP's type,
4039 but would not extend like OP to wider types.
4040 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4041 For example, if OP is (unsigned short)(signed char)-1,
4042 we avoid returning (signed char)-1 if FOR_TYPE is int,
4043 even though extending that to an unsigned short would regenerate OP,
4044 since the result of extending (signed char)-1 to (int)
4045 is different from (int) OP. */
4046
4047 tree
4048 get_unwidened (tree op, tree for_type)
4049 {
4050 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4051 tree type = TREE_TYPE (op);
4052 unsigned final_prec
4053 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4054 int uns
4055 = (for_type != 0 && for_type != type
4056 && final_prec > TYPE_PRECISION (type)
4057 && TREE_UNSIGNED (type));
4058 tree win = op;
4059
4060 while (TREE_CODE (op) == NOP_EXPR)
4061 {
4062 int bitschange
4063 = TYPE_PRECISION (TREE_TYPE (op))
4064 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4065
4066 /* Truncations are many-one so cannot be removed.
4067 Unless we are later going to truncate down even farther. */
4068 if (bitschange < 0
4069 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4070 break;
4071
4072 /* See what's inside this conversion. If we decide to strip it,
4073 we will set WIN. */
4074 op = TREE_OPERAND (op, 0);
4075
4076 /* If we have not stripped any zero-extensions (uns is 0),
4077 we can strip any kind of extension.
4078 If we have previously stripped a zero-extension,
4079 only zero-extensions can safely be stripped.
4080 Any extension can be stripped if the bits it would produce
4081 are all going to be discarded later by truncating to FOR_TYPE. */
4082
4083 if (bitschange > 0)
4084 {
4085 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4086 win = op;
4087 /* TREE_UNSIGNED says whether this is a zero-extension.
4088 Let's avoid computing it if it does not affect WIN
4089 and if UNS will not be needed again. */
4090 if ((uns || TREE_CODE (op) == NOP_EXPR)
4091 && TREE_UNSIGNED (TREE_TYPE (op)))
4092 {
4093 uns = 1;
4094 win = op;
4095 }
4096 }
4097 }
4098
4099 if (TREE_CODE (op) == COMPONENT_REF
4100 /* Since type_for_size always gives an integer type. */
4101 && TREE_CODE (type) != REAL_TYPE
4102 /* Don't crash if field not laid out yet. */
4103 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4104 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4105 {
4106 unsigned int innerprec
4107 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4108 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4109 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4110 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4111
4112 /* We can get this structure field in the narrowest type it fits in.
4113 If FOR_TYPE is 0, do this only for a field that matches the
4114 narrower type exactly and is aligned for it
4115 The resulting extension to its nominal type (a fullword type)
4116 must fit the same conditions as for other extensions. */
4117
4118 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4119 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4120 && (! uns || final_prec <= innerprec || unsignedp)
4121 && type != 0)
4122 {
4123 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4124 TREE_OPERAND (op, 1));
4125 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4126 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4127 }
4128 }
4129
4130 return win;
4131 }
4132 \f
4133 /* Return OP or a simpler expression for a narrower value
4134 which can be sign-extended or zero-extended to give back OP.
4135 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4136 or 0 if the value should be sign-extended. */
4137
4138 tree
4139 get_narrower (tree op, int *unsignedp_ptr)
4140 {
4141 int uns = 0;
4142 int first = 1;
4143 tree win = op;
4144
4145 while (TREE_CODE (op) == NOP_EXPR)
4146 {
4147 int bitschange
4148 = (TYPE_PRECISION (TREE_TYPE (op))
4149 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4150
4151 /* Truncations are many-one so cannot be removed. */
4152 if (bitschange < 0)
4153 break;
4154
4155 /* See what's inside this conversion. If we decide to strip it,
4156 we will set WIN. */
4157
4158 if (bitschange > 0)
4159 {
4160 op = TREE_OPERAND (op, 0);
4161 /* An extension: the outermost one can be stripped,
4162 but remember whether it is zero or sign extension. */
4163 if (first)
4164 uns = TREE_UNSIGNED (TREE_TYPE (op));
4165 /* Otherwise, if a sign extension has been stripped,
4166 only sign extensions can now be stripped;
4167 if a zero extension has been stripped, only zero-extensions. */
4168 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4169 break;
4170 first = 0;
4171 }
4172 else /* bitschange == 0 */
4173 {
4174 /* A change in nominal type can always be stripped, but we must
4175 preserve the unsignedness. */
4176 if (first)
4177 uns = TREE_UNSIGNED (TREE_TYPE (op));
4178 first = 0;
4179 op = TREE_OPERAND (op, 0);
4180 }
4181
4182 win = op;
4183 }
4184
4185 if (TREE_CODE (op) == COMPONENT_REF
4186 /* Since type_for_size always gives an integer type. */
4187 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4188 /* Ensure field is laid out already. */
4189 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4190 {
4191 unsigned HOST_WIDE_INT innerprec
4192 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4193 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4194 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4195 tree type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4196
4197 /* We can get this structure field in a narrower type that fits it,
4198 but the resulting extension to its nominal type (a fullword type)
4199 must satisfy the same conditions as for other extensions.
4200
4201 Do this only for fields that are aligned (not bit-fields),
4202 because when bit-field insns will be used there is no
4203 advantage in doing this. */
4204
4205 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4206 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4207 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4208 && type != 0)
4209 {
4210 if (first)
4211 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4212 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4213 TREE_OPERAND (op, 1));
4214 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4215 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4216 }
4217 }
4218 *unsignedp_ptr = uns;
4219 return win;
4220 }
4221 \f
4222 /* Nonzero if integer constant C has a value that is permissible
4223 for type TYPE (an INTEGER_TYPE). */
4224
4225 int
4226 int_fits_type_p (tree c, tree type)
4227 {
4228 tree type_low_bound = TYPE_MIN_VALUE (type);
4229 tree type_high_bound = TYPE_MAX_VALUE (type);
4230 int ok_for_low_bound, ok_for_high_bound;
4231
4232 /* Perform some generic filtering first, which may allow making a decision
4233 even if the bounds are not constant. First, negative integers never fit
4234 in unsigned types, */
4235 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4236 /* Also, unsigned integers with top bit set never fit signed types. */
4237 || (! TREE_UNSIGNED (type)
4238 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4239 return 0;
4240
4241 /* If at least one bound of the type is a constant integer, we can check
4242 ourselves and maybe make a decision. If no such decision is possible, but
4243 this type is a subtype, try checking against that. Otherwise, use
4244 force_fit_type, which checks against the precision.
4245
4246 Compute the status for each possibly constant bound, and return if we see
4247 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4248 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4249 for "constant known to fit". */
4250
4251 ok_for_low_bound = -1;
4252 ok_for_high_bound = -1;
4253
4254 /* Check if C >= type_low_bound. */
4255 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4256 {
4257 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4258 if (! ok_for_low_bound)
4259 return 0;
4260 }
4261
4262 /* Check if c <= type_high_bound. */
4263 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4264 {
4265 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4266 if (! ok_for_high_bound)
4267 return 0;
4268 }
4269
4270 /* If the constant fits both bounds, the result is known. */
4271 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4272 return 1;
4273
4274 /* If we haven't been able to decide at this point, there nothing more we
4275 can check ourselves here. Look at the base type if we have one. */
4276 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4277 return int_fits_type_p (c, TREE_TYPE (type));
4278
4279 /* Or to force_fit_type, if nothing else. */
4280 else
4281 {
4282 c = copy_node (c);
4283 TREE_TYPE (c) = type;
4284 return !force_fit_type (c, 0);
4285 }
4286 }
4287
4288 /* Returns true if T is, contains, or refers to a type with variable
4289 size. This concept is more general than that of C99 'variably
4290 modified types': in C99, a struct type is never variably modified
4291 because a VLA may not appear as a structure member. However, in
4292 GNU C code like:
4293
4294 struct S { int i[f()]; };
4295
4296 is valid, and other languages may define similar constructs. */
4297
4298 bool
4299 variably_modified_type_p (tree type)
4300 {
4301 tree t;
4302
4303 if (type == error_mark_node)
4304 return false;
4305
4306 /* If TYPE itself has variable size, it is variably modified.
4307
4308 We do not yet have a representation of the C99 '[*]' syntax.
4309 When a representation is chosen, this function should be modified
4310 to test for that case as well. */
4311 t = TYPE_SIZE (type);
4312 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4313 return true;
4314
4315 switch (TREE_CODE (type))
4316 {
4317 case POINTER_TYPE:
4318 case REFERENCE_TYPE:
4319 case ARRAY_TYPE:
4320 /* If TYPE is a pointer or reference, it is variably modified if
4321 the type pointed to is variably modified. Similarly for arrays;
4322 note that VLAs are handled by the TYPE_SIZE check above. */
4323 return variably_modified_type_p (TREE_TYPE (type));
4324
4325 case FUNCTION_TYPE:
4326 case METHOD_TYPE:
4327 /* If TYPE is a function type, it is variably modified if any of the
4328 parameters or the return type are variably modified. */
4329 {
4330 tree parm;
4331
4332 if (variably_modified_type_p (TREE_TYPE (type)))
4333 return true;
4334 for (parm = TYPE_ARG_TYPES (type);
4335 parm && parm != void_list_node;
4336 parm = TREE_CHAIN (parm))
4337 if (variably_modified_type_p (TREE_VALUE (parm)))
4338 return true;
4339 }
4340 break;
4341
4342 case INTEGER_TYPE:
4343 /* Scalar types are variably modified if their end points
4344 aren't constant. */
4345 t = TYPE_MIN_VALUE (type);
4346 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4347 return true;
4348 t = TYPE_MAX_VALUE (type);
4349 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4350 return true;
4351 return false;
4352
4353 default:
4354 break;
4355 }
4356
4357 /* The current language may have other cases to check, but in general,
4358 all other types are not variably modified. */
4359 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4360 }
4361
4362 /* Given a DECL or TYPE, return the scope in which it was declared, or
4363 NULL_TREE if there is no containing scope. */
4364
4365 tree
4366 get_containing_scope (tree t)
4367 {
4368 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4369 }
4370
4371 /* Return the innermost context enclosing DECL that is
4372 a FUNCTION_DECL, or zero if none. */
4373
4374 tree
4375 decl_function_context (tree decl)
4376 {
4377 tree context;
4378
4379 if (TREE_CODE (decl) == ERROR_MARK)
4380 return 0;
4381
4382 if (TREE_CODE (decl) == SAVE_EXPR)
4383 context = SAVE_EXPR_CONTEXT (decl);
4384
4385 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4386 where we look up the function at runtime. Such functions always take
4387 a first argument of type 'pointer to real context'.
4388
4389 C++ should really be fixed to use DECL_CONTEXT for the real context,
4390 and use something else for the "virtual context". */
4391 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4392 context
4393 = TYPE_MAIN_VARIANT
4394 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4395 else
4396 context = DECL_CONTEXT (decl);
4397
4398 while (context && TREE_CODE (context) != FUNCTION_DECL)
4399 {
4400 if (TREE_CODE (context) == BLOCK)
4401 context = BLOCK_SUPERCONTEXT (context);
4402 else
4403 context = get_containing_scope (context);
4404 }
4405
4406 return context;
4407 }
4408
4409 /* Return the innermost context enclosing DECL that is
4410 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4411 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4412
4413 tree
4414 decl_type_context (tree decl)
4415 {
4416 tree context = DECL_CONTEXT (decl);
4417
4418 while (context)
4419 switch (TREE_CODE (context))
4420 {
4421 case NAMESPACE_DECL:
4422 case TRANSLATION_UNIT_DECL:
4423 return NULL_TREE;
4424
4425 case RECORD_TYPE:
4426 case UNION_TYPE:
4427 case QUAL_UNION_TYPE:
4428 return context;
4429
4430 case TYPE_DECL:
4431 case FUNCTION_DECL:
4432 context = DECL_CONTEXT (context);
4433 break;
4434
4435 case BLOCK:
4436 context = BLOCK_SUPERCONTEXT (context);
4437 break;
4438
4439 default:
4440 abort ();
4441 }
4442
4443 return NULL_TREE;
4444 }
4445
4446 /* CALL is a CALL_EXPR. Return the declaration for the function
4447 called, or NULL_TREE if the called function cannot be
4448 determined. */
4449
4450 tree
4451 get_callee_fndecl (tree call)
4452 {
4453 tree addr;
4454
4455 /* It's invalid to call this function with anything but a
4456 CALL_EXPR. */
4457 if (TREE_CODE (call) != CALL_EXPR)
4458 abort ();
4459
4460 /* The first operand to the CALL is the address of the function
4461 called. */
4462 addr = TREE_OPERAND (call, 0);
4463
4464 STRIP_NOPS (addr);
4465
4466 /* If this is a readonly function pointer, extract its initial value. */
4467 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4468 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4469 && DECL_INITIAL (addr))
4470 addr = DECL_INITIAL (addr);
4471
4472 /* If the address is just `&f' for some function `f', then we know
4473 that `f' is being called. */
4474 if (TREE_CODE (addr) == ADDR_EXPR
4475 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4476 return TREE_OPERAND (addr, 0);
4477
4478 /* We couldn't figure out what was being called. Maybe the front
4479 end has some idea. */
4480 return (*lang_hooks.lang_get_callee_fndecl) (call);
4481 }
4482
4483 /* Print debugging information about tree nodes generated during the compile,
4484 and any language-specific information. */
4485
4486 void
4487 dump_tree_statistics (void)
4488 {
4489 #ifdef GATHER_STATISTICS
4490 int i;
4491 int total_nodes, total_bytes;
4492 #endif
4493
4494 fprintf (stderr, "\n??? tree nodes created\n\n");
4495 #ifdef GATHER_STATISTICS
4496 fprintf (stderr, "Kind Nodes Bytes\n");
4497 fprintf (stderr, "---------------------------------------\n");
4498 total_nodes = total_bytes = 0;
4499 for (i = 0; i < (int) all_kinds; i++)
4500 {
4501 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4502 tree_node_counts[i], tree_node_sizes[i]);
4503 total_nodes += tree_node_counts[i];
4504 total_bytes += tree_node_sizes[i];
4505 }
4506 fprintf (stderr, "---------------------------------------\n");
4507 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4508 fprintf (stderr, "---------------------------------------\n");
4509 #else
4510 fprintf (stderr, "(No per-node statistics)\n");
4511 #endif
4512 print_type_hash_statistics ();
4513 (*lang_hooks.print_statistics) ();
4514 }
4515 \f
4516 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4517
4518 /* Generate a crc32 of a string. */
4519
4520 unsigned
4521 crc32_string (unsigned chksum, const char *string)
4522 {
4523 do
4524 {
4525 unsigned value = *string << 24;
4526 unsigned ix;
4527
4528 for (ix = 8; ix--; value <<= 1)
4529 {
4530 unsigned feedback;
4531
4532 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4533 chksum <<= 1;
4534 chksum ^= feedback;
4535 }
4536 }
4537 while (*string++);
4538 return chksum;
4539 }
4540
4541 /* P is a string that will be used in a symbol. Mask out any characters
4542 that are not valid in that context. */
4543
4544 void
4545 clean_symbol_name (char *p)
4546 {
4547 for (; *p; p++)
4548 if (! (ISALNUM (*p)
4549 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4550 || *p == '$'
4551 #endif
4552 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4553 || *p == '.'
4554 #endif
4555 ))
4556 *p = '_';
4557 }
4558
4559 /* Generate a name for a function unique to this translation unit.
4560 TYPE is some string to identify the purpose of this function to the
4561 linker or collect2. */
4562
4563 tree
4564 get_file_function_name_long (const char *type)
4565 {
4566 char *buf;
4567 const char *p;
4568 char *q;
4569
4570 if (first_global_object_name)
4571 p = first_global_object_name;
4572 else
4573 {
4574 /* We don't have anything that we know to be unique to this translation
4575 unit, so use what we do have and throw in some randomness. */
4576 unsigned len;
4577 const char *name = weak_global_object_name;
4578 const char *file = main_input_filename;
4579
4580 if (! name)
4581 name = "";
4582 if (! file)
4583 file = input_filename;
4584
4585 len = strlen (file);
4586 q = alloca (9 * 2 + len + 1);
4587 memcpy (q, file, len + 1);
4588 clean_symbol_name (q);
4589
4590 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4591 crc32_string (0, flag_random_seed));
4592
4593 p = q;
4594 }
4595
4596 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4597
4598 /* Set up the name of the file-level functions we may need.
4599 Use a global object (which is already required to be unique over
4600 the program) rather than the file name (which imposes extra
4601 constraints). */
4602 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4603
4604 return get_identifier (buf);
4605 }
4606
4607 /* If KIND=='I', return a suitable global initializer (constructor) name.
4608 If KIND=='D', return a suitable global clean-up (destructor) name. */
4609
4610 tree
4611 get_file_function_name (int kind)
4612 {
4613 char p[2];
4614
4615 p[0] = kind;
4616 p[1] = 0;
4617
4618 return get_file_function_name_long (p);
4619 }
4620 \f
4621 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4622 The result is placed in BUFFER (which has length BIT_SIZE),
4623 with one bit in each char ('\000' or '\001').
4624
4625 If the constructor is constant, NULL_TREE is returned.
4626 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4627
4628 tree
4629 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4630 {
4631 int i;
4632 tree vals;
4633 HOST_WIDE_INT domain_min
4634 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4635 tree non_const_bits = NULL_TREE;
4636
4637 for (i = 0; i < bit_size; i++)
4638 buffer[i] = 0;
4639
4640 for (vals = TREE_OPERAND (init, 1);
4641 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4642 {
4643 if (!host_integerp (TREE_VALUE (vals), 0)
4644 || (TREE_PURPOSE (vals) != NULL_TREE
4645 && !host_integerp (TREE_PURPOSE (vals), 0)))
4646 non_const_bits
4647 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4648 else if (TREE_PURPOSE (vals) != NULL_TREE)
4649 {
4650 /* Set a range of bits to ones. */
4651 HOST_WIDE_INT lo_index
4652 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4653 HOST_WIDE_INT hi_index
4654 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4655
4656 if (lo_index < 0 || lo_index >= bit_size
4657 || hi_index < 0 || hi_index >= bit_size)
4658 abort ();
4659 for (; lo_index <= hi_index; lo_index++)
4660 buffer[lo_index] = 1;
4661 }
4662 else
4663 {
4664 /* Set a single bit to one. */
4665 HOST_WIDE_INT index
4666 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4667 if (index < 0 || index >= bit_size)
4668 {
4669 error ("invalid initializer for bit string");
4670 return NULL_TREE;
4671 }
4672 buffer[index] = 1;
4673 }
4674 }
4675 return non_const_bits;
4676 }
4677
4678 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4679 The result is placed in BUFFER (which is an array of bytes).
4680 If the constructor is constant, NULL_TREE is returned.
4681 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4682
4683 tree
4684 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4685 {
4686 int i;
4687 int set_word_size = BITS_PER_UNIT;
4688 int bit_size = wd_size * set_word_size;
4689 int bit_pos = 0;
4690 unsigned char *bytep = buffer;
4691 char *bit_buffer = alloca (bit_size);
4692 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4693
4694 for (i = 0; i < wd_size; i++)
4695 buffer[i] = 0;
4696
4697 for (i = 0; i < bit_size; i++)
4698 {
4699 if (bit_buffer[i])
4700 {
4701 if (BYTES_BIG_ENDIAN)
4702 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4703 else
4704 *bytep |= 1 << bit_pos;
4705 }
4706 bit_pos++;
4707 if (bit_pos >= set_word_size)
4708 bit_pos = 0, bytep++;
4709 }
4710 return non_const_bits;
4711 }
4712 \f
4713 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4714 /* Complain that the tree code of NODE does not match the expected CODE.
4715 FILE, LINE, and FUNCTION are of the caller. */
4716
4717 void
4718 tree_check_failed (const tree node, enum tree_code code, const char *file,
4719 int line, const char *function)
4720 {
4721 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4722 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4723 function, trim_filename (file), line);
4724 }
4725
4726 /* Similar to above, except that we check for a class of tree
4727 code, given in CL. */
4728
4729 void
4730 tree_class_check_failed (const tree node, int cl, const char *file,
4731 int line, const char *function)
4732 {
4733 internal_error
4734 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4735 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4736 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4737 }
4738
4739 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4740 (dynamically sized) vector. */
4741
4742 void
4743 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4744 const char *function)
4745 {
4746 internal_error
4747 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4748 idx + 1, len, function, trim_filename (file), line);
4749 }
4750
4751 /* Similar to above, except that the check is for the bounds of the operand
4752 vector of an expression node. */
4753
4754 void
4755 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4756 int line, const char *function)
4757 {
4758 internal_error
4759 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4760 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4761 function, trim_filename (file), line);
4762 }
4763 #endif /* ENABLE_TREE_CHECKING */
4764 \f
4765 /* For a new vector type node T, build the information necessary for
4766 debugging output. */
4767
4768 static void
4769 finish_vector_type (tree t)
4770 {
4771 layout_type (t);
4772
4773 {
4774 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4775 tree array = build_array_type (TREE_TYPE (t),
4776 build_index_type (index));
4777 tree rt = make_node (RECORD_TYPE);
4778
4779 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4780 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4781 layout_type (rt);
4782 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4783 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4784 the representation type, and we want to find that die when looking up
4785 the vector type. This is most easily achieved by making the TYPE_UID
4786 numbers equal. */
4787 TYPE_UID (rt) = TYPE_UID (t);
4788 }
4789 }
4790
4791 /* Create nodes for all integer types (and error_mark_node) using the sizes
4792 of C datatypes. The caller should call set_sizetype soon after calling
4793 this function to select one of the types as sizetype. */
4794
4795 void
4796 build_common_tree_nodes (int signed_char)
4797 {
4798 error_mark_node = make_node (ERROR_MARK);
4799 TREE_TYPE (error_mark_node) = error_mark_node;
4800
4801 initialize_sizetypes ();
4802
4803 /* Define both `signed char' and `unsigned char'. */
4804 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4805 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4806
4807 /* Define `char', which is like either `signed char' or `unsigned char'
4808 but not the same as either. */
4809 char_type_node
4810 = (signed_char
4811 ? make_signed_type (CHAR_TYPE_SIZE)
4812 : make_unsigned_type (CHAR_TYPE_SIZE));
4813
4814 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4815 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4816 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4817 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4818 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4819 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4820 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4821 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4822
4823 /* Define a boolean type. This type only represents boolean values but
4824 may be larger than char depending on the value of BOOL_TYPE_SIZE.
4825 Front ends which want to override this size (i.e. Java) can redefine
4826 boolean_type_node before calling build_common_tree_nodes_2. */
4827 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4828 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4829 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
4830 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
4831 TYPE_PRECISION (boolean_type_node) = 1;
4832
4833 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4834 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4835 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4836 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4837 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4838
4839 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4840 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4841 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4842 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4843 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4844 }
4845
4846 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4847 It will create several other common tree nodes. */
4848
4849 void
4850 build_common_tree_nodes_2 (int short_double)
4851 {
4852 /* Define these next since types below may used them. */
4853 integer_zero_node = build_int_2 (0, 0);
4854 integer_one_node = build_int_2 (1, 0);
4855 integer_minus_one_node = build_int_2 (-1, -1);
4856
4857 size_zero_node = size_int (0);
4858 size_one_node = size_int (1);
4859 bitsize_zero_node = bitsize_int (0);
4860 bitsize_one_node = bitsize_int (1);
4861 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4862
4863 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4864 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4865
4866 void_type_node = make_node (VOID_TYPE);
4867 layout_type (void_type_node);
4868
4869 /* We are not going to have real types in C with less than byte alignment,
4870 so we might as well not have any types that claim to have it. */
4871 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4872 TYPE_USER_ALIGN (void_type_node) = 0;
4873
4874 null_pointer_node = build_int_2 (0, 0);
4875 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4876 layout_type (TREE_TYPE (null_pointer_node));
4877
4878 ptr_type_node = build_pointer_type (void_type_node);
4879 const_ptr_type_node
4880 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4881
4882 float_type_node = make_node (REAL_TYPE);
4883 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4884 layout_type (float_type_node);
4885
4886 double_type_node = make_node (REAL_TYPE);
4887 if (short_double)
4888 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4889 else
4890 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4891 layout_type (double_type_node);
4892
4893 long_double_type_node = make_node (REAL_TYPE);
4894 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4895 layout_type (long_double_type_node);
4896
4897 float_ptr_type_node = build_pointer_type (float_type_node);
4898 double_ptr_type_node = build_pointer_type (double_type_node);
4899 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
4900 integer_ptr_type_node = build_pointer_type (integer_type_node);
4901
4902 complex_integer_type_node = make_node (COMPLEX_TYPE);
4903 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4904 layout_type (complex_integer_type_node);
4905
4906 complex_float_type_node = make_node (COMPLEX_TYPE);
4907 TREE_TYPE (complex_float_type_node) = float_type_node;
4908 layout_type (complex_float_type_node);
4909
4910 complex_double_type_node = make_node (COMPLEX_TYPE);
4911 TREE_TYPE (complex_double_type_node) = double_type_node;
4912 layout_type (complex_double_type_node);
4913
4914 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4915 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4916 layout_type (complex_long_double_type_node);
4917
4918 {
4919 tree t;
4920 BUILD_VA_LIST_TYPE (t);
4921
4922 /* Many back-ends define record types without setting TYPE_NAME.
4923 If we copied the record type here, we'd keep the original
4924 record type without a name. This breaks name mangling. So,
4925 don't copy record types and let c_common_nodes_and_builtins()
4926 declare the type to be __builtin_va_list. */
4927 if (TREE_CODE (t) != RECORD_TYPE)
4928 t = build_type_copy (t);
4929
4930 va_list_type_node = t;
4931 }
4932
4933 unsigned_V4SI_type_node
4934 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4935 unsigned_V2HI_type_node
4936 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4937 unsigned_V2SI_type_node
4938 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4939 unsigned_V2DI_type_node
4940 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4941 unsigned_V4HI_type_node
4942 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4943 unsigned_V8QI_type_node
4944 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4945 unsigned_V8HI_type_node
4946 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4947 unsigned_V16QI_type_node
4948 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4949 unsigned_V1DI_type_node
4950 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4951
4952 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4953 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4954 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4955 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4956 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4957 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4958 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4959 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4960 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4961 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4962 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4963 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4964 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4965 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
4966 }
4967
4968 /* Returns a vector tree node given a vector mode, the inner type, and
4969 the signness. */
4970
4971 static tree
4972 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4973 {
4974 tree t;
4975
4976 t = make_node (VECTOR_TYPE);
4977 TREE_TYPE (t) = innertype;
4978 TYPE_MODE (t) = mode;
4979 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4980 finish_vector_type (t);
4981
4982 return t;
4983 }
4984
4985 /* Given an initializer INIT, return TRUE if INIT is zero or some
4986 aggregate of zeros. Otherwise return FALSE. */
4987
4988 bool
4989 initializer_zerop (tree init)
4990 {
4991 STRIP_NOPS (init);
4992
4993 switch (TREE_CODE (init))
4994 {
4995 case INTEGER_CST:
4996 return integer_zerop (init);
4997 case REAL_CST:
4998 return real_zerop (init)
4999 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5000 case COMPLEX_CST:
5001 return integer_zerop (init)
5002 || (real_zerop (init)
5003 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5004 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5005 case CONSTRUCTOR:
5006 {
5007 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5008 {
5009 tree aggr_init = CONSTRUCTOR_ELTS (init);
5010
5011 while (aggr_init)
5012 {
5013 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5014 return false;
5015 aggr_init = TREE_CHAIN (aggr_init);
5016 }
5017 return true;
5018 }
5019 return false;
5020 }
5021 default:
5022 return false;
5023 }
5024 }
5025
5026 #include "gt-tree.h"