* tree.c (build_vector_from_val): Use useless_type_conversion_p.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "tm_p.h"
39 #include "function.h"
40 #include "obstack.h"
41 #include "toplev.h"
42 #include "ggc.h"
43 #include "hashtab.h"
44 #include "output.h"
45 #include "target.h"
46 #include "langhooks.h"
47 #include "tree-inline.h"
48 #include "tree-iterator.h"
49 #include "basic-block.h"
50 #include "tree-flow.h"
51 #include "params.h"
52 #include "pointer-set.h"
53 #include "tree-pass.h"
54 #include "langhooks-def.h"
55 #include "diagnostic.h"
56 #include "tree-diagnostic.h"
57 #include "tree-pretty-print.h"
58 #include "cgraph.h"
59 #include "timevar.h"
60 #include "except.h"
61 #include "debug.h"
62 #include "intl.h"
63
64 /* Tree code classes. */
65
66 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
67 #define END_OF_BASE_TREE_CODES tcc_exceptional,
68
69 const enum tree_code_class tree_code_type[] = {
70 #include "all-tree.def"
71 };
72
73 #undef DEFTREECODE
74 #undef END_OF_BASE_TREE_CODES
75
76 /* Table indexed by tree code giving number of expression
77 operands beyond the fixed part of the node structure.
78 Not used for types or decls. */
79
80 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
81 #define END_OF_BASE_TREE_CODES 0,
82
83 const unsigned char tree_code_length[] = {
84 #include "all-tree.def"
85 };
86
87 #undef DEFTREECODE
88 #undef END_OF_BASE_TREE_CODES
89
90 /* Names of tree components.
91 Used for printing out the tree and error messages. */
92 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
93 #define END_OF_BASE_TREE_CODES "@dummy",
94
95 const char *const tree_code_name[] = {
96 #include "all-tree.def"
97 };
98
99 #undef DEFTREECODE
100 #undef END_OF_BASE_TREE_CODES
101
102 /* Each tree code class has an associated string representation.
103 These must correspond to the tree_code_class entries. */
104
105 const char *const tree_code_class_strings[] =
106 {
107 "exceptional",
108 "constant",
109 "type",
110 "declaration",
111 "reference",
112 "comparison",
113 "unary",
114 "binary",
115 "statement",
116 "vl_exp",
117 "expression"
118 };
119
120 /* obstack.[ch] explicitly declined to prototype this. */
121 extern int _obstack_allocated_p (struct obstack *h, void *obj);
122
123 #ifdef GATHER_STATISTICS
124 /* Statistics-gathering stuff. */
125
126 int tree_node_counts[(int) all_kinds];
127 int tree_node_sizes[(int) all_kinds];
128
129 /* Keep in sync with tree.h:enum tree_node_kind. */
130 static const char * const tree_node_kind_names[] = {
131 "decls",
132 "types",
133 "blocks",
134 "stmts",
135 "refs",
136 "exprs",
137 "constants",
138 "identifiers",
139 "vecs",
140 "binfos",
141 "ssa names",
142 "constructors",
143 "random kinds",
144 "lang_decl kinds",
145 "lang_type kinds",
146 "omp clauses",
147 };
148 #endif /* GATHER_STATISTICS */
149
150 /* Unique id for next decl created. */
151 static GTY(()) int next_decl_uid;
152 /* Unique id for next type created. */
153 static GTY(()) int next_type_uid = 1;
154 /* Unique id for next debug decl created. Use negative numbers,
155 to catch erroneous uses. */
156 static GTY(()) int next_debug_decl_uid;
157
158 /* Since we cannot rehash a type after it is in the table, we have to
159 keep the hash code. */
160
161 struct GTY(()) type_hash {
162 unsigned long hash;
163 tree type;
164 };
165
166 /* Initial size of the hash table (rounded to next prime). */
167 #define TYPE_HASH_INITIAL_SIZE 1000
168
169 /* Now here is the hash table. When recording a type, it is added to
170 the slot whose index is the hash code. Note that the hash table is
171 used for several kinds of types (function types, array types and
172 array index range types, for now). While all these live in the
173 same table, they are completely independent, and the hash code is
174 computed differently for each of these. */
175
176 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
177 htab_t type_hash_table;
178
179 /* Hash table and temporary node for larger integer const values. */
180 static GTY (()) tree int_cst_node;
181 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
182 htab_t int_cst_hash_table;
183
184 /* Hash table for optimization flags and target option flags. Use the same
185 hash table for both sets of options. Nodes for building the current
186 optimization and target option nodes. The assumption is most of the time
187 the options created will already be in the hash table, so we avoid
188 allocating and freeing up a node repeatably. */
189 static GTY (()) tree cl_optimization_node;
190 static GTY (()) tree cl_target_option_node;
191 static GTY ((if_marked ("ggc_marked_p"), param_is (union tree_node)))
192 htab_t cl_option_hash_table;
193
194 /* General tree->tree mapping structure for use in hash tables. */
195
196
197 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
198 htab_t debug_expr_for_decl;
199
200 static GTY ((if_marked ("tree_decl_map_marked_p"), param_is (struct tree_decl_map)))
201 htab_t value_expr_for_decl;
202
203 static GTY ((if_marked ("tree_priority_map_marked_p"),
204 param_is (struct tree_priority_map)))
205 htab_t init_priority_for_decl;
206
207 static void set_type_quals (tree, int);
208 static int type_hash_eq (const void *, const void *);
209 static hashval_t type_hash_hash (const void *);
210 static hashval_t int_cst_hash_hash (const void *);
211 static int int_cst_hash_eq (const void *, const void *);
212 static hashval_t cl_option_hash_hash (const void *);
213 static int cl_option_hash_eq (const void *, const void *);
214 static void print_type_hash_statistics (void);
215 static void print_debug_expr_statistics (void);
216 static void print_value_expr_statistics (void);
217 static int type_hash_marked_p (const void *);
218 static unsigned int type_hash_list (const_tree, hashval_t);
219 static unsigned int attribute_hash_list (const_tree, hashval_t);
220
221 tree global_trees[TI_MAX];
222 tree integer_types[itk_none];
223
224 unsigned char tree_contains_struct[MAX_TREE_CODES][64];
225
226 /* Number of operands for each OpenMP clause. */
227 unsigned const char omp_clause_num_ops[] =
228 {
229 0, /* OMP_CLAUSE_ERROR */
230 1, /* OMP_CLAUSE_PRIVATE */
231 1, /* OMP_CLAUSE_SHARED */
232 1, /* OMP_CLAUSE_FIRSTPRIVATE */
233 2, /* OMP_CLAUSE_LASTPRIVATE */
234 4, /* OMP_CLAUSE_REDUCTION */
235 1, /* OMP_CLAUSE_COPYIN */
236 1, /* OMP_CLAUSE_COPYPRIVATE */
237 1, /* OMP_CLAUSE_IF */
238 1, /* OMP_CLAUSE_NUM_THREADS */
239 1, /* OMP_CLAUSE_SCHEDULE */
240 0, /* OMP_CLAUSE_NOWAIT */
241 0, /* OMP_CLAUSE_ORDERED */
242 0, /* OMP_CLAUSE_DEFAULT */
243 3, /* OMP_CLAUSE_COLLAPSE */
244 0 /* OMP_CLAUSE_UNTIED */
245 };
246
247 const char * const omp_clause_code_name[] =
248 {
249 "error_clause",
250 "private",
251 "shared",
252 "firstprivate",
253 "lastprivate",
254 "reduction",
255 "copyin",
256 "copyprivate",
257 "if",
258 "num_threads",
259 "schedule",
260 "nowait",
261 "ordered",
262 "default",
263 "collapse",
264 "untied"
265 };
266
267
268 /* Return the tree node structure used by tree code CODE. */
269
270 static inline enum tree_node_structure_enum
271 tree_node_structure_for_code (enum tree_code code)
272 {
273 switch (TREE_CODE_CLASS (code))
274 {
275 case tcc_declaration:
276 {
277 switch (code)
278 {
279 case FIELD_DECL:
280 return TS_FIELD_DECL;
281 case PARM_DECL:
282 return TS_PARM_DECL;
283 case VAR_DECL:
284 return TS_VAR_DECL;
285 case LABEL_DECL:
286 return TS_LABEL_DECL;
287 case RESULT_DECL:
288 return TS_RESULT_DECL;
289 case DEBUG_EXPR_DECL:
290 return TS_DECL_WRTL;
291 case CONST_DECL:
292 return TS_CONST_DECL;
293 case TYPE_DECL:
294 return TS_TYPE_DECL;
295 case FUNCTION_DECL:
296 return TS_FUNCTION_DECL;
297 case TRANSLATION_UNIT_DECL:
298 return TS_TRANSLATION_UNIT_DECL;
299 default:
300 return TS_DECL_NON_COMMON;
301 }
302 }
303 case tcc_type:
304 return TS_TYPE;
305 case tcc_reference:
306 case tcc_comparison:
307 case tcc_unary:
308 case tcc_binary:
309 case tcc_expression:
310 case tcc_statement:
311 case tcc_vl_exp:
312 return TS_EXP;
313 default: /* tcc_constant and tcc_exceptional */
314 break;
315 }
316 switch (code)
317 {
318 /* tcc_constant cases. */
319 case INTEGER_CST: return TS_INT_CST;
320 case REAL_CST: return TS_REAL_CST;
321 case FIXED_CST: return TS_FIXED_CST;
322 case COMPLEX_CST: return TS_COMPLEX;
323 case VECTOR_CST: return TS_VECTOR;
324 case STRING_CST: return TS_STRING;
325 /* tcc_exceptional cases. */
326 case ERROR_MARK: return TS_COMMON;
327 case IDENTIFIER_NODE: return TS_IDENTIFIER;
328 case TREE_LIST: return TS_LIST;
329 case TREE_VEC: return TS_VEC;
330 case SSA_NAME: return TS_SSA_NAME;
331 case PLACEHOLDER_EXPR: return TS_COMMON;
332 case STATEMENT_LIST: return TS_STATEMENT_LIST;
333 case BLOCK: return TS_BLOCK;
334 case CONSTRUCTOR: return TS_CONSTRUCTOR;
335 case TREE_BINFO: return TS_BINFO;
336 case OMP_CLAUSE: return TS_OMP_CLAUSE;
337 case OPTIMIZATION_NODE: return TS_OPTIMIZATION;
338 case TARGET_OPTION_NODE: return TS_TARGET_OPTION;
339
340 default:
341 gcc_unreachable ();
342 }
343 }
344
345
346 /* Initialize tree_contains_struct to describe the hierarchy of tree
347 nodes. */
348
349 static void
350 initialize_tree_contains_struct (void)
351 {
352 unsigned i;
353
354 #define MARK_TS_BASE(C) \
355 do { \
356 tree_contains_struct[C][TS_BASE] = 1; \
357 } while (0)
358
359 #define MARK_TS_COMMON(C) \
360 do { \
361 MARK_TS_BASE (C); \
362 tree_contains_struct[C][TS_COMMON] = 1; \
363 } while (0)
364
365 #define MARK_TS_DECL_MINIMAL(C) \
366 do { \
367 MARK_TS_COMMON (C); \
368 tree_contains_struct[C][TS_DECL_MINIMAL] = 1; \
369 } while (0)
370
371 #define MARK_TS_DECL_COMMON(C) \
372 do { \
373 MARK_TS_DECL_MINIMAL (C); \
374 tree_contains_struct[C][TS_DECL_COMMON] = 1; \
375 } while (0)
376
377 #define MARK_TS_DECL_WRTL(C) \
378 do { \
379 MARK_TS_DECL_COMMON (C); \
380 tree_contains_struct[C][TS_DECL_WRTL] = 1; \
381 } while (0)
382
383 #define MARK_TS_DECL_WITH_VIS(C) \
384 do { \
385 MARK_TS_DECL_WRTL (C); \
386 tree_contains_struct[C][TS_DECL_WITH_VIS] = 1; \
387 } while (0)
388
389 #define MARK_TS_DECL_NON_COMMON(C) \
390 do { \
391 MARK_TS_DECL_WITH_VIS (C); \
392 tree_contains_struct[C][TS_DECL_NON_COMMON] = 1; \
393 } while (0)
394
395 for (i = ERROR_MARK; i < LAST_AND_UNUSED_TREE_CODE; i++)
396 {
397 enum tree_code code;
398 enum tree_node_structure_enum ts_code;
399
400 code = (enum tree_code) i;
401 ts_code = tree_node_structure_for_code (code);
402
403 /* Mark the TS structure itself. */
404 tree_contains_struct[code][ts_code] = 1;
405
406 /* Mark all the structures that TS is derived from. */
407 switch (ts_code)
408 {
409 case TS_COMMON:
410 MARK_TS_BASE (code);
411 break;
412
413 case TS_INT_CST:
414 case TS_REAL_CST:
415 case TS_FIXED_CST:
416 case TS_VECTOR:
417 case TS_STRING:
418 case TS_COMPLEX:
419 case TS_IDENTIFIER:
420 case TS_DECL_MINIMAL:
421 case TS_TYPE:
422 case TS_LIST:
423 case TS_VEC:
424 case TS_EXP:
425 case TS_SSA_NAME:
426 case TS_BLOCK:
427 case TS_BINFO:
428 case TS_STATEMENT_LIST:
429 case TS_CONSTRUCTOR:
430 case TS_OMP_CLAUSE:
431 case TS_OPTIMIZATION:
432 case TS_TARGET_OPTION:
433 MARK_TS_COMMON (code);
434 break;
435
436 case TS_DECL_COMMON:
437 MARK_TS_DECL_MINIMAL (code);
438 break;
439
440 case TS_DECL_WRTL:
441 MARK_TS_DECL_COMMON (code);
442 break;
443
444 case TS_DECL_NON_COMMON:
445 MARK_TS_DECL_WITH_VIS (code);
446 break;
447
448 case TS_DECL_WITH_VIS:
449 case TS_PARM_DECL:
450 case TS_LABEL_DECL:
451 case TS_RESULT_DECL:
452 case TS_CONST_DECL:
453 MARK_TS_DECL_WRTL (code);
454 break;
455
456 case TS_FIELD_DECL:
457 MARK_TS_DECL_COMMON (code);
458 break;
459
460 case TS_VAR_DECL:
461 MARK_TS_DECL_WITH_VIS (code);
462 break;
463
464 case TS_TYPE_DECL:
465 case TS_FUNCTION_DECL:
466 MARK_TS_DECL_NON_COMMON (code);
467 break;
468
469 case TS_TRANSLATION_UNIT_DECL:
470 MARK_TS_DECL_COMMON (code);
471 break;
472
473 default:
474 gcc_unreachable ();
475 }
476 }
477
478 /* Basic consistency checks for attributes used in fold. */
479 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_NON_COMMON]);
480 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_NON_COMMON]);
481 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_COMMON]);
482 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_COMMON]);
483 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_COMMON]);
484 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_COMMON]);
485 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_COMMON]);
486 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_COMMON]);
487 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_COMMON]);
488 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_COMMON]);
489 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_COMMON]);
490 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_WRTL]);
491 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WRTL]);
492 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_WRTL]);
493 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_WRTL]);
494 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WRTL]);
495 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_WRTL]);
496 gcc_assert (tree_contains_struct[CONST_DECL][TS_DECL_MINIMAL]);
497 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_MINIMAL]);
498 gcc_assert (tree_contains_struct[PARM_DECL][TS_DECL_MINIMAL]);
499 gcc_assert (tree_contains_struct[RESULT_DECL][TS_DECL_MINIMAL]);
500 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_MINIMAL]);
501 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_MINIMAL]);
502 gcc_assert (tree_contains_struct[TRANSLATION_UNIT_DECL][TS_DECL_MINIMAL]);
503 gcc_assert (tree_contains_struct[LABEL_DECL][TS_DECL_MINIMAL]);
504 gcc_assert (tree_contains_struct[FIELD_DECL][TS_DECL_MINIMAL]);
505 gcc_assert (tree_contains_struct[VAR_DECL][TS_DECL_WITH_VIS]);
506 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_DECL_WITH_VIS]);
507 gcc_assert (tree_contains_struct[TYPE_DECL][TS_DECL_WITH_VIS]);
508 gcc_assert (tree_contains_struct[VAR_DECL][TS_VAR_DECL]);
509 gcc_assert (tree_contains_struct[FIELD_DECL][TS_FIELD_DECL]);
510 gcc_assert (tree_contains_struct[PARM_DECL][TS_PARM_DECL]);
511 gcc_assert (tree_contains_struct[LABEL_DECL][TS_LABEL_DECL]);
512 gcc_assert (tree_contains_struct[RESULT_DECL][TS_RESULT_DECL]);
513 gcc_assert (tree_contains_struct[CONST_DECL][TS_CONST_DECL]);
514 gcc_assert (tree_contains_struct[TYPE_DECL][TS_TYPE_DECL]);
515 gcc_assert (tree_contains_struct[FUNCTION_DECL][TS_FUNCTION_DECL]);
516 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_MINIMAL]);
517 gcc_assert (tree_contains_struct[IMPORTED_DECL][TS_DECL_COMMON]);
518
519 #undef MARK_TS_BASE
520 #undef MARK_TS_COMMON
521 #undef MARK_TS_DECL_MINIMAL
522 #undef MARK_TS_DECL_COMMON
523 #undef MARK_TS_DECL_WRTL
524 #undef MARK_TS_DECL_WITH_VIS
525 #undef MARK_TS_DECL_NON_COMMON
526 }
527
528
529 /* Init tree.c. */
530
531 void
532 init_ttree (void)
533 {
534 /* Initialize the hash table of types. */
535 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
536 type_hash_eq, 0);
537
538 debug_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
539 tree_decl_map_eq, 0);
540
541 value_expr_for_decl = htab_create_ggc (512, tree_decl_map_hash,
542 tree_decl_map_eq, 0);
543 init_priority_for_decl = htab_create_ggc (512, tree_priority_map_hash,
544 tree_priority_map_eq, 0);
545
546 int_cst_hash_table = htab_create_ggc (1024, int_cst_hash_hash,
547 int_cst_hash_eq, NULL);
548
549 int_cst_node = make_node (INTEGER_CST);
550
551 cl_option_hash_table = htab_create_ggc (64, cl_option_hash_hash,
552 cl_option_hash_eq, NULL);
553
554 cl_optimization_node = make_node (OPTIMIZATION_NODE);
555 cl_target_option_node = make_node (TARGET_OPTION_NODE);
556
557 /* Initialize the tree_contains_struct array. */
558 initialize_tree_contains_struct ();
559 lang_hooks.init_ts ();
560 }
561
562 \f
563 /* The name of the object as the assembler will see it (but before any
564 translations made by ASM_OUTPUT_LABELREF). Often this is the same
565 as DECL_NAME. It is an IDENTIFIER_NODE. */
566 tree
567 decl_assembler_name (tree decl)
568 {
569 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
570 lang_hooks.set_decl_assembler_name (decl);
571 return DECL_WITH_VIS_CHECK (decl)->decl_with_vis.assembler_name;
572 }
573
574 /* Compare ASMNAME with the DECL_ASSEMBLER_NAME of DECL. */
575
576 bool
577 decl_assembler_name_equal (tree decl, const_tree asmname)
578 {
579 tree decl_asmname = DECL_ASSEMBLER_NAME (decl);
580 const char *decl_str;
581 const char *asmname_str;
582 bool test = false;
583
584 if (decl_asmname == asmname)
585 return true;
586
587 decl_str = IDENTIFIER_POINTER (decl_asmname);
588 asmname_str = IDENTIFIER_POINTER (asmname);
589
590
591 /* If the target assembler name was set by the user, things are trickier.
592 We have a leading '*' to begin with. After that, it's arguable what
593 is the correct thing to do with -fleading-underscore. Arguably, we've
594 historically been doing the wrong thing in assemble_alias by always
595 printing the leading underscore. Since we're not changing that, make
596 sure user_label_prefix follows the '*' before matching. */
597 if (decl_str[0] == '*')
598 {
599 size_t ulp_len = strlen (user_label_prefix);
600
601 decl_str ++;
602
603 if (ulp_len == 0)
604 test = true;
605 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
606 decl_str += ulp_len, test=true;
607 else
608 decl_str --;
609 }
610 if (asmname_str[0] == '*')
611 {
612 size_t ulp_len = strlen (user_label_prefix);
613
614 asmname_str ++;
615
616 if (ulp_len == 0)
617 test = true;
618 else if (strncmp (asmname_str, user_label_prefix, ulp_len) == 0)
619 asmname_str += ulp_len, test=true;
620 else
621 asmname_str --;
622 }
623
624 if (!test)
625 return false;
626 return strcmp (decl_str, asmname_str) == 0;
627 }
628
629 /* Hash asmnames ignoring the user specified marks. */
630
631 hashval_t
632 decl_assembler_name_hash (const_tree asmname)
633 {
634 if (IDENTIFIER_POINTER (asmname)[0] == '*')
635 {
636 const char *decl_str = IDENTIFIER_POINTER (asmname) + 1;
637 size_t ulp_len = strlen (user_label_prefix);
638
639 if (ulp_len == 0)
640 ;
641 else if (strncmp (decl_str, user_label_prefix, ulp_len) == 0)
642 decl_str += ulp_len;
643
644 return htab_hash_string (decl_str);
645 }
646
647 return htab_hash_string (IDENTIFIER_POINTER (asmname));
648 }
649
650 /* Compute the number of bytes occupied by a tree with code CODE.
651 This function cannot be used for nodes that have variable sizes,
652 including TREE_VEC, STRING_CST, and CALL_EXPR. */
653 size_t
654 tree_code_size (enum tree_code code)
655 {
656 switch (TREE_CODE_CLASS (code))
657 {
658 case tcc_declaration: /* A decl node */
659 {
660 switch (code)
661 {
662 case FIELD_DECL:
663 return sizeof (struct tree_field_decl);
664 case PARM_DECL:
665 return sizeof (struct tree_parm_decl);
666 case VAR_DECL:
667 return sizeof (struct tree_var_decl);
668 case LABEL_DECL:
669 return sizeof (struct tree_label_decl);
670 case RESULT_DECL:
671 return sizeof (struct tree_result_decl);
672 case CONST_DECL:
673 return sizeof (struct tree_const_decl);
674 case TYPE_DECL:
675 return sizeof (struct tree_type_decl);
676 case FUNCTION_DECL:
677 return sizeof (struct tree_function_decl);
678 case DEBUG_EXPR_DECL:
679 return sizeof (struct tree_decl_with_rtl);
680 default:
681 return sizeof (struct tree_decl_non_common);
682 }
683 }
684
685 case tcc_type: /* a type node */
686 return sizeof (struct tree_type);
687
688 case tcc_reference: /* a reference */
689 case tcc_expression: /* an expression */
690 case tcc_statement: /* an expression with side effects */
691 case tcc_comparison: /* a comparison expression */
692 case tcc_unary: /* a unary arithmetic expression */
693 case tcc_binary: /* a binary arithmetic expression */
694 return (sizeof (struct tree_exp)
695 + (TREE_CODE_LENGTH (code) - 1) * sizeof (tree));
696
697 case tcc_constant: /* a constant */
698 switch (code)
699 {
700 case INTEGER_CST: return sizeof (struct tree_int_cst);
701 case REAL_CST: return sizeof (struct tree_real_cst);
702 case FIXED_CST: return sizeof (struct tree_fixed_cst);
703 case COMPLEX_CST: return sizeof (struct tree_complex);
704 case VECTOR_CST: return sizeof (struct tree_vector);
705 case STRING_CST: gcc_unreachable ();
706 default:
707 return lang_hooks.tree_size (code);
708 }
709
710 case tcc_exceptional: /* something random, like an identifier. */
711 switch (code)
712 {
713 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
714 case TREE_LIST: return sizeof (struct tree_list);
715
716 case ERROR_MARK:
717 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
718
719 case TREE_VEC:
720 case OMP_CLAUSE: gcc_unreachable ();
721
722 case SSA_NAME: return sizeof (struct tree_ssa_name);
723
724 case STATEMENT_LIST: return sizeof (struct tree_statement_list);
725 case BLOCK: return sizeof (struct tree_block);
726 case CONSTRUCTOR: return sizeof (struct tree_constructor);
727 case OPTIMIZATION_NODE: return sizeof (struct tree_optimization_option);
728 case TARGET_OPTION_NODE: return sizeof (struct tree_target_option);
729
730 default:
731 return lang_hooks.tree_size (code);
732 }
733
734 default:
735 gcc_unreachable ();
736 }
737 }
738
739 /* Compute the number of bytes occupied by NODE. This routine only
740 looks at TREE_CODE, except for those nodes that have variable sizes. */
741 size_t
742 tree_size (const_tree node)
743 {
744 const enum tree_code code = TREE_CODE (node);
745 switch (code)
746 {
747 case TREE_BINFO:
748 return (offsetof (struct tree_binfo, base_binfos)
749 + VEC_embedded_size (tree, BINFO_N_BASE_BINFOS (node)));
750
751 case TREE_VEC:
752 return (sizeof (struct tree_vec)
753 + (TREE_VEC_LENGTH (node) - 1) * sizeof (tree));
754
755 case STRING_CST:
756 return TREE_STRING_LENGTH (node) + offsetof (struct tree_string, str) + 1;
757
758 case OMP_CLAUSE:
759 return (sizeof (struct tree_omp_clause)
760 + (omp_clause_num_ops[OMP_CLAUSE_CODE (node)] - 1)
761 * sizeof (tree));
762
763 default:
764 if (TREE_CODE_CLASS (code) == tcc_vl_exp)
765 return (sizeof (struct tree_exp)
766 + (VL_EXP_OPERAND_LENGTH (node) - 1) * sizeof (tree));
767 else
768 return tree_code_size (code);
769 }
770 }
771
772 /* Return a newly allocated node of code CODE. For decl and type
773 nodes, some other fields are initialized. The rest of the node is
774 initialized to zero. This function cannot be used for TREE_VEC or
775 OMP_CLAUSE nodes, which is enforced by asserts in tree_code_size.
776
777 Achoo! I got a code in the node. */
778
779 tree
780 make_node_stat (enum tree_code code MEM_STAT_DECL)
781 {
782 tree t;
783 enum tree_code_class type = TREE_CODE_CLASS (code);
784 size_t length = tree_code_size (code);
785 #ifdef GATHER_STATISTICS
786 tree_node_kind kind;
787
788 switch (type)
789 {
790 case tcc_declaration: /* A decl node */
791 kind = d_kind;
792 break;
793
794 case tcc_type: /* a type node */
795 kind = t_kind;
796 break;
797
798 case tcc_statement: /* an expression with side effects */
799 kind = s_kind;
800 break;
801
802 case tcc_reference: /* a reference */
803 kind = r_kind;
804 break;
805
806 case tcc_expression: /* an expression */
807 case tcc_comparison: /* a comparison expression */
808 case tcc_unary: /* a unary arithmetic expression */
809 case tcc_binary: /* a binary arithmetic expression */
810 kind = e_kind;
811 break;
812
813 case tcc_constant: /* a constant */
814 kind = c_kind;
815 break;
816
817 case tcc_exceptional: /* something random, like an identifier. */
818 switch (code)
819 {
820 case IDENTIFIER_NODE:
821 kind = id_kind;
822 break;
823
824 case TREE_VEC:
825 kind = vec_kind;
826 break;
827
828 case TREE_BINFO:
829 kind = binfo_kind;
830 break;
831
832 case SSA_NAME:
833 kind = ssa_name_kind;
834 break;
835
836 case BLOCK:
837 kind = b_kind;
838 break;
839
840 case CONSTRUCTOR:
841 kind = constr_kind;
842 break;
843
844 default:
845 kind = x_kind;
846 break;
847 }
848 break;
849
850 default:
851 gcc_unreachable ();
852 }
853
854 tree_node_counts[(int) kind]++;
855 tree_node_sizes[(int) kind] += length;
856 #endif
857
858 t = ggc_alloc_zone_cleared_tree_node_stat (
859 (code == IDENTIFIER_NODE) ? &tree_id_zone : &tree_zone,
860 length PASS_MEM_STAT);
861 TREE_SET_CODE (t, code);
862
863 switch (type)
864 {
865 case tcc_statement:
866 TREE_SIDE_EFFECTS (t) = 1;
867 break;
868
869 case tcc_declaration:
870 if (CODE_CONTAINS_STRUCT (code, TS_DECL_COMMON))
871 {
872 if (code == FUNCTION_DECL)
873 {
874 DECL_ALIGN (t) = FUNCTION_BOUNDARY;
875 DECL_MODE (t) = FUNCTION_MODE;
876 }
877 else
878 DECL_ALIGN (t) = 1;
879 }
880 DECL_SOURCE_LOCATION (t) = input_location;
881 if (TREE_CODE (t) == DEBUG_EXPR_DECL)
882 DECL_UID (t) = --next_debug_decl_uid;
883 else
884 {
885 DECL_UID (t) = next_decl_uid++;
886 SET_DECL_PT_UID (t, -1);
887 }
888 if (TREE_CODE (t) == LABEL_DECL)
889 LABEL_DECL_UID (t) = -1;
890
891 break;
892
893 case tcc_type:
894 TYPE_UID (t) = next_type_uid++;
895 TYPE_ALIGN (t) = BITS_PER_UNIT;
896 TYPE_USER_ALIGN (t) = 0;
897 TYPE_MAIN_VARIANT (t) = t;
898 TYPE_CANONICAL (t) = t;
899
900 /* Default to no attributes for type, but let target change that. */
901 TYPE_ATTRIBUTES (t) = NULL_TREE;
902 targetm.set_default_type_attributes (t);
903
904 /* We have not yet computed the alias set for this type. */
905 TYPE_ALIAS_SET (t) = -1;
906 break;
907
908 case tcc_constant:
909 TREE_CONSTANT (t) = 1;
910 break;
911
912 case tcc_expression:
913 switch (code)
914 {
915 case INIT_EXPR:
916 case MODIFY_EXPR:
917 case VA_ARG_EXPR:
918 case PREDECREMENT_EXPR:
919 case PREINCREMENT_EXPR:
920 case POSTDECREMENT_EXPR:
921 case POSTINCREMENT_EXPR:
922 /* All of these have side-effects, no matter what their
923 operands are. */
924 TREE_SIDE_EFFECTS (t) = 1;
925 break;
926
927 default:
928 break;
929 }
930 break;
931
932 default:
933 /* Other classes need no special treatment. */
934 break;
935 }
936
937 return t;
938 }
939 \f
940 /* Return a new node with the same contents as NODE except that its
941 TREE_CHAIN is zero and it has a fresh uid. */
942
943 tree
944 copy_node_stat (tree node MEM_STAT_DECL)
945 {
946 tree t;
947 enum tree_code code = TREE_CODE (node);
948 size_t length;
949
950 gcc_assert (code != STATEMENT_LIST);
951
952 length = tree_size (node);
953 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
954 memcpy (t, node, length);
955
956 TREE_CHAIN (t) = 0;
957 TREE_ASM_WRITTEN (t) = 0;
958 TREE_VISITED (t) = 0;
959 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
960 *DECL_VAR_ANN_PTR (t) = 0;
961
962 if (TREE_CODE_CLASS (code) == tcc_declaration)
963 {
964 if (code == DEBUG_EXPR_DECL)
965 DECL_UID (t) = --next_debug_decl_uid;
966 else
967 {
968 DECL_UID (t) = next_decl_uid++;
969 if (DECL_PT_UID_SET_P (node))
970 SET_DECL_PT_UID (t, DECL_PT_UID (node));
971 }
972 if ((TREE_CODE (node) == PARM_DECL || TREE_CODE (node) == VAR_DECL)
973 && DECL_HAS_VALUE_EXPR_P (node))
974 {
975 SET_DECL_VALUE_EXPR (t, DECL_VALUE_EXPR (node));
976 DECL_HAS_VALUE_EXPR_P (t) = 1;
977 }
978 if (TREE_CODE (node) == VAR_DECL && DECL_HAS_INIT_PRIORITY_P (node))
979 {
980 SET_DECL_INIT_PRIORITY (t, DECL_INIT_PRIORITY (node));
981 DECL_HAS_INIT_PRIORITY_P (t) = 1;
982 }
983 }
984 else if (TREE_CODE_CLASS (code) == tcc_type)
985 {
986 TYPE_UID (t) = next_type_uid++;
987 /* The following is so that the debug code for
988 the copy is different from the original type.
989 The two statements usually duplicate each other
990 (because they clear fields of the same union),
991 but the optimizer should catch that. */
992 TYPE_SYMTAB_POINTER (t) = 0;
993 TYPE_SYMTAB_ADDRESS (t) = 0;
994
995 /* Do not copy the values cache. */
996 if (TYPE_CACHED_VALUES_P(t))
997 {
998 TYPE_CACHED_VALUES_P (t) = 0;
999 TYPE_CACHED_VALUES (t) = NULL_TREE;
1000 }
1001 }
1002
1003 return t;
1004 }
1005
1006 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
1007 For example, this can copy a list made of TREE_LIST nodes. */
1008
1009 tree
1010 copy_list (tree list)
1011 {
1012 tree head;
1013 tree prev, next;
1014
1015 if (list == 0)
1016 return 0;
1017
1018 head = prev = copy_node (list);
1019 next = TREE_CHAIN (list);
1020 while (next)
1021 {
1022 TREE_CHAIN (prev) = copy_node (next);
1023 prev = TREE_CHAIN (prev);
1024 next = TREE_CHAIN (next);
1025 }
1026 return head;
1027 }
1028
1029 \f
1030 /* Create an INT_CST node with a LOW value sign extended. */
1031
1032 tree
1033 build_int_cst (tree type, HOST_WIDE_INT low)
1034 {
1035 /* Support legacy code. */
1036 if (!type)
1037 type = integer_type_node;
1038
1039 return build_int_cst_wide (type, low, low < 0 ? -1 : 0);
1040 }
1041
1042 /* Create an INT_CST node with a LOW value in TYPE. The value is sign extended
1043 if it is negative. This function is similar to build_int_cst, but
1044 the extra bits outside of the type precision are cleared. Constants
1045 with these extra bits may confuse the fold so that it detects overflows
1046 even in cases when they do not occur, and in general should be avoided.
1047 We cannot however make this a default behavior of build_int_cst without
1048 more intrusive changes, since there are parts of gcc that rely on the extra
1049 precision of the integer constants. */
1050
1051 tree
1052 build_int_cst_type (tree type, HOST_WIDE_INT low)
1053 {
1054 gcc_assert (type);
1055
1056 return double_int_to_tree (type, shwi_to_double_int (low));
1057 }
1058
1059 /* Constructs tree in type TYPE from with value given by CST. Signedness
1060 of CST is assumed to be the same as the signedness of TYPE. */
1061
1062 tree
1063 double_int_to_tree (tree type, double_int cst)
1064 {
1065 /* Size types *are* sign extended. */
1066 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1067 || (TREE_CODE (type) == INTEGER_TYPE
1068 && TYPE_IS_SIZETYPE (type)));
1069
1070 cst = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1071
1072 return build_int_cst_wide (type, cst.low, cst.high);
1073 }
1074
1075 /* Returns true if CST fits into range of TYPE. Signedness of CST is assumed
1076 to be the same as the signedness of TYPE. */
1077
1078 bool
1079 double_int_fits_to_tree_p (const_tree type, double_int cst)
1080 {
1081 /* Size types *are* sign extended. */
1082 bool sign_extended_type = (!TYPE_UNSIGNED (type)
1083 || (TREE_CODE (type) == INTEGER_TYPE
1084 && TYPE_IS_SIZETYPE (type)));
1085
1086 double_int ext
1087 = double_int_ext (cst, TYPE_PRECISION (type), !sign_extended_type);
1088
1089 return double_int_equal_p (cst, ext);
1090 }
1091
1092 /* We force the double_int CST to the range of the type TYPE by sign or
1093 zero extending it. OVERFLOWABLE indicates if we are interested in
1094 overflow of the value, when >0 we are only interested in signed
1095 overflow, for <0 we are interested in any overflow. OVERFLOWED
1096 indicates whether overflow has already occurred. CONST_OVERFLOWED
1097 indicates whether constant overflow has already occurred. We force
1098 T's value to be within range of T's type (by setting to 0 or 1 all
1099 the bits outside the type's range). We set TREE_OVERFLOWED if,
1100 OVERFLOWED is nonzero,
1101 or OVERFLOWABLE is >0 and signed overflow occurs
1102 or OVERFLOWABLE is <0 and any overflow occurs
1103 We return a new tree node for the extended double_int. The node
1104 is shared if no overflow flags are set. */
1105
1106
1107 tree
1108 force_fit_type_double (tree type, double_int cst, int overflowable,
1109 bool overflowed)
1110 {
1111 bool sign_extended_type;
1112
1113 /* Size types *are* sign extended. */
1114 sign_extended_type = (!TYPE_UNSIGNED (type)
1115 || (TREE_CODE (type) == INTEGER_TYPE
1116 && TYPE_IS_SIZETYPE (type)));
1117
1118 /* If we need to set overflow flags, return a new unshared node. */
1119 if (overflowed || !double_int_fits_to_tree_p(type, cst))
1120 {
1121 if (overflowed
1122 || overflowable < 0
1123 || (overflowable > 0 && sign_extended_type))
1124 {
1125 tree t = make_node (INTEGER_CST);
1126 TREE_INT_CST (t) = double_int_ext (cst, TYPE_PRECISION (type),
1127 !sign_extended_type);
1128 TREE_TYPE (t) = type;
1129 TREE_OVERFLOW (t) = 1;
1130 return t;
1131 }
1132 }
1133
1134 /* Else build a shared node. */
1135 return double_int_to_tree (type, cst);
1136 }
1137
1138 /* These are the hash table functions for the hash table of INTEGER_CST
1139 nodes of a sizetype. */
1140
1141 /* Return the hash code code X, an INTEGER_CST. */
1142
1143 static hashval_t
1144 int_cst_hash_hash (const void *x)
1145 {
1146 const_tree const t = (const_tree) x;
1147
1148 return (TREE_INT_CST_HIGH (t) ^ TREE_INT_CST_LOW (t)
1149 ^ htab_hash_pointer (TREE_TYPE (t)));
1150 }
1151
1152 /* Return nonzero if the value represented by *X (an INTEGER_CST tree node)
1153 is the same as that given by *Y, which is the same. */
1154
1155 static int
1156 int_cst_hash_eq (const void *x, const void *y)
1157 {
1158 const_tree const xt = (const_tree) x;
1159 const_tree const yt = (const_tree) y;
1160
1161 return (TREE_TYPE (xt) == TREE_TYPE (yt)
1162 && TREE_INT_CST_HIGH (xt) == TREE_INT_CST_HIGH (yt)
1163 && TREE_INT_CST_LOW (xt) == TREE_INT_CST_LOW (yt));
1164 }
1165
1166 /* Create an INT_CST node of TYPE and value HI:LOW.
1167 The returned node is always shared. For small integers we use a
1168 per-type vector cache, for larger ones we use a single hash table. */
1169
1170 tree
1171 build_int_cst_wide (tree type, unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
1172 {
1173 tree t;
1174 int ix = -1;
1175 int limit = 0;
1176
1177 gcc_assert (type);
1178
1179 switch (TREE_CODE (type))
1180 {
1181 case NULLPTR_TYPE:
1182 gcc_assert (hi == 0 && low == 0);
1183 /* Fallthru. */
1184
1185 case POINTER_TYPE:
1186 case REFERENCE_TYPE:
1187 /* Cache NULL pointer. */
1188 if (!hi && !low)
1189 {
1190 limit = 1;
1191 ix = 0;
1192 }
1193 break;
1194
1195 case BOOLEAN_TYPE:
1196 /* Cache false or true. */
1197 limit = 2;
1198 if (!hi && low < 2)
1199 ix = low;
1200 break;
1201
1202 case INTEGER_TYPE:
1203 case OFFSET_TYPE:
1204 if (TYPE_UNSIGNED (type))
1205 {
1206 /* Cache 0..N */
1207 limit = INTEGER_SHARE_LIMIT;
1208 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1209 ix = low;
1210 }
1211 else
1212 {
1213 /* Cache -1..N */
1214 limit = INTEGER_SHARE_LIMIT + 1;
1215 if (!hi && low < (unsigned HOST_WIDE_INT)INTEGER_SHARE_LIMIT)
1216 ix = low + 1;
1217 else if (hi == -1 && low == -(unsigned HOST_WIDE_INT)1)
1218 ix = 0;
1219 }
1220 break;
1221
1222 case ENUMERAL_TYPE:
1223 break;
1224
1225 default:
1226 gcc_unreachable ();
1227 }
1228
1229 if (ix >= 0)
1230 {
1231 /* Look for it in the type's vector of small shared ints. */
1232 if (!TYPE_CACHED_VALUES_P (type))
1233 {
1234 TYPE_CACHED_VALUES_P (type) = 1;
1235 TYPE_CACHED_VALUES (type) = make_tree_vec (limit);
1236 }
1237
1238 t = TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix);
1239 if (t)
1240 {
1241 /* Make sure no one is clobbering the shared constant. */
1242 gcc_assert (TREE_TYPE (t) == type);
1243 gcc_assert (TREE_INT_CST_LOW (t) == low);
1244 gcc_assert (TREE_INT_CST_HIGH (t) == hi);
1245 }
1246 else
1247 {
1248 /* Create a new shared int. */
1249 t = make_node (INTEGER_CST);
1250
1251 TREE_INT_CST_LOW (t) = low;
1252 TREE_INT_CST_HIGH (t) = hi;
1253 TREE_TYPE (t) = type;
1254
1255 TREE_VEC_ELT (TYPE_CACHED_VALUES (type), ix) = t;
1256 }
1257 }
1258 else
1259 {
1260 /* Use the cache of larger shared ints. */
1261 void **slot;
1262
1263 TREE_INT_CST_LOW (int_cst_node) = low;
1264 TREE_INT_CST_HIGH (int_cst_node) = hi;
1265 TREE_TYPE (int_cst_node) = type;
1266
1267 slot = htab_find_slot (int_cst_hash_table, int_cst_node, INSERT);
1268 t = (tree) *slot;
1269 if (!t)
1270 {
1271 /* Insert this one into the hash table. */
1272 t = int_cst_node;
1273 *slot = t;
1274 /* Make a new node for next time round. */
1275 int_cst_node = make_node (INTEGER_CST);
1276 }
1277 }
1278
1279 return t;
1280 }
1281
1282 /* Builds an integer constant in TYPE such that lowest BITS bits are ones
1283 and the rest are zeros. */
1284
1285 tree
1286 build_low_bits_mask (tree type, unsigned bits)
1287 {
1288 double_int mask;
1289
1290 gcc_assert (bits <= TYPE_PRECISION (type));
1291
1292 if (bits == TYPE_PRECISION (type)
1293 && !TYPE_UNSIGNED (type))
1294 /* Sign extended all-ones mask. */
1295 mask = double_int_minus_one;
1296 else
1297 mask = double_int_mask (bits);
1298
1299 return build_int_cst_wide (type, mask.low, mask.high);
1300 }
1301
1302 /* Checks that X is integer constant that can be expressed in (unsigned)
1303 HOST_WIDE_INT without loss of precision. */
1304
1305 bool
1306 cst_and_fits_in_hwi (const_tree x)
1307 {
1308 if (TREE_CODE (x) != INTEGER_CST)
1309 return false;
1310
1311 if (TYPE_PRECISION (TREE_TYPE (x)) > HOST_BITS_PER_WIDE_INT)
1312 return false;
1313
1314 return (TREE_INT_CST_HIGH (x) == 0
1315 || TREE_INT_CST_HIGH (x) == -1);
1316 }
1317
1318 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1319 are in a list pointed to by VALS. */
1320
1321 tree
1322 build_vector (tree type, tree vals)
1323 {
1324 tree v = make_node (VECTOR_CST);
1325 int over = 0;
1326 tree link;
1327 unsigned cnt = 0;
1328
1329 TREE_VECTOR_CST_ELTS (v) = vals;
1330 TREE_TYPE (v) = type;
1331
1332 /* Iterate through elements and check for overflow. */
1333 for (link = vals; link; link = TREE_CHAIN (link))
1334 {
1335 tree value = TREE_VALUE (link);
1336 cnt++;
1337
1338 /* Don't crash if we get an address constant. */
1339 if (!CONSTANT_CLASS_P (value))
1340 continue;
1341
1342 over |= TREE_OVERFLOW (value);
1343 }
1344
1345 gcc_assert (cnt == TYPE_VECTOR_SUBPARTS (type));
1346
1347 TREE_OVERFLOW (v) = over;
1348 return v;
1349 }
1350
1351 /* Return a new VECTOR_CST node whose type is TYPE and whose values
1352 are extracted from V, a vector of CONSTRUCTOR_ELT. */
1353
1354 tree
1355 build_vector_from_ctor (tree type, VEC(constructor_elt,gc) *v)
1356 {
1357 tree list = NULL_TREE;
1358 unsigned HOST_WIDE_INT idx;
1359 tree value;
1360
1361 FOR_EACH_CONSTRUCTOR_VALUE (v, idx, value)
1362 list = tree_cons (NULL_TREE, value, list);
1363 for (; idx < TYPE_VECTOR_SUBPARTS (type); ++idx)
1364 list = tree_cons (NULL_TREE,
1365 fold_convert (TREE_TYPE (type), integer_zero_node), list);
1366 return build_vector (type, nreverse (list));
1367 }
1368
1369 /* Build a vector of type VECTYPE where all the elements are SCs. */
1370 tree
1371 build_vector_from_val (tree vectype, tree sc)
1372 {
1373 int i, nunits = TYPE_VECTOR_SUBPARTS (vectype);
1374 VEC(constructor_elt, gc) *v = NULL;
1375
1376 if (sc == error_mark_node)
1377 return sc;
1378
1379 gcc_assert (useless_type_conversion_p (TREE_TYPE (sc),
1380 TREE_TYPE (vectype)));
1381
1382 v = VEC_alloc (constructor_elt, gc, nunits);
1383 for (i = 0; i < nunits; ++i)
1384 CONSTRUCTOR_APPEND_ELT (v, NULL_TREE, sc);
1385
1386 if (CONSTANT_CLASS_P (sc))
1387 return build_vector_from_ctor (vectype, v);
1388 else
1389 return build_constructor (vectype, v);
1390 }
1391
1392 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1393 are in the VEC pointed to by VALS. */
1394 tree
1395 build_constructor (tree type, VEC(constructor_elt,gc) *vals)
1396 {
1397 tree c = make_node (CONSTRUCTOR);
1398 unsigned int i;
1399 constructor_elt *elt;
1400 bool constant_p = true;
1401
1402 TREE_TYPE (c) = type;
1403 CONSTRUCTOR_ELTS (c) = vals;
1404
1405 FOR_EACH_VEC_ELT (constructor_elt, vals, i, elt)
1406 if (!TREE_CONSTANT (elt->value))
1407 {
1408 constant_p = false;
1409 break;
1410 }
1411
1412 TREE_CONSTANT (c) = constant_p;
1413
1414 return c;
1415 }
1416
1417 /* Build a CONSTRUCTOR node made of a single initializer, with the specified
1418 INDEX and VALUE. */
1419 tree
1420 build_constructor_single (tree type, tree index, tree value)
1421 {
1422 VEC(constructor_elt,gc) *v;
1423 constructor_elt *elt;
1424
1425 v = VEC_alloc (constructor_elt, gc, 1);
1426 elt = VEC_quick_push (constructor_elt, v, NULL);
1427 elt->index = index;
1428 elt->value = value;
1429
1430 return build_constructor (type, v);
1431 }
1432
1433
1434 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
1435 are in a list pointed to by VALS. */
1436 tree
1437 build_constructor_from_list (tree type, tree vals)
1438 {
1439 tree t;
1440 VEC(constructor_elt,gc) *v = NULL;
1441
1442 if (vals)
1443 {
1444 v = VEC_alloc (constructor_elt, gc, list_length (vals));
1445 for (t = vals; t; t = TREE_CHAIN (t))
1446 CONSTRUCTOR_APPEND_ELT (v, TREE_PURPOSE (t), TREE_VALUE (t));
1447 }
1448
1449 return build_constructor (type, v);
1450 }
1451
1452 /* Return a new FIXED_CST node whose type is TYPE and value is F. */
1453
1454 tree
1455 build_fixed (tree type, FIXED_VALUE_TYPE f)
1456 {
1457 tree v;
1458 FIXED_VALUE_TYPE *fp;
1459
1460 v = make_node (FIXED_CST);
1461 fp = ggc_alloc_fixed_value ();
1462 memcpy (fp, &f, sizeof (FIXED_VALUE_TYPE));
1463
1464 TREE_TYPE (v) = type;
1465 TREE_FIXED_CST_PTR (v) = fp;
1466 return v;
1467 }
1468
1469 /* Return a new REAL_CST node whose type is TYPE and value is D. */
1470
1471 tree
1472 build_real (tree type, REAL_VALUE_TYPE d)
1473 {
1474 tree v;
1475 REAL_VALUE_TYPE *dp;
1476 int overflow = 0;
1477
1478 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
1479 Consider doing it via real_convert now. */
1480
1481 v = make_node (REAL_CST);
1482 dp = ggc_alloc_real_value ();
1483 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
1484
1485 TREE_TYPE (v) = type;
1486 TREE_REAL_CST_PTR (v) = dp;
1487 TREE_OVERFLOW (v) = overflow;
1488 return v;
1489 }
1490
1491 /* Return a new REAL_CST node whose type is TYPE
1492 and whose value is the integer value of the INTEGER_CST node I. */
1493
1494 REAL_VALUE_TYPE
1495 real_value_from_int_cst (const_tree type, const_tree i)
1496 {
1497 REAL_VALUE_TYPE d;
1498
1499 /* Clear all bits of the real value type so that we can later do
1500 bitwise comparisons to see if two values are the same. */
1501 memset (&d, 0, sizeof d);
1502
1503 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
1504 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
1505 TYPE_UNSIGNED (TREE_TYPE (i)));
1506 return d;
1507 }
1508
1509 /* Given a tree representing an integer constant I, return a tree
1510 representing the same value as a floating-point constant of type TYPE. */
1511
1512 tree
1513 build_real_from_int_cst (tree type, const_tree i)
1514 {
1515 tree v;
1516 int overflow = TREE_OVERFLOW (i);
1517
1518 v = build_real (type, real_value_from_int_cst (type, i));
1519
1520 TREE_OVERFLOW (v) |= overflow;
1521 return v;
1522 }
1523
1524 /* Return a newly constructed STRING_CST node whose value is
1525 the LEN characters at STR.
1526 The TREE_TYPE is not initialized. */
1527
1528 tree
1529 build_string (int len, const char *str)
1530 {
1531 tree s;
1532 size_t length;
1533
1534 /* Do not waste bytes provided by padding of struct tree_string. */
1535 length = len + offsetof (struct tree_string, str) + 1;
1536
1537 #ifdef GATHER_STATISTICS
1538 tree_node_counts[(int) c_kind]++;
1539 tree_node_sizes[(int) c_kind] += length;
1540 #endif
1541
1542 s = ggc_alloc_tree_node (length);
1543
1544 memset (s, 0, sizeof (struct tree_common));
1545 TREE_SET_CODE (s, STRING_CST);
1546 TREE_CONSTANT (s) = 1;
1547 TREE_STRING_LENGTH (s) = len;
1548 memcpy (s->string.str, str, len);
1549 s->string.str[len] = '\0';
1550
1551 return s;
1552 }
1553
1554 /* Return a newly constructed COMPLEX_CST node whose value is
1555 specified by the real and imaginary parts REAL and IMAG.
1556 Both REAL and IMAG should be constant nodes. TYPE, if specified,
1557 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
1558
1559 tree
1560 build_complex (tree type, tree real, tree imag)
1561 {
1562 tree t = make_node (COMPLEX_CST);
1563
1564 TREE_REALPART (t) = real;
1565 TREE_IMAGPART (t) = imag;
1566 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
1567 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
1568 return t;
1569 }
1570
1571 /* Return a constant of arithmetic type TYPE which is the
1572 multiplicative identity of the set TYPE. */
1573
1574 tree
1575 build_one_cst (tree type)
1576 {
1577 switch (TREE_CODE (type))
1578 {
1579 case INTEGER_TYPE: case ENUMERAL_TYPE: case BOOLEAN_TYPE:
1580 case POINTER_TYPE: case REFERENCE_TYPE:
1581 case OFFSET_TYPE:
1582 return build_int_cst (type, 1);
1583
1584 case REAL_TYPE:
1585 return build_real (type, dconst1);
1586
1587 case FIXED_POINT_TYPE:
1588 /* We can only generate 1 for accum types. */
1589 gcc_assert (ALL_SCALAR_ACCUM_MODE_P (TYPE_MODE (type)));
1590 return build_fixed (type, FCONST1(TYPE_MODE (type)));
1591
1592 case VECTOR_TYPE:
1593 {
1594 tree scalar = build_one_cst (TREE_TYPE (type));
1595
1596 return build_vector_from_val (type, scalar);
1597 }
1598
1599 case COMPLEX_TYPE:
1600 return build_complex (type,
1601 build_one_cst (TREE_TYPE (type)),
1602 fold_convert (TREE_TYPE (type), integer_zero_node));
1603
1604 default:
1605 gcc_unreachable ();
1606 }
1607 }
1608
1609 /* Build 0 constant of type TYPE. This is used by constructor folding and thus
1610 the constant should correspond zero in memory representation. */
1611
1612 tree
1613 build_zero_cst (tree type)
1614 {
1615 if (!AGGREGATE_TYPE_P (type))
1616 return fold_convert (type, integer_zero_node);
1617 return build_constructor (type, NULL);
1618 }
1619
1620
1621 /* Build a BINFO with LEN language slots. */
1622
1623 tree
1624 make_tree_binfo_stat (unsigned base_binfos MEM_STAT_DECL)
1625 {
1626 tree t;
1627 size_t length = (offsetof (struct tree_binfo, base_binfos)
1628 + VEC_embedded_size (tree, base_binfos));
1629
1630 #ifdef GATHER_STATISTICS
1631 tree_node_counts[(int) binfo_kind]++;
1632 tree_node_sizes[(int) binfo_kind] += length;
1633 #endif
1634
1635 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1636
1637 memset (t, 0, offsetof (struct tree_binfo, base_binfos));
1638
1639 TREE_SET_CODE (t, TREE_BINFO);
1640
1641 VEC_embedded_init (tree, BINFO_BASE_BINFOS (t), base_binfos);
1642
1643 return t;
1644 }
1645
1646
1647 /* Build a newly constructed TREE_VEC node of length LEN. */
1648
1649 tree
1650 make_tree_vec_stat (int len MEM_STAT_DECL)
1651 {
1652 tree t;
1653 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
1654
1655 #ifdef GATHER_STATISTICS
1656 tree_node_counts[(int) vec_kind]++;
1657 tree_node_sizes[(int) vec_kind] += length;
1658 #endif
1659
1660 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
1661
1662 TREE_SET_CODE (t, TREE_VEC);
1663 TREE_VEC_LENGTH (t) = len;
1664
1665 return t;
1666 }
1667 \f
1668 /* Return 1 if EXPR is the integer constant zero or a complex constant
1669 of zero. */
1670
1671 int
1672 integer_zerop (const_tree expr)
1673 {
1674 STRIP_NOPS (expr);
1675
1676 return ((TREE_CODE (expr) == INTEGER_CST
1677 && TREE_INT_CST_LOW (expr) == 0
1678 && TREE_INT_CST_HIGH (expr) == 0)
1679 || (TREE_CODE (expr) == COMPLEX_CST
1680 && integer_zerop (TREE_REALPART (expr))
1681 && integer_zerop (TREE_IMAGPART (expr))));
1682 }
1683
1684 /* Return 1 if EXPR is the integer constant one or the corresponding
1685 complex constant. */
1686
1687 int
1688 integer_onep (const_tree expr)
1689 {
1690 STRIP_NOPS (expr);
1691
1692 return ((TREE_CODE (expr) == INTEGER_CST
1693 && TREE_INT_CST_LOW (expr) == 1
1694 && TREE_INT_CST_HIGH (expr) == 0)
1695 || (TREE_CODE (expr) == COMPLEX_CST
1696 && integer_onep (TREE_REALPART (expr))
1697 && integer_zerop (TREE_IMAGPART (expr))));
1698 }
1699
1700 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
1701 it contains. Likewise for the corresponding complex constant. */
1702
1703 int
1704 integer_all_onesp (const_tree expr)
1705 {
1706 int prec;
1707 int uns;
1708
1709 STRIP_NOPS (expr);
1710
1711 if (TREE_CODE (expr) == COMPLEX_CST
1712 && integer_all_onesp (TREE_REALPART (expr))
1713 && integer_zerop (TREE_IMAGPART (expr)))
1714 return 1;
1715
1716 else if (TREE_CODE (expr) != INTEGER_CST)
1717 return 0;
1718
1719 uns = TYPE_UNSIGNED (TREE_TYPE (expr));
1720 if (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1721 && TREE_INT_CST_HIGH (expr) == -1)
1722 return 1;
1723 if (!uns)
1724 return 0;
1725
1726 /* Note that using TYPE_PRECISION here is wrong. We care about the
1727 actual bits, not the (arbitrary) range of the type. */
1728 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
1729 if (prec >= HOST_BITS_PER_WIDE_INT)
1730 {
1731 HOST_WIDE_INT high_value;
1732 int shift_amount;
1733
1734 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
1735
1736 /* Can not handle precisions greater than twice the host int size. */
1737 gcc_assert (shift_amount <= HOST_BITS_PER_WIDE_INT);
1738 if (shift_amount == HOST_BITS_PER_WIDE_INT)
1739 /* Shifting by the host word size is undefined according to the ANSI
1740 standard, so we must handle this as a special case. */
1741 high_value = -1;
1742 else
1743 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
1744
1745 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
1746 && TREE_INT_CST_HIGH (expr) == high_value);
1747 }
1748 else
1749 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
1750 }
1751
1752 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
1753 one bit on). */
1754
1755 int
1756 integer_pow2p (const_tree expr)
1757 {
1758 int prec;
1759 HOST_WIDE_INT high, low;
1760
1761 STRIP_NOPS (expr);
1762
1763 if (TREE_CODE (expr) == COMPLEX_CST
1764 && integer_pow2p (TREE_REALPART (expr))
1765 && integer_zerop (TREE_IMAGPART (expr)))
1766 return 1;
1767
1768 if (TREE_CODE (expr) != INTEGER_CST)
1769 return 0;
1770
1771 prec = TYPE_PRECISION (TREE_TYPE (expr));
1772 high = TREE_INT_CST_HIGH (expr);
1773 low = TREE_INT_CST_LOW (expr);
1774
1775 /* First clear all bits that are beyond the type's precision in case
1776 we've been sign extended. */
1777
1778 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1779 ;
1780 else if (prec > HOST_BITS_PER_WIDE_INT)
1781 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1782 else
1783 {
1784 high = 0;
1785 if (prec < HOST_BITS_PER_WIDE_INT)
1786 low &= ~((HOST_WIDE_INT) (-1) << prec);
1787 }
1788
1789 if (high == 0 && low == 0)
1790 return 0;
1791
1792 return ((high == 0 && (low & (low - 1)) == 0)
1793 || (low == 0 && (high & (high - 1)) == 0));
1794 }
1795
1796 /* Return 1 if EXPR is an integer constant other than zero or a
1797 complex constant other than zero. */
1798
1799 int
1800 integer_nonzerop (const_tree expr)
1801 {
1802 STRIP_NOPS (expr);
1803
1804 return ((TREE_CODE (expr) == INTEGER_CST
1805 && (TREE_INT_CST_LOW (expr) != 0
1806 || TREE_INT_CST_HIGH (expr) != 0))
1807 || (TREE_CODE (expr) == COMPLEX_CST
1808 && (integer_nonzerop (TREE_REALPART (expr))
1809 || integer_nonzerop (TREE_IMAGPART (expr)))));
1810 }
1811
1812 /* Return 1 if EXPR is the fixed-point constant zero. */
1813
1814 int
1815 fixed_zerop (const_tree expr)
1816 {
1817 return (TREE_CODE (expr) == FIXED_CST
1818 && double_int_zero_p (TREE_FIXED_CST (expr).data));
1819 }
1820
1821 /* Return the power of two represented by a tree node known to be a
1822 power of two. */
1823
1824 int
1825 tree_log2 (const_tree expr)
1826 {
1827 int prec;
1828 HOST_WIDE_INT high, low;
1829
1830 STRIP_NOPS (expr);
1831
1832 if (TREE_CODE (expr) == COMPLEX_CST)
1833 return tree_log2 (TREE_REALPART (expr));
1834
1835 prec = TYPE_PRECISION (TREE_TYPE (expr));
1836 high = TREE_INT_CST_HIGH (expr);
1837 low = TREE_INT_CST_LOW (expr);
1838
1839 /* First clear all bits that are beyond the type's precision in case
1840 we've been sign extended. */
1841
1842 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
1843 ;
1844 else if (prec > HOST_BITS_PER_WIDE_INT)
1845 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1846 else
1847 {
1848 high = 0;
1849 if (prec < HOST_BITS_PER_WIDE_INT)
1850 low &= ~((HOST_WIDE_INT) (-1) << prec);
1851 }
1852
1853 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
1854 : exact_log2 (low));
1855 }
1856
1857 /* Similar, but return the largest integer Y such that 2 ** Y is less
1858 than or equal to EXPR. */
1859
1860 int
1861 tree_floor_log2 (const_tree expr)
1862 {
1863 int prec;
1864 HOST_WIDE_INT high, low;
1865
1866 STRIP_NOPS (expr);
1867
1868 if (TREE_CODE (expr) == COMPLEX_CST)
1869 return tree_log2 (TREE_REALPART (expr));
1870
1871 prec = TYPE_PRECISION (TREE_TYPE (expr));
1872 high = TREE_INT_CST_HIGH (expr);
1873 low = TREE_INT_CST_LOW (expr);
1874
1875 /* First clear all bits that are beyond the type's precision in case
1876 we've been sign extended. Ignore if type's precision hasn't been set
1877 since what we are doing is setting it. */
1878
1879 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
1880 ;
1881 else if (prec > HOST_BITS_PER_WIDE_INT)
1882 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
1883 else
1884 {
1885 high = 0;
1886 if (prec < HOST_BITS_PER_WIDE_INT)
1887 low &= ~((HOST_WIDE_INT) (-1) << prec);
1888 }
1889
1890 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
1891 : floor_log2 (low));
1892 }
1893
1894 /* Return 1 if EXPR is the real constant zero. Trailing zeroes matter for
1895 decimal float constants, so don't return 1 for them. */
1896
1897 int
1898 real_zerop (const_tree expr)
1899 {
1900 STRIP_NOPS (expr);
1901
1902 return ((TREE_CODE (expr) == REAL_CST
1903 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0)
1904 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1905 || (TREE_CODE (expr) == COMPLEX_CST
1906 && real_zerop (TREE_REALPART (expr))
1907 && real_zerop (TREE_IMAGPART (expr))));
1908 }
1909
1910 /* Return 1 if EXPR is the real constant one in real or complex form.
1911 Trailing zeroes matter for decimal float constants, so don't return
1912 1 for them. */
1913
1914 int
1915 real_onep (const_tree expr)
1916 {
1917 STRIP_NOPS (expr);
1918
1919 return ((TREE_CODE (expr) == REAL_CST
1920 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1)
1921 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1922 || (TREE_CODE (expr) == COMPLEX_CST
1923 && real_onep (TREE_REALPART (expr))
1924 && real_zerop (TREE_IMAGPART (expr))));
1925 }
1926
1927 /* Return 1 if EXPR is the real constant two. Trailing zeroes matter
1928 for decimal float constants, so don't return 1 for them. */
1929
1930 int
1931 real_twop (const_tree expr)
1932 {
1933 STRIP_NOPS (expr);
1934
1935 return ((TREE_CODE (expr) == REAL_CST
1936 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2)
1937 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1938 || (TREE_CODE (expr) == COMPLEX_CST
1939 && real_twop (TREE_REALPART (expr))
1940 && real_zerop (TREE_IMAGPART (expr))));
1941 }
1942
1943 /* Return 1 if EXPR is the real constant minus one. Trailing zeroes
1944 matter for decimal float constants, so don't return 1 for them. */
1945
1946 int
1947 real_minus_onep (const_tree expr)
1948 {
1949 STRIP_NOPS (expr);
1950
1951 return ((TREE_CODE (expr) == REAL_CST
1952 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1)
1953 && !(DECIMAL_FLOAT_MODE_P (TYPE_MODE (TREE_TYPE (expr)))))
1954 || (TREE_CODE (expr) == COMPLEX_CST
1955 && real_minus_onep (TREE_REALPART (expr))
1956 && real_zerop (TREE_IMAGPART (expr))));
1957 }
1958
1959 /* Nonzero if EXP is a constant or a cast of a constant. */
1960
1961 int
1962 really_constant_p (const_tree exp)
1963 {
1964 /* This is not quite the same as STRIP_NOPS. It does more. */
1965 while (CONVERT_EXPR_P (exp)
1966 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1967 exp = TREE_OPERAND (exp, 0);
1968 return TREE_CONSTANT (exp);
1969 }
1970 \f
1971 /* Return first list element whose TREE_VALUE is ELEM.
1972 Return 0 if ELEM is not in LIST. */
1973
1974 tree
1975 value_member (tree elem, tree list)
1976 {
1977 while (list)
1978 {
1979 if (elem == TREE_VALUE (list))
1980 return list;
1981 list = TREE_CHAIN (list);
1982 }
1983 return NULL_TREE;
1984 }
1985
1986 /* Return first list element whose TREE_PURPOSE is ELEM.
1987 Return 0 if ELEM is not in LIST. */
1988
1989 tree
1990 purpose_member (const_tree elem, tree list)
1991 {
1992 while (list)
1993 {
1994 if (elem == TREE_PURPOSE (list))
1995 return list;
1996 list = TREE_CHAIN (list);
1997 }
1998 return NULL_TREE;
1999 }
2000
2001 /* Return true if ELEM is in V. */
2002
2003 bool
2004 vec_member (const_tree elem, VEC(tree,gc) *v)
2005 {
2006 unsigned ix;
2007 tree t;
2008 FOR_EACH_VEC_ELT (tree, v, ix, t)
2009 if (elem == t)
2010 return true;
2011 return false;
2012 }
2013
2014 /* Returns element number IDX (zero-origin) of chain CHAIN, or
2015 NULL_TREE. */
2016
2017 tree
2018 chain_index (int idx, tree chain)
2019 {
2020 for (; chain && idx > 0; --idx)
2021 chain = TREE_CHAIN (chain);
2022 return chain;
2023 }
2024
2025 /* Return nonzero if ELEM is part of the chain CHAIN. */
2026
2027 int
2028 chain_member (const_tree elem, const_tree chain)
2029 {
2030 while (chain)
2031 {
2032 if (elem == chain)
2033 return 1;
2034 chain = DECL_CHAIN (chain);
2035 }
2036
2037 return 0;
2038 }
2039
2040 /* Return the length of a chain of nodes chained through TREE_CHAIN.
2041 We expect a null pointer to mark the end of the chain.
2042 This is the Lisp primitive `length'. */
2043
2044 int
2045 list_length (const_tree t)
2046 {
2047 const_tree p = t;
2048 #ifdef ENABLE_TREE_CHECKING
2049 const_tree q = t;
2050 #endif
2051 int len = 0;
2052
2053 while (p)
2054 {
2055 p = TREE_CHAIN (p);
2056 #ifdef ENABLE_TREE_CHECKING
2057 if (len % 2)
2058 q = TREE_CHAIN (q);
2059 gcc_assert (p != q);
2060 #endif
2061 len++;
2062 }
2063
2064 return len;
2065 }
2066
2067 /* Returns the number of FIELD_DECLs in TYPE. */
2068
2069 int
2070 fields_length (const_tree type)
2071 {
2072 tree t = TYPE_FIELDS (type);
2073 int count = 0;
2074
2075 for (; t; t = DECL_CHAIN (t))
2076 if (TREE_CODE (t) == FIELD_DECL)
2077 ++count;
2078
2079 return count;
2080 }
2081
2082 /* Returns the first FIELD_DECL in the TYPE_FIELDS of the RECORD_TYPE or
2083 UNION_TYPE TYPE, or NULL_TREE if none. */
2084
2085 tree
2086 first_field (const_tree type)
2087 {
2088 tree t = TYPE_FIELDS (type);
2089 while (t && TREE_CODE (t) != FIELD_DECL)
2090 t = TREE_CHAIN (t);
2091 return t;
2092 }
2093
2094 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
2095 by modifying the last node in chain 1 to point to chain 2.
2096 This is the Lisp primitive `nconc'. */
2097
2098 tree
2099 chainon (tree op1, tree op2)
2100 {
2101 tree t1;
2102
2103 if (!op1)
2104 return op2;
2105 if (!op2)
2106 return op1;
2107
2108 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
2109 continue;
2110 TREE_CHAIN (t1) = op2;
2111
2112 #ifdef ENABLE_TREE_CHECKING
2113 {
2114 tree t2;
2115 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
2116 gcc_assert (t2 != t1);
2117 }
2118 #endif
2119
2120 return op1;
2121 }
2122
2123 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
2124
2125 tree
2126 tree_last (tree chain)
2127 {
2128 tree next;
2129 if (chain)
2130 while ((next = TREE_CHAIN (chain)))
2131 chain = next;
2132 return chain;
2133 }
2134
2135 /* Reverse the order of elements in the chain T,
2136 and return the new head of the chain (old last element). */
2137
2138 tree
2139 nreverse (tree t)
2140 {
2141 tree prev = 0, decl, next;
2142 for (decl = t; decl; decl = next)
2143 {
2144 /* We shouldn't be using this function to reverse BLOCK chains; we
2145 have blocks_nreverse for that. */
2146 gcc_checking_assert (TREE_CODE (decl) != BLOCK);
2147 next = TREE_CHAIN (decl);
2148 TREE_CHAIN (decl) = prev;
2149 prev = decl;
2150 }
2151 return prev;
2152 }
2153 \f
2154 /* Return a newly created TREE_LIST node whose
2155 purpose and value fields are PARM and VALUE. */
2156
2157 tree
2158 build_tree_list_stat (tree parm, tree value MEM_STAT_DECL)
2159 {
2160 tree t = make_node_stat (TREE_LIST PASS_MEM_STAT);
2161 TREE_PURPOSE (t) = parm;
2162 TREE_VALUE (t) = value;
2163 return t;
2164 }
2165
2166 /* Build a chain of TREE_LIST nodes from a vector. */
2167
2168 tree
2169 build_tree_list_vec_stat (const VEC(tree,gc) *vec MEM_STAT_DECL)
2170 {
2171 tree ret = NULL_TREE;
2172 tree *pp = &ret;
2173 unsigned int i;
2174 tree t;
2175 FOR_EACH_VEC_ELT (tree, vec, i, t)
2176 {
2177 *pp = build_tree_list_stat (NULL, t PASS_MEM_STAT);
2178 pp = &TREE_CHAIN (*pp);
2179 }
2180 return ret;
2181 }
2182
2183 /* Return a newly created TREE_LIST node whose
2184 purpose and value fields are PURPOSE and VALUE
2185 and whose TREE_CHAIN is CHAIN. */
2186
2187 tree
2188 tree_cons_stat (tree purpose, tree value, tree chain MEM_STAT_DECL)
2189 {
2190 tree node;
2191
2192 node = ggc_alloc_zone_tree_node_stat (&tree_zone, sizeof (struct tree_list)
2193 PASS_MEM_STAT);
2194 memset (node, 0, sizeof (struct tree_common));
2195
2196 #ifdef GATHER_STATISTICS
2197 tree_node_counts[(int) x_kind]++;
2198 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
2199 #endif
2200
2201 TREE_SET_CODE (node, TREE_LIST);
2202 TREE_CHAIN (node) = chain;
2203 TREE_PURPOSE (node) = purpose;
2204 TREE_VALUE (node) = value;
2205 return node;
2206 }
2207
2208 /* Return the values of the elements of a CONSTRUCTOR as a vector of
2209 trees. */
2210
2211 VEC(tree,gc) *
2212 ctor_to_vec (tree ctor)
2213 {
2214 VEC(tree, gc) *vec = VEC_alloc (tree, gc, CONSTRUCTOR_NELTS (ctor));
2215 unsigned int ix;
2216 tree val;
2217
2218 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (ctor), ix, val)
2219 VEC_quick_push (tree, vec, val);
2220
2221 return vec;
2222 }
2223 \f
2224 /* Return the size nominally occupied by an object of type TYPE
2225 when it resides in memory. The value is measured in units of bytes,
2226 and its data type is that normally used for type sizes
2227 (which is the first type created by make_signed_type or
2228 make_unsigned_type). */
2229
2230 tree
2231 size_in_bytes (const_tree type)
2232 {
2233 tree t;
2234
2235 if (type == error_mark_node)
2236 return integer_zero_node;
2237
2238 type = TYPE_MAIN_VARIANT (type);
2239 t = TYPE_SIZE_UNIT (type);
2240
2241 if (t == 0)
2242 {
2243 lang_hooks.types.incomplete_type_error (NULL_TREE, type);
2244 return size_zero_node;
2245 }
2246
2247 return t;
2248 }
2249
2250 /* Return the size of TYPE (in bytes) as a wide integer
2251 or return -1 if the size can vary or is larger than an integer. */
2252
2253 HOST_WIDE_INT
2254 int_size_in_bytes (const_tree type)
2255 {
2256 tree t;
2257
2258 if (type == error_mark_node)
2259 return 0;
2260
2261 type = TYPE_MAIN_VARIANT (type);
2262 t = TYPE_SIZE_UNIT (type);
2263 if (t == 0
2264 || TREE_CODE (t) != INTEGER_CST
2265 || TREE_INT_CST_HIGH (t) != 0
2266 /* If the result would appear negative, it's too big to represent. */
2267 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
2268 return -1;
2269
2270 return TREE_INT_CST_LOW (t);
2271 }
2272
2273 /* Return the maximum size of TYPE (in bytes) as a wide integer
2274 or return -1 if the size can vary or is larger than an integer. */
2275
2276 HOST_WIDE_INT
2277 max_int_size_in_bytes (const_tree type)
2278 {
2279 HOST_WIDE_INT size = -1;
2280 tree size_tree;
2281
2282 /* If this is an array type, check for a possible MAX_SIZE attached. */
2283
2284 if (TREE_CODE (type) == ARRAY_TYPE)
2285 {
2286 size_tree = TYPE_ARRAY_MAX_SIZE (type);
2287
2288 if (size_tree && host_integerp (size_tree, 1))
2289 size = tree_low_cst (size_tree, 1);
2290 }
2291
2292 /* If we still haven't been able to get a size, see if the language
2293 can compute a maximum size. */
2294
2295 if (size == -1)
2296 {
2297 size_tree = lang_hooks.types.max_size (type);
2298
2299 if (size_tree && host_integerp (size_tree, 1))
2300 size = tree_low_cst (size_tree, 1);
2301 }
2302
2303 return size;
2304 }
2305
2306 /* Returns a tree for the size of EXP in bytes. */
2307
2308 tree
2309 tree_expr_size (const_tree exp)
2310 {
2311 if (DECL_P (exp)
2312 && DECL_SIZE_UNIT (exp) != 0)
2313 return DECL_SIZE_UNIT (exp);
2314 else
2315 return size_in_bytes (TREE_TYPE (exp));
2316 }
2317 \f
2318 /* Return the bit position of FIELD, in bits from the start of the record.
2319 This is a tree of type bitsizetype. */
2320
2321 tree
2322 bit_position (const_tree field)
2323 {
2324 return bit_from_pos (DECL_FIELD_OFFSET (field),
2325 DECL_FIELD_BIT_OFFSET (field));
2326 }
2327
2328 /* Likewise, but return as an integer. It must be representable in
2329 that way (since it could be a signed value, we don't have the
2330 option of returning -1 like int_size_in_byte can. */
2331
2332 HOST_WIDE_INT
2333 int_bit_position (const_tree field)
2334 {
2335 return tree_low_cst (bit_position (field), 0);
2336 }
2337 \f
2338 /* Return the byte position of FIELD, in bytes from the start of the record.
2339 This is a tree of type sizetype. */
2340
2341 tree
2342 byte_position (const_tree field)
2343 {
2344 return byte_from_pos (DECL_FIELD_OFFSET (field),
2345 DECL_FIELD_BIT_OFFSET (field));
2346 }
2347
2348 /* Likewise, but return as an integer. It must be representable in
2349 that way (since it could be a signed value, we don't have the
2350 option of returning -1 like int_size_in_byte can. */
2351
2352 HOST_WIDE_INT
2353 int_byte_position (const_tree field)
2354 {
2355 return tree_low_cst (byte_position (field), 0);
2356 }
2357 \f
2358 /* Return the strictest alignment, in bits, that T is known to have. */
2359
2360 unsigned int
2361 expr_align (const_tree t)
2362 {
2363 unsigned int align0, align1;
2364
2365 switch (TREE_CODE (t))
2366 {
2367 CASE_CONVERT: case NON_LVALUE_EXPR:
2368 /* If we have conversions, we know that the alignment of the
2369 object must meet each of the alignments of the types. */
2370 align0 = expr_align (TREE_OPERAND (t, 0));
2371 align1 = TYPE_ALIGN (TREE_TYPE (t));
2372 return MAX (align0, align1);
2373
2374 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
2375 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
2376 case CLEANUP_POINT_EXPR:
2377 /* These don't change the alignment of an object. */
2378 return expr_align (TREE_OPERAND (t, 0));
2379
2380 case COND_EXPR:
2381 /* The best we can do is say that the alignment is the least aligned
2382 of the two arms. */
2383 align0 = expr_align (TREE_OPERAND (t, 1));
2384 align1 = expr_align (TREE_OPERAND (t, 2));
2385 return MIN (align0, align1);
2386
2387 /* FIXME: LABEL_DECL and CONST_DECL never have DECL_ALIGN set
2388 meaningfully, it's always 1. */
2389 case LABEL_DECL: case CONST_DECL:
2390 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
2391 case FUNCTION_DECL:
2392 gcc_assert (DECL_ALIGN (t) != 0);
2393 return DECL_ALIGN (t);
2394
2395 default:
2396 break;
2397 }
2398
2399 /* Otherwise take the alignment from that of the type. */
2400 return TYPE_ALIGN (TREE_TYPE (t));
2401 }
2402 \f
2403 /* Return, as a tree node, the number of elements for TYPE (which is an
2404 ARRAY_TYPE) minus one. This counts only elements of the top array. */
2405
2406 tree
2407 array_type_nelts (const_tree type)
2408 {
2409 tree index_type, min, max;
2410
2411 /* If they did it with unspecified bounds, then we should have already
2412 given an error about it before we got here. */
2413 if (! TYPE_DOMAIN (type))
2414 return error_mark_node;
2415
2416 index_type = TYPE_DOMAIN (type);
2417 min = TYPE_MIN_VALUE (index_type);
2418 max = TYPE_MAX_VALUE (index_type);
2419
2420 return (integer_zerop (min)
2421 ? max
2422 : fold_build2 (MINUS_EXPR, TREE_TYPE (max), max, min));
2423 }
2424 \f
2425 /* If arg is static -- a reference to an object in static storage -- then
2426 return the object. This is not the same as the C meaning of `static'.
2427 If arg isn't static, return NULL. */
2428
2429 tree
2430 staticp (tree arg)
2431 {
2432 switch (TREE_CODE (arg))
2433 {
2434 case FUNCTION_DECL:
2435 /* Nested functions are static, even though taking their address will
2436 involve a trampoline as we unnest the nested function and create
2437 the trampoline on the tree level. */
2438 return arg;
2439
2440 case VAR_DECL:
2441 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2442 && ! DECL_THREAD_LOCAL_P (arg)
2443 && ! DECL_DLLIMPORT_P (arg)
2444 ? arg : NULL);
2445
2446 case CONST_DECL:
2447 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
2448 ? arg : NULL);
2449
2450 case CONSTRUCTOR:
2451 return TREE_STATIC (arg) ? arg : NULL;
2452
2453 case LABEL_DECL:
2454 case STRING_CST:
2455 return arg;
2456
2457 case COMPONENT_REF:
2458 /* If the thing being referenced is not a field, then it is
2459 something language specific. */
2460 gcc_assert (TREE_CODE (TREE_OPERAND (arg, 1)) == FIELD_DECL);
2461
2462 /* If we are referencing a bitfield, we can't evaluate an
2463 ADDR_EXPR at compile time and so it isn't a constant. */
2464 if (DECL_BIT_FIELD (TREE_OPERAND (arg, 1)))
2465 return NULL;
2466
2467 return staticp (TREE_OPERAND (arg, 0));
2468
2469 case BIT_FIELD_REF:
2470 return NULL;
2471
2472 case INDIRECT_REF:
2473 return TREE_CONSTANT (TREE_OPERAND (arg, 0)) ? arg : NULL;
2474
2475 case ARRAY_REF:
2476 case ARRAY_RANGE_REF:
2477 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
2478 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
2479 return staticp (TREE_OPERAND (arg, 0));
2480 else
2481 return NULL;
2482
2483 case COMPOUND_LITERAL_EXPR:
2484 return TREE_STATIC (COMPOUND_LITERAL_EXPR_DECL (arg)) ? arg : NULL;
2485
2486 default:
2487 return NULL;
2488 }
2489 }
2490
2491 \f
2492
2493
2494 /* Return whether OP is a DECL whose address is function-invariant. */
2495
2496 bool
2497 decl_address_invariant_p (const_tree op)
2498 {
2499 /* The conditions below are slightly less strict than the one in
2500 staticp. */
2501
2502 switch (TREE_CODE (op))
2503 {
2504 case PARM_DECL:
2505 case RESULT_DECL:
2506 case LABEL_DECL:
2507 case FUNCTION_DECL:
2508 return true;
2509
2510 case VAR_DECL:
2511 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2512 || DECL_THREAD_LOCAL_P (op)
2513 || DECL_CONTEXT (op) == current_function_decl
2514 || decl_function_context (op) == current_function_decl)
2515 return true;
2516 break;
2517
2518 case CONST_DECL:
2519 if ((TREE_STATIC (op) || DECL_EXTERNAL (op))
2520 || decl_function_context (op) == current_function_decl)
2521 return true;
2522 break;
2523
2524 default:
2525 break;
2526 }
2527
2528 return false;
2529 }
2530
2531 /* Return whether OP is a DECL whose address is interprocedural-invariant. */
2532
2533 bool
2534 decl_address_ip_invariant_p (const_tree op)
2535 {
2536 /* The conditions below are slightly less strict than the one in
2537 staticp. */
2538
2539 switch (TREE_CODE (op))
2540 {
2541 case LABEL_DECL:
2542 case FUNCTION_DECL:
2543 case STRING_CST:
2544 return true;
2545
2546 case VAR_DECL:
2547 if (((TREE_STATIC (op) || DECL_EXTERNAL (op))
2548 && !DECL_DLLIMPORT_P (op))
2549 || DECL_THREAD_LOCAL_P (op))
2550 return true;
2551 break;
2552
2553 case CONST_DECL:
2554 if ((TREE_STATIC (op) || DECL_EXTERNAL (op)))
2555 return true;
2556 break;
2557
2558 default:
2559 break;
2560 }
2561
2562 return false;
2563 }
2564
2565
2566 /* Return true if T is function-invariant (internal function, does
2567 not handle arithmetic; that's handled in skip_simple_arithmetic and
2568 tree_invariant_p). */
2569
2570 static bool tree_invariant_p (tree t);
2571
2572 static bool
2573 tree_invariant_p_1 (tree t)
2574 {
2575 tree op;
2576
2577 if (TREE_CONSTANT (t)
2578 || (TREE_READONLY (t) && !TREE_SIDE_EFFECTS (t)))
2579 return true;
2580
2581 switch (TREE_CODE (t))
2582 {
2583 case SAVE_EXPR:
2584 return true;
2585
2586 case ADDR_EXPR:
2587 op = TREE_OPERAND (t, 0);
2588 while (handled_component_p (op))
2589 {
2590 switch (TREE_CODE (op))
2591 {
2592 case ARRAY_REF:
2593 case ARRAY_RANGE_REF:
2594 if (!tree_invariant_p (TREE_OPERAND (op, 1))
2595 || TREE_OPERAND (op, 2) != NULL_TREE
2596 || TREE_OPERAND (op, 3) != NULL_TREE)
2597 return false;
2598 break;
2599
2600 case COMPONENT_REF:
2601 if (TREE_OPERAND (op, 2) != NULL_TREE)
2602 return false;
2603 break;
2604
2605 default:;
2606 }
2607 op = TREE_OPERAND (op, 0);
2608 }
2609
2610 return CONSTANT_CLASS_P (op) || decl_address_invariant_p (op);
2611
2612 default:
2613 break;
2614 }
2615
2616 return false;
2617 }
2618
2619 /* Return true if T is function-invariant. */
2620
2621 static bool
2622 tree_invariant_p (tree t)
2623 {
2624 tree inner = skip_simple_arithmetic (t);
2625 return tree_invariant_p_1 (inner);
2626 }
2627
2628 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
2629 Do this to any expression which may be used in more than one place,
2630 but must be evaluated only once.
2631
2632 Normally, expand_expr would reevaluate the expression each time.
2633 Calling save_expr produces something that is evaluated and recorded
2634 the first time expand_expr is called on it. Subsequent calls to
2635 expand_expr just reuse the recorded value.
2636
2637 The call to expand_expr that generates code that actually computes
2638 the value is the first call *at compile time*. Subsequent calls
2639 *at compile time* generate code to use the saved value.
2640 This produces correct result provided that *at run time* control
2641 always flows through the insns made by the first expand_expr
2642 before reaching the other places where the save_expr was evaluated.
2643 You, the caller of save_expr, must make sure this is so.
2644
2645 Constants, and certain read-only nodes, are returned with no
2646 SAVE_EXPR because that is safe. Expressions containing placeholders
2647 are not touched; see tree.def for an explanation of what these
2648 are used for. */
2649
2650 tree
2651 save_expr (tree expr)
2652 {
2653 tree t = fold (expr);
2654 tree inner;
2655
2656 /* If the tree evaluates to a constant, then we don't want to hide that
2657 fact (i.e. this allows further folding, and direct checks for constants).
2658 However, a read-only object that has side effects cannot be bypassed.
2659 Since it is no problem to reevaluate literals, we just return the
2660 literal node. */
2661 inner = skip_simple_arithmetic (t);
2662 if (TREE_CODE (inner) == ERROR_MARK)
2663 return inner;
2664
2665 if (tree_invariant_p_1 (inner))
2666 return t;
2667
2668 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
2669 it means that the size or offset of some field of an object depends on
2670 the value within another field.
2671
2672 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
2673 and some variable since it would then need to be both evaluated once and
2674 evaluated more than once. Front-ends must assure this case cannot
2675 happen by surrounding any such subexpressions in their own SAVE_EXPR
2676 and forcing evaluation at the proper time. */
2677 if (contains_placeholder_p (inner))
2678 return t;
2679
2680 t = build1 (SAVE_EXPR, TREE_TYPE (expr), t);
2681 SET_EXPR_LOCATION (t, EXPR_LOCATION (expr));
2682
2683 /* This expression might be placed ahead of a jump to ensure that the
2684 value was computed on both sides of the jump. So make sure it isn't
2685 eliminated as dead. */
2686 TREE_SIDE_EFFECTS (t) = 1;
2687 return t;
2688 }
2689
2690 /* Look inside EXPR and into any simple arithmetic operations. Return
2691 the innermost non-arithmetic node. */
2692
2693 tree
2694 skip_simple_arithmetic (tree expr)
2695 {
2696 tree inner;
2697
2698 /* We don't care about whether this can be used as an lvalue in this
2699 context. */
2700 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
2701 expr = TREE_OPERAND (expr, 0);
2702
2703 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
2704 a constant, it will be more efficient to not make another SAVE_EXPR since
2705 it will allow better simplification and GCSE will be able to merge the
2706 computations if they actually occur. */
2707 inner = expr;
2708 while (1)
2709 {
2710 if (UNARY_CLASS_P (inner))
2711 inner = TREE_OPERAND (inner, 0);
2712 else if (BINARY_CLASS_P (inner))
2713 {
2714 if (tree_invariant_p (TREE_OPERAND (inner, 1)))
2715 inner = TREE_OPERAND (inner, 0);
2716 else if (tree_invariant_p (TREE_OPERAND (inner, 0)))
2717 inner = TREE_OPERAND (inner, 1);
2718 else
2719 break;
2720 }
2721 else
2722 break;
2723 }
2724
2725 return inner;
2726 }
2727
2728
2729 /* Return which tree structure is used by T. */
2730
2731 enum tree_node_structure_enum
2732 tree_node_structure (const_tree t)
2733 {
2734 const enum tree_code code = TREE_CODE (t);
2735 return tree_node_structure_for_code (code);
2736 }
2737
2738 /* Set various status flags when building a CALL_EXPR object T. */
2739
2740 static void
2741 process_call_operands (tree t)
2742 {
2743 bool side_effects = TREE_SIDE_EFFECTS (t);
2744 bool read_only = false;
2745 int i = call_expr_flags (t);
2746
2747 /* Calls have side-effects, except those to const or pure functions. */
2748 if ((i & ECF_LOOPING_CONST_OR_PURE) || !(i & (ECF_CONST | ECF_PURE)))
2749 side_effects = true;
2750 /* Propagate TREE_READONLY of arguments for const functions. */
2751 if (i & ECF_CONST)
2752 read_only = true;
2753
2754 if (!side_effects || read_only)
2755 for (i = 1; i < TREE_OPERAND_LENGTH (t); i++)
2756 {
2757 tree op = TREE_OPERAND (t, i);
2758 if (op && TREE_SIDE_EFFECTS (op))
2759 side_effects = true;
2760 if (op && !TREE_READONLY (op) && !CONSTANT_CLASS_P (op))
2761 read_only = false;
2762 }
2763
2764 TREE_SIDE_EFFECTS (t) = side_effects;
2765 TREE_READONLY (t) = read_only;
2766 }
2767 \f
2768 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
2769 or offset that depends on a field within a record. */
2770
2771 bool
2772 contains_placeholder_p (const_tree exp)
2773 {
2774 enum tree_code code;
2775
2776 if (!exp)
2777 return 0;
2778
2779 code = TREE_CODE (exp);
2780 if (code == PLACEHOLDER_EXPR)
2781 return 1;
2782
2783 switch (TREE_CODE_CLASS (code))
2784 {
2785 case tcc_reference:
2786 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
2787 position computations since they will be converted into a
2788 WITH_RECORD_EXPR involving the reference, which will assume
2789 here will be valid. */
2790 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2791
2792 case tcc_exceptional:
2793 if (code == TREE_LIST)
2794 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
2795 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
2796 break;
2797
2798 case tcc_unary:
2799 case tcc_binary:
2800 case tcc_comparison:
2801 case tcc_expression:
2802 switch (code)
2803 {
2804 case COMPOUND_EXPR:
2805 /* Ignoring the first operand isn't quite right, but works best. */
2806 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
2807
2808 case COND_EXPR:
2809 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2810 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
2811 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
2812
2813 case SAVE_EXPR:
2814 /* The save_expr function never wraps anything containing
2815 a PLACEHOLDER_EXPR. */
2816 return 0;
2817
2818 default:
2819 break;
2820 }
2821
2822 switch (TREE_CODE_LENGTH (code))
2823 {
2824 case 1:
2825 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
2826 case 2:
2827 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
2828 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
2829 default:
2830 return 0;
2831 }
2832
2833 case tcc_vl_exp:
2834 switch (code)
2835 {
2836 case CALL_EXPR:
2837 {
2838 const_tree arg;
2839 const_call_expr_arg_iterator iter;
2840 FOR_EACH_CONST_CALL_EXPR_ARG (arg, iter, exp)
2841 if (CONTAINS_PLACEHOLDER_P (arg))
2842 return 1;
2843 return 0;
2844 }
2845 default:
2846 return 0;
2847 }
2848
2849 default:
2850 return 0;
2851 }
2852 return 0;
2853 }
2854
2855 /* Return true if any part of the computation of TYPE involves a
2856 PLACEHOLDER_EXPR. This includes size, bounds, qualifiers
2857 (for QUAL_UNION_TYPE) and field positions. */
2858
2859 static bool
2860 type_contains_placeholder_1 (const_tree type)
2861 {
2862 /* If the size contains a placeholder or the parent type (component type in
2863 the case of arrays) type involves a placeholder, this type does. */
2864 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
2865 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
2866 || (TREE_TYPE (type) != 0
2867 && type_contains_placeholder_p (TREE_TYPE (type))))
2868 return true;
2869
2870 /* Now do type-specific checks. Note that the last part of the check above
2871 greatly limits what we have to do below. */
2872 switch (TREE_CODE (type))
2873 {
2874 case VOID_TYPE:
2875 case COMPLEX_TYPE:
2876 case ENUMERAL_TYPE:
2877 case BOOLEAN_TYPE:
2878 case POINTER_TYPE:
2879 case OFFSET_TYPE:
2880 case REFERENCE_TYPE:
2881 case METHOD_TYPE:
2882 case FUNCTION_TYPE:
2883 case VECTOR_TYPE:
2884 return false;
2885
2886 case INTEGER_TYPE:
2887 case REAL_TYPE:
2888 case FIXED_POINT_TYPE:
2889 /* Here we just check the bounds. */
2890 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
2891 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
2892
2893 case ARRAY_TYPE:
2894 /* We're already checked the component type (TREE_TYPE), so just check
2895 the index type. */
2896 return type_contains_placeholder_p (TYPE_DOMAIN (type));
2897
2898 case RECORD_TYPE:
2899 case UNION_TYPE:
2900 case QUAL_UNION_TYPE:
2901 {
2902 tree field;
2903
2904 for (field = TYPE_FIELDS (type); field; field = DECL_CHAIN (field))
2905 if (TREE_CODE (field) == FIELD_DECL
2906 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
2907 || (TREE_CODE (type) == QUAL_UNION_TYPE
2908 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
2909 || type_contains_placeholder_p (TREE_TYPE (field))))
2910 return true;
2911
2912 return false;
2913 }
2914
2915 default:
2916 gcc_unreachable ();
2917 }
2918 }
2919
2920 bool
2921 type_contains_placeholder_p (tree type)
2922 {
2923 bool result;
2924
2925 /* If the contains_placeholder_bits field has been initialized,
2926 then we know the answer. */
2927 if (TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) > 0)
2928 return TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) - 1;
2929
2930 /* Indicate that we've seen this type node, and the answer is false.
2931 This is what we want to return if we run into recursion via fields. */
2932 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = 1;
2933
2934 /* Compute the real value. */
2935 result = type_contains_placeholder_1 (type);
2936
2937 /* Store the real value. */
2938 TYPE_CONTAINS_PLACEHOLDER_INTERNAL (type) = result + 1;
2939
2940 return result;
2941 }
2942 \f
2943 /* Push tree EXP onto vector QUEUE if it is not already present. */
2944
2945 static void
2946 push_without_duplicates (tree exp, VEC (tree, heap) **queue)
2947 {
2948 unsigned int i;
2949 tree iter;
2950
2951 FOR_EACH_VEC_ELT (tree, *queue, i, iter)
2952 if (simple_cst_equal (iter, exp) == 1)
2953 break;
2954
2955 if (!iter)
2956 VEC_safe_push (tree, heap, *queue, exp);
2957 }
2958
2959 /* Given a tree EXP, find all occurences of references to fields
2960 in a PLACEHOLDER_EXPR and place them in vector REFS without
2961 duplicates. Also record VAR_DECLs and CONST_DECLs. Note that
2962 we assume here that EXP contains only arithmetic expressions
2963 or CALL_EXPRs with PLACEHOLDER_EXPRs occurring only in their
2964 argument list. */
2965
2966 void
2967 find_placeholder_in_expr (tree exp, VEC (tree, heap) **refs)
2968 {
2969 enum tree_code code = TREE_CODE (exp);
2970 tree inner;
2971 int i;
2972
2973 /* We handle TREE_LIST and COMPONENT_REF separately. */
2974 if (code == TREE_LIST)
2975 {
2976 FIND_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), refs);
2977 FIND_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), refs);
2978 }
2979 else if (code == COMPONENT_REF)
2980 {
2981 for (inner = TREE_OPERAND (exp, 0);
2982 REFERENCE_CLASS_P (inner);
2983 inner = TREE_OPERAND (inner, 0))
2984 ;
2985
2986 if (TREE_CODE (inner) == PLACEHOLDER_EXPR)
2987 push_without_duplicates (exp, refs);
2988 else
2989 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), refs);
2990 }
2991 else
2992 switch (TREE_CODE_CLASS (code))
2993 {
2994 case tcc_constant:
2995 break;
2996
2997 case tcc_declaration:
2998 /* Variables allocated to static storage can stay. */
2999 if (!TREE_STATIC (exp))
3000 push_without_duplicates (exp, refs);
3001 break;
3002
3003 case tcc_expression:
3004 /* This is the pattern built in ada/make_aligning_type. */
3005 if (code == ADDR_EXPR
3006 && TREE_CODE (TREE_OPERAND (exp, 0)) == PLACEHOLDER_EXPR)
3007 {
3008 push_without_duplicates (exp, refs);
3009 break;
3010 }
3011
3012 /* Fall through... */
3013
3014 case tcc_exceptional:
3015 case tcc_unary:
3016 case tcc_binary:
3017 case tcc_comparison:
3018 case tcc_reference:
3019 for (i = 0; i < TREE_CODE_LENGTH (code); i++)
3020 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3021 break;
3022
3023 case tcc_vl_exp:
3024 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3025 FIND_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, i), refs);
3026 break;
3027
3028 default:
3029 gcc_unreachable ();
3030 }
3031 }
3032
3033 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
3034 return a tree with all occurrences of references to F in a
3035 PLACEHOLDER_EXPR replaced by R. Also handle VAR_DECLs and
3036 CONST_DECLs. Note that we assume here that EXP contains only
3037 arithmetic expressions or CALL_EXPRs with PLACEHOLDER_EXPRs
3038 occurring only in their argument list. */
3039
3040 tree
3041 substitute_in_expr (tree exp, tree f, tree r)
3042 {
3043 enum tree_code code = TREE_CODE (exp);
3044 tree op0, op1, op2, op3;
3045 tree new_tree;
3046
3047 /* We handle TREE_LIST and COMPONENT_REF separately. */
3048 if (code == TREE_LIST)
3049 {
3050 op0 = SUBSTITUTE_IN_EXPR (TREE_CHAIN (exp), f, r);
3051 op1 = SUBSTITUTE_IN_EXPR (TREE_VALUE (exp), f, r);
3052 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3053 return exp;
3054
3055 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3056 }
3057 else if (code == COMPONENT_REF)
3058 {
3059 tree inner;
3060
3061 /* If this expression is getting a value from a PLACEHOLDER_EXPR
3062 and it is the right field, replace it with R. */
3063 for (inner = TREE_OPERAND (exp, 0);
3064 REFERENCE_CLASS_P (inner);
3065 inner = TREE_OPERAND (inner, 0))
3066 ;
3067
3068 /* The field. */
3069 op1 = TREE_OPERAND (exp, 1);
3070
3071 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && op1 == f)
3072 return r;
3073
3074 /* If this expression hasn't been completed let, leave it alone. */
3075 if (TREE_CODE (inner) == PLACEHOLDER_EXPR && !TREE_TYPE (inner))
3076 return exp;
3077
3078 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3079 if (op0 == TREE_OPERAND (exp, 0))
3080 return exp;
3081
3082 new_tree
3083 = fold_build3 (COMPONENT_REF, TREE_TYPE (exp), op0, op1, NULL_TREE);
3084 }
3085 else
3086 switch (TREE_CODE_CLASS (code))
3087 {
3088 case tcc_constant:
3089 return exp;
3090
3091 case tcc_declaration:
3092 if (exp == f)
3093 return r;
3094 else
3095 return exp;
3096
3097 case tcc_expression:
3098 if (exp == f)
3099 return r;
3100
3101 /* Fall through... */
3102
3103 case tcc_exceptional:
3104 case tcc_unary:
3105 case tcc_binary:
3106 case tcc_comparison:
3107 case tcc_reference:
3108 switch (TREE_CODE_LENGTH (code))
3109 {
3110 case 0:
3111 return exp;
3112
3113 case 1:
3114 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3115 if (op0 == TREE_OPERAND (exp, 0))
3116 return exp;
3117
3118 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3119 break;
3120
3121 case 2:
3122 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3123 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3124
3125 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3126 return exp;
3127
3128 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3129 break;
3130
3131 case 3:
3132 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3133 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3134 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3135
3136 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3137 && op2 == TREE_OPERAND (exp, 2))
3138 return exp;
3139
3140 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3141 break;
3142
3143 case 4:
3144 op0 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 0), f, r);
3145 op1 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 1), f, r);
3146 op2 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 2), f, r);
3147 op3 = SUBSTITUTE_IN_EXPR (TREE_OPERAND (exp, 3), f, r);
3148
3149 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3150 && op2 == TREE_OPERAND (exp, 2)
3151 && op3 == TREE_OPERAND (exp, 3))
3152 return exp;
3153
3154 new_tree
3155 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3156 break;
3157
3158 default:
3159 gcc_unreachable ();
3160 }
3161 break;
3162
3163 case tcc_vl_exp:
3164 {
3165 int i;
3166
3167 new_tree = NULL_TREE;
3168
3169 /* If we are trying to replace F with a constant, inline back
3170 functions which do nothing else than computing a value from
3171 the arguments they are passed. This makes it possible to
3172 fold partially or entirely the replacement expression. */
3173 if (CONSTANT_CLASS_P (r) && code == CALL_EXPR)
3174 {
3175 tree t = maybe_inline_call_in_expr (exp);
3176 if (t)
3177 return SUBSTITUTE_IN_EXPR (t, f, r);
3178 }
3179
3180 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3181 {
3182 tree op = TREE_OPERAND (exp, i);
3183 tree new_op = SUBSTITUTE_IN_EXPR (op, f, r);
3184 if (new_op != op)
3185 {
3186 if (!new_tree)
3187 new_tree = copy_node (exp);
3188 TREE_OPERAND (new_tree, i) = new_op;
3189 }
3190 }
3191
3192 if (new_tree)
3193 {
3194 new_tree = fold (new_tree);
3195 if (TREE_CODE (new_tree) == CALL_EXPR)
3196 process_call_operands (new_tree);
3197 }
3198 else
3199 return exp;
3200 }
3201 break;
3202
3203 default:
3204 gcc_unreachable ();
3205 }
3206
3207 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3208
3209 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3210 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3211
3212 return new_tree;
3213 }
3214
3215 /* Similar, but look for a PLACEHOLDER_EXPR in EXP and find a replacement
3216 for it within OBJ, a tree that is an object or a chain of references. */
3217
3218 tree
3219 substitute_placeholder_in_expr (tree exp, tree obj)
3220 {
3221 enum tree_code code = TREE_CODE (exp);
3222 tree op0, op1, op2, op3;
3223 tree new_tree;
3224
3225 /* If this is a PLACEHOLDER_EXPR, see if we find a corresponding type
3226 in the chain of OBJ. */
3227 if (code == PLACEHOLDER_EXPR)
3228 {
3229 tree need_type = TYPE_MAIN_VARIANT (TREE_TYPE (exp));
3230 tree elt;
3231
3232 for (elt = obj; elt != 0;
3233 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3234 || TREE_CODE (elt) == COND_EXPR)
3235 ? TREE_OPERAND (elt, 1)
3236 : (REFERENCE_CLASS_P (elt)
3237 || UNARY_CLASS_P (elt)
3238 || BINARY_CLASS_P (elt)
3239 || VL_EXP_CLASS_P (elt)
3240 || EXPRESSION_CLASS_P (elt))
3241 ? TREE_OPERAND (elt, 0) : 0))
3242 if (TYPE_MAIN_VARIANT (TREE_TYPE (elt)) == need_type)
3243 return elt;
3244
3245 for (elt = obj; elt != 0;
3246 elt = ((TREE_CODE (elt) == COMPOUND_EXPR
3247 || TREE_CODE (elt) == COND_EXPR)
3248 ? TREE_OPERAND (elt, 1)
3249 : (REFERENCE_CLASS_P (elt)
3250 || UNARY_CLASS_P (elt)
3251 || BINARY_CLASS_P (elt)
3252 || VL_EXP_CLASS_P (elt)
3253 || EXPRESSION_CLASS_P (elt))
3254 ? TREE_OPERAND (elt, 0) : 0))
3255 if (POINTER_TYPE_P (TREE_TYPE (elt))
3256 && (TYPE_MAIN_VARIANT (TREE_TYPE (TREE_TYPE (elt)))
3257 == need_type))
3258 return fold_build1 (INDIRECT_REF, need_type, elt);
3259
3260 /* If we didn't find it, return the original PLACEHOLDER_EXPR. If it
3261 survives until RTL generation, there will be an error. */
3262 return exp;
3263 }
3264
3265 /* TREE_LIST is special because we need to look at TREE_VALUE
3266 and TREE_CHAIN, not TREE_OPERANDS. */
3267 else if (code == TREE_LIST)
3268 {
3269 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_CHAIN (exp), obj);
3270 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_VALUE (exp), obj);
3271 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
3272 return exp;
3273
3274 return tree_cons (TREE_PURPOSE (exp), op1, op0);
3275 }
3276 else
3277 switch (TREE_CODE_CLASS (code))
3278 {
3279 case tcc_constant:
3280 case tcc_declaration:
3281 return exp;
3282
3283 case tcc_exceptional:
3284 case tcc_unary:
3285 case tcc_binary:
3286 case tcc_comparison:
3287 case tcc_expression:
3288 case tcc_reference:
3289 case tcc_statement:
3290 switch (TREE_CODE_LENGTH (code))
3291 {
3292 case 0:
3293 return exp;
3294
3295 case 1:
3296 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3297 if (op0 == TREE_OPERAND (exp, 0))
3298 return exp;
3299
3300 new_tree = fold_build1 (code, TREE_TYPE (exp), op0);
3301 break;
3302
3303 case 2:
3304 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3305 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3306
3307 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
3308 return exp;
3309
3310 new_tree = fold_build2 (code, TREE_TYPE (exp), op0, op1);
3311 break;
3312
3313 case 3:
3314 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3315 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3316 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3317
3318 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3319 && op2 == TREE_OPERAND (exp, 2))
3320 return exp;
3321
3322 new_tree = fold_build3 (code, TREE_TYPE (exp), op0, op1, op2);
3323 break;
3324
3325 case 4:
3326 op0 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 0), obj);
3327 op1 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 1), obj);
3328 op2 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 2), obj);
3329 op3 = SUBSTITUTE_PLACEHOLDER_IN_EXPR (TREE_OPERAND (exp, 3), obj);
3330
3331 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
3332 && op2 == TREE_OPERAND (exp, 2)
3333 && op3 == TREE_OPERAND (exp, 3))
3334 return exp;
3335
3336 new_tree
3337 = fold (build4 (code, TREE_TYPE (exp), op0, op1, op2, op3));
3338 break;
3339
3340 default:
3341 gcc_unreachable ();
3342 }
3343 break;
3344
3345 case tcc_vl_exp:
3346 {
3347 int i;
3348
3349 new_tree = NULL_TREE;
3350
3351 for (i = 1; i < TREE_OPERAND_LENGTH (exp); i++)
3352 {
3353 tree op = TREE_OPERAND (exp, i);
3354 tree new_op = SUBSTITUTE_PLACEHOLDER_IN_EXPR (op, obj);
3355 if (new_op != op)
3356 {
3357 if (!new_tree)
3358 new_tree = copy_node (exp);
3359 TREE_OPERAND (new_tree, i) = new_op;
3360 }
3361 }
3362
3363 if (new_tree)
3364 {
3365 new_tree = fold (new_tree);
3366 if (TREE_CODE (new_tree) == CALL_EXPR)
3367 process_call_operands (new_tree);
3368 }
3369 else
3370 return exp;
3371 }
3372 break;
3373
3374 default:
3375 gcc_unreachable ();
3376 }
3377
3378 TREE_READONLY (new_tree) |= TREE_READONLY (exp);
3379
3380 if (code == INDIRECT_REF || code == ARRAY_REF || code == ARRAY_RANGE_REF)
3381 TREE_THIS_NOTRAP (new_tree) |= TREE_THIS_NOTRAP (exp);
3382
3383 return new_tree;
3384 }
3385 \f
3386 /* Stabilize a reference so that we can use it any number of times
3387 without causing its operands to be evaluated more than once.
3388 Returns the stabilized reference. This works by means of save_expr,
3389 so see the caveats in the comments about save_expr.
3390
3391 Also allows conversion expressions whose operands are references.
3392 Any other kind of expression is returned unchanged. */
3393
3394 tree
3395 stabilize_reference (tree ref)
3396 {
3397 tree result;
3398 enum tree_code code = TREE_CODE (ref);
3399
3400 switch (code)
3401 {
3402 case VAR_DECL:
3403 case PARM_DECL:
3404 case RESULT_DECL:
3405 /* No action is needed in this case. */
3406 return ref;
3407
3408 CASE_CONVERT:
3409 case FLOAT_EXPR:
3410 case FIX_TRUNC_EXPR:
3411 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
3412 break;
3413
3414 case INDIRECT_REF:
3415 result = build_nt (INDIRECT_REF,
3416 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
3417 break;
3418
3419 case COMPONENT_REF:
3420 result = build_nt (COMPONENT_REF,
3421 stabilize_reference (TREE_OPERAND (ref, 0)),
3422 TREE_OPERAND (ref, 1), NULL_TREE);
3423 break;
3424
3425 case BIT_FIELD_REF:
3426 result = build_nt (BIT_FIELD_REF,
3427 stabilize_reference (TREE_OPERAND (ref, 0)),
3428 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3429 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
3430 break;
3431
3432 case ARRAY_REF:
3433 result = build_nt (ARRAY_REF,
3434 stabilize_reference (TREE_OPERAND (ref, 0)),
3435 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3436 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3437 break;
3438
3439 case ARRAY_RANGE_REF:
3440 result = build_nt (ARRAY_RANGE_REF,
3441 stabilize_reference (TREE_OPERAND (ref, 0)),
3442 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
3443 TREE_OPERAND (ref, 2), TREE_OPERAND (ref, 3));
3444 break;
3445
3446 case COMPOUND_EXPR:
3447 /* We cannot wrap the first expression in a SAVE_EXPR, as then
3448 it wouldn't be ignored. This matters when dealing with
3449 volatiles. */
3450 return stabilize_reference_1 (ref);
3451
3452 /* If arg isn't a kind of lvalue we recognize, make no change.
3453 Caller should recognize the error for an invalid lvalue. */
3454 default:
3455 return ref;
3456
3457 case ERROR_MARK:
3458 return error_mark_node;
3459 }
3460
3461 TREE_TYPE (result) = TREE_TYPE (ref);
3462 TREE_READONLY (result) = TREE_READONLY (ref);
3463 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
3464 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
3465
3466 return result;
3467 }
3468
3469 /* Subroutine of stabilize_reference; this is called for subtrees of
3470 references. Any expression with side-effects must be put in a SAVE_EXPR
3471 to ensure that it is only evaluated once.
3472
3473 We don't put SAVE_EXPR nodes around everything, because assigning very
3474 simple expressions to temporaries causes us to miss good opportunities
3475 for optimizations. Among other things, the opportunity to fold in the
3476 addition of a constant into an addressing mode often gets lost, e.g.
3477 "y[i+1] += x;". In general, we take the approach that we should not make
3478 an assignment unless we are forced into it - i.e., that any non-side effect
3479 operator should be allowed, and that cse should take care of coalescing
3480 multiple utterances of the same expression should that prove fruitful. */
3481
3482 tree
3483 stabilize_reference_1 (tree e)
3484 {
3485 tree result;
3486 enum tree_code code = TREE_CODE (e);
3487
3488 /* We cannot ignore const expressions because it might be a reference
3489 to a const array but whose index contains side-effects. But we can
3490 ignore things that are actual constant or that already have been
3491 handled by this function. */
3492
3493 if (tree_invariant_p (e))
3494 return e;
3495
3496 switch (TREE_CODE_CLASS (code))
3497 {
3498 case tcc_exceptional:
3499 case tcc_type:
3500 case tcc_declaration:
3501 case tcc_comparison:
3502 case tcc_statement:
3503 case tcc_expression:
3504 case tcc_reference:
3505 case tcc_vl_exp:
3506 /* If the expression has side-effects, then encase it in a SAVE_EXPR
3507 so that it will only be evaluated once. */
3508 /* The reference (r) and comparison (<) classes could be handled as
3509 below, but it is generally faster to only evaluate them once. */
3510 if (TREE_SIDE_EFFECTS (e))
3511 return save_expr (e);
3512 return e;
3513
3514 case tcc_constant:
3515 /* Constants need no processing. In fact, we should never reach
3516 here. */
3517 return e;
3518
3519 case tcc_binary:
3520 /* Division is slow and tends to be compiled with jumps,
3521 especially the division by powers of 2 that is often
3522 found inside of an array reference. So do it just once. */
3523 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
3524 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
3525 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
3526 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
3527 return save_expr (e);
3528 /* Recursively stabilize each operand. */
3529 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
3530 stabilize_reference_1 (TREE_OPERAND (e, 1)));
3531 break;
3532
3533 case tcc_unary:
3534 /* Recursively stabilize each operand. */
3535 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
3536 break;
3537
3538 default:
3539 gcc_unreachable ();
3540 }
3541
3542 TREE_TYPE (result) = TREE_TYPE (e);
3543 TREE_READONLY (result) = TREE_READONLY (e);
3544 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
3545 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
3546
3547 return result;
3548 }
3549 \f
3550 /* Low-level constructors for expressions. */
3551
3552 /* A helper function for build1 and constant folders. Set TREE_CONSTANT,
3553 and TREE_SIDE_EFFECTS for an ADDR_EXPR. */
3554
3555 void
3556 recompute_tree_invariant_for_addr_expr (tree t)
3557 {
3558 tree node;
3559 bool tc = true, se = false;
3560
3561 /* We started out assuming this address is both invariant and constant, but
3562 does not have side effects. Now go down any handled components and see if
3563 any of them involve offsets that are either non-constant or non-invariant.
3564 Also check for side-effects.
3565
3566 ??? Note that this code makes no attempt to deal with the case where
3567 taking the address of something causes a copy due to misalignment. */
3568
3569 #define UPDATE_FLAGS(NODE) \
3570 do { tree _node = (NODE); \
3571 if (_node && !TREE_CONSTANT (_node)) tc = false; \
3572 if (_node && TREE_SIDE_EFFECTS (_node)) se = true; } while (0)
3573
3574 for (node = TREE_OPERAND (t, 0); handled_component_p (node);
3575 node = TREE_OPERAND (node, 0))
3576 {
3577 /* If the first operand doesn't have an ARRAY_TYPE, this is a bogus
3578 array reference (probably made temporarily by the G++ front end),
3579 so ignore all the operands. */
3580 if ((TREE_CODE (node) == ARRAY_REF
3581 || TREE_CODE (node) == ARRAY_RANGE_REF)
3582 && TREE_CODE (TREE_TYPE (TREE_OPERAND (node, 0))) == ARRAY_TYPE)
3583 {
3584 UPDATE_FLAGS (TREE_OPERAND (node, 1));
3585 if (TREE_OPERAND (node, 2))
3586 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3587 if (TREE_OPERAND (node, 3))
3588 UPDATE_FLAGS (TREE_OPERAND (node, 3));
3589 }
3590 /* Likewise, just because this is a COMPONENT_REF doesn't mean we have a
3591 FIELD_DECL, apparently. The G++ front end can put something else
3592 there, at least temporarily. */
3593 else if (TREE_CODE (node) == COMPONENT_REF
3594 && TREE_CODE (TREE_OPERAND (node, 1)) == FIELD_DECL)
3595 {
3596 if (TREE_OPERAND (node, 2))
3597 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3598 }
3599 else if (TREE_CODE (node) == BIT_FIELD_REF)
3600 UPDATE_FLAGS (TREE_OPERAND (node, 2));
3601 }
3602
3603 node = lang_hooks.expr_to_decl (node, &tc, &se);
3604
3605 /* Now see what's inside. If it's an INDIRECT_REF, copy our properties from
3606 the address, since &(*a)->b is a form of addition. If it's a constant, the
3607 address is constant too. If it's a decl, its address is constant if the
3608 decl is static. Everything else is not constant and, furthermore,
3609 taking the address of a volatile variable is not volatile. */
3610 if (TREE_CODE (node) == INDIRECT_REF
3611 || TREE_CODE (node) == MEM_REF)
3612 UPDATE_FLAGS (TREE_OPERAND (node, 0));
3613 else if (CONSTANT_CLASS_P (node))
3614 ;
3615 else if (DECL_P (node))
3616 tc &= (staticp (node) != NULL_TREE);
3617 else
3618 {
3619 tc = false;
3620 se |= TREE_SIDE_EFFECTS (node);
3621 }
3622
3623
3624 TREE_CONSTANT (t) = tc;
3625 TREE_SIDE_EFFECTS (t) = se;
3626 #undef UPDATE_FLAGS
3627 }
3628
3629 /* Build an expression of code CODE, data type TYPE, and operands as
3630 specified. Expressions and reference nodes can be created this way.
3631 Constants, decls, types and misc nodes cannot be.
3632
3633 We define 5 non-variadic functions, from 0 to 4 arguments. This is
3634 enough for all extant tree codes. */
3635
3636 tree
3637 build0_stat (enum tree_code code, tree tt MEM_STAT_DECL)
3638 {
3639 tree t;
3640
3641 gcc_assert (TREE_CODE_LENGTH (code) == 0);
3642
3643 t = make_node_stat (code PASS_MEM_STAT);
3644 TREE_TYPE (t) = tt;
3645
3646 return t;
3647 }
3648
3649 tree
3650 build1_stat (enum tree_code code, tree type, tree node MEM_STAT_DECL)
3651 {
3652 int length = sizeof (struct tree_exp);
3653 #ifdef GATHER_STATISTICS
3654 tree_node_kind kind;
3655 #endif
3656 tree t;
3657
3658 #ifdef GATHER_STATISTICS
3659 switch (TREE_CODE_CLASS (code))
3660 {
3661 case tcc_statement: /* an expression with side effects */
3662 kind = s_kind;
3663 break;
3664 case tcc_reference: /* a reference */
3665 kind = r_kind;
3666 break;
3667 default:
3668 kind = e_kind;
3669 break;
3670 }
3671
3672 tree_node_counts[(int) kind]++;
3673 tree_node_sizes[(int) kind] += length;
3674 #endif
3675
3676 gcc_assert (TREE_CODE_LENGTH (code) == 1);
3677
3678 t = ggc_alloc_zone_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
3679
3680 memset (t, 0, sizeof (struct tree_common));
3681
3682 TREE_SET_CODE (t, code);
3683
3684 TREE_TYPE (t) = type;
3685 SET_EXPR_LOCATION (t, UNKNOWN_LOCATION);
3686 TREE_OPERAND (t, 0) = node;
3687 TREE_BLOCK (t) = NULL_TREE;
3688 if (node && !TYPE_P (node))
3689 {
3690 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
3691 TREE_READONLY (t) = TREE_READONLY (node);
3692 }
3693
3694 if (TREE_CODE_CLASS (code) == tcc_statement)
3695 TREE_SIDE_EFFECTS (t) = 1;
3696 else switch (code)
3697 {
3698 case VA_ARG_EXPR:
3699 /* All of these have side-effects, no matter what their
3700 operands are. */
3701 TREE_SIDE_EFFECTS (t) = 1;
3702 TREE_READONLY (t) = 0;
3703 break;
3704
3705 case INDIRECT_REF:
3706 /* Whether a dereference is readonly has nothing to do with whether
3707 its operand is readonly. */
3708 TREE_READONLY (t) = 0;
3709 break;
3710
3711 case ADDR_EXPR:
3712 if (node)
3713 recompute_tree_invariant_for_addr_expr (t);
3714 break;
3715
3716 default:
3717 if ((TREE_CODE_CLASS (code) == tcc_unary || code == VIEW_CONVERT_EXPR)
3718 && node && !TYPE_P (node)
3719 && TREE_CONSTANT (node))
3720 TREE_CONSTANT (t) = 1;
3721 if (TREE_CODE_CLASS (code) == tcc_reference
3722 && node && TREE_THIS_VOLATILE (node))
3723 TREE_THIS_VOLATILE (t) = 1;
3724 break;
3725 }
3726
3727 return t;
3728 }
3729
3730 #define PROCESS_ARG(N) \
3731 do { \
3732 TREE_OPERAND (t, N) = arg##N; \
3733 if (arg##N &&!TYPE_P (arg##N)) \
3734 { \
3735 if (TREE_SIDE_EFFECTS (arg##N)) \
3736 side_effects = 1; \
3737 if (!TREE_READONLY (arg##N) \
3738 && !CONSTANT_CLASS_P (arg##N)) \
3739 (void) (read_only = 0); \
3740 if (!TREE_CONSTANT (arg##N)) \
3741 (void) (constant = 0); \
3742 } \
3743 } while (0)
3744
3745 tree
3746 build2_stat (enum tree_code code, tree tt, tree arg0, tree arg1 MEM_STAT_DECL)
3747 {
3748 bool constant, read_only, side_effects;
3749 tree t;
3750
3751 gcc_assert (TREE_CODE_LENGTH (code) == 2);
3752
3753 if ((code == MINUS_EXPR || code == PLUS_EXPR || code == MULT_EXPR)
3754 && arg0 && arg1 && tt && POINTER_TYPE_P (tt)
3755 /* When sizetype precision doesn't match that of pointers
3756 we need to be able to build explicit extensions or truncations
3757 of the offset argument. */
3758 && TYPE_PRECISION (sizetype) == TYPE_PRECISION (tt))
3759 gcc_assert (TREE_CODE (arg0) == INTEGER_CST
3760 && TREE_CODE (arg1) == INTEGER_CST);
3761
3762 if (code == POINTER_PLUS_EXPR && arg0 && arg1 && tt)
3763 gcc_assert (POINTER_TYPE_P (tt) && POINTER_TYPE_P (TREE_TYPE (arg0))
3764 && INTEGRAL_TYPE_P (TREE_TYPE (arg1))
3765 && useless_type_conversion_p (sizetype, TREE_TYPE (arg1)));
3766
3767 t = make_node_stat (code PASS_MEM_STAT);
3768 TREE_TYPE (t) = tt;
3769
3770 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
3771 result based on those same flags for the arguments. But if the
3772 arguments aren't really even `tree' expressions, we shouldn't be trying
3773 to do this. */
3774
3775 /* Expressions without side effects may be constant if their
3776 arguments are as well. */
3777 constant = (TREE_CODE_CLASS (code) == tcc_comparison
3778 || TREE_CODE_CLASS (code) == tcc_binary);
3779 read_only = 1;
3780 side_effects = TREE_SIDE_EFFECTS (t);
3781
3782 PROCESS_ARG(0);
3783 PROCESS_ARG(1);
3784
3785 TREE_READONLY (t) = read_only;
3786 TREE_CONSTANT (t) = constant;
3787 TREE_SIDE_EFFECTS (t) = side_effects;
3788 TREE_THIS_VOLATILE (t)
3789 = (TREE_CODE_CLASS (code) == tcc_reference
3790 && arg0 && TREE_THIS_VOLATILE (arg0));
3791
3792 return t;
3793 }
3794
3795
3796 tree
3797 build3_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3798 tree arg2 MEM_STAT_DECL)
3799 {
3800 bool constant, read_only, side_effects;
3801 tree t;
3802
3803 gcc_assert (TREE_CODE_LENGTH (code) == 3);
3804 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3805
3806 t = make_node_stat (code PASS_MEM_STAT);
3807 TREE_TYPE (t) = tt;
3808
3809 read_only = 1;
3810
3811 /* As a special exception, if COND_EXPR has NULL branches, we
3812 assume that it is a gimple statement and always consider
3813 it to have side effects. */
3814 if (code == COND_EXPR
3815 && tt == void_type_node
3816 && arg1 == NULL_TREE
3817 && arg2 == NULL_TREE)
3818 side_effects = true;
3819 else
3820 side_effects = TREE_SIDE_EFFECTS (t);
3821
3822 PROCESS_ARG(0);
3823 PROCESS_ARG(1);
3824 PROCESS_ARG(2);
3825
3826 if (code == COND_EXPR)
3827 TREE_READONLY (t) = read_only;
3828
3829 TREE_SIDE_EFFECTS (t) = side_effects;
3830 TREE_THIS_VOLATILE (t)
3831 = (TREE_CODE_CLASS (code) == tcc_reference
3832 && arg0 && TREE_THIS_VOLATILE (arg0));
3833
3834 return t;
3835 }
3836
3837 tree
3838 build4_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3839 tree arg2, tree arg3 MEM_STAT_DECL)
3840 {
3841 bool constant, read_only, side_effects;
3842 tree t;
3843
3844 gcc_assert (TREE_CODE_LENGTH (code) == 4);
3845
3846 t = make_node_stat (code PASS_MEM_STAT);
3847 TREE_TYPE (t) = tt;
3848
3849 side_effects = TREE_SIDE_EFFECTS (t);
3850
3851 PROCESS_ARG(0);
3852 PROCESS_ARG(1);
3853 PROCESS_ARG(2);
3854 PROCESS_ARG(3);
3855
3856 TREE_SIDE_EFFECTS (t) = side_effects;
3857 TREE_THIS_VOLATILE (t)
3858 = (TREE_CODE_CLASS (code) == tcc_reference
3859 && arg0 && TREE_THIS_VOLATILE (arg0));
3860
3861 return t;
3862 }
3863
3864 tree
3865 build5_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3866 tree arg2, tree arg3, tree arg4 MEM_STAT_DECL)
3867 {
3868 bool constant, read_only, side_effects;
3869 tree t;
3870
3871 gcc_assert (TREE_CODE_LENGTH (code) == 5);
3872
3873 t = make_node_stat (code PASS_MEM_STAT);
3874 TREE_TYPE (t) = tt;
3875
3876 side_effects = TREE_SIDE_EFFECTS (t);
3877
3878 PROCESS_ARG(0);
3879 PROCESS_ARG(1);
3880 PROCESS_ARG(2);
3881 PROCESS_ARG(3);
3882 PROCESS_ARG(4);
3883
3884 TREE_SIDE_EFFECTS (t) = side_effects;
3885 TREE_THIS_VOLATILE (t)
3886 = (TREE_CODE_CLASS (code) == tcc_reference
3887 && arg0 && TREE_THIS_VOLATILE (arg0));
3888
3889 return t;
3890 }
3891
3892 tree
3893 build6_stat (enum tree_code code, tree tt, tree arg0, tree arg1,
3894 tree arg2, tree arg3, tree arg4, tree arg5 MEM_STAT_DECL)
3895 {
3896 bool constant, read_only, side_effects;
3897 tree t;
3898
3899 gcc_assert (code == TARGET_MEM_REF);
3900
3901 t = make_node_stat (code PASS_MEM_STAT);
3902 TREE_TYPE (t) = tt;
3903
3904 side_effects = TREE_SIDE_EFFECTS (t);
3905
3906 PROCESS_ARG(0);
3907 PROCESS_ARG(1);
3908 PROCESS_ARG(2);
3909 PROCESS_ARG(3);
3910 PROCESS_ARG(4);
3911 if (code == TARGET_MEM_REF)
3912 side_effects = 0;
3913 PROCESS_ARG(5);
3914
3915 TREE_SIDE_EFFECTS (t) = side_effects;
3916 TREE_THIS_VOLATILE (t)
3917 = (code == TARGET_MEM_REF
3918 && arg5 && TREE_THIS_VOLATILE (arg5));
3919
3920 return t;
3921 }
3922
3923 /* Build a simple MEM_REF tree with the sematics of a plain INDIRECT_REF
3924 on the pointer PTR. */
3925
3926 tree
3927 build_simple_mem_ref_loc (location_t loc, tree ptr)
3928 {
3929 HOST_WIDE_INT offset = 0;
3930 tree ptype = TREE_TYPE (ptr);
3931 tree tem;
3932 /* For convenience allow addresses that collapse to a simple base
3933 and offset. */
3934 if (TREE_CODE (ptr) == ADDR_EXPR
3935 && (handled_component_p (TREE_OPERAND (ptr, 0))
3936 || TREE_CODE (TREE_OPERAND (ptr, 0)) == MEM_REF))
3937 {
3938 ptr = get_addr_base_and_unit_offset (TREE_OPERAND (ptr, 0), &offset);
3939 gcc_assert (ptr);
3940 ptr = build_fold_addr_expr (ptr);
3941 gcc_assert (is_gimple_reg (ptr) || is_gimple_min_invariant (ptr));
3942 }
3943 tem = build2 (MEM_REF, TREE_TYPE (ptype),
3944 ptr, build_int_cst (ptype, offset));
3945 SET_EXPR_LOCATION (tem, loc);
3946 return tem;
3947 }
3948
3949 /* Return the constant offset of a MEM_REF or TARGET_MEM_REF tree T. */
3950
3951 double_int
3952 mem_ref_offset (const_tree t)
3953 {
3954 tree toff = TREE_OPERAND (t, 1);
3955 return double_int_sext (tree_to_double_int (toff),
3956 TYPE_PRECISION (TREE_TYPE (toff)));
3957 }
3958
3959 /* Return the pointer-type relevant for TBAA purposes from the
3960 gimple memory reference tree T. This is the type to be used for
3961 the offset operand of MEM_REF or TARGET_MEM_REF replacements of T. */
3962
3963 tree
3964 reference_alias_ptr_type (const_tree t)
3965 {
3966 const_tree base = t;
3967 while (handled_component_p (base))
3968 base = TREE_OPERAND (base, 0);
3969 if (TREE_CODE (base) == MEM_REF)
3970 return TREE_TYPE (TREE_OPERAND (base, 1));
3971 else if (TREE_CODE (base) == TARGET_MEM_REF)
3972 return TREE_TYPE (TMR_OFFSET (base));
3973 else
3974 return build_pointer_type (TYPE_MAIN_VARIANT (TREE_TYPE (base)));
3975 }
3976
3977 /* Similar except don't specify the TREE_TYPE
3978 and leave the TREE_SIDE_EFFECTS as 0.
3979 It is permissible for arguments to be null,
3980 or even garbage if their values do not matter. */
3981
3982 tree
3983 build_nt (enum tree_code code, ...)
3984 {
3985 tree t;
3986 int length;
3987 int i;
3988 va_list p;
3989
3990 gcc_assert (TREE_CODE_CLASS (code) != tcc_vl_exp);
3991
3992 va_start (p, code);
3993
3994 t = make_node (code);
3995 length = TREE_CODE_LENGTH (code);
3996
3997 for (i = 0; i < length; i++)
3998 TREE_OPERAND (t, i) = va_arg (p, tree);
3999
4000 va_end (p);
4001 return t;
4002 }
4003
4004 /* Similar to build_nt, but for creating a CALL_EXPR object with a
4005 tree VEC. */
4006
4007 tree
4008 build_nt_call_vec (tree fn, VEC(tree,gc) *args)
4009 {
4010 tree ret, t;
4011 unsigned int ix;
4012
4013 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
4014 CALL_EXPR_FN (ret) = fn;
4015 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
4016 FOR_EACH_VEC_ELT (tree, args, ix, t)
4017 CALL_EXPR_ARG (ret, ix) = t;
4018 return ret;
4019 }
4020 \f
4021 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
4022 We do NOT enter this node in any sort of symbol table.
4023
4024 LOC is the location of the decl.
4025
4026 layout_decl is used to set up the decl's storage layout.
4027 Other slots are initialized to 0 or null pointers. */
4028
4029 tree
4030 build_decl_stat (location_t loc, enum tree_code code, tree name,
4031 tree type MEM_STAT_DECL)
4032 {
4033 tree t;
4034
4035 t = make_node_stat (code PASS_MEM_STAT);
4036 DECL_SOURCE_LOCATION (t) = loc;
4037
4038 /* if (type == error_mark_node)
4039 type = integer_type_node; */
4040 /* That is not done, deliberately, so that having error_mark_node
4041 as the type can suppress useless errors in the use of this variable. */
4042
4043 DECL_NAME (t) = name;
4044 TREE_TYPE (t) = type;
4045
4046 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
4047 layout_decl (t, 0);
4048
4049 return t;
4050 }
4051
4052 /* Builds and returns function declaration with NAME and TYPE. */
4053
4054 tree
4055 build_fn_decl (const char *name, tree type)
4056 {
4057 tree id = get_identifier (name);
4058 tree decl = build_decl (input_location, FUNCTION_DECL, id, type);
4059
4060 DECL_EXTERNAL (decl) = 1;
4061 TREE_PUBLIC (decl) = 1;
4062 DECL_ARTIFICIAL (decl) = 1;
4063 TREE_NOTHROW (decl) = 1;
4064
4065 return decl;
4066 }
4067
4068 VEC(tree,gc) *all_translation_units;
4069
4070 /* Builds a new translation-unit decl with name NAME, queues it in the
4071 global list of translation-unit decls and returns it. */
4072
4073 tree
4074 build_translation_unit_decl (tree name)
4075 {
4076 tree tu = build_decl (UNKNOWN_LOCATION, TRANSLATION_UNIT_DECL,
4077 name, NULL_TREE);
4078 TRANSLATION_UNIT_LANGUAGE (tu) = lang_hooks.name;
4079 VEC_safe_push (tree, gc, all_translation_units, tu);
4080 return tu;
4081 }
4082
4083 \f
4084 /* BLOCK nodes are used to represent the structure of binding contours
4085 and declarations, once those contours have been exited and their contents
4086 compiled. This information is used for outputting debugging info. */
4087
4088 tree
4089 build_block (tree vars, tree subblocks, tree supercontext, tree chain)
4090 {
4091 tree block = make_node (BLOCK);
4092
4093 BLOCK_VARS (block) = vars;
4094 BLOCK_SUBBLOCKS (block) = subblocks;
4095 BLOCK_SUPERCONTEXT (block) = supercontext;
4096 BLOCK_CHAIN (block) = chain;
4097 return block;
4098 }
4099
4100 \f
4101 /* Like SET_EXPR_LOCATION, but make sure the tree can have a location.
4102
4103 LOC is the location to use in tree T. */
4104
4105 void
4106 protected_set_expr_location (tree t, location_t loc)
4107 {
4108 if (t && CAN_HAVE_LOCATION_P (t))
4109 SET_EXPR_LOCATION (t, loc);
4110 }
4111 \f
4112 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
4113 is ATTRIBUTE. */
4114
4115 tree
4116 build_decl_attribute_variant (tree ddecl, tree attribute)
4117 {
4118 DECL_ATTRIBUTES (ddecl) = attribute;
4119 return ddecl;
4120 }
4121
4122 /* Borrowed from hashtab.c iterative_hash implementation. */
4123 #define mix(a,b,c) \
4124 { \
4125 a -= b; a -= c; a ^= (c>>13); \
4126 b -= c; b -= a; b ^= (a<< 8); \
4127 c -= a; c -= b; c ^= ((b&0xffffffff)>>13); \
4128 a -= b; a -= c; a ^= ((c&0xffffffff)>>12); \
4129 b -= c; b -= a; b = (b ^ (a<<16)) & 0xffffffff; \
4130 c -= a; c -= b; c = (c ^ (b>> 5)) & 0xffffffff; \
4131 a -= b; a -= c; a = (a ^ (c>> 3)) & 0xffffffff; \
4132 b -= c; b -= a; b = (b ^ (a<<10)) & 0xffffffff; \
4133 c -= a; c -= b; c = (c ^ (b>>15)) & 0xffffffff; \
4134 }
4135
4136
4137 /* Produce good hash value combining VAL and VAL2. */
4138 hashval_t
4139 iterative_hash_hashval_t (hashval_t val, hashval_t val2)
4140 {
4141 /* the golden ratio; an arbitrary value. */
4142 hashval_t a = 0x9e3779b9;
4143
4144 mix (a, val, val2);
4145 return val2;
4146 }
4147
4148 /* Produce good hash value combining VAL and VAL2. */
4149 hashval_t
4150 iterative_hash_host_wide_int (HOST_WIDE_INT val, hashval_t val2)
4151 {
4152 if (sizeof (HOST_WIDE_INT) == sizeof (hashval_t))
4153 return iterative_hash_hashval_t (val, val2);
4154 else
4155 {
4156 hashval_t a = (hashval_t) val;
4157 /* Avoid warnings about shifting of more than the width of the type on
4158 hosts that won't execute this path. */
4159 int zero = 0;
4160 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 8 + zero));
4161 mix (a, b, val2);
4162 if (sizeof (HOST_WIDE_INT) > 2 * sizeof (hashval_t))
4163 {
4164 hashval_t a = (hashval_t) (val >> (sizeof (hashval_t) * 16 + zero));
4165 hashval_t b = (hashval_t) (val >> (sizeof (hashval_t) * 24 + zero));
4166 mix (a, b, val2);
4167 }
4168 return val2;
4169 }
4170 }
4171
4172 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4173 is ATTRIBUTE and its qualifiers are QUALS.
4174
4175 Record such modified types already made so we don't make duplicates. */
4176
4177 tree
4178 build_type_attribute_qual_variant (tree ttype, tree attribute, int quals)
4179 {
4180 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
4181 {
4182 hashval_t hashcode = 0;
4183 tree ntype;
4184 enum tree_code code = TREE_CODE (ttype);
4185
4186 /* Building a distinct copy of a tagged type is inappropriate; it
4187 causes breakage in code that expects there to be a one-to-one
4188 relationship between a struct and its fields.
4189 build_duplicate_type is another solution (as used in
4190 handle_transparent_union_attribute), but that doesn't play well
4191 with the stronger C++ type identity model. */
4192 if (TREE_CODE (ttype) == RECORD_TYPE
4193 || TREE_CODE (ttype) == UNION_TYPE
4194 || TREE_CODE (ttype) == QUAL_UNION_TYPE
4195 || TREE_CODE (ttype) == ENUMERAL_TYPE)
4196 {
4197 warning (OPT_Wattributes,
4198 "ignoring attributes applied to %qT after definition",
4199 TYPE_MAIN_VARIANT (ttype));
4200 return build_qualified_type (ttype, quals);
4201 }
4202
4203 ttype = build_qualified_type (ttype, TYPE_UNQUALIFIED);
4204 ntype = build_distinct_type_copy (ttype);
4205
4206 TYPE_ATTRIBUTES (ntype) = attribute;
4207
4208 hashcode = iterative_hash_object (code, hashcode);
4209 if (TREE_TYPE (ntype))
4210 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (ntype)),
4211 hashcode);
4212 hashcode = attribute_hash_list (attribute, hashcode);
4213
4214 switch (TREE_CODE (ntype))
4215 {
4216 case FUNCTION_TYPE:
4217 hashcode = type_hash_list (TYPE_ARG_TYPES (ntype), hashcode);
4218 break;
4219 case ARRAY_TYPE:
4220 if (TYPE_DOMAIN (ntype))
4221 hashcode = iterative_hash_object (TYPE_HASH (TYPE_DOMAIN (ntype)),
4222 hashcode);
4223 break;
4224 case INTEGER_TYPE:
4225 hashcode = iterative_hash_object
4226 (TREE_INT_CST_LOW (TYPE_MAX_VALUE (ntype)), hashcode);
4227 hashcode = iterative_hash_object
4228 (TREE_INT_CST_HIGH (TYPE_MAX_VALUE (ntype)), hashcode);
4229 break;
4230 case REAL_TYPE:
4231 case FIXED_POINT_TYPE:
4232 {
4233 unsigned int precision = TYPE_PRECISION (ntype);
4234 hashcode = iterative_hash_object (precision, hashcode);
4235 }
4236 break;
4237 default:
4238 break;
4239 }
4240
4241 ntype = type_hash_canon (hashcode, ntype);
4242
4243 /* If the target-dependent attributes make NTYPE different from
4244 its canonical type, we will need to use structural equality
4245 checks for this type. */
4246 if (TYPE_STRUCTURAL_EQUALITY_P (ttype)
4247 || !targetm.comp_type_attributes (ntype, ttype))
4248 SET_TYPE_STRUCTURAL_EQUALITY (ntype);
4249 else if (TYPE_CANONICAL (ntype) == ntype)
4250 TYPE_CANONICAL (ntype) = TYPE_CANONICAL (ttype);
4251
4252 ttype = build_qualified_type (ntype, quals);
4253 }
4254 else if (TYPE_QUALS (ttype) != quals)
4255 ttype = build_qualified_type (ttype, quals);
4256
4257 return ttype;
4258 }
4259
4260
4261 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
4262 is ATTRIBUTE.
4263
4264 Record such modified types already made so we don't make duplicates. */
4265
4266 tree
4267 build_type_attribute_variant (tree ttype, tree attribute)
4268 {
4269 return build_type_attribute_qual_variant (ttype, attribute,
4270 TYPE_QUALS (ttype));
4271 }
4272
4273
4274 /* Reset the expression *EXPR_P, a size or position.
4275
4276 ??? We could reset all non-constant sizes or positions. But it's cheap
4277 enough to not do so and refrain from adding workarounds to dwarf2out.c.
4278
4279 We need to reset self-referential sizes or positions because they cannot
4280 be gimplified and thus can contain a CALL_EXPR after the gimplification
4281 is finished, which will run afoul of LTO streaming. And they need to be
4282 reset to something essentially dummy but not constant, so as to preserve
4283 the properties of the object they are attached to. */
4284
4285 static inline void
4286 free_lang_data_in_one_sizepos (tree *expr_p)
4287 {
4288 tree expr = *expr_p;
4289 if (CONTAINS_PLACEHOLDER_P (expr))
4290 *expr_p = build0 (PLACEHOLDER_EXPR, TREE_TYPE (expr));
4291 }
4292
4293
4294 /* Reset all the fields in a binfo node BINFO. We only keep
4295 BINFO_VIRTUALS, which is used by gimple_fold_obj_type_ref. */
4296
4297 static void
4298 free_lang_data_in_binfo (tree binfo)
4299 {
4300 unsigned i;
4301 tree t;
4302
4303 gcc_assert (TREE_CODE (binfo) == TREE_BINFO);
4304
4305 BINFO_VTABLE (binfo) = NULL_TREE;
4306 BINFO_BASE_ACCESSES (binfo) = NULL;
4307 BINFO_INHERITANCE_CHAIN (binfo) = NULL_TREE;
4308 BINFO_SUBVTT_INDEX (binfo) = NULL_TREE;
4309
4310 FOR_EACH_VEC_ELT (tree, BINFO_BASE_BINFOS (binfo), i, t)
4311 free_lang_data_in_binfo (t);
4312 }
4313
4314
4315 /* Reset all language specific information still present in TYPE. */
4316
4317 static void
4318 free_lang_data_in_type (tree type)
4319 {
4320 gcc_assert (TYPE_P (type));
4321
4322 /* Give the FE a chance to remove its own data first. */
4323 lang_hooks.free_lang_data (type);
4324
4325 TREE_LANG_FLAG_0 (type) = 0;
4326 TREE_LANG_FLAG_1 (type) = 0;
4327 TREE_LANG_FLAG_2 (type) = 0;
4328 TREE_LANG_FLAG_3 (type) = 0;
4329 TREE_LANG_FLAG_4 (type) = 0;
4330 TREE_LANG_FLAG_5 (type) = 0;
4331 TREE_LANG_FLAG_6 (type) = 0;
4332
4333 if (TREE_CODE (type) == FUNCTION_TYPE)
4334 {
4335 /* Remove the const and volatile qualifiers from arguments. The
4336 C++ front end removes them, but the C front end does not,
4337 leading to false ODR violation errors when merging two
4338 instances of the same function signature compiled by
4339 different front ends. */
4340 tree p;
4341
4342 for (p = TYPE_ARG_TYPES (type); p; p = TREE_CHAIN (p))
4343 {
4344 tree arg_type = TREE_VALUE (p);
4345
4346 if (TYPE_READONLY (arg_type) || TYPE_VOLATILE (arg_type))
4347 {
4348 int quals = TYPE_QUALS (arg_type)
4349 & ~TYPE_QUAL_CONST
4350 & ~TYPE_QUAL_VOLATILE;
4351 TREE_VALUE (p) = build_qualified_type (arg_type, quals);
4352 free_lang_data_in_type (TREE_VALUE (p));
4353 }
4354 }
4355 }
4356
4357 /* Remove members that are not actually FIELD_DECLs from the field
4358 list of an aggregate. These occur in C++. */
4359 if (RECORD_OR_UNION_TYPE_P (type))
4360 {
4361 tree prev, member;
4362
4363 /* Note that TYPE_FIELDS can be shared across distinct
4364 TREE_TYPEs. Therefore, if the first field of TYPE_FIELDS is
4365 to be removed, we cannot set its TREE_CHAIN to NULL.
4366 Otherwise, we would not be able to find all the other fields
4367 in the other instances of this TREE_TYPE.
4368
4369 This was causing an ICE in testsuite/g++.dg/lto/20080915.C. */
4370 prev = NULL_TREE;
4371 member = TYPE_FIELDS (type);
4372 while (member)
4373 {
4374 if (TREE_CODE (member) == FIELD_DECL)
4375 {
4376 if (prev)
4377 TREE_CHAIN (prev) = member;
4378 else
4379 TYPE_FIELDS (type) = member;
4380 prev = member;
4381 }
4382
4383 member = TREE_CHAIN (member);
4384 }
4385
4386 if (prev)
4387 TREE_CHAIN (prev) = NULL_TREE;
4388 else
4389 TYPE_FIELDS (type) = NULL_TREE;
4390
4391 TYPE_METHODS (type) = NULL_TREE;
4392 if (TYPE_BINFO (type))
4393 free_lang_data_in_binfo (TYPE_BINFO (type));
4394 }
4395 else
4396 {
4397 /* For non-aggregate types, clear out the language slot (which
4398 overloads TYPE_BINFO). */
4399 TYPE_LANG_SLOT_1 (type) = NULL_TREE;
4400
4401 if (INTEGRAL_TYPE_P (type)
4402 || SCALAR_FLOAT_TYPE_P (type)
4403 || FIXED_POINT_TYPE_P (type))
4404 {
4405 free_lang_data_in_one_sizepos (&TYPE_MIN_VALUE (type));
4406 free_lang_data_in_one_sizepos (&TYPE_MAX_VALUE (type));
4407 }
4408 }
4409
4410 free_lang_data_in_one_sizepos (&TYPE_SIZE (type));
4411 free_lang_data_in_one_sizepos (&TYPE_SIZE_UNIT (type));
4412
4413 if (debug_info_level < DINFO_LEVEL_TERSE
4414 || (TYPE_CONTEXT (type)
4415 && TREE_CODE (TYPE_CONTEXT (type)) != FUNCTION_DECL
4416 && TREE_CODE (TYPE_CONTEXT (type)) != NAMESPACE_DECL))
4417 TYPE_CONTEXT (type) = NULL_TREE;
4418
4419 if (debug_info_level < DINFO_LEVEL_TERSE)
4420 TYPE_STUB_DECL (type) = NULL_TREE;
4421 }
4422
4423
4424 /* Return true if DECL may need an assembler name to be set. */
4425
4426 static inline bool
4427 need_assembler_name_p (tree decl)
4428 {
4429 /* Only FUNCTION_DECLs and VAR_DECLs are considered. */
4430 if (TREE_CODE (decl) != FUNCTION_DECL
4431 && TREE_CODE (decl) != VAR_DECL)
4432 return false;
4433
4434 /* If DECL already has its assembler name set, it does not need a
4435 new one. */
4436 if (!HAS_DECL_ASSEMBLER_NAME_P (decl)
4437 || DECL_ASSEMBLER_NAME_SET_P (decl))
4438 return false;
4439
4440 /* Abstract decls do not need an assembler name. */
4441 if (DECL_ABSTRACT (decl))
4442 return false;
4443
4444 /* For VAR_DECLs, only static, public and external symbols need an
4445 assembler name. */
4446 if (TREE_CODE (decl) == VAR_DECL
4447 && !TREE_STATIC (decl)
4448 && !TREE_PUBLIC (decl)
4449 && !DECL_EXTERNAL (decl))
4450 return false;
4451
4452 if (TREE_CODE (decl) == FUNCTION_DECL)
4453 {
4454 /* Do not set assembler name on builtins. Allow RTL expansion to
4455 decide whether to expand inline or via a regular call. */
4456 if (DECL_BUILT_IN (decl)
4457 && DECL_BUILT_IN_CLASS (decl) != BUILT_IN_FRONTEND)
4458 return false;
4459
4460 /* Functions represented in the callgraph need an assembler name. */
4461 if (cgraph_get_node (decl) != NULL)
4462 return true;
4463
4464 /* Unused and not public functions don't need an assembler name. */
4465 if (!TREE_USED (decl) && !TREE_PUBLIC (decl))
4466 return false;
4467 }
4468
4469 return true;
4470 }
4471
4472
4473 /* Reset all language specific information still present in symbol
4474 DECL. */
4475
4476 static void
4477 free_lang_data_in_decl (tree decl)
4478 {
4479 gcc_assert (DECL_P (decl));
4480
4481 /* Give the FE a chance to remove its own data first. */
4482 lang_hooks.free_lang_data (decl);
4483
4484 TREE_LANG_FLAG_0 (decl) = 0;
4485 TREE_LANG_FLAG_1 (decl) = 0;
4486 TREE_LANG_FLAG_2 (decl) = 0;
4487 TREE_LANG_FLAG_3 (decl) = 0;
4488 TREE_LANG_FLAG_4 (decl) = 0;
4489 TREE_LANG_FLAG_5 (decl) = 0;
4490 TREE_LANG_FLAG_6 (decl) = 0;
4491
4492 /* Identifiers need not have a type. */
4493 if (DECL_NAME (decl))
4494 TREE_TYPE (DECL_NAME (decl)) = NULL_TREE;
4495
4496 free_lang_data_in_one_sizepos (&DECL_SIZE (decl));
4497 free_lang_data_in_one_sizepos (&DECL_SIZE_UNIT (decl));
4498 if (TREE_CODE (decl) == FIELD_DECL)
4499 free_lang_data_in_one_sizepos (&DECL_FIELD_OFFSET (decl));
4500
4501 /* DECL_FCONTEXT is only used for debug info generation. */
4502 if (TREE_CODE (decl) == FIELD_DECL
4503 && debug_info_level < DINFO_LEVEL_TERSE)
4504 DECL_FCONTEXT (decl) = NULL_TREE;
4505
4506 if (TREE_CODE (decl) == FUNCTION_DECL)
4507 {
4508 if (gimple_has_body_p (decl))
4509 {
4510 tree t;
4511
4512 /* If DECL has a gimple body, then the context for its
4513 arguments must be DECL. Otherwise, it doesn't really
4514 matter, as we will not be emitting any code for DECL. In
4515 general, there may be other instances of DECL created by
4516 the front end and since PARM_DECLs are generally shared,
4517 their DECL_CONTEXT changes as the replicas of DECL are
4518 created. The only time where DECL_CONTEXT is important
4519 is for the FUNCTION_DECLs that have a gimple body (since
4520 the PARM_DECL will be used in the function's body). */
4521 for (t = DECL_ARGUMENTS (decl); t; t = TREE_CHAIN (t))
4522 DECL_CONTEXT (t) = decl;
4523 }
4524
4525 /* DECL_SAVED_TREE holds the GENERIC representation for DECL.
4526 At this point, it is not needed anymore. */
4527 DECL_SAVED_TREE (decl) = NULL_TREE;
4528
4529 /* Clear the abstract origin if it refers to a method. Otherwise
4530 dwarf2out.c will ICE as we clear TYPE_METHODS and thus the
4531 origin will not be output correctly. */
4532 if (DECL_ABSTRACT_ORIGIN (decl)
4533 && DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))
4534 && RECORD_OR_UNION_TYPE_P
4535 (DECL_CONTEXT (DECL_ABSTRACT_ORIGIN (decl))))
4536 DECL_ABSTRACT_ORIGIN (decl) = NULL_TREE;
4537 }
4538 else if (TREE_CODE (decl) == VAR_DECL)
4539 {
4540 if ((DECL_EXTERNAL (decl)
4541 && (!TREE_STATIC (decl) || !TREE_READONLY (decl)))
4542 || (decl_function_context (decl) && !TREE_STATIC (decl)))
4543 DECL_INITIAL (decl) = NULL_TREE;
4544 }
4545 else if (TREE_CODE (decl) == TYPE_DECL)
4546 DECL_INITIAL (decl) = NULL_TREE;
4547 }
4548
4549
4550 /* Data used when collecting DECLs and TYPEs for language data removal. */
4551
4552 struct free_lang_data_d
4553 {
4554 /* Worklist to avoid excessive recursion. */
4555 VEC(tree,heap) *worklist;
4556
4557 /* Set of traversed objects. Used to avoid duplicate visits. */
4558 struct pointer_set_t *pset;
4559
4560 /* Array of symbols to process with free_lang_data_in_decl. */
4561 VEC(tree,heap) *decls;
4562
4563 /* Array of types to process with free_lang_data_in_type. */
4564 VEC(tree,heap) *types;
4565 };
4566
4567
4568 /* Save all language fields needed to generate proper debug information
4569 for DECL. This saves most fields cleared out by free_lang_data_in_decl. */
4570
4571 static void
4572 save_debug_info_for_decl (tree t)
4573 {
4574 /*struct saved_debug_info_d *sdi;*/
4575
4576 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && DECL_P (t));
4577
4578 /* FIXME. Partial implementation for saving debug info removed. */
4579 }
4580
4581
4582 /* Save all language fields needed to generate proper debug information
4583 for TYPE. This saves most fields cleared out by free_lang_data_in_type. */
4584
4585 static void
4586 save_debug_info_for_type (tree t)
4587 {
4588 /*struct saved_debug_info_d *sdi;*/
4589
4590 gcc_assert (debug_info_level > DINFO_LEVEL_TERSE && t && TYPE_P (t));
4591
4592 /* FIXME. Partial implementation for saving debug info removed. */
4593 }
4594
4595
4596 /* Add type or decl T to one of the list of tree nodes that need their
4597 language data removed. The lists are held inside FLD. */
4598
4599 static void
4600 add_tree_to_fld_list (tree t, struct free_lang_data_d *fld)
4601 {
4602 if (DECL_P (t))
4603 {
4604 VEC_safe_push (tree, heap, fld->decls, t);
4605 if (debug_info_level > DINFO_LEVEL_TERSE)
4606 save_debug_info_for_decl (t);
4607 }
4608 else if (TYPE_P (t))
4609 {
4610 VEC_safe_push (tree, heap, fld->types, t);
4611 if (debug_info_level > DINFO_LEVEL_TERSE)
4612 save_debug_info_for_type (t);
4613 }
4614 else
4615 gcc_unreachable ();
4616 }
4617
4618 /* Push tree node T into FLD->WORKLIST. */
4619
4620 static inline void
4621 fld_worklist_push (tree t, struct free_lang_data_d *fld)
4622 {
4623 if (t && !is_lang_specific (t) && !pointer_set_contains (fld->pset, t))
4624 VEC_safe_push (tree, heap, fld->worklist, (t));
4625 }
4626
4627
4628 /* Operand callback helper for free_lang_data_in_node. *TP is the
4629 subtree operand being considered. */
4630
4631 static tree
4632 find_decls_types_r (tree *tp, int *ws, void *data)
4633 {
4634 tree t = *tp;
4635 struct free_lang_data_d *fld = (struct free_lang_data_d *) data;
4636
4637 if (TREE_CODE (t) == TREE_LIST)
4638 return NULL_TREE;
4639
4640 /* Language specific nodes will be removed, so there is no need
4641 to gather anything under them. */
4642 if (is_lang_specific (t))
4643 {
4644 *ws = 0;
4645 return NULL_TREE;
4646 }
4647
4648 if (DECL_P (t))
4649 {
4650 /* Note that walk_tree does not traverse every possible field in
4651 decls, so we have to do our own traversals here. */
4652 add_tree_to_fld_list (t, fld);
4653
4654 fld_worklist_push (DECL_NAME (t), fld);
4655 fld_worklist_push (DECL_CONTEXT (t), fld);
4656 fld_worklist_push (DECL_SIZE (t), fld);
4657 fld_worklist_push (DECL_SIZE_UNIT (t), fld);
4658
4659 /* We are going to remove everything under DECL_INITIAL for
4660 TYPE_DECLs. No point walking them. */
4661 if (TREE_CODE (t) != TYPE_DECL)
4662 fld_worklist_push (DECL_INITIAL (t), fld);
4663
4664 fld_worklist_push (DECL_ATTRIBUTES (t), fld);
4665 fld_worklist_push (DECL_ABSTRACT_ORIGIN (t), fld);
4666
4667 if (TREE_CODE (t) == FUNCTION_DECL)
4668 {
4669 fld_worklist_push (DECL_ARGUMENTS (t), fld);
4670 fld_worklist_push (DECL_RESULT (t), fld);
4671 }
4672 else if (TREE_CODE (t) == TYPE_DECL)
4673 {
4674 fld_worklist_push (DECL_ARGUMENT_FLD (t), fld);
4675 fld_worklist_push (DECL_VINDEX (t), fld);
4676 }
4677 else if (TREE_CODE (t) == FIELD_DECL)
4678 {
4679 fld_worklist_push (DECL_FIELD_OFFSET (t), fld);
4680 fld_worklist_push (DECL_BIT_FIELD_TYPE (t), fld);
4681 fld_worklist_push (DECL_QUALIFIER (t), fld);
4682 fld_worklist_push (DECL_FIELD_BIT_OFFSET (t), fld);
4683 fld_worklist_push (DECL_FCONTEXT (t), fld);
4684 }
4685 else if (TREE_CODE (t) == VAR_DECL)
4686 {
4687 fld_worklist_push (DECL_SECTION_NAME (t), fld);
4688 fld_worklist_push (DECL_COMDAT_GROUP (t), fld);
4689 }
4690
4691 if ((TREE_CODE (t) == VAR_DECL || TREE_CODE (t) == PARM_DECL)
4692 && DECL_HAS_VALUE_EXPR_P (t))
4693 fld_worklist_push (DECL_VALUE_EXPR (t), fld);
4694
4695 if (TREE_CODE (t) != FIELD_DECL
4696 && TREE_CODE (t) != TYPE_DECL)
4697 fld_worklist_push (TREE_CHAIN (t), fld);
4698 *ws = 0;
4699 }
4700 else if (TYPE_P (t))
4701 {
4702 /* Note that walk_tree does not traverse every possible field in
4703 types, so we have to do our own traversals here. */
4704 add_tree_to_fld_list (t, fld);
4705
4706 if (!RECORD_OR_UNION_TYPE_P (t))
4707 fld_worklist_push (TYPE_CACHED_VALUES (t), fld);
4708 fld_worklist_push (TYPE_SIZE (t), fld);
4709 fld_worklist_push (TYPE_SIZE_UNIT (t), fld);
4710 fld_worklist_push (TYPE_ATTRIBUTES (t), fld);
4711 fld_worklist_push (TYPE_POINTER_TO (t), fld);
4712 fld_worklist_push (TYPE_REFERENCE_TO (t), fld);
4713 fld_worklist_push (TYPE_NAME (t), fld);
4714 /* Do not walk TYPE_NEXT_PTR_TO or TYPE_NEXT_REF_TO. We do not stream
4715 them and thus do not and want not to reach unused pointer types
4716 this way. */
4717 if (!POINTER_TYPE_P (t))
4718 fld_worklist_push (TYPE_MINVAL (t), fld);
4719 if (!RECORD_OR_UNION_TYPE_P (t))
4720 fld_worklist_push (TYPE_MAXVAL (t), fld);
4721 fld_worklist_push (TYPE_MAIN_VARIANT (t), fld);
4722 /* Do not walk TYPE_NEXT_VARIANT. We do not stream it and thus
4723 do not and want not to reach unused variants this way. */
4724 fld_worklist_push (TYPE_CONTEXT (t), fld);
4725 /* Do not walk TYPE_CANONICAL. We do not stream it and thus do not
4726 and want not to reach unused types this way. */
4727
4728 if (RECORD_OR_UNION_TYPE_P (t) && TYPE_BINFO (t))
4729 {
4730 unsigned i;
4731 tree tem;
4732 for (i = 0; VEC_iterate (tree, BINFO_BASE_BINFOS (TYPE_BINFO (t)),
4733 i, tem); ++i)
4734 fld_worklist_push (TREE_TYPE (tem), fld);
4735 tem = BINFO_VIRTUALS (TYPE_BINFO (t));
4736 if (tem
4737 /* The Java FE overloads BINFO_VIRTUALS for its own purpose. */
4738 && TREE_CODE (tem) == TREE_LIST)
4739 do
4740 {
4741 fld_worklist_push (TREE_VALUE (tem), fld);
4742 tem = TREE_CHAIN (tem);
4743 }
4744 while (tem);
4745 }
4746 if (RECORD_OR_UNION_TYPE_P (t))
4747 {
4748 tree tem;
4749 /* Push all TYPE_FIELDS - there can be interleaving interesting
4750 and non-interesting things. */
4751 tem = TYPE_FIELDS (t);
4752 while (tem)
4753 {
4754 if (TREE_CODE (tem) == FIELD_DECL)
4755 fld_worklist_push (tem, fld);
4756 tem = TREE_CHAIN (tem);
4757 }
4758 }
4759
4760 fld_worklist_push (TREE_CHAIN (t), fld);
4761 *ws = 0;
4762 }
4763 else if (TREE_CODE (t) == BLOCK)
4764 {
4765 tree tem;
4766 for (tem = BLOCK_VARS (t); tem; tem = TREE_CHAIN (tem))
4767 fld_worklist_push (tem, fld);
4768 for (tem = BLOCK_SUBBLOCKS (t); tem; tem = BLOCK_CHAIN (tem))
4769 fld_worklist_push (tem, fld);
4770 fld_worklist_push (BLOCK_ABSTRACT_ORIGIN (t), fld);
4771 }
4772
4773 fld_worklist_push (TREE_TYPE (t), fld);
4774
4775 return NULL_TREE;
4776 }
4777
4778
4779 /* Find decls and types in T. */
4780
4781 static void
4782 find_decls_types (tree t, struct free_lang_data_d *fld)
4783 {
4784 while (1)
4785 {
4786 if (!pointer_set_contains (fld->pset, t))
4787 walk_tree (&t, find_decls_types_r, fld, fld->pset);
4788 if (VEC_empty (tree, fld->worklist))
4789 break;
4790 t = VEC_pop (tree, fld->worklist);
4791 }
4792 }
4793
4794 /* Translate all the types in LIST with the corresponding runtime
4795 types. */
4796
4797 static tree
4798 get_eh_types_for_runtime (tree list)
4799 {
4800 tree head, prev;
4801
4802 if (list == NULL_TREE)
4803 return NULL_TREE;
4804
4805 head = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4806 prev = head;
4807 list = TREE_CHAIN (list);
4808 while (list)
4809 {
4810 tree n = build_tree_list (0, lookup_type_for_runtime (TREE_VALUE (list)));
4811 TREE_CHAIN (prev) = n;
4812 prev = TREE_CHAIN (prev);
4813 list = TREE_CHAIN (list);
4814 }
4815
4816 return head;
4817 }
4818
4819
4820 /* Find decls and types referenced in EH region R and store them in
4821 FLD->DECLS and FLD->TYPES. */
4822
4823 static void
4824 find_decls_types_in_eh_region (eh_region r, struct free_lang_data_d *fld)
4825 {
4826 switch (r->type)
4827 {
4828 case ERT_CLEANUP:
4829 break;
4830
4831 case ERT_TRY:
4832 {
4833 eh_catch c;
4834
4835 /* The types referenced in each catch must first be changed to the
4836 EH types used at runtime. This removes references to FE types
4837 in the region. */
4838 for (c = r->u.eh_try.first_catch; c ; c = c->next_catch)
4839 {
4840 c->type_list = get_eh_types_for_runtime (c->type_list);
4841 walk_tree (&c->type_list, find_decls_types_r, fld, fld->pset);
4842 }
4843 }
4844 break;
4845
4846 case ERT_ALLOWED_EXCEPTIONS:
4847 r->u.allowed.type_list
4848 = get_eh_types_for_runtime (r->u.allowed.type_list);
4849 walk_tree (&r->u.allowed.type_list, find_decls_types_r, fld, fld->pset);
4850 break;
4851
4852 case ERT_MUST_NOT_THROW:
4853 walk_tree (&r->u.must_not_throw.failure_decl,
4854 find_decls_types_r, fld, fld->pset);
4855 break;
4856 }
4857 }
4858
4859
4860 /* Find decls and types referenced in cgraph node N and store them in
4861 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4862 look for *every* kind of DECL and TYPE node reachable from N,
4863 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4864 NAMESPACE_DECLs, etc). */
4865
4866 static void
4867 find_decls_types_in_node (struct cgraph_node *n, struct free_lang_data_d *fld)
4868 {
4869 basic_block bb;
4870 struct function *fn;
4871 unsigned ix;
4872 tree t;
4873
4874 find_decls_types (n->decl, fld);
4875
4876 if (!gimple_has_body_p (n->decl))
4877 return;
4878
4879 gcc_assert (current_function_decl == NULL_TREE && cfun == NULL);
4880
4881 fn = DECL_STRUCT_FUNCTION (n->decl);
4882
4883 /* Traverse locals. */
4884 FOR_EACH_LOCAL_DECL (fn, ix, t)
4885 find_decls_types (t, fld);
4886
4887 /* Traverse EH regions in FN. */
4888 {
4889 eh_region r;
4890 FOR_ALL_EH_REGION_FN (r, fn)
4891 find_decls_types_in_eh_region (r, fld);
4892 }
4893
4894 /* Traverse every statement in FN. */
4895 FOR_EACH_BB_FN (bb, fn)
4896 {
4897 gimple_stmt_iterator si;
4898 unsigned i;
4899
4900 for (si = gsi_start_phis (bb); !gsi_end_p (si); gsi_next (&si))
4901 {
4902 gimple phi = gsi_stmt (si);
4903
4904 for (i = 0; i < gimple_phi_num_args (phi); i++)
4905 {
4906 tree *arg_p = gimple_phi_arg_def_ptr (phi, i);
4907 find_decls_types (*arg_p, fld);
4908 }
4909 }
4910
4911 for (si = gsi_start_bb (bb); !gsi_end_p (si); gsi_next (&si))
4912 {
4913 gimple stmt = gsi_stmt (si);
4914
4915 for (i = 0; i < gimple_num_ops (stmt); i++)
4916 {
4917 tree arg = gimple_op (stmt, i);
4918 find_decls_types (arg, fld);
4919 }
4920 }
4921 }
4922 }
4923
4924
4925 /* Find decls and types referenced in varpool node N and store them in
4926 FLD->DECLS and FLD->TYPES. Unlike pass_referenced_vars, this will
4927 look for *every* kind of DECL and TYPE node reachable from N,
4928 including those embedded inside types and decls (i.e,, TYPE_DECLs,
4929 NAMESPACE_DECLs, etc). */
4930
4931 static void
4932 find_decls_types_in_var (struct varpool_node *v, struct free_lang_data_d *fld)
4933 {
4934 find_decls_types (v->decl, fld);
4935 }
4936
4937 /* If T needs an assembler name, have one created for it. */
4938
4939 void
4940 assign_assembler_name_if_neeeded (tree t)
4941 {
4942 if (need_assembler_name_p (t))
4943 {
4944 /* When setting DECL_ASSEMBLER_NAME, the C++ mangler may emit
4945 diagnostics that use input_location to show locus
4946 information. The problem here is that, at this point,
4947 input_location is generally anchored to the end of the file
4948 (since the parser is long gone), so we don't have a good
4949 position to pin it to.
4950
4951 To alleviate this problem, this uses the location of T's
4952 declaration. Examples of this are
4953 testsuite/g++.dg/template/cond2.C and
4954 testsuite/g++.dg/template/pr35240.C. */
4955 location_t saved_location = input_location;
4956 input_location = DECL_SOURCE_LOCATION (t);
4957
4958 decl_assembler_name (t);
4959
4960 input_location = saved_location;
4961 }
4962 }
4963
4964
4965 /* Free language specific information for every operand and expression
4966 in every node of the call graph. This process operates in three stages:
4967
4968 1- Every callgraph node and varpool node is traversed looking for
4969 decls and types embedded in them. This is a more exhaustive
4970 search than that done by find_referenced_vars, because it will
4971 also collect individual fields, decls embedded in types, etc.
4972
4973 2- All the decls found are sent to free_lang_data_in_decl.
4974
4975 3- All the types found are sent to free_lang_data_in_type.
4976
4977 The ordering between decls and types is important because
4978 free_lang_data_in_decl sets assembler names, which includes
4979 mangling. So types cannot be freed up until assembler names have
4980 been set up. */
4981
4982 static void
4983 free_lang_data_in_cgraph (void)
4984 {
4985 struct cgraph_node *n;
4986 struct varpool_node *v;
4987 struct free_lang_data_d fld;
4988 tree t;
4989 unsigned i;
4990 alias_pair *p;
4991
4992 /* Initialize sets and arrays to store referenced decls and types. */
4993 fld.pset = pointer_set_create ();
4994 fld.worklist = NULL;
4995 fld.decls = VEC_alloc (tree, heap, 100);
4996 fld.types = VEC_alloc (tree, heap, 100);
4997
4998 /* Find decls and types in the body of every function in the callgraph. */
4999 for (n = cgraph_nodes; n; n = n->next)
5000 find_decls_types_in_node (n, &fld);
5001
5002 FOR_EACH_VEC_ELT (alias_pair, alias_pairs, i, p)
5003 find_decls_types (p->decl, &fld);
5004
5005 /* Find decls and types in every varpool symbol. */
5006 for (v = varpool_nodes; v; v = v->next)
5007 find_decls_types_in_var (v, &fld);
5008
5009 /* Set the assembler name on every decl found. We need to do this
5010 now because free_lang_data_in_decl will invalidate data needed
5011 for mangling. This breaks mangling on interdependent decls. */
5012 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5013 assign_assembler_name_if_neeeded (t);
5014
5015 /* Traverse every decl found freeing its language data. */
5016 FOR_EACH_VEC_ELT (tree, fld.decls, i, t)
5017 free_lang_data_in_decl (t);
5018
5019 /* Traverse every type found freeing its language data. */
5020 FOR_EACH_VEC_ELT (tree, fld.types, i, t)
5021 free_lang_data_in_type (t);
5022
5023 pointer_set_destroy (fld.pset);
5024 VEC_free (tree, heap, fld.worklist);
5025 VEC_free (tree, heap, fld.decls);
5026 VEC_free (tree, heap, fld.types);
5027 }
5028
5029
5030 /* Free resources that are used by FE but are not needed once they are done. */
5031
5032 static unsigned
5033 free_lang_data (void)
5034 {
5035 unsigned i;
5036
5037 /* If we are the LTO frontend we have freed lang-specific data already. */
5038 if (in_lto_p
5039 || !flag_generate_lto)
5040 return 0;
5041
5042 /* Allocate and assign alias sets to the standard integer types
5043 while the slots are still in the way the frontends generated them. */
5044 for (i = 0; i < itk_none; ++i)
5045 if (integer_types[i])
5046 TYPE_ALIAS_SET (integer_types[i]) = get_alias_set (integer_types[i]);
5047
5048 /* Traverse the IL resetting language specific information for
5049 operands, expressions, etc. */
5050 free_lang_data_in_cgraph ();
5051
5052 /* Create gimple variants for common types. */
5053 ptrdiff_type_node = integer_type_node;
5054 fileptr_type_node = ptr_type_node;
5055 if (TREE_CODE (boolean_type_node) != BOOLEAN_TYPE
5056 || (TYPE_MODE (boolean_type_node)
5057 != mode_for_size (BOOL_TYPE_SIZE, MODE_INT, 0))
5058 || TYPE_PRECISION (boolean_type_node) != 1
5059 || !TYPE_UNSIGNED (boolean_type_node))
5060 {
5061 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
5062 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
5063 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
5064 TYPE_PRECISION (boolean_type_node) = 1;
5065 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
5066 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
5067 }
5068
5069 /* Unify char_type_node with its properly signed variant. */
5070 if (TYPE_UNSIGNED (char_type_node))
5071 unsigned_char_type_node = char_type_node;
5072 else
5073 signed_char_type_node = char_type_node;
5074
5075 /* Reset some langhooks. Do not reset types_compatible_p, it may
5076 still be used indirectly via the get_alias_set langhook. */
5077 lang_hooks.callgraph.analyze_expr = NULL;
5078 lang_hooks.dwarf_name = lhd_dwarf_name;
5079 lang_hooks.decl_printable_name = gimple_decl_printable_name;
5080 lang_hooks.set_decl_assembler_name = lhd_set_decl_assembler_name;
5081
5082 /* Reset diagnostic machinery. */
5083 diagnostic_starter (global_dc) = default_tree_diagnostic_starter;
5084 diagnostic_finalizer (global_dc) = default_diagnostic_finalizer;
5085 diagnostic_format_decoder (global_dc) = default_tree_printer;
5086
5087 return 0;
5088 }
5089
5090
5091 struct simple_ipa_opt_pass pass_ipa_free_lang_data =
5092 {
5093 {
5094 SIMPLE_IPA_PASS,
5095 "*free_lang_data", /* name */
5096 NULL, /* gate */
5097 free_lang_data, /* execute */
5098 NULL, /* sub */
5099 NULL, /* next */
5100 0, /* static_pass_number */
5101 TV_IPA_FREE_LANG_DATA, /* tv_id */
5102 0, /* properties_required */
5103 0, /* properties_provided */
5104 0, /* properties_destroyed */
5105 0, /* todo_flags_start */
5106 TODO_ggc_collect /* todo_flags_finish */
5107 }
5108 };
5109
5110 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5111 or zero if not.
5112
5113 We try both `text' and `__text__', ATTR may be either one. */
5114 /* ??? It might be a reasonable simplification to require ATTR to be only
5115 `text'. One might then also require attribute lists to be stored in
5116 their canonicalized form. */
5117
5118 static int
5119 is_attribute_with_length_p (const char *attr, int attr_len, const_tree ident)
5120 {
5121 int ident_len;
5122 const char *p;
5123
5124 if (TREE_CODE (ident) != IDENTIFIER_NODE)
5125 return 0;
5126
5127 p = IDENTIFIER_POINTER (ident);
5128 ident_len = IDENTIFIER_LENGTH (ident);
5129
5130 if (ident_len == attr_len
5131 && strcmp (attr, p) == 0)
5132 return 1;
5133
5134 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
5135 if (attr[0] == '_')
5136 {
5137 gcc_assert (attr[1] == '_');
5138 gcc_assert (attr[attr_len - 2] == '_');
5139 gcc_assert (attr[attr_len - 1] == '_');
5140 if (ident_len == attr_len - 4
5141 && strncmp (attr + 2, p, attr_len - 4) == 0)
5142 return 1;
5143 }
5144 else
5145 {
5146 if (ident_len == attr_len + 4
5147 && p[0] == '_' && p[1] == '_'
5148 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
5149 && strncmp (attr, p + 2, attr_len) == 0)
5150 return 1;
5151 }
5152
5153 return 0;
5154 }
5155
5156 /* Return nonzero if IDENT is a valid name for attribute ATTR,
5157 or zero if not.
5158
5159 We try both `text' and `__text__', ATTR may be either one. */
5160
5161 int
5162 is_attribute_p (const char *attr, const_tree ident)
5163 {
5164 return is_attribute_with_length_p (attr, strlen (attr), ident);
5165 }
5166
5167 /* Given an attribute name and a list of attributes, return a pointer to the
5168 attribute's list element if the attribute is part of the list, or NULL_TREE
5169 if not found. If the attribute appears more than once, this only
5170 returns the first occurrence; the TREE_CHAIN of the return value should
5171 be passed back in if further occurrences are wanted. */
5172
5173 tree
5174 lookup_attribute (const char *attr_name, tree list)
5175 {
5176 tree l;
5177 size_t attr_len = strlen (attr_name);
5178
5179 for (l = list; l; l = TREE_CHAIN (l))
5180 {
5181 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5182 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5183 return l;
5184 }
5185 return NULL_TREE;
5186 }
5187
5188 /* Remove any instances of attribute ATTR_NAME in LIST and return the
5189 modified list. */
5190
5191 tree
5192 remove_attribute (const char *attr_name, tree list)
5193 {
5194 tree *p;
5195 size_t attr_len = strlen (attr_name);
5196
5197 for (p = &list; *p; )
5198 {
5199 tree l = *p;
5200 gcc_assert (TREE_CODE (TREE_PURPOSE (l)) == IDENTIFIER_NODE);
5201 if (is_attribute_with_length_p (attr_name, attr_len, TREE_PURPOSE (l)))
5202 *p = TREE_CHAIN (l);
5203 else
5204 p = &TREE_CHAIN (l);
5205 }
5206
5207 return list;
5208 }
5209
5210 /* Return an attribute list that is the union of a1 and a2. */
5211
5212 tree
5213 merge_attributes (tree a1, tree a2)
5214 {
5215 tree attributes;
5216
5217 /* Either one unset? Take the set one. */
5218
5219 if ((attributes = a1) == 0)
5220 attributes = a2;
5221
5222 /* One that completely contains the other? Take it. */
5223
5224 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
5225 {
5226 if (attribute_list_contained (a2, a1))
5227 attributes = a2;
5228 else
5229 {
5230 /* Pick the longest list, and hang on the other list. */
5231
5232 if (list_length (a1) < list_length (a2))
5233 attributes = a2, a2 = a1;
5234
5235 for (; a2 != 0; a2 = TREE_CHAIN (a2))
5236 {
5237 tree a;
5238 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5239 attributes);
5240 a != NULL_TREE;
5241 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
5242 TREE_CHAIN (a)))
5243 {
5244 if (TREE_VALUE (a) != NULL
5245 && TREE_CODE (TREE_VALUE (a)) == TREE_LIST
5246 && TREE_VALUE (a2) != NULL
5247 && TREE_CODE (TREE_VALUE (a2)) == TREE_LIST)
5248 {
5249 if (simple_cst_list_equal (TREE_VALUE (a),
5250 TREE_VALUE (a2)) == 1)
5251 break;
5252 }
5253 else if (simple_cst_equal (TREE_VALUE (a),
5254 TREE_VALUE (a2)) == 1)
5255 break;
5256 }
5257 if (a == NULL_TREE)
5258 {
5259 a1 = copy_node (a2);
5260 TREE_CHAIN (a1) = attributes;
5261 attributes = a1;
5262 }
5263 }
5264 }
5265 }
5266 return attributes;
5267 }
5268
5269 /* Given types T1 and T2, merge their attributes and return
5270 the result. */
5271
5272 tree
5273 merge_type_attributes (tree t1, tree t2)
5274 {
5275 return merge_attributes (TYPE_ATTRIBUTES (t1),
5276 TYPE_ATTRIBUTES (t2));
5277 }
5278
5279 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
5280 the result. */
5281
5282 tree
5283 merge_decl_attributes (tree olddecl, tree newdecl)
5284 {
5285 return merge_attributes (DECL_ATTRIBUTES (olddecl),
5286 DECL_ATTRIBUTES (newdecl));
5287 }
5288
5289 #if TARGET_DLLIMPORT_DECL_ATTRIBUTES
5290
5291 /* Specialization of merge_decl_attributes for various Windows targets.
5292
5293 This handles the following situation:
5294
5295 __declspec (dllimport) int foo;
5296 int foo;
5297
5298 The second instance of `foo' nullifies the dllimport. */
5299
5300 tree
5301 merge_dllimport_decl_attributes (tree old, tree new_tree)
5302 {
5303 tree a;
5304 int delete_dllimport_p = 1;
5305
5306 /* What we need to do here is remove from `old' dllimport if it doesn't
5307 appear in `new'. dllimport behaves like extern: if a declaration is
5308 marked dllimport and a definition appears later, then the object
5309 is not dllimport'd. We also remove a `new' dllimport if the old list
5310 contains dllexport: dllexport always overrides dllimport, regardless
5311 of the order of declaration. */
5312 if (!VAR_OR_FUNCTION_DECL_P (new_tree))
5313 delete_dllimport_p = 0;
5314 else if (DECL_DLLIMPORT_P (new_tree)
5315 && lookup_attribute ("dllexport", DECL_ATTRIBUTES (old)))
5316 {
5317 DECL_DLLIMPORT_P (new_tree) = 0;
5318 warning (OPT_Wattributes, "%q+D already declared with dllexport attribute: "
5319 "dllimport ignored", new_tree);
5320 }
5321 else if (DECL_DLLIMPORT_P (old) && !DECL_DLLIMPORT_P (new_tree))
5322 {
5323 /* Warn about overriding a symbol that has already been used, e.g.:
5324 extern int __attribute__ ((dllimport)) foo;
5325 int* bar () {return &foo;}
5326 int foo;
5327 */
5328 if (TREE_USED (old))
5329 {
5330 warning (0, "%q+D redeclared without dllimport attribute "
5331 "after being referenced with dll linkage", new_tree);
5332 /* If we have used a variable's address with dllimport linkage,
5333 keep the old DECL_DLLIMPORT_P flag: the ADDR_EXPR using the
5334 decl may already have had TREE_CONSTANT computed.
5335 We still remove the attribute so that assembler code refers
5336 to '&foo rather than '_imp__foo'. */
5337 if (TREE_CODE (old) == VAR_DECL && TREE_ADDRESSABLE (old))
5338 DECL_DLLIMPORT_P (new_tree) = 1;
5339 }
5340
5341 /* Let an inline definition silently override the external reference,
5342 but otherwise warn about attribute inconsistency. */
5343 else if (TREE_CODE (new_tree) == VAR_DECL
5344 || !DECL_DECLARED_INLINE_P (new_tree))
5345 warning (OPT_Wattributes, "%q+D redeclared without dllimport attribute: "
5346 "previous dllimport ignored", new_tree);
5347 }
5348 else
5349 delete_dllimport_p = 0;
5350
5351 a = merge_attributes (DECL_ATTRIBUTES (old), DECL_ATTRIBUTES (new_tree));
5352
5353 if (delete_dllimport_p)
5354 {
5355 tree prev, t;
5356 const size_t attr_len = strlen ("dllimport");
5357
5358 /* Scan the list for dllimport and delete it. */
5359 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
5360 {
5361 if (is_attribute_with_length_p ("dllimport", attr_len,
5362 TREE_PURPOSE (t)))
5363 {
5364 if (prev == NULL_TREE)
5365 a = TREE_CHAIN (a);
5366 else
5367 TREE_CHAIN (prev) = TREE_CHAIN (t);
5368 break;
5369 }
5370 }
5371 }
5372
5373 return a;
5374 }
5375
5376 /* Handle a "dllimport" or "dllexport" attribute; arguments as in
5377 struct attribute_spec.handler. */
5378
5379 tree
5380 handle_dll_attribute (tree * pnode, tree name, tree args, int flags,
5381 bool *no_add_attrs)
5382 {
5383 tree node = *pnode;
5384 bool is_dllimport;
5385
5386 /* These attributes may apply to structure and union types being created,
5387 but otherwise should pass to the declaration involved. */
5388 if (!DECL_P (node))
5389 {
5390 if (flags & ((int) ATTR_FLAG_DECL_NEXT | (int) ATTR_FLAG_FUNCTION_NEXT
5391 | (int) ATTR_FLAG_ARRAY_NEXT))
5392 {
5393 *no_add_attrs = true;
5394 return tree_cons (name, args, NULL_TREE);
5395 }
5396 if (TREE_CODE (node) == RECORD_TYPE
5397 || TREE_CODE (node) == UNION_TYPE)
5398 {
5399 node = TYPE_NAME (node);
5400 if (!node)
5401 return NULL_TREE;
5402 }
5403 else
5404 {
5405 warning (OPT_Wattributes, "%qE attribute ignored",
5406 name);
5407 *no_add_attrs = true;
5408 return NULL_TREE;
5409 }
5410 }
5411
5412 if (TREE_CODE (node) != FUNCTION_DECL
5413 && TREE_CODE (node) != VAR_DECL
5414 && TREE_CODE (node) != TYPE_DECL)
5415 {
5416 *no_add_attrs = true;
5417 warning (OPT_Wattributes, "%qE attribute ignored",
5418 name);
5419 return NULL_TREE;
5420 }
5421
5422 if (TREE_CODE (node) == TYPE_DECL
5423 && TREE_CODE (TREE_TYPE (node)) != RECORD_TYPE
5424 && TREE_CODE (TREE_TYPE (node)) != UNION_TYPE)
5425 {
5426 *no_add_attrs = true;
5427 warning (OPT_Wattributes, "%qE attribute ignored",
5428 name);
5429 return NULL_TREE;
5430 }
5431
5432 is_dllimport = is_attribute_p ("dllimport", name);
5433
5434 /* Report error on dllimport ambiguities seen now before they cause
5435 any damage. */
5436 if (is_dllimport)
5437 {
5438 /* Honor any target-specific overrides. */
5439 if (!targetm.valid_dllimport_attribute_p (node))
5440 *no_add_attrs = true;
5441
5442 else if (TREE_CODE (node) == FUNCTION_DECL
5443 && DECL_DECLARED_INLINE_P (node))
5444 {
5445 warning (OPT_Wattributes, "inline function %q+D declared as "
5446 " dllimport: attribute ignored", node);
5447 *no_add_attrs = true;
5448 }
5449 /* Like MS, treat definition of dllimported variables and
5450 non-inlined functions on declaration as syntax errors. */
5451 else if (TREE_CODE (node) == FUNCTION_DECL && DECL_INITIAL (node))
5452 {
5453 error ("function %q+D definition is marked dllimport", node);
5454 *no_add_attrs = true;
5455 }
5456
5457 else if (TREE_CODE (node) == VAR_DECL)
5458 {
5459 if (DECL_INITIAL (node))
5460 {
5461 error ("variable %q+D definition is marked dllimport",
5462 node);
5463 *no_add_attrs = true;
5464 }
5465
5466 /* `extern' needn't be specified with dllimport.
5467 Specify `extern' now and hope for the best. Sigh. */
5468 DECL_EXTERNAL (node) = 1;
5469 /* Also, implicitly give dllimport'd variables declared within
5470 a function global scope, unless declared static. */
5471 if (current_function_decl != NULL_TREE && !TREE_STATIC (node))
5472 TREE_PUBLIC (node) = 1;
5473 }
5474
5475 if (*no_add_attrs == false)
5476 DECL_DLLIMPORT_P (node) = 1;
5477 }
5478 else if (TREE_CODE (node) == FUNCTION_DECL
5479 && DECL_DECLARED_INLINE_P (node))
5480 /* An exported function, even if inline, must be emitted. */
5481 DECL_EXTERNAL (node) = 0;
5482
5483 /* Report error if symbol is not accessible at global scope. */
5484 if (!TREE_PUBLIC (node)
5485 && (TREE_CODE (node) == VAR_DECL
5486 || TREE_CODE (node) == FUNCTION_DECL))
5487 {
5488 error ("external linkage required for symbol %q+D because of "
5489 "%qE attribute", node, name);
5490 *no_add_attrs = true;
5491 }
5492
5493 /* A dllexport'd entity must have default visibility so that other
5494 program units (shared libraries or the main executable) can see
5495 it. A dllimport'd entity must have default visibility so that
5496 the linker knows that undefined references within this program
5497 unit can be resolved by the dynamic linker. */
5498 if (!*no_add_attrs)
5499 {
5500 if (DECL_VISIBILITY_SPECIFIED (node)
5501 && DECL_VISIBILITY (node) != VISIBILITY_DEFAULT)
5502 error ("%qE implies default visibility, but %qD has already "
5503 "been declared with a different visibility",
5504 name, node);
5505 DECL_VISIBILITY (node) = VISIBILITY_DEFAULT;
5506 DECL_VISIBILITY_SPECIFIED (node) = 1;
5507 }
5508
5509 return NULL_TREE;
5510 }
5511
5512 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
5513 \f
5514 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
5515 of the various TYPE_QUAL values. */
5516
5517 static void
5518 set_type_quals (tree type, int type_quals)
5519 {
5520 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
5521 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
5522 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
5523 TYPE_ADDR_SPACE (type) = DECODE_QUAL_ADDR_SPACE (type_quals);
5524 }
5525
5526 /* Returns true iff CAND is equivalent to BASE with TYPE_QUALS. */
5527
5528 bool
5529 check_qualified_type (const_tree cand, const_tree base, int type_quals)
5530 {
5531 return (TYPE_QUALS (cand) == type_quals
5532 && TYPE_NAME (cand) == TYPE_NAME (base)
5533 /* Apparently this is needed for Objective-C. */
5534 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5535 /* Check alignment. */
5536 && TYPE_ALIGN (cand) == TYPE_ALIGN (base)
5537 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5538 TYPE_ATTRIBUTES (base)));
5539 }
5540
5541 /* Returns true iff CAND is equivalent to BASE with ALIGN. */
5542
5543 static bool
5544 check_aligned_type (const_tree cand, const_tree base, unsigned int align)
5545 {
5546 return (TYPE_QUALS (cand) == TYPE_QUALS (base)
5547 && TYPE_NAME (cand) == TYPE_NAME (base)
5548 /* Apparently this is needed for Objective-C. */
5549 && TYPE_CONTEXT (cand) == TYPE_CONTEXT (base)
5550 /* Check alignment. */
5551 && TYPE_ALIGN (cand) == align
5552 && attribute_list_equal (TYPE_ATTRIBUTES (cand),
5553 TYPE_ATTRIBUTES (base)));
5554 }
5555
5556 /* Return a version of the TYPE, qualified as indicated by the
5557 TYPE_QUALS, if one exists. If no qualified version exists yet,
5558 return NULL_TREE. */
5559
5560 tree
5561 get_qualified_type (tree type, int type_quals)
5562 {
5563 tree t;
5564
5565 if (TYPE_QUALS (type) == type_quals)
5566 return type;
5567
5568 /* Search the chain of variants to see if there is already one there just
5569 like the one we need to have. If so, use that existing one. We must
5570 preserve the TYPE_NAME, since there is code that depends on this. */
5571 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5572 if (check_qualified_type (t, type, type_quals))
5573 return t;
5574
5575 return NULL_TREE;
5576 }
5577
5578 /* Like get_qualified_type, but creates the type if it does not
5579 exist. This function never returns NULL_TREE. */
5580
5581 tree
5582 build_qualified_type (tree type, int type_quals)
5583 {
5584 tree t;
5585
5586 /* See if we already have the appropriate qualified variant. */
5587 t = get_qualified_type (type, type_quals);
5588
5589 /* If not, build it. */
5590 if (!t)
5591 {
5592 t = build_variant_type_copy (type);
5593 set_type_quals (t, type_quals);
5594
5595 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5596 /* Propagate structural equality. */
5597 SET_TYPE_STRUCTURAL_EQUALITY (t);
5598 else if (TYPE_CANONICAL (type) != type)
5599 /* Build the underlying canonical type, since it is different
5600 from TYPE. */
5601 TYPE_CANONICAL (t) = build_qualified_type (TYPE_CANONICAL (type),
5602 type_quals);
5603 else
5604 /* T is its own canonical type. */
5605 TYPE_CANONICAL (t) = t;
5606
5607 }
5608
5609 return t;
5610 }
5611
5612 /* Create a variant of type T with alignment ALIGN. */
5613
5614 tree
5615 build_aligned_type (tree type, unsigned int align)
5616 {
5617 tree t;
5618
5619 if (TYPE_PACKED (type)
5620 || TYPE_ALIGN (type) == align)
5621 return type;
5622
5623 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
5624 if (check_aligned_type (t, type, align))
5625 return t;
5626
5627 t = build_variant_type_copy (type);
5628 TYPE_ALIGN (t) = align;
5629
5630 return t;
5631 }
5632
5633 /* Create a new distinct copy of TYPE. The new type is made its own
5634 MAIN_VARIANT. If TYPE requires structural equality checks, the
5635 resulting type requires structural equality checks; otherwise, its
5636 TYPE_CANONICAL points to itself. */
5637
5638 tree
5639 build_distinct_type_copy (tree type)
5640 {
5641 tree t = copy_node (type);
5642
5643 TYPE_POINTER_TO (t) = 0;
5644 TYPE_REFERENCE_TO (t) = 0;
5645
5646 /* Set the canonical type either to a new equivalence class, or
5647 propagate the need for structural equality checks. */
5648 if (TYPE_STRUCTURAL_EQUALITY_P (type))
5649 SET_TYPE_STRUCTURAL_EQUALITY (t);
5650 else
5651 TYPE_CANONICAL (t) = t;
5652
5653 /* Make it its own variant. */
5654 TYPE_MAIN_VARIANT (t) = t;
5655 TYPE_NEXT_VARIANT (t) = 0;
5656
5657 /* Note that it is now possible for TYPE_MIN_VALUE to be a value
5658 whose TREE_TYPE is not t. This can also happen in the Ada
5659 frontend when using subtypes. */
5660
5661 return t;
5662 }
5663
5664 /* Create a new variant of TYPE, equivalent but distinct. This is so
5665 the caller can modify it. TYPE_CANONICAL for the return type will
5666 be equivalent to TYPE_CANONICAL of TYPE, indicating that the types
5667 are considered equal by the language itself (or that both types
5668 require structural equality checks). */
5669
5670 tree
5671 build_variant_type_copy (tree type)
5672 {
5673 tree t, m = TYPE_MAIN_VARIANT (type);
5674
5675 t = build_distinct_type_copy (type);
5676
5677 /* Since we're building a variant, assume that it is a non-semantic
5678 variant. This also propagates TYPE_STRUCTURAL_EQUALITY_P. */
5679 TYPE_CANONICAL (t) = TYPE_CANONICAL (type);
5680
5681 /* Add the new type to the chain of variants of TYPE. */
5682 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
5683 TYPE_NEXT_VARIANT (m) = t;
5684 TYPE_MAIN_VARIANT (t) = m;
5685
5686 return t;
5687 }
5688 \f
5689 /* Return true if the from tree in both tree maps are equal. */
5690
5691 int
5692 tree_map_base_eq (const void *va, const void *vb)
5693 {
5694 const struct tree_map_base *const a = (const struct tree_map_base *) va,
5695 *const b = (const struct tree_map_base *) vb;
5696 return (a->from == b->from);
5697 }
5698
5699 /* Hash a from tree in a tree_base_map. */
5700
5701 unsigned int
5702 tree_map_base_hash (const void *item)
5703 {
5704 return htab_hash_pointer (((const struct tree_map_base *)item)->from);
5705 }
5706
5707 /* Return true if this tree map structure is marked for garbage collection
5708 purposes. We simply return true if the from tree is marked, so that this
5709 structure goes away when the from tree goes away. */
5710
5711 int
5712 tree_map_base_marked_p (const void *p)
5713 {
5714 return ggc_marked_p (((const struct tree_map_base *) p)->from);
5715 }
5716
5717 /* Hash a from tree in a tree_map. */
5718
5719 unsigned int
5720 tree_map_hash (const void *item)
5721 {
5722 return (((const struct tree_map *) item)->hash);
5723 }
5724
5725 /* Hash a from tree in a tree_decl_map. */
5726
5727 unsigned int
5728 tree_decl_map_hash (const void *item)
5729 {
5730 return DECL_UID (((const struct tree_decl_map *) item)->base.from);
5731 }
5732
5733 /* Return the initialization priority for DECL. */
5734
5735 priority_type
5736 decl_init_priority_lookup (tree decl)
5737 {
5738 struct tree_priority_map *h;
5739 struct tree_map_base in;
5740
5741 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5742 in.from = decl;
5743 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5744 return h ? h->init : DEFAULT_INIT_PRIORITY;
5745 }
5746
5747 /* Return the finalization priority for DECL. */
5748
5749 priority_type
5750 decl_fini_priority_lookup (tree decl)
5751 {
5752 struct tree_priority_map *h;
5753 struct tree_map_base in;
5754
5755 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5756 in.from = decl;
5757 h = (struct tree_priority_map *) htab_find (init_priority_for_decl, &in);
5758 return h ? h->fini : DEFAULT_INIT_PRIORITY;
5759 }
5760
5761 /* Return the initialization and finalization priority information for
5762 DECL. If there is no previous priority information, a freshly
5763 allocated structure is returned. */
5764
5765 static struct tree_priority_map *
5766 decl_priority_info (tree decl)
5767 {
5768 struct tree_priority_map in;
5769 struct tree_priority_map *h;
5770 void **loc;
5771
5772 in.base.from = decl;
5773 loc = htab_find_slot (init_priority_for_decl, &in, INSERT);
5774 h = (struct tree_priority_map *) *loc;
5775 if (!h)
5776 {
5777 h = ggc_alloc_cleared_tree_priority_map ();
5778 *loc = h;
5779 h->base.from = decl;
5780 h->init = DEFAULT_INIT_PRIORITY;
5781 h->fini = DEFAULT_INIT_PRIORITY;
5782 }
5783
5784 return h;
5785 }
5786
5787 /* Set the initialization priority for DECL to PRIORITY. */
5788
5789 void
5790 decl_init_priority_insert (tree decl, priority_type priority)
5791 {
5792 struct tree_priority_map *h;
5793
5794 gcc_assert (VAR_OR_FUNCTION_DECL_P (decl));
5795 h = decl_priority_info (decl);
5796 h->init = priority;
5797 }
5798
5799 /* Set the finalization priority for DECL to PRIORITY. */
5800
5801 void
5802 decl_fini_priority_insert (tree decl, priority_type priority)
5803 {
5804 struct tree_priority_map *h;
5805
5806 gcc_assert (TREE_CODE (decl) == FUNCTION_DECL);
5807 h = decl_priority_info (decl);
5808 h->fini = priority;
5809 }
5810
5811 /* Print out the statistics for the DECL_DEBUG_EXPR hash table. */
5812
5813 static void
5814 print_debug_expr_statistics (void)
5815 {
5816 fprintf (stderr, "DECL_DEBUG_EXPR hash: size %ld, %ld elements, %f collisions\n",
5817 (long) htab_size (debug_expr_for_decl),
5818 (long) htab_elements (debug_expr_for_decl),
5819 htab_collisions (debug_expr_for_decl));
5820 }
5821
5822 /* Print out the statistics for the DECL_VALUE_EXPR hash table. */
5823
5824 static void
5825 print_value_expr_statistics (void)
5826 {
5827 fprintf (stderr, "DECL_VALUE_EXPR hash: size %ld, %ld elements, %f collisions\n",
5828 (long) htab_size (value_expr_for_decl),
5829 (long) htab_elements (value_expr_for_decl),
5830 htab_collisions (value_expr_for_decl));
5831 }
5832
5833 /* Lookup a debug expression for FROM, and return it if we find one. */
5834
5835 tree
5836 decl_debug_expr_lookup (tree from)
5837 {
5838 struct tree_decl_map *h, in;
5839 in.base.from = from;
5840
5841 h = (struct tree_decl_map *)
5842 htab_find_with_hash (debug_expr_for_decl, &in, DECL_UID (from));
5843 if (h)
5844 return h->to;
5845 return NULL_TREE;
5846 }
5847
5848 /* Insert a mapping FROM->TO in the debug expression hashtable. */
5849
5850 void
5851 decl_debug_expr_insert (tree from, tree to)
5852 {
5853 struct tree_decl_map *h;
5854 void **loc;
5855
5856 h = ggc_alloc_tree_decl_map ();
5857 h->base.from = from;
5858 h->to = to;
5859 loc = htab_find_slot_with_hash (debug_expr_for_decl, h, DECL_UID (from),
5860 INSERT);
5861 *(struct tree_decl_map **) loc = h;
5862 }
5863
5864 /* Lookup a value expression for FROM, and return it if we find one. */
5865
5866 tree
5867 decl_value_expr_lookup (tree from)
5868 {
5869 struct tree_decl_map *h, in;
5870 in.base.from = from;
5871
5872 h = (struct tree_decl_map *)
5873 htab_find_with_hash (value_expr_for_decl, &in, DECL_UID (from));
5874 if (h)
5875 return h->to;
5876 return NULL_TREE;
5877 }
5878
5879 /* Insert a mapping FROM->TO in the value expression hashtable. */
5880
5881 void
5882 decl_value_expr_insert (tree from, tree to)
5883 {
5884 struct tree_decl_map *h;
5885 void **loc;
5886
5887 h = ggc_alloc_tree_decl_map ();
5888 h->base.from = from;
5889 h->to = to;
5890 loc = htab_find_slot_with_hash (value_expr_for_decl, h, DECL_UID (from),
5891 INSERT);
5892 *(struct tree_decl_map **) loc = h;
5893 }
5894
5895 /* Hashing of types so that we don't make duplicates.
5896 The entry point is `type_hash_canon'. */
5897
5898 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
5899 with types in the TREE_VALUE slots), by adding the hash codes
5900 of the individual types. */
5901
5902 static unsigned int
5903 type_hash_list (const_tree list, hashval_t hashcode)
5904 {
5905 const_tree tail;
5906
5907 for (tail = list; tail; tail = TREE_CHAIN (tail))
5908 if (TREE_VALUE (tail) != error_mark_node)
5909 hashcode = iterative_hash_object (TYPE_HASH (TREE_VALUE (tail)),
5910 hashcode);
5911
5912 return hashcode;
5913 }
5914
5915 /* These are the Hashtable callback functions. */
5916
5917 /* Returns true iff the types are equivalent. */
5918
5919 static int
5920 type_hash_eq (const void *va, const void *vb)
5921 {
5922 const struct type_hash *const a = (const struct type_hash *) va,
5923 *const b = (const struct type_hash *) vb;
5924
5925 /* First test the things that are the same for all types. */
5926 if (a->hash != b->hash
5927 || TREE_CODE (a->type) != TREE_CODE (b->type)
5928 || TREE_TYPE (a->type) != TREE_TYPE (b->type)
5929 || !attribute_list_equal (TYPE_ATTRIBUTES (a->type),
5930 TYPE_ATTRIBUTES (b->type))
5931 || TYPE_ALIGN (a->type) != TYPE_ALIGN (b->type)
5932 || TYPE_MODE (a->type) != TYPE_MODE (b->type)
5933 || (TREE_CODE (a->type) != COMPLEX_TYPE
5934 && TYPE_NAME (a->type) != TYPE_NAME (b->type)))
5935 return 0;
5936
5937 switch (TREE_CODE (a->type))
5938 {
5939 case VOID_TYPE:
5940 case COMPLEX_TYPE:
5941 case POINTER_TYPE:
5942 case REFERENCE_TYPE:
5943 return 1;
5944
5945 case VECTOR_TYPE:
5946 return TYPE_VECTOR_SUBPARTS (a->type) == TYPE_VECTOR_SUBPARTS (b->type);
5947
5948 case ENUMERAL_TYPE:
5949 if (TYPE_VALUES (a->type) != TYPE_VALUES (b->type)
5950 && !(TYPE_VALUES (a->type)
5951 && TREE_CODE (TYPE_VALUES (a->type)) == TREE_LIST
5952 && TYPE_VALUES (b->type)
5953 && TREE_CODE (TYPE_VALUES (b->type)) == TREE_LIST
5954 && type_list_equal (TYPE_VALUES (a->type),
5955 TYPE_VALUES (b->type))))
5956 return 0;
5957
5958 /* ... fall through ... */
5959
5960 case INTEGER_TYPE:
5961 case REAL_TYPE:
5962 case BOOLEAN_TYPE:
5963 return ((TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
5964 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
5965 TYPE_MAX_VALUE (b->type)))
5966 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
5967 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
5968 TYPE_MIN_VALUE (b->type))));
5969
5970 case FIXED_POINT_TYPE:
5971 return TYPE_SATURATING (a->type) == TYPE_SATURATING (b->type);
5972
5973 case OFFSET_TYPE:
5974 return TYPE_OFFSET_BASETYPE (a->type) == TYPE_OFFSET_BASETYPE (b->type);
5975
5976 case METHOD_TYPE:
5977 return (TYPE_METHOD_BASETYPE (a->type) == TYPE_METHOD_BASETYPE (b->type)
5978 && (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
5979 || (TYPE_ARG_TYPES (a->type)
5980 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
5981 && TYPE_ARG_TYPES (b->type)
5982 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
5983 && type_list_equal (TYPE_ARG_TYPES (a->type),
5984 TYPE_ARG_TYPES (b->type)))));
5985
5986 case ARRAY_TYPE:
5987 return TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type);
5988
5989 case RECORD_TYPE:
5990 case UNION_TYPE:
5991 case QUAL_UNION_TYPE:
5992 return (TYPE_FIELDS (a->type) == TYPE_FIELDS (b->type)
5993 || (TYPE_FIELDS (a->type)
5994 && TREE_CODE (TYPE_FIELDS (a->type)) == TREE_LIST
5995 && TYPE_FIELDS (b->type)
5996 && TREE_CODE (TYPE_FIELDS (b->type)) == TREE_LIST
5997 && type_list_equal (TYPE_FIELDS (a->type),
5998 TYPE_FIELDS (b->type))));
5999
6000 case FUNCTION_TYPE:
6001 if (TYPE_ARG_TYPES (a->type) == TYPE_ARG_TYPES (b->type)
6002 || (TYPE_ARG_TYPES (a->type)
6003 && TREE_CODE (TYPE_ARG_TYPES (a->type)) == TREE_LIST
6004 && TYPE_ARG_TYPES (b->type)
6005 && TREE_CODE (TYPE_ARG_TYPES (b->type)) == TREE_LIST
6006 && type_list_equal (TYPE_ARG_TYPES (a->type),
6007 TYPE_ARG_TYPES (b->type))))
6008 break;
6009 return 0;
6010
6011 default:
6012 return 0;
6013 }
6014
6015 if (lang_hooks.types.type_hash_eq != NULL)
6016 return lang_hooks.types.type_hash_eq (a->type, b->type);
6017
6018 return 1;
6019 }
6020
6021 /* Return the cached hash value. */
6022
6023 static hashval_t
6024 type_hash_hash (const void *item)
6025 {
6026 return ((const struct type_hash *) item)->hash;
6027 }
6028
6029 /* Look in the type hash table for a type isomorphic to TYPE.
6030 If one is found, return it. Otherwise return 0. */
6031
6032 tree
6033 type_hash_lookup (hashval_t hashcode, tree type)
6034 {
6035 struct type_hash *h, in;
6036
6037 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
6038 must call that routine before comparing TYPE_ALIGNs. */
6039 layout_type (type);
6040
6041 in.hash = hashcode;
6042 in.type = type;
6043
6044 h = (struct type_hash *) htab_find_with_hash (type_hash_table, &in,
6045 hashcode);
6046 if (h)
6047 return h->type;
6048 return NULL_TREE;
6049 }
6050
6051 /* Add an entry to the type-hash-table
6052 for a type TYPE whose hash code is HASHCODE. */
6053
6054 void
6055 type_hash_add (hashval_t hashcode, tree type)
6056 {
6057 struct type_hash *h;
6058 void **loc;
6059
6060 h = ggc_alloc_type_hash ();
6061 h->hash = hashcode;
6062 h->type = type;
6063 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
6064 *loc = (void *)h;
6065 }
6066
6067 /* Given TYPE, and HASHCODE its hash code, return the canonical
6068 object for an identical type if one already exists.
6069 Otherwise, return TYPE, and record it as the canonical object.
6070
6071 To use this function, first create a type of the sort you want.
6072 Then compute its hash code from the fields of the type that
6073 make it different from other similar types.
6074 Then call this function and use the value. */
6075
6076 tree
6077 type_hash_canon (unsigned int hashcode, tree type)
6078 {
6079 tree t1;
6080
6081 /* The hash table only contains main variants, so ensure that's what we're
6082 being passed. */
6083 gcc_assert (TYPE_MAIN_VARIANT (type) == type);
6084
6085 /* See if the type is in the hash table already. If so, return it.
6086 Otherwise, add the type. */
6087 t1 = type_hash_lookup (hashcode, type);
6088 if (t1 != 0)
6089 {
6090 #ifdef GATHER_STATISTICS
6091 tree_node_counts[(int) t_kind]--;
6092 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
6093 #endif
6094 return t1;
6095 }
6096 else
6097 {
6098 type_hash_add (hashcode, type);
6099 return type;
6100 }
6101 }
6102
6103 /* See if the data pointed to by the type hash table is marked. We consider
6104 it marked if the type is marked or if a debug type number or symbol
6105 table entry has been made for the type. */
6106
6107 static int
6108 type_hash_marked_p (const void *p)
6109 {
6110 const_tree const type = ((const struct type_hash *) p)->type;
6111
6112 return ggc_marked_p (type);
6113 }
6114
6115 static void
6116 print_type_hash_statistics (void)
6117 {
6118 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
6119 (long) htab_size (type_hash_table),
6120 (long) htab_elements (type_hash_table),
6121 htab_collisions (type_hash_table));
6122 }
6123
6124 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
6125 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
6126 by adding the hash codes of the individual attributes. */
6127
6128 static unsigned int
6129 attribute_hash_list (const_tree list, hashval_t hashcode)
6130 {
6131 const_tree tail;
6132
6133 for (tail = list; tail; tail = TREE_CHAIN (tail))
6134 /* ??? Do we want to add in TREE_VALUE too? */
6135 hashcode = iterative_hash_object
6136 (IDENTIFIER_HASH_VALUE (TREE_PURPOSE (tail)), hashcode);
6137 return hashcode;
6138 }
6139
6140 /* Given two lists of attributes, return true if list l2 is
6141 equivalent to l1. */
6142
6143 int
6144 attribute_list_equal (const_tree l1, const_tree l2)
6145 {
6146 return attribute_list_contained (l1, l2)
6147 && attribute_list_contained (l2, l1);
6148 }
6149
6150 /* Given two lists of attributes, return true if list L2 is
6151 completely contained within L1. */
6152 /* ??? This would be faster if attribute names were stored in a canonicalized
6153 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
6154 must be used to show these elements are equivalent (which they are). */
6155 /* ??? It's not clear that attributes with arguments will always be handled
6156 correctly. */
6157
6158 int
6159 attribute_list_contained (const_tree l1, const_tree l2)
6160 {
6161 const_tree t1, t2;
6162
6163 /* First check the obvious, maybe the lists are identical. */
6164 if (l1 == l2)
6165 return 1;
6166
6167 /* Maybe the lists are similar. */
6168 for (t1 = l1, t2 = l2;
6169 t1 != 0 && t2 != 0
6170 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
6171 && TREE_VALUE (t1) == TREE_VALUE (t2);
6172 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
6173
6174 /* Maybe the lists are equal. */
6175 if (t1 == 0 && t2 == 0)
6176 return 1;
6177
6178 for (; t2 != 0; t2 = TREE_CHAIN (t2))
6179 {
6180 const_tree attr;
6181 /* This CONST_CAST is okay because lookup_attribute does not
6182 modify its argument and the return value is assigned to a
6183 const_tree. */
6184 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6185 CONST_CAST_TREE(l1));
6186 attr != NULL_TREE;
6187 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
6188 TREE_CHAIN (attr)))
6189 {
6190 if (TREE_VALUE (t2) != NULL
6191 && TREE_CODE (TREE_VALUE (t2)) == TREE_LIST
6192 && TREE_VALUE (attr) != NULL
6193 && TREE_CODE (TREE_VALUE (attr)) == TREE_LIST)
6194 {
6195 if (simple_cst_list_equal (TREE_VALUE (t2),
6196 TREE_VALUE (attr)) == 1)
6197 break;
6198 }
6199 else if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
6200 break;
6201 }
6202
6203 if (attr == 0)
6204 return 0;
6205 }
6206
6207 return 1;
6208 }
6209
6210 /* Given two lists of types
6211 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
6212 return 1 if the lists contain the same types in the same order.
6213 Also, the TREE_PURPOSEs must match. */
6214
6215 int
6216 type_list_equal (const_tree l1, const_tree l2)
6217 {
6218 const_tree t1, t2;
6219
6220 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
6221 if (TREE_VALUE (t1) != TREE_VALUE (t2)
6222 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
6223 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
6224 && (TREE_TYPE (TREE_PURPOSE (t1))
6225 == TREE_TYPE (TREE_PURPOSE (t2))))))
6226 return 0;
6227
6228 return t1 == t2;
6229 }
6230
6231 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
6232 given by TYPE. If the argument list accepts variable arguments,
6233 then this function counts only the ordinary arguments. */
6234
6235 int
6236 type_num_arguments (const_tree type)
6237 {
6238 int i = 0;
6239 tree t;
6240
6241 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
6242 /* If the function does not take a variable number of arguments,
6243 the last element in the list will have type `void'. */
6244 if (VOID_TYPE_P (TREE_VALUE (t)))
6245 break;
6246 else
6247 ++i;
6248
6249 return i;
6250 }
6251
6252 /* Nonzero if integer constants T1 and T2
6253 represent the same constant value. */
6254
6255 int
6256 tree_int_cst_equal (const_tree t1, const_tree t2)
6257 {
6258 if (t1 == t2)
6259 return 1;
6260
6261 if (t1 == 0 || t2 == 0)
6262 return 0;
6263
6264 if (TREE_CODE (t1) == INTEGER_CST
6265 && TREE_CODE (t2) == INTEGER_CST
6266 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6267 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
6268 return 1;
6269
6270 return 0;
6271 }
6272
6273 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
6274 The precise way of comparison depends on their data type. */
6275
6276 int
6277 tree_int_cst_lt (const_tree t1, const_tree t2)
6278 {
6279 if (t1 == t2)
6280 return 0;
6281
6282 if (TYPE_UNSIGNED (TREE_TYPE (t1)) != TYPE_UNSIGNED (TREE_TYPE (t2)))
6283 {
6284 int t1_sgn = tree_int_cst_sgn (t1);
6285 int t2_sgn = tree_int_cst_sgn (t2);
6286
6287 if (t1_sgn < t2_sgn)
6288 return 1;
6289 else if (t1_sgn > t2_sgn)
6290 return 0;
6291 /* Otherwise, both are non-negative, so we compare them as
6292 unsigned just in case one of them would overflow a signed
6293 type. */
6294 }
6295 else if (!TYPE_UNSIGNED (TREE_TYPE (t1)))
6296 return INT_CST_LT (t1, t2);
6297
6298 return INT_CST_LT_UNSIGNED (t1, t2);
6299 }
6300
6301 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
6302
6303 int
6304 tree_int_cst_compare (const_tree t1, const_tree t2)
6305 {
6306 if (tree_int_cst_lt (t1, t2))
6307 return -1;
6308 else if (tree_int_cst_lt (t2, t1))
6309 return 1;
6310 else
6311 return 0;
6312 }
6313
6314 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
6315 the host. If POS is zero, the value can be represented in a single
6316 HOST_WIDE_INT. If POS is nonzero, the value must be non-negative and can
6317 be represented in a single unsigned HOST_WIDE_INT. */
6318
6319 int
6320 host_integerp (const_tree t, int pos)
6321 {
6322 if (t == NULL_TREE)
6323 return 0;
6324
6325 return (TREE_CODE (t) == INTEGER_CST
6326 && ((TREE_INT_CST_HIGH (t) == 0
6327 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
6328 || (! pos && TREE_INT_CST_HIGH (t) == -1
6329 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
6330 && (!TYPE_UNSIGNED (TREE_TYPE (t))
6331 || (TREE_CODE (TREE_TYPE (t)) == INTEGER_TYPE
6332 && TYPE_IS_SIZETYPE (TREE_TYPE (t)))))
6333 || (pos && TREE_INT_CST_HIGH (t) == 0)));
6334 }
6335
6336 /* Return the HOST_WIDE_INT least significant bits of T if it is an
6337 INTEGER_CST and there is no overflow. POS is nonzero if the result must
6338 be non-negative. We must be able to satisfy the above conditions. */
6339
6340 HOST_WIDE_INT
6341 tree_low_cst (const_tree t, int pos)
6342 {
6343 gcc_assert (host_integerp (t, pos));
6344 return TREE_INT_CST_LOW (t);
6345 }
6346
6347 /* Return the most significant bit of the integer constant T. */
6348
6349 int
6350 tree_int_cst_msb (const_tree t)
6351 {
6352 int prec;
6353 HOST_WIDE_INT h;
6354 unsigned HOST_WIDE_INT l;
6355
6356 /* Note that using TYPE_PRECISION here is wrong. We care about the
6357 actual bits, not the (arbitrary) range of the type. */
6358 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
6359 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
6360 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
6361 return (l & 1) == 1;
6362 }
6363
6364 /* Return an indication of the sign of the integer constant T.
6365 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
6366 Note that -1 will never be returned if T's type is unsigned. */
6367
6368 int
6369 tree_int_cst_sgn (const_tree t)
6370 {
6371 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
6372 return 0;
6373 else if (TYPE_UNSIGNED (TREE_TYPE (t)))
6374 return 1;
6375 else if (TREE_INT_CST_HIGH (t) < 0)
6376 return -1;
6377 else
6378 return 1;
6379 }
6380
6381 /* Return the minimum number of bits needed to represent VALUE in a
6382 signed or unsigned type, UNSIGNEDP says which. */
6383
6384 unsigned int
6385 tree_int_cst_min_precision (tree value, bool unsignedp)
6386 {
6387 int log;
6388
6389 /* If the value is negative, compute its negative minus 1. The latter
6390 adjustment is because the absolute value of the largest negative value
6391 is one larger than the largest positive value. This is equivalent to
6392 a bit-wise negation, so use that operation instead. */
6393
6394 if (tree_int_cst_sgn (value) < 0)
6395 value = fold_build1 (BIT_NOT_EXPR, TREE_TYPE (value), value);
6396
6397 /* Return the number of bits needed, taking into account the fact
6398 that we need one more bit for a signed than unsigned type. */
6399
6400 if (integer_zerop (value))
6401 log = 0;
6402 else
6403 log = tree_floor_log2 (value);
6404
6405 return log + 1 + !unsignedp;
6406 }
6407
6408 /* Compare two constructor-element-type constants. Return 1 if the lists
6409 are known to be equal; otherwise return 0. */
6410
6411 int
6412 simple_cst_list_equal (const_tree l1, const_tree l2)
6413 {
6414 while (l1 != NULL_TREE && l2 != NULL_TREE)
6415 {
6416 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
6417 return 0;
6418
6419 l1 = TREE_CHAIN (l1);
6420 l2 = TREE_CHAIN (l2);
6421 }
6422
6423 return l1 == l2;
6424 }
6425
6426 /* Return truthvalue of whether T1 is the same tree structure as T2.
6427 Return 1 if they are the same.
6428 Return 0 if they are understandably different.
6429 Return -1 if either contains tree structure not understood by
6430 this function. */
6431
6432 int
6433 simple_cst_equal (const_tree t1, const_tree t2)
6434 {
6435 enum tree_code code1, code2;
6436 int cmp;
6437 int i;
6438
6439 if (t1 == t2)
6440 return 1;
6441 if (t1 == 0 || t2 == 0)
6442 return 0;
6443
6444 code1 = TREE_CODE (t1);
6445 code2 = TREE_CODE (t2);
6446
6447 if (CONVERT_EXPR_CODE_P (code1) || code1 == NON_LVALUE_EXPR)
6448 {
6449 if (CONVERT_EXPR_CODE_P (code2)
6450 || code2 == NON_LVALUE_EXPR)
6451 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6452 else
6453 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
6454 }
6455
6456 else if (CONVERT_EXPR_CODE_P (code2)
6457 || code2 == NON_LVALUE_EXPR)
6458 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
6459
6460 if (code1 != code2)
6461 return 0;
6462
6463 switch (code1)
6464 {
6465 case INTEGER_CST:
6466 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
6467 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
6468
6469 case REAL_CST:
6470 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
6471
6472 case FIXED_CST:
6473 return FIXED_VALUES_IDENTICAL (TREE_FIXED_CST (t1), TREE_FIXED_CST (t2));
6474
6475 case STRING_CST:
6476 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
6477 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
6478 TREE_STRING_LENGTH (t1)));
6479
6480 case CONSTRUCTOR:
6481 {
6482 unsigned HOST_WIDE_INT idx;
6483 VEC(constructor_elt, gc) *v1 = CONSTRUCTOR_ELTS (t1);
6484 VEC(constructor_elt, gc) *v2 = CONSTRUCTOR_ELTS (t2);
6485
6486 if (VEC_length (constructor_elt, v1) != VEC_length (constructor_elt, v2))
6487 return false;
6488
6489 for (idx = 0; idx < VEC_length (constructor_elt, v1); ++idx)
6490 /* ??? Should we handle also fields here? */
6491 if (!simple_cst_equal (VEC_index (constructor_elt, v1, idx)->value,
6492 VEC_index (constructor_elt, v2, idx)->value))
6493 return false;
6494 return true;
6495 }
6496
6497 case SAVE_EXPR:
6498 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6499
6500 case CALL_EXPR:
6501 cmp = simple_cst_equal (CALL_EXPR_FN (t1), CALL_EXPR_FN (t2));
6502 if (cmp <= 0)
6503 return cmp;
6504 if (call_expr_nargs (t1) != call_expr_nargs (t2))
6505 return 0;
6506 {
6507 const_tree arg1, arg2;
6508 const_call_expr_arg_iterator iter1, iter2;
6509 for (arg1 = first_const_call_expr_arg (t1, &iter1),
6510 arg2 = first_const_call_expr_arg (t2, &iter2);
6511 arg1 && arg2;
6512 arg1 = next_const_call_expr_arg (&iter1),
6513 arg2 = next_const_call_expr_arg (&iter2))
6514 {
6515 cmp = simple_cst_equal (arg1, arg2);
6516 if (cmp <= 0)
6517 return cmp;
6518 }
6519 return arg1 == arg2;
6520 }
6521
6522 case TARGET_EXPR:
6523 /* Special case: if either target is an unallocated VAR_DECL,
6524 it means that it's going to be unified with whatever the
6525 TARGET_EXPR is really supposed to initialize, so treat it
6526 as being equivalent to anything. */
6527 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
6528 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
6529 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
6530 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
6531 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
6532 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
6533 cmp = 1;
6534 else
6535 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6536
6537 if (cmp <= 0)
6538 return cmp;
6539
6540 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
6541
6542 case WITH_CLEANUP_EXPR:
6543 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6544 if (cmp <= 0)
6545 return cmp;
6546
6547 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
6548
6549 case COMPONENT_REF:
6550 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
6551 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
6552
6553 return 0;
6554
6555 case VAR_DECL:
6556 case PARM_DECL:
6557 case CONST_DECL:
6558 case FUNCTION_DECL:
6559 return 0;
6560
6561 default:
6562 break;
6563 }
6564
6565 /* This general rule works for most tree codes. All exceptions should be
6566 handled above. If this is a language-specific tree code, we can't
6567 trust what might be in the operand, so say we don't know
6568 the situation. */
6569 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
6570 return -1;
6571
6572 switch (TREE_CODE_CLASS (code1))
6573 {
6574 case tcc_unary:
6575 case tcc_binary:
6576 case tcc_comparison:
6577 case tcc_expression:
6578 case tcc_reference:
6579 case tcc_statement:
6580 cmp = 1;
6581 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
6582 {
6583 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
6584 if (cmp <= 0)
6585 return cmp;
6586 }
6587
6588 return cmp;
6589
6590 default:
6591 return -1;
6592 }
6593 }
6594
6595 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
6596 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
6597 than U, respectively. */
6598
6599 int
6600 compare_tree_int (const_tree t, unsigned HOST_WIDE_INT u)
6601 {
6602 if (tree_int_cst_sgn (t) < 0)
6603 return -1;
6604 else if (TREE_INT_CST_HIGH (t) != 0)
6605 return 1;
6606 else if (TREE_INT_CST_LOW (t) == u)
6607 return 0;
6608 else if (TREE_INT_CST_LOW (t) < u)
6609 return -1;
6610 else
6611 return 1;
6612 }
6613
6614 /* Return true if CODE represents an associative tree code. Otherwise
6615 return false. */
6616 bool
6617 associative_tree_code (enum tree_code code)
6618 {
6619 switch (code)
6620 {
6621 case BIT_IOR_EXPR:
6622 case BIT_AND_EXPR:
6623 case BIT_XOR_EXPR:
6624 case PLUS_EXPR:
6625 case MULT_EXPR:
6626 case MIN_EXPR:
6627 case MAX_EXPR:
6628 return true;
6629
6630 default:
6631 break;
6632 }
6633 return false;
6634 }
6635
6636 /* Return true if CODE represents a commutative tree code. Otherwise
6637 return false. */
6638 bool
6639 commutative_tree_code (enum tree_code code)
6640 {
6641 switch (code)
6642 {
6643 case PLUS_EXPR:
6644 case MULT_EXPR:
6645 case MIN_EXPR:
6646 case MAX_EXPR:
6647 case BIT_IOR_EXPR:
6648 case BIT_XOR_EXPR:
6649 case BIT_AND_EXPR:
6650 case NE_EXPR:
6651 case EQ_EXPR:
6652 case UNORDERED_EXPR:
6653 case ORDERED_EXPR:
6654 case UNEQ_EXPR:
6655 case LTGT_EXPR:
6656 case TRUTH_AND_EXPR:
6657 case TRUTH_XOR_EXPR:
6658 case TRUTH_OR_EXPR:
6659 return true;
6660
6661 default:
6662 break;
6663 }
6664 return false;
6665 }
6666
6667 /* Return true if CODE represents a ternary tree code for which the
6668 first two operands are commutative. Otherwise return false. */
6669 bool
6670 commutative_ternary_tree_code (enum tree_code code)
6671 {
6672 switch (code)
6673 {
6674 case WIDEN_MULT_PLUS_EXPR:
6675 case WIDEN_MULT_MINUS_EXPR:
6676 return true;
6677
6678 default:
6679 break;
6680 }
6681 return false;
6682 }
6683
6684 /* Generate a hash value for an expression. This can be used iteratively
6685 by passing a previous result as the VAL argument.
6686
6687 This function is intended to produce the same hash for expressions which
6688 would compare equal using operand_equal_p. */
6689
6690 hashval_t
6691 iterative_hash_expr (const_tree t, hashval_t val)
6692 {
6693 int i;
6694 enum tree_code code;
6695 char tclass;
6696
6697 if (t == NULL_TREE)
6698 return iterative_hash_hashval_t (0, val);
6699
6700 code = TREE_CODE (t);
6701
6702 switch (code)
6703 {
6704 /* Alas, constants aren't shared, so we can't rely on pointer
6705 identity. */
6706 case INTEGER_CST:
6707 val = iterative_hash_host_wide_int (TREE_INT_CST_LOW (t), val);
6708 return iterative_hash_host_wide_int (TREE_INT_CST_HIGH (t), val);
6709 case REAL_CST:
6710 {
6711 unsigned int val2 = real_hash (TREE_REAL_CST_PTR (t));
6712
6713 return iterative_hash_hashval_t (val2, val);
6714 }
6715 case FIXED_CST:
6716 {
6717 unsigned int val2 = fixed_hash (TREE_FIXED_CST_PTR (t));
6718
6719 return iterative_hash_hashval_t (val2, val);
6720 }
6721 case STRING_CST:
6722 return iterative_hash (TREE_STRING_POINTER (t),
6723 TREE_STRING_LENGTH (t), val);
6724 case COMPLEX_CST:
6725 val = iterative_hash_expr (TREE_REALPART (t), val);
6726 return iterative_hash_expr (TREE_IMAGPART (t), val);
6727 case VECTOR_CST:
6728 return iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
6729 case SSA_NAME:
6730 /* We can just compare by pointer. */
6731 return iterative_hash_host_wide_int (SSA_NAME_VERSION (t), val);
6732 case PLACEHOLDER_EXPR:
6733 /* The node itself doesn't matter. */
6734 return val;
6735 case TREE_LIST:
6736 /* A list of expressions, for a CALL_EXPR or as the elements of a
6737 VECTOR_CST. */
6738 for (; t; t = TREE_CHAIN (t))
6739 val = iterative_hash_expr (TREE_VALUE (t), val);
6740 return val;
6741 case CONSTRUCTOR:
6742 {
6743 unsigned HOST_WIDE_INT idx;
6744 tree field, value;
6745 FOR_EACH_CONSTRUCTOR_ELT (CONSTRUCTOR_ELTS (t), idx, field, value)
6746 {
6747 val = iterative_hash_expr (field, val);
6748 val = iterative_hash_expr (value, val);
6749 }
6750 return val;
6751 }
6752 case MEM_REF:
6753 {
6754 /* The type of the second operand is relevant, except for
6755 its top-level qualifiers. */
6756 tree type = TYPE_MAIN_VARIANT (TREE_TYPE (TREE_OPERAND (t, 1)));
6757
6758 val = iterative_hash_object (TYPE_HASH (type), val);
6759
6760 /* We could use the standard hash computation from this point
6761 on. */
6762 val = iterative_hash_object (code, val);
6763 val = iterative_hash_expr (TREE_OPERAND (t, 1), val);
6764 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6765 return val;
6766 }
6767 case FUNCTION_DECL:
6768 /* When referring to a built-in FUNCTION_DECL, use the __builtin__ form.
6769 Otherwise nodes that compare equal according to operand_equal_p might
6770 get different hash codes. However, don't do this for machine specific
6771 or front end builtins, since the function code is overloaded in those
6772 cases. */
6773 if (DECL_BUILT_IN_CLASS (t) == BUILT_IN_NORMAL
6774 && built_in_decls[DECL_FUNCTION_CODE (t)])
6775 {
6776 t = built_in_decls[DECL_FUNCTION_CODE (t)];
6777 code = TREE_CODE (t);
6778 }
6779 /* FALL THROUGH */
6780 default:
6781 tclass = TREE_CODE_CLASS (code);
6782
6783 if (tclass == tcc_declaration)
6784 {
6785 /* DECL's have a unique ID */
6786 val = iterative_hash_host_wide_int (DECL_UID (t), val);
6787 }
6788 else
6789 {
6790 gcc_assert (IS_EXPR_CODE_CLASS (tclass));
6791
6792 val = iterative_hash_object (code, val);
6793
6794 /* Don't hash the type, that can lead to having nodes which
6795 compare equal according to operand_equal_p, but which
6796 have different hash codes. */
6797 if (CONVERT_EXPR_CODE_P (code)
6798 || code == NON_LVALUE_EXPR)
6799 {
6800 /* Make sure to include signness in the hash computation. */
6801 val += TYPE_UNSIGNED (TREE_TYPE (t));
6802 val = iterative_hash_expr (TREE_OPERAND (t, 0), val);
6803 }
6804
6805 else if (commutative_tree_code (code))
6806 {
6807 /* It's a commutative expression. We want to hash it the same
6808 however it appears. We do this by first hashing both operands
6809 and then rehashing based on the order of their independent
6810 hashes. */
6811 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
6812 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
6813 hashval_t t;
6814
6815 if (one > two)
6816 t = one, one = two, two = t;
6817
6818 val = iterative_hash_hashval_t (one, val);
6819 val = iterative_hash_hashval_t (two, val);
6820 }
6821 else
6822 for (i = TREE_OPERAND_LENGTH (t) - 1; i >= 0; --i)
6823 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
6824 }
6825 return val;
6826 break;
6827 }
6828 }
6829
6830 /* Generate a hash value for a pair of expressions. This can be used
6831 iteratively by passing a previous result as the VAL argument.
6832
6833 The same hash value is always returned for a given pair of expressions,
6834 regardless of the order in which they are presented. This is useful in
6835 hashing the operands of commutative functions. */
6836
6837 hashval_t
6838 iterative_hash_exprs_commutative (const_tree t1,
6839 const_tree t2, hashval_t val)
6840 {
6841 hashval_t one = iterative_hash_expr (t1, 0);
6842 hashval_t two = iterative_hash_expr (t2, 0);
6843 hashval_t t;
6844
6845 if (one > two)
6846 t = one, one = two, two = t;
6847 val = iterative_hash_hashval_t (one, val);
6848 val = iterative_hash_hashval_t (two, val);
6849
6850 return val;
6851 }
6852 \f
6853 /* Constructors for pointer, array and function types.
6854 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
6855 constructed by language-dependent code, not here.) */
6856
6857 /* Construct, lay out and return the type of pointers to TO_TYPE with
6858 mode MODE. If CAN_ALIAS_ALL is TRUE, indicate this type can
6859 reference all of memory. If such a type has already been
6860 constructed, reuse it. */
6861
6862 tree
6863 build_pointer_type_for_mode (tree to_type, enum machine_mode mode,
6864 bool can_alias_all)
6865 {
6866 tree t;
6867
6868 if (to_type == error_mark_node)
6869 return error_mark_node;
6870
6871 /* If the pointed-to type has the may_alias attribute set, force
6872 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6873 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6874 can_alias_all = true;
6875
6876 /* In some cases, languages will have things that aren't a POINTER_TYPE
6877 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_POINTER_TO.
6878 In that case, return that type without regard to the rest of our
6879 operands.
6880
6881 ??? This is a kludge, but consistent with the way this function has
6882 always operated and there doesn't seem to be a good way to avoid this
6883 at the moment. */
6884 if (TYPE_POINTER_TO (to_type) != 0
6885 && TREE_CODE (TYPE_POINTER_TO (to_type)) != POINTER_TYPE)
6886 return TYPE_POINTER_TO (to_type);
6887
6888 /* First, if we already have a type for pointers to TO_TYPE and it's
6889 the proper mode, use it. */
6890 for (t = TYPE_POINTER_TO (to_type); t; t = TYPE_NEXT_PTR_TO (t))
6891 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6892 return t;
6893
6894 t = make_node (POINTER_TYPE);
6895
6896 TREE_TYPE (t) = to_type;
6897 SET_TYPE_MODE (t, mode);
6898 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6899 TYPE_NEXT_PTR_TO (t) = TYPE_POINTER_TO (to_type);
6900 TYPE_POINTER_TO (to_type) = t;
6901
6902 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6903 SET_TYPE_STRUCTURAL_EQUALITY (t);
6904 else if (TYPE_CANONICAL (to_type) != to_type)
6905 TYPE_CANONICAL (t)
6906 = build_pointer_type_for_mode (TYPE_CANONICAL (to_type),
6907 mode, can_alias_all);
6908
6909 /* Lay out the type. This function has many callers that are concerned
6910 with expression-construction, and this simplifies them all. */
6911 layout_type (t);
6912
6913 return t;
6914 }
6915
6916 /* By default build pointers in ptr_mode. */
6917
6918 tree
6919 build_pointer_type (tree to_type)
6920 {
6921 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6922 : TYPE_ADDR_SPACE (to_type);
6923 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6924 return build_pointer_type_for_mode (to_type, pointer_mode, false);
6925 }
6926
6927 /* Same as build_pointer_type_for_mode, but for REFERENCE_TYPE. */
6928
6929 tree
6930 build_reference_type_for_mode (tree to_type, enum machine_mode mode,
6931 bool can_alias_all)
6932 {
6933 tree t;
6934
6935 if (to_type == error_mark_node)
6936 return error_mark_node;
6937
6938 /* If the pointed-to type has the may_alias attribute set, force
6939 a TYPE_REF_CAN_ALIAS_ALL pointer to be generated. */
6940 if (lookup_attribute ("may_alias", TYPE_ATTRIBUTES (to_type)))
6941 can_alias_all = true;
6942
6943 /* In some cases, languages will have things that aren't a REFERENCE_TYPE
6944 (such as a RECORD_TYPE for fat pointers in Ada) as TYPE_REFERENCE_TO.
6945 In that case, return that type without regard to the rest of our
6946 operands.
6947
6948 ??? This is a kludge, but consistent with the way this function has
6949 always operated and there doesn't seem to be a good way to avoid this
6950 at the moment. */
6951 if (TYPE_REFERENCE_TO (to_type) != 0
6952 && TREE_CODE (TYPE_REFERENCE_TO (to_type)) != REFERENCE_TYPE)
6953 return TYPE_REFERENCE_TO (to_type);
6954
6955 /* First, if we already have a type for pointers to TO_TYPE and it's
6956 the proper mode, use it. */
6957 for (t = TYPE_REFERENCE_TO (to_type); t; t = TYPE_NEXT_REF_TO (t))
6958 if (TYPE_MODE (t) == mode && TYPE_REF_CAN_ALIAS_ALL (t) == can_alias_all)
6959 return t;
6960
6961 t = make_node (REFERENCE_TYPE);
6962
6963 TREE_TYPE (t) = to_type;
6964 SET_TYPE_MODE (t, mode);
6965 TYPE_REF_CAN_ALIAS_ALL (t) = can_alias_all;
6966 TYPE_NEXT_REF_TO (t) = TYPE_REFERENCE_TO (to_type);
6967 TYPE_REFERENCE_TO (to_type) = t;
6968
6969 if (TYPE_STRUCTURAL_EQUALITY_P (to_type))
6970 SET_TYPE_STRUCTURAL_EQUALITY (t);
6971 else if (TYPE_CANONICAL (to_type) != to_type)
6972 TYPE_CANONICAL (t)
6973 = build_reference_type_for_mode (TYPE_CANONICAL (to_type),
6974 mode, can_alias_all);
6975
6976 layout_type (t);
6977
6978 return t;
6979 }
6980
6981
6982 /* Build the node for the type of references-to-TO_TYPE by default
6983 in ptr_mode. */
6984
6985 tree
6986 build_reference_type (tree to_type)
6987 {
6988 addr_space_t as = to_type == error_mark_node? ADDR_SPACE_GENERIC
6989 : TYPE_ADDR_SPACE (to_type);
6990 enum machine_mode pointer_mode = targetm.addr_space.pointer_mode (as);
6991 return build_reference_type_for_mode (to_type, pointer_mode, false);
6992 }
6993
6994 /* Build a type that is compatible with t but has no cv quals anywhere
6995 in its type, thus
6996
6997 const char *const *const * -> char ***. */
6998
6999 tree
7000 build_type_no_quals (tree t)
7001 {
7002 switch (TREE_CODE (t))
7003 {
7004 case POINTER_TYPE:
7005 return build_pointer_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7006 TYPE_MODE (t),
7007 TYPE_REF_CAN_ALIAS_ALL (t));
7008 case REFERENCE_TYPE:
7009 return
7010 build_reference_type_for_mode (build_type_no_quals (TREE_TYPE (t)),
7011 TYPE_MODE (t),
7012 TYPE_REF_CAN_ALIAS_ALL (t));
7013 default:
7014 return TYPE_MAIN_VARIANT (t);
7015 }
7016 }
7017
7018 #define MAX_INT_CACHED_PREC \
7019 (HOST_BITS_PER_WIDE_INT > 64 ? HOST_BITS_PER_WIDE_INT : 64)
7020 static GTY(()) tree nonstandard_integer_type_cache[2 * MAX_INT_CACHED_PREC + 2];
7021
7022 /* Builds a signed or unsigned integer type of precision PRECISION.
7023 Used for C bitfields whose precision does not match that of
7024 built-in target types. */
7025 tree
7026 build_nonstandard_integer_type (unsigned HOST_WIDE_INT precision,
7027 int unsignedp)
7028 {
7029 tree itype, ret;
7030
7031 if (unsignedp)
7032 unsignedp = MAX_INT_CACHED_PREC + 1;
7033
7034 if (precision <= MAX_INT_CACHED_PREC)
7035 {
7036 itype = nonstandard_integer_type_cache[precision + unsignedp];
7037 if (itype)
7038 return itype;
7039 }
7040
7041 itype = make_node (INTEGER_TYPE);
7042 TYPE_PRECISION (itype) = precision;
7043
7044 if (unsignedp)
7045 fixup_unsigned_type (itype);
7046 else
7047 fixup_signed_type (itype);
7048
7049 ret = itype;
7050 if (host_integerp (TYPE_MAX_VALUE (itype), 1))
7051 ret = type_hash_canon (tree_low_cst (TYPE_MAX_VALUE (itype), 1), itype);
7052 if (precision <= MAX_INT_CACHED_PREC)
7053 nonstandard_integer_type_cache[precision + unsignedp] = ret;
7054
7055 return ret;
7056 }
7057
7058 /* Create a range of some discrete type TYPE (an INTEGER_TYPE, ENUMERAL_TYPE
7059 or BOOLEAN_TYPE) with low bound LOWVAL and high bound HIGHVAL. If SHARED
7060 is true, reuse such a type that has already been constructed. */
7061
7062 static tree
7063 build_range_type_1 (tree type, tree lowval, tree highval, bool shared)
7064 {
7065 tree itype = make_node (INTEGER_TYPE);
7066
7067 TREE_TYPE (itype) = type;
7068
7069 TYPE_MIN_VALUE (itype) = fold_convert (type, lowval);
7070 TYPE_MAX_VALUE (itype) = highval ? fold_convert (type, highval) : NULL;
7071
7072 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
7073 SET_TYPE_MODE (itype, TYPE_MODE (type));
7074 TYPE_SIZE (itype) = TYPE_SIZE (type);
7075 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
7076 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
7077 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
7078
7079 if ((TYPE_MIN_VALUE (itype)
7080 && TREE_CODE (TYPE_MIN_VALUE (itype)) != INTEGER_CST)
7081 || (TYPE_MAX_VALUE (itype)
7082 && TREE_CODE (TYPE_MAX_VALUE (itype)) != INTEGER_CST))
7083 {
7084 /* Since we cannot reliably merge this type, we need to compare it using
7085 structural equality checks. */
7086 SET_TYPE_STRUCTURAL_EQUALITY (itype);
7087 return itype;
7088 }
7089
7090 if (shared)
7091 {
7092 hashval_t hash = iterative_hash_expr (TYPE_MIN_VALUE (itype), 0);
7093 hash = iterative_hash_expr (TYPE_MAX_VALUE (itype), hash);
7094 hash = iterative_hash_hashval_t (TYPE_HASH (type), hash);
7095 itype = type_hash_canon (hash, itype);
7096 }
7097
7098 return itype;
7099 }
7100
7101 /* Wrapper around build_range_type_1 with SHARED set to true. */
7102
7103 tree
7104 build_range_type (tree type, tree lowval, tree highval)
7105 {
7106 return build_range_type_1 (type, lowval, highval, true);
7107 }
7108
7109 /* Wrapper around build_range_type_1 with SHARED set to false. */
7110
7111 tree
7112 build_nonshared_range_type (tree type, tree lowval, tree highval)
7113 {
7114 return build_range_type_1 (type, lowval, highval, false);
7115 }
7116
7117 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
7118 MAXVAL should be the maximum value in the domain
7119 (one less than the length of the array).
7120
7121 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
7122 We don't enforce this limit, that is up to caller (e.g. language front end).
7123 The limit exists because the result is a signed type and we don't handle
7124 sizes that use more than one HOST_WIDE_INT. */
7125
7126 tree
7127 build_index_type (tree maxval)
7128 {
7129 return build_range_type (sizetype, size_zero_node, maxval);
7130 }
7131
7132 /* Return true if the debug information for TYPE, a subtype, should be emitted
7133 as a subrange type. If so, set LOWVAL to the low bound and HIGHVAL to the
7134 high bound, respectively. Sometimes doing so unnecessarily obfuscates the
7135 debug info and doesn't reflect the source code. */
7136
7137 bool
7138 subrange_type_for_debug_p (const_tree type, tree *lowval, tree *highval)
7139 {
7140 tree base_type = TREE_TYPE (type), low, high;
7141
7142 /* Subrange types have a base type which is an integral type. */
7143 if (!INTEGRAL_TYPE_P (base_type))
7144 return false;
7145
7146 /* Get the real bounds of the subtype. */
7147 if (lang_hooks.types.get_subrange_bounds)
7148 lang_hooks.types.get_subrange_bounds (type, &low, &high);
7149 else
7150 {
7151 low = TYPE_MIN_VALUE (type);
7152 high = TYPE_MAX_VALUE (type);
7153 }
7154
7155 /* If the type and its base type have the same representation and the same
7156 name, then the type is not a subrange but a copy of the base type. */
7157 if ((TREE_CODE (base_type) == INTEGER_TYPE
7158 || TREE_CODE (base_type) == BOOLEAN_TYPE)
7159 && int_size_in_bytes (type) == int_size_in_bytes (base_type)
7160 && tree_int_cst_equal (low, TYPE_MIN_VALUE (base_type))
7161 && tree_int_cst_equal (high, TYPE_MAX_VALUE (base_type)))
7162 {
7163 tree type_name = TYPE_NAME (type);
7164 tree base_type_name = TYPE_NAME (base_type);
7165
7166 if (type_name && TREE_CODE (type_name) == TYPE_DECL)
7167 type_name = DECL_NAME (type_name);
7168
7169 if (base_type_name && TREE_CODE (base_type_name) == TYPE_DECL)
7170 base_type_name = DECL_NAME (base_type_name);
7171
7172 if (type_name == base_type_name)
7173 return false;
7174 }
7175
7176 if (lowval)
7177 *lowval = low;
7178 if (highval)
7179 *highval = high;
7180 return true;
7181 }
7182
7183 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
7184 and number of elements specified by the range of values of INDEX_TYPE.
7185 If SHARED is true, reuse such a type that has already been constructed. */
7186
7187 static tree
7188 build_array_type_1 (tree elt_type, tree index_type, bool shared)
7189 {
7190 tree t;
7191
7192 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
7193 {
7194 error ("arrays of functions are not meaningful");
7195 elt_type = integer_type_node;
7196 }
7197
7198 t = make_node (ARRAY_TYPE);
7199 TREE_TYPE (t) = elt_type;
7200 TYPE_DOMAIN (t) = index_type;
7201 TYPE_ADDR_SPACE (t) = TYPE_ADDR_SPACE (elt_type);
7202 layout_type (t);
7203
7204 /* If the element type is incomplete at this point we get marked for
7205 structural equality. Do not record these types in the canonical
7206 type hashtable. */
7207 if (TYPE_STRUCTURAL_EQUALITY_P (t))
7208 return t;
7209
7210 if (shared)
7211 {
7212 hashval_t hashcode = iterative_hash_object (TYPE_HASH (elt_type), 0);
7213 if (index_type)
7214 hashcode = iterative_hash_object (TYPE_HASH (index_type), hashcode);
7215 t = type_hash_canon (hashcode, t);
7216 }
7217
7218 if (TYPE_CANONICAL (t) == t)
7219 {
7220 if (TYPE_STRUCTURAL_EQUALITY_P (elt_type)
7221 || (index_type && TYPE_STRUCTURAL_EQUALITY_P (index_type)))
7222 SET_TYPE_STRUCTURAL_EQUALITY (t);
7223 else if (TYPE_CANONICAL (elt_type) != elt_type
7224 || (index_type && TYPE_CANONICAL (index_type) != index_type))
7225 TYPE_CANONICAL (t)
7226 = build_array_type_1 (TYPE_CANONICAL (elt_type),
7227 index_type
7228 ? TYPE_CANONICAL (index_type) : NULL_TREE,
7229 shared);
7230 }
7231
7232 return t;
7233 }
7234
7235 /* Wrapper around build_array_type_1 with SHARED set to true. */
7236
7237 tree
7238 build_array_type (tree elt_type, tree index_type)
7239 {
7240 return build_array_type_1 (elt_type, index_type, true);
7241 }
7242
7243 /* Wrapper around build_array_type_1 with SHARED set to false. */
7244
7245 tree
7246 build_nonshared_array_type (tree elt_type, tree index_type)
7247 {
7248 return build_array_type_1 (elt_type, index_type, false);
7249 }
7250
7251 /* Recursively examines the array elements of TYPE, until a non-array
7252 element type is found. */
7253
7254 tree
7255 strip_array_types (tree type)
7256 {
7257 while (TREE_CODE (type) == ARRAY_TYPE)
7258 type = TREE_TYPE (type);
7259
7260 return type;
7261 }
7262
7263 /* Computes the canonical argument types from the argument type list
7264 ARGTYPES.
7265
7266 Upon return, *ANY_STRUCTURAL_P will be true iff either it was true
7267 on entry to this function, or if any of the ARGTYPES are
7268 structural.
7269
7270 Upon return, *ANY_NONCANONICAL_P will be true iff either it was
7271 true on entry to this function, or if any of the ARGTYPES are
7272 non-canonical.
7273
7274 Returns a canonical argument list, which may be ARGTYPES when the
7275 canonical argument list is unneeded (i.e., *ANY_STRUCTURAL_P is
7276 true) or would not differ from ARGTYPES. */
7277
7278 static tree
7279 maybe_canonicalize_argtypes(tree argtypes,
7280 bool *any_structural_p,
7281 bool *any_noncanonical_p)
7282 {
7283 tree arg;
7284 bool any_noncanonical_argtypes_p = false;
7285
7286 for (arg = argtypes; arg && !(*any_structural_p); arg = TREE_CHAIN (arg))
7287 {
7288 if (!TREE_VALUE (arg) || TREE_VALUE (arg) == error_mark_node)
7289 /* Fail gracefully by stating that the type is structural. */
7290 *any_structural_p = true;
7291 else if (TYPE_STRUCTURAL_EQUALITY_P (TREE_VALUE (arg)))
7292 *any_structural_p = true;
7293 else if (TYPE_CANONICAL (TREE_VALUE (arg)) != TREE_VALUE (arg)
7294 || TREE_PURPOSE (arg))
7295 /* If the argument has a default argument, we consider it
7296 non-canonical even though the type itself is canonical.
7297 That way, different variants of function and method types
7298 with default arguments will all point to the variant with
7299 no defaults as their canonical type. */
7300 any_noncanonical_argtypes_p = true;
7301 }
7302
7303 if (*any_structural_p)
7304 return argtypes;
7305
7306 if (any_noncanonical_argtypes_p)
7307 {
7308 /* Build the canonical list of argument types. */
7309 tree canon_argtypes = NULL_TREE;
7310 bool is_void = false;
7311
7312 for (arg = argtypes; arg; arg = TREE_CHAIN (arg))
7313 {
7314 if (arg == void_list_node)
7315 is_void = true;
7316 else
7317 canon_argtypes = tree_cons (NULL_TREE,
7318 TYPE_CANONICAL (TREE_VALUE (arg)),
7319 canon_argtypes);
7320 }
7321
7322 canon_argtypes = nreverse (canon_argtypes);
7323 if (is_void)
7324 canon_argtypes = chainon (canon_argtypes, void_list_node);
7325
7326 /* There is a non-canonical type. */
7327 *any_noncanonical_p = true;
7328 return canon_argtypes;
7329 }
7330
7331 /* The canonical argument types are the same as ARGTYPES. */
7332 return argtypes;
7333 }
7334
7335 /* Construct, lay out and return
7336 the type of functions returning type VALUE_TYPE
7337 given arguments of types ARG_TYPES.
7338 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
7339 are data type nodes for the arguments of the function.
7340 If such a type has already been constructed, reuse it. */
7341
7342 tree
7343 build_function_type (tree value_type, tree arg_types)
7344 {
7345 tree t;
7346 hashval_t hashcode = 0;
7347 bool any_structural_p, any_noncanonical_p;
7348 tree canon_argtypes;
7349
7350 if (TREE_CODE (value_type) == FUNCTION_TYPE)
7351 {
7352 error ("function return type cannot be function");
7353 value_type = integer_type_node;
7354 }
7355
7356 /* Make a node of the sort we want. */
7357 t = make_node (FUNCTION_TYPE);
7358 TREE_TYPE (t) = value_type;
7359 TYPE_ARG_TYPES (t) = arg_types;
7360
7361 /* If we already have such a type, use the old one. */
7362 hashcode = iterative_hash_object (TYPE_HASH (value_type), hashcode);
7363 hashcode = type_hash_list (arg_types, hashcode);
7364 t = type_hash_canon (hashcode, t);
7365
7366 /* Set up the canonical type. */
7367 any_structural_p = TYPE_STRUCTURAL_EQUALITY_P (value_type);
7368 any_noncanonical_p = TYPE_CANONICAL (value_type) != value_type;
7369 canon_argtypes = maybe_canonicalize_argtypes (arg_types,
7370 &any_structural_p,
7371 &any_noncanonical_p);
7372 if (any_structural_p)
7373 SET_TYPE_STRUCTURAL_EQUALITY (t);
7374 else if (any_noncanonical_p)
7375 TYPE_CANONICAL (t) = build_function_type (TYPE_CANONICAL (value_type),
7376 canon_argtypes);
7377
7378 if (!COMPLETE_TYPE_P (t))
7379 layout_type (t);
7380 return t;
7381 }
7382
7383 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP. */
7384
7385 tree
7386 build_function_type_skip_args (tree orig_type, bitmap args_to_skip)
7387 {
7388 tree new_type = NULL;
7389 tree args, new_args = NULL, t;
7390 tree new_reversed;
7391 int i = 0;
7392
7393 for (args = TYPE_ARG_TYPES (orig_type); args && args != void_list_node;
7394 args = TREE_CHAIN (args), i++)
7395 if (!bitmap_bit_p (args_to_skip, i))
7396 new_args = tree_cons (NULL_TREE, TREE_VALUE (args), new_args);
7397
7398 new_reversed = nreverse (new_args);
7399 if (args)
7400 {
7401 if (new_reversed)
7402 TREE_CHAIN (new_args) = void_list_node;
7403 else
7404 new_reversed = void_list_node;
7405 }
7406
7407 /* Use copy_node to preserve as much as possible from original type
7408 (debug info, attribute lists etc.)
7409 Exception is METHOD_TYPEs must have THIS argument.
7410 When we are asked to remove it, we need to build new FUNCTION_TYPE
7411 instead. */
7412 if (TREE_CODE (orig_type) != METHOD_TYPE
7413 || !bitmap_bit_p (args_to_skip, 0))
7414 {
7415 new_type = build_distinct_type_copy (orig_type);
7416 TYPE_ARG_TYPES (new_type) = new_reversed;
7417 }
7418 else
7419 {
7420 new_type
7421 = build_distinct_type_copy (build_function_type (TREE_TYPE (orig_type),
7422 new_reversed));
7423 TYPE_CONTEXT (new_type) = TYPE_CONTEXT (orig_type);
7424 }
7425
7426 /* This is a new type, not a copy of an old type. Need to reassociate
7427 variants. We can handle everything except the main variant lazily. */
7428 t = TYPE_MAIN_VARIANT (orig_type);
7429 if (orig_type != t)
7430 {
7431 TYPE_MAIN_VARIANT (new_type) = t;
7432 TYPE_NEXT_VARIANT (new_type) = TYPE_NEXT_VARIANT (t);
7433 TYPE_NEXT_VARIANT (t) = new_type;
7434 }
7435 else
7436 {
7437 TYPE_MAIN_VARIANT (new_type) = new_type;
7438 TYPE_NEXT_VARIANT (new_type) = NULL;
7439 }
7440 return new_type;
7441 }
7442
7443 /* Build variant of function type ORIG_TYPE skipping ARGS_TO_SKIP.
7444
7445 Arguments from DECL_ARGUMENTS list can't be removed now, since they are
7446 linked by TREE_CHAIN directly. The caller is responsible for eliminating
7447 them when they are being duplicated (i.e. copy_arguments_for_versioning). */
7448
7449 tree
7450 build_function_decl_skip_args (tree orig_decl, bitmap args_to_skip)
7451 {
7452 tree new_decl = copy_node (orig_decl);
7453 tree new_type;
7454
7455 new_type = TREE_TYPE (orig_decl);
7456 if (prototype_p (new_type))
7457 new_type = build_function_type_skip_args (new_type, args_to_skip);
7458 TREE_TYPE (new_decl) = new_type;
7459
7460 /* For declarations setting DECL_VINDEX (i.e. methods)
7461 we expect first argument to be THIS pointer. */
7462 if (bitmap_bit_p (args_to_skip, 0))
7463 DECL_VINDEX (new_decl) = NULL_TREE;
7464
7465 /* When signature changes, we need to clear builtin info. */
7466 if (DECL_BUILT_IN (new_decl) && !bitmap_empty_p (args_to_skip))
7467 {
7468 DECL_BUILT_IN_CLASS (new_decl) = NOT_BUILT_IN;
7469 DECL_FUNCTION_CODE (new_decl) = (enum built_in_function) 0;
7470 }
7471 return new_decl;
7472 }
7473
7474 /* Build a function type. The RETURN_TYPE is the type returned by the
7475 function. If VAARGS is set, no void_type_node is appended to the
7476 the list. ARGP must be always be terminated be a NULL_TREE. */
7477
7478 static tree
7479 build_function_type_list_1 (bool vaargs, tree return_type, va_list argp)
7480 {
7481 tree t, args, last;
7482
7483 t = va_arg (argp, tree);
7484 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (argp, tree))
7485 args = tree_cons (NULL_TREE, t, args);
7486
7487 if (vaargs)
7488 {
7489 last = args;
7490 if (args != NULL_TREE)
7491 args = nreverse (args);
7492 gcc_assert (last != void_list_node);
7493 }
7494 else if (args == NULL_TREE)
7495 args = void_list_node;
7496 else
7497 {
7498 last = args;
7499 args = nreverse (args);
7500 TREE_CHAIN (last) = void_list_node;
7501 }
7502 args = build_function_type (return_type, args);
7503
7504 return args;
7505 }
7506
7507 /* Build a function type. The RETURN_TYPE is the type returned by the
7508 function. If additional arguments are provided, they are
7509 additional argument types. The list of argument types must always
7510 be terminated by NULL_TREE. */
7511
7512 tree
7513 build_function_type_list (tree return_type, ...)
7514 {
7515 tree args;
7516 va_list p;
7517
7518 va_start (p, return_type);
7519 args = build_function_type_list_1 (false, return_type, p);
7520 va_end (p);
7521 return args;
7522 }
7523
7524 /* Build a variable argument function type. The RETURN_TYPE is the
7525 type returned by the function. If additional arguments are provided,
7526 they are additional argument types. The list of argument types must
7527 always be terminated by NULL_TREE. */
7528
7529 tree
7530 build_varargs_function_type_list (tree return_type, ...)
7531 {
7532 tree args;
7533 va_list p;
7534
7535 va_start (p, return_type);
7536 args = build_function_type_list_1 (true, return_type, p);
7537 va_end (p);
7538
7539 return args;
7540 }
7541
7542 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
7543 and ARGTYPES (a TREE_LIST) are the return type and arguments types
7544 for the method. An implicit additional parameter (of type
7545 pointer-to-BASETYPE) is added to the ARGTYPES. */
7546
7547 tree
7548 build_method_type_directly (tree basetype,
7549 tree rettype,
7550 tree argtypes)
7551 {
7552 tree t;
7553 tree ptype;
7554 int hashcode = 0;
7555 bool any_structural_p, any_noncanonical_p;
7556 tree canon_argtypes;
7557
7558 /* Make a node of the sort we want. */
7559 t = make_node (METHOD_TYPE);
7560
7561 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7562 TREE_TYPE (t) = rettype;
7563 ptype = build_pointer_type (basetype);
7564
7565 /* The actual arglist for this function includes a "hidden" argument
7566 which is "this". Put it into the list of argument types. */
7567 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
7568 TYPE_ARG_TYPES (t) = argtypes;
7569
7570 /* If we already have such a type, use the old one. */
7571 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7572 hashcode = iterative_hash_object (TYPE_HASH (rettype), hashcode);
7573 hashcode = type_hash_list (argtypes, hashcode);
7574 t = type_hash_canon (hashcode, t);
7575
7576 /* Set up the canonical type. */
7577 any_structural_p
7578 = (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7579 || TYPE_STRUCTURAL_EQUALITY_P (rettype));
7580 any_noncanonical_p
7581 = (TYPE_CANONICAL (basetype) != basetype
7582 || TYPE_CANONICAL (rettype) != rettype);
7583 canon_argtypes = maybe_canonicalize_argtypes (TREE_CHAIN (argtypes),
7584 &any_structural_p,
7585 &any_noncanonical_p);
7586 if (any_structural_p)
7587 SET_TYPE_STRUCTURAL_EQUALITY (t);
7588 else if (any_noncanonical_p)
7589 TYPE_CANONICAL (t)
7590 = build_method_type_directly (TYPE_CANONICAL (basetype),
7591 TYPE_CANONICAL (rettype),
7592 canon_argtypes);
7593 if (!COMPLETE_TYPE_P (t))
7594 layout_type (t);
7595
7596 return t;
7597 }
7598
7599 /* Construct, lay out and return the type of methods belonging to class
7600 BASETYPE and whose arguments and values are described by TYPE.
7601 If that type exists already, reuse it.
7602 TYPE must be a FUNCTION_TYPE node. */
7603
7604 tree
7605 build_method_type (tree basetype, tree type)
7606 {
7607 gcc_assert (TREE_CODE (type) == FUNCTION_TYPE);
7608
7609 return build_method_type_directly (basetype,
7610 TREE_TYPE (type),
7611 TYPE_ARG_TYPES (type));
7612 }
7613
7614 /* Construct, lay out and return the type of offsets to a value
7615 of type TYPE, within an object of type BASETYPE.
7616 If a suitable offset type exists already, reuse it. */
7617
7618 tree
7619 build_offset_type (tree basetype, tree type)
7620 {
7621 tree t;
7622 hashval_t hashcode = 0;
7623
7624 /* Make a node of the sort we want. */
7625 t = make_node (OFFSET_TYPE);
7626
7627 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
7628 TREE_TYPE (t) = type;
7629
7630 /* If we already have such a type, use the old one. */
7631 hashcode = iterative_hash_object (TYPE_HASH (basetype), hashcode);
7632 hashcode = iterative_hash_object (TYPE_HASH (type), hashcode);
7633 t = type_hash_canon (hashcode, t);
7634
7635 if (!COMPLETE_TYPE_P (t))
7636 layout_type (t);
7637
7638 if (TYPE_CANONICAL (t) == t)
7639 {
7640 if (TYPE_STRUCTURAL_EQUALITY_P (basetype)
7641 || TYPE_STRUCTURAL_EQUALITY_P (type))
7642 SET_TYPE_STRUCTURAL_EQUALITY (t);
7643 else if (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)) != basetype
7644 || TYPE_CANONICAL (type) != type)
7645 TYPE_CANONICAL (t)
7646 = build_offset_type (TYPE_CANONICAL (TYPE_MAIN_VARIANT (basetype)),
7647 TYPE_CANONICAL (type));
7648 }
7649
7650 return t;
7651 }
7652
7653 /* Create a complex type whose components are COMPONENT_TYPE. */
7654
7655 tree
7656 build_complex_type (tree component_type)
7657 {
7658 tree t;
7659 hashval_t hashcode;
7660
7661 gcc_assert (INTEGRAL_TYPE_P (component_type)
7662 || SCALAR_FLOAT_TYPE_P (component_type)
7663 || FIXED_POINT_TYPE_P (component_type));
7664
7665 /* Make a node of the sort we want. */
7666 t = make_node (COMPLEX_TYPE);
7667
7668 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
7669
7670 /* If we already have such a type, use the old one. */
7671 hashcode = iterative_hash_object (TYPE_HASH (component_type), 0);
7672 t = type_hash_canon (hashcode, t);
7673
7674 if (!COMPLETE_TYPE_P (t))
7675 layout_type (t);
7676
7677 if (TYPE_CANONICAL (t) == t)
7678 {
7679 if (TYPE_STRUCTURAL_EQUALITY_P (component_type))
7680 SET_TYPE_STRUCTURAL_EQUALITY (t);
7681 else if (TYPE_CANONICAL (component_type) != component_type)
7682 TYPE_CANONICAL (t)
7683 = build_complex_type (TYPE_CANONICAL (component_type));
7684 }
7685
7686 /* We need to create a name, since complex is a fundamental type. */
7687 if (! TYPE_NAME (t))
7688 {
7689 const char *name;
7690 if (component_type == char_type_node)
7691 name = "complex char";
7692 else if (component_type == signed_char_type_node)
7693 name = "complex signed char";
7694 else if (component_type == unsigned_char_type_node)
7695 name = "complex unsigned char";
7696 else if (component_type == short_integer_type_node)
7697 name = "complex short int";
7698 else if (component_type == short_unsigned_type_node)
7699 name = "complex short unsigned int";
7700 else if (component_type == integer_type_node)
7701 name = "complex int";
7702 else if (component_type == unsigned_type_node)
7703 name = "complex unsigned int";
7704 else if (component_type == long_integer_type_node)
7705 name = "complex long int";
7706 else if (component_type == long_unsigned_type_node)
7707 name = "complex long unsigned int";
7708 else if (component_type == long_long_integer_type_node)
7709 name = "complex long long int";
7710 else if (component_type == long_long_unsigned_type_node)
7711 name = "complex long long unsigned int";
7712 else
7713 name = 0;
7714
7715 if (name != 0)
7716 TYPE_NAME (t) = build_decl (UNKNOWN_LOCATION, TYPE_DECL,
7717 get_identifier (name), t);
7718 }
7719
7720 return build_qualified_type (t, TYPE_QUALS (component_type));
7721 }
7722
7723 /* If TYPE is a real or complex floating-point type and the target
7724 does not directly support arithmetic on TYPE then return the wider
7725 type to be used for arithmetic on TYPE. Otherwise, return
7726 NULL_TREE. */
7727
7728 tree
7729 excess_precision_type (tree type)
7730 {
7731 if (flag_excess_precision != EXCESS_PRECISION_FAST)
7732 {
7733 int flt_eval_method = TARGET_FLT_EVAL_METHOD;
7734 switch (TREE_CODE (type))
7735 {
7736 case REAL_TYPE:
7737 switch (flt_eval_method)
7738 {
7739 case 1:
7740 if (TYPE_MODE (type) == TYPE_MODE (float_type_node))
7741 return double_type_node;
7742 break;
7743 case 2:
7744 if (TYPE_MODE (type) == TYPE_MODE (float_type_node)
7745 || TYPE_MODE (type) == TYPE_MODE (double_type_node))
7746 return long_double_type_node;
7747 break;
7748 default:
7749 gcc_unreachable ();
7750 }
7751 break;
7752 case COMPLEX_TYPE:
7753 if (TREE_CODE (TREE_TYPE (type)) != REAL_TYPE)
7754 return NULL_TREE;
7755 switch (flt_eval_method)
7756 {
7757 case 1:
7758 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node))
7759 return complex_double_type_node;
7760 break;
7761 case 2:
7762 if (TYPE_MODE (TREE_TYPE (type)) == TYPE_MODE (float_type_node)
7763 || (TYPE_MODE (TREE_TYPE (type))
7764 == TYPE_MODE (double_type_node)))
7765 return complex_long_double_type_node;
7766 break;
7767 default:
7768 gcc_unreachable ();
7769 }
7770 break;
7771 default:
7772 break;
7773 }
7774 }
7775 return NULL_TREE;
7776 }
7777 \f
7778 /* Return OP, stripped of any conversions to wider types as much as is safe.
7779 Converting the value back to OP's type makes a value equivalent to OP.
7780
7781 If FOR_TYPE is nonzero, we return a value which, if converted to
7782 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
7783
7784 OP must have integer, real or enumeral type. Pointers are not allowed!
7785
7786 There are some cases where the obvious value we could return
7787 would regenerate to OP if converted to OP's type,
7788 but would not extend like OP to wider types.
7789 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
7790 For example, if OP is (unsigned short)(signed char)-1,
7791 we avoid returning (signed char)-1 if FOR_TYPE is int,
7792 even though extending that to an unsigned short would regenerate OP,
7793 since the result of extending (signed char)-1 to (int)
7794 is different from (int) OP. */
7795
7796 tree
7797 get_unwidened (tree op, tree for_type)
7798 {
7799 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
7800 tree type = TREE_TYPE (op);
7801 unsigned final_prec
7802 = TYPE_PRECISION (for_type != 0 ? for_type : type);
7803 int uns
7804 = (for_type != 0 && for_type != type
7805 && final_prec > TYPE_PRECISION (type)
7806 && TYPE_UNSIGNED (type));
7807 tree win = op;
7808
7809 while (CONVERT_EXPR_P (op))
7810 {
7811 int bitschange;
7812
7813 /* TYPE_PRECISION on vector types has different meaning
7814 (TYPE_VECTOR_SUBPARTS) and casts from vectors are view conversions,
7815 so avoid them here. */
7816 if (TREE_CODE (TREE_TYPE (TREE_OPERAND (op, 0))) == VECTOR_TYPE)
7817 break;
7818
7819 bitschange = TYPE_PRECISION (TREE_TYPE (op))
7820 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
7821
7822 /* Truncations are many-one so cannot be removed.
7823 Unless we are later going to truncate down even farther. */
7824 if (bitschange < 0
7825 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
7826 break;
7827
7828 /* See what's inside this conversion. If we decide to strip it,
7829 we will set WIN. */
7830 op = TREE_OPERAND (op, 0);
7831
7832 /* If we have not stripped any zero-extensions (uns is 0),
7833 we can strip any kind of extension.
7834 If we have previously stripped a zero-extension,
7835 only zero-extensions can safely be stripped.
7836 Any extension can be stripped if the bits it would produce
7837 are all going to be discarded later by truncating to FOR_TYPE. */
7838
7839 if (bitschange > 0)
7840 {
7841 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
7842 win = op;
7843 /* TYPE_UNSIGNED says whether this is a zero-extension.
7844 Let's avoid computing it if it does not affect WIN
7845 and if UNS will not be needed again. */
7846 if ((uns
7847 || CONVERT_EXPR_P (op))
7848 && TYPE_UNSIGNED (TREE_TYPE (op)))
7849 {
7850 uns = 1;
7851 win = op;
7852 }
7853 }
7854 }
7855
7856 /* If we finally reach a constant see if it fits in for_type and
7857 in that case convert it. */
7858 if (for_type
7859 && TREE_CODE (win) == INTEGER_CST
7860 && TREE_TYPE (win) != for_type
7861 && int_fits_type_p (win, for_type))
7862 win = fold_convert (for_type, win);
7863
7864 return win;
7865 }
7866 \f
7867 /* Return OP or a simpler expression for a narrower value
7868 which can be sign-extended or zero-extended to give back OP.
7869 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
7870 or 0 if the value should be sign-extended. */
7871
7872 tree
7873 get_narrower (tree op, int *unsignedp_ptr)
7874 {
7875 int uns = 0;
7876 int first = 1;
7877 tree win = op;
7878 bool integral_p = INTEGRAL_TYPE_P (TREE_TYPE (op));
7879
7880 while (TREE_CODE (op) == NOP_EXPR)
7881 {
7882 int bitschange
7883 = (TYPE_PRECISION (TREE_TYPE (op))
7884 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
7885
7886 /* Truncations are many-one so cannot be removed. */
7887 if (bitschange < 0)
7888 break;
7889
7890 /* See what's inside this conversion. If we decide to strip it,
7891 we will set WIN. */
7892
7893 if (bitschange > 0)
7894 {
7895 op = TREE_OPERAND (op, 0);
7896 /* An extension: the outermost one can be stripped,
7897 but remember whether it is zero or sign extension. */
7898 if (first)
7899 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7900 /* Otherwise, if a sign extension has been stripped,
7901 only sign extensions can now be stripped;
7902 if a zero extension has been stripped, only zero-extensions. */
7903 else if (uns != TYPE_UNSIGNED (TREE_TYPE (op)))
7904 break;
7905 first = 0;
7906 }
7907 else /* bitschange == 0 */
7908 {
7909 /* A change in nominal type can always be stripped, but we must
7910 preserve the unsignedness. */
7911 if (first)
7912 uns = TYPE_UNSIGNED (TREE_TYPE (op));
7913 first = 0;
7914 op = TREE_OPERAND (op, 0);
7915 /* Keep trying to narrow, but don't assign op to win if it
7916 would turn an integral type into something else. */
7917 if (INTEGRAL_TYPE_P (TREE_TYPE (op)) != integral_p)
7918 continue;
7919 }
7920
7921 win = op;
7922 }
7923
7924 if (TREE_CODE (op) == COMPONENT_REF
7925 /* Since type_for_size always gives an integer type. */
7926 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
7927 && TREE_CODE (TREE_TYPE (op)) != FIXED_POINT_TYPE
7928 /* Ensure field is laid out already. */
7929 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
7930 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
7931 {
7932 unsigned HOST_WIDE_INT innerprec
7933 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
7934 int unsignedp = (DECL_UNSIGNED (TREE_OPERAND (op, 1))
7935 || TYPE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
7936 tree type = lang_hooks.types.type_for_size (innerprec, unsignedp);
7937
7938 /* We can get this structure field in a narrower type that fits it,
7939 but the resulting extension to its nominal type (a fullword type)
7940 must satisfy the same conditions as for other extensions.
7941
7942 Do this only for fields that are aligned (not bit-fields),
7943 because when bit-field insns will be used there is no
7944 advantage in doing this. */
7945
7946 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
7947 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
7948 && (first || uns == DECL_UNSIGNED (TREE_OPERAND (op, 1)))
7949 && type != 0)
7950 {
7951 if (first)
7952 uns = DECL_UNSIGNED (TREE_OPERAND (op, 1));
7953 win = fold_convert (type, op);
7954 }
7955 }
7956
7957 *unsignedp_ptr = uns;
7958 return win;
7959 }
7960 \f
7961 /* Returns true if integer constant C has a value that is permissible
7962 for type TYPE (an INTEGER_TYPE). */
7963
7964 bool
7965 int_fits_type_p (const_tree c, const_tree type)
7966 {
7967 tree type_low_bound, type_high_bound;
7968 bool ok_for_low_bound, ok_for_high_bound, unsc;
7969 double_int dc, dd;
7970
7971 dc = tree_to_double_int (c);
7972 unsc = TYPE_UNSIGNED (TREE_TYPE (c));
7973
7974 if (TREE_CODE (TREE_TYPE (c)) == INTEGER_TYPE
7975 && TYPE_IS_SIZETYPE (TREE_TYPE (c))
7976 && unsc)
7977 /* So c is an unsigned integer whose type is sizetype and type is not.
7978 sizetype'd integers are sign extended even though they are
7979 unsigned. If the integer value fits in the lower end word of c,
7980 and if the higher end word has all its bits set to 1, that
7981 means the higher end bits are set to 1 only for sign extension.
7982 So let's convert c into an equivalent zero extended unsigned
7983 integer. */
7984 dc = double_int_zext (dc, TYPE_PRECISION (TREE_TYPE (c)));
7985
7986 retry:
7987 type_low_bound = TYPE_MIN_VALUE (type);
7988 type_high_bound = TYPE_MAX_VALUE (type);
7989
7990 /* If at least one bound of the type is a constant integer, we can check
7991 ourselves and maybe make a decision. If no such decision is possible, but
7992 this type is a subtype, try checking against that. Otherwise, use
7993 double_int_fits_to_tree_p, which checks against the precision.
7994
7995 Compute the status for each possibly constant bound, and return if we see
7996 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
7997 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
7998 for "constant known to fit". */
7999
8000 /* Check if c >= type_low_bound. */
8001 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
8002 {
8003 dd = tree_to_double_int (type_low_bound);
8004 if (TREE_CODE (type) == INTEGER_TYPE
8005 && TYPE_IS_SIZETYPE (type)
8006 && TYPE_UNSIGNED (type))
8007 dd = double_int_zext (dd, TYPE_PRECISION (type));
8008 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_low_bound)))
8009 {
8010 int c_neg = (!unsc && double_int_negative_p (dc));
8011 int t_neg = (unsc && double_int_negative_p (dd));
8012
8013 if (c_neg && !t_neg)
8014 return false;
8015 if ((c_neg || !t_neg) && double_int_ucmp (dc, dd) < 0)
8016 return false;
8017 }
8018 else if (double_int_cmp (dc, dd, unsc) < 0)
8019 return false;
8020 ok_for_low_bound = true;
8021 }
8022 else
8023 ok_for_low_bound = false;
8024
8025 /* Check if c <= type_high_bound. */
8026 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
8027 {
8028 dd = tree_to_double_int (type_high_bound);
8029 if (TREE_CODE (type) == INTEGER_TYPE
8030 && TYPE_IS_SIZETYPE (type)
8031 && TYPE_UNSIGNED (type))
8032 dd = double_int_zext (dd, TYPE_PRECISION (type));
8033 if (unsc != TYPE_UNSIGNED (TREE_TYPE (type_high_bound)))
8034 {
8035 int c_neg = (!unsc && double_int_negative_p (dc));
8036 int t_neg = (unsc && double_int_negative_p (dd));
8037
8038 if (t_neg && !c_neg)
8039 return false;
8040 if ((t_neg || !c_neg) && double_int_ucmp (dc, dd) > 0)
8041 return false;
8042 }
8043 else if (double_int_cmp (dc, dd, unsc) > 0)
8044 return false;
8045 ok_for_high_bound = true;
8046 }
8047 else
8048 ok_for_high_bound = false;
8049
8050 /* If the constant fits both bounds, the result is known. */
8051 if (ok_for_low_bound && ok_for_high_bound)
8052 return true;
8053
8054 /* Perform some generic filtering which may allow making a decision
8055 even if the bounds are not constant. First, negative integers
8056 never fit in unsigned types, */
8057 if (TYPE_UNSIGNED (type) && !unsc && double_int_negative_p (dc))
8058 return false;
8059
8060 /* Second, narrower types always fit in wider ones. */
8061 if (TYPE_PRECISION (type) > TYPE_PRECISION (TREE_TYPE (c)))
8062 return true;
8063
8064 /* Third, unsigned integers with top bit set never fit signed types. */
8065 if (! TYPE_UNSIGNED (type) && unsc)
8066 {
8067 int prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (c))) - 1;
8068 if (prec < HOST_BITS_PER_WIDE_INT)
8069 {
8070 if (((((unsigned HOST_WIDE_INT) 1) << prec) & dc.low) != 0)
8071 return false;
8072 }
8073 else if (((((unsigned HOST_WIDE_INT) 1)
8074 << (prec - HOST_BITS_PER_WIDE_INT)) & dc.high) != 0)
8075 return false;
8076 }
8077
8078 /* If we haven't been able to decide at this point, there nothing more we
8079 can check ourselves here. Look at the base type if we have one and it
8080 has the same precision. */
8081 if (TREE_CODE (type) == INTEGER_TYPE
8082 && TREE_TYPE (type) != 0
8083 && TYPE_PRECISION (type) == TYPE_PRECISION (TREE_TYPE (type)))
8084 {
8085 type = TREE_TYPE (type);
8086 goto retry;
8087 }
8088
8089 /* Or to double_int_fits_to_tree_p, if nothing else. */
8090 return double_int_fits_to_tree_p (type, dc);
8091 }
8092
8093 /* Stores bounds of an integer TYPE in MIN and MAX. If TYPE has non-constant
8094 bounds or is a POINTER_TYPE, the maximum and/or minimum values that can be
8095 represented (assuming two's-complement arithmetic) within the bit
8096 precision of the type are returned instead. */
8097
8098 void
8099 get_type_static_bounds (const_tree type, mpz_t min, mpz_t max)
8100 {
8101 if (!POINTER_TYPE_P (type) && TYPE_MIN_VALUE (type)
8102 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
8103 mpz_set_double_int (min, tree_to_double_int (TYPE_MIN_VALUE (type)),
8104 TYPE_UNSIGNED (type));
8105 else
8106 {
8107 if (TYPE_UNSIGNED (type))
8108 mpz_set_ui (min, 0);
8109 else
8110 {
8111 double_int mn;
8112 mn = double_int_mask (TYPE_PRECISION (type) - 1);
8113 mn = double_int_sext (double_int_add (mn, double_int_one),
8114 TYPE_PRECISION (type));
8115 mpz_set_double_int (min, mn, false);
8116 }
8117 }
8118
8119 if (!POINTER_TYPE_P (type) && TYPE_MAX_VALUE (type)
8120 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST)
8121 mpz_set_double_int (max, tree_to_double_int (TYPE_MAX_VALUE (type)),
8122 TYPE_UNSIGNED (type));
8123 else
8124 {
8125 if (TYPE_UNSIGNED (type))
8126 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type)),
8127 true);
8128 else
8129 mpz_set_double_int (max, double_int_mask (TYPE_PRECISION (type) - 1),
8130 true);
8131 }
8132 }
8133
8134 /* Return true if VAR is an automatic variable defined in function FN. */
8135
8136 bool
8137 auto_var_in_fn_p (const_tree var, const_tree fn)
8138 {
8139 return (DECL_P (var) && DECL_CONTEXT (var) == fn
8140 && ((((TREE_CODE (var) == VAR_DECL && ! DECL_EXTERNAL (var))
8141 || TREE_CODE (var) == PARM_DECL)
8142 && ! TREE_STATIC (var))
8143 || TREE_CODE (var) == LABEL_DECL
8144 || TREE_CODE (var) == RESULT_DECL));
8145 }
8146
8147 /* Subprogram of following function. Called by walk_tree.
8148
8149 Return *TP if it is an automatic variable or parameter of the
8150 function passed in as DATA. */
8151
8152 static tree
8153 find_var_from_fn (tree *tp, int *walk_subtrees, void *data)
8154 {
8155 tree fn = (tree) data;
8156
8157 if (TYPE_P (*tp))
8158 *walk_subtrees = 0;
8159
8160 else if (DECL_P (*tp)
8161 && auto_var_in_fn_p (*tp, fn))
8162 return *tp;
8163
8164 return NULL_TREE;
8165 }
8166
8167 /* Returns true if T is, contains, or refers to a type with variable
8168 size. For METHOD_TYPEs and FUNCTION_TYPEs we exclude the
8169 arguments, but not the return type. If FN is nonzero, only return
8170 true if a modifier of the type or position of FN is a variable or
8171 parameter inside FN.
8172
8173 This concept is more general than that of C99 'variably modified types':
8174 in C99, a struct type is never variably modified because a VLA may not
8175 appear as a structure member. However, in GNU C code like:
8176
8177 struct S { int i[f()]; };
8178
8179 is valid, and other languages may define similar constructs. */
8180
8181 bool
8182 variably_modified_type_p (tree type, tree fn)
8183 {
8184 tree t;
8185
8186 /* Test if T is either variable (if FN is zero) or an expression containing
8187 a variable in FN. */
8188 #define RETURN_TRUE_IF_VAR(T) \
8189 do { tree _t = (T); \
8190 if (_t && _t != error_mark_node && TREE_CODE (_t) != INTEGER_CST \
8191 && (!fn || walk_tree (&_t, find_var_from_fn, fn, NULL))) \
8192 return true; } while (0)
8193
8194 if (type == error_mark_node)
8195 return false;
8196
8197 /* If TYPE itself has variable size, it is variably modified. */
8198 RETURN_TRUE_IF_VAR (TYPE_SIZE (type));
8199 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (type));
8200
8201 switch (TREE_CODE (type))
8202 {
8203 case POINTER_TYPE:
8204 case REFERENCE_TYPE:
8205 case VECTOR_TYPE:
8206 if (variably_modified_type_p (TREE_TYPE (type), fn))
8207 return true;
8208 break;
8209
8210 case FUNCTION_TYPE:
8211 case METHOD_TYPE:
8212 /* If TYPE is a function type, it is variably modified if the
8213 return type is variably modified. */
8214 if (variably_modified_type_p (TREE_TYPE (type), fn))
8215 return true;
8216 break;
8217
8218 case INTEGER_TYPE:
8219 case REAL_TYPE:
8220 case FIXED_POINT_TYPE:
8221 case ENUMERAL_TYPE:
8222 case BOOLEAN_TYPE:
8223 /* Scalar types are variably modified if their end points
8224 aren't constant. */
8225 RETURN_TRUE_IF_VAR (TYPE_MIN_VALUE (type));
8226 RETURN_TRUE_IF_VAR (TYPE_MAX_VALUE (type));
8227 break;
8228
8229 case RECORD_TYPE:
8230 case UNION_TYPE:
8231 case QUAL_UNION_TYPE:
8232 /* We can't see if any of the fields are variably-modified by the
8233 definition we normally use, since that would produce infinite
8234 recursion via pointers. */
8235 /* This is variably modified if some field's type is. */
8236 for (t = TYPE_FIELDS (type); t; t = DECL_CHAIN (t))
8237 if (TREE_CODE (t) == FIELD_DECL)
8238 {
8239 RETURN_TRUE_IF_VAR (DECL_FIELD_OFFSET (t));
8240 RETURN_TRUE_IF_VAR (DECL_SIZE (t));
8241 RETURN_TRUE_IF_VAR (DECL_SIZE_UNIT (t));
8242
8243 if (TREE_CODE (type) == QUAL_UNION_TYPE)
8244 RETURN_TRUE_IF_VAR (DECL_QUALIFIER (t));
8245 }
8246 break;
8247
8248 case ARRAY_TYPE:
8249 /* Do not call ourselves to avoid infinite recursion. This is
8250 variably modified if the element type is. */
8251 RETURN_TRUE_IF_VAR (TYPE_SIZE (TREE_TYPE (type)));
8252 RETURN_TRUE_IF_VAR (TYPE_SIZE_UNIT (TREE_TYPE (type)));
8253 break;
8254
8255 default:
8256 break;
8257 }
8258
8259 /* The current language may have other cases to check, but in general,
8260 all other types are not variably modified. */
8261 return lang_hooks.tree_inlining.var_mod_type_p (type, fn);
8262
8263 #undef RETURN_TRUE_IF_VAR
8264 }
8265
8266 /* Given a DECL or TYPE, return the scope in which it was declared, or
8267 NULL_TREE if there is no containing scope. */
8268
8269 tree
8270 get_containing_scope (const_tree t)
8271 {
8272 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
8273 }
8274
8275 /* Return the innermost context enclosing DECL that is
8276 a FUNCTION_DECL, or zero if none. */
8277
8278 tree
8279 decl_function_context (const_tree decl)
8280 {
8281 tree context;
8282
8283 if (TREE_CODE (decl) == ERROR_MARK)
8284 return 0;
8285
8286 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
8287 where we look up the function at runtime. Such functions always take
8288 a first argument of type 'pointer to real context'.
8289
8290 C++ should really be fixed to use DECL_CONTEXT for the real context,
8291 and use something else for the "virtual context". */
8292 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
8293 context
8294 = TYPE_MAIN_VARIANT
8295 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
8296 else
8297 context = DECL_CONTEXT (decl);
8298
8299 while (context && TREE_CODE (context) != FUNCTION_DECL)
8300 {
8301 if (TREE_CODE (context) == BLOCK)
8302 context = BLOCK_SUPERCONTEXT (context);
8303 else
8304 context = get_containing_scope (context);
8305 }
8306
8307 return context;
8308 }
8309
8310 /* Return the innermost context enclosing DECL that is
8311 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
8312 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
8313
8314 tree
8315 decl_type_context (const_tree decl)
8316 {
8317 tree context = DECL_CONTEXT (decl);
8318
8319 while (context)
8320 switch (TREE_CODE (context))
8321 {
8322 case NAMESPACE_DECL:
8323 case TRANSLATION_UNIT_DECL:
8324 return NULL_TREE;
8325
8326 case RECORD_TYPE:
8327 case UNION_TYPE:
8328 case QUAL_UNION_TYPE:
8329 return context;
8330
8331 case TYPE_DECL:
8332 case FUNCTION_DECL:
8333 context = DECL_CONTEXT (context);
8334 break;
8335
8336 case BLOCK:
8337 context = BLOCK_SUPERCONTEXT (context);
8338 break;
8339
8340 default:
8341 gcc_unreachable ();
8342 }
8343
8344 return NULL_TREE;
8345 }
8346
8347 /* CALL is a CALL_EXPR. Return the declaration for the function
8348 called, or NULL_TREE if the called function cannot be
8349 determined. */
8350
8351 tree
8352 get_callee_fndecl (const_tree call)
8353 {
8354 tree addr;
8355
8356 if (call == error_mark_node)
8357 return error_mark_node;
8358
8359 /* It's invalid to call this function with anything but a
8360 CALL_EXPR. */
8361 gcc_assert (TREE_CODE (call) == CALL_EXPR);
8362
8363 /* The first operand to the CALL is the address of the function
8364 called. */
8365 addr = CALL_EXPR_FN (call);
8366
8367 STRIP_NOPS (addr);
8368
8369 /* If this is a readonly function pointer, extract its initial value. */
8370 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
8371 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
8372 && DECL_INITIAL (addr))
8373 addr = DECL_INITIAL (addr);
8374
8375 /* If the address is just `&f' for some function `f', then we know
8376 that `f' is being called. */
8377 if (TREE_CODE (addr) == ADDR_EXPR
8378 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
8379 return TREE_OPERAND (addr, 0);
8380
8381 /* We couldn't figure out what was being called. */
8382 return NULL_TREE;
8383 }
8384
8385 /* Print debugging information about tree nodes generated during the compile,
8386 and any language-specific information. */
8387
8388 void
8389 dump_tree_statistics (void)
8390 {
8391 #ifdef GATHER_STATISTICS
8392 int i;
8393 int total_nodes, total_bytes;
8394 #endif
8395
8396 fprintf (stderr, "\n??? tree nodes created\n\n");
8397 #ifdef GATHER_STATISTICS
8398 fprintf (stderr, "Kind Nodes Bytes\n");
8399 fprintf (stderr, "---------------------------------------\n");
8400 total_nodes = total_bytes = 0;
8401 for (i = 0; i < (int) all_kinds; i++)
8402 {
8403 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
8404 tree_node_counts[i], tree_node_sizes[i]);
8405 total_nodes += tree_node_counts[i];
8406 total_bytes += tree_node_sizes[i];
8407 }
8408 fprintf (stderr, "---------------------------------------\n");
8409 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
8410 fprintf (stderr, "---------------------------------------\n");
8411 ssanames_print_statistics ();
8412 phinodes_print_statistics ();
8413 #else
8414 fprintf (stderr, "(No per-node statistics)\n");
8415 #endif
8416 print_type_hash_statistics ();
8417 print_debug_expr_statistics ();
8418 print_value_expr_statistics ();
8419 lang_hooks.print_statistics ();
8420 }
8421 \f
8422 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
8423
8424 /* Generate a crc32 of a string. */
8425
8426 unsigned
8427 crc32_string (unsigned chksum, const char *string)
8428 {
8429 do
8430 {
8431 unsigned value = *string << 24;
8432 unsigned ix;
8433
8434 for (ix = 8; ix--; value <<= 1)
8435 {
8436 unsigned feedback;
8437
8438 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
8439 chksum <<= 1;
8440 chksum ^= feedback;
8441 }
8442 }
8443 while (*string++);
8444 return chksum;
8445 }
8446
8447 /* P is a string that will be used in a symbol. Mask out any characters
8448 that are not valid in that context. */
8449
8450 void
8451 clean_symbol_name (char *p)
8452 {
8453 for (; *p; p++)
8454 if (! (ISALNUM (*p)
8455 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
8456 || *p == '$'
8457 #endif
8458 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
8459 || *p == '.'
8460 #endif
8461 ))
8462 *p = '_';
8463 }
8464
8465 /* Generate a name for a special-purpose function function.
8466 The generated name may need to be unique across the whole link.
8467 TYPE is some string to identify the purpose of this function to the
8468 linker or collect2; it must start with an uppercase letter,
8469 one of:
8470 I - for constructors
8471 D - for destructors
8472 N - for C++ anonymous namespaces
8473 F - for DWARF unwind frame information. */
8474
8475 tree
8476 get_file_function_name (const char *type)
8477 {
8478 char *buf;
8479 const char *p;
8480 char *q;
8481
8482 /* If we already have a name we know to be unique, just use that. */
8483 if (first_global_object_name)
8484 p = q = ASTRDUP (first_global_object_name);
8485 /* If the target is handling the constructors/destructors, they
8486 will be local to this file and the name is only necessary for
8487 debugging purposes. */
8488 else if ((type[0] == 'I' || type[0] == 'D') && targetm.have_ctors_dtors)
8489 {
8490 const char *file = main_input_filename;
8491 if (! file)
8492 file = input_filename;
8493 /* Just use the file's basename, because the full pathname
8494 might be quite long. */
8495 p = strrchr (file, '/');
8496 if (p)
8497 p++;
8498 else
8499 p = file;
8500 p = q = ASTRDUP (p);
8501 }
8502 else
8503 {
8504 /* Otherwise, the name must be unique across the entire link.
8505 We don't have anything that we know to be unique to this translation
8506 unit, so use what we do have and throw in some randomness. */
8507 unsigned len;
8508 const char *name = weak_global_object_name;
8509 const char *file = main_input_filename;
8510
8511 if (! name)
8512 name = "";
8513 if (! file)
8514 file = input_filename;
8515
8516 len = strlen (file);
8517 q = (char *) alloca (9 * 2 + len + 1);
8518 memcpy (q, file, len + 1);
8519
8520 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
8521 crc32_string (0, get_random_seed (false)));
8522
8523 p = q;
8524 }
8525
8526 clean_symbol_name (q);
8527 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
8528 + strlen (type));
8529
8530 /* Set up the name of the file-level functions we may need.
8531 Use a global object (which is already required to be unique over
8532 the program) rather than the file name (which imposes extra
8533 constraints). */
8534 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
8535
8536 return get_identifier (buf);
8537 }
8538 \f
8539 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
8540
8541 /* Complain that the tree code of NODE does not match the expected 0
8542 terminated list of trailing codes. The trailing code list can be
8543 empty, for a more vague error message. FILE, LINE, and FUNCTION
8544 are of the caller. */
8545
8546 void
8547 tree_check_failed (const_tree node, const char *file,
8548 int line, const char *function, ...)
8549 {
8550 va_list args;
8551 const char *buffer;
8552 unsigned length = 0;
8553 int code;
8554
8555 va_start (args, function);
8556 while ((code = va_arg (args, int)))
8557 length += 4 + strlen (tree_code_name[code]);
8558 va_end (args);
8559 if (length)
8560 {
8561 char *tmp;
8562 va_start (args, function);
8563 length += strlen ("expected ");
8564 buffer = tmp = (char *) alloca (length);
8565 length = 0;
8566 while ((code = va_arg (args, int)))
8567 {
8568 const char *prefix = length ? " or " : "expected ";
8569
8570 strcpy (tmp + length, prefix);
8571 length += strlen (prefix);
8572 strcpy (tmp + length, tree_code_name[code]);
8573 length += strlen (tree_code_name[code]);
8574 }
8575 va_end (args);
8576 }
8577 else
8578 buffer = "unexpected node";
8579
8580 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8581 buffer, tree_code_name[TREE_CODE (node)],
8582 function, trim_filename (file), line);
8583 }
8584
8585 /* Complain that the tree code of NODE does match the expected 0
8586 terminated list of trailing codes. FILE, LINE, and FUNCTION are of
8587 the caller. */
8588
8589 void
8590 tree_not_check_failed (const_tree node, const char *file,
8591 int line, const char *function, ...)
8592 {
8593 va_list args;
8594 char *buffer;
8595 unsigned length = 0;
8596 int code;
8597
8598 va_start (args, function);
8599 while ((code = va_arg (args, int)))
8600 length += 4 + strlen (tree_code_name[code]);
8601 va_end (args);
8602 va_start (args, function);
8603 buffer = (char *) alloca (length);
8604 length = 0;
8605 while ((code = va_arg (args, int)))
8606 {
8607 if (length)
8608 {
8609 strcpy (buffer + length, " or ");
8610 length += 4;
8611 }
8612 strcpy (buffer + length, tree_code_name[code]);
8613 length += strlen (tree_code_name[code]);
8614 }
8615 va_end (args);
8616
8617 internal_error ("tree check: expected none of %s, have %s in %s, at %s:%d",
8618 buffer, tree_code_name[TREE_CODE (node)],
8619 function, trim_filename (file), line);
8620 }
8621
8622 /* Similar to tree_check_failed, except that we check for a class of tree
8623 code, given in CL. */
8624
8625 void
8626 tree_class_check_failed (const_tree node, const enum tree_code_class cl,
8627 const char *file, int line, const char *function)
8628 {
8629 internal_error
8630 ("tree check: expected class %qs, have %qs (%s) in %s, at %s:%d",
8631 TREE_CODE_CLASS_STRING (cl),
8632 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8633 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8634 }
8635
8636 /* Similar to tree_check_failed, except that instead of specifying a
8637 dozen codes, use the knowledge that they're all sequential. */
8638
8639 void
8640 tree_range_check_failed (const_tree node, const char *file, int line,
8641 const char *function, enum tree_code c1,
8642 enum tree_code c2)
8643 {
8644 char *buffer;
8645 unsigned length = 0;
8646 unsigned int c;
8647
8648 for (c = c1; c <= c2; ++c)
8649 length += 4 + strlen (tree_code_name[c]);
8650
8651 length += strlen ("expected ");
8652 buffer = (char *) alloca (length);
8653 length = 0;
8654
8655 for (c = c1; c <= c2; ++c)
8656 {
8657 const char *prefix = length ? " or " : "expected ";
8658
8659 strcpy (buffer + length, prefix);
8660 length += strlen (prefix);
8661 strcpy (buffer + length, tree_code_name[c]);
8662 length += strlen (tree_code_name[c]);
8663 }
8664
8665 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8666 buffer, tree_code_name[TREE_CODE (node)],
8667 function, trim_filename (file), line);
8668 }
8669
8670
8671 /* Similar to tree_check_failed, except that we check that a tree does
8672 not have the specified code, given in CL. */
8673
8674 void
8675 tree_not_class_check_failed (const_tree node, const enum tree_code_class cl,
8676 const char *file, int line, const char *function)
8677 {
8678 internal_error
8679 ("tree check: did not expect class %qs, have %qs (%s) in %s, at %s:%d",
8680 TREE_CODE_CLASS_STRING (cl),
8681 TREE_CODE_CLASS_STRING (TREE_CODE_CLASS (TREE_CODE (node))),
8682 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8683 }
8684
8685
8686 /* Similar to tree_check_failed but applied to OMP_CLAUSE codes. */
8687
8688 void
8689 omp_clause_check_failed (const_tree node, const char *file, int line,
8690 const char *function, enum omp_clause_code code)
8691 {
8692 internal_error ("tree check: expected omp_clause %s, have %s in %s, at %s:%d",
8693 omp_clause_code_name[code], tree_code_name[TREE_CODE (node)],
8694 function, trim_filename (file), line);
8695 }
8696
8697
8698 /* Similar to tree_range_check_failed but applied to OMP_CLAUSE codes. */
8699
8700 void
8701 omp_clause_range_check_failed (const_tree node, const char *file, int line,
8702 const char *function, enum omp_clause_code c1,
8703 enum omp_clause_code c2)
8704 {
8705 char *buffer;
8706 unsigned length = 0;
8707 unsigned int c;
8708
8709 for (c = c1; c <= c2; ++c)
8710 length += 4 + strlen (omp_clause_code_name[c]);
8711
8712 length += strlen ("expected ");
8713 buffer = (char *) alloca (length);
8714 length = 0;
8715
8716 for (c = c1; c <= c2; ++c)
8717 {
8718 const char *prefix = length ? " or " : "expected ";
8719
8720 strcpy (buffer + length, prefix);
8721 length += strlen (prefix);
8722 strcpy (buffer + length, omp_clause_code_name[c]);
8723 length += strlen (omp_clause_code_name[c]);
8724 }
8725
8726 internal_error ("tree check: %s, have %s in %s, at %s:%d",
8727 buffer, omp_clause_code_name[TREE_CODE (node)],
8728 function, trim_filename (file), line);
8729 }
8730
8731
8732 #undef DEFTREESTRUCT
8733 #define DEFTREESTRUCT(VAL, NAME) NAME,
8734
8735 static const char *ts_enum_names[] = {
8736 #include "treestruct.def"
8737 };
8738 #undef DEFTREESTRUCT
8739
8740 #define TS_ENUM_NAME(EN) (ts_enum_names[(EN)])
8741
8742 /* Similar to tree_class_check_failed, except that we check for
8743 whether CODE contains the tree structure identified by EN. */
8744
8745 void
8746 tree_contains_struct_check_failed (const_tree node,
8747 const enum tree_node_structure_enum en,
8748 const char *file, int line,
8749 const char *function)
8750 {
8751 internal_error
8752 ("tree check: expected tree that contains %qs structure, have %qs in %s, at %s:%d",
8753 TS_ENUM_NAME(en),
8754 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
8755 }
8756
8757
8758 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
8759 (dynamically sized) vector. */
8760
8761 void
8762 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
8763 const char *function)
8764 {
8765 internal_error
8766 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
8767 idx + 1, len, function, trim_filename (file), line);
8768 }
8769
8770 /* Similar to above, except that the check is for the bounds of the operand
8771 vector of an expression node EXP. */
8772
8773 void
8774 tree_operand_check_failed (int idx, const_tree exp, const char *file,
8775 int line, const char *function)
8776 {
8777 int code = TREE_CODE (exp);
8778 internal_error
8779 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
8780 idx + 1, tree_code_name[code], TREE_OPERAND_LENGTH (exp),
8781 function, trim_filename (file), line);
8782 }
8783
8784 /* Similar to above, except that the check is for the number of
8785 operands of an OMP_CLAUSE node. */
8786
8787 void
8788 omp_clause_operand_check_failed (int idx, const_tree t, const char *file,
8789 int line, const char *function)
8790 {
8791 internal_error
8792 ("tree check: accessed operand %d of omp_clause %s with %d operands "
8793 "in %s, at %s:%d", idx + 1, omp_clause_code_name[OMP_CLAUSE_CODE (t)],
8794 omp_clause_num_ops [OMP_CLAUSE_CODE (t)], function,
8795 trim_filename (file), line);
8796 }
8797 #endif /* ENABLE_TREE_CHECKING */
8798 \f
8799 /* Create a new vector type node holding SUBPARTS units of type INNERTYPE,
8800 and mapped to the machine mode MODE. Initialize its fields and build
8801 the information necessary for debugging output. */
8802
8803 static tree
8804 make_vector_type (tree innertype, int nunits, enum machine_mode mode)
8805 {
8806 tree t;
8807 hashval_t hashcode = 0;
8808
8809 t = make_node (VECTOR_TYPE);
8810 TREE_TYPE (t) = TYPE_MAIN_VARIANT (innertype);
8811 SET_TYPE_VECTOR_SUBPARTS (t, nunits);
8812 SET_TYPE_MODE (t, mode);
8813
8814 if (TYPE_STRUCTURAL_EQUALITY_P (innertype))
8815 SET_TYPE_STRUCTURAL_EQUALITY (t);
8816 else if (TYPE_CANONICAL (innertype) != innertype
8817 || mode != VOIDmode)
8818 TYPE_CANONICAL (t)
8819 = make_vector_type (TYPE_CANONICAL (innertype), nunits, VOIDmode);
8820
8821 layout_type (t);
8822
8823 hashcode = iterative_hash_host_wide_int (VECTOR_TYPE, hashcode);
8824 hashcode = iterative_hash_host_wide_int (nunits, hashcode);
8825 hashcode = iterative_hash_host_wide_int (mode, hashcode);
8826 hashcode = iterative_hash_object (TYPE_HASH (TREE_TYPE (t)), hashcode);
8827 t = type_hash_canon (hashcode, t);
8828
8829 /* We have built a main variant, based on the main variant of the
8830 inner type. Use it to build the variant we return. */
8831 if ((TYPE_ATTRIBUTES (innertype) || TYPE_QUALS (innertype))
8832 && TREE_TYPE (t) != innertype)
8833 return build_type_attribute_qual_variant (t,
8834 TYPE_ATTRIBUTES (innertype),
8835 TYPE_QUALS (innertype));
8836
8837 return t;
8838 }
8839
8840 static tree
8841 make_or_reuse_type (unsigned size, int unsignedp)
8842 {
8843 if (size == INT_TYPE_SIZE)
8844 return unsignedp ? unsigned_type_node : integer_type_node;
8845 if (size == CHAR_TYPE_SIZE)
8846 return unsignedp ? unsigned_char_type_node : signed_char_type_node;
8847 if (size == SHORT_TYPE_SIZE)
8848 return unsignedp ? short_unsigned_type_node : short_integer_type_node;
8849 if (size == LONG_TYPE_SIZE)
8850 return unsignedp ? long_unsigned_type_node : long_integer_type_node;
8851 if (size == LONG_LONG_TYPE_SIZE)
8852 return (unsignedp ? long_long_unsigned_type_node
8853 : long_long_integer_type_node);
8854 if (size == 128 && int128_integer_type_node)
8855 return (unsignedp ? int128_unsigned_type_node
8856 : int128_integer_type_node);
8857
8858 if (unsignedp)
8859 return make_unsigned_type (size);
8860 else
8861 return make_signed_type (size);
8862 }
8863
8864 /* Create or reuse a fract type by SIZE, UNSIGNEDP, and SATP. */
8865
8866 static tree
8867 make_or_reuse_fract_type (unsigned size, int unsignedp, int satp)
8868 {
8869 if (satp)
8870 {
8871 if (size == SHORT_FRACT_TYPE_SIZE)
8872 return unsignedp ? sat_unsigned_short_fract_type_node
8873 : sat_short_fract_type_node;
8874 if (size == FRACT_TYPE_SIZE)
8875 return unsignedp ? sat_unsigned_fract_type_node : sat_fract_type_node;
8876 if (size == LONG_FRACT_TYPE_SIZE)
8877 return unsignedp ? sat_unsigned_long_fract_type_node
8878 : sat_long_fract_type_node;
8879 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8880 return unsignedp ? sat_unsigned_long_long_fract_type_node
8881 : sat_long_long_fract_type_node;
8882 }
8883 else
8884 {
8885 if (size == SHORT_FRACT_TYPE_SIZE)
8886 return unsignedp ? unsigned_short_fract_type_node
8887 : short_fract_type_node;
8888 if (size == FRACT_TYPE_SIZE)
8889 return unsignedp ? unsigned_fract_type_node : fract_type_node;
8890 if (size == LONG_FRACT_TYPE_SIZE)
8891 return unsignedp ? unsigned_long_fract_type_node
8892 : long_fract_type_node;
8893 if (size == LONG_LONG_FRACT_TYPE_SIZE)
8894 return unsignedp ? unsigned_long_long_fract_type_node
8895 : long_long_fract_type_node;
8896 }
8897
8898 return make_fract_type (size, unsignedp, satp);
8899 }
8900
8901 /* Create or reuse an accum type by SIZE, UNSIGNEDP, and SATP. */
8902
8903 static tree
8904 make_or_reuse_accum_type (unsigned size, int unsignedp, int satp)
8905 {
8906 if (satp)
8907 {
8908 if (size == SHORT_ACCUM_TYPE_SIZE)
8909 return unsignedp ? sat_unsigned_short_accum_type_node
8910 : sat_short_accum_type_node;
8911 if (size == ACCUM_TYPE_SIZE)
8912 return unsignedp ? sat_unsigned_accum_type_node : sat_accum_type_node;
8913 if (size == LONG_ACCUM_TYPE_SIZE)
8914 return unsignedp ? sat_unsigned_long_accum_type_node
8915 : sat_long_accum_type_node;
8916 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8917 return unsignedp ? sat_unsigned_long_long_accum_type_node
8918 : sat_long_long_accum_type_node;
8919 }
8920 else
8921 {
8922 if (size == SHORT_ACCUM_TYPE_SIZE)
8923 return unsignedp ? unsigned_short_accum_type_node
8924 : short_accum_type_node;
8925 if (size == ACCUM_TYPE_SIZE)
8926 return unsignedp ? unsigned_accum_type_node : accum_type_node;
8927 if (size == LONG_ACCUM_TYPE_SIZE)
8928 return unsignedp ? unsigned_long_accum_type_node
8929 : long_accum_type_node;
8930 if (size == LONG_LONG_ACCUM_TYPE_SIZE)
8931 return unsignedp ? unsigned_long_long_accum_type_node
8932 : long_long_accum_type_node;
8933 }
8934
8935 return make_accum_type (size, unsignedp, satp);
8936 }
8937
8938 /* Create nodes for all integer types (and error_mark_node) using the sizes
8939 of C datatypes. The caller should call set_sizetype soon after calling
8940 this function to select one of the types as sizetype. */
8941
8942 void
8943 build_common_tree_nodes (bool signed_char)
8944 {
8945 error_mark_node = make_node (ERROR_MARK);
8946 TREE_TYPE (error_mark_node) = error_mark_node;
8947
8948 initialize_sizetypes ();
8949
8950 /* Define both `signed char' and `unsigned char'. */
8951 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
8952 TYPE_STRING_FLAG (signed_char_type_node) = 1;
8953 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
8954 TYPE_STRING_FLAG (unsigned_char_type_node) = 1;
8955
8956 /* Define `char', which is like either `signed char' or `unsigned char'
8957 but not the same as either. */
8958 char_type_node
8959 = (signed_char
8960 ? make_signed_type (CHAR_TYPE_SIZE)
8961 : make_unsigned_type (CHAR_TYPE_SIZE));
8962 TYPE_STRING_FLAG (char_type_node) = 1;
8963
8964 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
8965 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
8966 integer_type_node = make_signed_type (INT_TYPE_SIZE);
8967 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
8968 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
8969 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
8970 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
8971 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
8972 #if HOST_BITS_PER_WIDE_INT >= 64
8973 /* TODO: This isn't correct, but as logic depends at the moment on
8974 host's instead of target's wide-integer.
8975 If there is a target not supporting TImode, but has an 128-bit
8976 integer-scalar register, this target check needs to be adjusted. */
8977 if (targetm.scalar_mode_supported_p (TImode))
8978 {
8979 int128_integer_type_node = make_signed_type (128);
8980 int128_unsigned_type_node = make_unsigned_type (128);
8981 }
8982 #endif
8983 /* Define a boolean type. This type only represents boolean values but
8984 may be larger than char depending on the value of BOOL_TYPE_SIZE.
8985 Front ends which want to override this size (i.e. Java) can redefine
8986 boolean_type_node before calling build_common_tree_nodes_2. */
8987 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
8988 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
8989 TYPE_MAX_VALUE (boolean_type_node) = build_int_cst (boolean_type_node, 1);
8990 TYPE_PRECISION (boolean_type_node) = 1;
8991
8992 /* Fill in the rest of the sized types. Reuse existing type nodes
8993 when possible. */
8994 intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 0);
8995 intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 0);
8996 intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 0);
8997 intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 0);
8998 intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 0);
8999
9000 unsigned_intQI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (QImode), 1);
9001 unsigned_intHI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (HImode), 1);
9002 unsigned_intSI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (SImode), 1);
9003 unsigned_intDI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (DImode), 1);
9004 unsigned_intTI_type_node = make_or_reuse_type (GET_MODE_BITSIZE (TImode), 1);
9005
9006 access_public_node = get_identifier ("public");
9007 access_protected_node = get_identifier ("protected");
9008 access_private_node = get_identifier ("private");
9009 }
9010
9011 /* Call this function after calling build_common_tree_nodes and set_sizetype.
9012 It will create several other common tree nodes. */
9013
9014 void
9015 build_common_tree_nodes_2 (int short_double)
9016 {
9017 /* Define these next since types below may used them. */
9018 integer_zero_node = build_int_cst (integer_type_node, 0);
9019 integer_one_node = build_int_cst (integer_type_node, 1);
9020 integer_three_node = build_int_cst (integer_type_node, 3);
9021 integer_minus_one_node = build_int_cst (integer_type_node, -1);
9022
9023 size_zero_node = size_int (0);
9024 size_one_node = size_int (1);
9025 bitsize_zero_node = bitsize_int (0);
9026 bitsize_one_node = bitsize_int (1);
9027 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
9028
9029 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
9030 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
9031
9032 void_type_node = make_node (VOID_TYPE);
9033 layout_type (void_type_node);
9034
9035 /* We are not going to have real types in C with less than byte alignment,
9036 so we might as well not have any types that claim to have it. */
9037 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
9038 TYPE_USER_ALIGN (void_type_node) = 0;
9039
9040 null_pointer_node = build_int_cst (build_pointer_type (void_type_node), 0);
9041 layout_type (TREE_TYPE (null_pointer_node));
9042
9043 ptr_type_node = build_pointer_type (void_type_node);
9044 const_ptr_type_node
9045 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
9046 fileptr_type_node = ptr_type_node;
9047
9048 float_type_node = make_node (REAL_TYPE);
9049 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
9050 layout_type (float_type_node);
9051
9052 double_type_node = make_node (REAL_TYPE);
9053 if (short_double)
9054 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
9055 else
9056 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
9057 layout_type (double_type_node);
9058
9059 long_double_type_node = make_node (REAL_TYPE);
9060 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
9061 layout_type (long_double_type_node);
9062
9063 float_ptr_type_node = build_pointer_type (float_type_node);
9064 double_ptr_type_node = build_pointer_type (double_type_node);
9065 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
9066 integer_ptr_type_node = build_pointer_type (integer_type_node);
9067
9068 /* Fixed size integer types. */
9069 uint32_type_node = build_nonstandard_integer_type (32, true);
9070 uint64_type_node = build_nonstandard_integer_type (64, true);
9071
9072 /* Decimal float types. */
9073 dfloat32_type_node = make_node (REAL_TYPE);
9074 TYPE_PRECISION (dfloat32_type_node) = DECIMAL32_TYPE_SIZE;
9075 layout_type (dfloat32_type_node);
9076 SET_TYPE_MODE (dfloat32_type_node, SDmode);
9077 dfloat32_ptr_type_node = build_pointer_type (dfloat32_type_node);
9078
9079 dfloat64_type_node = make_node (REAL_TYPE);
9080 TYPE_PRECISION (dfloat64_type_node) = DECIMAL64_TYPE_SIZE;
9081 layout_type (dfloat64_type_node);
9082 SET_TYPE_MODE (dfloat64_type_node, DDmode);
9083 dfloat64_ptr_type_node = build_pointer_type (dfloat64_type_node);
9084
9085 dfloat128_type_node = make_node (REAL_TYPE);
9086 TYPE_PRECISION (dfloat128_type_node) = DECIMAL128_TYPE_SIZE;
9087 layout_type (dfloat128_type_node);
9088 SET_TYPE_MODE (dfloat128_type_node, TDmode);
9089 dfloat128_ptr_type_node = build_pointer_type (dfloat128_type_node);
9090
9091 complex_integer_type_node = build_complex_type (integer_type_node);
9092 complex_float_type_node = build_complex_type (float_type_node);
9093 complex_double_type_node = build_complex_type (double_type_node);
9094 complex_long_double_type_node = build_complex_type (long_double_type_node);
9095
9096 /* Make fixed-point nodes based on sat/non-sat and signed/unsigned. */
9097 #define MAKE_FIXED_TYPE_NODE(KIND,SIZE) \
9098 sat_ ## KIND ## _type_node = \
9099 make_sat_signed_ ## KIND ## _type (SIZE); \
9100 sat_unsigned_ ## KIND ## _type_node = \
9101 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9102 KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9103 unsigned_ ## KIND ## _type_node = \
9104 make_unsigned_ ## KIND ## _type (SIZE);
9105
9106 #define MAKE_FIXED_TYPE_NODE_WIDTH(KIND,WIDTH,SIZE) \
9107 sat_ ## WIDTH ## KIND ## _type_node = \
9108 make_sat_signed_ ## KIND ## _type (SIZE); \
9109 sat_unsigned_ ## WIDTH ## KIND ## _type_node = \
9110 make_sat_unsigned_ ## KIND ## _type (SIZE); \
9111 WIDTH ## KIND ## _type_node = make_signed_ ## KIND ## _type (SIZE); \
9112 unsigned_ ## WIDTH ## KIND ## _type_node = \
9113 make_unsigned_ ## KIND ## _type (SIZE);
9114
9115 /* Make fixed-point type nodes based on four different widths. */
9116 #define MAKE_FIXED_TYPE_NODE_FAMILY(N1,N2) \
9117 MAKE_FIXED_TYPE_NODE_WIDTH (N1, short_, SHORT_ ## N2 ## _TYPE_SIZE) \
9118 MAKE_FIXED_TYPE_NODE (N1, N2 ## _TYPE_SIZE) \
9119 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_, LONG_ ## N2 ## _TYPE_SIZE) \
9120 MAKE_FIXED_TYPE_NODE_WIDTH (N1, long_long_, LONG_LONG_ ## N2 ## _TYPE_SIZE)
9121
9122 /* Make fixed-point mode nodes based on sat/non-sat and signed/unsigned. */
9123 #define MAKE_FIXED_MODE_NODE(KIND,NAME,MODE) \
9124 NAME ## _type_node = \
9125 make_or_reuse_signed_ ## KIND ## _type (GET_MODE_BITSIZE (MODE ## mode)); \
9126 u ## NAME ## _type_node = \
9127 make_or_reuse_unsigned_ ## KIND ## _type \
9128 (GET_MODE_BITSIZE (U ## MODE ## mode)); \
9129 sat_ ## NAME ## _type_node = \
9130 make_or_reuse_sat_signed_ ## KIND ## _type \
9131 (GET_MODE_BITSIZE (MODE ## mode)); \
9132 sat_u ## NAME ## _type_node = \
9133 make_or_reuse_sat_unsigned_ ## KIND ## _type \
9134 (GET_MODE_BITSIZE (U ## MODE ## mode));
9135
9136 /* Fixed-point type and mode nodes. */
9137 MAKE_FIXED_TYPE_NODE_FAMILY (fract, FRACT)
9138 MAKE_FIXED_TYPE_NODE_FAMILY (accum, ACCUM)
9139 MAKE_FIXED_MODE_NODE (fract, qq, QQ)
9140 MAKE_FIXED_MODE_NODE (fract, hq, HQ)
9141 MAKE_FIXED_MODE_NODE (fract, sq, SQ)
9142 MAKE_FIXED_MODE_NODE (fract, dq, DQ)
9143 MAKE_FIXED_MODE_NODE (fract, tq, TQ)
9144 MAKE_FIXED_MODE_NODE (accum, ha, HA)
9145 MAKE_FIXED_MODE_NODE (accum, sa, SA)
9146 MAKE_FIXED_MODE_NODE (accum, da, DA)
9147 MAKE_FIXED_MODE_NODE (accum, ta, TA)
9148
9149 {
9150 tree t = targetm.build_builtin_va_list ();
9151
9152 /* Many back-ends define record types without setting TYPE_NAME.
9153 If we copied the record type here, we'd keep the original
9154 record type without a name. This breaks name mangling. So,
9155 don't copy record types and let c_common_nodes_and_builtins()
9156 declare the type to be __builtin_va_list. */
9157 if (TREE_CODE (t) != RECORD_TYPE)
9158 t = build_variant_type_copy (t);
9159
9160 va_list_type_node = t;
9161 }
9162 }
9163
9164 /* A subroutine of build_common_builtin_nodes. Define a builtin function. */
9165
9166 static void
9167 local_define_builtin (const char *name, tree type, enum built_in_function code,
9168 const char *library_name, int ecf_flags)
9169 {
9170 tree decl;
9171
9172 decl = add_builtin_function (name, type, code, BUILT_IN_NORMAL,
9173 library_name, NULL_TREE);
9174 if (ecf_flags & ECF_CONST)
9175 TREE_READONLY (decl) = 1;
9176 if (ecf_flags & ECF_PURE)
9177 DECL_PURE_P (decl) = 1;
9178 if (ecf_flags & ECF_LOOPING_CONST_OR_PURE)
9179 DECL_LOOPING_CONST_OR_PURE_P (decl) = 1;
9180 if (ecf_flags & ECF_NORETURN)
9181 TREE_THIS_VOLATILE (decl) = 1;
9182 if (ecf_flags & ECF_NOTHROW)
9183 TREE_NOTHROW (decl) = 1;
9184 if (ecf_flags & ECF_MALLOC)
9185 DECL_IS_MALLOC (decl) = 1;
9186 if (ecf_flags & ECF_LEAF)
9187 DECL_ATTRIBUTES (decl) = tree_cons (get_identifier ("leaf"),
9188 NULL, DECL_ATTRIBUTES (decl));
9189
9190 built_in_decls[code] = decl;
9191 implicit_built_in_decls[code] = decl;
9192 }
9193
9194 /* Call this function after instantiating all builtins that the language
9195 front end cares about. This will build the rest of the builtins that
9196 are relied upon by the tree optimizers and the middle-end. */
9197
9198 void
9199 build_common_builtin_nodes (void)
9200 {
9201 tree tmp, ftype;
9202
9203 if (built_in_decls[BUILT_IN_MEMCPY] == NULL
9204 || built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9205 {
9206 ftype = build_function_type_list (ptr_type_node,
9207 ptr_type_node, const_ptr_type_node,
9208 size_type_node, NULL_TREE);
9209
9210 if (built_in_decls[BUILT_IN_MEMCPY] == NULL)
9211 local_define_builtin ("__builtin_memcpy", ftype, BUILT_IN_MEMCPY,
9212 "memcpy", ECF_NOTHROW | ECF_LEAF);
9213 if (built_in_decls[BUILT_IN_MEMMOVE] == NULL)
9214 local_define_builtin ("__builtin_memmove", ftype, BUILT_IN_MEMMOVE,
9215 "memmove", ECF_NOTHROW | ECF_LEAF);
9216 }
9217
9218 if (built_in_decls[BUILT_IN_MEMCMP] == NULL)
9219 {
9220 ftype = build_function_type_list (integer_type_node, const_ptr_type_node,
9221 const_ptr_type_node, size_type_node,
9222 NULL_TREE);
9223 local_define_builtin ("__builtin_memcmp", ftype, BUILT_IN_MEMCMP,
9224 "memcmp", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9225 }
9226
9227 if (built_in_decls[BUILT_IN_MEMSET] == NULL)
9228 {
9229 ftype = build_function_type_list (ptr_type_node,
9230 ptr_type_node, integer_type_node,
9231 size_type_node, NULL_TREE);
9232 local_define_builtin ("__builtin_memset", ftype, BUILT_IN_MEMSET,
9233 "memset", ECF_NOTHROW | ECF_LEAF);
9234 }
9235
9236 if (built_in_decls[BUILT_IN_ALLOCA] == NULL)
9237 {
9238 ftype = build_function_type_list (ptr_type_node,
9239 size_type_node, NULL_TREE);
9240 local_define_builtin ("__builtin_alloca", ftype, BUILT_IN_ALLOCA,
9241 "alloca", ECF_MALLOC | ECF_NOTHROW | ECF_LEAF);
9242 }
9243
9244 /* If we're checking the stack, `alloca' can throw. */
9245 if (flag_stack_check)
9246 TREE_NOTHROW (built_in_decls[BUILT_IN_ALLOCA]) = 0;
9247
9248 ftype = build_function_type_list (void_type_node,
9249 ptr_type_node, ptr_type_node,
9250 ptr_type_node, NULL_TREE);
9251 local_define_builtin ("__builtin_init_trampoline", ftype,
9252 BUILT_IN_INIT_TRAMPOLINE,
9253 "__builtin_init_trampoline", ECF_NOTHROW | ECF_LEAF);
9254
9255 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9256 local_define_builtin ("__builtin_adjust_trampoline", ftype,
9257 BUILT_IN_ADJUST_TRAMPOLINE,
9258 "__builtin_adjust_trampoline",
9259 ECF_CONST | ECF_NOTHROW);
9260
9261 ftype = build_function_type_list (void_type_node,
9262 ptr_type_node, ptr_type_node, NULL_TREE);
9263 local_define_builtin ("__builtin_nonlocal_goto", ftype,
9264 BUILT_IN_NONLOCAL_GOTO,
9265 "__builtin_nonlocal_goto",
9266 ECF_NORETURN | ECF_NOTHROW);
9267
9268 ftype = build_function_type_list (void_type_node,
9269 ptr_type_node, ptr_type_node, NULL_TREE);
9270 local_define_builtin ("__builtin_setjmp_setup", ftype,
9271 BUILT_IN_SETJMP_SETUP,
9272 "__builtin_setjmp_setup", ECF_NOTHROW);
9273
9274 ftype = build_function_type_list (ptr_type_node, ptr_type_node, NULL_TREE);
9275 local_define_builtin ("__builtin_setjmp_dispatcher", ftype,
9276 BUILT_IN_SETJMP_DISPATCHER,
9277 "__builtin_setjmp_dispatcher",
9278 ECF_PURE | ECF_NOTHROW);
9279
9280 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9281 local_define_builtin ("__builtin_setjmp_receiver", ftype,
9282 BUILT_IN_SETJMP_RECEIVER,
9283 "__builtin_setjmp_receiver", ECF_NOTHROW);
9284
9285 ftype = build_function_type_list (ptr_type_node, NULL_TREE);
9286 local_define_builtin ("__builtin_stack_save", ftype, BUILT_IN_STACK_SAVE,
9287 "__builtin_stack_save", ECF_NOTHROW | ECF_LEAF);
9288
9289 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9290 local_define_builtin ("__builtin_stack_restore", ftype,
9291 BUILT_IN_STACK_RESTORE,
9292 "__builtin_stack_restore", ECF_NOTHROW | ECF_LEAF);
9293
9294 ftype = build_function_type_list (void_type_node, NULL_TREE);
9295 local_define_builtin ("__builtin_profile_func_enter", ftype,
9296 BUILT_IN_PROFILE_FUNC_ENTER, "profile_func_enter", 0);
9297 local_define_builtin ("__builtin_profile_func_exit", ftype,
9298 BUILT_IN_PROFILE_FUNC_EXIT, "profile_func_exit", 0);
9299
9300 /* If there's a possibility that we might use the ARM EABI, build the
9301 alternate __cxa_end_cleanup node used to resume from C++ and Java. */
9302 if (targetm.arm_eabi_unwinder)
9303 {
9304 ftype = build_function_type_list (void_type_node, NULL_TREE);
9305 local_define_builtin ("__builtin_cxa_end_cleanup", ftype,
9306 BUILT_IN_CXA_END_CLEANUP,
9307 "__cxa_end_cleanup", ECF_NORETURN | ECF_LEAF);
9308 }
9309
9310 ftype = build_function_type_list (void_type_node, ptr_type_node, NULL_TREE);
9311 local_define_builtin ("__builtin_unwind_resume", ftype,
9312 BUILT_IN_UNWIND_RESUME,
9313 (targetm.except_unwind_info () == UI_SJLJ
9314 ? "_Unwind_SjLj_Resume" : "_Unwind_Resume"),
9315 ECF_NORETURN);
9316
9317 /* The exception object and filter values from the runtime. The argument
9318 must be zero before exception lowering, i.e. from the front end. After
9319 exception lowering, it will be the region number for the exception
9320 landing pad. These functions are PURE instead of CONST to prevent
9321 them from being hoisted past the exception edge that will initialize
9322 its value in the landing pad. */
9323 ftype = build_function_type_list (ptr_type_node,
9324 integer_type_node, NULL_TREE);
9325 local_define_builtin ("__builtin_eh_pointer", ftype, BUILT_IN_EH_POINTER,
9326 "__builtin_eh_pointer", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9327
9328 tmp = lang_hooks.types.type_for_mode (targetm.eh_return_filter_mode (), 0);
9329 ftype = build_function_type_list (tmp, integer_type_node, NULL_TREE);
9330 local_define_builtin ("__builtin_eh_filter", ftype, BUILT_IN_EH_FILTER,
9331 "__builtin_eh_filter", ECF_PURE | ECF_NOTHROW | ECF_LEAF);
9332
9333 ftype = build_function_type_list (void_type_node,
9334 integer_type_node, integer_type_node,
9335 NULL_TREE);
9336 local_define_builtin ("__builtin_eh_copy_values", ftype,
9337 BUILT_IN_EH_COPY_VALUES,
9338 "__builtin_eh_copy_values", ECF_NOTHROW);
9339
9340 /* Complex multiplication and division. These are handled as builtins
9341 rather than optabs because emit_library_call_value doesn't support
9342 complex. Further, we can do slightly better with folding these
9343 beasties if the real and complex parts of the arguments are separate. */
9344 {
9345 int mode;
9346
9347 for (mode = MIN_MODE_COMPLEX_FLOAT; mode <= MAX_MODE_COMPLEX_FLOAT; ++mode)
9348 {
9349 char mode_name_buf[4], *q;
9350 const char *p;
9351 enum built_in_function mcode, dcode;
9352 tree type, inner_type;
9353
9354 type = lang_hooks.types.type_for_mode ((enum machine_mode) mode, 0);
9355 if (type == NULL)
9356 continue;
9357 inner_type = TREE_TYPE (type);
9358
9359 ftype = build_function_type_list (type, inner_type, inner_type,
9360 inner_type, inner_type, NULL_TREE);
9361
9362 mcode = ((enum built_in_function)
9363 (BUILT_IN_COMPLEX_MUL_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9364 dcode = ((enum built_in_function)
9365 (BUILT_IN_COMPLEX_DIV_MIN + mode - MIN_MODE_COMPLEX_FLOAT));
9366
9367 for (p = GET_MODE_NAME (mode), q = mode_name_buf; *p; p++, q++)
9368 *q = TOLOWER (*p);
9369 *q = '\0';
9370
9371 built_in_names[mcode] = concat ("__mul", mode_name_buf, "3", NULL);
9372 local_define_builtin (built_in_names[mcode], ftype, mcode,
9373 built_in_names[mcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9374
9375 built_in_names[dcode] = concat ("__div", mode_name_buf, "3", NULL);
9376 local_define_builtin (built_in_names[dcode], ftype, dcode,
9377 built_in_names[dcode], ECF_CONST | ECF_NOTHROW | ECF_LEAF);
9378 }
9379 }
9380 }
9381
9382 /* HACK. GROSS. This is absolutely disgusting. I wish there was a
9383 better way.
9384
9385 If we requested a pointer to a vector, build up the pointers that
9386 we stripped off while looking for the inner type. Similarly for
9387 return values from functions.
9388
9389 The argument TYPE is the top of the chain, and BOTTOM is the
9390 new type which we will point to. */
9391
9392 tree
9393 reconstruct_complex_type (tree type, tree bottom)
9394 {
9395 tree inner, outer;
9396
9397 if (TREE_CODE (type) == POINTER_TYPE)
9398 {
9399 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9400 outer = build_pointer_type_for_mode (inner, TYPE_MODE (type),
9401 TYPE_REF_CAN_ALIAS_ALL (type));
9402 }
9403 else if (TREE_CODE (type) == REFERENCE_TYPE)
9404 {
9405 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9406 outer = build_reference_type_for_mode (inner, TYPE_MODE (type),
9407 TYPE_REF_CAN_ALIAS_ALL (type));
9408 }
9409 else if (TREE_CODE (type) == ARRAY_TYPE)
9410 {
9411 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9412 outer = build_array_type (inner, TYPE_DOMAIN (type));
9413 }
9414 else if (TREE_CODE (type) == FUNCTION_TYPE)
9415 {
9416 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9417 outer = build_function_type (inner, TYPE_ARG_TYPES (type));
9418 }
9419 else if (TREE_CODE (type) == METHOD_TYPE)
9420 {
9421 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9422 /* The build_method_type_directly() routine prepends 'this' to argument list,
9423 so we must compensate by getting rid of it. */
9424 outer
9425 = build_method_type_directly
9426 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (type))),
9427 inner,
9428 TREE_CHAIN (TYPE_ARG_TYPES (type)));
9429 }
9430 else if (TREE_CODE (type) == OFFSET_TYPE)
9431 {
9432 inner = reconstruct_complex_type (TREE_TYPE (type), bottom);
9433 outer = build_offset_type (TYPE_OFFSET_BASETYPE (type), inner);
9434 }
9435 else
9436 return bottom;
9437
9438 return build_type_attribute_qual_variant (outer, TYPE_ATTRIBUTES (type),
9439 TYPE_QUALS (type));
9440 }
9441
9442 /* Returns a vector tree node given a mode (integer, vector, or BLKmode) and
9443 the inner type. */
9444 tree
9445 build_vector_type_for_mode (tree innertype, enum machine_mode mode)
9446 {
9447 int nunits;
9448
9449 switch (GET_MODE_CLASS (mode))
9450 {
9451 case MODE_VECTOR_INT:
9452 case MODE_VECTOR_FLOAT:
9453 case MODE_VECTOR_FRACT:
9454 case MODE_VECTOR_UFRACT:
9455 case MODE_VECTOR_ACCUM:
9456 case MODE_VECTOR_UACCUM:
9457 nunits = GET_MODE_NUNITS (mode);
9458 break;
9459
9460 case MODE_INT:
9461 /* Check that there are no leftover bits. */
9462 gcc_assert (GET_MODE_BITSIZE (mode)
9463 % TREE_INT_CST_LOW (TYPE_SIZE (innertype)) == 0);
9464
9465 nunits = GET_MODE_BITSIZE (mode)
9466 / TREE_INT_CST_LOW (TYPE_SIZE (innertype));
9467 break;
9468
9469 default:
9470 gcc_unreachable ();
9471 }
9472
9473 return make_vector_type (innertype, nunits, mode);
9474 }
9475
9476 /* Similarly, but takes the inner type and number of units, which must be
9477 a power of two. */
9478
9479 tree
9480 build_vector_type (tree innertype, int nunits)
9481 {
9482 return make_vector_type (innertype, nunits, VOIDmode);
9483 }
9484
9485 /* Similarly, but takes the inner type and number of units, which must be
9486 a power of two. */
9487
9488 tree
9489 build_opaque_vector_type (tree innertype, int nunits)
9490 {
9491 tree t;
9492 innertype = build_distinct_type_copy (innertype);
9493 t = make_vector_type (innertype, nunits, VOIDmode);
9494 TYPE_VECTOR_OPAQUE (t) = true;
9495 return t;
9496 }
9497
9498
9499 /* Given an initializer INIT, return TRUE if INIT is zero or some
9500 aggregate of zeros. Otherwise return FALSE. */
9501 bool
9502 initializer_zerop (const_tree init)
9503 {
9504 tree elt;
9505
9506 STRIP_NOPS (init);
9507
9508 switch (TREE_CODE (init))
9509 {
9510 case INTEGER_CST:
9511 return integer_zerop (init);
9512
9513 case REAL_CST:
9514 /* ??? Note that this is not correct for C4X float formats. There,
9515 a bit pattern of all zeros is 1.0; 0.0 is encoded with the most
9516 negative exponent. */
9517 return real_zerop (init)
9518 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
9519
9520 case FIXED_CST:
9521 return fixed_zerop (init);
9522
9523 case COMPLEX_CST:
9524 return integer_zerop (init)
9525 || (real_zerop (init)
9526 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
9527 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
9528
9529 case VECTOR_CST:
9530 for (elt = TREE_VECTOR_CST_ELTS (init); elt; elt = TREE_CHAIN (elt))
9531 if (!initializer_zerop (TREE_VALUE (elt)))
9532 return false;
9533 return true;
9534
9535 case CONSTRUCTOR:
9536 {
9537 unsigned HOST_WIDE_INT idx;
9538
9539 FOR_EACH_CONSTRUCTOR_VALUE (CONSTRUCTOR_ELTS (init), idx, elt)
9540 if (!initializer_zerop (elt))
9541 return false;
9542 return true;
9543 }
9544
9545 case STRING_CST:
9546 {
9547 int i;
9548
9549 /* We need to loop through all elements to handle cases like
9550 "\0" and "\0foobar". */
9551 for (i = 0; i < TREE_STRING_LENGTH (init); ++i)
9552 if (TREE_STRING_POINTER (init)[i] != '\0')
9553 return false;
9554
9555 return true;
9556 }
9557
9558 default:
9559 return false;
9560 }
9561 }
9562
9563 /* Build an empty statement at location LOC. */
9564
9565 tree
9566 build_empty_stmt (location_t loc)
9567 {
9568 tree t = build1 (NOP_EXPR, void_type_node, size_zero_node);
9569 SET_EXPR_LOCATION (t, loc);
9570 return t;
9571 }
9572
9573
9574 /* Build an OpenMP clause with code CODE. LOC is the location of the
9575 clause. */
9576
9577 tree
9578 build_omp_clause (location_t loc, enum omp_clause_code code)
9579 {
9580 tree t;
9581 int size, length;
9582
9583 length = omp_clause_num_ops[code];
9584 size = (sizeof (struct tree_omp_clause) + (length - 1) * sizeof (tree));
9585
9586 t = ggc_alloc_tree_node (size);
9587 memset (t, 0, size);
9588 TREE_SET_CODE (t, OMP_CLAUSE);
9589 OMP_CLAUSE_SET_CODE (t, code);
9590 OMP_CLAUSE_LOCATION (t) = loc;
9591
9592 #ifdef GATHER_STATISTICS
9593 tree_node_counts[(int) omp_clause_kind]++;
9594 tree_node_sizes[(int) omp_clause_kind] += size;
9595 #endif
9596
9597 return t;
9598 }
9599
9600 /* Build a tcc_vl_exp object with code CODE and room for LEN operands. LEN
9601 includes the implicit operand count in TREE_OPERAND 0, and so must be >= 1.
9602 Except for the CODE and operand count field, other storage for the
9603 object is initialized to zeros. */
9604
9605 tree
9606 build_vl_exp_stat (enum tree_code code, int len MEM_STAT_DECL)
9607 {
9608 tree t;
9609 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_exp);
9610
9611 gcc_assert (TREE_CODE_CLASS (code) == tcc_vl_exp);
9612 gcc_assert (len >= 1);
9613
9614 #ifdef GATHER_STATISTICS
9615 tree_node_counts[(int) e_kind]++;
9616 tree_node_sizes[(int) e_kind] += length;
9617 #endif
9618
9619 t = ggc_alloc_zone_cleared_tree_node_stat (&tree_zone, length PASS_MEM_STAT);
9620
9621 TREE_SET_CODE (t, code);
9622
9623 /* Can't use TREE_OPERAND to store the length because if checking is
9624 enabled, it will try to check the length before we store it. :-P */
9625 t->exp.operands[0] = build_int_cst (sizetype, len);
9626
9627 return t;
9628 }
9629
9630 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9631 FN and a null static chain slot. NARGS is the number of call arguments
9632 which are specified as "..." arguments. */
9633
9634 tree
9635 build_call_nary (tree return_type, tree fn, int nargs, ...)
9636 {
9637 tree ret;
9638 va_list args;
9639 va_start (args, nargs);
9640 ret = build_call_valist (return_type, fn, nargs, args);
9641 va_end (args);
9642 return ret;
9643 }
9644
9645 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9646 FN and a null static chain slot. NARGS is the number of call arguments
9647 which are specified as a va_list ARGS. */
9648
9649 tree
9650 build_call_valist (tree return_type, tree fn, int nargs, va_list args)
9651 {
9652 tree t;
9653 int i;
9654
9655 t = build_vl_exp (CALL_EXPR, nargs + 3);
9656 TREE_TYPE (t) = return_type;
9657 CALL_EXPR_FN (t) = fn;
9658 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9659 for (i = 0; i < nargs; i++)
9660 CALL_EXPR_ARG (t, i) = va_arg (args, tree);
9661 process_call_operands (t);
9662 return t;
9663 }
9664
9665 /* Build a CALL_EXPR of class tcc_vl_exp with the indicated RETURN_TYPE and
9666 FN and a null static chain slot. NARGS is the number of call arguments
9667 which are specified as a tree array ARGS. */
9668
9669 tree
9670 build_call_array_loc (location_t loc, tree return_type, tree fn,
9671 int nargs, const tree *args)
9672 {
9673 tree t;
9674 int i;
9675
9676 t = build_vl_exp (CALL_EXPR, nargs + 3);
9677 TREE_TYPE (t) = return_type;
9678 CALL_EXPR_FN (t) = fn;
9679 CALL_EXPR_STATIC_CHAIN (t) = NULL_TREE;
9680 for (i = 0; i < nargs; i++)
9681 CALL_EXPR_ARG (t, i) = args[i];
9682 process_call_operands (t);
9683 SET_EXPR_LOCATION (t, loc);
9684 return t;
9685 }
9686
9687 /* Like build_call_array, but takes a VEC. */
9688
9689 tree
9690 build_call_vec (tree return_type, tree fn, VEC(tree,gc) *args)
9691 {
9692 tree ret, t;
9693 unsigned int ix;
9694
9695 ret = build_vl_exp (CALL_EXPR, VEC_length (tree, args) + 3);
9696 TREE_TYPE (ret) = return_type;
9697 CALL_EXPR_FN (ret) = fn;
9698 CALL_EXPR_STATIC_CHAIN (ret) = NULL_TREE;
9699 FOR_EACH_VEC_ELT (tree, args, ix, t)
9700 CALL_EXPR_ARG (ret, ix) = t;
9701 process_call_operands (ret);
9702 return ret;
9703 }
9704
9705
9706 /* Returns true if it is possible to prove that the index of
9707 an array access REF (an ARRAY_REF expression) falls into the
9708 array bounds. */
9709
9710 bool
9711 in_array_bounds_p (tree ref)
9712 {
9713 tree idx = TREE_OPERAND (ref, 1);
9714 tree min, max;
9715
9716 if (TREE_CODE (idx) != INTEGER_CST)
9717 return false;
9718
9719 min = array_ref_low_bound (ref);
9720 max = array_ref_up_bound (ref);
9721 if (!min
9722 || !max
9723 || TREE_CODE (min) != INTEGER_CST
9724 || TREE_CODE (max) != INTEGER_CST)
9725 return false;
9726
9727 if (tree_int_cst_lt (idx, min)
9728 || tree_int_cst_lt (max, idx))
9729 return false;
9730
9731 return true;
9732 }
9733
9734 /* Returns true if it is possible to prove that the range of
9735 an array access REF (an ARRAY_RANGE_REF expression) falls
9736 into the array bounds. */
9737
9738 bool
9739 range_in_array_bounds_p (tree ref)
9740 {
9741 tree domain_type = TYPE_DOMAIN (TREE_TYPE (ref));
9742 tree range_min, range_max, min, max;
9743
9744 range_min = TYPE_MIN_VALUE (domain_type);
9745 range_max = TYPE_MAX_VALUE (domain_type);
9746 if (!range_min
9747 || !range_max
9748 || TREE_CODE (range_min) != INTEGER_CST
9749 || TREE_CODE (range_max) != INTEGER_CST)
9750 return false;
9751
9752 min = array_ref_low_bound (ref);
9753 max = array_ref_up_bound (ref);
9754 if (!min
9755 || !max
9756 || TREE_CODE (min) != INTEGER_CST
9757 || TREE_CODE (max) != INTEGER_CST)
9758 return false;
9759
9760 if (tree_int_cst_lt (range_min, min)
9761 || tree_int_cst_lt (max, range_max))
9762 return false;
9763
9764 return true;
9765 }
9766
9767 /* Return true if T (assumed to be a DECL) must be assigned a memory
9768 location. */
9769
9770 bool
9771 needs_to_live_in_memory (const_tree t)
9772 {
9773 if (TREE_CODE (t) == SSA_NAME)
9774 t = SSA_NAME_VAR (t);
9775
9776 return (TREE_ADDRESSABLE (t)
9777 || is_global_var (t)
9778 || (TREE_CODE (t) == RESULT_DECL
9779 && !DECL_BY_REFERENCE (t)
9780 && aggregate_value_p (t, current_function_decl)));
9781 }
9782
9783 /* There are situations in which a language considers record types
9784 compatible which have different field lists. Decide if two fields
9785 are compatible. It is assumed that the parent records are compatible. */
9786
9787 bool
9788 fields_compatible_p (const_tree f1, const_tree f2)
9789 {
9790 if (!operand_equal_p (DECL_FIELD_BIT_OFFSET (f1),
9791 DECL_FIELD_BIT_OFFSET (f2), OEP_ONLY_CONST))
9792 return false;
9793
9794 if (!operand_equal_p (DECL_FIELD_OFFSET (f1),
9795 DECL_FIELD_OFFSET (f2), OEP_ONLY_CONST))
9796 return false;
9797
9798 if (!types_compatible_p (TREE_TYPE (f1), TREE_TYPE (f2)))
9799 return false;
9800
9801 return true;
9802 }
9803
9804 /* Locate within RECORD a field that is compatible with ORIG_FIELD. */
9805
9806 tree
9807 find_compatible_field (tree record, tree orig_field)
9808 {
9809 tree f;
9810
9811 for (f = TYPE_FIELDS (record); f ; f = TREE_CHAIN (f))
9812 if (TREE_CODE (f) == FIELD_DECL
9813 && fields_compatible_p (f, orig_field))
9814 return f;
9815
9816 /* ??? Why isn't this on the main fields list? */
9817 f = TYPE_VFIELD (record);
9818 if (f && TREE_CODE (f) == FIELD_DECL
9819 && fields_compatible_p (f, orig_field))
9820 return f;
9821
9822 /* ??? We should abort here, but Java appears to do Bad Things
9823 with inherited fields. */
9824 return orig_field;
9825 }
9826
9827 /* Return value of a constant X and sign-extend it. */
9828
9829 HOST_WIDE_INT
9830 int_cst_value (const_tree x)
9831 {
9832 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9833 unsigned HOST_WIDE_INT val = TREE_INT_CST_LOW (x);
9834
9835 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9836 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9837 || TREE_INT_CST_HIGH (x) == -1);
9838
9839 if (bits < HOST_BITS_PER_WIDE_INT)
9840 {
9841 bool negative = ((val >> (bits - 1)) & 1) != 0;
9842 if (negative)
9843 val |= (~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1;
9844 else
9845 val &= ~((~(unsigned HOST_WIDE_INT) 0) << (bits - 1) << 1);
9846 }
9847
9848 return val;
9849 }
9850
9851 /* Return value of a constant X and sign-extend it. */
9852
9853 HOST_WIDEST_INT
9854 widest_int_cst_value (const_tree x)
9855 {
9856 unsigned bits = TYPE_PRECISION (TREE_TYPE (x));
9857 unsigned HOST_WIDEST_INT val = TREE_INT_CST_LOW (x);
9858
9859 #if HOST_BITS_PER_WIDEST_INT > HOST_BITS_PER_WIDE_INT
9860 gcc_assert (HOST_BITS_PER_WIDEST_INT >= 2 * HOST_BITS_PER_WIDE_INT);
9861 val |= (((unsigned HOST_WIDEST_INT) TREE_INT_CST_HIGH (x))
9862 << HOST_BITS_PER_WIDE_INT);
9863 #else
9864 /* Make sure the sign-extended value will fit in a HOST_WIDE_INT. */
9865 gcc_assert (TREE_INT_CST_HIGH (x) == 0
9866 || TREE_INT_CST_HIGH (x) == -1);
9867 #endif
9868
9869 if (bits < HOST_BITS_PER_WIDEST_INT)
9870 {
9871 bool negative = ((val >> (bits - 1)) & 1) != 0;
9872 if (negative)
9873 val |= (~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1;
9874 else
9875 val &= ~((~(unsigned HOST_WIDEST_INT) 0) << (bits - 1) << 1);
9876 }
9877
9878 return val;
9879 }
9880
9881 /* If TYPE is an integral type, return an equivalent type which is
9882 unsigned iff UNSIGNEDP is true. If TYPE is not an integral type,
9883 return TYPE itself. */
9884
9885 tree
9886 signed_or_unsigned_type_for (int unsignedp, tree type)
9887 {
9888 tree t = type;
9889 if (POINTER_TYPE_P (type))
9890 {
9891 /* If the pointer points to the normal address space, use the
9892 size_type_node. Otherwise use an appropriate size for the pointer
9893 based on the named address space it points to. */
9894 if (!TYPE_ADDR_SPACE (TREE_TYPE (t)))
9895 t = size_type_node;
9896 else
9897 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9898 }
9899
9900 if (!INTEGRAL_TYPE_P (t) || TYPE_UNSIGNED (t) == unsignedp)
9901 return t;
9902
9903 return lang_hooks.types.type_for_size (TYPE_PRECISION (t), unsignedp);
9904 }
9905
9906 /* Returns unsigned variant of TYPE. */
9907
9908 tree
9909 unsigned_type_for (tree type)
9910 {
9911 return signed_or_unsigned_type_for (1, type);
9912 }
9913
9914 /* Returns signed variant of TYPE. */
9915
9916 tree
9917 signed_type_for (tree type)
9918 {
9919 return signed_or_unsigned_type_for (0, type);
9920 }
9921
9922 /* Returns the largest value obtainable by casting something in INNER type to
9923 OUTER type. */
9924
9925 tree
9926 upper_bound_in_type (tree outer, tree inner)
9927 {
9928 unsigned HOST_WIDE_INT lo, hi;
9929 unsigned int det = 0;
9930 unsigned oprec = TYPE_PRECISION (outer);
9931 unsigned iprec = TYPE_PRECISION (inner);
9932 unsigned prec;
9933
9934 /* Compute a unique number for every combination. */
9935 det |= (oprec > iprec) ? 4 : 0;
9936 det |= TYPE_UNSIGNED (outer) ? 2 : 0;
9937 det |= TYPE_UNSIGNED (inner) ? 1 : 0;
9938
9939 /* Determine the exponent to use. */
9940 switch (det)
9941 {
9942 case 0:
9943 case 1:
9944 /* oprec <= iprec, outer: signed, inner: don't care. */
9945 prec = oprec - 1;
9946 break;
9947 case 2:
9948 case 3:
9949 /* oprec <= iprec, outer: unsigned, inner: don't care. */
9950 prec = oprec;
9951 break;
9952 case 4:
9953 /* oprec > iprec, outer: signed, inner: signed. */
9954 prec = iprec - 1;
9955 break;
9956 case 5:
9957 /* oprec > iprec, outer: signed, inner: unsigned. */
9958 prec = iprec;
9959 break;
9960 case 6:
9961 /* oprec > iprec, outer: unsigned, inner: signed. */
9962 prec = oprec;
9963 break;
9964 case 7:
9965 /* oprec > iprec, outer: unsigned, inner: unsigned. */
9966 prec = iprec;
9967 break;
9968 default:
9969 gcc_unreachable ();
9970 }
9971
9972 /* Compute 2^^prec - 1. */
9973 if (prec <= HOST_BITS_PER_WIDE_INT)
9974 {
9975 hi = 0;
9976 lo = ((~(unsigned HOST_WIDE_INT) 0)
9977 >> (HOST_BITS_PER_WIDE_INT - prec));
9978 }
9979 else
9980 {
9981 hi = ((~(unsigned HOST_WIDE_INT) 0)
9982 >> (2 * HOST_BITS_PER_WIDE_INT - prec));
9983 lo = ~(unsigned HOST_WIDE_INT) 0;
9984 }
9985
9986 return build_int_cst_wide (outer, lo, hi);
9987 }
9988
9989 /* Returns the smallest value obtainable by casting something in INNER type to
9990 OUTER type. */
9991
9992 tree
9993 lower_bound_in_type (tree outer, tree inner)
9994 {
9995 unsigned HOST_WIDE_INT lo, hi;
9996 unsigned oprec = TYPE_PRECISION (outer);
9997 unsigned iprec = TYPE_PRECISION (inner);
9998
9999 /* If OUTER type is unsigned, we can definitely cast 0 to OUTER type
10000 and obtain 0. */
10001 if (TYPE_UNSIGNED (outer)
10002 /* If we are widening something of an unsigned type, OUTER type
10003 contains all values of INNER type. In particular, both INNER
10004 and OUTER types have zero in common. */
10005 || (oprec > iprec && TYPE_UNSIGNED (inner)))
10006 lo = hi = 0;
10007 else
10008 {
10009 /* If we are widening a signed type to another signed type, we
10010 want to obtain -2^^(iprec-1). If we are keeping the
10011 precision or narrowing to a signed type, we want to obtain
10012 -2^(oprec-1). */
10013 unsigned prec = oprec > iprec ? iprec : oprec;
10014
10015 if (prec <= HOST_BITS_PER_WIDE_INT)
10016 {
10017 hi = ~(unsigned HOST_WIDE_INT) 0;
10018 lo = (~(unsigned HOST_WIDE_INT) 0) << (prec - 1);
10019 }
10020 else
10021 {
10022 hi = ((~(unsigned HOST_WIDE_INT) 0)
10023 << (prec - HOST_BITS_PER_WIDE_INT - 1));
10024 lo = 0;
10025 }
10026 }
10027
10028 return build_int_cst_wide (outer, lo, hi);
10029 }
10030
10031 /* Return nonzero if two operands that are suitable for PHI nodes are
10032 necessarily equal. Specifically, both ARG0 and ARG1 must be either
10033 SSA_NAME or invariant. Note that this is strictly an optimization.
10034 That is, callers of this function can directly call operand_equal_p
10035 and get the same result, only slower. */
10036
10037 int
10038 operand_equal_for_phi_arg_p (const_tree arg0, const_tree arg1)
10039 {
10040 if (arg0 == arg1)
10041 return 1;
10042 if (TREE_CODE (arg0) == SSA_NAME || TREE_CODE (arg1) == SSA_NAME)
10043 return 0;
10044 return operand_equal_p (arg0, arg1, 0);
10045 }
10046
10047 /* Returns number of zeros at the end of binary representation of X.
10048
10049 ??? Use ffs if available? */
10050
10051 tree
10052 num_ending_zeros (const_tree x)
10053 {
10054 unsigned HOST_WIDE_INT fr, nfr;
10055 unsigned num, abits;
10056 tree type = TREE_TYPE (x);
10057
10058 if (TREE_INT_CST_LOW (x) == 0)
10059 {
10060 num = HOST_BITS_PER_WIDE_INT;
10061 fr = TREE_INT_CST_HIGH (x);
10062 }
10063 else
10064 {
10065 num = 0;
10066 fr = TREE_INT_CST_LOW (x);
10067 }
10068
10069 for (abits = HOST_BITS_PER_WIDE_INT / 2; abits; abits /= 2)
10070 {
10071 nfr = fr >> abits;
10072 if (nfr << abits == fr)
10073 {
10074 num += abits;
10075 fr = nfr;
10076 }
10077 }
10078
10079 if (num > TYPE_PRECISION (type))
10080 num = TYPE_PRECISION (type);
10081
10082 return build_int_cst_type (type, num);
10083 }
10084
10085
10086 #define WALK_SUBTREE(NODE) \
10087 do \
10088 { \
10089 result = walk_tree_1 (&(NODE), func, data, pset, lh); \
10090 if (result) \
10091 return result; \
10092 } \
10093 while (0)
10094
10095 /* This is a subroutine of walk_tree that walks field of TYPE that are to
10096 be walked whenever a type is seen in the tree. Rest of operands and return
10097 value are as for walk_tree. */
10098
10099 static tree
10100 walk_type_fields (tree type, walk_tree_fn func, void *data,
10101 struct pointer_set_t *pset, walk_tree_lh lh)
10102 {
10103 tree result = NULL_TREE;
10104
10105 switch (TREE_CODE (type))
10106 {
10107 case POINTER_TYPE:
10108 case REFERENCE_TYPE:
10109 /* We have to worry about mutually recursive pointers. These can't
10110 be written in C. They can in Ada. It's pathological, but
10111 there's an ACATS test (c38102a) that checks it. Deal with this
10112 by checking if we're pointing to another pointer, that one
10113 points to another pointer, that one does too, and we have no htab.
10114 If so, get a hash table. We check three levels deep to avoid
10115 the cost of the hash table if we don't need one. */
10116 if (POINTER_TYPE_P (TREE_TYPE (type))
10117 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (type)))
10118 && POINTER_TYPE_P (TREE_TYPE (TREE_TYPE (TREE_TYPE (type))))
10119 && !pset)
10120 {
10121 result = walk_tree_without_duplicates (&TREE_TYPE (type),
10122 func, data);
10123 if (result)
10124 return result;
10125
10126 break;
10127 }
10128
10129 /* ... fall through ... */
10130
10131 case COMPLEX_TYPE:
10132 WALK_SUBTREE (TREE_TYPE (type));
10133 break;
10134
10135 case METHOD_TYPE:
10136 WALK_SUBTREE (TYPE_METHOD_BASETYPE (type));
10137
10138 /* Fall through. */
10139
10140 case FUNCTION_TYPE:
10141 WALK_SUBTREE (TREE_TYPE (type));
10142 {
10143 tree arg;
10144
10145 /* We never want to walk into default arguments. */
10146 for (arg = TYPE_ARG_TYPES (type); arg; arg = TREE_CHAIN (arg))
10147 WALK_SUBTREE (TREE_VALUE (arg));
10148 }
10149 break;
10150
10151 case ARRAY_TYPE:
10152 /* Don't follow this nodes's type if a pointer for fear that
10153 we'll have infinite recursion. If we have a PSET, then we
10154 need not fear. */
10155 if (pset
10156 || (!POINTER_TYPE_P (TREE_TYPE (type))
10157 && TREE_CODE (TREE_TYPE (type)) != OFFSET_TYPE))
10158 WALK_SUBTREE (TREE_TYPE (type));
10159 WALK_SUBTREE (TYPE_DOMAIN (type));
10160 break;
10161
10162 case OFFSET_TYPE:
10163 WALK_SUBTREE (TREE_TYPE (type));
10164 WALK_SUBTREE (TYPE_OFFSET_BASETYPE (type));
10165 break;
10166
10167 default:
10168 break;
10169 }
10170
10171 return NULL_TREE;
10172 }
10173
10174 /* Apply FUNC to all the sub-trees of TP in a pre-order traversal. FUNC is
10175 called with the DATA and the address of each sub-tree. If FUNC returns a
10176 non-NULL value, the traversal is stopped, and the value returned by FUNC
10177 is returned. If PSET is non-NULL it is used to record the nodes visited,
10178 and to avoid visiting a node more than once. */
10179
10180 tree
10181 walk_tree_1 (tree *tp, walk_tree_fn func, void *data,
10182 struct pointer_set_t *pset, walk_tree_lh lh)
10183 {
10184 enum tree_code code;
10185 int walk_subtrees;
10186 tree result;
10187
10188 #define WALK_SUBTREE_TAIL(NODE) \
10189 do \
10190 { \
10191 tp = & (NODE); \
10192 goto tail_recurse; \
10193 } \
10194 while (0)
10195
10196 tail_recurse:
10197 /* Skip empty subtrees. */
10198 if (!*tp)
10199 return NULL_TREE;
10200
10201 /* Don't walk the same tree twice, if the user has requested
10202 that we avoid doing so. */
10203 if (pset && pointer_set_insert (pset, *tp))
10204 return NULL_TREE;
10205
10206 /* Call the function. */
10207 walk_subtrees = 1;
10208 result = (*func) (tp, &walk_subtrees, data);
10209
10210 /* If we found something, return it. */
10211 if (result)
10212 return result;
10213
10214 code = TREE_CODE (*tp);
10215
10216 /* Even if we didn't, FUNC may have decided that there was nothing
10217 interesting below this point in the tree. */
10218 if (!walk_subtrees)
10219 {
10220 /* But we still need to check our siblings. */
10221 if (code == TREE_LIST)
10222 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10223 else if (code == OMP_CLAUSE)
10224 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10225 else
10226 return NULL_TREE;
10227 }
10228
10229 if (lh)
10230 {
10231 result = (*lh) (tp, &walk_subtrees, func, data, pset);
10232 if (result || !walk_subtrees)
10233 return result;
10234 }
10235
10236 switch (code)
10237 {
10238 case ERROR_MARK:
10239 case IDENTIFIER_NODE:
10240 case INTEGER_CST:
10241 case REAL_CST:
10242 case FIXED_CST:
10243 case VECTOR_CST:
10244 case STRING_CST:
10245 case BLOCK:
10246 case PLACEHOLDER_EXPR:
10247 case SSA_NAME:
10248 case FIELD_DECL:
10249 case RESULT_DECL:
10250 /* None of these have subtrees other than those already walked
10251 above. */
10252 break;
10253
10254 case TREE_LIST:
10255 WALK_SUBTREE (TREE_VALUE (*tp));
10256 WALK_SUBTREE_TAIL (TREE_CHAIN (*tp));
10257 break;
10258
10259 case TREE_VEC:
10260 {
10261 int len = TREE_VEC_LENGTH (*tp);
10262
10263 if (len == 0)
10264 break;
10265
10266 /* Walk all elements but the first. */
10267 while (--len)
10268 WALK_SUBTREE (TREE_VEC_ELT (*tp, len));
10269
10270 /* Now walk the first one as a tail call. */
10271 WALK_SUBTREE_TAIL (TREE_VEC_ELT (*tp, 0));
10272 }
10273
10274 case COMPLEX_CST:
10275 WALK_SUBTREE (TREE_REALPART (*tp));
10276 WALK_SUBTREE_TAIL (TREE_IMAGPART (*tp));
10277
10278 case CONSTRUCTOR:
10279 {
10280 unsigned HOST_WIDE_INT idx;
10281 constructor_elt *ce;
10282
10283 for (idx = 0;
10284 VEC_iterate(constructor_elt, CONSTRUCTOR_ELTS (*tp), idx, ce);
10285 idx++)
10286 WALK_SUBTREE (ce->value);
10287 }
10288 break;
10289
10290 case SAVE_EXPR:
10291 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, 0));
10292
10293 case BIND_EXPR:
10294 {
10295 tree decl;
10296 for (decl = BIND_EXPR_VARS (*tp); decl; decl = DECL_CHAIN (decl))
10297 {
10298 /* Walk the DECL_INITIAL and DECL_SIZE. We don't want to walk
10299 into declarations that are just mentioned, rather than
10300 declared; they don't really belong to this part of the tree.
10301 And, we can see cycles: the initializer for a declaration
10302 can refer to the declaration itself. */
10303 WALK_SUBTREE (DECL_INITIAL (decl));
10304 WALK_SUBTREE (DECL_SIZE (decl));
10305 WALK_SUBTREE (DECL_SIZE_UNIT (decl));
10306 }
10307 WALK_SUBTREE_TAIL (BIND_EXPR_BODY (*tp));
10308 }
10309
10310 case STATEMENT_LIST:
10311 {
10312 tree_stmt_iterator i;
10313 for (i = tsi_start (*tp); !tsi_end_p (i); tsi_next (&i))
10314 WALK_SUBTREE (*tsi_stmt_ptr (i));
10315 }
10316 break;
10317
10318 case OMP_CLAUSE:
10319 switch (OMP_CLAUSE_CODE (*tp))
10320 {
10321 case OMP_CLAUSE_PRIVATE:
10322 case OMP_CLAUSE_SHARED:
10323 case OMP_CLAUSE_FIRSTPRIVATE:
10324 case OMP_CLAUSE_COPYIN:
10325 case OMP_CLAUSE_COPYPRIVATE:
10326 case OMP_CLAUSE_IF:
10327 case OMP_CLAUSE_NUM_THREADS:
10328 case OMP_CLAUSE_SCHEDULE:
10329 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, 0));
10330 /* FALLTHRU */
10331
10332 case OMP_CLAUSE_NOWAIT:
10333 case OMP_CLAUSE_ORDERED:
10334 case OMP_CLAUSE_DEFAULT:
10335 case OMP_CLAUSE_UNTIED:
10336 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10337
10338 case OMP_CLAUSE_LASTPRIVATE:
10339 WALK_SUBTREE (OMP_CLAUSE_DECL (*tp));
10340 WALK_SUBTREE (OMP_CLAUSE_LASTPRIVATE_STMT (*tp));
10341 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10342
10343 case OMP_CLAUSE_COLLAPSE:
10344 {
10345 int i;
10346 for (i = 0; i < 3; i++)
10347 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10348 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10349 }
10350
10351 case OMP_CLAUSE_REDUCTION:
10352 {
10353 int i;
10354 for (i = 0; i < 4; i++)
10355 WALK_SUBTREE (OMP_CLAUSE_OPERAND (*tp, i));
10356 WALK_SUBTREE_TAIL (OMP_CLAUSE_CHAIN (*tp));
10357 }
10358
10359 default:
10360 gcc_unreachable ();
10361 }
10362 break;
10363
10364 case TARGET_EXPR:
10365 {
10366 int i, len;
10367
10368 /* TARGET_EXPRs are peculiar: operands 1 and 3 can be the same.
10369 But, we only want to walk once. */
10370 len = (TREE_OPERAND (*tp, 3) == TREE_OPERAND (*tp, 1)) ? 2 : 3;
10371 for (i = 0; i < len; ++i)
10372 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10373 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len));
10374 }
10375
10376 case DECL_EXPR:
10377 /* If this is a TYPE_DECL, walk into the fields of the type that it's
10378 defining. We only want to walk into these fields of a type in this
10379 case and not in the general case of a mere reference to the type.
10380
10381 The criterion is as follows: if the field can be an expression, it
10382 must be walked only here. This should be in keeping with the fields
10383 that are directly gimplified in gimplify_type_sizes in order for the
10384 mark/copy-if-shared/unmark machinery of the gimplifier to work with
10385 variable-sized types.
10386
10387 Note that DECLs get walked as part of processing the BIND_EXPR. */
10388 if (TREE_CODE (DECL_EXPR_DECL (*tp)) == TYPE_DECL)
10389 {
10390 tree *type_p = &TREE_TYPE (DECL_EXPR_DECL (*tp));
10391 if (TREE_CODE (*type_p) == ERROR_MARK)
10392 return NULL_TREE;
10393
10394 /* Call the function for the type. See if it returns anything or
10395 doesn't want us to continue. If we are to continue, walk both
10396 the normal fields and those for the declaration case. */
10397 result = (*func) (type_p, &walk_subtrees, data);
10398 if (result || !walk_subtrees)
10399 return result;
10400
10401 result = walk_type_fields (*type_p, func, data, pset, lh);
10402 if (result)
10403 return result;
10404
10405 /* If this is a record type, also walk the fields. */
10406 if (RECORD_OR_UNION_TYPE_P (*type_p))
10407 {
10408 tree field;
10409
10410 for (field = TYPE_FIELDS (*type_p); field;
10411 field = DECL_CHAIN (field))
10412 {
10413 /* We'd like to look at the type of the field, but we can
10414 easily get infinite recursion. So assume it's pointed
10415 to elsewhere in the tree. Also, ignore things that
10416 aren't fields. */
10417 if (TREE_CODE (field) != FIELD_DECL)
10418 continue;
10419
10420 WALK_SUBTREE (DECL_FIELD_OFFSET (field));
10421 WALK_SUBTREE (DECL_SIZE (field));
10422 WALK_SUBTREE (DECL_SIZE_UNIT (field));
10423 if (TREE_CODE (*type_p) == QUAL_UNION_TYPE)
10424 WALK_SUBTREE (DECL_QUALIFIER (field));
10425 }
10426 }
10427
10428 /* Same for scalar types. */
10429 else if (TREE_CODE (*type_p) == BOOLEAN_TYPE
10430 || TREE_CODE (*type_p) == ENUMERAL_TYPE
10431 || TREE_CODE (*type_p) == INTEGER_TYPE
10432 || TREE_CODE (*type_p) == FIXED_POINT_TYPE
10433 || TREE_CODE (*type_p) == REAL_TYPE)
10434 {
10435 WALK_SUBTREE (TYPE_MIN_VALUE (*type_p));
10436 WALK_SUBTREE (TYPE_MAX_VALUE (*type_p));
10437 }
10438
10439 WALK_SUBTREE (TYPE_SIZE (*type_p));
10440 WALK_SUBTREE_TAIL (TYPE_SIZE_UNIT (*type_p));
10441 }
10442 /* FALLTHRU */
10443
10444 default:
10445 if (IS_EXPR_CODE_CLASS (TREE_CODE_CLASS (code)))
10446 {
10447 int i, len;
10448
10449 /* Walk over all the sub-trees of this operand. */
10450 len = TREE_OPERAND_LENGTH (*tp);
10451
10452 /* Go through the subtrees. We need to do this in forward order so
10453 that the scope of a FOR_EXPR is handled properly. */
10454 if (len)
10455 {
10456 for (i = 0; i < len - 1; ++i)
10457 WALK_SUBTREE (TREE_OPERAND (*tp, i));
10458 WALK_SUBTREE_TAIL (TREE_OPERAND (*tp, len - 1));
10459 }
10460 }
10461 /* If this is a type, walk the needed fields in the type. */
10462 else if (TYPE_P (*tp))
10463 return walk_type_fields (*tp, func, data, pset, lh);
10464 break;
10465 }
10466
10467 /* We didn't find what we were looking for. */
10468 return NULL_TREE;
10469
10470 #undef WALK_SUBTREE_TAIL
10471 }
10472 #undef WALK_SUBTREE
10473
10474 /* Like walk_tree, but does not walk duplicate nodes more than once. */
10475
10476 tree
10477 walk_tree_without_duplicates_1 (tree *tp, walk_tree_fn func, void *data,
10478 walk_tree_lh lh)
10479 {
10480 tree result;
10481 struct pointer_set_t *pset;
10482
10483 pset = pointer_set_create ();
10484 result = walk_tree_1 (tp, func, data, pset, lh);
10485 pointer_set_destroy (pset);
10486 return result;
10487 }
10488
10489
10490 tree *
10491 tree_block (tree t)
10492 {
10493 char const c = TREE_CODE_CLASS (TREE_CODE (t));
10494
10495 if (IS_EXPR_CODE_CLASS (c))
10496 return &t->exp.block;
10497 gcc_unreachable ();
10498 return NULL;
10499 }
10500
10501 /* Create a nameless artificial label and put it in the current
10502 function context. The label has a location of LOC. Returns the
10503 newly created label. */
10504
10505 tree
10506 create_artificial_label (location_t loc)
10507 {
10508 tree lab = build_decl (loc,
10509 LABEL_DECL, NULL_TREE, void_type_node);
10510
10511 DECL_ARTIFICIAL (lab) = 1;
10512 DECL_IGNORED_P (lab) = 1;
10513 DECL_CONTEXT (lab) = current_function_decl;
10514 return lab;
10515 }
10516
10517 /* Given a tree, try to return a useful variable name that we can use
10518 to prefix a temporary that is being assigned the value of the tree.
10519 I.E. given <temp> = &A, return A. */
10520
10521 const char *
10522 get_name (tree t)
10523 {
10524 tree stripped_decl;
10525
10526 stripped_decl = t;
10527 STRIP_NOPS (stripped_decl);
10528 if (DECL_P (stripped_decl) && DECL_NAME (stripped_decl))
10529 return IDENTIFIER_POINTER (DECL_NAME (stripped_decl));
10530 else
10531 {
10532 switch (TREE_CODE (stripped_decl))
10533 {
10534 case ADDR_EXPR:
10535 return get_name (TREE_OPERAND (stripped_decl, 0));
10536 default:
10537 return NULL;
10538 }
10539 }
10540 }
10541
10542 /* Return true if TYPE has a variable argument list. */
10543
10544 bool
10545 stdarg_p (const_tree fntype)
10546 {
10547 function_args_iterator args_iter;
10548 tree n = NULL_TREE, t;
10549
10550 if (!fntype)
10551 return false;
10552
10553 FOREACH_FUNCTION_ARGS(fntype, t, args_iter)
10554 {
10555 n = t;
10556 }
10557
10558 return n != NULL_TREE && n != void_type_node;
10559 }
10560
10561 /* Return true if TYPE has a prototype. */
10562
10563 bool
10564 prototype_p (tree fntype)
10565 {
10566 tree t;
10567
10568 gcc_assert (fntype != NULL_TREE);
10569
10570 t = TYPE_ARG_TYPES (fntype);
10571 return (t != NULL_TREE);
10572 }
10573
10574 /* If BLOCK is inlined from an __attribute__((__artificial__))
10575 routine, return pointer to location from where it has been
10576 called. */
10577 location_t *
10578 block_nonartificial_location (tree block)
10579 {
10580 location_t *ret = NULL;
10581
10582 while (block && TREE_CODE (block) == BLOCK
10583 && BLOCK_ABSTRACT_ORIGIN (block))
10584 {
10585 tree ao = BLOCK_ABSTRACT_ORIGIN (block);
10586
10587 while (TREE_CODE (ao) == BLOCK
10588 && BLOCK_ABSTRACT_ORIGIN (ao)
10589 && BLOCK_ABSTRACT_ORIGIN (ao) != ao)
10590 ao = BLOCK_ABSTRACT_ORIGIN (ao);
10591
10592 if (TREE_CODE (ao) == FUNCTION_DECL)
10593 {
10594 /* If AO is an artificial inline, point RET to the
10595 call site locus at which it has been inlined and continue
10596 the loop, in case AO's caller is also an artificial
10597 inline. */
10598 if (DECL_DECLARED_INLINE_P (ao)
10599 && lookup_attribute ("artificial", DECL_ATTRIBUTES (ao)))
10600 ret = &BLOCK_SOURCE_LOCATION (block);
10601 else
10602 break;
10603 }
10604 else if (TREE_CODE (ao) != BLOCK)
10605 break;
10606
10607 block = BLOCK_SUPERCONTEXT (block);
10608 }
10609 return ret;
10610 }
10611
10612
10613 /* If EXP is inlined from an __attribute__((__artificial__))
10614 function, return the location of the original call expression. */
10615
10616 location_t
10617 tree_nonartificial_location (tree exp)
10618 {
10619 location_t *loc = block_nonartificial_location (TREE_BLOCK (exp));
10620
10621 if (loc)
10622 return *loc;
10623 else
10624 return EXPR_LOCATION (exp);
10625 }
10626
10627
10628 /* These are the hash table functions for the hash table of OPTIMIZATION_NODEq
10629 nodes. */
10630
10631 /* Return the hash code code X, an OPTIMIZATION_NODE or TARGET_OPTION code. */
10632
10633 static hashval_t
10634 cl_option_hash_hash (const void *x)
10635 {
10636 const_tree const t = (const_tree) x;
10637 const char *p;
10638 size_t i;
10639 size_t len = 0;
10640 hashval_t hash = 0;
10641
10642 if (TREE_CODE (t) == OPTIMIZATION_NODE)
10643 {
10644 p = (const char *)TREE_OPTIMIZATION (t);
10645 len = sizeof (struct cl_optimization);
10646 }
10647
10648 else if (TREE_CODE (t) == TARGET_OPTION_NODE)
10649 {
10650 p = (const char *)TREE_TARGET_OPTION (t);
10651 len = sizeof (struct cl_target_option);
10652 }
10653
10654 else
10655 gcc_unreachable ();
10656
10657 /* assume most opt flags are just 0/1, some are 2-3, and a few might be
10658 something else. */
10659 for (i = 0; i < len; i++)
10660 if (p[i])
10661 hash = (hash << 4) ^ ((i << 2) | p[i]);
10662
10663 return hash;
10664 }
10665
10666 /* Return nonzero if the value represented by *X (an OPTIMIZATION or
10667 TARGET_OPTION tree node) is the same as that given by *Y, which is the
10668 same. */
10669
10670 static int
10671 cl_option_hash_eq (const void *x, const void *y)
10672 {
10673 const_tree const xt = (const_tree) x;
10674 const_tree const yt = (const_tree) y;
10675 const char *xp;
10676 const char *yp;
10677 size_t len;
10678
10679 if (TREE_CODE (xt) != TREE_CODE (yt))
10680 return 0;
10681
10682 if (TREE_CODE (xt) == OPTIMIZATION_NODE)
10683 {
10684 xp = (const char *)TREE_OPTIMIZATION (xt);
10685 yp = (const char *)TREE_OPTIMIZATION (yt);
10686 len = sizeof (struct cl_optimization);
10687 }
10688
10689 else if (TREE_CODE (xt) == TARGET_OPTION_NODE)
10690 {
10691 xp = (const char *)TREE_TARGET_OPTION (xt);
10692 yp = (const char *)TREE_TARGET_OPTION (yt);
10693 len = sizeof (struct cl_target_option);
10694 }
10695
10696 else
10697 gcc_unreachable ();
10698
10699 return (memcmp (xp, yp, len) == 0);
10700 }
10701
10702 /* Build an OPTIMIZATION_NODE based on the current options. */
10703
10704 tree
10705 build_optimization_node (void)
10706 {
10707 tree t;
10708 void **slot;
10709
10710 /* Use the cache of optimization nodes. */
10711
10712 cl_optimization_save (TREE_OPTIMIZATION (cl_optimization_node),
10713 &global_options);
10714
10715 slot = htab_find_slot (cl_option_hash_table, cl_optimization_node, INSERT);
10716 t = (tree) *slot;
10717 if (!t)
10718 {
10719 /* Insert this one into the hash table. */
10720 t = cl_optimization_node;
10721 *slot = t;
10722
10723 /* Make a new node for next time round. */
10724 cl_optimization_node = make_node (OPTIMIZATION_NODE);
10725 }
10726
10727 return t;
10728 }
10729
10730 /* Build a TARGET_OPTION_NODE based on the current options. */
10731
10732 tree
10733 build_target_option_node (void)
10734 {
10735 tree t;
10736 void **slot;
10737
10738 /* Use the cache of optimization nodes. */
10739
10740 cl_target_option_save (TREE_TARGET_OPTION (cl_target_option_node),
10741 &global_options);
10742
10743 slot = htab_find_slot (cl_option_hash_table, cl_target_option_node, INSERT);
10744 t = (tree) *slot;
10745 if (!t)
10746 {
10747 /* Insert this one into the hash table. */
10748 t = cl_target_option_node;
10749 *slot = t;
10750
10751 /* Make a new node for next time round. */
10752 cl_target_option_node = make_node (TARGET_OPTION_NODE);
10753 }
10754
10755 return t;
10756 }
10757
10758 /* Determine the "ultimate origin" of a block. The block may be an inlined
10759 instance of an inlined instance of a block which is local to an inline
10760 function, so we have to trace all of the way back through the origin chain
10761 to find out what sort of node actually served as the original seed for the
10762 given block. */
10763
10764 tree
10765 block_ultimate_origin (const_tree block)
10766 {
10767 tree immediate_origin = BLOCK_ABSTRACT_ORIGIN (block);
10768
10769 /* output_inline_function sets BLOCK_ABSTRACT_ORIGIN for all the
10770 nodes in the function to point to themselves; ignore that if
10771 we're trying to output the abstract instance of this function. */
10772 if (BLOCK_ABSTRACT (block) && immediate_origin == block)
10773 return NULL_TREE;
10774
10775 if (immediate_origin == NULL_TREE)
10776 return NULL_TREE;
10777 else
10778 {
10779 tree ret_val;
10780 tree lookahead = immediate_origin;
10781
10782 do
10783 {
10784 ret_val = lookahead;
10785 lookahead = (TREE_CODE (ret_val) == BLOCK
10786 ? BLOCK_ABSTRACT_ORIGIN (ret_val) : NULL);
10787 }
10788 while (lookahead != NULL && lookahead != ret_val);
10789
10790 /* The block's abstract origin chain may not be the *ultimate* origin of
10791 the block. It could lead to a DECL that has an abstract origin set.
10792 If so, we want that DECL's abstract origin (which is what DECL_ORIGIN
10793 will give us if it has one). Note that DECL's abstract origins are
10794 supposed to be the most distant ancestor (or so decl_ultimate_origin
10795 claims), so we don't need to loop following the DECL origins. */
10796 if (DECL_P (ret_val))
10797 return DECL_ORIGIN (ret_val);
10798
10799 return ret_val;
10800 }
10801 }
10802
10803 /* Return true if T1 and T2 are equivalent lists. */
10804
10805 bool
10806 list_equal_p (const_tree t1, const_tree t2)
10807 {
10808 for (; t1 && t2; t1 = TREE_CHAIN (t1) , t2 = TREE_CHAIN (t2))
10809 if (TREE_VALUE (t1) != TREE_VALUE (t2))
10810 return false;
10811 return !t1 && !t2;
10812 }
10813
10814 /* Return true iff conversion in EXP generates no instruction. Mark
10815 it inline so that we fully inline into the stripping functions even
10816 though we have two uses of this function. */
10817
10818 static inline bool
10819 tree_nop_conversion (const_tree exp)
10820 {
10821 tree outer_type, inner_type;
10822
10823 if (!CONVERT_EXPR_P (exp)
10824 && TREE_CODE (exp) != NON_LVALUE_EXPR)
10825 return false;
10826 if (TREE_OPERAND (exp, 0) == error_mark_node)
10827 return false;
10828
10829 outer_type = TREE_TYPE (exp);
10830 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10831
10832 if (!inner_type)
10833 return false;
10834
10835 /* Use precision rather then machine mode when we can, which gives
10836 the correct answer even for submode (bit-field) types. */
10837 if ((INTEGRAL_TYPE_P (outer_type)
10838 || POINTER_TYPE_P (outer_type)
10839 || TREE_CODE (outer_type) == OFFSET_TYPE)
10840 && (INTEGRAL_TYPE_P (inner_type)
10841 || POINTER_TYPE_P (inner_type)
10842 || TREE_CODE (inner_type) == OFFSET_TYPE))
10843 return TYPE_PRECISION (outer_type) == TYPE_PRECISION (inner_type);
10844
10845 /* Otherwise fall back on comparing machine modes (e.g. for
10846 aggregate types, floats). */
10847 return TYPE_MODE (outer_type) == TYPE_MODE (inner_type);
10848 }
10849
10850 /* Return true iff conversion in EXP generates no instruction. Don't
10851 consider conversions changing the signedness. */
10852
10853 static bool
10854 tree_sign_nop_conversion (const_tree exp)
10855 {
10856 tree outer_type, inner_type;
10857
10858 if (!tree_nop_conversion (exp))
10859 return false;
10860
10861 outer_type = TREE_TYPE (exp);
10862 inner_type = TREE_TYPE (TREE_OPERAND (exp, 0));
10863
10864 return (TYPE_UNSIGNED (outer_type) == TYPE_UNSIGNED (inner_type)
10865 && POINTER_TYPE_P (outer_type) == POINTER_TYPE_P (inner_type));
10866 }
10867
10868 /* Strip conversions from EXP according to tree_nop_conversion and
10869 return the resulting expression. */
10870
10871 tree
10872 tree_strip_nop_conversions (tree exp)
10873 {
10874 while (tree_nop_conversion (exp))
10875 exp = TREE_OPERAND (exp, 0);
10876 return exp;
10877 }
10878
10879 /* Strip conversions from EXP according to tree_sign_nop_conversion
10880 and return the resulting expression. */
10881
10882 tree
10883 tree_strip_sign_nop_conversions (tree exp)
10884 {
10885 while (tree_sign_nop_conversion (exp))
10886 exp = TREE_OPERAND (exp, 0);
10887 return exp;
10888 }
10889
10890 static GTY(()) tree gcc_eh_personality_decl;
10891
10892 /* Return the GCC personality function decl. */
10893
10894 tree
10895 lhd_gcc_personality (void)
10896 {
10897 if (!gcc_eh_personality_decl)
10898 gcc_eh_personality_decl = build_personality_function ("gcc");
10899 return gcc_eh_personality_decl;
10900 }
10901
10902 /* Try to find a base info of BINFO that would have its field decl at offset
10903 OFFSET within the BINFO type and which is of EXPECTED_TYPE. If it can be
10904 found, return, otherwise return NULL_TREE. */
10905
10906 tree
10907 get_binfo_at_offset (tree binfo, HOST_WIDE_INT offset, tree expected_type)
10908 {
10909 tree type;
10910
10911 type = TREE_TYPE (binfo);
10912 while (offset > 0)
10913 {
10914 tree base_binfo, found_binfo;
10915 HOST_WIDE_INT pos, size;
10916 tree fld;
10917 int i;
10918
10919 if (TREE_CODE (type) != RECORD_TYPE)
10920 return NULL_TREE;
10921
10922 for (fld = TYPE_FIELDS (type); fld; fld = DECL_CHAIN (fld))
10923 {
10924 if (TREE_CODE (fld) != FIELD_DECL)
10925 continue;
10926
10927 pos = int_bit_position (fld);
10928 size = tree_low_cst (DECL_SIZE (fld), 1);
10929 if (pos <= offset && (pos + size) > offset)
10930 break;
10931 }
10932 if (!fld)
10933 return NULL_TREE;
10934
10935 found_binfo = NULL_TREE;
10936 for (i = 0; BINFO_BASE_ITERATE (binfo, i, base_binfo); i++)
10937 if (TREE_TYPE (base_binfo) == TREE_TYPE (fld))
10938 {
10939 found_binfo = base_binfo;
10940 break;
10941 }
10942
10943 if (!found_binfo)
10944 return NULL_TREE;
10945
10946 type = TREE_TYPE (fld);
10947 binfo = found_binfo;
10948 offset -= pos;
10949 }
10950 if (type != expected_type)
10951 return NULL_TREE;
10952 return binfo;
10953 }
10954
10955 /* Returns true if X is a typedef decl. */
10956
10957 bool
10958 is_typedef_decl (tree x)
10959 {
10960 return (x && TREE_CODE (x) == TYPE_DECL
10961 && DECL_ORIGINAL_TYPE (x) != NULL_TREE);
10962 }
10963
10964 /* Returns true iff TYPE is a type variant created for a typedef. */
10965
10966 bool
10967 typedef_variant_p (tree type)
10968 {
10969 return is_typedef_decl (TYPE_NAME (type));
10970 }
10971
10972 #include "gt-tree.h"