re PR middle-end/12526 ([tree-ssa] internal compiler error: Segmentation fault)
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
13 WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING. If not, write to the Free
19 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
20 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c. */
31
32 #include "config.h"
33 #include "system.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "flags.h"
37 #include "tree.h"
38 #include "real.h"
39 #include "tm_p.h"
40 #include "function.h"
41 #include "obstack.h"
42 #include "toplev.h"
43 #include "ggc.h"
44 #include "hashtab.h"
45 #include "output.h"
46 #include "target.h"
47 #include "langhooks.h"
48
49 /* obstack.[ch] explicitly declined to prototype this. */
50 extern int _obstack_allocated_p (struct obstack *h, void *obj);
51
52 #ifdef GATHER_STATISTICS
53 /* Statistics-gathering stuff. */
54
55 int tree_node_counts[(int) all_kinds];
56 int tree_node_sizes[(int) all_kinds];
57
58 /* Keep in sync with tree.h:enum tree_node_kind. */
59 static const char * const tree_node_kind_names[] = {
60 "decls",
61 "types",
62 "blocks",
63 "stmts",
64 "refs",
65 "exprs",
66 "constants",
67 "identifiers",
68 "perm_tree_lists",
69 "temp_tree_lists",
70 "vecs",
71 "random kinds",
72 "lang_decl kinds",
73 "lang_type kinds"
74 };
75 #endif /* GATHER_STATISTICS */
76
77 /* Unique id for next decl created. */
78 static GTY(()) int next_decl_uid;
79 /* Unique id for next type created. */
80 static GTY(()) int next_type_uid = 1;
81
82 /* Since we cannot rehash a type after it is in the table, we have to
83 keep the hash code. */
84
85 struct type_hash GTY(())
86 {
87 unsigned long hash;
88 tree type;
89 };
90
91 /* Initial size of the hash table (rounded to next prime). */
92 #define TYPE_HASH_INITIAL_SIZE 1000
93
94 /* Now here is the hash table. When recording a type, it is added to
95 the slot whose index is the hash code. Note that the hash table is
96 used for several kinds of types (function types, array types and
97 array index range types, for now). While all these live in the
98 same table, they are completely independent, and the hash code is
99 computed differently for each of these. */
100
101 static GTY ((if_marked ("type_hash_marked_p"), param_is (struct type_hash)))
102 htab_t type_hash_table;
103
104 static void set_type_quals (tree, int);
105 static int type_hash_eq (const void *, const void *);
106 static hashval_t type_hash_hash (const void *);
107 static void print_type_hash_statistics (void);
108 static void finish_vector_type (tree);
109 static tree make_vector (enum machine_mode, tree, int);
110 static int type_hash_marked_p (const void *);
111
112 tree global_trees[TI_MAX];
113 tree integer_types[itk_none];
114 \f
115 /* Init tree.c. */
116
117 void
118 init_ttree (void)
119 {
120 /* Initialize the hash table of types. */
121 type_hash_table = htab_create_ggc (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
122 type_hash_eq, 0);
123 }
124
125 \f
126 /* The name of the object as the assembler will see it (but before any
127 translations made by ASM_OUTPUT_LABELREF). Often this is the same
128 as DECL_NAME. It is an IDENTIFIER_NODE. */
129 tree
130 decl_assembler_name (tree decl)
131 {
132 if (!DECL_ASSEMBLER_NAME_SET_P (decl))
133 (*lang_hooks.set_decl_assembler_name) (decl);
134 return DECL_CHECK (decl)->decl.assembler_name;
135 }
136
137 /* Compute the number of bytes occupied by 'node'. This routine only
138 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
139 size_t
140 tree_size (tree node)
141 {
142 enum tree_code code = TREE_CODE (node);
143
144 switch (TREE_CODE_CLASS (code))
145 {
146 case 'd': /* A decl node */
147 return sizeof (struct tree_decl);
148
149 case 't': /* a type node */
150 return sizeof (struct tree_type);
151
152 case 'b': /* a lexical block node */
153 return sizeof (struct tree_block);
154
155 case 'r': /* a reference */
156 case 'e': /* an expression */
157 case 's': /* an expression with side effects */
158 case '<': /* a comparison expression */
159 case '1': /* a unary arithmetic expression */
160 case '2': /* a binary arithmetic expression */
161 return (sizeof (struct tree_exp)
162 + TREE_CODE_LENGTH (code) * sizeof (char *) - sizeof (char *));
163
164 case 'c': /* a constant */
165 switch (code)
166 {
167 case INTEGER_CST: return sizeof (struct tree_int_cst);
168 case REAL_CST: return sizeof (struct tree_real_cst);
169 case COMPLEX_CST: return sizeof (struct tree_complex);
170 case VECTOR_CST: return sizeof (struct tree_vector);
171 case STRING_CST: return sizeof (struct tree_string);
172 default:
173 return (*lang_hooks.tree_size) (code);
174 }
175
176 case 'x': /* something random, like an identifier. */
177 switch (code)
178 {
179 case IDENTIFIER_NODE: return lang_hooks.identifier_size;
180 case TREE_LIST: return sizeof (struct tree_list);
181 case TREE_VEC: return (sizeof (struct tree_vec)
182 + TREE_VEC_LENGTH(node) * sizeof(char *)
183 - sizeof (char *));
184
185 case ERROR_MARK:
186 case PLACEHOLDER_EXPR: return sizeof (struct tree_common);
187
188 default:
189 return (*lang_hooks.tree_size) (code);
190 }
191
192 default:
193 abort ();
194 }
195 }
196
197 /* Return a newly allocated node of code CODE.
198 For decl and type nodes, some other fields are initialized.
199 The rest of the node is initialized to zero.
200
201 Achoo! I got a code in the node. */
202
203 tree
204 make_node (enum tree_code code)
205 {
206 tree t;
207 int type = TREE_CODE_CLASS (code);
208 size_t length;
209 #ifdef GATHER_STATISTICS
210 tree_node_kind kind;
211 #endif
212 struct tree_common ttmp;
213
214 /* We can't allocate a TREE_VEC without knowing how many elements
215 it will have. */
216 if (code == TREE_VEC)
217 abort ();
218
219 TREE_SET_CODE ((tree)&ttmp, code);
220 length = tree_size ((tree)&ttmp);
221
222 #ifdef GATHER_STATISTICS
223 switch (type)
224 {
225 case 'd': /* A decl node */
226 kind = d_kind;
227 break;
228
229 case 't': /* a type node */
230 kind = t_kind;
231 break;
232
233 case 'b': /* a lexical block */
234 kind = b_kind;
235 break;
236
237 case 's': /* an expression with side effects */
238 kind = s_kind;
239 break;
240
241 case 'r': /* a reference */
242 kind = r_kind;
243 break;
244
245 case 'e': /* an expression */
246 case '<': /* a comparison expression */
247 case '1': /* a unary arithmetic expression */
248 case '2': /* a binary arithmetic expression */
249 kind = e_kind;
250 break;
251
252 case 'c': /* a constant */
253 kind = c_kind;
254 break;
255
256 case 'x': /* something random, like an identifier. */
257 if (code == IDENTIFIER_NODE)
258 kind = id_kind;
259 else if (code == TREE_VEC)
260 kind = vec_kind;
261 else
262 kind = x_kind;
263 break;
264
265 default:
266 abort ();
267 }
268
269 tree_node_counts[(int) kind]++;
270 tree_node_sizes[(int) kind] += length;
271 #endif
272
273 t = ggc_alloc_tree (length);
274
275 memset (t, 0, length);
276
277 TREE_SET_CODE (t, code);
278
279 switch (type)
280 {
281 case 's':
282 TREE_SIDE_EFFECTS (t) = 1;
283 break;
284
285 case 'd':
286 if (code != FUNCTION_DECL)
287 DECL_ALIGN (t) = 1;
288 DECL_USER_ALIGN (t) = 0;
289 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
290 DECL_SOURCE_LOCATION (t) = input_location;
291 DECL_UID (t) = next_decl_uid++;
292
293 /* We have not yet computed the alias set for this declaration. */
294 DECL_POINTER_ALIAS_SET (t) = -1;
295 break;
296
297 case 't':
298 TYPE_UID (t) = next_type_uid++;
299 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
300 TYPE_USER_ALIGN (t) = 0;
301 TYPE_MAIN_VARIANT (t) = t;
302
303 /* Default to no attributes for type, but let target change that. */
304 TYPE_ATTRIBUTES (t) = NULL_TREE;
305 (*targetm.set_default_type_attributes) (t);
306
307 /* We have not yet computed the alias set for this type. */
308 TYPE_ALIAS_SET (t) = -1;
309 break;
310
311 case 'c':
312 TREE_CONSTANT (t) = 1;
313 break;
314
315 case 'e':
316 switch (code)
317 {
318 case INIT_EXPR:
319 case MODIFY_EXPR:
320 case VA_ARG_EXPR:
321 case RTL_EXPR:
322 case PREDECREMENT_EXPR:
323 case PREINCREMENT_EXPR:
324 case POSTDECREMENT_EXPR:
325 case POSTINCREMENT_EXPR:
326 /* All of these have side-effects, no matter what their
327 operands are. */
328 TREE_SIDE_EFFECTS (t) = 1;
329 break;
330
331 default:
332 break;
333 }
334 break;
335 }
336
337 return t;
338 }
339 \f
340 /* Return a new node with the same contents as NODE except that its
341 TREE_CHAIN is zero and it has a fresh uid. */
342
343 tree
344 copy_node (tree node)
345 {
346 tree t;
347 enum tree_code code = TREE_CODE (node);
348 size_t length;
349
350 length = tree_size (node);
351 t = ggc_alloc_tree (length);
352 memcpy (t, node, length);
353
354 TREE_CHAIN (t) = 0;
355 TREE_ASM_WRITTEN (t) = 0;
356
357 if (TREE_CODE_CLASS (code) == 'd')
358 DECL_UID (t) = next_decl_uid++;
359 else if (TREE_CODE_CLASS (code) == 't')
360 {
361 TYPE_UID (t) = next_type_uid++;
362 /* The following is so that the debug code for
363 the copy is different from the original type.
364 The two statements usually duplicate each other
365 (because they clear fields of the same union),
366 but the optimizer should catch that. */
367 TYPE_SYMTAB_POINTER (t) = 0;
368 TYPE_SYMTAB_ADDRESS (t) = 0;
369 }
370
371 return t;
372 }
373
374 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
375 For example, this can copy a list made of TREE_LIST nodes. */
376
377 tree
378 copy_list (tree list)
379 {
380 tree head;
381 tree prev, next;
382
383 if (list == 0)
384 return 0;
385
386 head = prev = copy_node (list);
387 next = TREE_CHAIN (list);
388 while (next)
389 {
390 TREE_CHAIN (prev) = copy_node (next);
391 prev = TREE_CHAIN (prev);
392 next = TREE_CHAIN (next);
393 }
394 return head;
395 }
396
397 \f
398 /* Return a newly constructed INTEGER_CST node whose constant value
399 is specified by the two ints LOW and HI.
400 The TREE_TYPE is set to `int'.
401
402 This function should be used via the `build_int_2' macro. */
403
404 tree
405 build_int_2_wide (unsigned HOST_WIDE_INT low, HOST_WIDE_INT hi)
406 {
407 tree t = make_node (INTEGER_CST);
408
409 TREE_INT_CST_LOW (t) = low;
410 TREE_INT_CST_HIGH (t) = hi;
411 TREE_TYPE (t) = integer_type_node;
412 return t;
413 }
414
415 /* Return a new VECTOR_CST node whose type is TYPE and whose values
416 are in a list pointed by VALS. */
417
418 tree
419 build_vector (tree type, tree vals)
420 {
421 tree v = make_node (VECTOR_CST);
422 int over1 = 0, over2 = 0;
423 tree link;
424
425 TREE_VECTOR_CST_ELTS (v) = vals;
426 TREE_TYPE (v) = type;
427
428 /* Iterate through elements and check for overflow. */
429 for (link = vals; link; link = TREE_CHAIN (link))
430 {
431 tree value = TREE_VALUE (link);
432
433 over1 |= TREE_OVERFLOW (value);
434 over2 |= TREE_CONSTANT_OVERFLOW (value);
435 }
436
437 TREE_OVERFLOW (v) = over1;
438 TREE_CONSTANT_OVERFLOW (v) = over2;
439
440 return v;
441 }
442
443 /* Return a new CONSTRUCTOR node whose type is TYPE and whose values
444 are in a list pointed to by VALS. */
445 tree
446 build_constructor (tree type, tree vals)
447 {
448 tree c = make_node (CONSTRUCTOR);
449 TREE_TYPE (c) = type;
450 CONSTRUCTOR_ELTS (c) = vals;
451
452 /* ??? May not be necessary. Mirrors what build does. */
453 if (vals)
454 {
455 TREE_SIDE_EFFECTS (c) = TREE_SIDE_EFFECTS (vals);
456 TREE_READONLY (c) = TREE_READONLY (vals);
457 TREE_CONSTANT (c) = TREE_CONSTANT (vals);
458 }
459 else
460 TREE_CONSTANT (c) = 0; /* safe side */
461
462 return c;
463 }
464
465 /* Return a new REAL_CST node whose type is TYPE and value is D. */
466
467 tree
468 build_real (tree type, REAL_VALUE_TYPE d)
469 {
470 tree v;
471 REAL_VALUE_TYPE *dp;
472 int overflow = 0;
473
474 /* ??? Used to check for overflow here via CHECK_FLOAT_TYPE.
475 Consider doing it via real_convert now. */
476
477 v = make_node (REAL_CST);
478 dp = ggc_alloc (sizeof (REAL_VALUE_TYPE));
479 memcpy (dp, &d, sizeof (REAL_VALUE_TYPE));
480
481 TREE_TYPE (v) = type;
482 TREE_REAL_CST_PTR (v) = dp;
483 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
484 return v;
485 }
486
487 /* Return a new REAL_CST node whose type is TYPE
488 and whose value is the integer value of the INTEGER_CST node I. */
489
490 REAL_VALUE_TYPE
491 real_value_from_int_cst (tree type, tree i)
492 {
493 REAL_VALUE_TYPE d;
494
495 /* Clear all bits of the real value type so that we can later do
496 bitwise comparisons to see if two values are the same. */
497 memset (&d, 0, sizeof d);
498
499 real_from_integer (&d, type ? TYPE_MODE (type) : VOIDmode,
500 TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
501 TREE_UNSIGNED (TREE_TYPE (i)));
502 return d;
503 }
504
505 /* Given a tree representing an integer constant I, return a tree
506 representing the same value as a floating-point constant of type TYPE. */
507
508 tree
509 build_real_from_int_cst (tree type, tree i)
510 {
511 tree v;
512 int overflow = TREE_OVERFLOW (i);
513
514 v = build_real (type, real_value_from_int_cst (type, i));
515
516 TREE_OVERFLOW (v) |= overflow;
517 TREE_CONSTANT_OVERFLOW (v) |= overflow;
518 return v;
519 }
520
521 /* Return a newly constructed STRING_CST node whose value is
522 the LEN characters at STR.
523 The TREE_TYPE is not initialized. */
524
525 tree
526 build_string (int len, const char *str)
527 {
528 tree s = make_node (STRING_CST);
529
530 TREE_STRING_LENGTH (s) = len;
531 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
532
533 return s;
534 }
535
536 /* Return a newly constructed COMPLEX_CST node whose value is
537 specified by the real and imaginary parts REAL and IMAG.
538 Both REAL and IMAG should be constant nodes. TYPE, if specified,
539 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
540
541 tree
542 build_complex (tree type, tree real, tree imag)
543 {
544 tree t = make_node (COMPLEX_CST);
545
546 TREE_REALPART (t) = real;
547 TREE_IMAGPART (t) = imag;
548 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
549 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
550 TREE_CONSTANT_OVERFLOW (t)
551 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
552 return t;
553 }
554
555 /* Build a newly constructed TREE_VEC node of length LEN. */
556
557 tree
558 make_tree_vec (int len)
559 {
560 tree t;
561 int length = (len - 1) * sizeof (tree) + sizeof (struct tree_vec);
562
563 #ifdef GATHER_STATISTICS
564 tree_node_counts[(int) vec_kind]++;
565 tree_node_sizes[(int) vec_kind] += length;
566 #endif
567
568 t = ggc_alloc_tree (length);
569
570 memset (t, 0, length);
571 TREE_SET_CODE (t, TREE_VEC);
572 TREE_VEC_LENGTH (t) = len;
573
574 return t;
575 }
576 \f
577 /* Return 1 if EXPR is the integer constant zero or a complex constant
578 of zero. */
579
580 int
581 integer_zerop (tree expr)
582 {
583 STRIP_NOPS (expr);
584
585 return ((TREE_CODE (expr) == INTEGER_CST
586 && ! TREE_CONSTANT_OVERFLOW (expr)
587 && TREE_INT_CST_LOW (expr) == 0
588 && TREE_INT_CST_HIGH (expr) == 0)
589 || (TREE_CODE (expr) == COMPLEX_CST
590 && integer_zerop (TREE_REALPART (expr))
591 && integer_zerop (TREE_IMAGPART (expr))));
592 }
593
594 /* Return 1 if EXPR is the integer constant one or the corresponding
595 complex constant. */
596
597 int
598 integer_onep (tree expr)
599 {
600 STRIP_NOPS (expr);
601
602 return ((TREE_CODE (expr) == INTEGER_CST
603 && ! TREE_CONSTANT_OVERFLOW (expr)
604 && TREE_INT_CST_LOW (expr) == 1
605 && TREE_INT_CST_HIGH (expr) == 0)
606 || (TREE_CODE (expr) == COMPLEX_CST
607 && integer_onep (TREE_REALPART (expr))
608 && integer_zerop (TREE_IMAGPART (expr))));
609 }
610
611 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
612 it contains. Likewise for the corresponding complex constant. */
613
614 int
615 integer_all_onesp (tree expr)
616 {
617 int prec;
618 int uns;
619
620 STRIP_NOPS (expr);
621
622 if (TREE_CODE (expr) == COMPLEX_CST
623 && integer_all_onesp (TREE_REALPART (expr))
624 && integer_zerop (TREE_IMAGPART (expr)))
625 return 1;
626
627 else if (TREE_CODE (expr) != INTEGER_CST
628 || TREE_CONSTANT_OVERFLOW (expr))
629 return 0;
630
631 uns = TREE_UNSIGNED (TREE_TYPE (expr));
632 if (!uns)
633 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
634 && TREE_INT_CST_HIGH (expr) == -1);
635
636 /* Note that using TYPE_PRECISION here is wrong. We care about the
637 actual bits, not the (arbitrary) range of the type. */
638 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
639 if (prec >= HOST_BITS_PER_WIDE_INT)
640 {
641 HOST_WIDE_INT high_value;
642 int shift_amount;
643
644 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
645
646 if (shift_amount > HOST_BITS_PER_WIDE_INT)
647 /* Can not handle precisions greater than twice the host int size. */
648 abort ();
649 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
650 /* Shifting by the host word size is undefined according to the ANSI
651 standard, so we must handle this as a special case. */
652 high_value = -1;
653 else
654 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
655
656 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
657 && TREE_INT_CST_HIGH (expr) == high_value);
658 }
659 else
660 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
661 }
662
663 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
664 one bit on). */
665
666 int
667 integer_pow2p (tree expr)
668 {
669 int prec;
670 HOST_WIDE_INT high, low;
671
672 STRIP_NOPS (expr);
673
674 if (TREE_CODE (expr) == COMPLEX_CST
675 && integer_pow2p (TREE_REALPART (expr))
676 && integer_zerop (TREE_IMAGPART (expr)))
677 return 1;
678
679 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
680 return 0;
681
682 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
683 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
684 high = TREE_INT_CST_HIGH (expr);
685 low = TREE_INT_CST_LOW (expr);
686
687 /* First clear all bits that are beyond the type's precision in case
688 we've been sign extended. */
689
690 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
691 ;
692 else if (prec > HOST_BITS_PER_WIDE_INT)
693 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
694 else
695 {
696 high = 0;
697 if (prec < HOST_BITS_PER_WIDE_INT)
698 low &= ~((HOST_WIDE_INT) (-1) << prec);
699 }
700
701 if (high == 0 && low == 0)
702 return 0;
703
704 return ((high == 0 && (low & (low - 1)) == 0)
705 || (low == 0 && (high & (high - 1)) == 0));
706 }
707
708 /* Return 1 if EXPR is an integer constant other than zero or a
709 complex constant other than zero. */
710
711 int
712 integer_nonzerop (tree expr)
713 {
714 STRIP_NOPS (expr);
715
716 return ((TREE_CODE (expr) == INTEGER_CST
717 && ! TREE_CONSTANT_OVERFLOW (expr)
718 && (TREE_INT_CST_LOW (expr) != 0
719 || TREE_INT_CST_HIGH (expr) != 0))
720 || (TREE_CODE (expr) == COMPLEX_CST
721 && (integer_nonzerop (TREE_REALPART (expr))
722 || integer_nonzerop (TREE_IMAGPART (expr)))));
723 }
724
725 /* Return the power of two represented by a tree node known to be a
726 power of two. */
727
728 int
729 tree_log2 (tree expr)
730 {
731 int prec;
732 HOST_WIDE_INT high, low;
733
734 STRIP_NOPS (expr);
735
736 if (TREE_CODE (expr) == COMPLEX_CST)
737 return tree_log2 (TREE_REALPART (expr));
738
739 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
740 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
741
742 high = TREE_INT_CST_HIGH (expr);
743 low = TREE_INT_CST_LOW (expr);
744
745 /* First clear all bits that are beyond the type's precision in case
746 we've been sign extended. */
747
748 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
749 ;
750 else if (prec > HOST_BITS_PER_WIDE_INT)
751 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
752 else
753 {
754 high = 0;
755 if (prec < HOST_BITS_PER_WIDE_INT)
756 low &= ~((HOST_WIDE_INT) (-1) << prec);
757 }
758
759 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
760 : exact_log2 (low));
761 }
762
763 /* Similar, but return the largest integer Y such that 2 ** Y is less
764 than or equal to EXPR. */
765
766 int
767 tree_floor_log2 (tree expr)
768 {
769 int prec;
770 HOST_WIDE_INT high, low;
771
772 STRIP_NOPS (expr);
773
774 if (TREE_CODE (expr) == COMPLEX_CST)
775 return tree_log2 (TREE_REALPART (expr));
776
777 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
778 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
779
780 high = TREE_INT_CST_HIGH (expr);
781 low = TREE_INT_CST_LOW (expr);
782
783 /* First clear all bits that are beyond the type's precision in case
784 we've been sign extended. Ignore if type's precision hasn't been set
785 since what we are doing is setting it. */
786
787 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
788 ;
789 else if (prec > HOST_BITS_PER_WIDE_INT)
790 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
791 else
792 {
793 high = 0;
794 if (prec < HOST_BITS_PER_WIDE_INT)
795 low &= ~((HOST_WIDE_INT) (-1) << prec);
796 }
797
798 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
799 : floor_log2 (low));
800 }
801
802 /* Return 1 if EXPR is the real constant zero. */
803
804 int
805 real_zerop (tree expr)
806 {
807 STRIP_NOPS (expr);
808
809 return ((TREE_CODE (expr) == REAL_CST
810 && ! TREE_CONSTANT_OVERFLOW (expr)
811 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
812 || (TREE_CODE (expr) == COMPLEX_CST
813 && real_zerop (TREE_REALPART (expr))
814 && real_zerop (TREE_IMAGPART (expr))));
815 }
816
817 /* Return 1 if EXPR is the real constant one in real or complex form. */
818
819 int
820 real_onep (tree expr)
821 {
822 STRIP_NOPS (expr);
823
824 return ((TREE_CODE (expr) == REAL_CST
825 && ! TREE_CONSTANT_OVERFLOW (expr)
826 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
827 || (TREE_CODE (expr) == COMPLEX_CST
828 && real_onep (TREE_REALPART (expr))
829 && real_zerop (TREE_IMAGPART (expr))));
830 }
831
832 /* Return 1 if EXPR is the real constant two. */
833
834 int
835 real_twop (tree expr)
836 {
837 STRIP_NOPS (expr);
838
839 return ((TREE_CODE (expr) == REAL_CST
840 && ! TREE_CONSTANT_OVERFLOW (expr)
841 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
842 || (TREE_CODE (expr) == COMPLEX_CST
843 && real_twop (TREE_REALPART (expr))
844 && real_zerop (TREE_IMAGPART (expr))));
845 }
846
847 /* Return 1 if EXPR is the real constant minus one. */
848
849 int
850 real_minus_onep (tree expr)
851 {
852 STRIP_NOPS (expr);
853
854 return ((TREE_CODE (expr) == REAL_CST
855 && ! TREE_CONSTANT_OVERFLOW (expr)
856 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconstm1))
857 || (TREE_CODE (expr) == COMPLEX_CST
858 && real_minus_onep (TREE_REALPART (expr))
859 && real_zerop (TREE_IMAGPART (expr))));
860 }
861
862 /* Nonzero if EXP is a constant or a cast of a constant. */
863
864 int
865 really_constant_p (tree exp)
866 {
867 /* This is not quite the same as STRIP_NOPS. It does more. */
868 while (TREE_CODE (exp) == NOP_EXPR
869 || TREE_CODE (exp) == CONVERT_EXPR
870 || TREE_CODE (exp) == NON_LVALUE_EXPR)
871 exp = TREE_OPERAND (exp, 0);
872 return TREE_CONSTANT (exp);
873 }
874 \f
875 /* Return first list element whose TREE_VALUE is ELEM.
876 Return 0 if ELEM is not in LIST. */
877
878 tree
879 value_member (tree elem, tree list)
880 {
881 while (list)
882 {
883 if (elem == TREE_VALUE (list))
884 return list;
885 list = TREE_CHAIN (list);
886 }
887 return NULL_TREE;
888 }
889
890 /* Return first list element whose TREE_PURPOSE is ELEM.
891 Return 0 if ELEM is not in LIST. */
892
893 tree
894 purpose_member (tree elem, tree list)
895 {
896 while (list)
897 {
898 if (elem == TREE_PURPOSE (list))
899 return list;
900 list = TREE_CHAIN (list);
901 }
902 return NULL_TREE;
903 }
904
905 /* Return first list element whose BINFO_TYPE is ELEM.
906 Return 0 if ELEM is not in LIST. */
907
908 tree
909 binfo_member (tree elem, tree list)
910 {
911 while (list)
912 {
913 if (elem == BINFO_TYPE (list))
914 return list;
915 list = TREE_CHAIN (list);
916 }
917 return NULL_TREE;
918 }
919
920 /* Return nonzero if ELEM is part of the chain CHAIN. */
921
922 int
923 chain_member (tree elem, tree chain)
924 {
925 while (chain)
926 {
927 if (elem == chain)
928 return 1;
929 chain = TREE_CHAIN (chain);
930 }
931
932 return 0;
933 }
934
935 /* Return the length of a chain of nodes chained through TREE_CHAIN.
936 We expect a null pointer to mark the end of the chain.
937 This is the Lisp primitive `length'. */
938
939 int
940 list_length (tree t)
941 {
942 tree tail;
943 int len = 0;
944
945 for (tail = t; tail; tail = TREE_CHAIN (tail))
946 len++;
947
948 return len;
949 }
950
951 /* Returns the number of FIELD_DECLs in TYPE. */
952
953 int
954 fields_length (tree type)
955 {
956 tree t = TYPE_FIELDS (type);
957 int count = 0;
958
959 for (; t; t = TREE_CHAIN (t))
960 if (TREE_CODE (t) == FIELD_DECL)
961 ++count;
962
963 return count;
964 }
965
966 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
967 by modifying the last node in chain 1 to point to chain 2.
968 This is the Lisp primitive `nconc'. */
969
970 tree
971 chainon (tree op1, tree op2)
972 {
973 tree t1;
974
975 if (!op1)
976 return op2;
977 if (!op2)
978 return op1;
979
980 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
981 continue;
982 TREE_CHAIN (t1) = op2;
983
984 #ifdef ENABLE_TREE_CHECKING
985 {
986 tree t2;
987 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
988 if (t2 == t1)
989 abort (); /* Circularity created. */
990 }
991 #endif
992
993 return op1;
994 }
995
996 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
997
998 tree
999 tree_last (tree chain)
1000 {
1001 tree next;
1002 if (chain)
1003 while ((next = TREE_CHAIN (chain)))
1004 chain = next;
1005 return chain;
1006 }
1007
1008 /* Reverse the order of elements in the chain T,
1009 and return the new head of the chain (old last element). */
1010
1011 tree
1012 nreverse (tree t)
1013 {
1014 tree prev = 0, decl, next;
1015 for (decl = t; decl; decl = next)
1016 {
1017 next = TREE_CHAIN (decl);
1018 TREE_CHAIN (decl) = prev;
1019 prev = decl;
1020 }
1021 return prev;
1022 }
1023 \f
1024 /* Return a newly created TREE_LIST node whose
1025 purpose and value fields are PARM and VALUE. */
1026
1027 tree
1028 build_tree_list (tree parm, tree value)
1029 {
1030 tree t = make_node (TREE_LIST);
1031 TREE_PURPOSE (t) = parm;
1032 TREE_VALUE (t) = value;
1033 return t;
1034 }
1035
1036 /* Return a newly created TREE_LIST node whose
1037 purpose and value fields are PURPOSE and VALUE
1038 and whose TREE_CHAIN is CHAIN. */
1039
1040 tree
1041 tree_cons (tree purpose, tree value, tree chain)
1042 {
1043 tree node;
1044
1045 node = ggc_alloc_tree (sizeof (struct tree_list));
1046
1047 memset (node, 0, sizeof (struct tree_common));
1048
1049 #ifdef GATHER_STATISTICS
1050 tree_node_counts[(int) x_kind]++;
1051 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1052 #endif
1053
1054 TREE_SET_CODE (node, TREE_LIST);
1055 TREE_CHAIN (node) = chain;
1056 TREE_PURPOSE (node) = purpose;
1057 TREE_VALUE (node) = value;
1058 return node;
1059 }
1060
1061 /* Return the first expression in a sequence of COMPOUND_EXPRs. */
1062
1063 tree
1064 expr_first (tree expr)
1065 {
1066 if (expr == NULL_TREE)
1067 return expr;
1068 while (TREE_CODE (expr) == COMPOUND_EXPR)
1069 expr = TREE_OPERAND (expr, 0);
1070 return expr;
1071 }
1072
1073 /* Return the last expression in a sequence of COMPOUND_EXPRs. */
1074
1075 tree
1076 expr_last (tree expr)
1077 {
1078 if (expr == NULL_TREE)
1079 return expr;
1080 while (TREE_CODE (expr) == COMPOUND_EXPR)
1081 expr = TREE_OPERAND (expr, 1);
1082 return expr;
1083 }
1084
1085 /* Return the number of subexpressions in a sequence of COMPOUND_EXPRs. */
1086
1087 int
1088 expr_length (tree expr)
1089 {
1090 int len = 0;
1091
1092 if (expr == NULL_TREE)
1093 return 0;
1094 for (; TREE_CODE (expr) == COMPOUND_EXPR; expr = TREE_OPERAND (expr, 1))
1095 len += expr_length (TREE_OPERAND (expr, 0));
1096 ++len;
1097 return len;
1098 }
1099 \f
1100 /* Return the size nominally occupied by an object of type TYPE
1101 when it resides in memory. The value is measured in units of bytes,
1102 and its data type is that normally used for type sizes
1103 (which is the first type created by make_signed_type or
1104 make_unsigned_type). */
1105
1106 tree
1107 size_in_bytes (tree type)
1108 {
1109 tree t;
1110
1111 if (type == error_mark_node)
1112 return integer_zero_node;
1113
1114 type = TYPE_MAIN_VARIANT (type);
1115 t = TYPE_SIZE_UNIT (type);
1116
1117 if (t == 0)
1118 {
1119 (*lang_hooks.types.incomplete_type_error) (NULL_TREE, type);
1120 return size_zero_node;
1121 }
1122
1123 if (TREE_CODE (t) == INTEGER_CST)
1124 force_fit_type (t, 0);
1125
1126 return t;
1127 }
1128
1129 /* Return the size of TYPE (in bytes) as a wide integer
1130 or return -1 if the size can vary or is larger than an integer. */
1131
1132 HOST_WIDE_INT
1133 int_size_in_bytes (tree type)
1134 {
1135 tree t;
1136
1137 if (type == error_mark_node)
1138 return 0;
1139
1140 type = TYPE_MAIN_VARIANT (type);
1141 t = TYPE_SIZE_UNIT (type);
1142 if (t == 0
1143 || TREE_CODE (t) != INTEGER_CST
1144 || TREE_OVERFLOW (t)
1145 || TREE_INT_CST_HIGH (t) != 0
1146 /* If the result would appear negative, it's too big to represent. */
1147 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1148 return -1;
1149
1150 return TREE_INT_CST_LOW (t);
1151 }
1152 \f
1153 /* Return the bit position of FIELD, in bits from the start of the record.
1154 This is a tree of type bitsizetype. */
1155
1156 tree
1157 bit_position (tree field)
1158 {
1159 return bit_from_pos (DECL_FIELD_OFFSET (field),
1160 DECL_FIELD_BIT_OFFSET (field));
1161 }
1162
1163 /* Likewise, but return as an integer. Abort if it cannot be represented
1164 in that way (since it could be a signed value, we don't have the option
1165 of returning -1 like int_size_in_byte can. */
1166
1167 HOST_WIDE_INT
1168 int_bit_position (tree field)
1169 {
1170 return tree_low_cst (bit_position (field), 0);
1171 }
1172 \f
1173 /* Return the byte position of FIELD, in bytes from the start of the record.
1174 This is a tree of type sizetype. */
1175
1176 tree
1177 byte_position (tree field)
1178 {
1179 return byte_from_pos (DECL_FIELD_OFFSET (field),
1180 DECL_FIELD_BIT_OFFSET (field));
1181 }
1182
1183 /* Likewise, but return as an integer. Abort if it cannot be represented
1184 in that way (since it could be a signed value, we don't have the option
1185 of returning -1 like int_size_in_byte can. */
1186
1187 HOST_WIDE_INT
1188 int_byte_position (tree field)
1189 {
1190 return tree_low_cst (byte_position (field), 0);
1191 }
1192 \f
1193 /* Return the strictest alignment, in bits, that T is known to have. */
1194
1195 unsigned int
1196 expr_align (tree t)
1197 {
1198 unsigned int align0, align1;
1199
1200 switch (TREE_CODE (t))
1201 {
1202 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1203 /* If we have conversions, we know that the alignment of the
1204 object must meet each of the alignments of the types. */
1205 align0 = expr_align (TREE_OPERAND (t, 0));
1206 align1 = TYPE_ALIGN (TREE_TYPE (t));
1207 return MAX (align0, align1);
1208
1209 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1210 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1211 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1212 /* These don't change the alignment of an object. */
1213 return expr_align (TREE_OPERAND (t, 0));
1214
1215 case COND_EXPR:
1216 /* The best we can do is say that the alignment is the least aligned
1217 of the two arms. */
1218 align0 = expr_align (TREE_OPERAND (t, 1));
1219 align1 = expr_align (TREE_OPERAND (t, 2));
1220 return MIN (align0, align1);
1221
1222 case LABEL_DECL: case CONST_DECL:
1223 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1224 if (DECL_ALIGN (t) != 0)
1225 return DECL_ALIGN (t);
1226 break;
1227
1228 case FUNCTION_DECL:
1229 return FUNCTION_BOUNDARY;
1230
1231 default:
1232 break;
1233 }
1234
1235 /* Otherwise take the alignment from that of the type. */
1236 return TYPE_ALIGN (TREE_TYPE (t));
1237 }
1238 \f
1239 /* Return, as a tree node, the number of elements for TYPE (which is an
1240 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1241
1242 tree
1243 array_type_nelts (tree type)
1244 {
1245 tree index_type, min, max;
1246
1247 /* If they did it with unspecified bounds, then we should have already
1248 given an error about it before we got here. */
1249 if (! TYPE_DOMAIN (type))
1250 return error_mark_node;
1251
1252 index_type = TYPE_DOMAIN (type);
1253 min = TYPE_MIN_VALUE (index_type);
1254 max = TYPE_MAX_VALUE (index_type);
1255
1256 return (integer_zerop (min)
1257 ? max
1258 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1259 }
1260 \f
1261 /* Return nonzero if arg is static -- a reference to an object in
1262 static storage. This is not the same as the C meaning of `static'. */
1263
1264 int
1265 staticp (tree arg)
1266 {
1267 switch (TREE_CODE (arg))
1268 {
1269 case FUNCTION_DECL:
1270 /* Nested functions aren't static, since taking their address
1271 involves a trampoline. */
1272 return ((decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1273 && ! DECL_NON_ADDR_CONST_P (arg));
1274
1275 case VAR_DECL:
1276 return ((TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1277 && ! DECL_THREAD_LOCAL (arg)
1278 && ! DECL_NON_ADDR_CONST_P (arg));
1279
1280 case CONSTRUCTOR:
1281 return TREE_STATIC (arg);
1282
1283 case LABEL_DECL:
1284 case STRING_CST:
1285 return 1;
1286
1287 /* If we are referencing a bitfield, we can't evaluate an
1288 ADDR_EXPR at compile time and so it isn't a constant. */
1289 case COMPONENT_REF:
1290 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1291 && staticp (TREE_OPERAND (arg, 0)));
1292
1293 case BIT_FIELD_REF:
1294 return 0;
1295
1296 #if 0
1297 /* This case is technically correct, but results in setting
1298 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1299 compile time. */
1300 case INDIRECT_REF:
1301 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1302 #endif
1303
1304 case ARRAY_REF:
1305 case ARRAY_RANGE_REF:
1306 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1307 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1308 return staticp (TREE_OPERAND (arg, 0));
1309
1310 default:
1311 if ((unsigned int) TREE_CODE (arg)
1312 >= (unsigned int) LAST_AND_UNUSED_TREE_CODE)
1313 return (*lang_hooks.staticp) (arg);
1314 else
1315 return 0;
1316 }
1317 }
1318 \f
1319 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1320 Do this to any expression which may be used in more than one place,
1321 but must be evaluated only once.
1322
1323 Normally, expand_expr would reevaluate the expression each time.
1324 Calling save_expr produces something that is evaluated and recorded
1325 the first time expand_expr is called on it. Subsequent calls to
1326 expand_expr just reuse the recorded value.
1327
1328 The call to expand_expr that generates code that actually computes
1329 the value is the first call *at compile time*. Subsequent calls
1330 *at compile time* generate code to use the saved value.
1331 This produces correct result provided that *at run time* control
1332 always flows through the insns made by the first expand_expr
1333 before reaching the other places where the save_expr was evaluated.
1334 You, the caller of save_expr, must make sure this is so.
1335
1336 Constants, and certain read-only nodes, are returned with no
1337 SAVE_EXPR because that is safe. Expressions containing placeholders
1338 are not touched; see tree.def for an explanation of what these
1339 are used for. */
1340
1341 tree
1342 save_expr (tree expr)
1343 {
1344 tree t = fold (expr);
1345 tree inner;
1346
1347 /* If the tree evaluates to a constant, then we don't want to hide that
1348 fact (i.e. this allows further folding, and direct checks for constants).
1349 However, a read-only object that has side effects cannot be bypassed.
1350 Since it is no problem to reevaluate literals, we just return the
1351 literal node. */
1352 inner = skip_simple_arithmetic (t);
1353 if (TREE_CONSTANT (inner)
1354 || (TREE_READONLY (inner) && ! TREE_SIDE_EFFECTS (inner))
1355 || TREE_CODE (inner) == SAVE_EXPR
1356 || TREE_CODE (inner) == ERROR_MARK)
1357 return t;
1358
1359 /* If INNER contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1360 it means that the size or offset of some field of an object depends on
1361 the value within another field.
1362
1363 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1364 and some variable since it would then need to be both evaluated once and
1365 evaluated more than once. Front-ends must assure this case cannot
1366 happen by surrounding any such subexpressions in their own SAVE_EXPR
1367 and forcing evaluation at the proper time. */
1368 if (contains_placeholder_p (inner))
1369 return t;
1370
1371 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1372
1373 /* This expression might be placed ahead of a jump to ensure that the
1374 value was computed on both sides of the jump. So make sure it isn't
1375 eliminated as dead. */
1376 TREE_SIDE_EFFECTS (t) = 1;
1377 TREE_READONLY (t) = 1;
1378 return t;
1379 }
1380
1381 /* Look inside EXPR and into any simple arithmetic operations. Return
1382 the innermost non-arithmetic node. */
1383
1384 tree
1385 skip_simple_arithmetic (tree expr)
1386 {
1387 tree inner;
1388
1389 /* We don't care about whether this can be used as an lvalue in this
1390 context. */
1391 while (TREE_CODE (expr) == NON_LVALUE_EXPR)
1392 expr = TREE_OPERAND (expr, 0);
1393
1394 /* If we have simple operations applied to a SAVE_EXPR or to a SAVE_EXPR and
1395 a constant, it will be more efficient to not make another SAVE_EXPR since
1396 it will allow better simplification and GCSE will be able to merge the
1397 computations if they actually occur. */
1398 inner = expr;
1399 while (1)
1400 {
1401 if (TREE_CODE_CLASS (TREE_CODE (inner)) == '1')
1402 inner = TREE_OPERAND (inner, 0);
1403 else if (TREE_CODE_CLASS (TREE_CODE (inner)) == '2')
1404 {
1405 if (TREE_CONSTANT (TREE_OPERAND (inner, 1)))
1406 inner = TREE_OPERAND (inner, 0);
1407 else if (TREE_CONSTANT (TREE_OPERAND (inner, 0)))
1408 inner = TREE_OPERAND (inner, 1);
1409 else
1410 break;
1411 }
1412 else
1413 break;
1414 }
1415
1416 return inner;
1417 }
1418
1419 /* Return TRUE if EXPR is a SAVE_EXPR or wraps simple arithmetic around a
1420 SAVE_EXPR. Return FALSE otherwise. */
1421
1422 bool
1423 saved_expr_p (tree expr)
1424 {
1425 return TREE_CODE (skip_simple_arithmetic (expr)) == SAVE_EXPR;
1426 }
1427
1428 /* Arrange for an expression to be expanded multiple independent
1429 times. This is useful for cleanup actions, as the backend can
1430 expand them multiple times in different places. */
1431
1432 tree
1433 unsave_expr (tree expr)
1434 {
1435 tree t;
1436
1437 /* If this is already protected, no sense in protecting it again. */
1438 if (TREE_CODE (expr) == UNSAVE_EXPR)
1439 return expr;
1440
1441 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1442 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1443 return t;
1444 }
1445
1446 /* Returns the index of the first non-tree operand for CODE, or the number
1447 of operands if all are trees. */
1448
1449 int
1450 first_rtl_op (enum tree_code code)
1451 {
1452 switch (code)
1453 {
1454 case SAVE_EXPR:
1455 return 2;
1456 case GOTO_SUBROUTINE_EXPR:
1457 case RTL_EXPR:
1458 return 0;
1459 case WITH_CLEANUP_EXPR:
1460 return 2;
1461 default:
1462 return TREE_CODE_LENGTH (code);
1463 }
1464 }
1465
1466 /* Return which tree structure is used by T. */
1467
1468 enum tree_node_structure_enum
1469 tree_node_structure (tree t)
1470 {
1471 enum tree_code code = TREE_CODE (t);
1472
1473 switch (TREE_CODE_CLASS (code))
1474 {
1475 case 'd': return TS_DECL;
1476 case 't': return TS_TYPE;
1477 case 'b': return TS_BLOCK;
1478 case 'r': case '<': case '1': case '2': case 'e': case 's':
1479 return TS_EXP;
1480 default: /* 'c' and 'x' */
1481 break;
1482 }
1483 switch (code)
1484 {
1485 /* 'c' cases. */
1486 case INTEGER_CST: return TS_INT_CST;
1487 case REAL_CST: return TS_REAL_CST;
1488 case COMPLEX_CST: return TS_COMPLEX;
1489 case VECTOR_CST: return TS_VECTOR;
1490 case STRING_CST: return TS_STRING;
1491 /* 'x' cases. */
1492 case ERROR_MARK: return TS_COMMON;
1493 case IDENTIFIER_NODE: return TS_IDENTIFIER;
1494 case TREE_LIST: return TS_LIST;
1495 case TREE_VEC: return TS_VEC;
1496 case PLACEHOLDER_EXPR: return TS_COMMON;
1497
1498 default:
1499 abort ();
1500 }
1501 }
1502
1503 /* Perform any modifications to EXPR required when it is unsaved. Does
1504 not recurse into EXPR's subtrees. */
1505
1506 void
1507 unsave_expr_1 (tree expr)
1508 {
1509 switch (TREE_CODE (expr))
1510 {
1511 case SAVE_EXPR:
1512 if (! SAVE_EXPR_PERSISTENT_P (expr))
1513 SAVE_EXPR_RTL (expr) = 0;
1514 break;
1515
1516 case TARGET_EXPR:
1517 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1518 It's OK for this to happen if it was part of a subtree that
1519 isn't immediately expanded, such as operand 2 of another
1520 TARGET_EXPR. */
1521 if (TREE_OPERAND (expr, 1))
1522 break;
1523
1524 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1525 TREE_OPERAND (expr, 3) = NULL_TREE;
1526 break;
1527
1528 case RTL_EXPR:
1529 /* I don't yet know how to emit a sequence multiple times. */
1530 if (RTL_EXPR_SEQUENCE (expr) != 0)
1531 abort ();
1532 break;
1533
1534 default:
1535 break;
1536 }
1537 }
1538
1539 /* Default lang hook for "unsave_expr_now". */
1540
1541 tree
1542 lhd_unsave_expr_now (tree expr)
1543 {
1544 enum tree_code code;
1545
1546 /* There's nothing to do for NULL_TREE. */
1547 if (expr == 0)
1548 return expr;
1549
1550 unsave_expr_1 (expr);
1551
1552 code = TREE_CODE (expr);
1553 switch (TREE_CODE_CLASS (code))
1554 {
1555 case 'c': /* a constant */
1556 case 't': /* a type node */
1557 case 'd': /* A decl node */
1558 case 'b': /* A block node */
1559 break;
1560
1561 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1562 if (code == TREE_LIST)
1563 {
1564 lhd_unsave_expr_now (TREE_VALUE (expr));
1565 lhd_unsave_expr_now (TREE_CHAIN (expr));
1566 }
1567 break;
1568
1569 case 'e': /* an expression */
1570 case 'r': /* a reference */
1571 case 's': /* an expression with side effects */
1572 case '<': /* a comparison expression */
1573 case '2': /* a binary arithmetic expression */
1574 case '1': /* a unary arithmetic expression */
1575 {
1576 int i;
1577
1578 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1579 lhd_unsave_expr_now (TREE_OPERAND (expr, i));
1580 }
1581 break;
1582
1583 default:
1584 abort ();
1585 }
1586
1587 return expr;
1588 }
1589
1590 /* Return 0 if it is safe to evaluate EXPR multiple times,
1591 return 1 if it is safe if EXPR is unsaved afterward, or
1592 return 2 if it is completely unsafe.
1593
1594 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1595 an expression tree, so that it safe to unsave them and the surrounding
1596 context will be correct.
1597
1598 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1599 occasionally across the whole of a function. It is therefore only
1600 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1601 below the UNSAVE_EXPR.
1602
1603 RTL_EXPRs consume their rtl during evaluation. It is therefore
1604 never possible to unsave them. */
1605
1606 int
1607 unsafe_for_reeval (tree expr)
1608 {
1609 int unsafeness = 0;
1610 enum tree_code code;
1611 int i, tmp, tmp2;
1612 tree exp;
1613 int first_rtl;
1614
1615 if (expr == NULL_TREE)
1616 return 1;
1617
1618 code = TREE_CODE (expr);
1619 first_rtl = first_rtl_op (code);
1620
1621 switch (code)
1622 {
1623 case SAVE_EXPR:
1624 case RTL_EXPR:
1625 return 2;
1626
1627 case TREE_LIST:
1628 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1629 {
1630 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1631 unsafeness = MAX (tmp, unsafeness);
1632 }
1633
1634 return unsafeness;
1635
1636 case CALL_EXPR:
1637 tmp2 = unsafe_for_reeval (TREE_OPERAND (expr, 0));
1638 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1639 return MAX (MAX (tmp, 1), tmp2);
1640
1641 case TARGET_EXPR:
1642 unsafeness = 1;
1643 break;
1644
1645 default:
1646 tmp = (*lang_hooks.unsafe_for_reeval) (expr);
1647 if (tmp >= 0)
1648 return tmp;
1649 break;
1650 }
1651
1652 switch (TREE_CODE_CLASS (code))
1653 {
1654 case 'c': /* a constant */
1655 case 't': /* a type node */
1656 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1657 case 'd': /* A decl node */
1658 case 'b': /* A block node */
1659 return 0;
1660
1661 case 'e': /* an expression */
1662 case 'r': /* a reference */
1663 case 's': /* an expression with side effects */
1664 case '<': /* a comparison expression */
1665 case '2': /* a binary arithmetic expression */
1666 case '1': /* a unary arithmetic expression */
1667 for (i = first_rtl - 1; i >= 0; i--)
1668 {
1669 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1670 unsafeness = MAX (tmp, unsafeness);
1671 }
1672
1673 return unsafeness;
1674
1675 default:
1676 return 2;
1677 }
1678 }
1679 \f
1680 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1681 or offset that depends on a field within a record. */
1682
1683 bool
1684 contains_placeholder_p (tree exp)
1685 {
1686 enum tree_code code;
1687 int result;
1688
1689 if (!exp)
1690 return 0;
1691
1692 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1693 in it since it is supplying a value for it. */
1694 code = TREE_CODE (exp);
1695 if (code == WITH_RECORD_EXPR)
1696 return 0;
1697 else if (code == PLACEHOLDER_EXPR)
1698 return 1;
1699
1700 switch (TREE_CODE_CLASS (code))
1701 {
1702 case 'r':
1703 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1704 position computations since they will be converted into a
1705 WITH_RECORD_EXPR involving the reference, which will assume
1706 here will be valid. */
1707 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1708
1709 case 'x':
1710 if (code == TREE_LIST)
1711 return (CONTAINS_PLACEHOLDER_P (TREE_VALUE (exp))
1712 || CONTAINS_PLACEHOLDER_P (TREE_CHAIN (exp)));
1713 break;
1714
1715 case '1':
1716 case '2': case '<':
1717 case 'e':
1718 switch (code)
1719 {
1720 case COMPOUND_EXPR:
1721 /* Ignoring the first operand isn't quite right, but works best. */
1722 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1723
1724 case RTL_EXPR:
1725 case CONSTRUCTOR:
1726 return 0;
1727
1728 case COND_EXPR:
1729 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1730 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1))
1731 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 2)));
1732
1733 case SAVE_EXPR:
1734 /* If we already know this doesn't have a placeholder, don't
1735 check again. */
1736 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1737 return 0;
1738
1739 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1740 result = CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1741 if (result)
1742 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1743
1744 return result;
1745
1746 case CALL_EXPR:
1747 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1));
1748
1749 default:
1750 break;
1751 }
1752
1753 switch (TREE_CODE_LENGTH (code))
1754 {
1755 case 1:
1756 return CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0));
1757 case 2:
1758 return (CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 0))
1759 || CONTAINS_PLACEHOLDER_P (TREE_OPERAND (exp, 1)));
1760 default:
1761 return 0;
1762 }
1763
1764 default:
1765 return 0;
1766 }
1767 return 0;
1768 }
1769
1770 /* Return 1 if any part of the computation of TYPE involves a PLACEHOLDER_EXPR.
1771 This includes size, bounds, qualifiers (for QUAL_UNION_TYPE) and field
1772 positions. */
1773
1774 bool
1775 type_contains_placeholder_p (tree type)
1776 {
1777 /* If the size contains a placeholder or the parent type (component type in
1778 the case of arrays) type involves a placeholder, this type does. */
1779 if (CONTAINS_PLACEHOLDER_P (TYPE_SIZE (type))
1780 || CONTAINS_PLACEHOLDER_P (TYPE_SIZE_UNIT (type))
1781 || (TREE_TYPE (type) != 0
1782 && type_contains_placeholder_p (TREE_TYPE (type))))
1783 return 1;
1784
1785 /* Now do type-specific checks. Note that the last part of the check above
1786 greatly limits what we have to do below. */
1787 switch (TREE_CODE (type))
1788 {
1789 case VOID_TYPE:
1790 case COMPLEX_TYPE:
1791 case VECTOR_TYPE:
1792 case ENUMERAL_TYPE:
1793 case BOOLEAN_TYPE:
1794 case CHAR_TYPE:
1795 case POINTER_TYPE:
1796 case OFFSET_TYPE:
1797 case REFERENCE_TYPE:
1798 case METHOD_TYPE:
1799 case FILE_TYPE:
1800 case FUNCTION_TYPE:
1801 return 0;
1802
1803 case INTEGER_TYPE:
1804 case REAL_TYPE:
1805 /* Here we just check the bounds. */
1806 return (CONTAINS_PLACEHOLDER_P (TYPE_MIN_VALUE (type))
1807 || CONTAINS_PLACEHOLDER_P (TYPE_MAX_VALUE (type)));
1808
1809 case ARRAY_TYPE:
1810 case SET_TYPE:
1811 /* We're already checked the component type (TREE_TYPE), so just check
1812 the index type. */
1813 return type_contains_placeholder_p (TYPE_DOMAIN (type));
1814
1815 case RECORD_TYPE:
1816 case UNION_TYPE:
1817 case QUAL_UNION_TYPE:
1818 {
1819 static tree seen_types = 0;
1820 tree field;
1821 bool ret = 0;
1822
1823 /* We have to be careful here that we don't end up in infinite
1824 recursions due to a field of a type being a pointer to that type
1825 or to a mutually-recursive type. So we store a list of record
1826 types that we've seen and see if this type is in them. To save
1827 memory, we don't use a list for just one type. Here we check
1828 whether we've seen this type before and store it if not. */
1829 if (seen_types == 0)
1830 seen_types = type;
1831 else if (TREE_CODE (seen_types) != TREE_LIST)
1832 {
1833 if (seen_types == type)
1834 return 0;
1835
1836 seen_types = tree_cons (NULL_TREE, type,
1837 build_tree_list (NULL_TREE, seen_types));
1838 }
1839 else
1840 {
1841 if (value_member (type, seen_types) != 0)
1842 return 0;
1843
1844 seen_types = tree_cons (NULL_TREE, type, seen_types);
1845 }
1846
1847 for (field = TYPE_FIELDS (type); field; field = TREE_CHAIN (field))
1848 if (TREE_CODE (field) == FIELD_DECL
1849 && (CONTAINS_PLACEHOLDER_P (DECL_FIELD_OFFSET (field))
1850 || (TREE_CODE (type) == QUAL_UNION_TYPE
1851 && CONTAINS_PLACEHOLDER_P (DECL_QUALIFIER (field)))
1852 || type_contains_placeholder_p (TREE_TYPE (field))))
1853 {
1854 ret = true;
1855 break;
1856 }
1857
1858 /* Now remove us from seen_types and return the result. */
1859 if (seen_types == type)
1860 seen_types = 0;
1861 else
1862 seen_types = TREE_CHAIN (seen_types);
1863
1864 return ret;
1865 }
1866
1867 default:
1868 abort ();
1869 }
1870 }
1871
1872 /* Return 1 if EXP contains any expressions that produce cleanups for an
1873 outer scope to deal with. Used by fold. */
1874
1875 int
1876 has_cleanups (tree exp)
1877 {
1878 int i, nops, cmp;
1879
1880 if (! TREE_SIDE_EFFECTS (exp))
1881 return 0;
1882
1883 switch (TREE_CODE (exp))
1884 {
1885 case TARGET_EXPR:
1886 case GOTO_SUBROUTINE_EXPR:
1887 case WITH_CLEANUP_EXPR:
1888 return 1;
1889
1890 case CLEANUP_POINT_EXPR:
1891 return 0;
1892
1893 case CALL_EXPR:
1894 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1895 {
1896 cmp = has_cleanups (TREE_VALUE (exp));
1897 if (cmp)
1898 return cmp;
1899 }
1900 return 0;
1901
1902 default:
1903 break;
1904 }
1905
1906 /* This general rule works for most tree codes. All exceptions should be
1907 handled above. If this is a language-specific tree code, we can't
1908 trust what might be in the operand, so say we don't know
1909 the situation. */
1910 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1911 return -1;
1912
1913 nops = first_rtl_op (TREE_CODE (exp));
1914 for (i = 0; i < nops; i++)
1915 if (TREE_OPERAND (exp, i) != 0)
1916 {
1917 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1918 if (type == 'e' || type == '<' || type == '1' || type == '2'
1919 || type == 'r' || type == 's')
1920 {
1921 cmp = has_cleanups (TREE_OPERAND (exp, i));
1922 if (cmp)
1923 return cmp;
1924 }
1925 }
1926
1927 return 0;
1928 }
1929 \f
1930 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1931 return a tree with all occurrences of references to F in a
1932 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1933 contains only arithmetic expressions or a CALL_EXPR with a
1934 PLACEHOLDER_EXPR occurring only in its arglist. */
1935
1936 tree
1937 substitute_in_expr (tree exp, tree f, tree r)
1938 {
1939 enum tree_code code = TREE_CODE (exp);
1940 tree op0, op1, op2;
1941 tree new;
1942 tree inner;
1943
1944 switch (TREE_CODE_CLASS (code))
1945 {
1946 case 'c':
1947 case 'd':
1948 return exp;
1949
1950 case 'x':
1951 if (code == PLACEHOLDER_EXPR)
1952 return exp;
1953 else if (code == TREE_LIST)
1954 {
1955 op0 = (TREE_CHAIN (exp) == 0
1956 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
1957 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
1958 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
1959 return exp;
1960
1961 return tree_cons (TREE_PURPOSE (exp), op1, op0);
1962 }
1963
1964 abort ();
1965
1966 case '1':
1967 case '2':
1968 case '<':
1969 case 'e':
1970 switch (TREE_CODE_LENGTH (code))
1971 {
1972 case 1:
1973 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
1974 if (op0 == TREE_OPERAND (exp, 0))
1975 return exp;
1976
1977 if (code == NON_LVALUE_EXPR)
1978 return op0;
1979
1980 new = fold (build1 (code, TREE_TYPE (exp), op0));
1981 break;
1982
1983 case 2:
1984 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
1985 could, but we don't support it. */
1986 if (code == RTL_EXPR)
1987 return exp;
1988 else if (code == CONSTRUCTOR)
1989 abort ();
1990
1991 op0 = TREE_OPERAND (exp, 0);
1992 op1 = TREE_OPERAND (exp, 1);
1993 if (CONTAINS_PLACEHOLDER_P (op0))
1994 op0 = substitute_in_expr (op0, f, r);
1995 if (CONTAINS_PLACEHOLDER_P (op1))
1996 op1 = substitute_in_expr (op1, f, r);
1997
1998 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
1999 return exp;
2000
2001 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2002 break;
2003
2004 case 3:
2005 /* It cannot be that anything inside a SAVE_EXPR contains a
2006 PLACEHOLDER_EXPR. */
2007 if (code == SAVE_EXPR)
2008 return exp;
2009
2010 else if (code == CALL_EXPR)
2011 {
2012 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2013 if (op1 == TREE_OPERAND (exp, 1))
2014 return exp;
2015
2016 return build (code, TREE_TYPE (exp),
2017 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2018 }
2019
2020 else if (code != COND_EXPR)
2021 abort ();
2022
2023 op0 = TREE_OPERAND (exp, 0);
2024 op1 = TREE_OPERAND (exp, 1);
2025 op2 = TREE_OPERAND (exp, 2);
2026
2027 if (CONTAINS_PLACEHOLDER_P (op0))
2028 op0 = substitute_in_expr (op0, f, r);
2029 if (CONTAINS_PLACEHOLDER_P (op1))
2030 op1 = substitute_in_expr (op1, f, r);
2031 if (CONTAINS_PLACEHOLDER_P (op2))
2032 op2 = substitute_in_expr (op2, f, r);
2033
2034 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2035 && op2 == TREE_OPERAND (exp, 2))
2036 return exp;
2037
2038 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2039 break;
2040
2041 default:
2042 abort ();
2043 }
2044
2045 break;
2046
2047 case 'r':
2048 switch (code)
2049 {
2050 case COMPONENT_REF:
2051 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2052 and it is the right field, replace it with R. */
2053 for (inner = TREE_OPERAND (exp, 0);
2054 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2055 inner = TREE_OPERAND (inner, 0))
2056 ;
2057 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2058 && TREE_OPERAND (exp, 1) == f)
2059 return r;
2060
2061 /* If this expression hasn't been completed let, leave it
2062 alone. */
2063 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2064 && TREE_TYPE (inner) == 0)
2065 return exp;
2066
2067 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2068 if (op0 == TREE_OPERAND (exp, 0))
2069 return exp;
2070
2071 new = fold (build (code, TREE_TYPE (exp), op0,
2072 TREE_OPERAND (exp, 1)));
2073 break;
2074
2075 case BIT_FIELD_REF:
2076 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2077 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2078 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2079 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2080 && op2 == TREE_OPERAND (exp, 2))
2081 return exp;
2082
2083 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2084 break;
2085
2086 case INDIRECT_REF:
2087 case BUFFER_REF:
2088 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2089 if (op0 == TREE_OPERAND (exp, 0))
2090 return exp;
2091
2092 new = fold (build1 (code, TREE_TYPE (exp), op0));
2093 break;
2094
2095 default:
2096 abort ();
2097 }
2098 break;
2099
2100 default:
2101 abort ();
2102 }
2103
2104 TREE_READONLY (new) = TREE_READONLY (exp);
2105 return new;
2106 }
2107 \f
2108 /* Stabilize a reference so that we can use it any number of times
2109 without causing its operands to be evaluated more than once.
2110 Returns the stabilized reference. This works by means of save_expr,
2111 so see the caveats in the comments about save_expr.
2112
2113 Also allows conversion expressions whose operands are references.
2114 Any other kind of expression is returned unchanged. */
2115
2116 tree
2117 stabilize_reference (tree ref)
2118 {
2119 tree result;
2120 enum tree_code code = TREE_CODE (ref);
2121
2122 switch (code)
2123 {
2124 case VAR_DECL:
2125 case PARM_DECL:
2126 case RESULT_DECL:
2127 /* No action is needed in this case. */
2128 return ref;
2129
2130 case NOP_EXPR:
2131 case CONVERT_EXPR:
2132 case FLOAT_EXPR:
2133 case FIX_TRUNC_EXPR:
2134 case FIX_FLOOR_EXPR:
2135 case FIX_ROUND_EXPR:
2136 case FIX_CEIL_EXPR:
2137 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2138 break;
2139
2140 case INDIRECT_REF:
2141 result = build_nt (INDIRECT_REF,
2142 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2143 break;
2144
2145 case COMPONENT_REF:
2146 result = build_nt (COMPONENT_REF,
2147 stabilize_reference (TREE_OPERAND (ref, 0)),
2148 TREE_OPERAND (ref, 1));
2149 break;
2150
2151 case BIT_FIELD_REF:
2152 result = build_nt (BIT_FIELD_REF,
2153 stabilize_reference (TREE_OPERAND (ref, 0)),
2154 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2155 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2156 break;
2157
2158 case ARRAY_REF:
2159 result = build_nt (ARRAY_REF,
2160 stabilize_reference (TREE_OPERAND (ref, 0)),
2161 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2162 break;
2163
2164 case ARRAY_RANGE_REF:
2165 result = build_nt (ARRAY_RANGE_REF,
2166 stabilize_reference (TREE_OPERAND (ref, 0)),
2167 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2168 break;
2169
2170 case COMPOUND_EXPR:
2171 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2172 it wouldn't be ignored. This matters when dealing with
2173 volatiles. */
2174 return stabilize_reference_1 (ref);
2175
2176 case RTL_EXPR:
2177 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2178 save_expr (build1 (ADDR_EXPR,
2179 build_pointer_type (TREE_TYPE (ref)),
2180 ref)));
2181 break;
2182
2183 /* If arg isn't a kind of lvalue we recognize, make no change.
2184 Caller should recognize the error for an invalid lvalue. */
2185 default:
2186 return ref;
2187
2188 case ERROR_MARK:
2189 return error_mark_node;
2190 }
2191
2192 TREE_TYPE (result) = TREE_TYPE (ref);
2193 TREE_READONLY (result) = TREE_READONLY (ref);
2194 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2195 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2196
2197 return result;
2198 }
2199
2200 /* Subroutine of stabilize_reference; this is called for subtrees of
2201 references. Any expression with side-effects must be put in a SAVE_EXPR
2202 to ensure that it is only evaluated once.
2203
2204 We don't put SAVE_EXPR nodes around everything, because assigning very
2205 simple expressions to temporaries causes us to miss good opportunities
2206 for optimizations. Among other things, the opportunity to fold in the
2207 addition of a constant into an addressing mode often gets lost, e.g.
2208 "y[i+1] += x;". In general, we take the approach that we should not make
2209 an assignment unless we are forced into it - i.e., that any non-side effect
2210 operator should be allowed, and that cse should take care of coalescing
2211 multiple utterances of the same expression should that prove fruitful. */
2212
2213 tree
2214 stabilize_reference_1 (tree e)
2215 {
2216 tree result;
2217 enum tree_code code = TREE_CODE (e);
2218
2219 /* We cannot ignore const expressions because it might be a reference
2220 to a const array but whose index contains side-effects. But we can
2221 ignore things that are actual constant or that already have been
2222 handled by this function. */
2223
2224 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2225 return e;
2226
2227 switch (TREE_CODE_CLASS (code))
2228 {
2229 case 'x':
2230 case 't':
2231 case 'd':
2232 case 'b':
2233 case '<':
2234 case 's':
2235 case 'e':
2236 case 'r':
2237 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2238 so that it will only be evaluated once. */
2239 /* The reference (r) and comparison (<) classes could be handled as
2240 below, but it is generally faster to only evaluate them once. */
2241 if (TREE_SIDE_EFFECTS (e))
2242 return save_expr (e);
2243 return e;
2244
2245 case 'c':
2246 /* Constants need no processing. In fact, we should never reach
2247 here. */
2248 return e;
2249
2250 case '2':
2251 /* Division is slow and tends to be compiled with jumps,
2252 especially the division by powers of 2 that is often
2253 found inside of an array reference. So do it just once. */
2254 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2255 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2256 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2257 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2258 return save_expr (e);
2259 /* Recursively stabilize each operand. */
2260 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2261 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2262 break;
2263
2264 case '1':
2265 /* Recursively stabilize each operand. */
2266 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2267 break;
2268
2269 default:
2270 abort ();
2271 }
2272
2273 TREE_TYPE (result) = TREE_TYPE (e);
2274 TREE_READONLY (result) = TREE_READONLY (e);
2275 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2276 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2277
2278 return result;
2279 }
2280 \f
2281 /* Low-level constructors for expressions. */
2282
2283 /* Build an expression of code CODE, data type TYPE,
2284 and operands as specified by the arguments ARG1 and following arguments.
2285 Expressions and reference nodes can be created this way.
2286 Constants, decls, types and misc nodes cannot be. */
2287
2288 tree
2289 build (enum tree_code code, tree tt, ...)
2290 {
2291 tree t;
2292 int length;
2293 int i;
2294 int fro;
2295 int constant;
2296 va_list p;
2297 tree node;
2298
2299 va_start (p, tt);
2300
2301 t = make_node (code);
2302 length = TREE_CODE_LENGTH (code);
2303 TREE_TYPE (t) = tt;
2304
2305 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2306 result based on those same flags for the arguments. But if the
2307 arguments aren't really even `tree' expressions, we shouldn't be trying
2308 to do this. */
2309 fro = first_rtl_op (code);
2310
2311 /* Expressions without side effects may be constant if their
2312 arguments are as well. */
2313 constant = (TREE_CODE_CLASS (code) == '<'
2314 || TREE_CODE_CLASS (code) == '1'
2315 || TREE_CODE_CLASS (code) == '2'
2316 || TREE_CODE_CLASS (code) == 'c');
2317
2318 if (length == 2)
2319 {
2320 /* This is equivalent to the loop below, but faster. */
2321 tree arg0 = va_arg (p, tree);
2322 tree arg1 = va_arg (p, tree);
2323
2324 TREE_OPERAND (t, 0) = arg0;
2325 TREE_OPERAND (t, 1) = arg1;
2326 TREE_READONLY (t) = 1;
2327 if (arg0 && fro > 0)
2328 {
2329 if (TREE_SIDE_EFFECTS (arg0))
2330 TREE_SIDE_EFFECTS (t) = 1;
2331 if (!TREE_READONLY (arg0))
2332 TREE_READONLY (t) = 0;
2333 if (!TREE_CONSTANT (arg0))
2334 constant = 0;
2335 }
2336
2337 if (arg1 && fro > 1)
2338 {
2339 if (TREE_SIDE_EFFECTS (arg1))
2340 TREE_SIDE_EFFECTS (t) = 1;
2341 if (!TREE_READONLY (arg1))
2342 TREE_READONLY (t) = 0;
2343 if (!TREE_CONSTANT (arg1))
2344 constant = 0;
2345 }
2346 }
2347 else if (length == 1)
2348 {
2349 tree arg0 = va_arg (p, tree);
2350
2351 /* The only one-operand cases we handle here are those with side-effects.
2352 Others are handled with build1. So don't bother checked if the
2353 arg has side-effects since we'll already have set it.
2354
2355 ??? This really should use build1 too. */
2356 if (TREE_CODE_CLASS (code) != 's')
2357 abort ();
2358 TREE_OPERAND (t, 0) = arg0;
2359 }
2360 else
2361 {
2362 for (i = 0; i < length; i++)
2363 {
2364 tree operand = va_arg (p, tree);
2365
2366 TREE_OPERAND (t, i) = operand;
2367 if (operand && fro > i)
2368 {
2369 if (TREE_SIDE_EFFECTS (operand))
2370 TREE_SIDE_EFFECTS (t) = 1;
2371 if (!TREE_CONSTANT (operand))
2372 constant = 0;
2373 }
2374 }
2375 }
2376 va_end (p);
2377
2378 TREE_CONSTANT (t) = constant;
2379
2380 if (code == CALL_EXPR && !TREE_SIDE_EFFECTS (t))
2381 {
2382 /* Calls have side-effects, except those to const or
2383 pure functions. */
2384 i = call_expr_flags (t);
2385 if (!(i & (ECF_CONST | ECF_PURE)))
2386 TREE_SIDE_EFFECTS (t) = 1;
2387
2388 /* And even those have side-effects if their arguments do. */
2389 else for (node = TREE_OPERAND (t, 1); node; node = TREE_CHAIN (node))
2390 if (TREE_SIDE_EFFECTS (TREE_VALUE (node)))
2391 {
2392 TREE_SIDE_EFFECTS (t) = 1;
2393 break;
2394 }
2395 }
2396
2397 return t;
2398 }
2399
2400 /* Same as above, but only builds for unary operators.
2401 Saves lions share of calls to `build'; cuts down use
2402 of varargs, which is expensive for RISC machines. */
2403
2404 tree
2405 build1 (enum tree_code code, tree type, tree node)
2406 {
2407 int length = sizeof (struct tree_exp);
2408 #ifdef GATHER_STATISTICS
2409 tree_node_kind kind;
2410 #endif
2411 tree t;
2412
2413 #ifdef GATHER_STATISTICS
2414 switch (TREE_CODE_CLASS (code))
2415 {
2416 case 's': /* an expression with side effects */
2417 kind = s_kind;
2418 break;
2419 case 'r': /* a reference */
2420 kind = r_kind;
2421 break;
2422 default:
2423 kind = e_kind;
2424 break;
2425 }
2426
2427 tree_node_counts[(int) kind]++;
2428 tree_node_sizes[(int) kind] += length;
2429 #endif
2430
2431 #ifdef ENABLE_CHECKING
2432 if (TREE_CODE_CLASS (code) == '2'
2433 || TREE_CODE_CLASS (code) == '<'
2434 || TREE_CODE_LENGTH (code) != 1)
2435 abort ();
2436 #endif /* ENABLE_CHECKING */
2437
2438 t = ggc_alloc_tree (length);
2439
2440 memset (t, 0, sizeof (struct tree_common));
2441
2442 TREE_SET_CODE (t, code);
2443
2444 TREE_TYPE (t) = type;
2445 TREE_COMPLEXITY (t) = 0;
2446 TREE_OPERAND (t, 0) = node;
2447 if (node && first_rtl_op (code) != 0)
2448 {
2449 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2450 TREE_READONLY (t) = TREE_READONLY (node);
2451 }
2452
2453 if (TREE_CODE_CLASS (code) == 's')
2454 TREE_SIDE_EFFECTS (t) = 1;
2455 else switch (code)
2456 {
2457 case INIT_EXPR:
2458 case MODIFY_EXPR:
2459 case VA_ARG_EXPR:
2460 case RTL_EXPR:
2461 case PREDECREMENT_EXPR:
2462 case PREINCREMENT_EXPR:
2463 case POSTDECREMENT_EXPR:
2464 case POSTINCREMENT_EXPR:
2465 /* All of these have side-effects, no matter what their
2466 operands are. */
2467 TREE_SIDE_EFFECTS (t) = 1;
2468 TREE_READONLY (t) = 0;
2469 break;
2470
2471 case INDIRECT_REF:
2472 /* Whether a dereference is readonly has nothing to do with whether
2473 its operand is readonly. */
2474 TREE_READONLY (t) = 0;
2475 break;
2476
2477 case ADDR_EXPR:
2478 if (node)
2479 {
2480 /* The address of a volatile decl or reference does not have
2481 side-effects. But be careful not to ignore side-effects from
2482 other sources deeper in the expression--if node is a _REF and
2483 one of its operands has side-effects, so do we. */
2484 if (TREE_THIS_VOLATILE (node))
2485 {
2486 TREE_SIDE_EFFECTS (t) = 0;
2487 if (!DECL_P (node))
2488 {
2489 int i = first_rtl_op (TREE_CODE (node)) - 1;
2490 for (; i >= 0; --i)
2491 {
2492 if (TREE_SIDE_EFFECTS (TREE_OPERAND (node, i)))
2493 TREE_SIDE_EFFECTS (t) = 1;
2494 }
2495 }
2496 }
2497 }
2498 break;
2499
2500 default:
2501 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2502 TREE_CONSTANT (t) = 1;
2503 break;
2504 }
2505
2506 return t;
2507 }
2508
2509 /* Similar except don't specify the TREE_TYPE
2510 and leave the TREE_SIDE_EFFECTS as 0.
2511 It is permissible for arguments to be null,
2512 or even garbage if their values do not matter. */
2513
2514 tree
2515 build_nt (enum tree_code code, ...)
2516 {
2517 tree t;
2518 int length;
2519 int i;
2520 va_list p;
2521
2522 va_start (p, code);
2523
2524 t = make_node (code);
2525 length = TREE_CODE_LENGTH (code);
2526
2527 for (i = 0; i < length; i++)
2528 TREE_OPERAND (t, i) = va_arg (p, tree);
2529
2530 va_end (p);
2531 return t;
2532 }
2533 \f
2534 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2535 We do NOT enter this node in any sort of symbol table.
2536
2537 layout_decl is used to set up the decl's storage layout.
2538 Other slots are initialized to 0 or null pointers. */
2539
2540 tree
2541 build_decl (enum tree_code code, tree name, tree type)
2542 {
2543 tree t;
2544
2545 t = make_node (code);
2546
2547 /* if (type == error_mark_node)
2548 type = integer_type_node; */
2549 /* That is not done, deliberately, so that having error_mark_node
2550 as the type can suppress useless errors in the use of this variable. */
2551
2552 DECL_NAME (t) = name;
2553 TREE_TYPE (t) = type;
2554
2555 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2556 layout_decl (t, 0);
2557 else if (code == FUNCTION_DECL)
2558 DECL_MODE (t) = FUNCTION_MODE;
2559
2560 return t;
2561 }
2562 \f
2563 /* BLOCK nodes are used to represent the structure of binding contours
2564 and declarations, once those contours have been exited and their contents
2565 compiled. This information is used for outputting debugging info. */
2566
2567 tree
2568 build_block (tree vars, tree tags ATTRIBUTE_UNUSED, tree subblocks,
2569 tree supercontext, tree chain)
2570 {
2571 tree block = make_node (BLOCK);
2572
2573 BLOCK_VARS (block) = vars;
2574 BLOCK_SUBBLOCKS (block) = subblocks;
2575 BLOCK_SUPERCONTEXT (block) = supercontext;
2576 BLOCK_CHAIN (block) = chain;
2577 return block;
2578 }
2579
2580 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2581 location where an expression or an identifier were encountered. It
2582 is necessary for languages where the frontend parser will handle
2583 recursively more than one file (Java is one of them). */
2584
2585 tree
2586 build_expr_wfl (tree node, const char *file, int line, int col)
2587 {
2588 static const char *last_file = 0;
2589 static tree last_filenode = NULL_TREE;
2590 tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2591
2592 EXPR_WFL_NODE (wfl) = node;
2593 EXPR_WFL_SET_LINECOL (wfl, line, col);
2594 if (file != last_file)
2595 {
2596 last_file = file;
2597 last_filenode = file ? get_identifier (file) : NULL_TREE;
2598 }
2599
2600 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2601 if (node)
2602 {
2603 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2604 TREE_TYPE (wfl) = TREE_TYPE (node);
2605 }
2606
2607 return wfl;
2608 }
2609 \f
2610 /* Return a declaration like DDECL except that its DECL_ATTRIBUTES
2611 is ATTRIBUTE. */
2612
2613 tree
2614 build_decl_attribute_variant (tree ddecl, tree attribute)
2615 {
2616 DECL_ATTRIBUTES (ddecl) = attribute;
2617 return ddecl;
2618 }
2619
2620 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2621 is ATTRIBUTE.
2622
2623 Record such modified types already made so we don't make duplicates. */
2624
2625 tree
2626 build_type_attribute_variant (tree ttype, tree attribute)
2627 {
2628 if (! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2629 {
2630 unsigned int hashcode;
2631 tree ntype;
2632
2633 ntype = copy_node (ttype);
2634
2635 TYPE_POINTER_TO (ntype) = 0;
2636 TYPE_REFERENCE_TO (ntype) = 0;
2637 TYPE_ATTRIBUTES (ntype) = attribute;
2638
2639 /* Create a new main variant of TYPE. */
2640 TYPE_MAIN_VARIANT (ntype) = ntype;
2641 TYPE_NEXT_VARIANT (ntype) = 0;
2642 set_type_quals (ntype, TYPE_UNQUALIFIED);
2643
2644 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2645 + TYPE_HASH (TREE_TYPE (ntype))
2646 + attribute_hash_list (attribute));
2647
2648 switch (TREE_CODE (ntype))
2649 {
2650 case FUNCTION_TYPE:
2651 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2652 break;
2653 case ARRAY_TYPE:
2654 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2655 break;
2656 case INTEGER_TYPE:
2657 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2658 break;
2659 case REAL_TYPE:
2660 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2661 break;
2662 default:
2663 break;
2664 }
2665
2666 ntype = type_hash_canon (hashcode, ntype);
2667 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2668 }
2669
2670 return ttype;
2671 }
2672
2673 /* Return nonzero if IDENT is a valid name for attribute ATTR,
2674 or zero if not.
2675
2676 We try both `text' and `__text__', ATTR may be either one. */
2677 /* ??? It might be a reasonable simplification to require ATTR to be only
2678 `text'. One might then also require attribute lists to be stored in
2679 their canonicalized form. */
2680
2681 int
2682 is_attribute_p (const char *attr, tree ident)
2683 {
2684 int ident_len, attr_len;
2685 const char *p;
2686
2687 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2688 return 0;
2689
2690 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2691 return 1;
2692
2693 p = IDENTIFIER_POINTER (ident);
2694 ident_len = strlen (p);
2695 attr_len = strlen (attr);
2696
2697 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2698 if (attr[0] == '_')
2699 {
2700 if (attr[1] != '_'
2701 || attr[attr_len - 2] != '_'
2702 || attr[attr_len - 1] != '_')
2703 abort ();
2704 if (ident_len == attr_len - 4
2705 && strncmp (attr + 2, p, attr_len - 4) == 0)
2706 return 1;
2707 }
2708 else
2709 {
2710 if (ident_len == attr_len + 4
2711 && p[0] == '_' && p[1] == '_'
2712 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2713 && strncmp (attr, p + 2, attr_len) == 0)
2714 return 1;
2715 }
2716
2717 return 0;
2718 }
2719
2720 /* Given an attribute name and a list of attributes, return a pointer to the
2721 attribute's list element if the attribute is part of the list, or NULL_TREE
2722 if not found. If the attribute appears more than once, this only
2723 returns the first occurrence; the TREE_CHAIN of the return value should
2724 be passed back in if further occurrences are wanted. */
2725
2726 tree
2727 lookup_attribute (const char *attr_name, tree list)
2728 {
2729 tree l;
2730
2731 for (l = list; l; l = TREE_CHAIN (l))
2732 {
2733 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2734 abort ();
2735 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2736 return l;
2737 }
2738
2739 return NULL_TREE;
2740 }
2741
2742 /* Return an attribute list that is the union of a1 and a2. */
2743
2744 tree
2745 merge_attributes (tree a1, tree a2)
2746 {
2747 tree attributes;
2748
2749 /* Either one unset? Take the set one. */
2750
2751 if ((attributes = a1) == 0)
2752 attributes = a2;
2753
2754 /* One that completely contains the other? Take it. */
2755
2756 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2757 {
2758 if (attribute_list_contained (a2, a1))
2759 attributes = a2;
2760 else
2761 {
2762 /* Pick the longest list, and hang on the other list. */
2763
2764 if (list_length (a1) < list_length (a2))
2765 attributes = a2, a2 = a1;
2766
2767 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2768 {
2769 tree a;
2770 for (a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2771 attributes);
2772 a != NULL_TREE;
2773 a = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2774 TREE_CHAIN (a)))
2775 {
2776 if (simple_cst_equal (TREE_VALUE (a), TREE_VALUE (a2)) == 1)
2777 break;
2778 }
2779 if (a == NULL_TREE)
2780 {
2781 a1 = copy_node (a2);
2782 TREE_CHAIN (a1) = attributes;
2783 attributes = a1;
2784 }
2785 }
2786 }
2787 }
2788 return attributes;
2789 }
2790
2791 /* Given types T1 and T2, merge their attributes and return
2792 the result. */
2793
2794 tree
2795 merge_type_attributes (tree t1, tree t2)
2796 {
2797 return merge_attributes (TYPE_ATTRIBUTES (t1),
2798 TYPE_ATTRIBUTES (t2));
2799 }
2800
2801 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2802 the result. */
2803
2804 tree
2805 merge_decl_attributes (tree olddecl, tree newdecl)
2806 {
2807 return merge_attributes (DECL_ATTRIBUTES (olddecl),
2808 DECL_ATTRIBUTES (newdecl));
2809 }
2810
2811 #ifdef TARGET_DLLIMPORT_DECL_ATTRIBUTES
2812
2813 /* Specialization of merge_decl_attributes for various Windows targets.
2814
2815 This handles the following situation:
2816
2817 __declspec (dllimport) int foo;
2818 int foo;
2819
2820 The second instance of `foo' nullifies the dllimport. */
2821
2822 tree
2823 merge_dllimport_decl_attributes (tree old, tree new)
2824 {
2825 tree a;
2826 int delete_dllimport_p;
2827
2828 old = DECL_ATTRIBUTES (old);
2829 new = DECL_ATTRIBUTES (new);
2830
2831 /* What we need to do here is remove from `old' dllimport if it doesn't
2832 appear in `new'. dllimport behaves like extern: if a declaration is
2833 marked dllimport and a definition appears later, then the object
2834 is not dllimport'd. */
2835 if (lookup_attribute ("dllimport", old) != NULL_TREE
2836 && lookup_attribute ("dllimport", new) == NULL_TREE)
2837 delete_dllimport_p = 1;
2838 else
2839 delete_dllimport_p = 0;
2840
2841 a = merge_attributes (old, new);
2842
2843 if (delete_dllimport_p)
2844 {
2845 tree prev, t;
2846
2847 /* Scan the list for dllimport and delete it. */
2848 for (prev = NULL_TREE, t = a; t; prev = t, t = TREE_CHAIN (t))
2849 {
2850 if (is_attribute_p ("dllimport", TREE_PURPOSE (t)))
2851 {
2852 if (prev == NULL_TREE)
2853 a = TREE_CHAIN (a);
2854 else
2855 TREE_CHAIN (prev) = TREE_CHAIN (t);
2856 break;
2857 }
2858 }
2859 }
2860
2861 return a;
2862 }
2863
2864 #endif /* TARGET_DLLIMPORT_DECL_ATTRIBUTES */
2865 \f
2866 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2867 of the various TYPE_QUAL values. */
2868
2869 static void
2870 set_type_quals (tree type, int type_quals)
2871 {
2872 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2873 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2874 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2875 }
2876
2877 /* Return a version of the TYPE, qualified as indicated by the
2878 TYPE_QUALS, if one exists. If no qualified version exists yet,
2879 return NULL_TREE. */
2880
2881 tree
2882 get_qualified_type (tree type, int type_quals)
2883 {
2884 tree t;
2885
2886 /* Search the chain of variants to see if there is already one there just
2887 like the one we need to have. If so, use that existing one. We must
2888 preserve the TYPE_NAME, since there is code that depends on this. */
2889 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2890 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type)
2891 && TYPE_CONTEXT (t) == TYPE_CONTEXT (type)
2892 && attribute_list_equal (TYPE_ATTRIBUTES (t), TYPE_ATTRIBUTES (type)))
2893 return t;
2894
2895 return NULL_TREE;
2896 }
2897
2898 /* Like get_qualified_type, but creates the type if it does not
2899 exist. This function never returns NULL_TREE. */
2900
2901 tree
2902 build_qualified_type (tree type, int type_quals)
2903 {
2904 tree t;
2905
2906 /* See if we already have the appropriate qualified variant. */
2907 t = get_qualified_type (type, type_quals);
2908
2909 /* If not, build it. */
2910 if (!t)
2911 {
2912 t = build_type_copy (type);
2913 set_type_quals (t, type_quals);
2914 }
2915
2916 return t;
2917 }
2918
2919 /* Create a new variant of TYPE, equivalent but distinct.
2920 This is so the caller can modify it. */
2921
2922 tree
2923 build_type_copy (tree type)
2924 {
2925 tree t, m = TYPE_MAIN_VARIANT (type);
2926
2927 t = copy_node (type);
2928
2929 TYPE_POINTER_TO (t) = 0;
2930 TYPE_REFERENCE_TO (t) = 0;
2931
2932 /* Add this type to the chain of variants of TYPE. */
2933 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
2934 TYPE_NEXT_VARIANT (m) = t;
2935
2936 return t;
2937 }
2938 \f
2939 /* Hashing of types so that we don't make duplicates.
2940 The entry point is `type_hash_canon'. */
2941
2942 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
2943 with types in the TREE_VALUE slots), by adding the hash codes
2944 of the individual types. */
2945
2946 unsigned int
2947 type_hash_list (tree list)
2948 {
2949 unsigned int hashcode;
2950 tree tail;
2951
2952 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
2953 hashcode += TYPE_HASH (TREE_VALUE (tail));
2954
2955 return hashcode;
2956 }
2957
2958 /* These are the Hashtable callback functions. */
2959
2960 /* Returns true if the types are equal. */
2961
2962 static int
2963 type_hash_eq (const void *va, const void *vb)
2964 {
2965 const struct type_hash *a = va, *b = vb;
2966 if (a->hash == b->hash
2967 && TREE_CODE (a->type) == TREE_CODE (b->type)
2968 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
2969 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
2970 TYPE_ATTRIBUTES (b->type))
2971 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
2972 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
2973 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
2974 TYPE_MAX_VALUE (b->type)))
2975 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
2976 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
2977 TYPE_MIN_VALUE (b->type)))
2978 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
2979 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
2980 || (TYPE_DOMAIN (a->type)
2981 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
2982 && TYPE_DOMAIN (b->type)
2983 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
2984 && type_list_equal (TYPE_DOMAIN (a->type),
2985 TYPE_DOMAIN (b->type)))))
2986 return 1;
2987 return 0;
2988 }
2989
2990 /* Return the cached hash value. */
2991
2992 static hashval_t
2993 type_hash_hash (const void *item)
2994 {
2995 return ((const struct type_hash *) item)->hash;
2996 }
2997
2998 /* Look in the type hash table for a type isomorphic to TYPE.
2999 If one is found, return it. Otherwise return 0. */
3000
3001 tree
3002 type_hash_lookup (unsigned int hashcode, tree type)
3003 {
3004 struct type_hash *h, in;
3005
3006 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3007 must call that routine before comparing TYPE_ALIGNs. */
3008 layout_type (type);
3009
3010 in.hash = hashcode;
3011 in.type = type;
3012
3013 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3014 if (h)
3015 return h->type;
3016 return NULL_TREE;
3017 }
3018
3019 /* Add an entry to the type-hash-table
3020 for a type TYPE whose hash code is HASHCODE. */
3021
3022 void
3023 type_hash_add (unsigned int hashcode, tree type)
3024 {
3025 struct type_hash *h;
3026 void **loc;
3027
3028 h = ggc_alloc (sizeof (struct type_hash));
3029 h->hash = hashcode;
3030 h->type = type;
3031 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3032 *(struct type_hash **) loc = h;
3033 }
3034
3035 /* Given TYPE, and HASHCODE its hash code, return the canonical
3036 object for an identical type if one already exists.
3037 Otherwise, return TYPE, and record it as the canonical object
3038 if it is a permanent object.
3039
3040 To use this function, first create a type of the sort you want.
3041 Then compute its hash code from the fields of the type that
3042 make it different from other similar types.
3043 Then call this function and use the value.
3044 This function frees the type you pass in if it is a duplicate. */
3045
3046 /* Set to 1 to debug without canonicalization. Never set by program. */
3047 int debug_no_type_hash = 0;
3048
3049 tree
3050 type_hash_canon (unsigned int hashcode, tree type)
3051 {
3052 tree t1;
3053
3054 if (debug_no_type_hash)
3055 return type;
3056
3057 /* See if the type is in the hash table already. If so, return it.
3058 Otherwise, add the type. */
3059 t1 = type_hash_lookup (hashcode, type);
3060 if (t1 != 0)
3061 {
3062 #ifdef GATHER_STATISTICS
3063 tree_node_counts[(int) t_kind]--;
3064 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3065 #endif
3066 return t1;
3067 }
3068 else
3069 {
3070 type_hash_add (hashcode, type);
3071 return type;
3072 }
3073 }
3074
3075 /* See if the data pointed to by the type hash table is marked. We consider
3076 it marked if the type is marked or if a debug type number or symbol
3077 table entry has been made for the type. This reduces the amount of
3078 debugging output and eliminates that dependency of the debug output on
3079 the number of garbage collections. */
3080
3081 static int
3082 type_hash_marked_p (const void *p)
3083 {
3084 tree type = ((struct type_hash *) p)->type;
3085
3086 return ggc_marked_p (type) || TYPE_SYMTAB_POINTER (type);
3087 }
3088
3089 static void
3090 print_type_hash_statistics (void)
3091 {
3092 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3093 (long) htab_size (type_hash_table),
3094 (long) htab_elements (type_hash_table),
3095 htab_collisions (type_hash_table));
3096 }
3097
3098 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3099 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3100 by adding the hash codes of the individual attributes. */
3101
3102 unsigned int
3103 attribute_hash_list (tree list)
3104 {
3105 unsigned int hashcode;
3106 tree tail;
3107
3108 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3109 /* ??? Do we want to add in TREE_VALUE too? */
3110 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3111 return hashcode;
3112 }
3113
3114 /* Given two lists of attributes, return true if list l2 is
3115 equivalent to l1. */
3116
3117 int
3118 attribute_list_equal (tree l1, tree l2)
3119 {
3120 return attribute_list_contained (l1, l2)
3121 && attribute_list_contained (l2, l1);
3122 }
3123
3124 /* Given two lists of attributes, return true if list L2 is
3125 completely contained within L1. */
3126 /* ??? This would be faster if attribute names were stored in a canonicalized
3127 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3128 must be used to show these elements are equivalent (which they are). */
3129 /* ??? It's not clear that attributes with arguments will always be handled
3130 correctly. */
3131
3132 int
3133 attribute_list_contained (tree l1, tree l2)
3134 {
3135 tree t1, t2;
3136
3137 /* First check the obvious, maybe the lists are identical. */
3138 if (l1 == l2)
3139 return 1;
3140
3141 /* Maybe the lists are similar. */
3142 for (t1 = l1, t2 = l2;
3143 t1 != 0 && t2 != 0
3144 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3145 && TREE_VALUE (t1) == TREE_VALUE (t2);
3146 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3147
3148 /* Maybe the lists are equal. */
3149 if (t1 == 0 && t2 == 0)
3150 return 1;
3151
3152 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3153 {
3154 tree attr;
3155 for (attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3156 attr != NULL_TREE;
3157 attr = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)),
3158 TREE_CHAIN (attr)))
3159 {
3160 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) == 1)
3161 break;
3162 }
3163
3164 if (attr == 0)
3165 return 0;
3166
3167 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3168 return 0;
3169 }
3170
3171 return 1;
3172 }
3173
3174 /* Given two lists of types
3175 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3176 return 1 if the lists contain the same types in the same order.
3177 Also, the TREE_PURPOSEs must match. */
3178
3179 int
3180 type_list_equal (tree l1, tree l2)
3181 {
3182 tree t1, t2;
3183
3184 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3185 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3186 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3187 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3188 && (TREE_TYPE (TREE_PURPOSE (t1))
3189 == TREE_TYPE (TREE_PURPOSE (t2))))))
3190 return 0;
3191
3192 return t1 == t2;
3193 }
3194
3195 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3196 given by TYPE. If the argument list accepts variable arguments,
3197 then this function counts only the ordinary arguments. */
3198
3199 int
3200 type_num_arguments (tree type)
3201 {
3202 int i = 0;
3203 tree t;
3204
3205 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3206 /* If the function does not take a variable number of arguments,
3207 the last element in the list will have type `void'. */
3208 if (VOID_TYPE_P (TREE_VALUE (t)))
3209 break;
3210 else
3211 ++i;
3212
3213 return i;
3214 }
3215
3216 /* Nonzero if integer constants T1 and T2
3217 represent the same constant value. */
3218
3219 int
3220 tree_int_cst_equal (tree t1, tree t2)
3221 {
3222 if (t1 == t2)
3223 return 1;
3224
3225 if (t1 == 0 || t2 == 0)
3226 return 0;
3227
3228 if (TREE_CODE (t1) == INTEGER_CST
3229 && TREE_CODE (t2) == INTEGER_CST
3230 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3231 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3232 return 1;
3233
3234 return 0;
3235 }
3236
3237 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3238 The precise way of comparison depends on their data type. */
3239
3240 int
3241 tree_int_cst_lt (tree t1, tree t2)
3242 {
3243 if (t1 == t2)
3244 return 0;
3245
3246 if (TREE_UNSIGNED (TREE_TYPE (t1)) != TREE_UNSIGNED (TREE_TYPE (t2)))
3247 {
3248 int t1_sgn = tree_int_cst_sgn (t1);
3249 int t2_sgn = tree_int_cst_sgn (t2);
3250
3251 if (t1_sgn < t2_sgn)
3252 return 1;
3253 else if (t1_sgn > t2_sgn)
3254 return 0;
3255 /* Otherwise, both are non-negative, so we compare them as
3256 unsigned just in case one of them would overflow a signed
3257 type. */
3258 }
3259 else if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3260 return INT_CST_LT (t1, t2);
3261
3262 return INT_CST_LT_UNSIGNED (t1, t2);
3263 }
3264
3265 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3266
3267 int
3268 tree_int_cst_compare (tree t1, tree t2)
3269 {
3270 if (tree_int_cst_lt (t1, t2))
3271 return -1;
3272 else if (tree_int_cst_lt (t2, t1))
3273 return 1;
3274 else
3275 return 0;
3276 }
3277
3278 /* Return 1 if T is an INTEGER_CST that can be manipulated efficiently on
3279 the host. If POS is zero, the value can be represented in a single
3280 HOST_WIDE_INT. If POS is nonzero, the value must be positive and can
3281 be represented in a single unsigned HOST_WIDE_INT. */
3282
3283 int
3284 host_integerp (tree t, int pos)
3285 {
3286 return (TREE_CODE (t) == INTEGER_CST
3287 && ! TREE_OVERFLOW (t)
3288 && ((TREE_INT_CST_HIGH (t) == 0
3289 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3290 || (! pos && TREE_INT_CST_HIGH (t) == -1
3291 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0
3292 && ! TREE_UNSIGNED (TREE_TYPE (t)))
3293 || (pos && TREE_INT_CST_HIGH (t) == 0)));
3294 }
3295
3296 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3297 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3298 be positive. Abort if we cannot satisfy the above conditions. */
3299
3300 HOST_WIDE_INT
3301 tree_low_cst (tree t, int pos)
3302 {
3303 if (host_integerp (t, pos))
3304 return TREE_INT_CST_LOW (t);
3305 else
3306 abort ();
3307 }
3308
3309 /* Return the most significant bit of the integer constant T. */
3310
3311 int
3312 tree_int_cst_msb (tree t)
3313 {
3314 int prec;
3315 HOST_WIDE_INT h;
3316 unsigned HOST_WIDE_INT l;
3317
3318 /* Note that using TYPE_PRECISION here is wrong. We care about the
3319 actual bits, not the (arbitrary) range of the type. */
3320 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3321 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3322 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3323 return (l & 1) == 1;
3324 }
3325
3326 /* Return an indication of the sign of the integer constant T.
3327 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3328 Note that -1 will never be returned it T's type is unsigned. */
3329
3330 int
3331 tree_int_cst_sgn (tree t)
3332 {
3333 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3334 return 0;
3335 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3336 return 1;
3337 else if (TREE_INT_CST_HIGH (t) < 0)
3338 return -1;
3339 else
3340 return 1;
3341 }
3342
3343 /* Compare two constructor-element-type constants. Return 1 if the lists
3344 are known to be equal; otherwise return 0. */
3345
3346 int
3347 simple_cst_list_equal (tree l1, tree l2)
3348 {
3349 while (l1 != NULL_TREE && l2 != NULL_TREE)
3350 {
3351 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3352 return 0;
3353
3354 l1 = TREE_CHAIN (l1);
3355 l2 = TREE_CHAIN (l2);
3356 }
3357
3358 return l1 == l2;
3359 }
3360
3361 /* Return truthvalue of whether T1 is the same tree structure as T2.
3362 Return 1 if they are the same.
3363 Return 0 if they are understandably different.
3364 Return -1 if either contains tree structure not understood by
3365 this function. */
3366
3367 int
3368 simple_cst_equal (tree t1, tree t2)
3369 {
3370 enum tree_code code1, code2;
3371 int cmp;
3372 int i;
3373
3374 if (t1 == t2)
3375 return 1;
3376 if (t1 == 0 || t2 == 0)
3377 return 0;
3378
3379 code1 = TREE_CODE (t1);
3380 code2 = TREE_CODE (t2);
3381
3382 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3383 {
3384 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3385 || code2 == NON_LVALUE_EXPR)
3386 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3387 else
3388 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3389 }
3390
3391 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3392 || code2 == NON_LVALUE_EXPR)
3393 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3394
3395 if (code1 != code2)
3396 return 0;
3397
3398 switch (code1)
3399 {
3400 case INTEGER_CST:
3401 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3402 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3403
3404 case REAL_CST:
3405 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3406
3407 case STRING_CST:
3408 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3409 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3410 TREE_STRING_LENGTH (t1)));
3411
3412 case CONSTRUCTOR:
3413 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3414 return 1;
3415 else
3416 abort ();
3417
3418 case SAVE_EXPR:
3419 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3420
3421 case CALL_EXPR:
3422 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3423 if (cmp <= 0)
3424 return cmp;
3425 return
3426 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3427
3428 case TARGET_EXPR:
3429 /* Special case: if either target is an unallocated VAR_DECL,
3430 it means that it's going to be unified with whatever the
3431 TARGET_EXPR is really supposed to initialize, so treat it
3432 as being equivalent to anything. */
3433 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3434 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3435 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3436 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3437 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3438 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3439 cmp = 1;
3440 else
3441 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3442
3443 if (cmp <= 0)
3444 return cmp;
3445
3446 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3447
3448 case WITH_CLEANUP_EXPR:
3449 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3450 if (cmp <= 0)
3451 return cmp;
3452
3453 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t1, 1));
3454
3455 case COMPONENT_REF:
3456 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3457 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3458
3459 return 0;
3460
3461 case VAR_DECL:
3462 case PARM_DECL:
3463 case CONST_DECL:
3464 case FUNCTION_DECL:
3465 return 0;
3466
3467 default:
3468 break;
3469 }
3470
3471 /* This general rule works for most tree codes. All exceptions should be
3472 handled above. If this is a language-specific tree code, we can't
3473 trust what might be in the operand, so say we don't know
3474 the situation. */
3475 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3476 return -1;
3477
3478 switch (TREE_CODE_CLASS (code1))
3479 {
3480 case '1':
3481 case '2':
3482 case '<':
3483 case 'e':
3484 case 'r':
3485 case 's':
3486 cmp = 1;
3487 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3488 {
3489 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3490 if (cmp <= 0)
3491 return cmp;
3492 }
3493
3494 return cmp;
3495
3496 default:
3497 return -1;
3498 }
3499 }
3500
3501 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3502 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3503 than U, respectively. */
3504
3505 int
3506 compare_tree_int (tree t, unsigned HOST_WIDE_INT u)
3507 {
3508 if (tree_int_cst_sgn (t) < 0)
3509 return -1;
3510 else if (TREE_INT_CST_HIGH (t) != 0)
3511 return 1;
3512 else if (TREE_INT_CST_LOW (t) == u)
3513 return 0;
3514 else if (TREE_INT_CST_LOW (t) < u)
3515 return -1;
3516 else
3517 return 1;
3518 }
3519
3520 /* Generate a hash value for an expression. This can be used iteratively
3521 by passing a previous result as the "val" argument.
3522
3523 This function is intended to produce the same hash for expressions which
3524 would compare equal using operand_equal_p. */
3525
3526 hashval_t
3527 iterative_hash_expr (tree t, hashval_t val)
3528 {
3529 int i;
3530 enum tree_code code;
3531 char class;
3532
3533 if (t == NULL_TREE)
3534 return iterative_hash_object (t, val);
3535
3536 code = TREE_CODE (t);
3537 class = TREE_CODE_CLASS (code);
3538
3539 if (class == 'd')
3540 {
3541 /* Decls we can just compare by pointer. */
3542 val = iterative_hash_object (t, val);
3543 }
3544 else if (class == 'c')
3545 {
3546 /* Alas, constants aren't shared, so we can't rely on pointer
3547 identity. */
3548 if (code == INTEGER_CST)
3549 {
3550 val = iterative_hash_object (TREE_INT_CST_LOW (t), val);
3551 val = iterative_hash_object (TREE_INT_CST_HIGH (t), val);
3552 }
3553 else if (code == REAL_CST)
3554 val = iterative_hash (TREE_REAL_CST_PTR (t),
3555 sizeof (REAL_VALUE_TYPE), val);
3556 else if (code == STRING_CST)
3557 val = iterative_hash (TREE_STRING_POINTER (t),
3558 TREE_STRING_LENGTH (t), val);
3559 else if (code == COMPLEX_CST)
3560 {
3561 val = iterative_hash_expr (TREE_REALPART (t), val);
3562 val = iterative_hash_expr (TREE_IMAGPART (t), val);
3563 }
3564 else if (code == VECTOR_CST)
3565 val = iterative_hash_expr (TREE_VECTOR_CST_ELTS (t), val);
3566 else
3567 abort ();
3568 }
3569 else if (IS_EXPR_CODE_CLASS (class))
3570 {
3571 val = iterative_hash_object (code, val);
3572
3573 if (code == NOP_EXPR || code == CONVERT_EXPR
3574 || code == NON_LVALUE_EXPR)
3575 val = iterative_hash_object (TREE_TYPE (t), val);
3576
3577 if (code == PLUS_EXPR || code == MULT_EXPR || code == MIN_EXPR
3578 || code == MAX_EXPR || code == BIT_IOR_EXPR || code == BIT_XOR_EXPR
3579 || code == BIT_AND_EXPR || code == NE_EXPR || code == EQ_EXPR)
3580 {
3581 /* It's a commutative expression. We want to hash it the same
3582 however it appears. We do this by first hashing both operands
3583 and then rehashing based on the order of their independent
3584 hashes. */
3585 hashval_t one = iterative_hash_expr (TREE_OPERAND (t, 0), 0);
3586 hashval_t two = iterative_hash_expr (TREE_OPERAND (t, 1), 0);
3587 hashval_t t;
3588
3589 if (one > two)
3590 t = one, one = two, two = t;
3591
3592 val = iterative_hash_object (one, val);
3593 val = iterative_hash_object (two, val);
3594 }
3595 else
3596 for (i = first_rtl_op (code) - 1; i >= 0; --i)
3597 val = iterative_hash_expr (TREE_OPERAND (t, i), val);
3598 }
3599 else if (code == TREE_LIST)
3600 {
3601 /* A list of expressions, for a CALL_EXPR or as the elements of a
3602 VECTOR_CST. */
3603 for (; t; t = TREE_CHAIN (t))
3604 val = iterative_hash_expr (TREE_VALUE (t), val);
3605 }
3606 else
3607 abort ();
3608
3609 return val;
3610 }
3611 \f
3612 /* Constructors for pointer, array and function types.
3613 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3614 constructed by language-dependent code, not here.) */
3615
3616 /* Construct, lay out and return the type of pointers to TO_TYPE
3617 with mode MODE. If such a type has already been constructed,
3618 reuse it. */
3619
3620 tree
3621 build_pointer_type_for_mode (tree to_type, enum machine_mode mode)
3622 {
3623 tree t = TYPE_POINTER_TO (to_type);
3624
3625 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3626 if (t != 0 && mode == ptr_mode)
3627 return t;
3628
3629 t = make_node (POINTER_TYPE);
3630
3631 TREE_TYPE (t) = to_type;
3632 TYPE_MODE (t) = mode;
3633
3634 /* Record this type as the pointer to TO_TYPE. */
3635 if (mode == ptr_mode)
3636 TYPE_POINTER_TO (to_type) = t;
3637
3638 /* Lay out the type. This function has many callers that are concerned
3639 with expression-construction, and this simplifies them all.
3640 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3641 layout_type (t);
3642
3643 return t;
3644 }
3645
3646 /* By default build pointers in ptr_mode. */
3647
3648 tree
3649 build_pointer_type (tree to_type)
3650 {
3651 return build_pointer_type_for_mode (to_type, ptr_mode);
3652 }
3653
3654 /* Construct, lay out and return the type of references to TO_TYPE
3655 with mode MODE. If such a type has already been constructed,
3656 reuse it. */
3657
3658 tree
3659 build_reference_type_for_mode (tree to_type, enum machine_mode mode)
3660 {
3661 tree t = TYPE_REFERENCE_TO (to_type);
3662
3663 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3664 if (t != 0 && mode == ptr_mode)
3665 return t;
3666
3667 t = make_node (REFERENCE_TYPE);
3668
3669 TREE_TYPE (t) = to_type;
3670 TYPE_MODE (t) = mode;
3671
3672 /* Record this type as the pointer to TO_TYPE. */
3673 if (mode == ptr_mode)
3674 TYPE_REFERENCE_TO (to_type) = t;
3675
3676 layout_type (t);
3677
3678 return t;
3679 }
3680
3681
3682 /* Build the node for the type of references-to-TO_TYPE by default
3683 in ptr_mode. */
3684
3685 tree
3686 build_reference_type (tree to_type)
3687 {
3688 return build_reference_type_for_mode (to_type, ptr_mode);
3689 }
3690
3691 /* Build a type that is compatible with t but has no cv quals anywhere
3692 in its type, thus
3693
3694 const char *const *const * -> char ***. */
3695
3696 tree
3697 build_type_no_quals (tree t)
3698 {
3699 switch (TREE_CODE (t))
3700 {
3701 case POINTER_TYPE:
3702 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3703 case REFERENCE_TYPE:
3704 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3705 default:
3706 return TYPE_MAIN_VARIANT (t);
3707 }
3708 }
3709
3710 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3711 MAXVAL should be the maximum value in the domain
3712 (one less than the length of the array).
3713
3714 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3715 We don't enforce this limit, that is up to caller (e.g. language front end).
3716 The limit exists because the result is a signed type and we don't handle
3717 sizes that use more than one HOST_WIDE_INT. */
3718
3719 tree
3720 build_index_type (tree maxval)
3721 {
3722 tree itype = make_node (INTEGER_TYPE);
3723
3724 TREE_TYPE (itype) = sizetype;
3725 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3726 TYPE_MIN_VALUE (itype) = size_zero_node;
3727 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3728 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3729 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3730 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3731 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3732 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3733
3734 if (host_integerp (maxval, 1))
3735 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3736 else
3737 return itype;
3738 }
3739
3740 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3741 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3742 low bound LOWVAL and high bound HIGHVAL.
3743 if TYPE==NULL_TREE, sizetype is used. */
3744
3745 tree
3746 build_range_type (tree type, tree lowval, tree highval)
3747 {
3748 tree itype = make_node (INTEGER_TYPE);
3749
3750 TREE_TYPE (itype) = type;
3751 if (type == NULL_TREE)
3752 type = sizetype;
3753
3754 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3755 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3756
3757 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3758 TYPE_MODE (itype) = TYPE_MODE (type);
3759 TYPE_SIZE (itype) = TYPE_SIZE (type);
3760 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3761 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3762 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3763
3764 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3765 return type_hash_canon (tree_low_cst (highval, 0)
3766 - tree_low_cst (lowval, 0),
3767 itype);
3768 else
3769 return itype;
3770 }
3771
3772 /* Just like build_index_type, but takes lowval and highval instead
3773 of just highval (maxval). */
3774
3775 tree
3776 build_index_2_type (tree lowval, tree highval)
3777 {
3778 return build_range_type (sizetype, lowval, highval);
3779 }
3780
3781 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3782 and number of elements specified by the range of values of INDEX_TYPE.
3783 If such a type has already been constructed, reuse it. */
3784
3785 tree
3786 build_array_type (tree elt_type, tree index_type)
3787 {
3788 tree t;
3789 unsigned int hashcode;
3790
3791 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3792 {
3793 error ("arrays of functions are not meaningful");
3794 elt_type = integer_type_node;
3795 }
3796
3797 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3798 build_pointer_type (elt_type);
3799
3800 /* Allocate the array after the pointer type,
3801 in case we free it in type_hash_canon. */
3802 t = make_node (ARRAY_TYPE);
3803 TREE_TYPE (t) = elt_type;
3804 TYPE_DOMAIN (t) = index_type;
3805
3806 if (index_type == 0)
3807 {
3808 return t;
3809 }
3810
3811 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3812 t = type_hash_canon (hashcode, t);
3813
3814 if (!COMPLETE_TYPE_P (t))
3815 layout_type (t);
3816 return t;
3817 }
3818
3819 /* Return the TYPE of the elements comprising
3820 the innermost dimension of ARRAY. */
3821
3822 tree
3823 get_inner_array_type (tree array)
3824 {
3825 tree type = TREE_TYPE (array);
3826
3827 while (TREE_CODE (type) == ARRAY_TYPE)
3828 type = TREE_TYPE (type);
3829
3830 return type;
3831 }
3832
3833 /* Construct, lay out and return
3834 the type of functions returning type VALUE_TYPE
3835 given arguments of types ARG_TYPES.
3836 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3837 are data type nodes for the arguments of the function.
3838 If such a type has already been constructed, reuse it. */
3839
3840 tree
3841 build_function_type (tree value_type, tree arg_types)
3842 {
3843 tree t;
3844 unsigned int hashcode;
3845
3846 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3847 {
3848 error ("function return type cannot be function");
3849 value_type = integer_type_node;
3850 }
3851
3852 /* Make a node of the sort we want. */
3853 t = make_node (FUNCTION_TYPE);
3854 TREE_TYPE (t) = value_type;
3855 TYPE_ARG_TYPES (t) = arg_types;
3856
3857 /* If we already have such a type, use the old one and free this one. */
3858 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3859 t = type_hash_canon (hashcode, t);
3860
3861 if (!COMPLETE_TYPE_P (t))
3862 layout_type (t);
3863 return t;
3864 }
3865
3866 /* Build a function type. The RETURN_TYPE is the type returned by the
3867 function. If additional arguments are provided, they are
3868 additional argument types. The list of argument types must always
3869 be terminated by NULL_TREE. */
3870
3871 tree
3872 build_function_type_list (tree return_type, ...)
3873 {
3874 tree t, args, last;
3875 va_list p;
3876
3877 va_start (p, return_type);
3878
3879 t = va_arg (p, tree);
3880 for (args = NULL_TREE; t != NULL_TREE; t = va_arg (p, tree))
3881 args = tree_cons (NULL_TREE, t, args);
3882
3883 last = args;
3884 args = nreverse (args);
3885 TREE_CHAIN (last) = void_list_node;
3886 args = build_function_type (return_type, args);
3887
3888 va_end (p);
3889 return args;
3890 }
3891
3892 /* Build a METHOD_TYPE for a member of BASETYPE. The RETTYPE (a TYPE)
3893 and ARGTYPES (a TREE_LIST) are the return type and arguments types
3894 for the method. An implicit additional parameter (of type
3895 pointer-to-BASETYPE) is added to the ARGTYPES. */
3896
3897 tree
3898 build_method_type_directly (tree basetype,
3899 tree rettype,
3900 tree argtypes)
3901 {
3902 tree t;
3903 tree ptype;
3904 int hashcode;
3905
3906 /* Make a node of the sort we want. */
3907 t = make_node (METHOD_TYPE);
3908
3909 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3910 TREE_TYPE (t) = rettype;
3911 ptype = build_pointer_type (basetype);
3912
3913 /* The actual arglist for this function includes a "hidden" argument
3914 which is "this". Put it into the list of argument types. */
3915 argtypes = tree_cons (NULL_TREE, ptype, argtypes);
3916 TYPE_ARG_TYPES (t) = argtypes;
3917
3918 /* If we already have such a type, use the old one and free this one.
3919 Note that it also frees up the above cons cell if found. */
3920 hashcode = TYPE_HASH (basetype) + TYPE_HASH (rettype) +
3921 type_hash_list (argtypes);
3922
3923 t = type_hash_canon (hashcode, t);
3924
3925 if (!COMPLETE_TYPE_P (t))
3926 layout_type (t);
3927
3928 return t;
3929 }
3930
3931 /* Construct, lay out and return the type of methods belonging to class
3932 BASETYPE and whose arguments and values are described by TYPE.
3933 If that type exists already, reuse it.
3934 TYPE must be a FUNCTION_TYPE node. */
3935
3936 tree
3937 build_method_type (tree basetype, tree type)
3938 {
3939 if (TREE_CODE (type) != FUNCTION_TYPE)
3940 abort ();
3941
3942 return build_method_type_directly (basetype,
3943 TREE_TYPE (type),
3944 TYPE_ARG_TYPES (type));
3945 }
3946
3947 /* Construct, lay out and return the type of offsets to a value
3948 of type TYPE, within an object of type BASETYPE.
3949 If a suitable offset type exists already, reuse it. */
3950
3951 tree
3952 build_offset_type (tree basetype, tree type)
3953 {
3954 tree t;
3955 unsigned int hashcode;
3956
3957 /* Make a node of the sort we want. */
3958 t = make_node (OFFSET_TYPE);
3959
3960 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3961 TREE_TYPE (t) = type;
3962
3963 /* If we already have such a type, use the old one and free this one. */
3964 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3965 t = type_hash_canon (hashcode, t);
3966
3967 if (!COMPLETE_TYPE_P (t))
3968 layout_type (t);
3969
3970 return t;
3971 }
3972
3973 /* Create a complex type whose components are COMPONENT_TYPE. */
3974
3975 tree
3976 build_complex_type (tree component_type)
3977 {
3978 tree t;
3979 unsigned int hashcode;
3980
3981 /* Make a node of the sort we want. */
3982 t = make_node (COMPLEX_TYPE);
3983
3984 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
3985 set_type_quals (t, TYPE_QUALS (component_type));
3986
3987 /* If we already have such a type, use the old one and free this one. */
3988 hashcode = TYPE_HASH (component_type);
3989 t = type_hash_canon (hashcode, t);
3990
3991 if (!COMPLETE_TYPE_P (t))
3992 layout_type (t);
3993
3994 /* If we are writing Dwarf2 output we need to create a name,
3995 since complex is a fundamental type. */
3996 if ((write_symbols == DWARF2_DEBUG || write_symbols == VMS_AND_DWARF2_DEBUG)
3997 && ! TYPE_NAME (t))
3998 {
3999 const char *name;
4000 if (component_type == char_type_node)
4001 name = "complex char";
4002 else if (component_type == signed_char_type_node)
4003 name = "complex signed char";
4004 else if (component_type == unsigned_char_type_node)
4005 name = "complex unsigned char";
4006 else if (component_type == short_integer_type_node)
4007 name = "complex short int";
4008 else if (component_type == short_unsigned_type_node)
4009 name = "complex short unsigned int";
4010 else if (component_type == integer_type_node)
4011 name = "complex int";
4012 else if (component_type == unsigned_type_node)
4013 name = "complex unsigned int";
4014 else if (component_type == long_integer_type_node)
4015 name = "complex long int";
4016 else if (component_type == long_unsigned_type_node)
4017 name = "complex long unsigned int";
4018 else if (component_type == long_long_integer_type_node)
4019 name = "complex long long int";
4020 else if (component_type == long_long_unsigned_type_node)
4021 name = "complex long long unsigned int";
4022 else
4023 name = 0;
4024
4025 if (name != 0)
4026 TYPE_NAME (t) = get_identifier (name);
4027 }
4028
4029 return t;
4030 }
4031 \f
4032 /* Return OP, stripped of any conversions to wider types as much as is safe.
4033 Converting the value back to OP's type makes a value equivalent to OP.
4034
4035 If FOR_TYPE is nonzero, we return a value which, if converted to
4036 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4037
4038 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4039 narrowest type that can hold the value, even if they don't exactly fit.
4040 Otherwise, bit-field references are changed to a narrower type
4041 only if they can be fetched directly from memory in that type.
4042
4043 OP must have integer, real or enumeral type. Pointers are not allowed!
4044
4045 There are some cases where the obvious value we could return
4046 would regenerate to OP if converted to OP's type,
4047 but would not extend like OP to wider types.
4048 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4049 For example, if OP is (unsigned short)(signed char)-1,
4050 we avoid returning (signed char)-1 if FOR_TYPE is int,
4051 even though extending that to an unsigned short would regenerate OP,
4052 since the result of extending (signed char)-1 to (int)
4053 is different from (int) OP. */
4054
4055 tree
4056 get_unwidened (tree op, tree for_type)
4057 {
4058 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4059 tree type = TREE_TYPE (op);
4060 unsigned final_prec
4061 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4062 int uns
4063 = (for_type != 0 && for_type != type
4064 && final_prec > TYPE_PRECISION (type)
4065 && TREE_UNSIGNED (type));
4066 tree win = op;
4067
4068 while (TREE_CODE (op) == NOP_EXPR)
4069 {
4070 int bitschange
4071 = TYPE_PRECISION (TREE_TYPE (op))
4072 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4073
4074 /* Truncations are many-one so cannot be removed.
4075 Unless we are later going to truncate down even farther. */
4076 if (bitschange < 0
4077 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4078 break;
4079
4080 /* See what's inside this conversion. If we decide to strip it,
4081 we will set WIN. */
4082 op = TREE_OPERAND (op, 0);
4083
4084 /* If we have not stripped any zero-extensions (uns is 0),
4085 we can strip any kind of extension.
4086 If we have previously stripped a zero-extension,
4087 only zero-extensions can safely be stripped.
4088 Any extension can be stripped if the bits it would produce
4089 are all going to be discarded later by truncating to FOR_TYPE. */
4090
4091 if (bitschange > 0)
4092 {
4093 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4094 win = op;
4095 /* TREE_UNSIGNED says whether this is a zero-extension.
4096 Let's avoid computing it if it does not affect WIN
4097 and if UNS will not be needed again. */
4098 if ((uns || TREE_CODE (op) == NOP_EXPR)
4099 && TREE_UNSIGNED (TREE_TYPE (op)))
4100 {
4101 uns = 1;
4102 win = op;
4103 }
4104 }
4105 }
4106
4107 if (TREE_CODE (op) == COMPONENT_REF
4108 /* Since type_for_size always gives an integer type. */
4109 && TREE_CODE (type) != REAL_TYPE
4110 /* Don't crash if field not laid out yet. */
4111 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4112 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4113 {
4114 unsigned int innerprec
4115 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4116 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4117 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4118 type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4119
4120 /* We can get this structure field in the narrowest type it fits in.
4121 If FOR_TYPE is 0, do this only for a field that matches the
4122 narrower type exactly and is aligned for it
4123 The resulting extension to its nominal type (a fullword type)
4124 must fit the same conditions as for other extensions. */
4125
4126 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4127 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4128 && (! uns || final_prec <= innerprec || unsignedp)
4129 && type != 0)
4130 {
4131 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4132 TREE_OPERAND (op, 1));
4133 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4134 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4135 }
4136 }
4137
4138 return win;
4139 }
4140 \f
4141 /* Return OP or a simpler expression for a narrower value
4142 which can be sign-extended or zero-extended to give back OP.
4143 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4144 or 0 if the value should be sign-extended. */
4145
4146 tree
4147 get_narrower (tree op, int *unsignedp_ptr)
4148 {
4149 int uns = 0;
4150 int first = 1;
4151 tree win = op;
4152
4153 while (TREE_CODE (op) == NOP_EXPR)
4154 {
4155 int bitschange
4156 = (TYPE_PRECISION (TREE_TYPE (op))
4157 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4158
4159 /* Truncations are many-one so cannot be removed. */
4160 if (bitschange < 0)
4161 break;
4162
4163 /* See what's inside this conversion. If we decide to strip it,
4164 we will set WIN. */
4165
4166 if (bitschange > 0)
4167 {
4168 op = TREE_OPERAND (op, 0);
4169 /* An extension: the outermost one can be stripped,
4170 but remember whether it is zero or sign extension. */
4171 if (first)
4172 uns = TREE_UNSIGNED (TREE_TYPE (op));
4173 /* Otherwise, if a sign extension has been stripped,
4174 only sign extensions can now be stripped;
4175 if a zero extension has been stripped, only zero-extensions. */
4176 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4177 break;
4178 first = 0;
4179 }
4180 else /* bitschange == 0 */
4181 {
4182 /* A change in nominal type can always be stripped, but we must
4183 preserve the unsignedness. */
4184 if (first)
4185 uns = TREE_UNSIGNED (TREE_TYPE (op));
4186 first = 0;
4187 op = TREE_OPERAND (op, 0);
4188 }
4189
4190 win = op;
4191 }
4192
4193 if (TREE_CODE (op) == COMPONENT_REF
4194 /* Since type_for_size always gives an integer type. */
4195 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4196 /* Ensure field is laid out already. */
4197 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4198 {
4199 unsigned HOST_WIDE_INT innerprec
4200 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4201 int unsignedp = (TREE_UNSIGNED (TREE_OPERAND (op, 1))
4202 || TREE_UNSIGNED (TREE_TYPE (TREE_OPERAND (op, 1))));
4203 tree type = (*lang_hooks.types.type_for_size) (innerprec, unsignedp);
4204
4205 /* We can get this structure field in a narrower type that fits it,
4206 but the resulting extension to its nominal type (a fullword type)
4207 must satisfy the same conditions as for other extensions.
4208
4209 Do this only for fields that are aligned (not bit-fields),
4210 because when bit-field insns will be used there is no
4211 advantage in doing this. */
4212
4213 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4214 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4215 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4216 && type != 0)
4217 {
4218 if (first)
4219 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4220 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4221 TREE_OPERAND (op, 1));
4222 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4223 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4224 }
4225 }
4226 *unsignedp_ptr = uns;
4227 return win;
4228 }
4229 \f
4230 /* Nonzero if integer constant C has a value that is permissible
4231 for type TYPE (an INTEGER_TYPE). */
4232
4233 int
4234 int_fits_type_p (tree c, tree type)
4235 {
4236 tree type_low_bound = TYPE_MIN_VALUE (type);
4237 tree type_high_bound = TYPE_MAX_VALUE (type);
4238 int ok_for_low_bound, ok_for_high_bound;
4239
4240 /* Perform some generic filtering first, which may allow making a decision
4241 even if the bounds are not constant. First, negative integers never fit
4242 in unsigned types, */
4243 if ((TREE_UNSIGNED (type) && tree_int_cst_sgn (c) < 0)
4244 /* Also, unsigned integers with top bit set never fit signed types. */
4245 || (! TREE_UNSIGNED (type)
4246 && TREE_UNSIGNED (TREE_TYPE (c)) && tree_int_cst_msb (c)))
4247 return 0;
4248
4249 /* If at least one bound of the type is a constant integer, we can check
4250 ourselves and maybe make a decision. If no such decision is possible, but
4251 this type is a subtype, try checking against that. Otherwise, use
4252 force_fit_type, which checks against the precision.
4253
4254 Compute the status for each possibly constant bound, and return if we see
4255 one does not match. Use ok_for_xxx_bound for this purpose, assigning -1
4256 for "unknown if constant fits", 0 for "constant known *not* to fit" and 1
4257 for "constant known to fit". */
4258
4259 ok_for_low_bound = -1;
4260 ok_for_high_bound = -1;
4261
4262 /* Check if C >= type_low_bound. */
4263 if (type_low_bound && TREE_CODE (type_low_bound) == INTEGER_CST)
4264 {
4265 ok_for_low_bound = ! tree_int_cst_lt (c, type_low_bound);
4266 if (! ok_for_low_bound)
4267 return 0;
4268 }
4269
4270 /* Check if c <= type_high_bound. */
4271 if (type_high_bound && TREE_CODE (type_high_bound) == INTEGER_CST)
4272 {
4273 ok_for_high_bound = ! tree_int_cst_lt (type_high_bound, c);
4274 if (! ok_for_high_bound)
4275 return 0;
4276 }
4277
4278 /* If the constant fits both bounds, the result is known. */
4279 if (ok_for_low_bound == 1 && ok_for_high_bound == 1)
4280 return 1;
4281
4282 /* If we haven't been able to decide at this point, there nothing more we
4283 can check ourselves here. Look at the base type if we have one. */
4284 else if (TREE_CODE (type) == INTEGER_TYPE && TREE_TYPE (type) != 0)
4285 return int_fits_type_p (c, TREE_TYPE (type));
4286
4287 /* Or to force_fit_type, if nothing else. */
4288 else
4289 {
4290 c = copy_node (c);
4291 TREE_TYPE (c) = type;
4292 return !force_fit_type (c, 0);
4293 }
4294 }
4295
4296 /* Returns true if T is, contains, or refers to a type with variable
4297 size. This concept is more general than that of C99 'variably
4298 modified types': in C99, a struct type is never variably modified
4299 because a VLA may not appear as a structure member. However, in
4300 GNU C code like:
4301
4302 struct S { int i[f()]; };
4303
4304 is valid, and other languages may define similar constructs. */
4305
4306 bool
4307 variably_modified_type_p (tree type)
4308 {
4309 tree t;
4310
4311 if (type == error_mark_node)
4312 return false;
4313
4314 /* If TYPE itself has variable size, it is variably modified.
4315
4316 We do not yet have a representation of the C99 '[*]' syntax.
4317 When a representation is chosen, this function should be modified
4318 to test for that case as well. */
4319 t = TYPE_SIZE (type);
4320 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4321 return true;
4322
4323 switch (TREE_CODE (type))
4324 {
4325 case POINTER_TYPE:
4326 case REFERENCE_TYPE:
4327 case ARRAY_TYPE:
4328 /* If TYPE is a pointer or reference, it is variably modified if
4329 the type pointed to is variably modified. Similarly for arrays;
4330 note that VLAs are handled by the TYPE_SIZE check above. */
4331 return variably_modified_type_p (TREE_TYPE (type));
4332
4333 case FUNCTION_TYPE:
4334 case METHOD_TYPE:
4335 /* If TYPE is a function type, it is variably modified if any of the
4336 parameters or the return type are variably modified. */
4337 {
4338 tree parm;
4339
4340 if (variably_modified_type_p (TREE_TYPE (type)))
4341 return true;
4342 for (parm = TYPE_ARG_TYPES (type);
4343 parm && parm != void_list_node;
4344 parm = TREE_CHAIN (parm))
4345 if (variably_modified_type_p (TREE_VALUE (parm)))
4346 return true;
4347 }
4348 break;
4349
4350 case INTEGER_TYPE:
4351 /* Scalar types are variably modified if their end points
4352 aren't constant. */
4353 t = TYPE_MIN_VALUE (type);
4354 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4355 return true;
4356 t = TYPE_MAX_VALUE (type);
4357 if (t && t != error_mark_node && TREE_CODE (t) != INTEGER_CST)
4358 return true;
4359 return false;
4360
4361 default:
4362 break;
4363 }
4364
4365 /* The current language may have other cases to check, but in general,
4366 all other types are not variably modified. */
4367 return (*lang_hooks.tree_inlining.var_mod_type_p) (type);
4368 }
4369
4370 /* Given a DECL or TYPE, return the scope in which it was declared, or
4371 NULL_TREE if there is no containing scope. */
4372
4373 tree
4374 get_containing_scope (tree t)
4375 {
4376 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4377 }
4378
4379 /* Return the innermost context enclosing DECL that is
4380 a FUNCTION_DECL, or zero if none. */
4381
4382 tree
4383 decl_function_context (tree decl)
4384 {
4385 tree context;
4386
4387 if (TREE_CODE (decl) == ERROR_MARK)
4388 return 0;
4389
4390 if (TREE_CODE (decl) == SAVE_EXPR)
4391 context = SAVE_EXPR_CONTEXT (decl);
4392
4393 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4394 where we look up the function at runtime. Such functions always take
4395 a first argument of type 'pointer to real context'.
4396
4397 C++ should really be fixed to use DECL_CONTEXT for the real context,
4398 and use something else for the "virtual context". */
4399 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4400 context
4401 = TYPE_MAIN_VARIANT
4402 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4403 else
4404 context = DECL_CONTEXT (decl);
4405
4406 while (context && TREE_CODE (context) != FUNCTION_DECL)
4407 {
4408 if (TREE_CODE (context) == BLOCK)
4409 context = BLOCK_SUPERCONTEXT (context);
4410 else
4411 context = get_containing_scope (context);
4412 }
4413
4414 return context;
4415 }
4416
4417 /* Return the innermost context enclosing DECL that is
4418 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4419 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4420
4421 tree
4422 decl_type_context (tree decl)
4423 {
4424 tree context = DECL_CONTEXT (decl);
4425
4426 while (context)
4427 switch (TREE_CODE (context))
4428 {
4429 case NAMESPACE_DECL:
4430 case TRANSLATION_UNIT_DECL:
4431 return NULL_TREE;
4432
4433 case RECORD_TYPE:
4434 case UNION_TYPE:
4435 case QUAL_UNION_TYPE:
4436 return context;
4437
4438 case TYPE_DECL:
4439 case FUNCTION_DECL:
4440 context = DECL_CONTEXT (context);
4441 break;
4442
4443 case BLOCK:
4444 context = BLOCK_SUPERCONTEXT (context);
4445 break;
4446
4447 default:
4448 abort ();
4449 }
4450
4451 return NULL_TREE;
4452 }
4453
4454 /* CALL is a CALL_EXPR. Return the declaration for the function
4455 called, or NULL_TREE if the called function cannot be
4456 determined. */
4457
4458 tree
4459 get_callee_fndecl (tree call)
4460 {
4461 tree addr;
4462
4463 /* It's invalid to call this function with anything but a
4464 CALL_EXPR. */
4465 if (TREE_CODE (call) != CALL_EXPR)
4466 abort ();
4467
4468 /* The first operand to the CALL is the address of the function
4469 called. */
4470 addr = TREE_OPERAND (call, 0);
4471
4472 STRIP_NOPS (addr);
4473
4474 /* If this is a readonly function pointer, extract its initial value. */
4475 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4476 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4477 && DECL_INITIAL (addr))
4478 addr = DECL_INITIAL (addr);
4479
4480 /* If the address is just `&f' for some function `f', then we know
4481 that `f' is being called. */
4482 if (TREE_CODE (addr) == ADDR_EXPR
4483 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4484 return TREE_OPERAND (addr, 0);
4485
4486 /* We couldn't figure out what was being called. Maybe the front
4487 end has some idea. */
4488 return (*lang_hooks.lang_get_callee_fndecl) (call);
4489 }
4490
4491 /* Print debugging information about tree nodes generated during the compile,
4492 and any language-specific information. */
4493
4494 void
4495 dump_tree_statistics (void)
4496 {
4497 #ifdef GATHER_STATISTICS
4498 int i;
4499 int total_nodes, total_bytes;
4500 #endif
4501
4502 fprintf (stderr, "\n??? tree nodes created\n\n");
4503 #ifdef GATHER_STATISTICS
4504 fprintf (stderr, "Kind Nodes Bytes\n");
4505 fprintf (stderr, "---------------------------------------\n");
4506 total_nodes = total_bytes = 0;
4507 for (i = 0; i < (int) all_kinds; i++)
4508 {
4509 fprintf (stderr, "%-20s %7d %10d\n", tree_node_kind_names[i],
4510 tree_node_counts[i], tree_node_sizes[i]);
4511 total_nodes += tree_node_counts[i];
4512 total_bytes += tree_node_sizes[i];
4513 }
4514 fprintf (stderr, "---------------------------------------\n");
4515 fprintf (stderr, "%-20s %7d %10d\n", "Total", total_nodes, total_bytes);
4516 fprintf (stderr, "---------------------------------------\n");
4517 #else
4518 fprintf (stderr, "(No per-node statistics)\n");
4519 #endif
4520 print_type_hash_statistics ();
4521 (*lang_hooks.print_statistics) ();
4522 }
4523 \f
4524 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4525
4526 /* Generate a crc32 of a string. */
4527
4528 unsigned
4529 crc32_string (unsigned chksum, const char *string)
4530 {
4531 do
4532 {
4533 unsigned value = *string << 24;
4534 unsigned ix;
4535
4536 for (ix = 8; ix--; value <<= 1)
4537 {
4538 unsigned feedback;
4539
4540 feedback = (value ^ chksum) & 0x80000000 ? 0x04c11db7 : 0;
4541 chksum <<= 1;
4542 chksum ^= feedback;
4543 }
4544 }
4545 while (*string++);
4546 return chksum;
4547 }
4548
4549 /* P is a string that will be used in a symbol. Mask out any characters
4550 that are not valid in that context. */
4551
4552 void
4553 clean_symbol_name (char *p)
4554 {
4555 for (; *p; p++)
4556 if (! (ISALNUM (*p)
4557 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4558 || *p == '$'
4559 #endif
4560 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4561 || *p == '.'
4562 #endif
4563 ))
4564 *p = '_';
4565 }
4566
4567 /* Generate a name for a function unique to this translation unit.
4568 TYPE is some string to identify the purpose of this function to the
4569 linker or collect2. */
4570
4571 tree
4572 get_file_function_name_long (const char *type)
4573 {
4574 char *buf;
4575 const char *p;
4576 char *q;
4577
4578 if (first_global_object_name)
4579 p = first_global_object_name;
4580 else
4581 {
4582 /* We don't have anything that we know to be unique to this translation
4583 unit, so use what we do have and throw in some randomness. */
4584 unsigned len;
4585 const char *name = weak_global_object_name;
4586 const char *file = main_input_filename;
4587
4588 if (! name)
4589 name = "";
4590 if (! file)
4591 file = input_filename;
4592
4593 len = strlen (file);
4594 q = alloca (9 * 2 + len + 1);
4595 memcpy (q, file, len + 1);
4596 clean_symbol_name (q);
4597
4598 sprintf (q + len, "_%08X_%08X", crc32_string (0, name),
4599 crc32_string (0, flag_random_seed));
4600
4601 p = q;
4602 }
4603
4604 buf = alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p) + strlen (type));
4605
4606 /* Set up the name of the file-level functions we may need.
4607 Use a global object (which is already required to be unique over
4608 the program) rather than the file name (which imposes extra
4609 constraints). */
4610 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4611
4612 return get_identifier (buf);
4613 }
4614
4615 /* If KIND=='I', return a suitable global initializer (constructor) name.
4616 If KIND=='D', return a suitable global clean-up (destructor) name. */
4617
4618 tree
4619 get_file_function_name (int kind)
4620 {
4621 char p[2];
4622
4623 p[0] = kind;
4624 p[1] = 0;
4625
4626 return get_file_function_name_long (p);
4627 }
4628 \f
4629 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4630 The result is placed in BUFFER (which has length BIT_SIZE),
4631 with one bit in each char ('\000' or '\001').
4632
4633 If the constructor is constant, NULL_TREE is returned.
4634 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4635
4636 tree
4637 get_set_constructor_bits (tree init, char *buffer, int bit_size)
4638 {
4639 int i;
4640 tree vals;
4641 HOST_WIDE_INT domain_min
4642 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4643 tree non_const_bits = NULL_TREE;
4644
4645 for (i = 0; i < bit_size; i++)
4646 buffer[i] = 0;
4647
4648 for (vals = TREE_OPERAND (init, 1);
4649 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4650 {
4651 if (!host_integerp (TREE_VALUE (vals), 0)
4652 || (TREE_PURPOSE (vals) != NULL_TREE
4653 && !host_integerp (TREE_PURPOSE (vals), 0)))
4654 non_const_bits
4655 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4656 else if (TREE_PURPOSE (vals) != NULL_TREE)
4657 {
4658 /* Set a range of bits to ones. */
4659 HOST_WIDE_INT lo_index
4660 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4661 HOST_WIDE_INT hi_index
4662 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4663
4664 if (lo_index < 0 || lo_index >= bit_size
4665 || hi_index < 0 || hi_index >= bit_size)
4666 abort ();
4667 for (; lo_index <= hi_index; lo_index++)
4668 buffer[lo_index] = 1;
4669 }
4670 else
4671 {
4672 /* Set a single bit to one. */
4673 HOST_WIDE_INT index
4674 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4675 if (index < 0 || index >= bit_size)
4676 {
4677 error ("invalid initializer for bit string");
4678 return NULL_TREE;
4679 }
4680 buffer[index] = 1;
4681 }
4682 }
4683 return non_const_bits;
4684 }
4685
4686 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4687 The result is placed in BUFFER (which is an array of bytes).
4688 If the constructor is constant, NULL_TREE is returned.
4689 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4690
4691 tree
4692 get_set_constructor_bytes (tree init, unsigned char *buffer, int wd_size)
4693 {
4694 int i;
4695 int set_word_size = BITS_PER_UNIT;
4696 int bit_size = wd_size * set_word_size;
4697 int bit_pos = 0;
4698 unsigned char *bytep = buffer;
4699 char *bit_buffer = alloca (bit_size);
4700 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4701
4702 for (i = 0; i < wd_size; i++)
4703 buffer[i] = 0;
4704
4705 for (i = 0; i < bit_size; i++)
4706 {
4707 if (bit_buffer[i])
4708 {
4709 if (BYTES_BIG_ENDIAN)
4710 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4711 else
4712 *bytep |= 1 << bit_pos;
4713 }
4714 bit_pos++;
4715 if (bit_pos >= set_word_size)
4716 bit_pos = 0, bytep++;
4717 }
4718 return non_const_bits;
4719 }
4720 \f
4721 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4722 /* Complain that the tree code of NODE does not match the expected CODE.
4723 FILE, LINE, and FUNCTION are of the caller. */
4724
4725 void
4726 tree_check_failed (const tree node, enum tree_code code, const char *file,
4727 int line, const char *function)
4728 {
4729 internal_error ("tree check: expected %s, have %s in %s, at %s:%d",
4730 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4731 function, trim_filename (file), line);
4732 }
4733
4734 /* Similar to above, except that we check for a class of tree
4735 code, given in CL. */
4736
4737 void
4738 tree_class_check_failed (const tree node, int cl, const char *file,
4739 int line, const char *function)
4740 {
4741 internal_error
4742 ("tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4743 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4744 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4745 }
4746
4747 /* Similar to above, except that the check is for the bounds of a TREE_VEC's
4748 (dynamically sized) vector. */
4749
4750 void
4751 tree_vec_elt_check_failed (int idx, int len, const char *file, int line,
4752 const char *function)
4753 {
4754 internal_error
4755 ("tree check: accessed elt %d of tree_vec with %d elts in %s, at %s:%d",
4756 idx + 1, len, function, trim_filename (file), line);
4757 }
4758
4759 /* Similar to above, except that the check is for the bounds of the operand
4760 vector of an expression node. */
4761
4762 void
4763 tree_operand_check_failed (int idx, enum tree_code code, const char *file,
4764 int line, const char *function)
4765 {
4766 internal_error
4767 ("tree check: accessed operand %d of %s with %d operands in %s, at %s:%d",
4768 idx + 1, tree_code_name[code], TREE_CODE_LENGTH (code),
4769 function, trim_filename (file), line);
4770 }
4771 #endif /* ENABLE_TREE_CHECKING */
4772 \f
4773 /* For a new vector type node T, build the information necessary for
4774 debugging output. */
4775
4776 static void
4777 finish_vector_type (tree t)
4778 {
4779 layout_type (t);
4780
4781 {
4782 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4783 tree array = build_array_type (TREE_TYPE (t),
4784 build_index_type (index));
4785 tree rt = make_node (RECORD_TYPE);
4786
4787 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4788 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4789 layout_type (rt);
4790 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4791 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4792 the representation type, and we want to find that die when looking up
4793 the vector type. This is most easily achieved by making the TYPE_UID
4794 numbers equal. */
4795 TYPE_UID (rt) = TYPE_UID (t);
4796 }
4797 }
4798
4799 /* Create nodes for all integer types (and error_mark_node) using the sizes
4800 of C datatypes. The caller should call set_sizetype soon after calling
4801 this function to select one of the types as sizetype. */
4802
4803 void
4804 build_common_tree_nodes (int signed_char)
4805 {
4806 error_mark_node = make_node (ERROR_MARK);
4807 TREE_TYPE (error_mark_node) = error_mark_node;
4808
4809 initialize_sizetypes ();
4810
4811 /* Define both `signed char' and `unsigned char'. */
4812 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4813 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4814
4815 /* Define `char', which is like either `signed char' or `unsigned char'
4816 but not the same as either. */
4817 char_type_node
4818 = (signed_char
4819 ? make_signed_type (CHAR_TYPE_SIZE)
4820 : make_unsigned_type (CHAR_TYPE_SIZE));
4821
4822 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4823 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4824 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4825 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4826 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4827 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4828 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4829 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4830
4831 /* Define a boolean type. This type only represents boolean values but
4832 may be larger than char depending on the value of BOOL_TYPE_SIZE.
4833 Front ends which want to override this size (i.e. Java) can redefine
4834 boolean_type_node before calling build_common_tree_nodes_2. */
4835 boolean_type_node = make_unsigned_type (BOOL_TYPE_SIZE);
4836 TREE_SET_CODE (boolean_type_node, BOOLEAN_TYPE);
4837 TYPE_MAX_VALUE (boolean_type_node) = build_int_2 (1, 0);
4838 TREE_TYPE (TYPE_MAX_VALUE (boolean_type_node)) = boolean_type_node;
4839 TYPE_PRECISION (boolean_type_node) = 1;
4840
4841 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4842 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4843 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4844 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4845 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4846
4847 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4848 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4849 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4850 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4851 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4852 }
4853
4854 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4855 It will create several other common tree nodes. */
4856
4857 void
4858 build_common_tree_nodes_2 (int short_double)
4859 {
4860 /* Define these next since types below may used them. */
4861 integer_zero_node = build_int_2 (0, 0);
4862 integer_one_node = build_int_2 (1, 0);
4863 integer_minus_one_node = build_int_2 (-1, -1);
4864
4865 size_zero_node = size_int (0);
4866 size_one_node = size_int (1);
4867 bitsize_zero_node = bitsize_int (0);
4868 bitsize_one_node = bitsize_int (1);
4869 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4870
4871 boolean_false_node = TYPE_MIN_VALUE (boolean_type_node);
4872 boolean_true_node = TYPE_MAX_VALUE (boolean_type_node);
4873
4874 void_type_node = make_node (VOID_TYPE);
4875 layout_type (void_type_node);
4876
4877 /* We are not going to have real types in C with less than byte alignment,
4878 so we might as well not have any types that claim to have it. */
4879 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4880 TYPE_USER_ALIGN (void_type_node) = 0;
4881
4882 null_pointer_node = build_int_2 (0, 0);
4883 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4884 layout_type (TREE_TYPE (null_pointer_node));
4885
4886 ptr_type_node = build_pointer_type (void_type_node);
4887 const_ptr_type_node
4888 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4889
4890 float_type_node = make_node (REAL_TYPE);
4891 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4892 layout_type (float_type_node);
4893
4894 double_type_node = make_node (REAL_TYPE);
4895 if (short_double)
4896 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4897 else
4898 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4899 layout_type (double_type_node);
4900
4901 long_double_type_node = make_node (REAL_TYPE);
4902 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4903 layout_type (long_double_type_node);
4904
4905 float_ptr_type_node = build_pointer_type (float_type_node);
4906 double_ptr_type_node = build_pointer_type (double_type_node);
4907 long_double_ptr_type_node = build_pointer_type (long_double_type_node);
4908 integer_ptr_type_node = build_pointer_type (integer_type_node);
4909
4910 complex_integer_type_node = make_node (COMPLEX_TYPE);
4911 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4912 layout_type (complex_integer_type_node);
4913
4914 complex_float_type_node = make_node (COMPLEX_TYPE);
4915 TREE_TYPE (complex_float_type_node) = float_type_node;
4916 layout_type (complex_float_type_node);
4917
4918 complex_double_type_node = make_node (COMPLEX_TYPE);
4919 TREE_TYPE (complex_double_type_node) = double_type_node;
4920 layout_type (complex_double_type_node);
4921
4922 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4923 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4924 layout_type (complex_long_double_type_node);
4925
4926 {
4927 tree t = (*targetm.build_builtin_va_list) ();
4928
4929 /* Many back-ends define record types without setting TYPE_NAME.
4930 If we copied the record type here, we'd keep the original
4931 record type without a name. This breaks name mangling. So,
4932 don't copy record types and let c_common_nodes_and_builtins()
4933 declare the type to be __builtin_va_list. */
4934 if (TREE_CODE (t) != RECORD_TYPE)
4935 t = build_type_copy (t);
4936
4937 va_list_type_node = t;
4938 }
4939
4940 unsigned_V4SI_type_node
4941 = make_vector (V4SImode, unsigned_intSI_type_node, 1);
4942 unsigned_V2HI_type_node
4943 = make_vector (V2HImode, unsigned_intHI_type_node, 1);
4944 unsigned_V2SI_type_node
4945 = make_vector (V2SImode, unsigned_intSI_type_node, 1);
4946 unsigned_V2DI_type_node
4947 = make_vector (V2DImode, unsigned_intDI_type_node, 1);
4948 unsigned_V4HI_type_node
4949 = make_vector (V4HImode, unsigned_intHI_type_node, 1);
4950 unsigned_V8QI_type_node
4951 = make_vector (V8QImode, unsigned_intQI_type_node, 1);
4952 unsigned_V8HI_type_node
4953 = make_vector (V8HImode, unsigned_intHI_type_node, 1);
4954 unsigned_V16QI_type_node
4955 = make_vector (V16QImode, unsigned_intQI_type_node, 1);
4956 unsigned_V1DI_type_node
4957 = make_vector (V1DImode, unsigned_intDI_type_node, 1);
4958
4959 V16SF_type_node = make_vector (V16SFmode, float_type_node, 0);
4960 V4SF_type_node = make_vector (V4SFmode, float_type_node, 0);
4961 V4SI_type_node = make_vector (V4SImode, intSI_type_node, 0);
4962 V2HI_type_node = make_vector (V2HImode, intHI_type_node, 0);
4963 V2SI_type_node = make_vector (V2SImode, intSI_type_node, 0);
4964 V2DI_type_node = make_vector (V2DImode, intDI_type_node, 0);
4965 V4HI_type_node = make_vector (V4HImode, intHI_type_node, 0);
4966 V8QI_type_node = make_vector (V8QImode, intQI_type_node, 0);
4967 V8HI_type_node = make_vector (V8HImode, intHI_type_node, 0);
4968 V2SF_type_node = make_vector (V2SFmode, float_type_node, 0);
4969 V2DF_type_node = make_vector (V2DFmode, double_type_node, 0);
4970 V16QI_type_node = make_vector (V16QImode, intQI_type_node, 0);
4971 V1DI_type_node = make_vector (V1DImode, intDI_type_node, 0);
4972 V4DF_type_node = make_vector (V4DFmode, double_type_node, 0);
4973 }
4974
4975 /* Returns a vector tree node given a vector mode, the inner type, and
4976 the signness. */
4977
4978 static tree
4979 make_vector (enum machine_mode mode, tree innertype, int unsignedp)
4980 {
4981 tree t;
4982
4983 t = make_node (VECTOR_TYPE);
4984 TREE_TYPE (t) = innertype;
4985 TYPE_MODE (t) = mode;
4986 TREE_UNSIGNED (TREE_TYPE (t)) = unsignedp;
4987 finish_vector_type (t);
4988
4989 return t;
4990 }
4991
4992 /* Given an initializer INIT, return TRUE if INIT is zero or some
4993 aggregate of zeros. Otherwise return FALSE. */
4994
4995 bool
4996 initializer_zerop (tree init)
4997 {
4998 STRIP_NOPS (init);
4999
5000 switch (TREE_CODE (init))
5001 {
5002 case INTEGER_CST:
5003 return integer_zerop (init);
5004 case REAL_CST:
5005 return real_zerop (init)
5006 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (init));
5007 case COMPLEX_CST:
5008 return integer_zerop (init)
5009 || (real_zerop (init)
5010 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_REALPART (init)))
5011 && ! REAL_VALUE_MINUS_ZERO (TREE_REAL_CST (TREE_IMAGPART (init))));
5012 case CONSTRUCTOR:
5013 {
5014 if (AGGREGATE_TYPE_P (TREE_TYPE (init)))
5015 {
5016 tree aggr_init = CONSTRUCTOR_ELTS (init);
5017
5018 while (aggr_init)
5019 {
5020 if (! initializer_zerop (TREE_VALUE (aggr_init)))
5021 return false;
5022 aggr_init = TREE_CHAIN (aggr_init);
5023 }
5024 return true;
5025 }
5026 return false;
5027 }
5028 default:
5029 return false;
5030 }
5031 }
5032
5033 #include "gt-tree.h"