tree.h (type_num_arguments): Declare it.
[gcc.git] / gcc / tree.c
1 /* Language-independent node constructors for parse phase of GNU compiler.
2 Copyright (C) 1987, 1988, 1992, 1993, 1994, 1995, 1996, 1997, 1998,
3 1999, 2000, 2001 Free Software Foundation, Inc.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* This file contains the low level primitives for operating on tree nodes,
23 including allocation, list operations, interning of identifiers,
24 construction of data type nodes and statement nodes,
25 and construction of type conversion nodes. It also contains
26 tables index by tree code that describe how to take apart
27 nodes of that code.
28
29 It is intended to be language-independent, but occasionally
30 calls language-dependent routines defined (for C) in typecheck.c.
31
32 The low-level allocation routines oballoc and permalloc
33 are used also for allocating many other kinds of objects
34 by all passes of the compiler. */
35
36 #include "config.h"
37 #include "system.h"
38 #include "flags.h"
39 #include "tree.h"
40 #include "tm_p.h"
41 #include "function.h"
42 #include "obstack.h"
43 #include "toplev.h"
44 #include "ggc.h"
45 #include "hashtab.h"
46 #include "output.h"
47
48 #define obstack_chunk_alloc xmalloc
49 #define obstack_chunk_free free
50 /* obstack.[ch] explicitly declined to prototype this. */
51 extern int _obstack_allocated_p PARAMS ((struct obstack *h, PTR obj));
52
53 static void unsave_expr_now_r PARAMS ((tree));
54
55 /* Objects allocated on this obstack last forever. */
56
57 struct obstack permanent_obstack;
58
59 /* Table indexed by tree code giving a string containing a character
60 classifying the tree code. Possibilities are
61 t, d, s, c, r, <, 1, 2 and e. See tree.def for details. */
62
63 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) TYPE,
64
65 char tree_code_type[MAX_TREE_CODES] = {
66 #include "tree.def"
67 };
68 #undef DEFTREECODE
69
70 /* Table indexed by tree code giving number of expression
71 operands beyond the fixed part of the node structure.
72 Not used for types or decls. */
73
74 #define DEFTREECODE(SYM, NAME, TYPE, LENGTH) LENGTH,
75
76 int tree_code_length[MAX_TREE_CODES] = {
77 #include "tree.def"
78 };
79 #undef DEFTREECODE
80
81 /* Names of tree components.
82 Used for printing out the tree and error messages. */
83 #define DEFTREECODE(SYM, NAME, TYPE, LEN) NAME,
84
85 const char *tree_code_name[MAX_TREE_CODES] = {
86 #include "tree.def"
87 };
88 #undef DEFTREECODE
89
90 /* Statistics-gathering stuff. */
91 typedef enum
92 {
93 d_kind,
94 t_kind,
95 b_kind,
96 s_kind,
97 r_kind,
98 e_kind,
99 c_kind,
100 id_kind,
101 op_id_kind,
102 perm_list_kind,
103 temp_list_kind,
104 vec_kind,
105 x_kind,
106 lang_decl,
107 lang_type,
108 all_kinds
109 } tree_node_kind;
110
111 int tree_node_counts[(int) all_kinds];
112 int tree_node_sizes[(int) all_kinds];
113 int id_string_size = 0;
114
115 static const char * const tree_node_kind_names[] = {
116 "decls",
117 "types",
118 "blocks",
119 "stmts",
120 "refs",
121 "exprs",
122 "constants",
123 "identifiers",
124 "op_identifiers",
125 "perm_tree_lists",
126 "temp_tree_lists",
127 "vecs",
128 "random kinds",
129 "lang_decl kinds",
130 "lang_type kinds"
131 };
132
133 /* Unique id for next decl created. */
134 static int next_decl_uid;
135 /* Unique id for next type created. */
136 static int next_type_uid = 1;
137
138 /* Here is how primitive or already-canonicalized types' hash
139 codes are made. */
140 #define TYPE_HASH(TYPE) ((unsigned long) (TYPE) & 0777777)
141
142 /* Since we cannot rehash a type after it is in the table, we have to
143 keep the hash code. */
144
145 struct type_hash
146 {
147 unsigned long hash;
148 tree type;
149 };
150
151 /* Initial size of the hash table (rounded to next prime). */
152 #define TYPE_HASH_INITIAL_SIZE 1000
153
154 /* Now here is the hash table. When recording a type, it is added to
155 the slot whose index is the hash code. Note that the hash table is
156 used for several kinds of types (function types, array types and
157 array index range types, for now). While all these live in the
158 same table, they are completely independent, and the hash code is
159 computed differently for each of these. */
160
161 htab_t type_hash_table;
162
163 static void build_real_from_int_cst_1 PARAMS ((PTR));
164 static void set_type_quals PARAMS ((tree, int));
165 static void append_random_chars PARAMS ((char *));
166 static void mark_type_hash PARAMS ((void *));
167 static int type_hash_eq PARAMS ((const void*, const void*));
168 static unsigned int type_hash_hash PARAMS ((const void*));
169 static void print_type_hash_statistics PARAMS((void));
170 static int mark_hash_entry PARAMS((void **, void *));
171 static void finish_vector_type PARAMS((tree));
172 static int mark_tree_hashtable_entry PARAMS((void **, void *));
173
174 /* If non-null, these are language-specific helper functions for
175 unsave_expr_now. If present, LANG_UNSAVE is called before its
176 argument (an UNSAVE_EXPR) is to be unsaved, and all other
177 processing in unsave_expr_now is aborted. LANG_UNSAVE_EXPR_NOW is
178 called from unsave_expr_1 for language-specific tree codes. */
179 void (*lang_unsave) PARAMS ((tree *));
180 void (*lang_unsave_expr_now) PARAMS ((tree));
181
182 /* If non-null, these are language-specific helper functions for
183 unsafe_for_reeval. Return negative to not handle some tree. */
184 int (*lang_unsafe_for_reeval) PARAMS ((tree));
185
186 /* Set the DECL_ASSEMBLER_NAME for a node. If it is the sort of thing
187 that the assembler should talk about, set DECL_ASSEMBLER_NAME to an
188 appropriate IDENTIFIER_NODE. Otherwise, set it to the
189 ERROR_MARK_NODE to ensure that the assembler does not talk about
190 it. */
191 void (*lang_set_decl_assembler_name) PARAMS ((tree));
192 \f
193 tree global_trees[TI_MAX];
194 tree integer_types[itk_none];
195 \f
196 /* Set the DECL_ASSEMBLER_NAME for DECL. */
197 void
198 set_decl_assembler_name (decl)
199 tree decl;
200 {
201 /* The language-independent code should never use the
202 DECL_ASSEMBLER_NAME for lots of DECLs. Only FUNCTION_DECLs and
203 VAR_DECLs for variables with static storage duration need a real
204 DECL_ASSEMBLER_NAME. */
205 if (TREE_CODE (decl) == FUNCTION_DECL
206 || (TREE_CODE (decl) == VAR_DECL
207 && (TREE_STATIC (decl)
208 || DECL_EXTERNAL (decl)
209 || TREE_PUBLIC (decl))))
210 /* By default, assume the name to use in assembly code is the
211 same as that used in the source language. (That's correct
212 for C, and GCC used to set DECL_ASSEMBLER_NAME to the same
213 value as DECL_NAME in build_decl, so this choice provides
214 backwards compatibility with existing front-ends. */
215 SET_DECL_ASSEMBLER_NAME (decl, DECL_NAME (decl));
216 else
217 /* Nobody should ever be asking for the DECL_ASSEMBLER_NAME of
218 these DECLs -- unless they're in language-dependent code, in
219 which case lang_set_decl_assembler_name should handle things. */
220 abort ();
221 }
222 \f
223 /* Init the principal obstacks. */
224
225 void
226 init_obstacks ()
227 {
228 gcc_obstack_init (&permanent_obstack);
229
230 /* Initialize the hash table of types. */
231 type_hash_table = htab_create (TYPE_HASH_INITIAL_SIZE, type_hash_hash,
232 type_hash_eq, 0);
233 ggc_add_root (&type_hash_table, 1, sizeof type_hash_table, mark_type_hash);
234 ggc_add_tree_root (global_trees, TI_MAX);
235 ggc_add_tree_root (integer_types, itk_none);
236
237 /* Set lang_set_decl_set_assembler_name to a default value. */
238 lang_set_decl_assembler_name = set_decl_assembler_name;
239 }
240
241 \f
242 /* Allocate SIZE bytes in the permanent obstack
243 and return a pointer to them. */
244
245 char *
246 permalloc (size)
247 int size;
248 {
249 return (char *) obstack_alloc (&permanent_obstack, size);
250 }
251
252 /* Allocate NELEM items of SIZE bytes in the permanent obstack
253 and return a pointer to them. The storage is cleared before
254 returning the value. */
255
256 char *
257 perm_calloc (nelem, size)
258 int nelem;
259 long size;
260 {
261 char *rval = (char *) obstack_alloc (&permanent_obstack, nelem * size);
262 memset (rval, 0, nelem * size);
263 return rval;
264 }
265
266 /* Compute the number of bytes occupied by 'node'. This routine only
267 looks at TREE_CODE and, if the code is TREE_VEC, TREE_VEC_LENGTH. */
268 size_t
269 tree_size (node)
270 tree node;
271 {
272 enum tree_code code = TREE_CODE (node);
273
274 switch (TREE_CODE_CLASS (code))
275 {
276 case 'd': /* A decl node */
277 return sizeof (struct tree_decl);
278
279 case 't': /* a type node */
280 return sizeof (struct tree_type);
281
282 case 'b': /* a lexical block node */
283 return sizeof (struct tree_block);
284
285 case 'r': /* a reference */
286 case 'e': /* an expression */
287 case 's': /* an expression with side effects */
288 case '<': /* a comparison expression */
289 case '1': /* a unary arithmetic expression */
290 case '2': /* a binary arithmetic expression */
291 return (sizeof (struct tree_exp)
292 + (TREE_CODE_LENGTH (code) - 1) * sizeof (char *));
293
294 case 'c': /* a constant */
295 /* We can't use TREE_CODE_LENGTH for INTEGER_CST, since the number of
296 words is machine-dependent due to varying length of HOST_WIDE_INT,
297 which might be wider than a pointer (e.g., long long). Similarly
298 for REAL_CST, since the number of words is machine-dependent due
299 to varying size and alignment of `double'. */
300 if (code == INTEGER_CST)
301 return sizeof (struct tree_int_cst);
302 else if (code == REAL_CST)
303 return sizeof (struct tree_real_cst);
304 else
305 return (sizeof (struct tree_common)
306 + TREE_CODE_LENGTH (code) * sizeof (char *));
307
308 case 'x': /* something random, like an identifier. */
309 {
310 size_t length;
311 length = (sizeof (struct tree_common)
312 + TREE_CODE_LENGTH (code) * sizeof (char *));
313 if (code == TREE_VEC)
314 length += (TREE_VEC_LENGTH (node) - 1) * sizeof (char *);
315 return length;
316 }
317
318 default:
319 abort ();
320 }
321 }
322
323 /* Return a newly allocated node of code CODE.
324 For decl and type nodes, some other fields are initialized.
325 The rest of the node is initialized to zero.
326
327 Achoo! I got a code in the node. */
328
329 tree
330 make_node (code)
331 enum tree_code code;
332 {
333 register tree t;
334 register int type = TREE_CODE_CLASS (code);
335 register size_t length;
336 #ifdef GATHER_STATISTICS
337 register tree_node_kind kind;
338 #endif
339 struct tree_common ttmp;
340
341 /* We can't allocate a TREE_VEC without knowing how many elements
342 it will have. */
343 if (code == TREE_VEC)
344 abort ();
345
346 TREE_SET_CODE ((tree)&ttmp, code);
347 length = tree_size ((tree)&ttmp);
348
349 #ifdef GATHER_STATISTICS
350 switch (type)
351 {
352 case 'd': /* A decl node */
353 kind = d_kind;
354 break;
355
356 case 't': /* a type node */
357 kind = t_kind;
358 break;
359
360 case 'b': /* a lexical block */
361 kind = b_kind;
362 break;
363
364 case 's': /* an expression with side effects */
365 kind = s_kind;
366 break;
367
368 case 'r': /* a reference */
369 kind = r_kind;
370 break;
371
372 case 'e': /* an expression */
373 case '<': /* a comparison expression */
374 case '1': /* a unary arithmetic expression */
375 case '2': /* a binary arithmetic expression */
376 kind = e_kind;
377 break;
378
379 case 'c': /* a constant */
380 kind = c_kind;
381 break;
382
383 case 'x': /* something random, like an identifier. */
384 if (code == IDENTIFIER_NODE)
385 kind = id_kind;
386 else if (code == OP_IDENTIFIER)
387 kind = op_id_kind;
388 else if (code == TREE_VEC)
389 kind = vec_kind;
390 else
391 kind = x_kind;
392 break;
393
394 default:
395 abort ();
396 }
397
398 tree_node_counts[(int) kind]++;
399 tree_node_sizes[(int) kind] += length;
400 #endif
401
402 t = ggc_alloc_tree (length);
403
404 memset ((PTR) t, 0, length);
405
406 TREE_SET_CODE (t, code);
407
408 switch (type)
409 {
410 case 's':
411 TREE_SIDE_EFFECTS (t) = 1;
412 TREE_TYPE (t) = void_type_node;
413 break;
414
415 case 'd':
416 if (code != FUNCTION_DECL)
417 DECL_ALIGN (t) = 1;
418 DECL_USER_ALIGN (t) = 0;
419 DECL_IN_SYSTEM_HEADER (t) = in_system_header;
420 DECL_SOURCE_LINE (t) = lineno;
421 DECL_SOURCE_FILE (t) =
422 (input_filename) ? input_filename : "<built-in>";
423 DECL_UID (t) = next_decl_uid++;
424 /* Note that we have not yet computed the alias set for this
425 declaration. */
426 DECL_POINTER_ALIAS_SET (t) = -1;
427 break;
428
429 case 't':
430 TYPE_UID (t) = next_type_uid++;
431 TYPE_ALIGN (t) = char_type_node ? TYPE_ALIGN (char_type_node) : 0;
432 TYPE_USER_ALIGN (t) = 0;
433 TYPE_MAIN_VARIANT (t) = t;
434 TYPE_ATTRIBUTES (t) = NULL_TREE;
435 #ifdef SET_DEFAULT_TYPE_ATTRIBUTES
436 SET_DEFAULT_TYPE_ATTRIBUTES (t);
437 #endif
438 /* Note that we have not yet computed the alias set for this
439 type. */
440 TYPE_ALIAS_SET (t) = -1;
441 break;
442
443 case 'c':
444 TREE_CONSTANT (t) = 1;
445 break;
446
447 case 'e':
448 switch (code)
449 {
450 case INIT_EXPR:
451 case MODIFY_EXPR:
452 case VA_ARG_EXPR:
453 case RTL_EXPR:
454 case PREDECREMENT_EXPR:
455 case PREINCREMENT_EXPR:
456 case POSTDECREMENT_EXPR:
457 case POSTINCREMENT_EXPR:
458 /* All of these have side-effects, no matter what their
459 operands are. */
460 TREE_SIDE_EFFECTS (t) = 1;
461 break;
462
463 default:
464 break;
465 }
466 break;
467 }
468
469 return t;
470 }
471
472 /* A front-end can reset this to an appropriate function if types need
473 special handling. */
474
475 tree (*make_lang_type_fn) PARAMS ((enum tree_code)) = make_node;
476
477 /* Return a new type (with the indicated CODE), doing whatever
478 language-specific processing is required. */
479
480 tree
481 make_lang_type (code)
482 enum tree_code code;
483 {
484 return (*make_lang_type_fn) (code);
485 }
486 \f
487 /* Return a new node with the same contents as NODE except that its
488 TREE_CHAIN is zero and it has a fresh uid. */
489
490 tree
491 copy_node (node)
492 tree node;
493 {
494 register tree t;
495 register enum tree_code code = TREE_CODE (node);
496 register size_t length;
497
498 length = tree_size (node);
499 t = ggc_alloc_tree (length);
500 memcpy (t, node, length);
501
502 TREE_CHAIN (t) = 0;
503 TREE_ASM_WRITTEN (t) = 0;
504
505 if (TREE_CODE_CLASS (code) == 'd')
506 DECL_UID (t) = next_decl_uid++;
507 else if (TREE_CODE_CLASS (code) == 't')
508 {
509 TYPE_UID (t) = next_type_uid++;
510 /* The following is so that the debug code for
511 the copy is different from the original type.
512 The two statements usually duplicate each other
513 (because they clear fields of the same union),
514 but the optimizer should catch that. */
515 TYPE_SYMTAB_POINTER (t) = 0;
516 TYPE_SYMTAB_ADDRESS (t) = 0;
517 }
518
519 return t;
520 }
521
522 /* Return a copy of a chain of nodes, chained through the TREE_CHAIN field.
523 For example, this can copy a list made of TREE_LIST nodes. */
524
525 tree
526 copy_list (list)
527 tree list;
528 {
529 tree head;
530 register tree prev, next;
531
532 if (list == 0)
533 return 0;
534
535 head = prev = copy_node (list);
536 next = TREE_CHAIN (list);
537 while (next)
538 {
539 TREE_CHAIN (prev) = copy_node (next);
540 prev = TREE_CHAIN (prev);
541 next = TREE_CHAIN (next);
542 }
543 return head;
544 }
545
546 \f
547 /* Return a newly constructed INTEGER_CST node whose constant value
548 is specified by the two ints LOW and HI.
549 The TREE_TYPE is set to `int'.
550
551 This function should be used via the `build_int_2' macro. */
552
553 tree
554 build_int_2_wide (low, hi)
555 unsigned HOST_WIDE_INT low;
556 HOST_WIDE_INT hi;
557 {
558 register tree t = make_node (INTEGER_CST);
559
560 TREE_INT_CST_LOW (t) = low;
561 TREE_INT_CST_HIGH (t) = hi;
562 TREE_TYPE (t) = integer_type_node;
563 return t;
564 }
565
566 /* Return a new REAL_CST node whose type is TYPE and value is D. */
567
568 tree
569 build_real (type, d)
570 tree type;
571 REAL_VALUE_TYPE d;
572 {
573 tree v;
574 int overflow = 0;
575
576 /* Check for valid float value for this type on this target machine;
577 if not, can print error message and store a valid value in D. */
578 #ifdef CHECK_FLOAT_VALUE
579 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
580 #endif
581
582 v = make_node (REAL_CST);
583 TREE_TYPE (v) = type;
584 TREE_REAL_CST (v) = d;
585 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
586 return v;
587 }
588
589 /* Return a new REAL_CST node whose type is TYPE
590 and whose value is the integer value of the INTEGER_CST node I. */
591
592 #if !defined (REAL_IS_NOT_DOUBLE) || defined (REAL_ARITHMETIC)
593
594 REAL_VALUE_TYPE
595 real_value_from_int_cst (type, i)
596 tree type ATTRIBUTE_UNUSED, i;
597 {
598 REAL_VALUE_TYPE d;
599
600 #ifdef REAL_ARITHMETIC
601 /* Clear all bits of the real value type so that we can later do
602 bitwise comparisons to see if two values are the same. */
603 memset ((char *) &d, 0, sizeof d);
604
605 if (! TREE_UNSIGNED (TREE_TYPE (i)))
606 REAL_VALUE_FROM_INT (d, TREE_INT_CST_LOW (i), TREE_INT_CST_HIGH (i),
607 TYPE_MODE (type));
608 else
609 REAL_VALUE_FROM_UNSIGNED_INT (d, TREE_INT_CST_LOW (i),
610 TREE_INT_CST_HIGH (i), TYPE_MODE (type));
611 #else /* not REAL_ARITHMETIC */
612 /* Some 386 compilers mishandle unsigned int to float conversions,
613 so introduce a temporary variable E to avoid those bugs. */
614 if (TREE_INT_CST_HIGH (i) < 0 && ! TREE_UNSIGNED (TREE_TYPE (i)))
615 {
616 REAL_VALUE_TYPE e;
617
618 d = (double) (~TREE_INT_CST_HIGH (i));
619 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
620 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
621 d *= e;
622 e = (double) (~TREE_INT_CST_LOW (i));
623 d += e;
624 d = (- d - 1.0);
625 }
626 else
627 {
628 REAL_VALUE_TYPE e;
629
630 d = (double) (unsigned HOST_WIDE_INT) TREE_INT_CST_HIGH (i);
631 e = ((double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2))
632 * (double) ((HOST_WIDE_INT) 1 << (HOST_BITS_PER_WIDE_INT / 2)));
633 d *= e;
634 e = (double) TREE_INT_CST_LOW (i);
635 d += e;
636 }
637 #endif /* not REAL_ARITHMETIC */
638 return d;
639 }
640
641 /* Args to pass to and from build_real_from_int_cst_1. */
642
643 struct brfic_args
644 {
645 tree type; /* Input: type to conver to. */
646 tree i; /* Input: operand to convert. */
647 REAL_VALUE_TYPE d; /* Output: floating point value. */
648 };
649
650 /* Convert an integer to a floating point value while protected by a floating
651 point exception handler. */
652
653 static void
654 build_real_from_int_cst_1 (data)
655 PTR data;
656 {
657 struct brfic_args *args = (struct brfic_args *) data;
658
659 #ifdef REAL_ARITHMETIC
660 args->d = real_value_from_int_cst (args->type, args->i);
661 #else
662 args->d
663 = REAL_VALUE_TRUNCATE (TYPE_MODE (args->type),
664 real_value_from_int_cst (args->type, args->i));
665 #endif
666 }
667
668 /* Given a tree representing an integer constant I, return a tree
669 representing the same value as a floating-point constant of type TYPE.
670 We cannot perform this operation if there is no way of doing arithmetic
671 on floating-point values. */
672
673 tree
674 build_real_from_int_cst (type, i)
675 tree type;
676 tree i;
677 {
678 tree v;
679 int overflow = TREE_OVERFLOW (i);
680 REAL_VALUE_TYPE d;
681 struct brfic_args args;
682
683 v = make_node (REAL_CST);
684 TREE_TYPE (v) = type;
685
686 /* Setup input for build_real_from_int_cst_1() */
687 args.type = type;
688 args.i = i;
689
690 if (do_float_handler (build_real_from_int_cst_1, (PTR) &args))
691 /* Receive output from build_real_from_int_cst_1() */
692 d = args.d;
693 else
694 {
695 /* We got an exception from build_real_from_int_cst_1() */
696 d = dconst0;
697 overflow = 1;
698 }
699
700 /* Check for valid float value for this type on this target machine. */
701
702 #ifdef CHECK_FLOAT_VALUE
703 CHECK_FLOAT_VALUE (TYPE_MODE (type), d, overflow);
704 #endif
705
706 TREE_REAL_CST (v) = d;
707 TREE_OVERFLOW (v) = TREE_CONSTANT_OVERFLOW (v) = overflow;
708 return v;
709 }
710
711 #endif /* not REAL_IS_NOT_DOUBLE, or REAL_ARITHMETIC */
712
713 /* Return a newly constructed STRING_CST node whose value is
714 the LEN characters at STR.
715 The TREE_TYPE is not initialized. */
716
717 tree
718 build_string (len, str)
719 int len;
720 const char *str;
721 {
722 register tree s = make_node (STRING_CST);
723
724 TREE_STRING_LENGTH (s) = len;
725 TREE_STRING_POINTER (s) = ggc_alloc_string (str, len);
726
727 return s;
728 }
729
730 /* Return a newly constructed COMPLEX_CST node whose value is
731 specified by the real and imaginary parts REAL and IMAG.
732 Both REAL and IMAG should be constant nodes. TYPE, if specified,
733 will be the type of the COMPLEX_CST; otherwise a new type will be made. */
734
735 tree
736 build_complex (type, real, imag)
737 tree type;
738 tree real, imag;
739 {
740 register tree t = make_node (COMPLEX_CST);
741
742 TREE_REALPART (t) = real;
743 TREE_IMAGPART (t) = imag;
744 TREE_TYPE (t) = type ? type : build_complex_type (TREE_TYPE (real));
745 TREE_OVERFLOW (t) = TREE_OVERFLOW (real) | TREE_OVERFLOW (imag);
746 TREE_CONSTANT_OVERFLOW (t)
747 = TREE_CONSTANT_OVERFLOW (real) | TREE_CONSTANT_OVERFLOW (imag);
748 return t;
749 }
750
751 /* Build a newly constructed TREE_VEC node of length LEN. */
752
753 tree
754 make_tree_vec (len)
755 int len;
756 {
757 register tree t;
758 register int length = (len-1) * sizeof (tree) + sizeof (struct tree_vec);
759
760 #ifdef GATHER_STATISTICS
761 tree_node_counts[(int)vec_kind]++;
762 tree_node_sizes[(int)vec_kind] += length;
763 #endif
764
765 t = ggc_alloc_tree (length);
766
767 memset ((PTR) t, 0, length);
768 TREE_SET_CODE (t, TREE_VEC);
769 TREE_VEC_LENGTH (t) = len;
770
771 return t;
772 }
773 \f
774 /* Return 1 if EXPR is the integer constant zero or a complex constant
775 of zero. */
776
777 int
778 integer_zerop (expr)
779 tree expr;
780 {
781 STRIP_NOPS (expr);
782
783 return ((TREE_CODE (expr) == INTEGER_CST
784 && ! TREE_CONSTANT_OVERFLOW (expr)
785 && TREE_INT_CST_LOW (expr) == 0
786 && TREE_INT_CST_HIGH (expr) == 0)
787 || (TREE_CODE (expr) == COMPLEX_CST
788 && integer_zerop (TREE_REALPART (expr))
789 && integer_zerop (TREE_IMAGPART (expr))));
790 }
791
792 /* Return 1 if EXPR is the integer constant one or the corresponding
793 complex constant. */
794
795 int
796 integer_onep (expr)
797 tree expr;
798 {
799 STRIP_NOPS (expr);
800
801 return ((TREE_CODE (expr) == INTEGER_CST
802 && ! TREE_CONSTANT_OVERFLOW (expr)
803 && TREE_INT_CST_LOW (expr) == 1
804 && TREE_INT_CST_HIGH (expr) == 0)
805 || (TREE_CODE (expr) == COMPLEX_CST
806 && integer_onep (TREE_REALPART (expr))
807 && integer_zerop (TREE_IMAGPART (expr))));
808 }
809
810 /* Return 1 if EXPR is an integer containing all 1's in as much precision as
811 it contains. Likewise for the corresponding complex constant. */
812
813 int
814 integer_all_onesp (expr)
815 tree expr;
816 {
817 register int prec;
818 register int uns;
819
820 STRIP_NOPS (expr);
821
822 if (TREE_CODE (expr) == COMPLEX_CST
823 && integer_all_onesp (TREE_REALPART (expr))
824 && integer_zerop (TREE_IMAGPART (expr)))
825 return 1;
826
827 else if (TREE_CODE (expr) != INTEGER_CST
828 || TREE_CONSTANT_OVERFLOW (expr))
829 return 0;
830
831 uns = TREE_UNSIGNED (TREE_TYPE (expr));
832 if (!uns)
833 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
834 && TREE_INT_CST_HIGH (expr) == -1);
835
836 /* Note that using TYPE_PRECISION here is wrong. We care about the
837 actual bits, not the (arbitrary) range of the type. */
838 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (expr)));
839 if (prec >= HOST_BITS_PER_WIDE_INT)
840 {
841 HOST_WIDE_INT high_value;
842 int shift_amount;
843
844 shift_amount = prec - HOST_BITS_PER_WIDE_INT;
845
846 if (shift_amount > HOST_BITS_PER_WIDE_INT)
847 /* Can not handle precisions greater than twice the host int size. */
848 abort ();
849 else if (shift_amount == HOST_BITS_PER_WIDE_INT)
850 /* Shifting by the host word size is undefined according to the ANSI
851 standard, so we must handle this as a special case. */
852 high_value = -1;
853 else
854 high_value = ((HOST_WIDE_INT) 1 << shift_amount) - 1;
855
856 return (TREE_INT_CST_LOW (expr) == ~(unsigned HOST_WIDE_INT) 0
857 && TREE_INT_CST_HIGH (expr) == high_value);
858 }
859 else
860 return TREE_INT_CST_LOW (expr) == ((unsigned HOST_WIDE_INT) 1 << prec) - 1;
861 }
862
863 /* Return 1 if EXPR is an integer constant that is a power of 2 (i.e., has only
864 one bit on). */
865
866 int
867 integer_pow2p (expr)
868 tree expr;
869 {
870 int prec;
871 HOST_WIDE_INT high, low;
872
873 STRIP_NOPS (expr);
874
875 if (TREE_CODE (expr) == COMPLEX_CST
876 && integer_pow2p (TREE_REALPART (expr))
877 && integer_zerop (TREE_IMAGPART (expr)))
878 return 1;
879
880 if (TREE_CODE (expr) != INTEGER_CST || TREE_CONSTANT_OVERFLOW (expr))
881 return 0;
882
883 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
884 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
885 high = TREE_INT_CST_HIGH (expr);
886 low = TREE_INT_CST_LOW (expr);
887
888 /* First clear all bits that are beyond the type's precision in case
889 we've been sign extended. */
890
891 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
892 ;
893 else if (prec > HOST_BITS_PER_WIDE_INT)
894 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
895 else
896 {
897 high = 0;
898 if (prec < HOST_BITS_PER_WIDE_INT)
899 low &= ~((HOST_WIDE_INT) (-1) << prec);
900 }
901
902 if (high == 0 && low == 0)
903 return 0;
904
905 return ((high == 0 && (low & (low - 1)) == 0)
906 || (low == 0 && (high & (high - 1)) == 0));
907 }
908
909 /* Return the power of two represented by a tree node known to be a
910 power of two. */
911
912 int
913 tree_log2 (expr)
914 tree expr;
915 {
916 int prec;
917 HOST_WIDE_INT high, low;
918
919 STRIP_NOPS (expr);
920
921 if (TREE_CODE (expr) == COMPLEX_CST)
922 return tree_log2 (TREE_REALPART (expr));
923
924 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
925 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
926
927 high = TREE_INT_CST_HIGH (expr);
928 low = TREE_INT_CST_LOW (expr);
929
930 /* First clear all bits that are beyond the type's precision in case
931 we've been sign extended. */
932
933 if (prec == 2 * HOST_BITS_PER_WIDE_INT)
934 ;
935 else if (prec > HOST_BITS_PER_WIDE_INT)
936 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
937 else
938 {
939 high = 0;
940 if (prec < HOST_BITS_PER_WIDE_INT)
941 low &= ~((HOST_WIDE_INT) (-1) << prec);
942 }
943
944 return (high != 0 ? HOST_BITS_PER_WIDE_INT + exact_log2 (high)
945 : exact_log2 (low));
946 }
947
948 /* Similar, but return the largest integer Y such that 2 ** Y is less
949 than or equal to EXPR. */
950
951 int
952 tree_floor_log2 (expr)
953 tree expr;
954 {
955 int prec;
956 HOST_WIDE_INT high, low;
957
958 STRIP_NOPS (expr);
959
960 if (TREE_CODE (expr) == COMPLEX_CST)
961 return tree_log2 (TREE_REALPART (expr));
962
963 prec = (POINTER_TYPE_P (TREE_TYPE (expr))
964 ? POINTER_SIZE : TYPE_PRECISION (TREE_TYPE (expr)));
965
966 high = TREE_INT_CST_HIGH (expr);
967 low = TREE_INT_CST_LOW (expr);
968
969 /* First clear all bits that are beyond the type's precision in case
970 we've been sign extended. Ignore if type's precision hasn't been set
971 since what we are doing is setting it. */
972
973 if (prec == 2 * HOST_BITS_PER_WIDE_INT || prec == 0)
974 ;
975 else if (prec > HOST_BITS_PER_WIDE_INT)
976 high &= ~((HOST_WIDE_INT) (-1) << (prec - HOST_BITS_PER_WIDE_INT));
977 else
978 {
979 high = 0;
980 if (prec < HOST_BITS_PER_WIDE_INT)
981 low &= ~((HOST_WIDE_INT) (-1) << prec);
982 }
983
984 return (high != 0 ? HOST_BITS_PER_WIDE_INT + floor_log2 (high)
985 : floor_log2 (low));
986 }
987
988 /* Return 1 if EXPR is the real constant zero. */
989
990 int
991 real_zerop (expr)
992 tree expr;
993 {
994 STRIP_NOPS (expr);
995
996 return ((TREE_CODE (expr) == REAL_CST
997 && ! TREE_CONSTANT_OVERFLOW (expr)
998 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst0))
999 || (TREE_CODE (expr) == COMPLEX_CST
1000 && real_zerop (TREE_REALPART (expr))
1001 && real_zerop (TREE_IMAGPART (expr))));
1002 }
1003
1004 /* Return 1 if EXPR is the real constant one in real or complex form. */
1005
1006 int
1007 real_onep (expr)
1008 tree expr;
1009 {
1010 STRIP_NOPS (expr);
1011
1012 return ((TREE_CODE (expr) == REAL_CST
1013 && ! TREE_CONSTANT_OVERFLOW (expr)
1014 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst1))
1015 || (TREE_CODE (expr) == COMPLEX_CST
1016 && real_onep (TREE_REALPART (expr))
1017 && real_zerop (TREE_IMAGPART (expr))));
1018 }
1019
1020 /* Return 1 if EXPR is the real constant two. */
1021
1022 int
1023 real_twop (expr)
1024 tree expr;
1025 {
1026 STRIP_NOPS (expr);
1027
1028 return ((TREE_CODE (expr) == REAL_CST
1029 && ! TREE_CONSTANT_OVERFLOW (expr)
1030 && REAL_VALUES_EQUAL (TREE_REAL_CST (expr), dconst2))
1031 || (TREE_CODE (expr) == COMPLEX_CST
1032 && real_twop (TREE_REALPART (expr))
1033 && real_zerop (TREE_IMAGPART (expr))));
1034 }
1035
1036 /* Nonzero if EXP is a constant or a cast of a constant. */
1037
1038 int
1039 really_constant_p (exp)
1040 tree exp;
1041 {
1042 /* This is not quite the same as STRIP_NOPS. It does more. */
1043 while (TREE_CODE (exp) == NOP_EXPR
1044 || TREE_CODE (exp) == CONVERT_EXPR
1045 || TREE_CODE (exp) == NON_LVALUE_EXPR)
1046 exp = TREE_OPERAND (exp, 0);
1047 return TREE_CONSTANT (exp);
1048 }
1049 \f
1050 /* Return first list element whose TREE_VALUE is ELEM.
1051 Return 0 if ELEM is not in LIST. */
1052
1053 tree
1054 value_member (elem, list)
1055 tree elem, list;
1056 {
1057 while (list)
1058 {
1059 if (elem == TREE_VALUE (list))
1060 return list;
1061 list = TREE_CHAIN (list);
1062 }
1063 return NULL_TREE;
1064 }
1065
1066 /* Return first list element whose TREE_PURPOSE is ELEM.
1067 Return 0 if ELEM is not in LIST. */
1068
1069 tree
1070 purpose_member (elem, list)
1071 tree elem, list;
1072 {
1073 while (list)
1074 {
1075 if (elem == TREE_PURPOSE (list))
1076 return list;
1077 list = TREE_CHAIN (list);
1078 }
1079 return NULL_TREE;
1080 }
1081
1082 /* Return first list element whose BINFO_TYPE is ELEM.
1083 Return 0 if ELEM is not in LIST. */
1084
1085 tree
1086 binfo_member (elem, list)
1087 tree elem, list;
1088 {
1089 while (list)
1090 {
1091 if (elem == BINFO_TYPE (list))
1092 return list;
1093 list = TREE_CHAIN (list);
1094 }
1095 return NULL_TREE;
1096 }
1097
1098 /* Return nonzero if ELEM is part of the chain CHAIN. */
1099
1100 int
1101 chain_member (elem, chain)
1102 tree elem, chain;
1103 {
1104 while (chain)
1105 {
1106 if (elem == chain)
1107 return 1;
1108 chain = TREE_CHAIN (chain);
1109 }
1110
1111 return 0;
1112 }
1113
1114 /* Return nonzero if ELEM is equal to TREE_VALUE (CHAIN) for any piece of
1115 chain CHAIN. This and the next function are currently unused, but
1116 are retained for completeness. */
1117
1118 int
1119 chain_member_value (elem, chain)
1120 tree elem, chain;
1121 {
1122 while (chain)
1123 {
1124 if (elem == TREE_VALUE (chain))
1125 return 1;
1126 chain = TREE_CHAIN (chain);
1127 }
1128
1129 return 0;
1130 }
1131
1132 /* Return nonzero if ELEM is equal to TREE_PURPOSE (CHAIN)
1133 for any piece of chain CHAIN. */
1134
1135 int
1136 chain_member_purpose (elem, chain)
1137 tree elem, chain;
1138 {
1139 while (chain)
1140 {
1141 if (elem == TREE_PURPOSE (chain))
1142 return 1;
1143 chain = TREE_CHAIN (chain);
1144 }
1145
1146 return 0;
1147 }
1148
1149 /* Return the length of a chain of nodes chained through TREE_CHAIN.
1150 We expect a null pointer to mark the end of the chain.
1151 This is the Lisp primitive `length'. */
1152
1153 int
1154 list_length (t)
1155 tree t;
1156 {
1157 register tree tail;
1158 register int len = 0;
1159
1160 for (tail = t; tail; tail = TREE_CHAIN (tail))
1161 len++;
1162
1163 return len;
1164 }
1165
1166 /* Returns the number of FIELD_DECLs in TYPE. */
1167
1168 int
1169 fields_length (type)
1170 tree type;
1171 {
1172 tree t = TYPE_FIELDS (type);
1173 int count = 0;
1174
1175 for (; t; t = TREE_CHAIN (t))
1176 if (TREE_CODE (t) == FIELD_DECL)
1177 ++count;
1178
1179 return count;
1180 }
1181
1182 /* Concatenate two chains of nodes (chained through TREE_CHAIN)
1183 by modifying the last node in chain 1 to point to chain 2.
1184 This is the Lisp primitive `nconc'. */
1185
1186 tree
1187 chainon (op1, op2)
1188 tree op1, op2;
1189 {
1190
1191 if (op1)
1192 {
1193 register tree t1;
1194 #ifdef ENABLE_TREE_CHECKING
1195 register tree t2;
1196 #endif
1197
1198 for (t1 = op1; TREE_CHAIN (t1); t1 = TREE_CHAIN (t1))
1199 ;
1200 TREE_CHAIN (t1) = op2;
1201 #ifdef ENABLE_TREE_CHECKING
1202 for (t2 = op2; t2; t2 = TREE_CHAIN (t2))
1203 if (t2 == t1)
1204 abort (); /* Circularity created. */
1205 #endif
1206 return op1;
1207 }
1208 else
1209 return op2;
1210 }
1211
1212 /* Return the last node in a chain of nodes (chained through TREE_CHAIN). */
1213
1214 tree
1215 tree_last (chain)
1216 register tree chain;
1217 {
1218 register tree next;
1219 if (chain)
1220 while ((next = TREE_CHAIN (chain)))
1221 chain = next;
1222 return chain;
1223 }
1224
1225 /* Reverse the order of elements in the chain T,
1226 and return the new head of the chain (old last element). */
1227
1228 tree
1229 nreverse (t)
1230 tree t;
1231 {
1232 register tree prev = 0, decl, next;
1233 for (decl = t; decl; decl = next)
1234 {
1235 next = TREE_CHAIN (decl);
1236 TREE_CHAIN (decl) = prev;
1237 prev = decl;
1238 }
1239 return prev;
1240 }
1241
1242 /* Given a chain CHAIN of tree nodes,
1243 construct and return a list of those nodes. */
1244
1245 tree
1246 listify (chain)
1247 tree chain;
1248 {
1249 tree result = NULL_TREE;
1250 tree in_tail = chain;
1251 tree out_tail = NULL_TREE;
1252
1253 while (in_tail)
1254 {
1255 tree next = tree_cons (NULL_TREE, in_tail, NULL_TREE);
1256 if (out_tail)
1257 TREE_CHAIN (out_tail) = next;
1258 else
1259 result = next;
1260 out_tail = next;
1261 in_tail = TREE_CHAIN (in_tail);
1262 }
1263
1264 return result;
1265 }
1266 \f
1267 /* Return a newly created TREE_LIST node whose
1268 purpose and value fields are PARM and VALUE. */
1269
1270 tree
1271 build_tree_list (parm, value)
1272 tree parm, value;
1273 {
1274 register tree t = make_node (TREE_LIST);
1275 TREE_PURPOSE (t) = parm;
1276 TREE_VALUE (t) = value;
1277 return t;
1278 }
1279
1280 /* Return a newly created TREE_LIST node whose
1281 purpose and value fields are PARM and VALUE
1282 and whose TREE_CHAIN is CHAIN. */
1283
1284 tree
1285 tree_cons (purpose, value, chain)
1286 tree purpose, value, chain;
1287 {
1288 register tree node;
1289
1290 node = ggc_alloc_tree (sizeof (struct tree_list));
1291
1292 memset (node, 0, sizeof (struct tree_common));
1293
1294 #ifdef GATHER_STATISTICS
1295 tree_node_counts[(int) x_kind]++;
1296 tree_node_sizes[(int) x_kind] += sizeof (struct tree_list);
1297 #endif
1298
1299 TREE_SET_CODE (node, TREE_LIST);
1300 TREE_CHAIN (node) = chain;
1301 TREE_PURPOSE (node) = purpose;
1302 TREE_VALUE (node) = value;
1303 return node;
1304 }
1305
1306 \f
1307 /* Return the size nominally occupied by an object of type TYPE
1308 when it resides in memory. The value is measured in units of bytes,
1309 and its data type is that normally used for type sizes
1310 (which is the first type created by make_signed_type or
1311 make_unsigned_type). */
1312
1313 tree
1314 size_in_bytes (type)
1315 tree type;
1316 {
1317 tree t;
1318
1319 if (type == error_mark_node)
1320 return integer_zero_node;
1321
1322 type = TYPE_MAIN_VARIANT (type);
1323 t = TYPE_SIZE_UNIT (type);
1324
1325 if (t == 0)
1326 {
1327 incomplete_type_error (NULL_TREE, type);
1328 return size_zero_node;
1329 }
1330
1331 if (TREE_CODE (t) == INTEGER_CST)
1332 force_fit_type (t, 0);
1333
1334 return t;
1335 }
1336
1337 /* Return the size of TYPE (in bytes) as a wide integer
1338 or return -1 if the size can vary or is larger than an integer. */
1339
1340 HOST_WIDE_INT
1341 int_size_in_bytes (type)
1342 tree type;
1343 {
1344 tree t;
1345
1346 if (type == error_mark_node)
1347 return 0;
1348
1349 type = TYPE_MAIN_VARIANT (type);
1350 t = TYPE_SIZE_UNIT (type);
1351 if (t == 0
1352 || TREE_CODE (t) != INTEGER_CST
1353 || TREE_OVERFLOW (t)
1354 || TREE_INT_CST_HIGH (t) != 0
1355 /* If the result would appear negative, it's too big to represent. */
1356 || (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
1357 return -1;
1358
1359 return TREE_INT_CST_LOW (t);
1360 }
1361 \f
1362 /* Return the bit position of FIELD, in bits from the start of the record.
1363 This is a tree of type bitsizetype. */
1364
1365 tree
1366 bit_position (field)
1367 tree field;
1368 {
1369
1370 return bit_from_pos (DECL_FIELD_OFFSET (field),
1371 DECL_FIELD_BIT_OFFSET (field));
1372 }
1373
1374 /* Likewise, but return as an integer. Abort if it cannot be represented
1375 in that way (since it could be a signed value, we don't have the option
1376 of returning -1 like int_size_in_byte can. */
1377
1378 HOST_WIDE_INT
1379 int_bit_position (field)
1380 tree field;
1381 {
1382 return tree_low_cst (bit_position (field), 0);
1383 }
1384 \f
1385 /* Return the byte position of FIELD, in bytes from the start of the record.
1386 This is a tree of type sizetype. */
1387
1388 tree
1389 byte_position (field)
1390 tree field;
1391 {
1392 return byte_from_pos (DECL_FIELD_OFFSET (field),
1393 DECL_FIELD_BIT_OFFSET (field));
1394 }
1395
1396 /* Likewise, but return as an integer. Abort if it cannot be represented
1397 in that way (since it could be a signed value, we don't have the option
1398 of returning -1 like int_size_in_byte can. */
1399
1400 HOST_WIDE_INT
1401 int_byte_position (field)
1402 tree field;
1403 {
1404 return tree_low_cst (byte_position (field), 0);
1405 }
1406 \f
1407 /* Return the strictest alignment, in bits, that T is known to have. */
1408
1409 unsigned int
1410 expr_align (t)
1411 tree t;
1412 {
1413 unsigned int align0, align1;
1414
1415 switch (TREE_CODE (t))
1416 {
1417 case NOP_EXPR: case CONVERT_EXPR: case NON_LVALUE_EXPR:
1418 /* If we have conversions, we know that the alignment of the
1419 object must meet each of the alignments of the types. */
1420 align0 = expr_align (TREE_OPERAND (t, 0));
1421 align1 = TYPE_ALIGN (TREE_TYPE (t));
1422 return MAX (align0, align1);
1423
1424 case SAVE_EXPR: case COMPOUND_EXPR: case MODIFY_EXPR:
1425 case INIT_EXPR: case TARGET_EXPR: case WITH_CLEANUP_EXPR:
1426 case WITH_RECORD_EXPR: case CLEANUP_POINT_EXPR: case UNSAVE_EXPR:
1427 /* These don't change the alignment of an object. */
1428 return expr_align (TREE_OPERAND (t, 0));
1429
1430 case COND_EXPR:
1431 /* The best we can do is say that the alignment is the least aligned
1432 of the two arms. */
1433 align0 = expr_align (TREE_OPERAND (t, 1));
1434 align1 = expr_align (TREE_OPERAND (t, 2));
1435 return MIN (align0, align1);
1436
1437 case LABEL_DECL: case CONST_DECL:
1438 case VAR_DECL: case PARM_DECL: case RESULT_DECL:
1439 if (DECL_ALIGN (t) != 0)
1440 return DECL_ALIGN (t);
1441 break;
1442
1443 case FUNCTION_DECL:
1444 return FUNCTION_BOUNDARY;
1445
1446 default:
1447 break;
1448 }
1449
1450 /* Otherwise take the alignment from that of the type. */
1451 return TYPE_ALIGN (TREE_TYPE (t));
1452 }
1453 \f
1454 /* Return, as a tree node, the number of elements for TYPE (which is an
1455 ARRAY_TYPE) minus one. This counts only elements of the top array. */
1456
1457 tree
1458 array_type_nelts (type)
1459 tree type;
1460 {
1461 tree index_type, min, max;
1462
1463 /* If they did it with unspecified bounds, then we should have already
1464 given an error about it before we got here. */
1465 if (! TYPE_DOMAIN (type))
1466 return error_mark_node;
1467
1468 index_type = TYPE_DOMAIN (type);
1469 min = TYPE_MIN_VALUE (index_type);
1470 max = TYPE_MAX_VALUE (index_type);
1471
1472 return (integer_zerop (min)
1473 ? max
1474 : fold (build (MINUS_EXPR, TREE_TYPE (max), max, min)));
1475 }
1476 \f
1477 /* Return nonzero if arg is static -- a reference to an object in
1478 static storage. This is not the same as the C meaning of `static'. */
1479
1480 int
1481 staticp (arg)
1482 tree arg;
1483 {
1484 switch (TREE_CODE (arg))
1485 {
1486 case FUNCTION_DECL:
1487 /* Nested functions aren't static, since taking their address
1488 involves a trampoline. */
1489 return (decl_function_context (arg) == 0 || DECL_NO_STATIC_CHAIN (arg))
1490 && ! DECL_NON_ADDR_CONST_P (arg);
1491
1492 case VAR_DECL:
1493 return (TREE_STATIC (arg) || DECL_EXTERNAL (arg))
1494 && ! DECL_NON_ADDR_CONST_P (arg);
1495
1496 case CONSTRUCTOR:
1497 return TREE_STATIC (arg);
1498
1499 case LABEL_DECL:
1500 case STRING_CST:
1501 return 1;
1502
1503 /* If we are referencing a bitfield, we can't evaluate an
1504 ADDR_EXPR at compile time and so it isn't a constant. */
1505 case COMPONENT_REF:
1506 return (! DECL_BIT_FIELD (TREE_OPERAND (arg, 1))
1507 && staticp (TREE_OPERAND (arg, 0)));
1508
1509 case BIT_FIELD_REF:
1510 return 0;
1511
1512 #if 0
1513 /* This case is technically correct, but results in setting
1514 TREE_CONSTANT on ADDR_EXPRs that cannot be evaluated at
1515 compile time. */
1516 case INDIRECT_REF:
1517 return TREE_CONSTANT (TREE_OPERAND (arg, 0));
1518 #endif
1519
1520 case ARRAY_REF:
1521 if (TREE_CODE (TYPE_SIZE (TREE_TYPE (arg))) == INTEGER_CST
1522 && TREE_CODE (TREE_OPERAND (arg, 1)) == INTEGER_CST)
1523 return staticp (TREE_OPERAND (arg, 0));
1524
1525 default:
1526 return 0;
1527 }
1528 }
1529 \f
1530 /* Wrap a SAVE_EXPR around EXPR, if appropriate.
1531 Do this to any expression which may be used in more than one place,
1532 but must be evaluated only once.
1533
1534 Normally, expand_expr would reevaluate the expression each time.
1535 Calling save_expr produces something that is evaluated and recorded
1536 the first time expand_expr is called on it. Subsequent calls to
1537 expand_expr just reuse the recorded value.
1538
1539 The call to expand_expr that generates code that actually computes
1540 the value is the first call *at compile time*. Subsequent calls
1541 *at compile time* generate code to use the saved value.
1542 This produces correct result provided that *at run time* control
1543 always flows through the insns made by the first expand_expr
1544 before reaching the other places where the save_expr was evaluated.
1545 You, the caller of save_expr, must make sure this is so.
1546
1547 Constants, and certain read-only nodes, are returned with no
1548 SAVE_EXPR because that is safe. Expressions containing placeholders
1549 are not touched; see tree.def for an explanation of what these
1550 are used for. */
1551
1552 tree
1553 save_expr (expr)
1554 tree expr;
1555 {
1556 register tree t = fold (expr);
1557
1558 /* We don't care about whether this can be used as an lvalue in this
1559 context. */
1560 while (TREE_CODE (t) == NON_LVALUE_EXPR)
1561 t = TREE_OPERAND (t, 0);
1562
1563 /* If the tree evaluates to a constant, then we don't want to hide that
1564 fact (i.e. this allows further folding, and direct checks for constants).
1565 However, a read-only object that has side effects cannot be bypassed.
1566 Since it is no problem to reevaluate literals, we just return the
1567 literal node. */
1568
1569 if (TREE_CONSTANT (t) || (TREE_READONLY (t) && ! TREE_SIDE_EFFECTS (t))
1570 || TREE_CODE (t) == SAVE_EXPR || TREE_CODE (t) == ERROR_MARK)
1571 return t;
1572
1573 /* If T contains a PLACEHOLDER_EXPR, we must evaluate it each time, since
1574 it means that the size or offset of some field of an object depends on
1575 the value within another field.
1576
1577 Note that it must not be the case that T contains both a PLACEHOLDER_EXPR
1578 and some variable since it would then need to be both evaluated once and
1579 evaluated more than once. Front-ends must assure this case cannot
1580 happen by surrounding any such subexpressions in their own SAVE_EXPR
1581 and forcing evaluation at the proper time. */
1582 if (contains_placeholder_p (t))
1583 return t;
1584
1585 t = build (SAVE_EXPR, TREE_TYPE (expr), t, current_function_decl, NULL_TREE);
1586
1587 /* This expression might be placed ahead of a jump to ensure that the
1588 value was computed on both sides of the jump. So make sure it isn't
1589 eliminated as dead. */
1590 TREE_SIDE_EFFECTS (t) = 1;
1591 TREE_READONLY (t) = 1;
1592 return t;
1593 }
1594
1595 /* Arrange for an expression to be expanded multiple independent
1596 times. This is useful for cleanup actions, as the backend can
1597 expand them multiple times in different places. */
1598
1599 tree
1600 unsave_expr (expr)
1601 tree expr;
1602 {
1603 tree t;
1604
1605 /* If this is already protected, no sense in protecting it again. */
1606 if (TREE_CODE (expr) == UNSAVE_EXPR)
1607 return expr;
1608
1609 t = build1 (UNSAVE_EXPR, TREE_TYPE (expr), expr);
1610 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (expr);
1611 return t;
1612 }
1613
1614 /* Returns the index of the first non-tree operand for CODE, or the number
1615 of operands if all are trees. */
1616
1617 int
1618 first_rtl_op (code)
1619 enum tree_code code;
1620 {
1621 switch (code)
1622 {
1623 case SAVE_EXPR:
1624 return 2;
1625 case GOTO_SUBROUTINE_EXPR:
1626 case RTL_EXPR:
1627 return 0;
1628 case WITH_CLEANUP_EXPR:
1629 /* Should be defined to be 2. */
1630 return 1;
1631 case METHOD_CALL_EXPR:
1632 return 3;
1633 default:
1634 return TREE_CODE_LENGTH (code);
1635 }
1636 }
1637
1638 /* Perform any modifications to EXPR required when it is unsaved. Does
1639 not recurse into EXPR's subtrees. */
1640
1641 void
1642 unsave_expr_1 (expr)
1643 tree expr;
1644 {
1645 switch (TREE_CODE (expr))
1646 {
1647 case SAVE_EXPR:
1648 if (! SAVE_EXPR_PERSISTENT_P (expr))
1649 SAVE_EXPR_RTL (expr) = 0;
1650 break;
1651
1652 case TARGET_EXPR:
1653 /* Don't mess with a TARGET_EXPR that hasn't been expanded.
1654 It's OK for this to happen if it was part of a subtree that
1655 isn't immediately expanded, such as operand 2 of another
1656 TARGET_EXPR. */
1657 if (TREE_OPERAND (expr, 1))
1658 break;
1659
1660 TREE_OPERAND (expr, 1) = TREE_OPERAND (expr, 3);
1661 TREE_OPERAND (expr, 3) = NULL_TREE;
1662 break;
1663
1664 case RTL_EXPR:
1665 /* I don't yet know how to emit a sequence multiple times. */
1666 if (RTL_EXPR_SEQUENCE (expr) != 0)
1667 abort ();
1668 break;
1669
1670 default:
1671 if (lang_unsave_expr_now != 0)
1672 (*lang_unsave_expr_now) (expr);
1673 break;
1674 }
1675 }
1676
1677 /* Helper function for unsave_expr_now. */
1678
1679 static void
1680 unsave_expr_now_r (expr)
1681 tree expr;
1682 {
1683 enum tree_code code;
1684
1685 /* There's nothing to do for NULL_TREE. */
1686 if (expr == 0)
1687 return;
1688
1689 unsave_expr_1 (expr);
1690
1691 code = TREE_CODE (expr);
1692 switch (TREE_CODE_CLASS (code))
1693 {
1694 case 'c': /* a constant */
1695 case 't': /* a type node */
1696 case 'd': /* A decl node */
1697 case 'b': /* A block node */
1698 break;
1699
1700 case 'x': /* miscellaneous: e.g., identifier, TREE_LIST or ERROR_MARK. */
1701 if (code == TREE_LIST)
1702 {
1703 unsave_expr_now_r (TREE_VALUE (expr));
1704 unsave_expr_now_r (TREE_CHAIN (expr));
1705 }
1706 break;
1707
1708 case 'e': /* an expression */
1709 case 'r': /* a reference */
1710 case 's': /* an expression with side effects */
1711 case '<': /* a comparison expression */
1712 case '2': /* a binary arithmetic expression */
1713 case '1': /* a unary arithmetic expression */
1714 {
1715 int i;
1716
1717 for (i = first_rtl_op (code) - 1; i >= 0; i--)
1718 unsave_expr_now_r (TREE_OPERAND (expr, i));
1719 }
1720 break;
1721
1722 default:
1723 abort ();
1724 }
1725 }
1726
1727 /* Modify a tree in place so that all the evaluate only once things
1728 are cleared out. Return the EXPR given. */
1729
1730 tree
1731 unsave_expr_now (expr)
1732 tree expr;
1733 {
1734 if (lang_unsave!= 0)
1735 (*lang_unsave) (&expr);
1736 else
1737 unsave_expr_now_r (expr);
1738
1739 return expr;
1740 }
1741
1742 /* Return 0 if it is safe to evaluate EXPR multiple times,
1743 return 1 if it is safe if EXPR is unsaved afterward, or
1744 return 2 if it is completely unsafe.
1745
1746 This assumes that CALL_EXPRs and TARGET_EXPRs are never replicated in
1747 an expression tree, so that it safe to unsave them and the surrounding
1748 context will be correct.
1749
1750 SAVE_EXPRs basically *only* appear replicated in an expression tree,
1751 occasionally across the whole of a function. It is therefore only
1752 safe to unsave a SAVE_EXPR if you know that all occurrences appear
1753 below the UNSAVE_EXPR.
1754
1755 RTL_EXPRs consume their rtl during evaluation. It is therefore
1756 never possible to unsave them. */
1757
1758 int
1759 unsafe_for_reeval (expr)
1760 tree expr;
1761 {
1762 int unsafeness = 0;
1763 enum tree_code code;
1764 int i, tmp;
1765 tree exp;
1766 int first_rtl;
1767
1768 if (expr == NULL_TREE)
1769 return 1;
1770
1771 code = TREE_CODE (expr);
1772 first_rtl = first_rtl_op (code);
1773
1774 switch (code)
1775 {
1776 case SAVE_EXPR:
1777 case RTL_EXPR:
1778 return 2;
1779
1780 case TREE_LIST:
1781 for (exp = expr; exp != 0; exp = TREE_CHAIN (exp))
1782 {
1783 tmp = unsafe_for_reeval (TREE_VALUE (exp));
1784 unsafeness = MAX (tmp, unsafeness);
1785 }
1786
1787 return unsafeness;
1788
1789 case CALL_EXPR:
1790 tmp = unsafe_for_reeval (TREE_OPERAND (expr, 1));
1791 return MAX (tmp, 1);
1792
1793 case TARGET_EXPR:
1794 unsafeness = 1;
1795 break;
1796
1797 default:
1798 if (lang_unsafe_for_reeval != 0)
1799 {
1800 tmp = (*lang_unsafe_for_reeval) (expr);
1801 if (tmp >= 0)
1802 return tmp;
1803 }
1804 break;
1805 }
1806
1807 switch (TREE_CODE_CLASS (code))
1808 {
1809 case 'c': /* a constant */
1810 case 't': /* a type node */
1811 case 'x': /* something random, like an identifier or an ERROR_MARK. */
1812 case 'd': /* A decl node */
1813 case 'b': /* A block node */
1814 return 0;
1815
1816 case 'e': /* an expression */
1817 case 'r': /* a reference */
1818 case 's': /* an expression with side effects */
1819 case '<': /* a comparison expression */
1820 case '2': /* a binary arithmetic expression */
1821 case '1': /* a unary arithmetic expression */
1822 for (i = first_rtl - 1; i >= 0; i--)
1823 {
1824 tmp = unsafe_for_reeval (TREE_OPERAND (expr, i));
1825 unsafeness = MAX (tmp, unsafeness);
1826 }
1827
1828 return unsafeness;
1829
1830 default:
1831 return 2;
1832 }
1833 }
1834 \f
1835 /* Return 1 if EXP contains a PLACEHOLDER_EXPR; i.e., if it represents a size
1836 or offset that depends on a field within a record. */
1837
1838 int
1839 contains_placeholder_p (exp)
1840 tree exp;
1841 {
1842 register enum tree_code code;
1843 int result;
1844
1845 if (!exp)
1846 return 0;
1847
1848 /* If we have a WITH_RECORD_EXPR, it "cancels" any PLACEHOLDER_EXPR
1849 in it since it is supplying a value for it. */
1850 code = TREE_CODE (exp);
1851 if (code == WITH_RECORD_EXPR)
1852 return 0;
1853 else if (code == PLACEHOLDER_EXPR)
1854 return 1;
1855
1856 switch (TREE_CODE_CLASS (code))
1857 {
1858 case 'r':
1859 /* Don't look at any PLACEHOLDER_EXPRs that might be in index or bit
1860 position computations since they will be converted into a
1861 WITH_RECORD_EXPR involving the reference, which will assume
1862 here will be valid. */
1863 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1864
1865 case 'x':
1866 if (code == TREE_LIST)
1867 return (contains_placeholder_p (TREE_VALUE (exp))
1868 || (TREE_CHAIN (exp) != 0
1869 && contains_placeholder_p (TREE_CHAIN (exp))));
1870 break;
1871
1872 case '1':
1873 case '2': case '<':
1874 case 'e':
1875 switch (code)
1876 {
1877 case COMPOUND_EXPR:
1878 /* Ignoring the first operand isn't quite right, but works best. */
1879 return contains_placeholder_p (TREE_OPERAND (exp, 1));
1880
1881 case RTL_EXPR:
1882 case CONSTRUCTOR:
1883 return 0;
1884
1885 case COND_EXPR:
1886 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1887 || contains_placeholder_p (TREE_OPERAND (exp, 1))
1888 || contains_placeholder_p (TREE_OPERAND (exp, 2)));
1889
1890 case SAVE_EXPR:
1891 /* If we already know this doesn't have a placeholder, don't
1892 check again. */
1893 if (SAVE_EXPR_NOPLACEHOLDER (exp) || SAVE_EXPR_RTL (exp) != 0)
1894 return 0;
1895
1896 SAVE_EXPR_NOPLACEHOLDER (exp) = 1;
1897 result = contains_placeholder_p (TREE_OPERAND (exp, 0));
1898 if (result)
1899 SAVE_EXPR_NOPLACEHOLDER (exp) = 0;
1900
1901 return result;
1902
1903 case CALL_EXPR:
1904 return (TREE_OPERAND (exp, 1) != 0
1905 && contains_placeholder_p (TREE_OPERAND (exp, 1)));
1906
1907 default:
1908 break;
1909 }
1910
1911 switch (TREE_CODE_LENGTH (code))
1912 {
1913 case 1:
1914 return contains_placeholder_p (TREE_OPERAND (exp, 0));
1915 case 2:
1916 return (contains_placeholder_p (TREE_OPERAND (exp, 0))
1917 || contains_placeholder_p (TREE_OPERAND (exp, 1)));
1918 default:
1919 return 0;
1920 }
1921
1922 default:
1923 return 0;
1924 }
1925 return 0;
1926 }
1927
1928 /* Return 1 if EXP contains any expressions that produce cleanups for an
1929 outer scope to deal with. Used by fold. */
1930
1931 int
1932 has_cleanups (exp)
1933 tree exp;
1934 {
1935 int i, nops, cmp;
1936
1937 if (! TREE_SIDE_EFFECTS (exp))
1938 return 0;
1939
1940 switch (TREE_CODE (exp))
1941 {
1942 case TARGET_EXPR:
1943 case GOTO_SUBROUTINE_EXPR:
1944 case WITH_CLEANUP_EXPR:
1945 return 1;
1946
1947 case CLEANUP_POINT_EXPR:
1948 return 0;
1949
1950 case CALL_EXPR:
1951 for (exp = TREE_OPERAND (exp, 1); exp; exp = TREE_CHAIN (exp))
1952 {
1953 cmp = has_cleanups (TREE_VALUE (exp));
1954 if (cmp)
1955 return cmp;
1956 }
1957 return 0;
1958
1959 default:
1960 break;
1961 }
1962
1963 /* This general rule works for most tree codes. All exceptions should be
1964 handled above. If this is a language-specific tree code, we can't
1965 trust what might be in the operand, so say we don't know
1966 the situation. */
1967 if ((int) TREE_CODE (exp) >= (int) LAST_AND_UNUSED_TREE_CODE)
1968 return -1;
1969
1970 nops = first_rtl_op (TREE_CODE (exp));
1971 for (i = 0; i < nops; i++)
1972 if (TREE_OPERAND (exp, i) != 0)
1973 {
1974 int type = TREE_CODE_CLASS (TREE_CODE (TREE_OPERAND (exp, i)));
1975 if (type == 'e' || type == '<' || type == '1' || type == '2'
1976 || type == 'r' || type == 's')
1977 {
1978 cmp = has_cleanups (TREE_OPERAND (exp, i));
1979 if (cmp)
1980 return cmp;
1981 }
1982 }
1983
1984 return 0;
1985 }
1986 \f
1987 /* Given a tree EXP, a FIELD_DECL F, and a replacement value R,
1988 return a tree with all occurrences of references to F in a
1989 PLACEHOLDER_EXPR replaced by R. Note that we assume here that EXP
1990 contains only arithmetic expressions or a CALL_EXPR with a
1991 PLACEHOLDER_EXPR occurring only in its arglist. */
1992
1993 tree
1994 substitute_in_expr (exp, f, r)
1995 tree exp;
1996 tree f;
1997 tree r;
1998 {
1999 enum tree_code code = TREE_CODE (exp);
2000 tree op0, op1, op2;
2001 tree new;
2002 tree inner;
2003
2004 switch (TREE_CODE_CLASS (code))
2005 {
2006 case 'c':
2007 case 'd':
2008 return exp;
2009
2010 case 'x':
2011 if (code == PLACEHOLDER_EXPR)
2012 return exp;
2013 else if (code == TREE_LIST)
2014 {
2015 op0 = (TREE_CHAIN (exp) == 0
2016 ? 0 : substitute_in_expr (TREE_CHAIN (exp), f, r));
2017 op1 = substitute_in_expr (TREE_VALUE (exp), f, r);
2018 if (op0 == TREE_CHAIN (exp) && op1 == TREE_VALUE (exp))
2019 return exp;
2020
2021 return tree_cons (TREE_PURPOSE (exp), op1, op0);
2022 }
2023
2024 abort ();
2025
2026 case '1':
2027 case '2':
2028 case '<':
2029 case 'e':
2030 switch (TREE_CODE_LENGTH (code))
2031 {
2032 case 1:
2033 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2034 if (op0 == TREE_OPERAND (exp, 0))
2035 return exp;
2036
2037 if (code == NON_LVALUE_EXPR)
2038 return op0;
2039
2040 new = fold (build1 (code, TREE_TYPE (exp), op0));
2041 break;
2042
2043 case 2:
2044 /* An RTL_EXPR cannot contain a PLACEHOLDER_EXPR; a CONSTRUCTOR
2045 could, but we don't support it. */
2046 if (code == RTL_EXPR)
2047 return exp;
2048 else if (code == CONSTRUCTOR)
2049 abort ();
2050
2051 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2052 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2053 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1))
2054 return exp;
2055
2056 new = fold (build (code, TREE_TYPE (exp), op0, op1));
2057 break;
2058
2059 case 3:
2060 /* It cannot be that anything inside a SAVE_EXPR contains a
2061 PLACEHOLDER_EXPR. */
2062 if (code == SAVE_EXPR)
2063 return exp;
2064
2065 else if (code == CALL_EXPR)
2066 {
2067 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2068 if (op1 == TREE_OPERAND (exp, 1))
2069 return exp;
2070
2071 return build (code, TREE_TYPE (exp),
2072 TREE_OPERAND (exp, 0), op1, NULL_TREE);
2073 }
2074
2075 else if (code != COND_EXPR)
2076 abort ();
2077
2078 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2079 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2080 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2081 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2082 && op2 == TREE_OPERAND (exp, 2))
2083 return exp;
2084
2085 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2086 break;
2087
2088 default:
2089 abort ();
2090 }
2091
2092 break;
2093
2094 case 'r':
2095 switch (code)
2096 {
2097 case COMPONENT_REF:
2098 /* If this expression is getting a value from a PLACEHOLDER_EXPR
2099 and it is the right field, replace it with R. */
2100 for (inner = TREE_OPERAND (exp, 0);
2101 TREE_CODE_CLASS (TREE_CODE (inner)) == 'r';
2102 inner = TREE_OPERAND (inner, 0))
2103 ;
2104 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2105 && TREE_OPERAND (exp, 1) == f)
2106 return r;
2107
2108 /* If this expression hasn't been completed let, leave it
2109 alone. */
2110 if (TREE_CODE (inner) == PLACEHOLDER_EXPR
2111 && TREE_TYPE (inner) == 0)
2112 return exp;
2113
2114 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2115 if (op0 == TREE_OPERAND (exp, 0))
2116 return exp;
2117
2118 new = fold (build (code, TREE_TYPE (exp), op0,
2119 TREE_OPERAND (exp, 1)));
2120 break;
2121
2122 case BIT_FIELD_REF:
2123 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2124 op1 = substitute_in_expr (TREE_OPERAND (exp, 1), f, r);
2125 op2 = substitute_in_expr (TREE_OPERAND (exp, 2), f, r);
2126 if (op0 == TREE_OPERAND (exp, 0) && op1 == TREE_OPERAND (exp, 1)
2127 && op2 == TREE_OPERAND (exp, 2))
2128 return exp;
2129
2130 new = fold (build (code, TREE_TYPE (exp), op0, op1, op2));
2131 break;
2132
2133 case INDIRECT_REF:
2134 case BUFFER_REF:
2135 op0 = substitute_in_expr (TREE_OPERAND (exp, 0), f, r);
2136 if (op0 == TREE_OPERAND (exp, 0))
2137 return exp;
2138
2139 new = fold (build1 (code, TREE_TYPE (exp), op0));
2140 break;
2141
2142 default:
2143 abort ();
2144 }
2145 break;
2146
2147 default:
2148 abort ();
2149 }
2150
2151 TREE_READONLY (new) = TREE_READONLY (exp);
2152 return new;
2153 }
2154 \f
2155 /* Stabilize a reference so that we can use it any number of times
2156 without causing its operands to be evaluated more than once.
2157 Returns the stabilized reference. This works by means of save_expr,
2158 so see the caveats in the comments about save_expr.
2159
2160 Also allows conversion expressions whose operands are references.
2161 Any other kind of expression is returned unchanged. */
2162
2163 tree
2164 stabilize_reference (ref)
2165 tree ref;
2166 {
2167 register tree result;
2168 register enum tree_code code = TREE_CODE (ref);
2169
2170 switch (code)
2171 {
2172 case VAR_DECL:
2173 case PARM_DECL:
2174 case RESULT_DECL:
2175 /* No action is needed in this case. */
2176 return ref;
2177
2178 case NOP_EXPR:
2179 case CONVERT_EXPR:
2180 case FLOAT_EXPR:
2181 case FIX_TRUNC_EXPR:
2182 case FIX_FLOOR_EXPR:
2183 case FIX_ROUND_EXPR:
2184 case FIX_CEIL_EXPR:
2185 result = build_nt (code, stabilize_reference (TREE_OPERAND (ref, 0)));
2186 break;
2187
2188 case INDIRECT_REF:
2189 result = build_nt (INDIRECT_REF,
2190 stabilize_reference_1 (TREE_OPERAND (ref, 0)));
2191 break;
2192
2193 case COMPONENT_REF:
2194 result = build_nt (COMPONENT_REF,
2195 stabilize_reference (TREE_OPERAND (ref, 0)),
2196 TREE_OPERAND (ref, 1));
2197 break;
2198
2199 case BIT_FIELD_REF:
2200 result = build_nt (BIT_FIELD_REF,
2201 stabilize_reference (TREE_OPERAND (ref, 0)),
2202 stabilize_reference_1 (TREE_OPERAND (ref, 1)),
2203 stabilize_reference_1 (TREE_OPERAND (ref, 2)));
2204 break;
2205
2206 case ARRAY_REF:
2207 result = build_nt (ARRAY_REF,
2208 stabilize_reference (TREE_OPERAND (ref, 0)),
2209 stabilize_reference_1 (TREE_OPERAND (ref, 1)));
2210 break;
2211
2212 case COMPOUND_EXPR:
2213 /* We cannot wrap the first expression in a SAVE_EXPR, as then
2214 it wouldn't be ignored. This matters when dealing with
2215 volatiles. */
2216 return stabilize_reference_1 (ref);
2217
2218 case RTL_EXPR:
2219 result = build1 (INDIRECT_REF, TREE_TYPE (ref),
2220 save_expr (build1 (ADDR_EXPR,
2221 build_pointer_type (TREE_TYPE (ref)),
2222 ref)));
2223 break;
2224
2225 /* If arg isn't a kind of lvalue we recognize, make no change.
2226 Caller should recognize the error for an invalid lvalue. */
2227 default:
2228 return ref;
2229
2230 case ERROR_MARK:
2231 return error_mark_node;
2232 }
2233
2234 TREE_TYPE (result) = TREE_TYPE (ref);
2235 TREE_READONLY (result) = TREE_READONLY (ref);
2236 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (ref);
2237 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (ref);
2238
2239 return result;
2240 }
2241
2242 /* Subroutine of stabilize_reference; this is called for subtrees of
2243 references. Any expression with side-effects must be put in a SAVE_EXPR
2244 to ensure that it is only evaluated once.
2245
2246 We don't put SAVE_EXPR nodes around everything, because assigning very
2247 simple expressions to temporaries causes us to miss good opportunities
2248 for optimizations. Among other things, the opportunity to fold in the
2249 addition of a constant into an addressing mode often gets lost, e.g.
2250 "y[i+1] += x;". In general, we take the approach that we should not make
2251 an assignment unless we are forced into it - i.e., that any non-side effect
2252 operator should be allowed, and that cse should take care of coalescing
2253 multiple utterances of the same expression should that prove fruitful. */
2254
2255 tree
2256 stabilize_reference_1 (e)
2257 tree e;
2258 {
2259 register tree result;
2260 register enum tree_code code = TREE_CODE (e);
2261
2262 /* We cannot ignore const expressions because it might be a reference
2263 to a const array but whose index contains side-effects. But we can
2264 ignore things that are actual constant or that already have been
2265 handled by this function. */
2266
2267 if (TREE_CONSTANT (e) || code == SAVE_EXPR)
2268 return e;
2269
2270 switch (TREE_CODE_CLASS (code))
2271 {
2272 case 'x':
2273 case 't':
2274 case 'd':
2275 case 'b':
2276 case '<':
2277 case 's':
2278 case 'e':
2279 case 'r':
2280 /* If the expression has side-effects, then encase it in a SAVE_EXPR
2281 so that it will only be evaluated once. */
2282 /* The reference (r) and comparison (<) classes could be handled as
2283 below, but it is generally faster to only evaluate them once. */
2284 if (TREE_SIDE_EFFECTS (e))
2285 return save_expr (e);
2286 return e;
2287
2288 case 'c':
2289 /* Constants need no processing. In fact, we should never reach
2290 here. */
2291 return e;
2292
2293 case '2':
2294 /* Division is slow and tends to be compiled with jumps,
2295 especially the division by powers of 2 that is often
2296 found inside of an array reference. So do it just once. */
2297 if (code == TRUNC_DIV_EXPR || code == TRUNC_MOD_EXPR
2298 || code == FLOOR_DIV_EXPR || code == FLOOR_MOD_EXPR
2299 || code == CEIL_DIV_EXPR || code == CEIL_MOD_EXPR
2300 || code == ROUND_DIV_EXPR || code == ROUND_MOD_EXPR)
2301 return save_expr (e);
2302 /* Recursively stabilize each operand. */
2303 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)),
2304 stabilize_reference_1 (TREE_OPERAND (e, 1)));
2305 break;
2306
2307 case '1':
2308 /* Recursively stabilize each operand. */
2309 result = build_nt (code, stabilize_reference_1 (TREE_OPERAND (e, 0)));
2310 break;
2311
2312 default:
2313 abort ();
2314 }
2315
2316 TREE_TYPE (result) = TREE_TYPE (e);
2317 TREE_READONLY (result) = TREE_READONLY (e);
2318 TREE_SIDE_EFFECTS (result) = TREE_SIDE_EFFECTS (e);
2319 TREE_THIS_VOLATILE (result) = TREE_THIS_VOLATILE (e);
2320
2321 return result;
2322 }
2323 \f
2324 /* Low-level constructors for expressions. */
2325
2326 /* Build an expression of code CODE, data type TYPE,
2327 and operands as specified by the arguments ARG1 and following arguments.
2328 Expressions and reference nodes can be created this way.
2329 Constants, decls, types and misc nodes cannot be. */
2330
2331 tree
2332 build VPARAMS ((enum tree_code code, tree tt, ...))
2333 {
2334 #ifndef ANSI_PROTOTYPES
2335 enum tree_code code;
2336 tree tt;
2337 #endif
2338 va_list p;
2339 register tree t;
2340 register int length;
2341 register int i;
2342 int fro;
2343 int constant;
2344
2345 VA_START (p, tt);
2346
2347 #ifndef ANSI_PROTOTYPES
2348 code = va_arg (p, enum tree_code);
2349 tt = va_arg (p, tree);
2350 #endif
2351
2352 t = make_node (code);
2353 length = TREE_CODE_LENGTH (code);
2354 TREE_TYPE (t) = tt;
2355
2356 /* Below, we automatically set TREE_SIDE_EFFECTS and TREE_READONLY for the
2357 result based on those same flags for the arguments. But if the
2358 arguments aren't really even `tree' expressions, we shouldn't be trying
2359 to do this. */
2360 fro = first_rtl_op (code);
2361
2362 /* Expressions without side effects may be constant if their
2363 arguments are as well. */
2364 constant = (TREE_CODE_CLASS (code) == '<'
2365 || TREE_CODE_CLASS (code) == '1'
2366 || TREE_CODE_CLASS (code) == '2'
2367 || TREE_CODE_CLASS (code) == 'c');
2368
2369 if (length == 2)
2370 {
2371 /* This is equivalent to the loop below, but faster. */
2372 register tree arg0 = va_arg (p, tree);
2373 register tree arg1 = va_arg (p, tree);
2374
2375 TREE_OPERAND (t, 0) = arg0;
2376 TREE_OPERAND (t, 1) = arg1;
2377 TREE_READONLY (t) = 1;
2378 if (arg0 && fro > 0)
2379 {
2380 if (TREE_SIDE_EFFECTS (arg0))
2381 TREE_SIDE_EFFECTS (t) = 1;
2382 if (!TREE_READONLY (arg0))
2383 TREE_READONLY (t) = 0;
2384 if (!TREE_CONSTANT (arg0))
2385 constant = 0;
2386 }
2387
2388 if (arg1 && fro > 1)
2389 {
2390 if (TREE_SIDE_EFFECTS (arg1))
2391 TREE_SIDE_EFFECTS (t) = 1;
2392 if (!TREE_READONLY (arg1))
2393 TREE_READONLY (t) = 0;
2394 if (!TREE_CONSTANT (arg1))
2395 constant = 0;
2396 }
2397 }
2398 else if (length == 1)
2399 {
2400 register tree arg0 = va_arg (p, tree);
2401
2402 /* The only one-operand cases we handle here are those with side-effects.
2403 Others are handled with build1. So don't bother checked if the
2404 arg has side-effects since we'll already have set it.
2405
2406 ??? This really should use build1 too. */
2407 if (TREE_CODE_CLASS (code) != 's')
2408 abort ();
2409 TREE_OPERAND (t, 0) = arg0;
2410 }
2411 else
2412 {
2413 for (i = 0; i < length; i++)
2414 {
2415 register tree operand = va_arg (p, tree);
2416
2417 TREE_OPERAND (t, i) = operand;
2418 if (operand && fro > i)
2419 {
2420 if (TREE_SIDE_EFFECTS (operand))
2421 TREE_SIDE_EFFECTS (t) = 1;
2422 if (!TREE_CONSTANT (operand))
2423 constant = 0;
2424 }
2425 }
2426 }
2427 va_end (p);
2428
2429 TREE_CONSTANT (t) = constant;
2430 return t;
2431 }
2432
2433 /* Same as above, but only builds for unary operators.
2434 Saves lions share of calls to `build'; cuts down use
2435 of varargs, which is expensive for RISC machines. */
2436
2437 tree
2438 build1 (code, type, node)
2439 enum tree_code code;
2440 tree type;
2441 tree node;
2442 {
2443 register int length;
2444 #ifdef GATHER_STATISTICS
2445 register tree_node_kind kind;
2446 #endif
2447 register tree t;
2448
2449 #ifdef GATHER_STATISTICS
2450 if (TREE_CODE_CLASS (code) == 'r')
2451 kind = r_kind;
2452 else
2453 kind = e_kind;
2454 #endif
2455
2456 #ifdef ENABLE_CHECKING
2457 if (TREE_CODE_CLASS (code) == '2'
2458 || TREE_CODE_CLASS (code) == '<'
2459 || TREE_CODE_LENGTH (code) != 1)
2460 abort ();
2461 #endif /* ENABLE_CHECKING */
2462
2463 length = sizeof (struct tree_exp);
2464
2465 t = ggc_alloc_tree (length);
2466
2467 memset ((PTR) t, 0, sizeof (struct tree_common));
2468
2469 #ifdef GATHER_STATISTICS
2470 tree_node_counts[(int) kind]++;
2471 tree_node_sizes[(int) kind] += length;
2472 #endif
2473
2474 TREE_SET_CODE (t, code);
2475
2476 TREE_TYPE (t) = type;
2477 TREE_COMPLEXITY (t) = 0;
2478 TREE_OPERAND (t, 0) = node;
2479 if (node && first_rtl_op (code) != 0)
2480 {
2481 TREE_SIDE_EFFECTS (t) = TREE_SIDE_EFFECTS (node);
2482 TREE_READONLY (t) = TREE_READONLY (node);
2483 }
2484
2485 switch (code)
2486 {
2487 case INIT_EXPR:
2488 case MODIFY_EXPR:
2489 case VA_ARG_EXPR:
2490 case RTL_EXPR:
2491 case PREDECREMENT_EXPR:
2492 case PREINCREMENT_EXPR:
2493 case POSTDECREMENT_EXPR:
2494 case POSTINCREMENT_EXPR:
2495 /* All of these have side-effects, no matter what their
2496 operands are. */
2497 TREE_SIDE_EFFECTS (t) = 1;
2498 TREE_READONLY (t) = 0;
2499 break;
2500
2501 default:
2502 if (TREE_CODE_CLASS (code) == '1' && node && TREE_CONSTANT (node))
2503 TREE_CONSTANT (t) = 1;
2504 break;
2505 }
2506
2507 return t;
2508 }
2509
2510 /* Similar except don't specify the TREE_TYPE
2511 and leave the TREE_SIDE_EFFECTS as 0.
2512 It is permissible for arguments to be null,
2513 or even garbage if their values do not matter. */
2514
2515 tree
2516 build_nt VPARAMS ((enum tree_code code, ...))
2517 {
2518 #ifndef ANSI_PROTOTYPES
2519 enum tree_code code;
2520 #endif
2521 va_list p;
2522 register tree t;
2523 register int length;
2524 register int i;
2525
2526 VA_START (p, code);
2527
2528 #ifndef ANSI_PROTOTYPES
2529 code = va_arg (p, enum tree_code);
2530 #endif
2531
2532 t = make_node (code);
2533 length = TREE_CODE_LENGTH (code);
2534
2535 for (i = 0; i < length; i++)
2536 TREE_OPERAND (t, i) = va_arg (p, tree);
2537
2538 va_end (p);
2539 return t;
2540 }
2541
2542 #if 0
2543 /* Commented out because this wants to be done very
2544 differently. See cp-lex.c. */
2545 tree
2546 build_op_identifier (op1, op2)
2547 tree op1, op2;
2548 {
2549 register tree t = make_node (OP_IDENTIFIER);
2550 TREE_PURPOSE (t) = op1;
2551 TREE_VALUE (t) = op2;
2552 return t;
2553 }
2554 #endif
2555 \f
2556 /* Create a DECL_... node of code CODE, name NAME and data type TYPE.
2557 We do NOT enter this node in any sort of symbol table.
2558
2559 layout_decl is used to set up the decl's storage layout.
2560 Other slots are initialized to 0 or null pointers. */
2561
2562 tree
2563 build_decl (code, name, type)
2564 enum tree_code code;
2565 tree name, type;
2566 {
2567 register tree t;
2568
2569 t = make_node (code);
2570
2571 /* if (type == error_mark_node)
2572 type = integer_type_node; */
2573 /* That is not done, deliberately, so that having error_mark_node
2574 as the type can suppress useless errors in the use of this variable. */
2575
2576 DECL_NAME (t) = name;
2577 TREE_TYPE (t) = type;
2578
2579 if (code == VAR_DECL || code == PARM_DECL || code == RESULT_DECL)
2580 layout_decl (t, 0);
2581 else if (code == FUNCTION_DECL)
2582 DECL_MODE (t) = FUNCTION_MODE;
2583
2584 return t;
2585 }
2586 \f
2587 /* BLOCK nodes are used to represent the structure of binding contours
2588 and declarations, once those contours have been exited and their contents
2589 compiled. This information is used for outputting debugging info. */
2590
2591 tree
2592 build_block (vars, tags, subblocks, supercontext, chain)
2593 tree vars, tags ATTRIBUTE_UNUSED, subblocks, supercontext, chain;
2594 {
2595 register tree block = make_node (BLOCK);
2596
2597 BLOCK_VARS (block) = vars;
2598 BLOCK_SUBBLOCKS (block) = subblocks;
2599 BLOCK_SUPERCONTEXT (block) = supercontext;
2600 BLOCK_CHAIN (block) = chain;
2601 return block;
2602 }
2603
2604 /* EXPR_WITH_FILE_LOCATION are used to keep track of the exact
2605 location where an expression or an identifier were encountered. It
2606 is necessary for languages where the frontend parser will handle
2607 recursively more than one file (Java is one of them). */
2608
2609 tree
2610 build_expr_wfl (node, file, line, col)
2611 tree node;
2612 const char *file;
2613 int line, col;
2614 {
2615 static const char *last_file = 0;
2616 static tree last_filenode = NULL_TREE;
2617 register tree wfl = make_node (EXPR_WITH_FILE_LOCATION);
2618
2619 EXPR_WFL_NODE (wfl) = node;
2620 EXPR_WFL_SET_LINECOL (wfl, line, col);
2621 if (file != last_file)
2622 {
2623 last_file = file;
2624 last_filenode = file ? get_identifier (file) : NULL_TREE;
2625 }
2626
2627 EXPR_WFL_FILENAME_NODE (wfl) = last_filenode;
2628 if (node)
2629 {
2630 TREE_SIDE_EFFECTS (wfl) = TREE_SIDE_EFFECTS (node);
2631 TREE_TYPE (wfl) = TREE_TYPE (node);
2632 }
2633
2634 return wfl;
2635 }
2636 \f
2637 /* Return a declaration like DDECL except that its DECL_MACHINE_ATTRIBUTE
2638 is ATTRIBUTE. */
2639
2640 tree
2641 build_decl_attribute_variant (ddecl, attribute)
2642 tree ddecl, attribute;
2643 {
2644 DECL_MACHINE_ATTRIBUTES (ddecl) = attribute;
2645 return ddecl;
2646 }
2647
2648 /* Return a type like TTYPE except that its TYPE_ATTRIBUTE
2649 is ATTRIBUTE.
2650
2651 Record such modified types already made so we don't make duplicates. */
2652
2653 tree
2654 build_type_attribute_variant (ttype, attribute)
2655 tree ttype, attribute;
2656 {
2657 if ( ! attribute_list_equal (TYPE_ATTRIBUTES (ttype), attribute))
2658 {
2659 unsigned int hashcode;
2660 tree ntype;
2661
2662 ntype = copy_node (ttype);
2663
2664 TYPE_POINTER_TO (ntype) = 0;
2665 TYPE_REFERENCE_TO (ntype) = 0;
2666 TYPE_ATTRIBUTES (ntype) = attribute;
2667
2668 /* Create a new main variant of TYPE. */
2669 TYPE_MAIN_VARIANT (ntype) = ntype;
2670 TYPE_NEXT_VARIANT (ntype) = 0;
2671 set_type_quals (ntype, TYPE_UNQUALIFIED);
2672
2673 hashcode = (TYPE_HASH (TREE_CODE (ntype))
2674 + TYPE_HASH (TREE_TYPE (ntype))
2675 + attribute_hash_list (attribute));
2676
2677 switch (TREE_CODE (ntype))
2678 {
2679 case FUNCTION_TYPE:
2680 hashcode += TYPE_HASH (TYPE_ARG_TYPES (ntype));
2681 break;
2682 case ARRAY_TYPE:
2683 hashcode += TYPE_HASH (TYPE_DOMAIN (ntype));
2684 break;
2685 case INTEGER_TYPE:
2686 hashcode += TYPE_HASH (TYPE_MAX_VALUE (ntype));
2687 break;
2688 case REAL_TYPE:
2689 hashcode += TYPE_HASH (TYPE_PRECISION (ntype));
2690 break;
2691 default:
2692 break;
2693 }
2694
2695 ntype = type_hash_canon (hashcode, ntype);
2696 ttype = build_qualified_type (ntype, TYPE_QUALS (ttype));
2697 }
2698
2699 return ttype;
2700 }
2701
2702 /* Return a 1 if ATTR_NAME and ATTR_ARGS is valid for either declaration DECL
2703 or type TYPE and 0 otherwise. Validity is determined the configuration
2704 macros VALID_MACHINE_DECL_ATTRIBUTE and VALID_MACHINE_TYPE_ATTRIBUTE. */
2705
2706 int
2707 valid_machine_attribute (attr_name, attr_args, decl, type)
2708 tree attr_name;
2709 tree attr_args ATTRIBUTE_UNUSED;
2710 tree decl ATTRIBUTE_UNUSED;
2711 tree type ATTRIBUTE_UNUSED;
2712 {
2713 int validated = 0;
2714 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2715 tree decl_attr_list = decl != 0 ? DECL_MACHINE_ATTRIBUTES (decl) : 0;
2716 #endif
2717 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2718 tree type_attr_list = TYPE_ATTRIBUTES (type);
2719 #endif
2720
2721 if (TREE_CODE (attr_name) != IDENTIFIER_NODE)
2722 abort ();
2723
2724 #ifdef VALID_MACHINE_DECL_ATTRIBUTE
2725 if (decl != 0
2726 && VALID_MACHINE_DECL_ATTRIBUTE (decl, decl_attr_list, attr_name,
2727 attr_args))
2728 {
2729 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2730 decl_attr_list);
2731
2732 if (attr != NULL_TREE)
2733 {
2734 /* Override existing arguments. Declarations are unique so we can
2735 modify this in place. */
2736 TREE_VALUE (attr) = attr_args;
2737 }
2738 else
2739 {
2740 decl_attr_list = tree_cons (attr_name, attr_args, decl_attr_list);
2741 decl = build_decl_attribute_variant (decl, decl_attr_list);
2742 }
2743
2744 validated = 1;
2745 }
2746 #endif
2747
2748 #ifdef VALID_MACHINE_TYPE_ATTRIBUTE
2749 if (validated)
2750 /* Don't apply the attribute to both the decl and the type. */
2751 ;
2752 else if (VALID_MACHINE_TYPE_ATTRIBUTE (type, type_attr_list, attr_name,
2753 attr_args))
2754 {
2755 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2756 type_attr_list);
2757
2758 if (attr != NULL_TREE)
2759 {
2760 /* Override existing arguments.
2761 ??? This currently works since attribute arguments are not
2762 included in `attribute_hash_list'. Something more complicated
2763 may be needed in the future. */
2764 TREE_VALUE (attr) = attr_args;
2765 }
2766 else
2767 {
2768 /* If this is part of a declaration, create a type variant,
2769 otherwise, this is part of a type definition, so add it
2770 to the base type. */
2771 type_attr_list = tree_cons (attr_name, attr_args, type_attr_list);
2772 if (decl != 0)
2773 type = build_type_attribute_variant (type, type_attr_list);
2774 else
2775 TYPE_ATTRIBUTES (type) = type_attr_list;
2776 }
2777
2778 if (decl != 0)
2779 TREE_TYPE (decl) = type;
2780
2781 validated = 1;
2782 }
2783
2784 /* Handle putting a type attribute on pointer-to-function-type by putting
2785 the attribute on the function type. */
2786 else if (POINTER_TYPE_P (type)
2787 && TREE_CODE (TREE_TYPE (type)) == FUNCTION_TYPE
2788 && VALID_MACHINE_TYPE_ATTRIBUTE (TREE_TYPE (type), type_attr_list,
2789 attr_name, attr_args))
2790 {
2791 tree inner_type = TREE_TYPE (type);
2792 tree inner_attr_list = TYPE_ATTRIBUTES (inner_type);
2793 tree attr = lookup_attribute (IDENTIFIER_POINTER (attr_name),
2794 type_attr_list);
2795
2796 if (attr != NULL_TREE)
2797 TREE_VALUE (attr) = attr_args;
2798 else
2799 {
2800 inner_attr_list = tree_cons (attr_name, attr_args, inner_attr_list);
2801 inner_type = build_type_attribute_variant (inner_type,
2802 inner_attr_list);
2803 }
2804
2805 if (decl != 0)
2806 TREE_TYPE (decl) = build_pointer_type (inner_type);
2807 else
2808 {
2809 /* Clear TYPE_POINTER_TO for the old inner type, since
2810 `type' won't be pointing to it anymore. */
2811 TYPE_POINTER_TO (TREE_TYPE (type)) = NULL_TREE;
2812 TREE_TYPE (type) = inner_type;
2813 }
2814
2815 validated = 1;
2816 }
2817 #endif
2818
2819 return validated;
2820 }
2821
2822 /* Return non-zero if IDENT is a valid name for attribute ATTR,
2823 or zero if not.
2824
2825 We try both `text' and `__text__', ATTR may be either one. */
2826 /* ??? It might be a reasonable simplification to require ATTR to be only
2827 `text'. One might then also require attribute lists to be stored in
2828 their canonicalized form. */
2829
2830 int
2831 is_attribute_p (attr, ident)
2832 const char *attr;
2833 tree ident;
2834 {
2835 int ident_len, attr_len;
2836 const char *p;
2837
2838 if (TREE_CODE (ident) != IDENTIFIER_NODE)
2839 return 0;
2840
2841 if (strcmp (attr, IDENTIFIER_POINTER (ident)) == 0)
2842 return 1;
2843
2844 p = IDENTIFIER_POINTER (ident);
2845 ident_len = strlen (p);
2846 attr_len = strlen (attr);
2847
2848 /* If ATTR is `__text__', IDENT must be `text'; and vice versa. */
2849 if (attr[0] == '_')
2850 {
2851 if (attr[1] != '_'
2852 || attr[attr_len - 2] != '_'
2853 || attr[attr_len - 1] != '_')
2854 abort ();
2855 if (ident_len == attr_len - 4
2856 && strncmp (attr + 2, p, attr_len - 4) == 0)
2857 return 1;
2858 }
2859 else
2860 {
2861 if (ident_len == attr_len + 4
2862 && p[0] == '_' && p[1] == '_'
2863 && p[ident_len - 2] == '_' && p[ident_len - 1] == '_'
2864 && strncmp (attr, p + 2, attr_len) == 0)
2865 return 1;
2866 }
2867
2868 return 0;
2869 }
2870
2871 /* Given an attribute name and a list of attributes, return a pointer to the
2872 attribute's list element if the attribute is part of the list, or NULL_TREE
2873 if not found. */
2874
2875 tree
2876 lookup_attribute (attr_name, list)
2877 const char *attr_name;
2878 tree list;
2879 {
2880 tree l;
2881
2882 for (l = list; l; l = TREE_CHAIN (l))
2883 {
2884 if (TREE_CODE (TREE_PURPOSE (l)) != IDENTIFIER_NODE)
2885 abort ();
2886 if (is_attribute_p (attr_name, TREE_PURPOSE (l)))
2887 return l;
2888 }
2889
2890 return NULL_TREE;
2891 }
2892
2893 /* Return an attribute list that is the union of a1 and a2. */
2894
2895 tree
2896 merge_attributes (a1, a2)
2897 register tree a1, a2;
2898 {
2899 tree attributes;
2900
2901 /* Either one unset? Take the set one. */
2902
2903 if ((attributes = a1) == 0)
2904 attributes = a2;
2905
2906 /* One that completely contains the other? Take it. */
2907
2908 else if (a2 != 0 && ! attribute_list_contained (a1, a2))
2909 {
2910 if (attribute_list_contained (a2, a1))
2911 attributes = a2;
2912 else
2913 {
2914 /* Pick the longest list, and hang on the other list. */
2915 /* ??? For the moment we punt on the issue of attrs with args. */
2916
2917 if (list_length (a1) < list_length (a2))
2918 attributes = a2, a2 = a1;
2919
2920 for (; a2 != 0; a2 = TREE_CHAIN (a2))
2921 if (lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (a2)),
2922 attributes) == NULL_TREE)
2923 {
2924 a1 = copy_node (a2);
2925 TREE_CHAIN (a1) = attributes;
2926 attributes = a1;
2927 }
2928 }
2929 }
2930 return attributes;
2931 }
2932
2933 /* Given types T1 and T2, merge their attributes and return
2934 the result. */
2935
2936 tree
2937 merge_machine_type_attributes (t1, t2)
2938 tree t1, t2;
2939 {
2940 #ifdef MERGE_MACHINE_TYPE_ATTRIBUTES
2941 return MERGE_MACHINE_TYPE_ATTRIBUTES (t1, t2);
2942 #else
2943 return merge_attributes (TYPE_ATTRIBUTES (t1),
2944 TYPE_ATTRIBUTES (t2));
2945 #endif
2946 }
2947
2948 /* Given decls OLDDECL and NEWDECL, merge their attributes and return
2949 the result. */
2950
2951 tree
2952 merge_machine_decl_attributes (olddecl, newdecl)
2953 tree olddecl, newdecl;
2954 {
2955 #ifdef MERGE_MACHINE_DECL_ATTRIBUTES
2956 return MERGE_MACHINE_DECL_ATTRIBUTES (olddecl, newdecl);
2957 #else
2958 return merge_attributes (DECL_MACHINE_ATTRIBUTES (olddecl),
2959 DECL_MACHINE_ATTRIBUTES (newdecl));
2960 #endif
2961 }
2962 \f
2963 /* Set the type qualifiers for TYPE to TYPE_QUALS, which is a bitmask
2964 of the various TYPE_QUAL values. */
2965
2966 static void
2967 set_type_quals (type, type_quals)
2968 tree type;
2969 int type_quals;
2970 {
2971 TYPE_READONLY (type) = (type_quals & TYPE_QUAL_CONST) != 0;
2972 TYPE_VOLATILE (type) = (type_quals & TYPE_QUAL_VOLATILE) != 0;
2973 TYPE_RESTRICT (type) = (type_quals & TYPE_QUAL_RESTRICT) != 0;
2974 }
2975
2976 /* Return a version of the TYPE, qualified as indicated by the
2977 TYPE_QUALS, if one exists. If no qualified version exists yet,
2978 return NULL_TREE. */
2979
2980 tree
2981 get_qualified_type (type, type_quals)
2982 tree type;
2983 int type_quals;
2984 {
2985 tree t;
2986
2987 /* Search the chain of variants to see if there is already one there just
2988 like the one we need to have. If so, use that existing one. We must
2989 preserve the TYPE_NAME, since there is code that depends on this. */
2990 for (t = TYPE_MAIN_VARIANT (type); t; t = TYPE_NEXT_VARIANT (t))
2991 if (TYPE_QUALS (t) == type_quals && TYPE_NAME (t) == TYPE_NAME (type))
2992 return t;
2993
2994 return NULL_TREE;
2995 }
2996
2997 /* Like get_qualified_type, but creates the type if it does not
2998 exist. This function never returns NULL_TREE. */
2999
3000 tree
3001 build_qualified_type (type, type_quals)
3002 tree type;
3003 int type_quals;
3004 {
3005 tree t;
3006
3007 /* See if we already have the appropriate qualified variant. */
3008 t = get_qualified_type (type, type_quals);
3009
3010 /* If not, build it. */
3011 if (!t)
3012 {
3013 t = build_type_copy (type);
3014 set_type_quals (t, type_quals);
3015 }
3016
3017 return t;
3018 }
3019
3020 /* Create a new variant of TYPE, equivalent but distinct.
3021 This is so the caller can modify it. */
3022
3023 tree
3024 build_type_copy (type)
3025 tree type;
3026 {
3027 register tree t, m = TYPE_MAIN_VARIANT (type);
3028
3029 t = copy_node (type);
3030
3031 TYPE_POINTER_TO (t) = 0;
3032 TYPE_REFERENCE_TO (t) = 0;
3033
3034 /* Add this type to the chain of variants of TYPE. */
3035 TYPE_NEXT_VARIANT (t) = TYPE_NEXT_VARIANT (m);
3036 TYPE_NEXT_VARIANT (m) = t;
3037
3038 return t;
3039 }
3040 \f
3041 /* Hashing of types so that we don't make duplicates.
3042 The entry point is `type_hash_canon'. */
3043
3044 /* Compute a hash code for a list of types (chain of TREE_LIST nodes
3045 with types in the TREE_VALUE slots), by adding the hash codes
3046 of the individual types. */
3047
3048 unsigned int
3049 type_hash_list (list)
3050 tree list;
3051 {
3052 unsigned int hashcode;
3053 register tree tail;
3054
3055 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3056 hashcode += TYPE_HASH (TREE_VALUE (tail));
3057
3058 return hashcode;
3059 }
3060
3061 /* These are the Hashtable callback functions. */
3062
3063 /* Returns true if the types are equal. */
3064
3065 static int
3066 type_hash_eq (va, vb)
3067 const void *va;
3068 const void *vb;
3069 {
3070 const struct type_hash *a = va, *b = vb;
3071 if (a->hash == b->hash
3072 && TREE_CODE (a->type) == TREE_CODE (b->type)
3073 && TREE_TYPE (a->type) == TREE_TYPE (b->type)
3074 && attribute_list_equal (TYPE_ATTRIBUTES (a->type),
3075 TYPE_ATTRIBUTES (b->type))
3076 && TYPE_ALIGN (a->type) == TYPE_ALIGN (b->type)
3077 && (TYPE_MAX_VALUE (a->type) == TYPE_MAX_VALUE (b->type)
3078 || tree_int_cst_equal (TYPE_MAX_VALUE (a->type),
3079 TYPE_MAX_VALUE (b->type)))
3080 && (TYPE_MIN_VALUE (a->type) == TYPE_MIN_VALUE (b->type)
3081 || tree_int_cst_equal (TYPE_MIN_VALUE (a->type),
3082 TYPE_MIN_VALUE (b->type)))
3083 /* Note that TYPE_DOMAIN is TYPE_ARG_TYPES for FUNCTION_TYPE. */
3084 && (TYPE_DOMAIN (a->type) == TYPE_DOMAIN (b->type)
3085 || (TYPE_DOMAIN (a->type)
3086 && TREE_CODE (TYPE_DOMAIN (a->type)) == TREE_LIST
3087 && TYPE_DOMAIN (b->type)
3088 && TREE_CODE (TYPE_DOMAIN (b->type)) == TREE_LIST
3089 && type_list_equal (TYPE_DOMAIN (a->type),
3090 TYPE_DOMAIN (b->type)))))
3091 return 1;
3092 return 0;
3093 }
3094
3095 /* Return the cached hash value. */
3096
3097 static unsigned int
3098 type_hash_hash (item)
3099 const void *item;
3100 {
3101 return ((const struct type_hash *) item)->hash;
3102 }
3103
3104 /* Look in the type hash table for a type isomorphic to TYPE.
3105 If one is found, return it. Otherwise return 0. */
3106
3107 tree
3108 type_hash_lookup (hashcode, type)
3109 unsigned int hashcode;
3110 tree type;
3111 {
3112 struct type_hash *h, in;
3113
3114 /* The TYPE_ALIGN field of a type is set by layout_type(), so we
3115 must call that routine before comparing TYPE_ALIGNs. */
3116 layout_type (type);
3117
3118 in.hash = hashcode;
3119 in.type = type;
3120
3121 h = htab_find_with_hash (type_hash_table, &in, hashcode);
3122 if (h)
3123 return h->type;
3124 return NULL_TREE;
3125 }
3126
3127 /* Add an entry to the type-hash-table
3128 for a type TYPE whose hash code is HASHCODE. */
3129
3130 void
3131 type_hash_add (hashcode, type)
3132 unsigned int hashcode;
3133 tree type;
3134 {
3135 struct type_hash *h;
3136 void **loc;
3137
3138 h = (struct type_hash *) permalloc (sizeof (struct type_hash));
3139 h->hash = hashcode;
3140 h->type = type;
3141 loc = htab_find_slot_with_hash (type_hash_table, h, hashcode, INSERT);
3142 *(struct type_hash **) loc = h;
3143 }
3144
3145 /* Given TYPE, and HASHCODE its hash code, return the canonical
3146 object for an identical type if one already exists.
3147 Otherwise, return TYPE, and record it as the canonical object
3148 if it is a permanent object.
3149
3150 To use this function, first create a type of the sort you want.
3151 Then compute its hash code from the fields of the type that
3152 make it different from other similar types.
3153 Then call this function and use the value.
3154 This function frees the type you pass in if it is a duplicate. */
3155
3156 /* Set to 1 to debug without canonicalization. Never set by program. */
3157 int debug_no_type_hash = 0;
3158
3159 tree
3160 type_hash_canon (hashcode, type)
3161 unsigned int hashcode;
3162 tree type;
3163 {
3164 tree t1;
3165
3166 if (debug_no_type_hash)
3167 return type;
3168
3169 t1 = type_hash_lookup (hashcode, type);
3170 if (t1 != 0)
3171 {
3172 #ifdef GATHER_STATISTICS
3173 tree_node_counts[(int) t_kind]--;
3174 tree_node_sizes[(int) t_kind] -= sizeof (struct tree_type);
3175 #endif
3176 return t1;
3177 }
3178
3179 /* If this is a permanent type, record it for later reuse. */
3180 type_hash_add (hashcode, type);
3181
3182 return type;
3183 }
3184
3185 /* Callback function for htab_traverse. */
3186
3187 static int
3188 mark_hash_entry (entry, param)
3189 void **entry;
3190 void *param ATTRIBUTE_UNUSED;
3191 {
3192 struct type_hash *p = *(struct type_hash **) entry;
3193
3194 ggc_mark_tree (p->type);
3195
3196 /* Continue scan. */
3197 return 1;
3198 }
3199
3200 /* Mark ARG (which is really a htab_t *) for GC. */
3201
3202 static void
3203 mark_type_hash (arg)
3204 void *arg;
3205 {
3206 htab_t t = *(htab_t *) arg;
3207
3208 htab_traverse (t, mark_hash_entry, 0);
3209 }
3210
3211 /* Mark the hashtable slot pointed to by ENTRY (which is really a
3212 `tree**') for GC. */
3213
3214 static int
3215 mark_tree_hashtable_entry (entry, data)
3216 void **entry;
3217 void *data ATTRIBUTE_UNUSED;
3218 {
3219 ggc_mark_tree ((tree) *entry);
3220 return 1;
3221 }
3222
3223 /* Mark ARG (which is really a htab_t whose slots are trees) for
3224 GC. */
3225
3226 void
3227 mark_tree_hashtable (arg)
3228 void *arg;
3229 {
3230 htab_t t = *(htab_t *) arg;
3231 htab_traverse (t, mark_tree_hashtable_entry, 0);
3232 }
3233
3234 static void
3235 print_type_hash_statistics ()
3236 {
3237 fprintf (stderr, "Type hash: size %ld, %ld elements, %f collisions\n",
3238 (long) htab_size (type_hash_table),
3239 (long) htab_elements (type_hash_table),
3240 htab_collisions (type_hash_table));
3241 }
3242
3243 /* Compute a hash code for a list of attributes (chain of TREE_LIST nodes
3244 with names in the TREE_PURPOSE slots and args in the TREE_VALUE slots),
3245 by adding the hash codes of the individual attributes. */
3246
3247 unsigned int
3248 attribute_hash_list (list)
3249 tree list;
3250 {
3251 unsigned int hashcode;
3252 register tree tail;
3253
3254 for (hashcode = 0, tail = list; tail; tail = TREE_CHAIN (tail))
3255 /* ??? Do we want to add in TREE_VALUE too? */
3256 hashcode += TYPE_HASH (TREE_PURPOSE (tail));
3257 return hashcode;
3258 }
3259
3260 /* Given two lists of attributes, return true if list l2 is
3261 equivalent to l1. */
3262
3263 int
3264 attribute_list_equal (l1, l2)
3265 tree l1, l2;
3266 {
3267 return attribute_list_contained (l1, l2)
3268 && attribute_list_contained (l2, l1);
3269 }
3270
3271 /* Given two lists of attributes, return true if list L2 is
3272 completely contained within L1. */
3273 /* ??? This would be faster if attribute names were stored in a canonicalized
3274 form. Otherwise, if L1 uses `foo' and L2 uses `__foo__', the long method
3275 must be used to show these elements are equivalent (which they are). */
3276 /* ??? It's not clear that attributes with arguments will always be handled
3277 correctly. */
3278
3279 int
3280 attribute_list_contained (l1, l2)
3281 tree l1, l2;
3282 {
3283 register tree t1, t2;
3284
3285 /* First check the obvious, maybe the lists are identical. */
3286 if (l1 == l2)
3287 return 1;
3288
3289 /* Maybe the lists are similar. */
3290 for (t1 = l1, t2 = l2;
3291 t1 != 0 && t2 != 0
3292 && TREE_PURPOSE (t1) == TREE_PURPOSE (t2)
3293 && TREE_VALUE (t1) == TREE_VALUE (t2);
3294 t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2));
3295
3296 /* Maybe the lists are equal. */
3297 if (t1 == 0 && t2 == 0)
3298 return 1;
3299
3300 for (; t2 != 0; t2 = TREE_CHAIN (t2))
3301 {
3302 tree attr
3303 = lookup_attribute (IDENTIFIER_POINTER (TREE_PURPOSE (t2)), l1);
3304
3305 if (attr == 0)
3306 return 0;
3307
3308 if (simple_cst_equal (TREE_VALUE (t2), TREE_VALUE (attr)) != 1)
3309 return 0;
3310 }
3311
3312 return 1;
3313 }
3314
3315 /* Given two lists of types
3316 (chains of TREE_LIST nodes with types in the TREE_VALUE slots)
3317 return 1 if the lists contain the same types in the same order.
3318 Also, the TREE_PURPOSEs must match. */
3319
3320 int
3321 type_list_equal (l1, l2)
3322 tree l1, l2;
3323 {
3324 register tree t1, t2;
3325
3326 for (t1 = l1, t2 = l2; t1 && t2; t1 = TREE_CHAIN (t1), t2 = TREE_CHAIN (t2))
3327 if (TREE_VALUE (t1) != TREE_VALUE (t2)
3328 || (TREE_PURPOSE (t1) != TREE_PURPOSE (t2)
3329 && ! (1 == simple_cst_equal (TREE_PURPOSE (t1), TREE_PURPOSE (t2))
3330 && (TREE_TYPE (TREE_PURPOSE (t1))
3331 == TREE_TYPE (TREE_PURPOSE (t2))))))
3332 return 0;
3333
3334 return t1 == t2;
3335 }
3336
3337 /* Returns the number of arguments to the FUNCTION_TYPE or METHOD_TYPE
3338 given by TYPE. If the argument list accepts variable arguments,
3339 then this function counts only the ordinary arguments. */
3340
3341 int
3342 type_num_arguments (type)
3343 tree type;
3344 {
3345 int i = 0;
3346 tree t;
3347
3348 for (t = TYPE_ARG_TYPES (type); t; t = TREE_CHAIN (t))
3349 /* If the function does not take a variable number of arguments,
3350 the last element in the list will have type `void'. */
3351 if (VOID_TYPE_P (TREE_VALUE (t)))
3352 break;
3353 else
3354 ++i;
3355
3356 return i;
3357 }
3358
3359 /* Nonzero if integer constants T1 and T2
3360 represent the same constant value. */
3361
3362 int
3363 tree_int_cst_equal (t1, t2)
3364 tree t1, t2;
3365 {
3366 if (t1 == t2)
3367 return 1;
3368
3369 if (t1 == 0 || t2 == 0)
3370 return 0;
3371
3372 if (TREE_CODE (t1) == INTEGER_CST
3373 && TREE_CODE (t2) == INTEGER_CST
3374 && TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3375 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2))
3376 return 1;
3377
3378 return 0;
3379 }
3380
3381 /* Nonzero if integer constants T1 and T2 represent values that satisfy <.
3382 The precise way of comparison depends on their data type. */
3383
3384 int
3385 tree_int_cst_lt (t1, t2)
3386 tree t1, t2;
3387 {
3388 if (t1 == t2)
3389 return 0;
3390
3391 if (! TREE_UNSIGNED (TREE_TYPE (t1)))
3392 return INT_CST_LT (t1, t2);
3393
3394 return INT_CST_LT_UNSIGNED (t1, t2);
3395 }
3396
3397 /* Returns -1 if T1 < T2, 0 if T1 == T2, and 1 if T1 > T2. */
3398
3399 int
3400 tree_int_cst_compare (t1, t2)
3401 tree t1;
3402 tree t2;
3403 {
3404 if (tree_int_cst_lt (t1, t2))
3405 return -1;
3406 else if (tree_int_cst_lt (t2, t1))
3407 return 1;
3408 else
3409 return 0;
3410 }
3411
3412 /* Return 1 if T is an INTEGER_CST that can be represented in a single
3413 HOST_WIDE_INT value. If POS is nonzero, the result must be positive. */
3414
3415 int
3416 host_integerp (t, pos)
3417 tree t;
3418 int pos;
3419 {
3420 return (TREE_CODE (t) == INTEGER_CST
3421 && ! TREE_OVERFLOW (t)
3422 && ((TREE_INT_CST_HIGH (t) == 0
3423 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) >= 0)
3424 || (! pos && TREE_INT_CST_HIGH (t) == -1
3425 && (HOST_WIDE_INT) TREE_INT_CST_LOW (t) < 0)
3426 || (! pos && TREE_INT_CST_HIGH (t) == 0
3427 && TREE_UNSIGNED (TREE_TYPE (t)))));
3428 }
3429
3430 /* Return the HOST_WIDE_INT least significant bits of T if it is an
3431 INTEGER_CST and there is no overflow. POS is nonzero if the result must
3432 be positive. Abort if we cannot satisfy the above conditions. */
3433
3434 HOST_WIDE_INT
3435 tree_low_cst (t, pos)
3436 tree t;
3437 int pos;
3438 {
3439 if (host_integerp (t, pos))
3440 return TREE_INT_CST_LOW (t);
3441 else
3442 abort ();
3443 }
3444
3445 /* Return the most significant bit of the integer constant T. */
3446
3447 int
3448 tree_int_cst_msb (t)
3449 tree t;
3450 {
3451 register int prec;
3452 HOST_WIDE_INT h;
3453 unsigned HOST_WIDE_INT l;
3454
3455 /* Note that using TYPE_PRECISION here is wrong. We care about the
3456 actual bits, not the (arbitrary) range of the type. */
3457 prec = GET_MODE_BITSIZE (TYPE_MODE (TREE_TYPE (t))) - 1;
3458 rshift_double (TREE_INT_CST_LOW (t), TREE_INT_CST_HIGH (t), prec,
3459 2 * HOST_BITS_PER_WIDE_INT, &l, &h, 0);
3460 return (l & 1) == 1;
3461 }
3462
3463 /* Return an indication of the sign of the integer constant T.
3464 The return value is -1 if T < 0, 0 if T == 0, and 1 if T > 0.
3465 Note that -1 will never be returned it T's type is unsigned. */
3466
3467 int
3468 tree_int_cst_sgn (t)
3469 tree t;
3470 {
3471 if (TREE_INT_CST_LOW (t) == 0 && TREE_INT_CST_HIGH (t) == 0)
3472 return 0;
3473 else if (TREE_UNSIGNED (TREE_TYPE (t)))
3474 return 1;
3475 else if (TREE_INT_CST_HIGH (t) < 0)
3476 return -1;
3477 else
3478 return 1;
3479 }
3480
3481 /* Compare two constructor-element-type constants. Return 1 if the lists
3482 are known to be equal; otherwise return 0. */
3483
3484 int
3485 simple_cst_list_equal (l1, l2)
3486 tree l1, l2;
3487 {
3488 while (l1 != NULL_TREE && l2 != NULL_TREE)
3489 {
3490 if (simple_cst_equal (TREE_VALUE (l1), TREE_VALUE (l2)) != 1)
3491 return 0;
3492
3493 l1 = TREE_CHAIN (l1);
3494 l2 = TREE_CHAIN (l2);
3495 }
3496
3497 return l1 == l2;
3498 }
3499
3500 /* Return truthvalue of whether T1 is the same tree structure as T2.
3501 Return 1 if they are the same.
3502 Return 0 if they are understandably different.
3503 Return -1 if either contains tree structure not understood by
3504 this function. */
3505
3506 int
3507 simple_cst_equal (t1, t2)
3508 tree t1, t2;
3509 {
3510 register enum tree_code code1, code2;
3511 int cmp;
3512 int i;
3513
3514 if (t1 == t2)
3515 return 1;
3516 if (t1 == 0 || t2 == 0)
3517 return 0;
3518
3519 code1 = TREE_CODE (t1);
3520 code2 = TREE_CODE (t2);
3521
3522 if (code1 == NOP_EXPR || code1 == CONVERT_EXPR || code1 == NON_LVALUE_EXPR)
3523 {
3524 if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3525 || code2 == NON_LVALUE_EXPR)
3526 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3527 else
3528 return simple_cst_equal (TREE_OPERAND (t1, 0), t2);
3529 }
3530
3531 else if (code2 == NOP_EXPR || code2 == CONVERT_EXPR
3532 || code2 == NON_LVALUE_EXPR)
3533 return simple_cst_equal (t1, TREE_OPERAND (t2, 0));
3534
3535 if (code1 != code2)
3536 return 0;
3537
3538 switch (code1)
3539 {
3540 case INTEGER_CST:
3541 return (TREE_INT_CST_LOW (t1) == TREE_INT_CST_LOW (t2)
3542 && TREE_INT_CST_HIGH (t1) == TREE_INT_CST_HIGH (t2));
3543
3544 case REAL_CST:
3545 return REAL_VALUES_IDENTICAL (TREE_REAL_CST (t1), TREE_REAL_CST (t2));
3546
3547 case STRING_CST:
3548 return (TREE_STRING_LENGTH (t1) == TREE_STRING_LENGTH (t2)
3549 && ! memcmp (TREE_STRING_POINTER (t1), TREE_STRING_POINTER (t2),
3550 TREE_STRING_LENGTH (t1)));
3551
3552 case CONSTRUCTOR:
3553 if (CONSTRUCTOR_ELTS (t1) == CONSTRUCTOR_ELTS (t2))
3554 return 1;
3555 else
3556 abort ();
3557
3558 case SAVE_EXPR:
3559 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3560
3561 case CALL_EXPR:
3562 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3563 if (cmp <= 0)
3564 return cmp;
3565 return
3566 simple_cst_list_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3567
3568 case TARGET_EXPR:
3569 /* Special case: if either target is an unallocated VAR_DECL,
3570 it means that it's going to be unified with whatever the
3571 TARGET_EXPR is really supposed to initialize, so treat it
3572 as being equivalent to anything. */
3573 if ((TREE_CODE (TREE_OPERAND (t1, 0)) == VAR_DECL
3574 && DECL_NAME (TREE_OPERAND (t1, 0)) == NULL_TREE
3575 && !DECL_RTL_SET_P (TREE_OPERAND (t1, 0)))
3576 || (TREE_CODE (TREE_OPERAND (t2, 0)) == VAR_DECL
3577 && DECL_NAME (TREE_OPERAND (t2, 0)) == NULL_TREE
3578 && !DECL_RTL_SET_P (TREE_OPERAND (t2, 0))))
3579 cmp = 1;
3580 else
3581 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3582
3583 if (cmp <= 0)
3584 return cmp;
3585
3586 return simple_cst_equal (TREE_OPERAND (t1, 1), TREE_OPERAND (t2, 1));
3587
3588 case WITH_CLEANUP_EXPR:
3589 cmp = simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3590 if (cmp <= 0)
3591 return cmp;
3592
3593 return simple_cst_equal (TREE_OPERAND (t1, 2), TREE_OPERAND (t1, 2));
3594
3595 case COMPONENT_REF:
3596 if (TREE_OPERAND (t1, 1) == TREE_OPERAND (t2, 1))
3597 return simple_cst_equal (TREE_OPERAND (t1, 0), TREE_OPERAND (t2, 0));
3598
3599 return 0;
3600
3601 case VAR_DECL:
3602 case PARM_DECL:
3603 case CONST_DECL:
3604 case FUNCTION_DECL:
3605 return 0;
3606
3607 default:
3608 break;
3609 }
3610
3611 /* This general rule works for most tree codes. All exceptions should be
3612 handled above. If this is a language-specific tree code, we can't
3613 trust what might be in the operand, so say we don't know
3614 the situation. */
3615 if ((int) code1 >= (int) LAST_AND_UNUSED_TREE_CODE)
3616 return -1;
3617
3618 switch (TREE_CODE_CLASS (code1))
3619 {
3620 case '1':
3621 case '2':
3622 case '<':
3623 case 'e':
3624 case 'r':
3625 case 's':
3626 cmp = 1;
3627 for (i = 0; i < TREE_CODE_LENGTH (code1); i++)
3628 {
3629 cmp = simple_cst_equal (TREE_OPERAND (t1, i), TREE_OPERAND (t2, i));
3630 if (cmp <= 0)
3631 return cmp;
3632 }
3633
3634 return cmp;
3635
3636 default:
3637 return -1;
3638 }
3639 }
3640
3641 /* Compare the value of T, an INTEGER_CST, with U, an unsigned integer value.
3642 Return -1, 0, or 1 if the value of T is less than, equal to, or greater
3643 than U, respectively. */
3644
3645 int
3646 compare_tree_int (t, u)
3647 tree t;
3648 unsigned int u;
3649 {
3650 if (tree_int_cst_sgn (t) < 0)
3651 return -1;
3652 else if (TREE_INT_CST_HIGH (t) != 0)
3653 return 1;
3654 else if (TREE_INT_CST_LOW (t) == u)
3655 return 0;
3656 else if (TREE_INT_CST_LOW (t) < u)
3657 return -1;
3658 else
3659 return 1;
3660 }
3661 \f
3662 /* Constructors for pointer, array and function types.
3663 (RECORD_TYPE, UNION_TYPE and ENUMERAL_TYPE nodes are
3664 constructed by language-dependent code, not here.) */
3665
3666 /* Construct, lay out and return the type of pointers to TO_TYPE.
3667 If such a type has already been constructed, reuse it. */
3668
3669 tree
3670 build_pointer_type (to_type)
3671 tree to_type;
3672 {
3673 register tree t = TYPE_POINTER_TO (to_type);
3674
3675 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3676
3677 if (t != 0)
3678 return t;
3679
3680 /* We need a new one. */
3681 t = make_node (POINTER_TYPE);
3682
3683 TREE_TYPE (t) = to_type;
3684
3685 /* Record this type as the pointer to TO_TYPE. */
3686 TYPE_POINTER_TO (to_type) = t;
3687
3688 /* Lay out the type. This function has many callers that are concerned
3689 with expression-construction, and this simplifies them all.
3690 Also, it guarantees the TYPE_SIZE is in the same obstack as the type. */
3691 layout_type (t);
3692
3693 return t;
3694 }
3695
3696 /* Build the node for the type of references-to-TO_TYPE. */
3697
3698 tree
3699 build_reference_type (to_type)
3700 tree to_type;
3701 {
3702 register tree t = TYPE_REFERENCE_TO (to_type);
3703
3704 /* First, if we already have a type for pointers to TO_TYPE, use it. */
3705
3706 if (t)
3707 return t;
3708
3709 /* We need a new one. */
3710 t = make_node (REFERENCE_TYPE);
3711
3712 TREE_TYPE (t) = to_type;
3713
3714 /* Record this type as the pointer to TO_TYPE. */
3715 TYPE_REFERENCE_TO (to_type) = t;
3716
3717 layout_type (t);
3718
3719 return t;
3720 }
3721
3722 /* Build a type that is compatible with t but has no cv quals anywhere
3723 in its type, thus
3724
3725 const char *const *const * -> char ***. */
3726
3727 tree
3728 build_type_no_quals (t)
3729 tree t;
3730 {
3731 switch (TREE_CODE (t))
3732 {
3733 case POINTER_TYPE:
3734 return build_pointer_type (build_type_no_quals (TREE_TYPE (t)));
3735 case REFERENCE_TYPE:
3736 return build_reference_type (build_type_no_quals (TREE_TYPE (t)));
3737 default:
3738 return TYPE_MAIN_VARIANT (t);
3739 }
3740 }
3741
3742 /* Create a type of integers to be the TYPE_DOMAIN of an ARRAY_TYPE.
3743 MAXVAL should be the maximum value in the domain
3744 (one less than the length of the array).
3745
3746 The maximum value that MAXVAL can have is INT_MAX for a HOST_WIDE_INT.
3747 We don't enforce this limit, that is up to caller (e.g. language front end).
3748 The limit exists because the result is a signed type and we don't handle
3749 sizes that use more than one HOST_WIDE_INT. */
3750
3751 tree
3752 build_index_type (maxval)
3753 tree maxval;
3754 {
3755 register tree itype = make_node (INTEGER_TYPE);
3756
3757 TREE_TYPE (itype) = sizetype;
3758 TYPE_PRECISION (itype) = TYPE_PRECISION (sizetype);
3759 TYPE_MIN_VALUE (itype) = size_zero_node;
3760 TYPE_MAX_VALUE (itype) = convert (sizetype, maxval);
3761 TYPE_MODE (itype) = TYPE_MODE (sizetype);
3762 TYPE_SIZE (itype) = TYPE_SIZE (sizetype);
3763 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (sizetype);
3764 TYPE_ALIGN (itype) = TYPE_ALIGN (sizetype);
3765 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (sizetype);
3766
3767 if (host_integerp (maxval, 1))
3768 return type_hash_canon (tree_low_cst (maxval, 1), itype);
3769 else
3770 return itype;
3771 }
3772
3773 /* Create a range of some discrete type TYPE (an INTEGER_TYPE,
3774 ENUMERAL_TYPE, BOOLEAN_TYPE, or CHAR_TYPE), with
3775 low bound LOWVAL and high bound HIGHVAL.
3776 if TYPE==NULL_TREE, sizetype is used. */
3777
3778 tree
3779 build_range_type (type, lowval, highval)
3780 tree type, lowval, highval;
3781 {
3782 register tree itype = make_node (INTEGER_TYPE);
3783
3784 TREE_TYPE (itype) = type;
3785 if (type == NULL_TREE)
3786 type = sizetype;
3787
3788 TYPE_MIN_VALUE (itype) = convert (type, lowval);
3789 TYPE_MAX_VALUE (itype) = highval ? convert (type, highval) : NULL;
3790
3791 TYPE_PRECISION (itype) = TYPE_PRECISION (type);
3792 TYPE_MODE (itype) = TYPE_MODE (type);
3793 TYPE_SIZE (itype) = TYPE_SIZE (type);
3794 TYPE_SIZE_UNIT (itype) = TYPE_SIZE_UNIT (type);
3795 TYPE_ALIGN (itype) = TYPE_ALIGN (type);
3796 TYPE_USER_ALIGN (itype) = TYPE_USER_ALIGN (type);
3797
3798 if (host_integerp (lowval, 0) && highval != 0 && host_integerp (highval, 0))
3799 return type_hash_canon (tree_low_cst (highval, 0)
3800 - tree_low_cst (lowval, 0),
3801 itype);
3802 else
3803 return itype;
3804 }
3805
3806 /* Just like build_index_type, but takes lowval and highval instead
3807 of just highval (maxval). */
3808
3809 tree
3810 build_index_2_type (lowval,highval)
3811 tree lowval, highval;
3812 {
3813 return build_range_type (sizetype, lowval, highval);
3814 }
3815
3816 /* Return nonzero iff ITYPE1 and ITYPE2 are equal (in the LISP sense).
3817 Needed because when index types are not hashed, equal index types
3818 built at different times appear distinct, even though structurally,
3819 they are not. */
3820
3821 int
3822 index_type_equal (itype1, itype2)
3823 tree itype1, itype2;
3824 {
3825 if (TREE_CODE (itype1) != TREE_CODE (itype2))
3826 return 0;
3827
3828 if (TREE_CODE (itype1) == INTEGER_TYPE)
3829 {
3830 if (TYPE_PRECISION (itype1) != TYPE_PRECISION (itype2)
3831 || TYPE_MODE (itype1) != TYPE_MODE (itype2)
3832 || simple_cst_equal (TYPE_SIZE (itype1), TYPE_SIZE (itype2)) != 1
3833 || TYPE_ALIGN (itype1) != TYPE_ALIGN (itype2))
3834 return 0;
3835
3836 if (1 == simple_cst_equal (TYPE_MIN_VALUE (itype1),
3837 TYPE_MIN_VALUE (itype2))
3838 && 1 == simple_cst_equal (TYPE_MAX_VALUE (itype1),
3839 TYPE_MAX_VALUE (itype2)))
3840 return 1;
3841 }
3842
3843 return 0;
3844 }
3845
3846 /* Construct, lay out and return the type of arrays of elements with ELT_TYPE
3847 and number of elements specified by the range of values of INDEX_TYPE.
3848 If such a type has already been constructed, reuse it. */
3849
3850 tree
3851 build_array_type (elt_type, index_type)
3852 tree elt_type, index_type;
3853 {
3854 register tree t;
3855 unsigned int hashcode;
3856
3857 if (TREE_CODE (elt_type) == FUNCTION_TYPE)
3858 {
3859 error ("arrays of functions are not meaningful");
3860 elt_type = integer_type_node;
3861 }
3862
3863 /* Make sure TYPE_POINTER_TO (elt_type) is filled in. */
3864 build_pointer_type (elt_type);
3865
3866 /* Allocate the array after the pointer type,
3867 in case we free it in type_hash_canon. */
3868 t = make_node (ARRAY_TYPE);
3869 TREE_TYPE (t) = elt_type;
3870 TYPE_DOMAIN (t) = index_type;
3871
3872 if (index_type == 0)
3873 {
3874 return t;
3875 }
3876
3877 hashcode = TYPE_HASH (elt_type) + TYPE_HASH (index_type);
3878 t = type_hash_canon (hashcode, t);
3879
3880 if (!COMPLETE_TYPE_P (t))
3881 layout_type (t);
3882 return t;
3883 }
3884
3885 /* Return the TYPE of the elements comprising
3886 the innermost dimension of ARRAY. */
3887
3888 tree
3889 get_inner_array_type (array)
3890 tree array;
3891 {
3892 tree type = TREE_TYPE (array);
3893
3894 while (TREE_CODE (type) == ARRAY_TYPE)
3895 type = TREE_TYPE (type);
3896
3897 return type;
3898 }
3899
3900 /* Construct, lay out and return
3901 the type of functions returning type VALUE_TYPE
3902 given arguments of types ARG_TYPES.
3903 ARG_TYPES is a chain of TREE_LIST nodes whose TREE_VALUEs
3904 are data type nodes for the arguments of the function.
3905 If such a type has already been constructed, reuse it. */
3906
3907 tree
3908 build_function_type (value_type, arg_types)
3909 tree value_type, arg_types;
3910 {
3911 register tree t;
3912 unsigned int hashcode;
3913
3914 if (TREE_CODE (value_type) == FUNCTION_TYPE)
3915 {
3916 error ("function return type cannot be function");
3917 value_type = integer_type_node;
3918 }
3919
3920 /* Make a node of the sort we want. */
3921 t = make_node (FUNCTION_TYPE);
3922 TREE_TYPE (t) = value_type;
3923 TYPE_ARG_TYPES (t) = arg_types;
3924
3925 /* If we already have such a type, use the old one and free this one. */
3926 hashcode = TYPE_HASH (value_type) + type_hash_list (arg_types);
3927 t = type_hash_canon (hashcode, t);
3928
3929 if (!COMPLETE_TYPE_P (t))
3930 layout_type (t);
3931 return t;
3932 }
3933
3934 /* Construct, lay out and return the type of methods belonging to class
3935 BASETYPE and whose arguments and values are described by TYPE.
3936 If that type exists already, reuse it.
3937 TYPE must be a FUNCTION_TYPE node. */
3938
3939 tree
3940 build_method_type (basetype, type)
3941 tree basetype, type;
3942 {
3943 register tree t;
3944 unsigned int hashcode;
3945
3946 /* Make a node of the sort we want. */
3947 t = make_node (METHOD_TYPE);
3948
3949 if (TREE_CODE (type) != FUNCTION_TYPE)
3950 abort ();
3951
3952 TYPE_METHOD_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3953 TREE_TYPE (t) = TREE_TYPE (type);
3954
3955 /* The actual arglist for this function includes a "hidden" argument
3956 which is "this". Put it into the list of argument types. */
3957
3958 TYPE_ARG_TYPES (t)
3959 = tree_cons (NULL_TREE,
3960 build_pointer_type (basetype), TYPE_ARG_TYPES (type));
3961
3962 /* If we already have such a type, use the old one and free this one. */
3963 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3964 t = type_hash_canon (hashcode, t);
3965
3966 if (!COMPLETE_TYPE_P (t))
3967 layout_type (t);
3968
3969 return t;
3970 }
3971
3972 /* Construct, lay out and return the type of offsets to a value
3973 of type TYPE, within an object of type BASETYPE.
3974 If a suitable offset type exists already, reuse it. */
3975
3976 tree
3977 build_offset_type (basetype, type)
3978 tree basetype, type;
3979 {
3980 register tree t;
3981 unsigned int hashcode;
3982
3983 /* Make a node of the sort we want. */
3984 t = make_node (OFFSET_TYPE);
3985
3986 TYPE_OFFSET_BASETYPE (t) = TYPE_MAIN_VARIANT (basetype);
3987 TREE_TYPE (t) = type;
3988
3989 /* If we already have such a type, use the old one and free this one. */
3990 hashcode = TYPE_HASH (basetype) + TYPE_HASH (type);
3991 t = type_hash_canon (hashcode, t);
3992
3993 if (!COMPLETE_TYPE_P (t))
3994 layout_type (t);
3995
3996 return t;
3997 }
3998
3999 /* Create a complex type whose components are COMPONENT_TYPE. */
4000
4001 tree
4002 build_complex_type (component_type)
4003 tree component_type;
4004 {
4005 register tree t;
4006 unsigned int hashcode;
4007
4008 /* Make a node of the sort we want. */
4009 t = make_node (COMPLEX_TYPE);
4010
4011 TREE_TYPE (t) = TYPE_MAIN_VARIANT (component_type);
4012 set_type_quals (t, TYPE_QUALS (component_type));
4013
4014 /* If we already have such a type, use the old one and free this one. */
4015 hashcode = TYPE_HASH (component_type);
4016 t = type_hash_canon (hashcode, t);
4017
4018 if (!COMPLETE_TYPE_P (t))
4019 layout_type (t);
4020
4021 /* If we are writing Dwarf2 output we need to create a name,
4022 since complex is a fundamental type. */
4023 if (write_symbols == DWARF2_DEBUG && ! TYPE_NAME (t))
4024 {
4025 const char *name;
4026 if (component_type == char_type_node)
4027 name = "complex char";
4028 else if (component_type == signed_char_type_node)
4029 name = "complex signed char";
4030 else if (component_type == unsigned_char_type_node)
4031 name = "complex unsigned char";
4032 else if (component_type == short_integer_type_node)
4033 name = "complex short int";
4034 else if (component_type == short_unsigned_type_node)
4035 name = "complex short unsigned int";
4036 else if (component_type == integer_type_node)
4037 name = "complex int";
4038 else if (component_type == unsigned_type_node)
4039 name = "complex unsigned int";
4040 else if (component_type == long_integer_type_node)
4041 name = "complex long int";
4042 else if (component_type == long_unsigned_type_node)
4043 name = "complex long unsigned int";
4044 else if (component_type == long_long_integer_type_node)
4045 name = "complex long long int";
4046 else if (component_type == long_long_unsigned_type_node)
4047 name = "complex long long unsigned int";
4048 else
4049 name = 0;
4050
4051 if (name != 0)
4052 TYPE_NAME (t) = get_identifier (name);
4053 }
4054
4055 return t;
4056 }
4057 \f
4058 /* Return OP, stripped of any conversions to wider types as much as is safe.
4059 Converting the value back to OP's type makes a value equivalent to OP.
4060
4061 If FOR_TYPE is nonzero, we return a value which, if converted to
4062 type FOR_TYPE, would be equivalent to converting OP to type FOR_TYPE.
4063
4064 If FOR_TYPE is nonzero, unaligned bit-field references may be changed to the
4065 narrowest type that can hold the value, even if they don't exactly fit.
4066 Otherwise, bit-field references are changed to a narrower type
4067 only if they can be fetched directly from memory in that type.
4068
4069 OP must have integer, real or enumeral type. Pointers are not allowed!
4070
4071 There are some cases where the obvious value we could return
4072 would regenerate to OP if converted to OP's type,
4073 but would not extend like OP to wider types.
4074 If FOR_TYPE indicates such extension is contemplated, we eschew such values.
4075 For example, if OP is (unsigned short)(signed char)-1,
4076 we avoid returning (signed char)-1 if FOR_TYPE is int,
4077 even though extending that to an unsigned short would regenerate OP,
4078 since the result of extending (signed char)-1 to (int)
4079 is different from (int) OP. */
4080
4081 tree
4082 get_unwidened (op, for_type)
4083 register tree op;
4084 tree for_type;
4085 {
4086 /* Set UNS initially if converting OP to FOR_TYPE is a zero-extension. */
4087 register tree type = TREE_TYPE (op);
4088 register unsigned final_prec
4089 = TYPE_PRECISION (for_type != 0 ? for_type : type);
4090 register int uns
4091 = (for_type != 0 && for_type != type
4092 && final_prec > TYPE_PRECISION (type)
4093 && TREE_UNSIGNED (type));
4094 register tree win = op;
4095
4096 while (TREE_CODE (op) == NOP_EXPR)
4097 {
4098 register int bitschange
4099 = TYPE_PRECISION (TREE_TYPE (op))
4100 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0)));
4101
4102 /* Truncations are many-one so cannot be removed.
4103 Unless we are later going to truncate down even farther. */
4104 if (bitschange < 0
4105 && final_prec > TYPE_PRECISION (TREE_TYPE (op)))
4106 break;
4107
4108 /* See what's inside this conversion. If we decide to strip it,
4109 we will set WIN. */
4110 op = TREE_OPERAND (op, 0);
4111
4112 /* If we have not stripped any zero-extensions (uns is 0),
4113 we can strip any kind of extension.
4114 If we have previously stripped a zero-extension,
4115 only zero-extensions can safely be stripped.
4116 Any extension can be stripped if the bits it would produce
4117 are all going to be discarded later by truncating to FOR_TYPE. */
4118
4119 if (bitschange > 0)
4120 {
4121 if (! uns || final_prec <= TYPE_PRECISION (TREE_TYPE (op)))
4122 win = op;
4123 /* TREE_UNSIGNED says whether this is a zero-extension.
4124 Let's avoid computing it if it does not affect WIN
4125 and if UNS will not be needed again. */
4126 if ((uns || TREE_CODE (op) == NOP_EXPR)
4127 && TREE_UNSIGNED (TREE_TYPE (op)))
4128 {
4129 uns = 1;
4130 win = op;
4131 }
4132 }
4133 }
4134
4135 if (TREE_CODE (op) == COMPONENT_REF
4136 /* Since type_for_size always gives an integer type. */
4137 && TREE_CODE (type) != REAL_TYPE
4138 /* Don't crash if field not laid out yet. */
4139 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0
4140 && host_integerp (DECL_SIZE (TREE_OPERAND (op, 1)), 1))
4141 {
4142 unsigned int innerprec
4143 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4144
4145 type = type_for_size (innerprec, TREE_UNSIGNED (TREE_OPERAND (op, 1)));
4146
4147 /* We can get this structure field in the narrowest type it fits in.
4148 If FOR_TYPE is 0, do this only for a field that matches the
4149 narrower type exactly and is aligned for it
4150 The resulting extension to its nominal type (a fullword type)
4151 must fit the same conditions as for other extensions. */
4152
4153 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4154 && (for_type || ! DECL_BIT_FIELD (TREE_OPERAND (op, 1)))
4155 && (! uns || final_prec <= innerprec
4156 || TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4157 && type != 0)
4158 {
4159 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4160 TREE_OPERAND (op, 1));
4161 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4162 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4163 }
4164 }
4165
4166 return win;
4167 }
4168 \f
4169 /* Return OP or a simpler expression for a narrower value
4170 which can be sign-extended or zero-extended to give back OP.
4171 Store in *UNSIGNEDP_PTR either 1 if the value should be zero-extended
4172 or 0 if the value should be sign-extended. */
4173
4174 tree
4175 get_narrower (op, unsignedp_ptr)
4176 register tree op;
4177 int *unsignedp_ptr;
4178 {
4179 register int uns = 0;
4180 int first = 1;
4181 register tree win = op;
4182
4183 while (TREE_CODE (op) == NOP_EXPR)
4184 {
4185 register int bitschange
4186 = (TYPE_PRECISION (TREE_TYPE (op))
4187 - TYPE_PRECISION (TREE_TYPE (TREE_OPERAND (op, 0))));
4188
4189 /* Truncations are many-one so cannot be removed. */
4190 if (bitschange < 0)
4191 break;
4192
4193 /* See what's inside this conversion. If we decide to strip it,
4194 we will set WIN. */
4195 op = TREE_OPERAND (op, 0);
4196
4197 if (bitschange > 0)
4198 {
4199 /* An extension: the outermost one can be stripped,
4200 but remember whether it is zero or sign extension. */
4201 if (first)
4202 uns = TREE_UNSIGNED (TREE_TYPE (op));
4203 /* Otherwise, if a sign extension has been stripped,
4204 only sign extensions can now be stripped;
4205 if a zero extension has been stripped, only zero-extensions. */
4206 else if (uns != TREE_UNSIGNED (TREE_TYPE (op)))
4207 break;
4208 first = 0;
4209 }
4210 else /* bitschange == 0 */
4211 {
4212 /* A change in nominal type can always be stripped, but we must
4213 preserve the unsignedness. */
4214 if (first)
4215 uns = TREE_UNSIGNED (TREE_TYPE (op));
4216 first = 0;
4217 }
4218
4219 win = op;
4220 }
4221
4222 if (TREE_CODE (op) == COMPONENT_REF
4223 /* Since type_for_size always gives an integer type. */
4224 && TREE_CODE (TREE_TYPE (op)) != REAL_TYPE
4225 /* Ensure field is laid out already. */
4226 && DECL_SIZE (TREE_OPERAND (op, 1)) != 0)
4227 {
4228 unsigned HOST_WIDE_INT innerprec
4229 = tree_low_cst (DECL_SIZE (TREE_OPERAND (op, 1)), 1);
4230 tree type = type_for_size (innerprec, TREE_UNSIGNED (op));
4231
4232 /* We can get this structure field in a narrower type that fits it,
4233 but the resulting extension to its nominal type (a fullword type)
4234 must satisfy the same conditions as for other extensions.
4235
4236 Do this only for fields that are aligned (not bit-fields),
4237 because when bit-field insns will be used there is no
4238 advantage in doing this. */
4239
4240 if (innerprec < TYPE_PRECISION (TREE_TYPE (op))
4241 && ! DECL_BIT_FIELD (TREE_OPERAND (op, 1))
4242 && (first || uns == TREE_UNSIGNED (TREE_OPERAND (op, 1)))
4243 && type != 0)
4244 {
4245 if (first)
4246 uns = TREE_UNSIGNED (TREE_OPERAND (op, 1));
4247 win = build (COMPONENT_REF, type, TREE_OPERAND (op, 0),
4248 TREE_OPERAND (op, 1));
4249 TREE_SIDE_EFFECTS (win) = TREE_SIDE_EFFECTS (op);
4250 TREE_THIS_VOLATILE (win) = TREE_THIS_VOLATILE (op);
4251 }
4252 }
4253 *unsignedp_ptr = uns;
4254 return win;
4255 }
4256 \f
4257 /* Nonzero if integer constant C has a value that is permissible
4258 for type TYPE (an INTEGER_TYPE). */
4259
4260 int
4261 int_fits_type_p (c, type)
4262 tree c, type;
4263 {
4264 /* If the bounds of the type are integers, we can check ourselves.
4265 Otherwise,. use force_fit_type, which checks against the precision. */
4266 if (TYPE_MAX_VALUE (type) != NULL_TREE
4267 && TYPE_MIN_VALUE (type) != NULL_TREE
4268 && TREE_CODE (TYPE_MAX_VALUE (type)) == INTEGER_CST
4269 && TREE_CODE (TYPE_MIN_VALUE (type)) == INTEGER_CST)
4270 {
4271 if (TREE_UNSIGNED (type))
4272 return (! INT_CST_LT_UNSIGNED (TYPE_MAX_VALUE (type), c)
4273 && ! INT_CST_LT_UNSIGNED (c, TYPE_MIN_VALUE (type))
4274 /* Negative ints never fit unsigned types. */
4275 && ! (TREE_INT_CST_HIGH (c) < 0
4276 && ! TREE_UNSIGNED (TREE_TYPE (c))));
4277 else
4278 return (! INT_CST_LT (TYPE_MAX_VALUE (type), c)
4279 && ! INT_CST_LT (c, TYPE_MIN_VALUE (type))
4280 /* Unsigned ints with top bit set never fit signed types. */
4281 && ! (TREE_INT_CST_HIGH (c) < 0
4282 && TREE_UNSIGNED (TREE_TYPE (c))));
4283 }
4284 else
4285 {
4286 c = copy_node (c);
4287 TREE_TYPE (c) = type;
4288 return !force_fit_type (c, 0);
4289 }
4290 }
4291
4292 /* Given a DECL or TYPE, return the scope in which it was declared, or
4293 NULL_TREE if there is no containing scope. */
4294
4295 tree
4296 get_containing_scope (t)
4297 tree t;
4298 {
4299 return (TYPE_P (t) ? TYPE_CONTEXT (t) : DECL_CONTEXT (t));
4300 }
4301
4302 /* Return the innermost context enclosing DECL that is
4303 a FUNCTION_DECL, or zero if none. */
4304
4305 tree
4306 decl_function_context (decl)
4307 tree decl;
4308 {
4309 tree context;
4310
4311 if (TREE_CODE (decl) == ERROR_MARK)
4312 return 0;
4313
4314 if (TREE_CODE (decl) == SAVE_EXPR)
4315 context = SAVE_EXPR_CONTEXT (decl);
4316
4317 /* C++ virtual functions use DECL_CONTEXT for the class of the vtable
4318 where we look up the function at runtime. Such functions always take
4319 a first argument of type 'pointer to real context'.
4320
4321 C++ should really be fixed to use DECL_CONTEXT for the real context,
4322 and use something else for the "virtual context". */
4323 else if (TREE_CODE (decl) == FUNCTION_DECL && DECL_VINDEX (decl))
4324 context
4325 = TYPE_MAIN_VARIANT
4326 (TREE_TYPE (TREE_VALUE (TYPE_ARG_TYPES (TREE_TYPE (decl)))));
4327 else
4328 context = DECL_CONTEXT (decl);
4329
4330 while (context && TREE_CODE (context) != FUNCTION_DECL)
4331 {
4332 if (TREE_CODE (context) == BLOCK)
4333 context = BLOCK_SUPERCONTEXT (context);
4334 else
4335 context = get_containing_scope (context);
4336 }
4337
4338 return context;
4339 }
4340
4341 /* Return the innermost context enclosing DECL that is
4342 a RECORD_TYPE, UNION_TYPE or QUAL_UNION_TYPE, or zero if none.
4343 TYPE_DECLs and FUNCTION_DECLs are transparent to this function. */
4344
4345 tree
4346 decl_type_context (decl)
4347 tree decl;
4348 {
4349 tree context = DECL_CONTEXT (decl);
4350
4351 while (context)
4352 {
4353 if (TREE_CODE (context) == RECORD_TYPE
4354 || TREE_CODE (context) == UNION_TYPE
4355 || TREE_CODE (context) == QUAL_UNION_TYPE)
4356 return context;
4357
4358 if (TREE_CODE (context) == TYPE_DECL
4359 || TREE_CODE (context) == FUNCTION_DECL)
4360 context = DECL_CONTEXT (context);
4361
4362 else if (TREE_CODE (context) == BLOCK)
4363 context = BLOCK_SUPERCONTEXT (context);
4364
4365 else
4366 /* Unhandled CONTEXT!? */
4367 abort ();
4368 }
4369 return NULL_TREE;
4370 }
4371
4372 /* CALL is a CALL_EXPR. Return the declaration for the function
4373 called, or NULL_TREE if the called function cannot be
4374 determined. */
4375
4376 tree
4377 get_callee_fndecl (call)
4378 tree call;
4379 {
4380 tree addr;
4381
4382 /* It's invalid to call this function with anything but a
4383 CALL_EXPR. */
4384 if (TREE_CODE (call) != CALL_EXPR)
4385 abort ();
4386
4387 /* The first operand to the CALL is the address of the function
4388 called. */
4389 addr = TREE_OPERAND (call, 0);
4390
4391 STRIP_NOPS (addr);
4392
4393 /* If this is a readonly function pointer, extract its initial value. */
4394 if (DECL_P (addr) && TREE_CODE (addr) != FUNCTION_DECL
4395 && TREE_READONLY (addr) && ! TREE_THIS_VOLATILE (addr)
4396 && DECL_INITIAL (addr))
4397 addr = DECL_INITIAL (addr);
4398
4399 /* If the address is just `&f' for some function `f', then we know
4400 that `f' is being called. */
4401 if (TREE_CODE (addr) == ADDR_EXPR
4402 && TREE_CODE (TREE_OPERAND (addr, 0)) == FUNCTION_DECL)
4403 return TREE_OPERAND (addr, 0);
4404
4405 /* We couldn't figure out what was being called. */
4406 return NULL_TREE;
4407 }
4408
4409 /* Print debugging information about the obstack O, named STR. */
4410
4411 void
4412 print_obstack_statistics (str, o)
4413 const char *str;
4414 struct obstack *o;
4415 {
4416 struct _obstack_chunk *chunk = o->chunk;
4417 int n_chunks = 1;
4418 int n_alloc = 0;
4419
4420 n_alloc += o->next_free - chunk->contents;
4421 chunk = chunk->prev;
4422 while (chunk)
4423 {
4424 n_chunks += 1;
4425 n_alloc += chunk->limit - &chunk->contents[0];
4426 chunk = chunk->prev;
4427 }
4428 fprintf (stderr, "obstack %s: %u bytes, %d chunks\n",
4429 str, n_alloc, n_chunks);
4430 }
4431
4432 /* Print debugging information about tree nodes generated during the compile,
4433 and any language-specific information. */
4434
4435 void
4436 dump_tree_statistics ()
4437 {
4438 #ifdef GATHER_STATISTICS
4439 int i;
4440 int total_nodes, total_bytes;
4441 #endif
4442
4443 fprintf (stderr, "\n??? tree nodes created\n\n");
4444 #ifdef GATHER_STATISTICS
4445 fprintf (stderr, "Kind Nodes Bytes\n");
4446 fprintf (stderr, "-------------------------------------\n");
4447 total_nodes = total_bytes = 0;
4448 for (i = 0; i < (int) all_kinds; i++)
4449 {
4450 fprintf (stderr, "%-20s %6d %9d\n", tree_node_kind_names[i],
4451 tree_node_counts[i], tree_node_sizes[i]);
4452 total_nodes += tree_node_counts[i];
4453 total_bytes += tree_node_sizes[i];
4454 }
4455 fprintf (stderr, "%-20s %9d\n", "identifier names", id_string_size);
4456 fprintf (stderr, "-------------------------------------\n");
4457 fprintf (stderr, "%-20s %6d %9d\n", "Total", total_nodes, total_bytes);
4458 fprintf (stderr, "-------------------------------------\n");
4459 #else
4460 fprintf (stderr, "(No per-node statistics)\n");
4461 #endif
4462 print_obstack_statistics ("permanent_obstack", &permanent_obstack);
4463 print_type_hash_statistics ();
4464 print_lang_statistics ();
4465 }
4466 \f
4467 #define FILE_FUNCTION_PREFIX_LEN 9
4468
4469 #define FILE_FUNCTION_FORMAT "_GLOBAL__%s_%s"
4470
4471 /* Appends 6 random characters to TEMPLATE to (hopefully) avoid name
4472 clashes in cases where we can't reliably choose a unique name.
4473
4474 Derived from mkstemp.c in libiberty. */
4475
4476 static void
4477 append_random_chars (template)
4478 char *template;
4479 {
4480 static const char letters[]
4481 = "abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789";
4482 static unsigned HOST_WIDE_INT value;
4483 unsigned HOST_WIDE_INT v;
4484
4485 #ifdef HAVE_GETTIMEOFDAY
4486 struct timeval tv;
4487 #endif
4488
4489 template += strlen (template);
4490
4491 #ifdef HAVE_GETTIMEOFDAY
4492 /* Get some more or less random data. */
4493 gettimeofday (&tv, NULL);
4494 value += ((unsigned HOST_WIDE_INT) tv.tv_usec << 16) ^ tv.tv_sec ^ getpid ();
4495 #else
4496 value += getpid ();
4497 #endif
4498
4499 v = value;
4500
4501 /* Fill in the random bits. */
4502 template[0] = letters[v % 62];
4503 v /= 62;
4504 template[1] = letters[v % 62];
4505 v /= 62;
4506 template[2] = letters[v % 62];
4507 v /= 62;
4508 template[3] = letters[v % 62];
4509 v /= 62;
4510 template[4] = letters[v % 62];
4511 v /= 62;
4512 template[5] = letters[v % 62];
4513
4514 template[6] = '\0';
4515 }
4516
4517 /* P is a string that will be used in a symbol. Mask out any characters
4518 that are not valid in that context. */
4519
4520 void
4521 clean_symbol_name (p)
4522 char *p;
4523 {
4524 for (; *p; p++)
4525 if (! (ISDIGIT(*p)
4526 #ifndef NO_DOLLAR_IN_LABEL /* this for `$'; unlikely, but... -- kr */
4527 || *p == '$'
4528 #endif
4529 #ifndef NO_DOT_IN_LABEL /* this for `.'; unlikely, but... */
4530 || *p == '.'
4531 #endif
4532 || ISUPPER (*p)
4533 || ISLOWER (*p)))
4534 *p = '_';
4535 }
4536
4537 /* Generate a name for a function unique to this translation unit.
4538 TYPE is some string to identify the purpose of this function to the
4539 linker or collect2. */
4540
4541 tree
4542 get_file_function_name_long (type)
4543 const char *type;
4544 {
4545 char *buf;
4546 const char *p;
4547 char *q;
4548
4549 if (first_global_object_name)
4550 p = first_global_object_name;
4551 else
4552 {
4553 /* We don't have anything that we know to be unique to this translation
4554 unit, so use what we do have and throw in some randomness. */
4555
4556 const char *name = weak_global_object_name;
4557 const char *file = main_input_filename;
4558
4559 if (! name)
4560 name = "";
4561 if (! file)
4562 file = input_filename;
4563
4564 q = (char *) alloca (7 + strlen (name) + strlen (file));
4565
4566 sprintf (q, "%s%s", name, file);
4567 append_random_chars (q);
4568 p = q;
4569 }
4570
4571 buf = (char *) alloca (sizeof (FILE_FUNCTION_FORMAT) + strlen (p)
4572 + strlen (type));
4573
4574 /* Set up the name of the file-level functions we may need.
4575 Use a global object (which is already required to be unique over
4576 the program) rather than the file name (which imposes extra
4577 constraints). */
4578 sprintf (buf, FILE_FUNCTION_FORMAT, type, p);
4579
4580 /* Don't need to pull weird characters out of global names. */
4581 if (p != first_global_object_name)
4582 clean_symbol_name (buf + 11);
4583
4584 return get_identifier (buf);
4585 }
4586
4587 /* If KIND=='I', return a suitable global initializer (constructor) name.
4588 If KIND=='D', return a suitable global clean-up (destructor) name. */
4589
4590 tree
4591 get_file_function_name (kind)
4592 int kind;
4593 {
4594 char p[2];
4595
4596 p[0] = kind;
4597 p[1] = 0;
4598
4599 return get_file_function_name_long (p);
4600 }
4601 \f
4602 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4603 The result is placed in BUFFER (which has length BIT_SIZE),
4604 with one bit in each char ('\000' or '\001').
4605
4606 If the constructor is constant, NULL_TREE is returned.
4607 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4608
4609 tree
4610 get_set_constructor_bits (init, buffer, bit_size)
4611 tree init;
4612 char *buffer;
4613 int bit_size;
4614 {
4615 int i;
4616 tree vals;
4617 HOST_WIDE_INT domain_min
4618 = tree_low_cst (TYPE_MIN_VALUE (TYPE_DOMAIN (TREE_TYPE (init))), 0);
4619 tree non_const_bits = NULL_TREE;
4620
4621 for (i = 0; i < bit_size; i++)
4622 buffer[i] = 0;
4623
4624 for (vals = TREE_OPERAND (init, 1);
4625 vals != NULL_TREE; vals = TREE_CHAIN (vals))
4626 {
4627 if (!host_integerp (TREE_VALUE (vals), 0)
4628 || (TREE_PURPOSE (vals) != NULL_TREE
4629 && !host_integerp (TREE_PURPOSE (vals), 0)))
4630 non_const_bits
4631 = tree_cons (TREE_PURPOSE (vals), TREE_VALUE (vals), non_const_bits);
4632 else if (TREE_PURPOSE (vals) != NULL_TREE)
4633 {
4634 /* Set a range of bits to ones. */
4635 HOST_WIDE_INT lo_index
4636 = tree_low_cst (TREE_PURPOSE (vals), 0) - domain_min;
4637 HOST_WIDE_INT hi_index
4638 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4639
4640 if (lo_index < 0 || lo_index >= bit_size
4641 || hi_index < 0 || hi_index >= bit_size)
4642 abort ();
4643 for (; lo_index <= hi_index; lo_index++)
4644 buffer[lo_index] = 1;
4645 }
4646 else
4647 {
4648 /* Set a single bit to one. */
4649 HOST_WIDE_INT index
4650 = tree_low_cst (TREE_VALUE (vals), 0) - domain_min;
4651 if (index < 0 || index >= bit_size)
4652 {
4653 error ("invalid initializer for bit string");
4654 return NULL_TREE;
4655 }
4656 buffer[index] = 1;
4657 }
4658 }
4659 return non_const_bits;
4660 }
4661
4662 /* Expand (the constant part of) a SET_TYPE CONSTRUCTOR node.
4663 The result is placed in BUFFER (which is an array of bytes).
4664 If the constructor is constant, NULL_TREE is returned.
4665 Otherwise, a TREE_LIST of the non-constant elements is emitted. */
4666
4667 tree
4668 get_set_constructor_bytes (init, buffer, wd_size)
4669 tree init;
4670 unsigned char *buffer;
4671 int wd_size;
4672 {
4673 int i;
4674 int set_word_size = BITS_PER_UNIT;
4675 int bit_size = wd_size * set_word_size;
4676 int bit_pos = 0;
4677 unsigned char *bytep = buffer;
4678 char *bit_buffer = (char *) alloca (bit_size);
4679 tree non_const_bits = get_set_constructor_bits (init, bit_buffer, bit_size);
4680
4681 for (i = 0; i < wd_size; i++)
4682 buffer[i] = 0;
4683
4684 for (i = 0; i < bit_size; i++)
4685 {
4686 if (bit_buffer[i])
4687 {
4688 if (BYTES_BIG_ENDIAN)
4689 *bytep |= (1 << (set_word_size - 1 - bit_pos));
4690 else
4691 *bytep |= 1 << bit_pos;
4692 }
4693 bit_pos++;
4694 if (bit_pos >= set_word_size)
4695 bit_pos = 0, bytep++;
4696 }
4697 return non_const_bits;
4698 }
4699 \f
4700 #if defined ENABLE_TREE_CHECKING && (GCC_VERSION >= 2007)
4701 /* Complain that the tree code of NODE does not match the expected CODE.
4702 FILE, LINE, and FUNCTION are of the caller. */
4703
4704 void
4705 tree_check_failed (node, code, file, line, function)
4706 const tree node;
4707 enum tree_code code;
4708 const char *file;
4709 int line;
4710 const char *function;
4711 {
4712 internal_error ("Tree check: expected %s, have %s in %s, at %s:%d",
4713 tree_code_name[code], tree_code_name[TREE_CODE (node)],
4714 function, trim_filename (file), line);
4715 }
4716
4717 /* Similar to above, except that we check for a class of tree
4718 code, given in CL. */
4719
4720 void
4721 tree_class_check_failed (node, cl, file, line, function)
4722 const tree node;
4723 int cl;
4724 const char *file;
4725 int line;
4726 const char *function;
4727 {
4728 internal_error
4729 ("Tree check: expected class '%c', have '%c' (%s) in %s, at %s:%d",
4730 cl, TREE_CODE_CLASS (TREE_CODE (node)),
4731 tree_code_name[TREE_CODE (node)], function, trim_filename (file), line);
4732 }
4733
4734 #endif /* ENABLE_TREE_CHECKING */
4735 \f
4736 /* For a new vector type node T, build the information necessary for
4737 debuggint output. */
4738
4739 static void
4740 finish_vector_type (t)
4741 tree t;
4742 {
4743 layout_type (t);
4744
4745 {
4746 tree index = build_int_2 (TYPE_VECTOR_SUBPARTS (t) - 1, 0);
4747 tree array = build_array_type (TREE_TYPE (t),
4748 build_index_type (index));
4749 tree rt = make_node (RECORD_TYPE);
4750
4751 TYPE_FIELDS (rt) = build_decl (FIELD_DECL, get_identifier ("f"), array);
4752 DECL_CONTEXT (TYPE_FIELDS (rt)) = rt;
4753 layout_type (rt);
4754 TYPE_DEBUG_REPRESENTATION_TYPE (t) = rt;
4755 /* In dwarfout.c, type lookup uses TYPE_UID numbers. We want to output
4756 the representation type, and we want to find that die when looking up
4757 the vector type. This is most easily achieved by making the TYPE_UID
4758 numbers equal. */
4759 TYPE_UID (rt) = TYPE_UID (t);
4760 }
4761 }
4762
4763 /* Create nodes for all integer types (and error_mark_node) using the sizes
4764 of C datatypes. The caller should call set_sizetype soon after calling
4765 this function to select one of the types as sizetype. */
4766
4767 void
4768 build_common_tree_nodes (signed_char)
4769 int signed_char;
4770 {
4771 error_mark_node = make_node (ERROR_MARK);
4772 TREE_TYPE (error_mark_node) = error_mark_node;
4773
4774 initialize_sizetypes ();
4775
4776 /* Define both `signed char' and `unsigned char'. */
4777 signed_char_type_node = make_signed_type (CHAR_TYPE_SIZE);
4778 unsigned_char_type_node = make_unsigned_type (CHAR_TYPE_SIZE);
4779
4780 /* Define `char', which is like either `signed char' or `unsigned char'
4781 but not the same as either. */
4782 char_type_node
4783 = (signed_char
4784 ? make_signed_type (CHAR_TYPE_SIZE)
4785 : make_unsigned_type (CHAR_TYPE_SIZE));
4786
4787 short_integer_type_node = make_signed_type (SHORT_TYPE_SIZE);
4788 short_unsigned_type_node = make_unsigned_type (SHORT_TYPE_SIZE);
4789 integer_type_node = make_signed_type (INT_TYPE_SIZE);
4790 unsigned_type_node = make_unsigned_type (INT_TYPE_SIZE);
4791 long_integer_type_node = make_signed_type (LONG_TYPE_SIZE);
4792 long_unsigned_type_node = make_unsigned_type (LONG_TYPE_SIZE);
4793 long_long_integer_type_node = make_signed_type (LONG_LONG_TYPE_SIZE);
4794 long_long_unsigned_type_node = make_unsigned_type (LONG_LONG_TYPE_SIZE);
4795
4796 intQI_type_node = make_signed_type (GET_MODE_BITSIZE (QImode));
4797 intHI_type_node = make_signed_type (GET_MODE_BITSIZE (HImode));
4798 intSI_type_node = make_signed_type (GET_MODE_BITSIZE (SImode));
4799 intDI_type_node = make_signed_type (GET_MODE_BITSIZE (DImode));
4800 intTI_type_node = make_signed_type (GET_MODE_BITSIZE (TImode));
4801
4802 unsigned_intQI_type_node = make_unsigned_type (GET_MODE_BITSIZE (QImode));
4803 unsigned_intHI_type_node = make_unsigned_type (GET_MODE_BITSIZE (HImode));
4804 unsigned_intSI_type_node = make_unsigned_type (GET_MODE_BITSIZE (SImode));
4805 unsigned_intDI_type_node = make_unsigned_type (GET_MODE_BITSIZE (DImode));
4806 unsigned_intTI_type_node = make_unsigned_type (GET_MODE_BITSIZE (TImode));
4807 }
4808
4809 /* Call this function after calling build_common_tree_nodes and set_sizetype.
4810 It will create several other common tree nodes. */
4811
4812 void
4813 build_common_tree_nodes_2 (short_double)
4814 int short_double;
4815 {
4816 /* Define these next since types below may used them. */
4817 integer_zero_node = build_int_2 (0, 0);
4818 integer_one_node = build_int_2 (1, 0);
4819 integer_minus_one_node = build_int_2 (-1, -1);
4820
4821 size_zero_node = size_int (0);
4822 size_one_node = size_int (1);
4823 bitsize_zero_node = bitsize_int (0);
4824 bitsize_one_node = bitsize_int (1);
4825 bitsize_unit_node = bitsize_int (BITS_PER_UNIT);
4826
4827 void_type_node = make_node (VOID_TYPE);
4828 layout_type (void_type_node);
4829
4830 /* We are not going to have real types in C with less than byte alignment,
4831 so we might as well not have any types that claim to have it. */
4832 TYPE_ALIGN (void_type_node) = BITS_PER_UNIT;
4833 TYPE_USER_ALIGN (void_type_node) = 0;
4834
4835 null_pointer_node = build_int_2 (0, 0);
4836 TREE_TYPE (null_pointer_node) = build_pointer_type (void_type_node);
4837 layout_type (TREE_TYPE (null_pointer_node));
4838
4839 ptr_type_node = build_pointer_type (void_type_node);
4840 const_ptr_type_node
4841 = build_pointer_type (build_type_variant (void_type_node, 1, 0));
4842
4843 float_type_node = make_node (REAL_TYPE);
4844 TYPE_PRECISION (float_type_node) = FLOAT_TYPE_SIZE;
4845 layout_type (float_type_node);
4846
4847 double_type_node = make_node (REAL_TYPE);
4848 if (short_double)
4849 TYPE_PRECISION (double_type_node) = FLOAT_TYPE_SIZE;
4850 else
4851 TYPE_PRECISION (double_type_node) = DOUBLE_TYPE_SIZE;
4852 layout_type (double_type_node);
4853
4854 long_double_type_node = make_node (REAL_TYPE);
4855 TYPE_PRECISION (long_double_type_node) = LONG_DOUBLE_TYPE_SIZE;
4856 layout_type (long_double_type_node);
4857
4858 complex_integer_type_node = make_node (COMPLEX_TYPE);
4859 TREE_TYPE (complex_integer_type_node) = integer_type_node;
4860 layout_type (complex_integer_type_node);
4861
4862 complex_float_type_node = make_node (COMPLEX_TYPE);
4863 TREE_TYPE (complex_float_type_node) = float_type_node;
4864 layout_type (complex_float_type_node);
4865
4866 complex_double_type_node = make_node (COMPLEX_TYPE);
4867 TREE_TYPE (complex_double_type_node) = double_type_node;
4868 layout_type (complex_double_type_node);
4869
4870 complex_long_double_type_node = make_node (COMPLEX_TYPE);
4871 TREE_TYPE (complex_long_double_type_node) = long_double_type_node;
4872 layout_type (complex_long_double_type_node);
4873
4874 {
4875 tree t;
4876 BUILD_VA_LIST_TYPE (t);
4877
4878 /* Many back-ends define record types without seting TYPE_NAME.
4879 If we copied the record type here, we'd keep the original
4880 record type without a name. This breaks name mangling. So,
4881 don't copy record types and let c_common_nodes_and_builtins()
4882 declare the type to be __builtin_va_list. */
4883 if (TREE_CODE (t) != RECORD_TYPE)
4884 t = build_type_copy (t);
4885
4886 va_list_type_node = t;
4887 }
4888
4889 V4SF_type_node = make_node (VECTOR_TYPE);
4890 TREE_TYPE (V4SF_type_node) = float_type_node;
4891 TYPE_MODE (V4SF_type_node) = V4SFmode;
4892 finish_vector_type (V4SF_type_node);
4893
4894 V4SI_type_node = make_node (VECTOR_TYPE);
4895 TREE_TYPE (V4SI_type_node) = intSI_type_node;
4896 TYPE_MODE (V4SI_type_node) = V4SImode;
4897 finish_vector_type (V4SI_type_node);
4898
4899 V2SI_type_node = make_node (VECTOR_TYPE);
4900 TREE_TYPE (V2SI_type_node) = intSI_type_node;
4901 TYPE_MODE (V2SI_type_node) = V2SImode;
4902 finish_vector_type (V2SI_type_node);
4903
4904 V4HI_type_node = make_node (VECTOR_TYPE);
4905 TREE_TYPE (V4HI_type_node) = intHI_type_node;
4906 TYPE_MODE (V4HI_type_node) = V4HImode;
4907 finish_vector_type (V4HI_type_node);
4908
4909 V8QI_type_node = make_node (VECTOR_TYPE);
4910 TREE_TYPE (V8QI_type_node) = intQI_type_node;
4911 TYPE_MODE (V8QI_type_node) = V8QImode;
4912 finish_vector_type (V8QI_type_node);
4913 }