(loop_iterations): Move all failure exits after the computation of final_value.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204 static rtx remap_split_bivs ();
205
206 /* Try to unroll one loop and split induction variables in the loop.
207
208 The loop is described by the arguments LOOP_END, INSN_COUNT, and
209 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
210 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
211 indicates whether information generated in the strength reduction pass
212 is available.
213
214 This function is intended to be called from within `strength_reduce'
215 in loop.c. */
216
217 void
218 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
219 strength_reduce_p)
220 rtx loop_end;
221 int insn_count;
222 rtx loop_start;
223 rtx end_insert_before;
224 int strength_reduce_p;
225 {
226 int i, j, temp;
227 int unroll_number = 1;
228 rtx copy_start, copy_end;
229 rtx insn, copy, sequence, pattern, tem;
230 int max_labelno, max_insnno;
231 rtx insert_before;
232 struct inline_remap *map;
233 char *local_label;
234 int maxregnum;
235 int new_maxregnum;
236 rtx exit_label = 0;
237 rtx start_label;
238 struct iv_class *bl;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603 if (LABEL_NAME (start_label))
604 {
605 /* The jump optimization pass must have combined the original start label
606 with a named label for a goto. We can't unroll this case because
607 jumps which go to the named label must be handled differently than
608 jumps to the loop start, and it is impossible to differentiate them
609 in this case. */
610 if (loop_dump_stream)
611 fprintf (loop_dump_stream,
612 "Unrolling failure: loop start label is gone\n");
613 return;
614 }
615
616 if (unroll_type == UNROLL_NAIVE
617 && GET_CODE (last_loop_insn) == BARRIER
618 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
619 {
620 /* In this case, we must copy the jump and barrier, because they will
621 not be converted to jumps to an immediately following label. */
622
623 insert_before = NEXT_INSN (last_loop_insn);
624 copy_end = last_loop_insn;
625 }
626
627 /* Allocate a translation table for the labels and insn numbers.
628 They will be filled in as we copy the insns in the loop. */
629
630 max_labelno = max_label_num ();
631 max_insnno = get_max_uid ();
632
633 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
634
635 map->integrating = 0;
636
637 /* Allocate the label map. */
638
639 if (max_labelno > 0)
640 {
641 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
642
643 local_label = (char *) alloca (max_labelno);
644 bzero (local_label, max_labelno);
645 }
646 else
647 map->label_map = 0;
648
649 /* Search the loop and mark all local labels, i.e. the ones which have to
650 be distinct labels when copied. For all labels which might be
651 non-local, set their label_map entries to point to themselves.
652 If they happen to be local their label_map entries will be overwritten
653 before the loop body is copied. The label_map entries for local labels
654 will be set to a different value each time the loop body is copied. */
655
656 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
657 {
658 if (GET_CODE (insn) == CODE_LABEL)
659 local_label[CODE_LABEL_NUMBER (insn)] = 1;
660 else if (GET_CODE (insn) == JUMP_INSN)
661 {
662 if (JUMP_LABEL (insn))
663 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
664 = JUMP_LABEL (insn);
665 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
666 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
667 {
668 rtx pat = PATTERN (insn);
669 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
670 int len = XVECLEN (pat, diff_vec_p);
671 rtx label;
672
673 for (i = 0; i < len; i++)
674 {
675 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
676 map->label_map[CODE_LABEL_NUMBER (label)] = label;
677 }
678 }
679 }
680 }
681
682 /* Allocate space for the insn map. */
683
684 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
685
686 /* Set this to zero, to indicate that we are doing loop unrolling,
687 not function inlining. */
688 map->inline_target = 0;
689
690 /* The register and constant maps depend on the number of registers
691 present, so the final maps can't be created until after
692 find_splittable_regs is called. However, they are needed for
693 preconditioning, so we create temporary maps when preconditioning
694 is performed. */
695
696 /* The preconditioning code may allocate two new pseudo registers. */
697 maxregnum = max_reg_num ();
698
699 /* Allocate and zero out the splittable_regs and addr_combined_regs
700 arrays. These must be zeroed here because they will be used if
701 loop preconditioning is performed, and must be zero for that case.
702
703 It is safe to do this here, since the extra registers created by the
704 preconditioning code and find_splittable_regs will never be used
705 to access the splittable_regs[] and addr_combined_regs[] arrays. */
706
707 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
708 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
709 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
710 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
711 addr_combined_regs
712 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
713 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
714
715 /* If this loop requires exit tests when unrolled, check to see if we
716 can precondition the loop so as to make the exit tests unnecessary.
717 Just like variable splitting, this is not safe if the loop is entered
718 via a jump to the bottom. Also, can not do this if no strength
719 reduce info, because precondition_loop_p uses this info. */
720
721 /* Must copy the loop body for preconditioning before the following
722 find_splittable_regs call since that will emit insns which need to
723 be after the preconditioned loop copies, but immediately before the
724 unrolled loop copies. */
725
726 /* Also, it is not safe to split induction variables for the preconditioned
727 copies of the loop body. If we split induction variables, then the code
728 assumes that each induction variable can be represented as a function
729 of its initial value and the loop iteration number. This is not true
730 in this case, because the last preconditioned copy of the loop body
731 could be any iteration from the first up to the `unroll_number-1'th,
732 depending on the initial value of the iteration variable. Therefore
733 we can not split induction variables here, because we can not calculate
734 their value. Hence, this code must occur before find_splittable_regs
735 is called. */
736
737 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
738 {
739 rtx initial_value, final_value, increment;
740
741 if (precondition_loop_p (&initial_value, &final_value, &increment,
742 loop_start, loop_end))
743 {
744 register rtx diff, temp;
745 enum machine_mode mode;
746 rtx *labels;
747 int abs_inc, neg_inc;
748
749 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
750
751 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
752 map->const_age_map = (unsigned *) alloca (maxregnum
753 * sizeof (unsigned));
754 map->const_equiv_map_size = maxregnum;
755 global_const_equiv_map = map->const_equiv_map;
756 global_const_equiv_map_size = maxregnum;
757
758 init_reg_map (map, maxregnum);
759
760 /* Limit loop unrolling to 4, since this will make 7 copies of
761 the loop body. */
762 if (unroll_number > 4)
763 unroll_number = 4;
764
765 /* Save the absolute value of the increment, and also whether or
766 not it is negative. */
767 neg_inc = 0;
768 abs_inc = INTVAL (increment);
769 if (abs_inc < 0)
770 {
771 abs_inc = - abs_inc;
772 neg_inc = 1;
773 }
774
775 start_sequence ();
776
777 /* Decide what mode to do these calculations in. Choose the larger
778 of final_value's mode and initial_value's mode, or a full-word if
779 both are constants. */
780 mode = GET_MODE (final_value);
781 if (mode == VOIDmode)
782 {
783 mode = GET_MODE (initial_value);
784 if (mode == VOIDmode)
785 mode = word_mode;
786 }
787 else if (mode != GET_MODE (initial_value)
788 && (GET_MODE_SIZE (mode)
789 < GET_MODE_SIZE (GET_MODE (initial_value))))
790 mode = GET_MODE (initial_value);
791
792 /* Calculate the difference between the final and initial values.
793 Final value may be a (plus (reg x) (const_int 1)) rtx.
794 Let the following cse pass simplify this if initial value is
795 a constant.
796
797 We must copy the final and initial values here to avoid
798 improperly shared rtl. */
799
800 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
801 copy_rtx (initial_value), NULL_RTX, 0,
802 OPTAB_LIB_WIDEN);
803
804 /* Now calculate (diff % (unroll * abs (increment))) by using an
805 and instruction. */
806 diff = expand_binop (GET_MODE (diff), and_optab, diff,
807 GEN_INT (unroll_number * abs_inc - 1),
808 NULL_RTX, 0, OPTAB_LIB_WIDEN);
809
810 /* Now emit a sequence of branches to jump to the proper precond
811 loop entry point. */
812
813 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
814 for (i = 0; i < unroll_number; i++)
815 labels[i] = gen_label_rtx ();
816
817 /* Assuming the unroll_number is 4, and the increment is 2, then
818 for a negative increment: for a positive increment:
819 diff = 0,1 precond 0 diff = 0,7 precond 0
820 diff = 2,3 precond 3 diff = 1,2 precond 1
821 diff = 4,5 precond 2 diff = 3,4 precond 2
822 diff = 6,7 precond 1 diff = 5,6 precond 3 */
823
824 /* We only need to emit (unroll_number - 1) branches here, the
825 last case just falls through to the following code. */
826
827 /* ??? This would give better code if we emitted a tree of branches
828 instead of the current linear list of branches. */
829
830 for (i = 0; i < unroll_number - 1; i++)
831 {
832 int cmp_const;
833
834 /* For negative increments, must invert the constant compared
835 against, except when comparing against zero. */
836 if (i == 0)
837 cmp_const = 0;
838 else if (neg_inc)
839 cmp_const = unroll_number - i;
840 else
841 cmp_const = i;
842
843 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
844 EQ, NULL_RTX, mode, 0, 0);
845
846 if (i == 0)
847 emit_jump_insn (gen_beq (labels[i]));
848 else if (neg_inc)
849 emit_jump_insn (gen_bge (labels[i]));
850 else
851 emit_jump_insn (gen_ble (labels[i]));
852 JUMP_LABEL (get_last_insn ()) = labels[i];
853 LABEL_NUSES (labels[i])++;
854 }
855
856 /* If the increment is greater than one, then we need another branch,
857 to handle other cases equivalent to 0. */
858
859 /* ??? This should be merged into the code above somehow to help
860 simplify the code here, and reduce the number of branches emitted.
861 For the negative increment case, the branch here could easily
862 be merged with the `0' case branch above. For the positive
863 increment case, it is not clear how this can be simplified. */
864
865 if (abs_inc != 1)
866 {
867 int cmp_const;
868
869 if (neg_inc)
870 cmp_const = abs_inc - 1;
871 else
872 cmp_const = abs_inc * (unroll_number - 1) + 1;
873
874 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
875 mode, 0, 0);
876
877 if (neg_inc)
878 emit_jump_insn (gen_ble (labels[0]));
879 else
880 emit_jump_insn (gen_bge (labels[0]));
881 JUMP_LABEL (get_last_insn ()) = labels[0];
882 LABEL_NUSES (labels[0])++;
883 }
884
885 sequence = gen_sequence ();
886 end_sequence ();
887 emit_insn_before (sequence, loop_start);
888
889 /* Only the last copy of the loop body here needs the exit
890 test, so set copy_end to exclude the compare/branch here,
891 and then reset it inside the loop when get to the last
892 copy. */
893
894 if (GET_CODE (last_loop_insn) == BARRIER)
895 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
896 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
897 {
898 #ifdef HAVE_cc0
899 /* The immediately preceding insn is a compare which we do not
900 want to copy. */
901 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
902 #else
903 /* The immediately preceding insn may not be a compare, so we
904 must copy it. */
905 copy_end = PREV_INSN (last_loop_insn);
906 #endif
907 }
908 else
909 abort ();
910
911 for (i = 1; i < unroll_number; i++)
912 {
913 emit_label_after (labels[unroll_number - i],
914 PREV_INSN (loop_start));
915
916 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
917 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
918 bzero ((char *) map->const_age_map,
919 maxregnum * sizeof (unsigned));
920 map->const_age = 0;
921
922 for (j = 0; j < max_labelno; j++)
923 if (local_label[j])
924 map->label_map[j] = gen_label_rtx ();
925
926 /* The last copy needs the compare/branch insns at the end,
927 so reset copy_end here if the loop ends with a conditional
928 branch. */
929
930 if (i == unroll_number - 1)
931 {
932 if (GET_CODE (last_loop_insn) == BARRIER)
933 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
934 else
935 copy_end = last_loop_insn;
936 }
937
938 /* None of the copies are the `last_iteration', so just
939 pass zero for that parameter. */
940 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
941 unroll_type, start_label, loop_end,
942 loop_start, copy_end);
943 }
944 emit_label_after (labels[0], PREV_INSN (loop_start));
945
946 if (GET_CODE (last_loop_insn) == BARRIER)
947 {
948 insert_before = PREV_INSN (last_loop_insn);
949 copy_end = PREV_INSN (insert_before);
950 }
951 else
952 {
953 #ifdef HAVE_cc0
954 /* The immediately preceding insn is a compare which we do not
955 want to copy. */
956 insert_before = PREV_INSN (last_loop_insn);
957 copy_end = PREV_INSN (insert_before);
958 #else
959 /* The immediately preceding insn may not be a compare, so we
960 must copy it. */
961 insert_before = last_loop_insn;
962 copy_end = PREV_INSN (last_loop_insn);
963 #endif
964 }
965
966 /* Set unroll type to MODULO now. */
967 unroll_type = UNROLL_MODULO;
968 loop_preconditioned = 1;
969 }
970 }
971
972 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
973 the loop unless all loops are being unrolled. */
974 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
975 {
976 if (loop_dump_stream)
977 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
978 return;
979 }
980
981 /* At this point, we are guaranteed to unroll the loop. */
982
983 /* For each biv and giv, determine whether it can be safely split into
984 a different variable for each unrolled copy of the loop body.
985 We precalculate and save this info here, since computing it is
986 expensive.
987
988 Do this before deleting any instructions from the loop, so that
989 back_branch_in_range_p will work correctly. */
990
991 if (splitting_not_safe)
992 temp = 0;
993 else
994 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
995 end_insert_before, unroll_number);
996
997 /* find_splittable_regs may have created some new registers, so must
998 reallocate the reg_map with the new larger size, and must realloc
999 the constant maps also. */
1000
1001 maxregnum = max_reg_num ();
1002 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1003
1004 init_reg_map (map, maxregnum);
1005
1006 /* Space is needed in some of the map for new registers, so new_maxregnum
1007 is an (over)estimate of how many registers will exist at the end. */
1008 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1009
1010 /* Must realloc space for the constant maps, because the number of registers
1011 may have changed. */
1012
1013 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1014 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1015
1016 map->const_equiv_map_size = new_maxregnum;
1017 global_const_equiv_map = map->const_equiv_map;
1018 global_const_equiv_map_size = new_maxregnum;
1019
1020 /* Search the list of bivs and givs to find ones which need to be remapped
1021 when split, and set their reg_map entry appropriately. */
1022
1023 for (bl = loop_iv_list; bl; bl = bl->next)
1024 {
1025 if (REGNO (bl->biv->src_reg) != bl->regno)
1026 map->reg_map[bl->regno] = bl->biv->src_reg;
1027 #if 0
1028 /* Currently, non-reduced/final-value givs are never split. */
1029 for (v = bl->giv; v; v = v->next_iv)
1030 if (REGNO (v->src_reg) != bl->regno)
1031 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1032 #endif
1033 }
1034
1035 /* If the loop is being partially unrolled, and the iteration variables
1036 are being split, and are being renamed for the split, then must fix up
1037 the compare/jump instruction at the end of the loop to refer to the new
1038 registers. This compare isn't copied, so the registers used in it
1039 will never be replaced if it isn't done here. */
1040
1041 if (unroll_type == UNROLL_MODULO)
1042 {
1043 insn = NEXT_INSN (copy_end);
1044 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1045 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1046 }
1047
1048 /* For unroll_number - 1 times, make a copy of each instruction
1049 between copy_start and copy_end, and insert these new instructions
1050 before the end of the loop. */
1051
1052 for (i = 0; i < unroll_number; i++)
1053 {
1054 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1055 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1056 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1057 map->const_age = 0;
1058
1059 for (j = 0; j < max_labelno; j++)
1060 if (local_label[j])
1061 map->label_map[j] = gen_label_rtx ();
1062
1063 /* If loop starts with a branch to the test, then fix it so that
1064 it points to the test of the first unrolled copy of the loop. */
1065 if (i == 0 && loop_start != copy_start)
1066 {
1067 insn = PREV_INSN (copy_start);
1068 pattern = PATTERN (insn);
1069
1070 tem = map->label_map[CODE_LABEL_NUMBER
1071 (XEXP (SET_SRC (pattern), 0))];
1072 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1073
1074 /* Set the jump label so that it can be used by later loop unrolling
1075 passes. */
1076 JUMP_LABEL (insn) = tem;
1077 LABEL_NUSES (tem)++;
1078 }
1079
1080 copy_loop_body (copy_start, copy_end, map, exit_label,
1081 i == unroll_number - 1, unroll_type, start_label,
1082 loop_end, insert_before, insert_before);
1083 }
1084
1085 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1086 insn to be deleted. This prevents any runaway delete_insn call from
1087 more insns that it should, as it always stops at a CODE_LABEL. */
1088
1089 /* Delete the compare and branch at the end of the loop if completely
1090 unrolling the loop. Deleting the backward branch at the end also
1091 deletes the code label at the start of the loop. This is done at
1092 the very end to avoid problems with back_branch_in_range_p. */
1093
1094 if (unroll_type == UNROLL_COMPLETELY)
1095 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1096 else
1097 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1098
1099 /* Delete all of the original loop instructions. Don't delete the
1100 LOOP_BEG note, or the first code label in the loop. */
1101
1102 insn = NEXT_INSN (copy_start);
1103 while (insn != safety_label)
1104 {
1105 if (insn != start_label)
1106 insn = delete_insn (insn);
1107 else
1108 insn = NEXT_INSN (insn);
1109 }
1110
1111 /* Can now delete the 'safety' label emitted to protect us from runaway
1112 delete_insn calls. */
1113 if (INSN_DELETED_P (safety_label))
1114 abort ();
1115 delete_insn (safety_label);
1116
1117 /* If exit_label exists, emit it after the loop. Doing the emit here
1118 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1119 This is needed so that mostly_true_jump in reorg.c will treat jumps
1120 to this loop end label correctly, i.e. predict that they are usually
1121 not taken. */
1122 if (exit_label)
1123 emit_label_after (exit_label, loop_end);
1124 }
1125 \f
1126 /* Return true if the loop can be safely, and profitably, preconditioned
1127 so that the unrolled copies of the loop body don't need exit tests.
1128
1129 This only works if final_value, initial_value and increment can be
1130 determined, and if increment is a constant power of 2.
1131 If increment is not a power of 2, then the preconditioning modulo
1132 operation would require a real modulo instead of a boolean AND, and this
1133 is not considered `profitable'. */
1134
1135 /* ??? If the loop is known to be executed very many times, or the machine
1136 has a very cheap divide instruction, then preconditioning is a win even
1137 when the increment is not a power of 2. Use RTX_COST to compute
1138 whether divide is cheap. */
1139
1140 static int
1141 precondition_loop_p (initial_value, final_value, increment, loop_start,
1142 loop_end)
1143 rtx *initial_value, *final_value, *increment;
1144 rtx loop_start, loop_end;
1145 {
1146
1147 if (loop_n_iterations > 0)
1148 {
1149 *initial_value = const0_rtx;
1150 *increment = const1_rtx;
1151 *final_value = GEN_INT (loop_n_iterations);
1152
1153 if (loop_dump_stream)
1154 fprintf (loop_dump_stream,
1155 "Preconditioning: Success, number of iterations known, %d.\n",
1156 loop_n_iterations);
1157 return 1;
1158 }
1159
1160 if (loop_initial_value == 0)
1161 {
1162 if (loop_dump_stream)
1163 fprintf (loop_dump_stream,
1164 "Preconditioning: Could not find initial value.\n");
1165 return 0;
1166 }
1167 else if (loop_increment == 0)
1168 {
1169 if (loop_dump_stream)
1170 fprintf (loop_dump_stream,
1171 "Preconditioning: Could not find increment value.\n");
1172 return 0;
1173 }
1174 else if (GET_CODE (loop_increment) != CONST_INT)
1175 {
1176 if (loop_dump_stream)
1177 fprintf (loop_dump_stream,
1178 "Preconditioning: Increment not a constant.\n");
1179 return 0;
1180 }
1181 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1182 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1183 {
1184 if (loop_dump_stream)
1185 fprintf (loop_dump_stream,
1186 "Preconditioning: Increment not a constant power of 2.\n");
1187 return 0;
1188 }
1189
1190 /* Unsigned_compare and compare_dir can be ignored here, since they do
1191 not matter for preconditioning. */
1192
1193 if (loop_final_value == 0)
1194 {
1195 if (loop_dump_stream)
1196 fprintf (loop_dump_stream,
1197 "Preconditioning: EQ comparison loop.\n");
1198 return 0;
1199 }
1200
1201 /* Must ensure that final_value is invariant, so call invariant_p to
1202 check. Before doing so, must check regno against max_reg_before_loop
1203 to make sure that the register is in the range covered by invariant_p.
1204 If it isn't, then it is most likely a biv/giv which by definition are
1205 not invariant. */
1206 if ((GET_CODE (loop_final_value) == REG
1207 && REGNO (loop_final_value) >= max_reg_before_loop)
1208 || (GET_CODE (loop_final_value) == PLUS
1209 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1210 || ! invariant_p (loop_final_value))
1211 {
1212 if (loop_dump_stream)
1213 fprintf (loop_dump_stream,
1214 "Preconditioning: Final value not invariant.\n");
1215 return 0;
1216 }
1217
1218 /* Fail for floating point values, since the caller of this function
1219 does not have code to deal with them. */
1220 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1221 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1222 {
1223 if (loop_dump_stream)
1224 fprintf (loop_dump_stream,
1225 "Preconditioning: Floating point final or initial value.\n");
1226 return 0;
1227 }
1228
1229 /* Now set initial_value to be the iteration_var, since that may be a
1230 simpler expression, and is guaranteed to be correct if all of the
1231 above tests succeed.
1232
1233 We can not use the initial_value as calculated, because it will be
1234 one too small for loops of the form "while (i-- > 0)". We can not
1235 emit code before the loop_skip_over insns to fix this problem as this
1236 will then give a number one too large for loops of the form
1237 "while (--i > 0)".
1238
1239 Note that all loops that reach here are entered at the top, because
1240 this function is not called if the loop starts with a jump. */
1241
1242 /* Fail if loop_iteration_var is not live before loop_start, since we need
1243 to test its value in the preconditioning code. */
1244
1245 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1246 > INSN_LUID (loop_start))
1247 {
1248 if (loop_dump_stream)
1249 fprintf (loop_dump_stream,
1250 "Preconditioning: Iteration var not live before loop start.\n");
1251 return 0;
1252 }
1253
1254 *initial_value = loop_iteration_var;
1255 *increment = loop_increment;
1256 *final_value = loop_final_value;
1257
1258 /* Success! */
1259 if (loop_dump_stream)
1260 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1261 return 1;
1262 }
1263
1264
1265 /* All pseudo-registers must be mapped to themselves. Two hard registers
1266 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1267 REGNUM, to avoid function-inlining specific conversions of these
1268 registers. All other hard regs can not be mapped because they may be
1269 used with different
1270 modes. */
1271
1272 static void
1273 init_reg_map (map, maxregnum)
1274 struct inline_remap *map;
1275 int maxregnum;
1276 {
1277 int i;
1278
1279 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1280 map->reg_map[i] = regno_reg_rtx[i];
1281 /* Just clear the rest of the entries. */
1282 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1283 map->reg_map[i] = 0;
1284
1285 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1286 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1287 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1288 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1289 }
1290 \f
1291 /* Strength-reduction will often emit code for optimized biv/givs which
1292 calculates their value in a temporary register, and then copies the result
1293 to the iv. This procedure reconstructs the pattern computing the iv;
1294 verifying that all operands are of the proper form.
1295
1296 The return value is the amount that the giv is incremented by. */
1297
1298 static rtx
1299 calculate_giv_inc (pattern, src_insn, regno)
1300 rtx pattern, src_insn;
1301 int regno;
1302 {
1303 rtx increment;
1304 rtx increment_total = 0;
1305 int tries = 0;
1306
1307 retry:
1308 /* Verify that we have an increment insn here. First check for a plus
1309 as the set source. */
1310 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1311 {
1312 /* SR sometimes computes the new giv value in a temp, then copies it
1313 to the new_reg. */
1314 src_insn = PREV_INSN (src_insn);
1315 pattern = PATTERN (src_insn);
1316 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1317 abort ();
1318
1319 /* The last insn emitted is not needed, so delete it to avoid confusing
1320 the second cse pass. This insn sets the giv unnecessarily. */
1321 delete_insn (get_last_insn ());
1322 }
1323
1324 /* Verify that we have a constant as the second operand of the plus. */
1325 increment = XEXP (SET_SRC (pattern), 1);
1326 if (GET_CODE (increment) != CONST_INT)
1327 {
1328 /* SR sometimes puts the constant in a register, especially if it is
1329 too big to be an add immed operand. */
1330 src_insn = PREV_INSN (src_insn);
1331 increment = SET_SRC (PATTERN (src_insn));
1332
1333 /* SR may have used LO_SUM to compute the constant if it is too large
1334 for a load immed operand. In this case, the constant is in operand
1335 one of the LO_SUM rtx. */
1336 if (GET_CODE (increment) == LO_SUM)
1337 increment = XEXP (increment, 1);
1338 else if (GET_CODE (increment) == IOR)
1339 {
1340 /* The rs6000 port loads some constants with IOR. */
1341 rtx second_part = XEXP (increment, 1);
1342
1343 src_insn = PREV_INSN (src_insn);
1344 increment = SET_SRC (PATTERN (src_insn));
1345 /* Don't need the last insn anymore. */
1346 delete_insn (get_last_insn ());
1347
1348 if (GET_CODE (second_part) != CONST_INT
1349 || GET_CODE (increment) != CONST_INT)
1350 abort ();
1351
1352 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1353 }
1354
1355 if (GET_CODE (increment) != CONST_INT)
1356 abort ();
1357
1358 /* The insn loading the constant into a register is no longer needed,
1359 so delete it. */
1360 delete_insn (get_last_insn ());
1361 }
1362
1363 if (increment_total)
1364 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1365 else
1366 increment_total = increment;
1367
1368 /* Check that the source register is the same as the register we expected
1369 to see as the source. If not, something is seriously wrong. */
1370 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1371 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1372 {
1373 /* Some machines (e.g. the romp), may emit two add instructions for
1374 certain constants, so lets try looking for another add immediately
1375 before this one if we have only seen one add insn so far. */
1376
1377 if (tries == 0)
1378 {
1379 tries++;
1380
1381 src_insn = PREV_INSN (src_insn);
1382 pattern = PATTERN (src_insn);
1383
1384 delete_insn (get_last_insn ());
1385
1386 goto retry;
1387 }
1388
1389 abort ();
1390 }
1391
1392 return increment_total;
1393 }
1394
1395 /* Copy REG_NOTES, except for insn references, because not all insn_map
1396 entries are valid yet. We do need to copy registers now though, because
1397 the reg_map entries can change during copying. */
1398
1399 static rtx
1400 initial_reg_note_copy (notes, map)
1401 rtx notes;
1402 struct inline_remap *map;
1403 {
1404 rtx copy;
1405
1406 if (notes == 0)
1407 return 0;
1408
1409 copy = rtx_alloc (GET_CODE (notes));
1410 PUT_MODE (copy, GET_MODE (notes));
1411
1412 if (GET_CODE (notes) == EXPR_LIST)
1413 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1414 else if (GET_CODE (notes) == INSN_LIST)
1415 /* Don't substitute for these yet. */
1416 XEXP (copy, 0) = XEXP (notes, 0);
1417 else
1418 abort ();
1419
1420 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1421
1422 return copy;
1423 }
1424
1425 /* Fixup insn references in copied REG_NOTES. */
1426
1427 static void
1428 final_reg_note_copy (notes, map)
1429 rtx notes;
1430 struct inline_remap *map;
1431 {
1432 rtx note;
1433
1434 for (note = notes; note; note = XEXP (note, 1))
1435 if (GET_CODE (note) == INSN_LIST)
1436 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1437 }
1438
1439 /* Copy each instruction in the loop, substituting from map as appropriate.
1440 This is very similar to a loop in expand_inline_function. */
1441
1442 static void
1443 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1444 unroll_type, start_label, loop_end, insert_before,
1445 copy_notes_from)
1446 rtx copy_start, copy_end;
1447 struct inline_remap *map;
1448 rtx exit_label;
1449 int last_iteration;
1450 enum unroll_types unroll_type;
1451 rtx start_label, loop_end, insert_before, copy_notes_from;
1452 {
1453 rtx insn, pattern;
1454 rtx tem, copy;
1455 int dest_reg_was_split, i;
1456 rtx cc0_insn = 0;
1457 rtx final_label = 0;
1458 rtx giv_inc, giv_dest_reg, giv_src_reg;
1459
1460 /* If this isn't the last iteration, then map any references to the
1461 start_label to final_label. Final label will then be emitted immediately
1462 after the end of this loop body if it was ever used.
1463
1464 If this is the last iteration, then map references to the start_label
1465 to itself. */
1466 if (! last_iteration)
1467 {
1468 final_label = gen_label_rtx ();
1469 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1470 }
1471 else
1472 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1473
1474 start_sequence ();
1475
1476 insn = copy_start;
1477 do
1478 {
1479 insn = NEXT_INSN (insn);
1480
1481 map->orig_asm_operands_vector = 0;
1482
1483 switch (GET_CODE (insn))
1484 {
1485 case INSN:
1486 pattern = PATTERN (insn);
1487 copy = 0;
1488 giv_inc = 0;
1489
1490 /* Check to see if this is a giv that has been combined with
1491 some split address givs. (Combined in the sense that
1492 `combine_givs' in loop.c has put two givs in the same register.)
1493 In this case, we must search all givs based on the same biv to
1494 find the address givs. Then split the address givs.
1495 Do this before splitting the giv, since that may map the
1496 SET_DEST to a new register. */
1497
1498 if (GET_CODE (pattern) == SET
1499 && GET_CODE (SET_DEST (pattern)) == REG
1500 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1501 {
1502 struct iv_class *bl;
1503 struct induction *v, *tv;
1504 int regno = REGNO (SET_DEST (pattern));
1505
1506 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1507 bl = reg_biv_class[REGNO (v->src_reg)];
1508
1509 /* Although the giv_inc amount is not needed here, we must call
1510 calculate_giv_inc here since it might try to delete the
1511 last insn emitted. If we wait until later to call it,
1512 we might accidentally delete insns generated immediately
1513 below by emit_unrolled_add. */
1514
1515 giv_inc = calculate_giv_inc (pattern, insn, regno);
1516
1517 /* Now find all address giv's that were combined with this
1518 giv 'v'. */
1519 for (tv = bl->giv; tv; tv = tv->next_iv)
1520 if (tv->giv_type == DEST_ADDR && tv->same == v)
1521 {
1522 int this_giv_inc = INTVAL (giv_inc);
1523
1524 /* Scale this_giv_inc if the multiplicative factors of
1525 the two givs are different. */
1526 if (tv->mult_val != v->mult_val)
1527 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1528 * INTVAL (tv->mult_val));
1529
1530 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1531 *tv->location = tv->dest_reg;
1532
1533 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1534 {
1535 /* Must emit an insn to increment the split address
1536 giv. Add in the const_adjust field in case there
1537 was a constant eliminated from the address. */
1538 rtx value, dest_reg;
1539
1540 /* tv->dest_reg will be either a bare register,
1541 or else a register plus a constant. */
1542 if (GET_CODE (tv->dest_reg) == REG)
1543 dest_reg = tv->dest_reg;
1544 else
1545 dest_reg = XEXP (tv->dest_reg, 0);
1546
1547 /* Check for shared address givs, and avoid
1548 incrementing the shared psuedo reg more than
1549 once. */
1550 if (! (tv != v && tv->insn == v->insn
1551 && tv->new_reg == v->new_reg))
1552 {
1553 /* tv->dest_reg may actually be a (PLUS (REG)
1554 (CONST)) here, so we must call plus_constant
1555 to add the const_adjust amount before calling
1556 emit_unrolled_add below. */
1557 value = plus_constant (tv->dest_reg,
1558 tv->const_adjust);
1559
1560 /* The constant could be too large for an add
1561 immediate, so can't directly emit an insn
1562 here. */
1563 emit_unrolled_add (dest_reg, XEXP (value, 0),
1564 XEXP (value, 1));
1565 }
1566
1567 /* Reset the giv to be just the register again, in case
1568 it is used after the set we have just emitted.
1569 We must subtract the const_adjust factor added in
1570 above. */
1571 tv->dest_reg = plus_constant (dest_reg,
1572 - tv->const_adjust);
1573 *tv->location = tv->dest_reg;
1574 }
1575 }
1576 }
1577
1578 /* If this is a setting of a splittable variable, then determine
1579 how to split the variable, create a new set based on this split,
1580 and set up the reg_map so that later uses of the variable will
1581 use the new split variable. */
1582
1583 dest_reg_was_split = 0;
1584
1585 if (GET_CODE (pattern) == SET
1586 && GET_CODE (SET_DEST (pattern)) == REG
1587 && splittable_regs[REGNO (SET_DEST (pattern))])
1588 {
1589 int regno = REGNO (SET_DEST (pattern));
1590
1591 dest_reg_was_split = 1;
1592
1593 /* Compute the increment value for the giv, if it wasn't
1594 already computed above. */
1595
1596 if (giv_inc == 0)
1597 giv_inc = calculate_giv_inc (pattern, insn, regno);
1598 giv_dest_reg = SET_DEST (pattern);
1599 giv_src_reg = SET_DEST (pattern);
1600
1601 if (unroll_type == UNROLL_COMPLETELY)
1602 {
1603 /* Completely unrolling the loop. Set the induction
1604 variable to a known constant value. */
1605
1606 /* The value in splittable_regs may be an invariant
1607 value, so we must use plus_constant here. */
1608 splittable_regs[regno]
1609 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1610
1611 if (GET_CODE (splittable_regs[regno]) == PLUS)
1612 {
1613 giv_src_reg = XEXP (splittable_regs[regno], 0);
1614 giv_inc = XEXP (splittable_regs[regno], 1);
1615 }
1616 else
1617 {
1618 /* The splittable_regs value must be a REG or a
1619 CONST_INT, so put the entire value in the giv_src_reg
1620 variable. */
1621 giv_src_reg = splittable_regs[regno];
1622 giv_inc = const0_rtx;
1623 }
1624 }
1625 else
1626 {
1627 /* Partially unrolling loop. Create a new pseudo
1628 register for the iteration variable, and set it to
1629 be a constant plus the original register. Except
1630 on the last iteration, when the result has to
1631 go back into the original iteration var register. */
1632
1633 /* Handle bivs which must be mapped to a new register
1634 when split. This happens for bivs which need their
1635 final value set before loop entry. The new register
1636 for the biv was stored in the biv's first struct
1637 induction entry by find_splittable_regs. */
1638
1639 if (regno < max_reg_before_loop
1640 && reg_iv_type[regno] == BASIC_INDUCT)
1641 {
1642 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1643 giv_dest_reg = giv_src_reg;
1644 }
1645
1646 #if 0
1647 /* If non-reduced/final-value givs were split, then
1648 this would have to remap those givs also. See
1649 find_splittable_regs. */
1650 #endif
1651
1652 splittable_regs[regno]
1653 = GEN_INT (INTVAL (giv_inc)
1654 + INTVAL (splittable_regs[regno]));
1655 giv_inc = splittable_regs[regno];
1656
1657 /* Now split the induction variable by changing the dest
1658 of this insn to a new register, and setting its
1659 reg_map entry to point to this new register.
1660
1661 If this is the last iteration, and this is the last insn
1662 that will update the iv, then reuse the original dest,
1663 to ensure that the iv will have the proper value when
1664 the loop exits or repeats.
1665
1666 Using splittable_regs_updates here like this is safe,
1667 because it can only be greater than one if all
1668 instructions modifying the iv are always executed in
1669 order. */
1670
1671 if (! last_iteration
1672 || (splittable_regs_updates[regno]-- != 1))
1673 {
1674 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1675 giv_dest_reg = tem;
1676 map->reg_map[regno] = tem;
1677 }
1678 else
1679 map->reg_map[regno] = giv_src_reg;
1680 }
1681
1682 /* The constant being added could be too large for an add
1683 immediate, so can't directly emit an insn here. */
1684 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1685 copy = get_last_insn ();
1686 pattern = PATTERN (copy);
1687 }
1688 else
1689 {
1690 pattern = copy_rtx_and_substitute (pattern, map);
1691 copy = emit_insn (pattern);
1692 }
1693 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1694
1695 #ifdef HAVE_cc0
1696 /* If this insn is setting CC0, it may need to look at
1697 the insn that uses CC0 to see what type of insn it is.
1698 In that case, the call to recog via validate_change will
1699 fail. So don't substitute constants here. Instead,
1700 do it when we emit the following insn.
1701
1702 For example, see the pyr.md file. That machine has signed and
1703 unsigned compares. The compare patterns must check the
1704 following branch insn to see which what kind of compare to
1705 emit.
1706
1707 If the previous insn set CC0, substitute constants on it as
1708 well. */
1709 if (sets_cc0_p (copy) != 0)
1710 cc0_insn = copy;
1711 else
1712 {
1713 if (cc0_insn)
1714 try_constants (cc0_insn, map);
1715 cc0_insn = 0;
1716 try_constants (copy, map);
1717 }
1718 #else
1719 try_constants (copy, map);
1720 #endif
1721
1722 /* Make split induction variable constants `permanent' since we
1723 know there are no backward branches across iteration variable
1724 settings which would invalidate this. */
1725 if (dest_reg_was_split)
1726 {
1727 int regno = REGNO (SET_DEST (pattern));
1728
1729 if (regno < map->const_equiv_map_size
1730 && map->const_age_map[regno] == map->const_age)
1731 map->const_age_map[regno] = -1;
1732 }
1733 break;
1734
1735 case JUMP_INSN:
1736 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1737 copy = emit_jump_insn (pattern);
1738 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1739
1740 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1741 && ! last_iteration)
1742 {
1743 /* This is a branch to the beginning of the loop; this is the
1744 last insn being copied; and this is not the last iteration.
1745 In this case, we want to change the original fall through
1746 case to be a branch past the end of the loop, and the
1747 original jump label case to fall_through. */
1748
1749 if (invert_exp (pattern, copy))
1750 {
1751 if (! redirect_exp (&pattern,
1752 map->label_map[CODE_LABEL_NUMBER
1753 (JUMP_LABEL (insn))],
1754 exit_label, copy))
1755 abort ();
1756 }
1757 else
1758 {
1759 rtx jmp;
1760 rtx lab = gen_label_rtx ();
1761 /* Can't do it by reversing the jump (probably becasue we
1762 couln't reverse the conditions), so emit a new
1763 jump_insn after COPY, and redirect the jump around
1764 that. */
1765 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1766 jmp = emit_barrier_after (jmp);
1767 emit_label_after (lab, jmp);
1768 LABEL_NUSES (lab) = 0;
1769 if (! redirect_exp (&pattern,
1770 map->label_map[CODE_LABEL_NUMBER
1771 (JUMP_LABEL (insn))],
1772 lab, copy))
1773 abort ();
1774 }
1775 }
1776
1777 #ifdef HAVE_cc0
1778 if (cc0_insn)
1779 try_constants (cc0_insn, map);
1780 cc0_insn = 0;
1781 #endif
1782 try_constants (copy, map);
1783
1784 /* Set the jump label of COPY correctly to avoid problems with
1785 later passes of unroll_loop, if INSN had jump label set. */
1786 if (JUMP_LABEL (insn))
1787 {
1788 rtx label = 0;
1789
1790 /* Can't use the label_map for every insn, since this may be
1791 the backward branch, and hence the label was not mapped. */
1792 if (GET_CODE (pattern) == SET)
1793 {
1794 tem = SET_SRC (pattern);
1795 if (GET_CODE (tem) == LABEL_REF)
1796 label = XEXP (tem, 0);
1797 else if (GET_CODE (tem) == IF_THEN_ELSE)
1798 {
1799 if (XEXP (tem, 1) != pc_rtx)
1800 label = XEXP (XEXP (tem, 1), 0);
1801 else
1802 label = XEXP (XEXP (tem, 2), 0);
1803 }
1804 }
1805
1806 if (label && GET_CODE (label) == CODE_LABEL)
1807 JUMP_LABEL (copy) = label;
1808 else
1809 {
1810 /* An unrecognizable jump insn, probably the entry jump
1811 for a switch statement. This label must have been mapped,
1812 so just use the label_map to get the new jump label. */
1813 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1814 (JUMP_LABEL (insn))];
1815 }
1816
1817 /* If this is a non-local jump, then must increase the label
1818 use count so that the label will not be deleted when the
1819 original jump is deleted. */
1820 LABEL_NUSES (JUMP_LABEL (copy))++;
1821 }
1822 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1823 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1824 {
1825 rtx pat = PATTERN (copy);
1826 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1827 int len = XVECLEN (pat, diff_vec_p);
1828 int i;
1829
1830 for (i = 0; i < len; i++)
1831 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1832 }
1833
1834 /* If this used to be a conditional jump insn but whose branch
1835 direction is now known, we must do something special. */
1836 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1837 {
1838 #ifdef HAVE_cc0
1839 /* The previous insn set cc0 for us. So delete it. */
1840 delete_insn (PREV_INSN (copy));
1841 #endif
1842
1843 /* If this is now a no-op, delete it. */
1844 if (map->last_pc_value == pc_rtx)
1845 {
1846 /* Don't let delete_insn delete the label referenced here,
1847 because we might possibly need it later for some other
1848 instruction in the loop. */
1849 if (JUMP_LABEL (copy))
1850 LABEL_NUSES (JUMP_LABEL (copy))++;
1851 delete_insn (copy);
1852 if (JUMP_LABEL (copy))
1853 LABEL_NUSES (JUMP_LABEL (copy))--;
1854 copy = 0;
1855 }
1856 else
1857 /* Otherwise, this is unconditional jump so we must put a
1858 BARRIER after it. We could do some dead code elimination
1859 here, but jump.c will do it just as well. */
1860 emit_barrier ();
1861 }
1862 break;
1863
1864 case CALL_INSN:
1865 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1866 copy = emit_call_insn (pattern);
1867 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1868
1869 /* Because the USAGE information potentially contains objects other
1870 than hard registers, we need to copy it. */
1871 CALL_INSN_FUNCTION_USAGE (copy) =
1872 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1873
1874 #ifdef HAVE_cc0
1875 if (cc0_insn)
1876 try_constants (cc0_insn, map);
1877 cc0_insn = 0;
1878 #endif
1879 try_constants (copy, map);
1880
1881 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1882 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1883 map->const_equiv_map[i] = 0;
1884 break;
1885
1886 case CODE_LABEL:
1887 /* If this is the loop start label, then we don't need to emit a
1888 copy of this label since no one will use it. */
1889
1890 if (insn != start_label)
1891 {
1892 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1893 map->const_age++;
1894 }
1895 break;
1896
1897 case BARRIER:
1898 copy = emit_barrier ();
1899 break;
1900
1901 case NOTE:
1902 /* VTOP notes are valid only before the loop exit test. If placed
1903 anywhere else, loop may generate bad code. */
1904
1905 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1906 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1907 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1908 copy = emit_note (NOTE_SOURCE_FILE (insn),
1909 NOTE_LINE_NUMBER (insn));
1910 else
1911 copy = 0;
1912 break;
1913
1914 default:
1915 abort ();
1916 break;
1917 }
1918
1919 map->insn_map[INSN_UID (insn)] = copy;
1920 }
1921 while (insn != copy_end);
1922
1923 /* Now finish coping the REG_NOTES. */
1924 insn = copy_start;
1925 do
1926 {
1927 insn = NEXT_INSN (insn);
1928 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1929 || GET_CODE (insn) == CALL_INSN)
1930 && map->insn_map[INSN_UID (insn)])
1931 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
1932 }
1933 while (insn != copy_end);
1934
1935 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1936 each of these notes here, since there may be some important ones, such as
1937 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1938 iteration, because the original notes won't be deleted.
1939
1940 We can't use insert_before here, because when from preconditioning,
1941 insert_before points before the loop. We can't use copy_end, because
1942 there may be insns already inserted after it (which we don't want to
1943 copy) when not from preconditioning code. */
1944
1945 if (! last_iteration)
1946 {
1947 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1948 {
1949 if (GET_CODE (insn) == NOTE
1950 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1951 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1952 }
1953 }
1954
1955 if (final_label && LABEL_NUSES (final_label) > 0)
1956 emit_label (final_label);
1957
1958 tem = gen_sequence ();
1959 end_sequence ();
1960 emit_insn_before (tem, insert_before);
1961 }
1962 \f
1963 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1964 emitted. This will correctly handle the case where the increment value
1965 won't fit in the immediate field of a PLUS insns. */
1966
1967 void
1968 emit_unrolled_add (dest_reg, src_reg, increment)
1969 rtx dest_reg, src_reg, increment;
1970 {
1971 rtx result;
1972
1973 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1974 dest_reg, 0, OPTAB_LIB_WIDEN);
1975
1976 if (dest_reg != result)
1977 emit_move_insn (dest_reg, result);
1978 }
1979 \f
1980 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1981 is a backward branch in that range that branches to somewhere between
1982 LOOP_START and INSN. Returns 0 otherwise. */
1983
1984 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1985 In practice, this is not a problem, because this function is seldom called,
1986 and uses a negligible amount of CPU time on average. */
1987
1988 static int
1989 back_branch_in_range_p (insn, loop_start, loop_end)
1990 rtx insn;
1991 rtx loop_start, loop_end;
1992 {
1993 rtx p, q, target_insn;
1994
1995 /* Stop before we get to the backward branch at the end of the loop. */
1996 loop_end = prev_nonnote_insn (loop_end);
1997 if (GET_CODE (loop_end) == BARRIER)
1998 loop_end = PREV_INSN (loop_end);
1999
2000 /* Check in case insn has been deleted, search forward for first non
2001 deleted insn following it. */
2002 while (INSN_DELETED_P (insn))
2003 insn = NEXT_INSN (insn);
2004
2005 /* Check for the case where insn is the last insn in the loop. */
2006 if (insn == loop_end)
2007 return 0;
2008
2009 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2010 {
2011 if (GET_CODE (p) == JUMP_INSN)
2012 {
2013 target_insn = JUMP_LABEL (p);
2014
2015 /* Search from loop_start to insn, to see if one of them is
2016 the target_insn. We can't use INSN_LUID comparisons here,
2017 since insn may not have an LUID entry. */
2018 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2019 if (q == target_insn)
2020 return 1;
2021 }
2022 }
2023
2024 return 0;
2025 }
2026
2027 /* Try to generate the simplest rtx for the expression
2028 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2029 value of giv's. */
2030
2031 static rtx
2032 fold_rtx_mult_add (mult1, mult2, add1, mode)
2033 rtx mult1, mult2, add1;
2034 enum machine_mode mode;
2035 {
2036 rtx temp, mult_res;
2037 rtx result;
2038
2039 /* The modes must all be the same. This should always be true. For now,
2040 check to make sure. */
2041 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2042 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2043 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2044 abort ();
2045
2046 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2047 will be a constant. */
2048 if (GET_CODE (mult1) == CONST_INT)
2049 {
2050 temp = mult2;
2051 mult2 = mult1;
2052 mult1 = temp;
2053 }
2054
2055 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2056 if (! mult_res)
2057 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2058
2059 /* Again, put the constant second. */
2060 if (GET_CODE (add1) == CONST_INT)
2061 {
2062 temp = add1;
2063 add1 = mult_res;
2064 mult_res = temp;
2065 }
2066
2067 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2068 if (! result)
2069 result = gen_rtx (PLUS, mode, add1, mult_res);
2070
2071 return result;
2072 }
2073
2074 /* Searches the list of induction struct's for the biv BL, to try to calculate
2075 the total increment value for one iteration of the loop as a constant.
2076
2077 Returns the increment value as an rtx, simplified as much as possible,
2078 if it can be calculated. Otherwise, returns 0. */
2079
2080 rtx
2081 biv_total_increment (bl, loop_start, loop_end)
2082 struct iv_class *bl;
2083 rtx loop_start, loop_end;
2084 {
2085 struct induction *v;
2086 rtx result;
2087
2088 /* For increment, must check every instruction that sets it. Each
2089 instruction must be executed only once each time through the loop.
2090 To verify this, we check that the the insn is always executed, and that
2091 there are no backward branches after the insn that branch to before it.
2092 Also, the insn must have a mult_val of one (to make sure it really is
2093 an increment). */
2094
2095 result = const0_rtx;
2096 for (v = bl->biv; v; v = v->next_iv)
2097 {
2098 if (v->always_computable && v->mult_val == const1_rtx
2099 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2100 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2101 else
2102 return 0;
2103 }
2104
2105 return result;
2106 }
2107
2108 /* Determine the initial value of the iteration variable, and the amount
2109 that it is incremented each loop. Use the tables constructed by
2110 the strength reduction pass to calculate these values.
2111
2112 Initial_value and/or increment are set to zero if their values could not
2113 be calculated. */
2114
2115 static void
2116 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2117 rtx iteration_var, *initial_value, *increment;
2118 rtx loop_start, loop_end;
2119 {
2120 struct iv_class *bl;
2121 struct induction *v, *b;
2122
2123 /* Clear the result values, in case no answer can be found. */
2124 *initial_value = 0;
2125 *increment = 0;
2126
2127 /* The iteration variable can be either a giv or a biv. Check to see
2128 which it is, and compute the variable's initial value, and increment
2129 value if possible. */
2130
2131 /* If this is a new register, can't handle it since we don't have any
2132 reg_iv_type entry for it. */
2133 if (REGNO (iteration_var) >= max_reg_before_loop)
2134 {
2135 if (loop_dump_stream)
2136 fprintf (loop_dump_stream,
2137 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2138 return;
2139 }
2140 /* Reject iteration variables larger than the host long size, since they
2141 could result in a number of iterations greater than the range of our
2142 `unsigned long' variable loop_n_iterations. */
2143 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2144 {
2145 if (loop_dump_stream)
2146 fprintf (loop_dump_stream,
2147 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2148 return;
2149 }
2150 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2151 {
2152 if (loop_dump_stream)
2153 fprintf (loop_dump_stream,
2154 "Loop unrolling: Iteration var not an integer.\n");
2155 return;
2156 }
2157 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2158 {
2159 /* Grab initial value, only useful if it is a constant. */
2160 bl = reg_biv_class[REGNO (iteration_var)];
2161 *initial_value = bl->initial_value;
2162
2163 *increment = biv_total_increment (bl, loop_start, loop_end);
2164 }
2165 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2166 {
2167 #if 1
2168 /* ??? The code below does not work because the incorrect number of
2169 iterations is calculated when the biv is incremented after the giv
2170 is set (which is the usual case). This can probably be accounted
2171 for by biasing the initial_value by subtracting the amount of the
2172 increment that occurs between the giv set and the giv test. However,
2173 a giv as an iterator is very rare, so it does not seem worthwhile
2174 to handle this. */
2175 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2176 if (loop_dump_stream)
2177 fprintf (loop_dump_stream,
2178 "Loop unrolling: Giv iterators are not handled.\n");
2179 return;
2180 #else
2181 /* Initial value is mult_val times the biv's initial value plus
2182 add_val. Only useful if it is a constant. */
2183 v = reg_iv_info[REGNO (iteration_var)];
2184 bl = reg_biv_class[REGNO (v->src_reg)];
2185 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2186 v->add_val, v->mode);
2187
2188 /* Increment value is mult_val times the increment value of the biv. */
2189
2190 *increment = biv_total_increment (bl, loop_start, loop_end);
2191 if (*increment)
2192 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2193 v->mode);
2194 #endif
2195 }
2196 else
2197 {
2198 if (loop_dump_stream)
2199 fprintf (loop_dump_stream,
2200 "Loop unrolling: Not basic or general induction var.\n");
2201 return;
2202 }
2203 }
2204
2205 /* Calculate the approximate final value of the iteration variable
2206 which has an loop exit test with code COMPARISON_CODE and comparison value
2207 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2208 was signed or unsigned, and the direction of the comparison. This info is
2209 needed to calculate the number of loop iterations. */
2210
2211 static rtx
2212 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2213 enum rtx_code comparison_code;
2214 rtx comparison_value;
2215 int *unsigned_p;
2216 int *compare_dir;
2217 {
2218 /* Calculate the final value of the induction variable.
2219 The exact final value depends on the branch operator, and increment sign.
2220 This is only an approximate value. It will be wrong if the iteration
2221 variable is not incremented by one each time through the loop, and
2222 approx final value - start value % increment != 0. */
2223
2224 *unsigned_p = 0;
2225 switch (comparison_code)
2226 {
2227 case LEU:
2228 *unsigned_p = 1;
2229 case LE:
2230 *compare_dir = 1;
2231 return plus_constant (comparison_value, 1);
2232 case GEU:
2233 *unsigned_p = 1;
2234 case GE:
2235 *compare_dir = -1;
2236 return plus_constant (comparison_value, -1);
2237 case EQ:
2238 /* Can not calculate a final value for this case. */
2239 *compare_dir = 0;
2240 return 0;
2241 case LTU:
2242 *unsigned_p = 1;
2243 case LT:
2244 *compare_dir = 1;
2245 return comparison_value;
2246 break;
2247 case GTU:
2248 *unsigned_p = 1;
2249 case GT:
2250 *compare_dir = -1;
2251 return comparison_value;
2252 case NE:
2253 *compare_dir = 0;
2254 return comparison_value;
2255 default:
2256 abort ();
2257 }
2258 }
2259
2260 /* For each biv and giv, determine whether it can be safely split into
2261 a different variable for each unrolled copy of the loop body. If it
2262 is safe to split, then indicate that by saving some useful info
2263 in the splittable_regs array.
2264
2265 If the loop is being completely unrolled, then splittable_regs will hold
2266 the current value of the induction variable while the loop is unrolled.
2267 It must be set to the initial value of the induction variable here.
2268 Otherwise, splittable_regs will hold the difference between the current
2269 value of the induction variable and the value the induction variable had
2270 at the top of the loop. It must be set to the value 0 here.
2271
2272 Returns the total number of instructions that set registers that are
2273 splittable. */
2274
2275 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2276 constant values are unnecessary, since we can easily calculate increment
2277 values in this case even if nothing is constant. The increment value
2278 should not involve a multiply however. */
2279
2280 /* ?? Even if the biv/giv increment values aren't constant, it may still
2281 be beneficial to split the variable if the loop is only unrolled a few
2282 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2283
2284 static int
2285 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2286 unroll_number)
2287 enum unroll_types unroll_type;
2288 rtx loop_start, loop_end;
2289 rtx end_insert_before;
2290 int unroll_number;
2291 {
2292 struct iv_class *bl;
2293 struct induction *v;
2294 rtx increment, tem;
2295 rtx biv_final_value;
2296 int biv_splittable;
2297 int result = 0;
2298
2299 for (bl = loop_iv_list; bl; bl = bl->next)
2300 {
2301 /* Biv_total_increment must return a constant value,
2302 otherwise we can not calculate the split values. */
2303
2304 increment = biv_total_increment (bl, loop_start, loop_end);
2305 if (! increment || GET_CODE (increment) != CONST_INT)
2306 continue;
2307
2308 /* The loop must be unrolled completely, or else have a known number
2309 of iterations and only one exit, or else the biv must be dead
2310 outside the loop, or else the final value must be known. Otherwise,
2311 it is unsafe to split the biv since it may not have the proper
2312 value on loop exit. */
2313
2314 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2315 a fall through at the end. */
2316
2317 biv_splittable = 1;
2318 biv_final_value = 0;
2319 if (unroll_type != UNROLL_COMPLETELY
2320 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2321 || unroll_type == UNROLL_NAIVE)
2322 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2323 || ! bl->init_insn
2324 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2325 || (uid_luid[regno_first_uid[bl->regno]]
2326 < INSN_LUID (bl->init_insn))
2327 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2328 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2329 biv_splittable = 0;
2330
2331 /* If any of the insns setting the BIV don't do so with a simple
2332 PLUS, we don't know how to split it. */
2333 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2334 if ((tem = single_set (v->insn)) == 0
2335 || GET_CODE (SET_DEST (tem)) != REG
2336 || REGNO (SET_DEST (tem)) != bl->regno
2337 || GET_CODE (SET_SRC (tem)) != PLUS)
2338 biv_splittable = 0;
2339
2340 /* If final value is non-zero, then must emit an instruction which sets
2341 the value of the biv to the proper value. This is done after
2342 handling all of the givs, since some of them may need to use the
2343 biv's value in their initialization code. */
2344
2345 /* This biv is splittable. If completely unrolling the loop, save
2346 the biv's initial value. Otherwise, save the constant zero. */
2347
2348 if (biv_splittable == 1)
2349 {
2350 if (unroll_type == UNROLL_COMPLETELY)
2351 {
2352 /* If the initial value of the biv is itself (i.e. it is too
2353 complicated for strength_reduce to compute), or is a hard
2354 register, then we must create a new pseudo reg to hold the
2355 initial value of the biv. */
2356
2357 if (GET_CODE (bl->initial_value) == REG
2358 && (REGNO (bl->initial_value) == bl->regno
2359 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2360 {
2361 rtx tem = gen_reg_rtx (bl->biv->mode);
2362
2363 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2364 loop_start);
2365
2366 if (loop_dump_stream)
2367 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2368 bl->regno, REGNO (tem));
2369
2370 splittable_regs[bl->regno] = tem;
2371 }
2372 else
2373 splittable_regs[bl->regno] = bl->initial_value;
2374 }
2375 else
2376 splittable_regs[bl->regno] = const0_rtx;
2377
2378 /* Save the number of instructions that modify the biv, so that
2379 we can treat the last one specially. */
2380
2381 splittable_regs_updates[bl->regno] = bl->biv_count;
2382 result += bl->biv_count;
2383
2384 if (loop_dump_stream)
2385 fprintf (loop_dump_stream,
2386 "Biv %d safe to split.\n", bl->regno);
2387 }
2388
2389 /* Check every giv that depends on this biv to see whether it is
2390 splittable also. Even if the biv isn't splittable, givs which
2391 depend on it may be splittable if the biv is live outside the
2392 loop, and the givs aren't. */
2393
2394 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2395 increment, unroll_number);
2396
2397 /* If final value is non-zero, then must emit an instruction which sets
2398 the value of the biv to the proper value. This is done after
2399 handling all of the givs, since some of them may need to use the
2400 biv's value in their initialization code. */
2401 if (biv_final_value)
2402 {
2403 /* If the loop has multiple exits, emit the insns before the
2404 loop to ensure that it will always be executed no matter
2405 how the loop exits. Otherwise emit the insn after the loop,
2406 since this is slightly more efficient. */
2407 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2408 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2409 biv_final_value),
2410 end_insert_before);
2411 else
2412 {
2413 /* Create a new register to hold the value of the biv, and then
2414 set the biv to its final value before the loop start. The biv
2415 is set to its final value before loop start to ensure that
2416 this insn will always be executed, no matter how the loop
2417 exits. */
2418 rtx tem = gen_reg_rtx (bl->biv->mode);
2419 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2420 loop_start);
2421 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2422 biv_final_value),
2423 loop_start);
2424
2425 if (loop_dump_stream)
2426 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2427 REGNO (bl->biv->src_reg), REGNO (tem));
2428
2429 /* Set up the mapping from the original biv register to the new
2430 register. */
2431 bl->biv->src_reg = tem;
2432 }
2433 }
2434 }
2435 return result;
2436 }
2437
2438 /* For every giv based on the biv BL, check to determine whether it is
2439 splittable. This is a subroutine to find_splittable_regs ().
2440
2441 Return the number of instructions that set splittable registers. */
2442
2443 static int
2444 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2445 unroll_number)
2446 struct iv_class *bl;
2447 enum unroll_types unroll_type;
2448 rtx loop_start, loop_end;
2449 rtx increment;
2450 int unroll_number;
2451 {
2452 struct induction *v;
2453 rtx final_value;
2454 rtx tem;
2455 int result = 0;
2456
2457 for (v = bl->giv; v; v = v->next_iv)
2458 {
2459 rtx giv_inc, value;
2460
2461 /* Only split the giv if it has already been reduced, or if the loop is
2462 being completely unrolled. */
2463 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2464 continue;
2465
2466 /* The giv can be split if the insn that sets the giv is executed once
2467 and only once on every iteration of the loop. */
2468 /* An address giv can always be split. v->insn is just a use not a set,
2469 and hence it does not matter whether it is always executed. All that
2470 matters is that all the biv increments are always executed, and we
2471 won't reach here if they aren't. */
2472 if (v->giv_type != DEST_ADDR
2473 && (! v->always_computable
2474 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2475 continue;
2476
2477 /* The giv increment value must be a constant. */
2478 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2479 v->mode);
2480 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2481 continue;
2482
2483 /* The loop must be unrolled completely, or else have a known number of
2484 iterations and only one exit, or else the giv must be dead outside
2485 the loop, or else the final value of the giv must be known.
2486 Otherwise, it is not safe to split the giv since it may not have the
2487 proper value on loop exit. */
2488
2489 /* The used outside loop test will fail for DEST_ADDR givs. They are
2490 never used outside the loop anyways, so it is always safe to split a
2491 DEST_ADDR giv. */
2492
2493 final_value = 0;
2494 if (unroll_type != UNROLL_COMPLETELY
2495 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2496 || unroll_type == UNROLL_NAIVE)
2497 && v->giv_type != DEST_ADDR
2498 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2499 /* Check for the case where the pseudo is set by a shift/add
2500 sequence, in which case the first insn setting the pseudo
2501 is the first insn of the shift/add sequence. */
2502 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2503 || (regno_first_uid[REGNO (v->dest_reg)]
2504 != INSN_UID (XEXP (tem, 0)))))
2505 /* Line above always fails if INSN was moved by loop opt. */
2506 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2507 >= INSN_LUID (loop_end)))
2508 && ! (final_value = v->final_value))
2509 continue;
2510
2511 #if 0
2512 /* Currently, non-reduced/final-value givs are never split. */
2513 /* Should emit insns after the loop if possible, as the biv final value
2514 code below does. */
2515
2516 /* If the final value is non-zero, and the giv has not been reduced,
2517 then must emit an instruction to set the final value. */
2518 if (final_value && !v->new_reg)
2519 {
2520 /* Create a new register to hold the value of the giv, and then set
2521 the giv to its final value before the loop start. The giv is set
2522 to its final value before loop start to ensure that this insn
2523 will always be executed, no matter how we exit. */
2524 tem = gen_reg_rtx (v->mode);
2525 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2526 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2527 loop_start);
2528
2529 if (loop_dump_stream)
2530 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2531 REGNO (v->dest_reg), REGNO (tem));
2532
2533 v->src_reg = tem;
2534 }
2535 #endif
2536
2537 /* This giv is splittable. If completely unrolling the loop, save the
2538 giv's initial value. Otherwise, save the constant zero for it. */
2539
2540 if (unroll_type == UNROLL_COMPLETELY)
2541 {
2542 /* It is not safe to use bl->initial_value here, because it may not
2543 be invariant. It is safe to use the initial value stored in
2544 the splittable_regs array if it is set. In rare cases, it won't
2545 be set, so then we do exactly the same thing as
2546 find_splittable_regs does to get a safe value. */
2547 rtx biv_initial_value;
2548
2549 if (splittable_regs[bl->regno])
2550 biv_initial_value = splittable_regs[bl->regno];
2551 else if (GET_CODE (bl->initial_value) != REG
2552 || (REGNO (bl->initial_value) != bl->regno
2553 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2554 biv_initial_value = bl->initial_value;
2555 else
2556 {
2557 rtx tem = gen_reg_rtx (bl->biv->mode);
2558
2559 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2560 loop_start);
2561 biv_initial_value = tem;
2562 }
2563 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2564 v->add_val, v->mode);
2565 }
2566 else
2567 value = const0_rtx;
2568
2569 if (v->new_reg)
2570 {
2571 /* If a giv was combined with another giv, then we can only split
2572 this giv if the giv it was combined with was reduced. This
2573 is because the value of v->new_reg is meaningless in this
2574 case. */
2575 if (v->same && ! v->same->new_reg)
2576 {
2577 if (loop_dump_stream)
2578 fprintf (loop_dump_stream,
2579 "giv combined with unreduced giv not split.\n");
2580 continue;
2581 }
2582 /* If the giv is an address destination, it could be something other
2583 than a simple register, these have to be treated differently. */
2584 else if (v->giv_type == DEST_REG)
2585 {
2586 /* If value is not a constant, register, or register plus
2587 constant, then compute its value into a register before
2588 loop start. This prevents illegal rtx sharing, and should
2589 generate better code. We can use bl->initial_value here
2590 instead of splittable_regs[bl->regno] because this code
2591 is going before the loop start. */
2592 if (unroll_type == UNROLL_COMPLETELY
2593 && GET_CODE (value) != CONST_INT
2594 && GET_CODE (value) != REG
2595 && (GET_CODE (value) != PLUS
2596 || GET_CODE (XEXP (value, 0)) != REG
2597 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2598 {
2599 rtx tem = gen_reg_rtx (v->mode);
2600 emit_iv_add_mult (bl->initial_value, v->mult_val,
2601 v->add_val, tem, loop_start);
2602 value = tem;
2603 }
2604
2605 splittable_regs[REGNO (v->new_reg)] = value;
2606 }
2607 else
2608 {
2609 /* Splitting address givs is useful since it will often allow us
2610 to eliminate some increment insns for the base giv as
2611 unnecessary. */
2612
2613 /* If the addr giv is combined with a dest_reg giv, then all
2614 references to that dest reg will be remapped, which is NOT
2615 what we want for split addr regs. We always create a new
2616 register for the split addr giv, just to be safe. */
2617
2618 /* ??? If there are multiple address givs which have been
2619 combined with the same dest_reg giv, then we may only need
2620 one new register for them. Pulling out constants below will
2621 catch some of the common cases of this. Currently, I leave
2622 the work of simplifying multiple address givs to the
2623 following cse pass. */
2624
2625 /* As a special case, if we have multiple identical address givs
2626 within a single instruction, then we do use a single psuedo
2627 reg for both. This is necessary in case one is a match_dup
2628 of the other. */
2629
2630 v->const_adjust = 0;
2631
2632 if (v->same && v->same->insn == v->insn
2633 && v->new_reg == v->same->new_reg)
2634 {
2635 v->dest_reg = v->same->dest_reg;
2636 if (loop_dump_stream)
2637 fprintf (loop_dump_stream,
2638 "Sharing address givs with reg %d\n",
2639 REGNO (v->dest_reg));
2640 }
2641 else if (unroll_type != UNROLL_COMPLETELY)
2642 {
2643 /* If not completely unrolling the loop, then create a new
2644 register to hold the split value of the DEST_ADDR giv.
2645 Emit insn to initialize its value before loop start. */
2646 tem = gen_reg_rtx (v->mode);
2647
2648 /* If the address giv has a constant in its new_reg value,
2649 then this constant can be pulled out and put in value,
2650 instead of being part of the initialization code. */
2651
2652 if (GET_CODE (v->new_reg) == PLUS
2653 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2654 {
2655 v->dest_reg
2656 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2657
2658 /* Only succeed if this will give valid addresses.
2659 Try to validate both the first and the last
2660 address resulting from loop unrolling, if
2661 one fails, then can't do const elim here. */
2662 if (memory_address_p (v->mem_mode, v->dest_reg)
2663 && memory_address_p (v->mem_mode,
2664 plus_constant (v->dest_reg,
2665 INTVAL (giv_inc)
2666 * (unroll_number - 1))))
2667 {
2668 /* Save the negative of the eliminated const, so
2669 that we can calculate the dest_reg's increment
2670 value later. */
2671 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2672
2673 v->new_reg = XEXP (v->new_reg, 0);
2674 if (loop_dump_stream)
2675 fprintf (loop_dump_stream,
2676 "Eliminating constant from giv %d\n",
2677 REGNO (tem));
2678 }
2679 else
2680 v->dest_reg = tem;
2681 }
2682 else
2683 v->dest_reg = tem;
2684
2685 /* If the address hasn't been checked for validity yet, do so
2686 now, and fail completely if either the first or the last
2687 unrolled copy of the address is not a valid address. */
2688 if (v->dest_reg == tem
2689 && (! memory_address_p (v->mem_mode, v->dest_reg)
2690 || ! memory_address_p (v->mem_mode,
2691 plus_constant (v->dest_reg,
2692 INTVAL (giv_inc)
2693 * (unroll_number -1)))))
2694 {
2695 if (loop_dump_stream)
2696 fprintf (loop_dump_stream,
2697 "Illegal address for giv at insn %d\n",
2698 INSN_UID (v->insn));
2699 continue;
2700 }
2701
2702 /* To initialize the new register, just move the value of
2703 new_reg into it. This is not guaranteed to give a valid
2704 instruction on machines with complex addressing modes.
2705 If we can't recognize it, then delete it and emit insns
2706 to calculate the value from scratch. */
2707 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2708 copy_rtx (v->new_reg)),
2709 loop_start);
2710 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2711 {
2712 rtx sequence, ret;
2713
2714 /* We can't use bl->initial_value to compute the initial
2715 value, because the loop may have been preconditioned.
2716 We must calculate it from NEW_REG. Try using
2717 force_operand instead of emit_iv_add_mult. */
2718 delete_insn (PREV_INSN (loop_start));
2719
2720 start_sequence ();
2721 ret = force_operand (v->new_reg, tem);
2722 if (ret != tem)
2723 emit_move_insn (tem, ret);
2724 sequence = gen_sequence ();
2725 end_sequence ();
2726 emit_insn_before (sequence, loop_start);
2727
2728 if (loop_dump_stream)
2729 fprintf (loop_dump_stream,
2730 "Illegal init insn, rewritten.\n");
2731 }
2732 }
2733 else
2734 {
2735 v->dest_reg = value;
2736
2737 /* Check the resulting address for validity, and fail
2738 if the resulting address would be illegal. */
2739 if (! memory_address_p (v->mem_mode, v->dest_reg)
2740 || ! memory_address_p (v->mem_mode,
2741 plus_constant (v->dest_reg,
2742 INTVAL (giv_inc) *
2743 (unroll_number -1))))
2744 {
2745 if (loop_dump_stream)
2746 fprintf (loop_dump_stream,
2747 "Illegal address for giv at insn %d\n",
2748 INSN_UID (v->insn));
2749 continue;
2750 }
2751 }
2752
2753 /* Store the value of dest_reg into the insn. This sharing
2754 will not be a problem as this insn will always be copied
2755 later. */
2756
2757 *v->location = v->dest_reg;
2758
2759 /* If this address giv is combined with a dest reg giv, then
2760 save the base giv's induction pointer so that we will be
2761 able to handle this address giv properly. The base giv
2762 itself does not have to be splittable. */
2763
2764 if (v->same && v->same->giv_type == DEST_REG)
2765 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2766
2767 if (GET_CODE (v->new_reg) == REG)
2768 {
2769 /* This giv maybe hasn't been combined with any others.
2770 Make sure that it's giv is marked as splittable here. */
2771
2772 splittable_regs[REGNO (v->new_reg)] = value;
2773
2774 /* Make it appear to depend upon itself, so that the
2775 giv will be properly split in the main loop above. */
2776 if (! v->same)
2777 {
2778 v->same = v;
2779 addr_combined_regs[REGNO (v->new_reg)] = v;
2780 }
2781 }
2782
2783 if (loop_dump_stream)
2784 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2785 }
2786 }
2787 else
2788 {
2789 #if 0
2790 /* Currently, unreduced giv's can't be split. This is not too much
2791 of a problem since unreduced giv's are not live across loop
2792 iterations anyways. When unrolling a loop completely though,
2793 it makes sense to reduce&split givs when possible, as this will
2794 result in simpler instructions, and will not require that a reg
2795 be live across loop iterations. */
2796
2797 splittable_regs[REGNO (v->dest_reg)] = value;
2798 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2799 REGNO (v->dest_reg), INSN_UID (v->insn));
2800 #else
2801 continue;
2802 #endif
2803 }
2804
2805 /* Givs are only updated once by definition. Mark it so if this is
2806 a splittable register. Don't need to do anything for address givs
2807 where this may not be a register. */
2808
2809 if (GET_CODE (v->new_reg) == REG)
2810 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2811
2812 result++;
2813
2814 if (loop_dump_stream)
2815 {
2816 int regnum;
2817
2818 if (GET_CODE (v->dest_reg) == CONST_INT)
2819 regnum = -1;
2820 else if (GET_CODE (v->dest_reg) != REG)
2821 regnum = REGNO (XEXP (v->dest_reg, 0));
2822 else
2823 regnum = REGNO (v->dest_reg);
2824 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2825 regnum, INSN_UID (v->insn));
2826 }
2827 }
2828
2829 return result;
2830 }
2831 \f
2832 /* Try to prove that the register is dead after the loop exits. Trace every
2833 loop exit looking for an insn that will always be executed, which sets
2834 the register to some value, and appears before the first use of the register
2835 is found. If successful, then return 1, otherwise return 0. */
2836
2837 /* ?? Could be made more intelligent in the handling of jumps, so that
2838 it can search past if statements and other similar structures. */
2839
2840 static int
2841 reg_dead_after_loop (reg, loop_start, loop_end)
2842 rtx reg, loop_start, loop_end;
2843 {
2844 rtx insn, label;
2845 enum rtx_code code;
2846 int jump_count = 0;
2847
2848 /* HACK: Must also search the loop fall through exit, create a label_ref
2849 here which points to the loop_end, and append the loop_number_exit_labels
2850 list to it. */
2851 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2852 LABEL_NEXTREF (label)
2853 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2854
2855 for ( ; label; label = LABEL_NEXTREF (label))
2856 {
2857 /* Succeed if find an insn which sets the biv or if reach end of
2858 function. Fail if find an insn that uses the biv, or if come to
2859 a conditional jump. */
2860
2861 insn = NEXT_INSN (XEXP (label, 0));
2862 while (insn)
2863 {
2864 code = GET_CODE (insn);
2865 if (GET_RTX_CLASS (code) == 'i')
2866 {
2867 rtx set;
2868
2869 if (reg_referenced_p (reg, PATTERN (insn)))
2870 return 0;
2871
2872 set = single_set (insn);
2873 if (set && rtx_equal_p (SET_DEST (set), reg))
2874 break;
2875 }
2876
2877 if (code == JUMP_INSN)
2878 {
2879 if (GET_CODE (PATTERN (insn)) == RETURN)
2880 break;
2881 else if (! simplejump_p (insn)
2882 /* Prevent infinite loop following infinite loops. */
2883 || jump_count++ > 20)
2884 return 0;
2885 else
2886 insn = JUMP_LABEL (insn);
2887 }
2888
2889 insn = NEXT_INSN (insn);
2890 }
2891 }
2892
2893 /* Success, the register is dead on all loop exits. */
2894 return 1;
2895 }
2896
2897 /* Try to calculate the final value of the biv, the value it will have at
2898 the end of the loop. If we can do it, return that value. */
2899
2900 rtx
2901 final_biv_value (bl, loop_start, loop_end)
2902 struct iv_class *bl;
2903 rtx loop_start, loop_end;
2904 {
2905 rtx increment, tem;
2906
2907 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2908
2909 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2910 return 0;
2911
2912 /* The final value for reversed bivs must be calculated differently than
2913 for ordinary bivs. In this case, there is already an insn after the
2914 loop which sets this biv's final value (if necessary), and there are
2915 no other loop exits, so we can return any value. */
2916 if (bl->reversed)
2917 {
2918 if (loop_dump_stream)
2919 fprintf (loop_dump_stream,
2920 "Final biv value for %d, reversed biv.\n", bl->regno);
2921
2922 return const0_rtx;
2923 }
2924
2925 /* Try to calculate the final value as initial value + (number of iterations
2926 * increment). For this to work, increment must be invariant, the only
2927 exit from the loop must be the fall through at the bottom (otherwise
2928 it may not have its final value when the loop exits), and the initial
2929 value of the biv must be invariant. */
2930
2931 if (loop_n_iterations != 0
2932 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2933 && invariant_p (bl->initial_value))
2934 {
2935 increment = biv_total_increment (bl, loop_start, loop_end);
2936
2937 if (increment && invariant_p (increment))
2938 {
2939 /* Can calculate the loop exit value, emit insns after loop
2940 end to calculate this value into a temporary register in
2941 case it is needed later. */
2942
2943 tem = gen_reg_rtx (bl->biv->mode);
2944 /* Make sure loop_end is not the last insn. */
2945 if (NEXT_INSN (loop_end) == 0)
2946 emit_note_after (NOTE_INSN_DELETED, loop_end);
2947 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2948 bl->initial_value, tem, NEXT_INSN (loop_end));
2949
2950 if (loop_dump_stream)
2951 fprintf (loop_dump_stream,
2952 "Final biv value for %d, calculated.\n", bl->regno);
2953
2954 return tem;
2955 }
2956 }
2957
2958 /* Check to see if the biv is dead at all loop exits. */
2959 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2960 {
2961 if (loop_dump_stream)
2962 fprintf (loop_dump_stream,
2963 "Final biv value for %d, biv dead after loop exit.\n",
2964 bl->regno);
2965
2966 return const0_rtx;
2967 }
2968
2969 return 0;
2970 }
2971
2972 /* Try to calculate the final value of the giv, the value it will have at
2973 the end of the loop. If we can do it, return that value. */
2974
2975 rtx
2976 final_giv_value (v, loop_start, loop_end)
2977 struct induction *v;
2978 rtx loop_start, loop_end;
2979 {
2980 struct iv_class *bl;
2981 rtx insn;
2982 rtx increment, tem;
2983 rtx insert_before, seq;
2984
2985 bl = reg_biv_class[REGNO (v->src_reg)];
2986
2987 /* The final value for givs which depend on reversed bivs must be calculated
2988 differently than for ordinary givs. In this case, there is already an
2989 insn after the loop which sets this giv's final value (if necessary),
2990 and there are no other loop exits, so we can return any value. */
2991 if (bl->reversed)
2992 {
2993 if (loop_dump_stream)
2994 fprintf (loop_dump_stream,
2995 "Final giv value for %d, depends on reversed biv\n",
2996 REGNO (v->dest_reg));
2997 return const0_rtx;
2998 }
2999
3000 /* Try to calculate the final value as a function of the biv it depends
3001 upon. The only exit from the loop must be the fall through at the bottom
3002 (otherwise it may not have its final value when the loop exits). */
3003
3004 /* ??? Can calculate the final giv value by subtracting off the
3005 extra biv increments times the giv's mult_val. The loop must have
3006 only one exit for this to work, but the loop iterations does not need
3007 to be known. */
3008
3009 if (loop_n_iterations != 0
3010 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3011 {
3012 /* ?? It is tempting to use the biv's value here since these insns will
3013 be put after the loop, and hence the biv will have its final value
3014 then. However, this fails if the biv is subsequently eliminated.
3015 Perhaps determine whether biv's are eliminable before trying to
3016 determine whether giv's are replaceable so that we can use the
3017 biv value here if it is not eliminable. */
3018
3019 increment = biv_total_increment (bl, loop_start, loop_end);
3020
3021 if (increment && invariant_p (increment))
3022 {
3023 /* Can calculate the loop exit value of its biv as
3024 (loop_n_iterations * increment) + initial_value */
3025
3026 /* The loop exit value of the giv is then
3027 (final_biv_value - extra increments) * mult_val + add_val.
3028 The extra increments are any increments to the biv which
3029 occur in the loop after the giv's value is calculated.
3030 We must search from the insn that sets the giv to the end
3031 of the loop to calculate this value. */
3032
3033 insert_before = NEXT_INSN (loop_end);
3034
3035 /* Put the final biv value in tem. */
3036 tem = gen_reg_rtx (bl->biv->mode);
3037 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3038 bl->initial_value, tem, insert_before);
3039
3040 /* Subtract off extra increments as we find them. */
3041 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3042 insn = NEXT_INSN (insn))
3043 {
3044 struct induction *biv;
3045
3046 for (biv = bl->biv; biv; biv = biv->next_iv)
3047 if (biv->insn == insn)
3048 {
3049 start_sequence ();
3050 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3051 biv->add_val, NULL_RTX, 0,
3052 OPTAB_LIB_WIDEN);
3053 seq = gen_sequence ();
3054 end_sequence ();
3055 emit_insn_before (seq, insert_before);
3056 }
3057 }
3058
3059 /* Now calculate the giv's final value. */
3060 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3061 insert_before);
3062
3063 if (loop_dump_stream)
3064 fprintf (loop_dump_stream,
3065 "Final giv value for %d, calc from biv's value.\n",
3066 REGNO (v->dest_reg));
3067
3068 return tem;
3069 }
3070 }
3071
3072 /* Replaceable giv's should never reach here. */
3073 if (v->replaceable)
3074 abort ();
3075
3076 /* Check to see if the biv is dead at all loop exits. */
3077 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3078 {
3079 if (loop_dump_stream)
3080 fprintf (loop_dump_stream,
3081 "Final giv value for %d, giv dead after loop exit.\n",
3082 REGNO (v->dest_reg));
3083
3084 return const0_rtx;
3085 }
3086
3087 return 0;
3088 }
3089
3090
3091 /* Calculate the number of loop iterations. Returns the exact number of loop
3092 iterations if it can be calculated, otherwise returns zero. */
3093
3094 unsigned HOST_WIDE_INT
3095 loop_iterations (loop_start, loop_end)
3096 rtx loop_start, loop_end;
3097 {
3098 rtx comparison, comparison_value;
3099 rtx iteration_var, initial_value, increment, final_value;
3100 enum rtx_code comparison_code;
3101 HOST_WIDE_INT i;
3102 int increment_dir;
3103 int unsigned_compare, compare_dir, final_larger;
3104 unsigned long tempu;
3105 rtx last_loop_insn;
3106
3107 /* First find the iteration variable. If the last insn is a conditional
3108 branch, and the insn before tests a register value, make that the
3109 iteration variable. */
3110
3111 loop_initial_value = 0;
3112 loop_increment = 0;
3113 loop_final_value = 0;
3114 loop_iteration_var = 0;
3115
3116 /* We used to use pren_nonnote_insn here, but that fails because it might
3117 accidentally get the branch for a contained loop if the branch for this
3118 loop was deleted. We can only trust branches immediately before the
3119 loop_end. */
3120 last_loop_insn = PREV_INSN (loop_end);
3121
3122 comparison = get_condition_for_loop (last_loop_insn);
3123 if (comparison == 0)
3124 {
3125 if (loop_dump_stream)
3126 fprintf (loop_dump_stream,
3127 "Loop unrolling: No final conditional branch found.\n");
3128 return 0;
3129 }
3130
3131 /* ??? Get_condition may switch position of induction variable and
3132 invariant register when it canonicalizes the comparison. */
3133
3134 comparison_code = GET_CODE (comparison);
3135 iteration_var = XEXP (comparison, 0);
3136 comparison_value = XEXP (comparison, 1);
3137
3138 if (GET_CODE (iteration_var) != REG)
3139 {
3140 if (loop_dump_stream)
3141 fprintf (loop_dump_stream,
3142 "Loop unrolling: Comparison not against register.\n");
3143 return 0;
3144 }
3145
3146 /* Loop iterations is always called before any new registers are created
3147 now, so this should never occur. */
3148
3149 if (REGNO (iteration_var) >= max_reg_before_loop)
3150 abort ();
3151
3152 iteration_info (iteration_var, &initial_value, &increment,
3153 loop_start, loop_end);
3154 if (initial_value == 0)
3155 /* iteration_info already printed a message. */
3156 return 0;
3157
3158 /* If the comparison value is an invariant register, then try to find
3159 its value from the insns before the start of the loop. */
3160
3161 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3162 {
3163 rtx insn, set;
3164
3165 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3166 {
3167 if (GET_CODE (insn) == CODE_LABEL)
3168 break;
3169
3170 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3171 && reg_set_p (comparison_value, insn))
3172 {
3173 /* We found the last insn before the loop that sets the register.
3174 If it sets the entire register, and has a REG_EQUAL note,
3175 then use the value of the REG_EQUAL note. */
3176 if ((set = single_set (insn))
3177 && (SET_DEST (set) == comparison_value))
3178 {
3179 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3180
3181 /* Only use the REG_EQUAL note if it is a constant.
3182 Other things, divide in particular, will cause
3183 problems later if we use them. */
3184 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3185 && CONSTANT_P (XEXP (note, 0)))
3186 comparison_value = XEXP (note, 0);
3187 }
3188 break;
3189 }
3190 }
3191 }
3192
3193 final_value = approx_final_value (comparison_code, comparison_value,
3194 &unsigned_compare, &compare_dir);
3195
3196 /* Save the calculated values describing this loop's bounds, in case
3197 precondition_loop_p will need them later. These values can not be
3198 recalculated inside precondition_loop_p because strength reduction
3199 optimizations may obscure the loop's structure. */
3200
3201 loop_iteration_var = iteration_var;
3202 loop_initial_value = initial_value;
3203 loop_increment = increment;
3204 loop_final_value = final_value;
3205
3206 if (increment == 0)
3207 {
3208 if (loop_dump_stream)
3209 fprintf (loop_dump_stream,
3210 "Loop unrolling: Increment value can't be calculated.\n");
3211 return 0;
3212 }
3213 else if (GET_CODE (increment) != CONST_INT)
3214 {
3215 if (loop_dump_stream)
3216 fprintf (loop_dump_stream,
3217 "Loop unrolling: Increment value not constant.\n");
3218 return 0;
3219 }
3220 else if (GET_CODE (initial_value) != CONST_INT)
3221 {
3222 if (loop_dump_stream)
3223 fprintf (loop_dump_stream,
3224 "Loop unrolling: Initial value not constant.\n");
3225 return 0;
3226 }
3227 else if (final_value == 0)
3228 {
3229 if (loop_dump_stream)
3230 fprintf (loop_dump_stream,
3231 "Loop unrolling: EQ comparison loop.\n");
3232 return 0;
3233 }
3234 else if (GET_CODE (final_value) != CONST_INT)
3235 {
3236 if (loop_dump_stream)
3237 fprintf (loop_dump_stream,
3238 "Loop unrolling: Final value not constant.\n");
3239 return 0;
3240 }
3241
3242 /* ?? Final value and initial value do not have to be constants.
3243 Only their difference has to be constant. When the iteration variable
3244 is an array address, the final value and initial value might both
3245 be addresses with the same base but different constant offsets.
3246 Final value must be invariant for this to work.
3247
3248 To do this, need some way to find the values of registers which are
3249 invariant. */
3250
3251 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3252 if (unsigned_compare)
3253 final_larger
3254 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3255 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3256 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3257 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3258 else
3259 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3260 - (INTVAL (final_value) < INTVAL (initial_value));
3261
3262 if (INTVAL (increment) > 0)
3263 increment_dir = 1;
3264 else if (INTVAL (increment) == 0)
3265 increment_dir = 0;
3266 else
3267 increment_dir = -1;
3268
3269 /* There are 27 different cases: compare_dir = -1, 0, 1;
3270 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3271 There are 4 normal cases, 4 reverse cases (where the iteration variable
3272 will overflow before the loop exits), 4 infinite loop cases, and 15
3273 immediate exit (0 or 1 iteration depending on loop type) cases.
3274 Only try to optimize the normal cases. */
3275
3276 /* (compare_dir/final_larger/increment_dir)
3277 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3278 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3279 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3280 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3281
3282 /* ?? If the meaning of reverse loops (where the iteration variable
3283 will overflow before the loop exits) is undefined, then could
3284 eliminate all of these special checks, and just always assume
3285 the loops are normal/immediate/infinite. Note that this means
3286 the sign of increment_dir does not have to be known. Also,
3287 since it does not really hurt if immediate exit loops or infinite loops
3288 are optimized, then that case could be ignored also, and hence all
3289 loops can be optimized.
3290
3291 According to ANSI Spec, the reverse loop case result is undefined,
3292 because the action on overflow is undefined.
3293
3294 See also the special test for NE loops below. */
3295
3296 if (final_larger == increment_dir && final_larger != 0
3297 && (final_larger == compare_dir || compare_dir == 0))
3298 /* Normal case. */
3299 ;
3300 else
3301 {
3302 if (loop_dump_stream)
3303 fprintf (loop_dump_stream,
3304 "Loop unrolling: Not normal loop.\n");
3305 return 0;
3306 }
3307
3308 /* Calculate the number of iterations, final_value is only an approximation,
3309 so correct for that. Note that tempu and loop_n_iterations are
3310 unsigned, because they can be as large as 2^n - 1. */
3311
3312 i = INTVAL (increment);
3313 if (i > 0)
3314 tempu = INTVAL (final_value) - INTVAL (initial_value);
3315 else if (i < 0)
3316 {
3317 tempu = INTVAL (initial_value) - INTVAL (final_value);
3318 i = -i;
3319 }
3320 else
3321 abort ();
3322
3323 /* For NE tests, make sure that the iteration variable won't miss the
3324 final value. If tempu mod i is not zero, then the iteration variable
3325 will overflow before the loop exits, and we can not calculate the
3326 number of iterations. */
3327 if (compare_dir == 0 && (tempu % i) != 0)
3328 return 0;
3329
3330 return tempu / i + ((tempu % i) != 0);
3331 }
3332
3333 /* Replace uses of split bivs with their split psuedo register. This is
3334 for original instructions which remain after loop unrolling without
3335 copying. */
3336
3337 static rtx
3338 remap_split_bivs (x)
3339 rtx x;
3340 {
3341 register enum rtx_code code;
3342 register int i;
3343 register char *fmt;
3344
3345 if (x == 0)
3346 return x;
3347
3348 code = GET_CODE (x);
3349 switch (code)
3350 {
3351 case SCRATCH:
3352 case PC:
3353 case CC0:
3354 case CONST_INT:
3355 case CONST_DOUBLE:
3356 case CONST:
3357 case SYMBOL_REF:
3358 case LABEL_REF:
3359 return x;
3360
3361 case REG:
3362 #if 0
3363 /* If non-reduced/final-value givs were split, then this would also
3364 have to remap those givs also. */
3365 #endif
3366 if (REGNO (x) < max_reg_before_loop
3367 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3368 return reg_biv_class[REGNO (x)]->biv->src_reg;
3369 }
3370
3371 fmt = GET_RTX_FORMAT (code);
3372 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3373 {
3374 if (fmt[i] == 'e')
3375 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3376 if (fmt[i] == 'E')
3377 {
3378 register int j;
3379 for (j = 0; j < XVECLEN (x, i); j++)
3380 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3381 }
3382 }
3383 return x;
3384 }