loop.c (loop_unroll_factor): Move outside #ifdef HAIFA conditional.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
158
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
161
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
165
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
171
172 static struct induction **addr_combined_regs;
173
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
177
178 static rtx *splittable_regs;
179
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
184
185 static int *splittable_regs_updates;
186
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
189
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
194 static enum rtx_code loop_comparison_code;
195
196 /* Forward declarations. */
197
198 static void init_reg_map PROTO((struct inline_remap *, int));
199 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
200 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
201 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
204 enum unroll_types, rtx, rtx, rtx, rtx));
205 void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
206 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
207 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
208 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
209 rtx, rtx, rtx, int));
210 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
211 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
212 static rtx remap_split_bivs PROTO((rtx));
213
214 /* Try to unroll one loop and split induction variables in the loop.
215
216 The loop is described by the arguments LOOP_END, INSN_COUNT, and
217 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
218 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
219 indicates whether information generated in the strength reduction pass
220 is available.
221
222 This function is intended to be called from within `strength_reduce'
223 in loop.c. */
224
225 void
226 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
227 strength_reduce_p)
228 rtx loop_end;
229 int insn_count;
230 rtx loop_start;
231 rtx end_insert_before;
232 int strength_reduce_p;
233 {
234 int i, j, temp;
235 int unroll_number = 1;
236 rtx copy_start, copy_end;
237 rtx insn, copy, sequence, pattern, tem;
238 int max_labelno, max_insnno;
239 rtx insert_before;
240 struct inline_remap *map;
241 char *local_label;
242 char *local_regno;
243 int maxregnum;
244 int new_maxregnum;
245 rtx exit_label = 0;
246 rtx start_label;
247 struct iv_class *bl;
248 int splitting_not_safe = 0;
249 enum unroll_types unroll_type;
250 int loop_preconditioned = 0;
251 rtx safety_label;
252 /* This points to the last real insn in the loop, which should be either
253 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
254 jumps). */
255 rtx last_loop_insn;
256
257 /* Don't bother unrolling huge loops. Since the minimum factor is
258 two, loops greater than one half of MAX_UNROLLED_INSNS will never
259 be unrolled. */
260 if (insn_count > MAX_UNROLLED_INSNS / 2)
261 {
262 if (loop_dump_stream)
263 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
264 return;
265 }
266
267 /* When emitting debugger info, we can't unroll loops with unequal numbers
268 of block_beg and block_end notes, because that would unbalance the block
269 structure of the function. This can happen as a result of the
270 "if (foo) bar; else break;" optimization in jump.c. */
271 /* ??? Gcc has a general policy that -g is never supposed to change the code
272 that the compiler emits, so we must disable this optimization always,
273 even if debug info is not being output. This is rare, so this should
274 not be a significant performance problem. */
275
276 if (1 /* write_symbols != NO_DEBUG */)
277 {
278 int block_begins = 0;
279 int block_ends = 0;
280
281 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
282 {
283 if (GET_CODE (insn) == NOTE)
284 {
285 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
286 block_begins++;
287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
288 block_ends++;
289 }
290 }
291
292 if (block_begins != block_ends)
293 {
294 if (loop_dump_stream)
295 fprintf (loop_dump_stream,
296 "Unrolling failure: Unbalanced block notes.\n");
297 return;
298 }
299 }
300
301 /* Determine type of unroll to perform. Depends on the number of iterations
302 and the size of the loop. */
303
304 /* If there is no strength reduce info, then set loop_n_iterations to zero.
305 This can happen if strength_reduce can't find any bivs in the loop.
306 A value of zero indicates that the number of iterations could not be
307 calculated. */
308
309 if (! strength_reduce_p)
310 loop_n_iterations = 0;
311
312 if (loop_dump_stream && loop_n_iterations > 0)
313 fprintf (loop_dump_stream,
314 "Loop unrolling: %d iterations.\n", loop_n_iterations);
315
316 /* Find and save a pointer to the last nonnote insn in the loop. */
317
318 last_loop_insn = prev_nonnote_insn (loop_end);
319
320 /* Calculate how many times to unroll the loop. Indicate whether or
321 not the loop is being completely unrolled. */
322
323 if (loop_n_iterations == 1)
324 {
325 /* If number of iterations is exactly 1, then eliminate the compare and
326 branch at the end of the loop since they will never be taken.
327 Then return, since no other action is needed here. */
328
329 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
330 don't do anything. */
331
332 if (GET_CODE (last_loop_insn) == BARRIER)
333 {
334 /* Delete the jump insn. This will delete the barrier also. */
335 delete_insn (PREV_INSN (last_loop_insn));
336 }
337 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
338 {
339 #ifdef HAVE_cc0
340 /* The immediately preceding insn is a compare which must be
341 deleted. */
342 delete_insn (last_loop_insn);
343 delete_insn (PREV_INSN (last_loop_insn));
344 #else
345 /* The immediately preceding insn may not be the compare, so don't
346 delete it. */
347 delete_insn (last_loop_insn);
348 #endif
349 }
350 return;
351 }
352 else if (loop_n_iterations > 0
353 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
354 {
355 unroll_number = loop_n_iterations;
356 unroll_type = UNROLL_COMPLETELY;
357 }
358 else if (loop_n_iterations > 0)
359 {
360 /* Try to factor the number of iterations. Don't bother with the
361 general case, only using 2, 3, 5, and 7 will get 75% of all
362 numbers theoretically, and almost all in practice. */
363
364 for (i = 0; i < NUM_FACTORS; i++)
365 factors[i].count = 0;
366
367 temp = loop_n_iterations;
368 for (i = NUM_FACTORS - 1; i >= 0; i--)
369 while (temp % factors[i].factor == 0)
370 {
371 factors[i].count++;
372 temp = temp / factors[i].factor;
373 }
374
375 /* Start with the larger factors first so that we generally
376 get lots of unrolling. */
377
378 unroll_number = 1;
379 temp = insn_count;
380 for (i = 3; i >= 0; i--)
381 while (factors[i].count--)
382 {
383 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
384 {
385 unroll_number *= factors[i].factor;
386 temp *= factors[i].factor;
387 }
388 else
389 break;
390 }
391
392 /* If we couldn't find any factors, then unroll as in the normal
393 case. */
394 if (unroll_number == 1)
395 {
396 if (loop_dump_stream)
397 fprintf (loop_dump_stream,
398 "Loop unrolling: No factors found.\n");
399 }
400 else
401 unroll_type = UNROLL_MODULO;
402 }
403
404
405 /* Default case, calculate number of times to unroll loop based on its
406 size. */
407 if (unroll_number == 1)
408 {
409 if (8 * insn_count < MAX_UNROLLED_INSNS)
410 unroll_number = 8;
411 else if (4 * insn_count < MAX_UNROLLED_INSNS)
412 unroll_number = 4;
413 else
414 unroll_number = 2;
415
416 unroll_type = UNROLL_NAIVE;
417 }
418
419 /* Now we know how many times to unroll the loop. */
420
421 if (loop_dump_stream)
422 fprintf (loop_dump_stream,
423 "Unrolling loop %d times.\n", unroll_number);
424
425
426 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
427 {
428 /* Loops of these types should never start with a jump down to
429 the exit condition test. For now, check for this case just to
430 be sure. UNROLL_NAIVE loops can be of this form, this case is
431 handled below. */
432 insn = loop_start;
433 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
434 insn = NEXT_INSN (insn);
435 if (GET_CODE (insn) == JUMP_INSN)
436 abort ();
437 }
438
439 if (unroll_type == UNROLL_COMPLETELY)
440 {
441 /* Completely unrolling the loop: Delete the compare and branch at
442 the end (the last two instructions). This delete must done at the
443 very end of loop unrolling, to avoid problems with calls to
444 back_branch_in_range_p, which is called by find_splittable_regs.
445 All increments of splittable bivs/givs are changed to load constant
446 instructions. */
447
448 copy_start = loop_start;
449
450 /* Set insert_before to the instruction immediately after the JUMP_INSN
451 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
452 the loop will be correctly handled by copy_loop_body. */
453 insert_before = NEXT_INSN (last_loop_insn);
454
455 /* Set copy_end to the insn before the jump at the end of the loop. */
456 if (GET_CODE (last_loop_insn) == BARRIER)
457 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
458 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
459 {
460 #ifdef HAVE_cc0
461 /* The instruction immediately before the JUMP_INSN is a compare
462 instruction which we do not want to copy. */
463 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
464 #else
465 /* The instruction immediately before the JUMP_INSN may not be the
466 compare, so we must copy it. */
467 copy_end = PREV_INSN (last_loop_insn);
468 #endif
469 }
470 else
471 {
472 /* We currently can't unroll a loop if it doesn't end with a
473 JUMP_INSN. There would need to be a mechanism that recognizes
474 this case, and then inserts a jump after each loop body, which
475 jumps to after the last loop body. */
476 if (loop_dump_stream)
477 fprintf (loop_dump_stream,
478 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
479 return;
480 }
481 }
482 else if (unroll_type == UNROLL_MODULO)
483 {
484 /* Partially unrolling the loop: The compare and branch at the end
485 (the last two instructions) must remain. Don't copy the compare
486 and branch instructions at the end of the loop. Insert the unrolled
487 code immediately before the compare/branch at the end so that the
488 code will fall through to them as before. */
489
490 copy_start = loop_start;
491
492 /* Set insert_before to the jump insn at the end of the loop.
493 Set copy_end to before the jump insn at the end of the loop. */
494 if (GET_CODE (last_loop_insn) == BARRIER)
495 {
496 insert_before = PREV_INSN (last_loop_insn);
497 copy_end = PREV_INSN (insert_before);
498 }
499 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
500 {
501 #ifdef HAVE_cc0
502 /* The instruction immediately before the JUMP_INSN is a compare
503 instruction which we do not want to copy or delete. */
504 insert_before = PREV_INSN (last_loop_insn);
505 copy_end = PREV_INSN (insert_before);
506 #else
507 /* The instruction immediately before the JUMP_INSN may not be the
508 compare, so we must copy it. */
509 insert_before = last_loop_insn;
510 copy_end = PREV_INSN (last_loop_insn);
511 #endif
512 }
513 else
514 {
515 /* We currently can't unroll a loop if it doesn't end with a
516 JUMP_INSN. There would need to be a mechanism that recognizes
517 this case, and then inserts a jump after each loop body, which
518 jumps to after the last loop body. */
519 if (loop_dump_stream)
520 fprintf (loop_dump_stream,
521 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
522 return;
523 }
524 }
525 else
526 {
527 /* Normal case: Must copy the compare and branch instructions at the
528 end of the loop. */
529
530 if (GET_CODE (last_loop_insn) == BARRIER)
531 {
532 /* Loop ends with an unconditional jump and a barrier.
533 Handle this like above, don't copy jump and barrier.
534 This is not strictly necessary, but doing so prevents generating
535 unconditional jumps to an immediately following label.
536
537 This will be corrected below if the target of this jump is
538 not the start_label. */
539
540 insert_before = PREV_INSN (last_loop_insn);
541 copy_end = PREV_INSN (insert_before);
542 }
543 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
544 {
545 /* Set insert_before to immediately after the JUMP_INSN, so that
546 NOTEs at the end of the loop will be correctly handled by
547 copy_loop_body. */
548 insert_before = NEXT_INSN (last_loop_insn);
549 copy_end = last_loop_insn;
550 }
551 else
552 {
553 /* We currently can't unroll a loop if it doesn't end with a
554 JUMP_INSN. There would need to be a mechanism that recognizes
555 this case, and then inserts a jump after each loop body, which
556 jumps to after the last loop body. */
557 if (loop_dump_stream)
558 fprintf (loop_dump_stream,
559 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
560 return;
561 }
562
563 /* If copying exit test branches because they can not be eliminated,
564 then must convert the fall through case of the branch to a jump past
565 the end of the loop. Create a label to emit after the loop and save
566 it for later use. Do not use the label after the loop, if any, since
567 it might be used by insns outside the loop, or there might be insns
568 added before it later by final_[bg]iv_value which must be after
569 the real exit label. */
570 exit_label = gen_label_rtx ();
571
572 insn = loop_start;
573 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
574 insn = NEXT_INSN (insn);
575
576 if (GET_CODE (insn) == JUMP_INSN)
577 {
578 /* The loop starts with a jump down to the exit condition test.
579 Start copying the loop after the barrier following this
580 jump insn. */
581 copy_start = NEXT_INSN (insn);
582
583 /* Splitting induction variables doesn't work when the loop is
584 entered via a jump to the bottom, because then we end up doing
585 a comparison against a new register for a split variable, but
586 we did not execute the set insn for the new register because
587 it was skipped over. */
588 splitting_not_safe = 1;
589 if (loop_dump_stream)
590 fprintf (loop_dump_stream,
591 "Splitting not safe, because loop not entered at top.\n");
592 }
593 else
594 copy_start = loop_start;
595 }
596
597 /* This should always be the first label in the loop. */
598 start_label = NEXT_INSN (copy_start);
599 /* There may be a line number note and/or a loop continue note here. */
600 while (GET_CODE (start_label) == NOTE)
601 start_label = NEXT_INSN (start_label);
602 if (GET_CODE (start_label) != CODE_LABEL)
603 {
604 /* This can happen as a result of jump threading. If the first insns in
605 the loop test the same condition as the loop's backward jump, or the
606 opposite condition, then the backward jump will be modified to point
607 to elsewhere, and the loop's start label is deleted.
608
609 This case currently can not be handled by the loop unrolling code. */
610
611 if (loop_dump_stream)
612 fprintf (loop_dump_stream,
613 "Unrolling failure: unknown insns between BEG note and loop label.\n");
614 return;
615 }
616 if (LABEL_NAME (start_label))
617 {
618 /* The jump optimization pass must have combined the original start label
619 with a named label for a goto. We can't unroll this case because
620 jumps which go to the named label must be handled differently than
621 jumps to the loop start, and it is impossible to differentiate them
622 in this case. */
623 if (loop_dump_stream)
624 fprintf (loop_dump_stream,
625 "Unrolling failure: loop start label is gone\n");
626 return;
627 }
628
629 if (unroll_type == UNROLL_NAIVE
630 && GET_CODE (last_loop_insn) == BARRIER
631 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
632 {
633 /* In this case, we must copy the jump and barrier, because they will
634 not be converted to jumps to an immediately following label. */
635
636 insert_before = NEXT_INSN (last_loop_insn);
637 copy_end = last_loop_insn;
638 }
639
640 if (unroll_type == UNROLL_NAIVE
641 && GET_CODE (last_loop_insn) == JUMP_INSN
642 && start_label != JUMP_LABEL (last_loop_insn))
643 {
644 /* ??? The loop ends with a conditional branch that does not branch back
645 to the loop start label. In this case, we must emit an unconditional
646 branch to the loop exit after emitting the final branch.
647 copy_loop_body does not have support for this currently, so we
648 give up. It doesn't seem worthwhile to unroll anyways since
649 unrolling would increase the number of branch instructions
650 executed. */
651 if (loop_dump_stream)
652 fprintf (loop_dump_stream,
653 "Unrolling failure: final conditional branch not to loop start\n");
654 return;
655 }
656
657 /* Allocate a translation table for the labels and insn numbers.
658 They will be filled in as we copy the insns in the loop. */
659
660 max_labelno = max_label_num ();
661 max_insnno = get_max_uid ();
662
663 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
664
665 map->integrating = 0;
666
667 /* Allocate the label map. */
668
669 if (max_labelno > 0)
670 {
671 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
672
673 local_label = (char *) alloca (max_labelno);
674 bzero (local_label, max_labelno);
675 }
676 else
677 map->label_map = 0;
678
679 /* Search the loop and mark all local labels, i.e. the ones which have to
680 be distinct labels when copied. For all labels which might be
681 non-local, set their label_map entries to point to themselves.
682 If they happen to be local their label_map entries will be overwritten
683 before the loop body is copied. The label_map entries for local labels
684 will be set to a different value each time the loop body is copied. */
685
686 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
687 {
688 if (GET_CODE (insn) == CODE_LABEL)
689 local_label[CODE_LABEL_NUMBER (insn)] = 1;
690 else if (GET_CODE (insn) == JUMP_INSN)
691 {
692 if (JUMP_LABEL (insn))
693 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
694 = JUMP_LABEL (insn);
695 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
696 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
697 {
698 rtx pat = PATTERN (insn);
699 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
700 int len = XVECLEN (pat, diff_vec_p);
701 rtx label;
702
703 for (i = 0; i < len; i++)
704 {
705 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
706 map->label_map[CODE_LABEL_NUMBER (label)] = label;
707 }
708 }
709 }
710 }
711
712 /* Allocate space for the insn map. */
713
714 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
715
716 /* Set this to zero, to indicate that we are doing loop unrolling,
717 not function inlining. */
718 map->inline_target = 0;
719
720 /* The register and constant maps depend on the number of registers
721 present, so the final maps can't be created until after
722 find_splittable_regs is called. However, they are needed for
723 preconditioning, so we create temporary maps when preconditioning
724 is performed. */
725
726 /* The preconditioning code may allocate two new pseudo registers. */
727 maxregnum = max_reg_num ();
728
729 /* Allocate and zero out the splittable_regs and addr_combined_regs
730 arrays. These must be zeroed here because they will be used if
731 loop preconditioning is performed, and must be zero for that case.
732
733 It is safe to do this here, since the extra registers created by the
734 preconditioning code and find_splittable_regs will never be used
735 to access the splittable_regs[] and addr_combined_regs[] arrays. */
736
737 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
738 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
739 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
740 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
741 addr_combined_regs
742 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
743 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
744 /* We must limit it to max_reg_before_loop, because only these pseudo
745 registers have valid regno_first_uid info. Any register created after
746 that is unlikely to be local to the loop anyways. */
747 local_regno = (char *) alloca (max_reg_before_loop);
748 bzero (local_regno, max_reg_before_loop);
749
750 /* Mark all local registers, i.e. the ones which are referenced only
751 inside the loop. */
752 if (INSN_UID (copy_end) < max_uid_for_loop)
753 {
754 int copy_start_luid = INSN_LUID (copy_start);
755 int copy_end_luid = INSN_LUID (copy_end);
756
757 /* If a register is used in the jump insn, we must not duplicate it
758 since it will also be used outside the loop. */
759 if (GET_CODE (copy_end) == JUMP_INSN)
760 copy_end_luid--;
761 /* If copy_start points to the NOTE that starts the loop, then we must
762 use the next luid, because invariant pseudo-regs moved out of the loop
763 have their lifetimes modified to start here, but they are not safe
764 to duplicate. */
765 if (copy_start == loop_start)
766 copy_start_luid++;
767
768 /* If a pseudo's lifetime is entirely contained within this loop, then we
769 can use a different pseudo in each unrolled copy of the loop. This
770 results in better code. */
771 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
772 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
773 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
774 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
775 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
776 {
777 /* However, we must also check for loop-carried dependencies.
778 If the value the pseudo has at the end of iteration X is
779 used by iteration X+1, then we can not use a different pseudo
780 for each unrolled copy of the loop. */
781 /* A pseudo is safe if regno_first_uid is a set, and this
782 set dominates all instructions from regno_first_uid to
783 regno_last_uid. */
784 /* ??? This check is simplistic. We would get better code if
785 this check was more sophisticated. */
786 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
787 copy_start, copy_end))
788 local_regno[j] = 1;
789
790 if (loop_dump_stream)
791 {
792 if (local_regno[j])
793 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
794 else
795 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
796 j);
797 }
798 }
799 }
800
801 /* If this loop requires exit tests when unrolled, check to see if we
802 can precondition the loop so as to make the exit tests unnecessary.
803 Just like variable splitting, this is not safe if the loop is entered
804 via a jump to the bottom. Also, can not do this if no strength
805 reduce info, because precondition_loop_p uses this info. */
806
807 /* Must copy the loop body for preconditioning before the following
808 find_splittable_regs call since that will emit insns which need to
809 be after the preconditioned loop copies, but immediately before the
810 unrolled loop copies. */
811
812 /* Also, it is not safe to split induction variables for the preconditioned
813 copies of the loop body. If we split induction variables, then the code
814 assumes that each induction variable can be represented as a function
815 of its initial value and the loop iteration number. This is not true
816 in this case, because the last preconditioned copy of the loop body
817 could be any iteration from the first up to the `unroll_number-1'th,
818 depending on the initial value of the iteration variable. Therefore
819 we can not split induction variables here, because we can not calculate
820 their value. Hence, this code must occur before find_splittable_regs
821 is called. */
822
823 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
824 {
825 rtx initial_value, final_value, increment;
826
827 if (precondition_loop_p (&initial_value, &final_value, &increment,
828 loop_start, loop_end))
829 {
830 register rtx diff, temp;
831 enum machine_mode mode;
832 rtx *labels;
833 int abs_inc, neg_inc;
834
835 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
836
837 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
838 map->const_age_map = (unsigned *) alloca (maxregnum
839 * sizeof (unsigned));
840 map->const_equiv_map_size = maxregnum;
841 global_const_equiv_map = map->const_equiv_map;
842 global_const_equiv_map_size = maxregnum;
843
844 init_reg_map (map, maxregnum);
845
846 /* Limit loop unrolling to 4, since this will make 7 copies of
847 the loop body. */
848 if (unroll_number > 4)
849 unroll_number = 4;
850
851 /* Save the absolute value of the increment, and also whether or
852 not it is negative. */
853 neg_inc = 0;
854 abs_inc = INTVAL (increment);
855 if (abs_inc < 0)
856 {
857 abs_inc = - abs_inc;
858 neg_inc = 1;
859 }
860
861 start_sequence ();
862
863 /* Decide what mode to do these calculations in. Choose the larger
864 of final_value's mode and initial_value's mode, or a full-word if
865 both are constants. */
866 mode = GET_MODE (final_value);
867 if (mode == VOIDmode)
868 {
869 mode = GET_MODE (initial_value);
870 if (mode == VOIDmode)
871 mode = word_mode;
872 }
873 else if (mode != GET_MODE (initial_value)
874 && (GET_MODE_SIZE (mode)
875 < GET_MODE_SIZE (GET_MODE (initial_value))))
876 mode = GET_MODE (initial_value);
877
878 /* Calculate the difference between the final and initial values.
879 Final value may be a (plus (reg x) (const_int 1)) rtx.
880 Let the following cse pass simplify this if initial value is
881 a constant.
882
883 We must copy the final and initial values here to avoid
884 improperly shared rtl. */
885
886 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
887 copy_rtx (initial_value), NULL_RTX, 0,
888 OPTAB_LIB_WIDEN);
889
890 /* Now calculate (diff % (unroll * abs (increment))) by using an
891 and instruction. */
892 diff = expand_binop (GET_MODE (diff), and_optab, diff,
893 GEN_INT (unroll_number * abs_inc - 1),
894 NULL_RTX, 0, OPTAB_LIB_WIDEN);
895
896 /* Now emit a sequence of branches to jump to the proper precond
897 loop entry point. */
898
899 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
900 for (i = 0; i < unroll_number; i++)
901 labels[i] = gen_label_rtx ();
902
903 /* Check for the case where the initial value is greater than or
904 equal to the final value. In that case, we want to execute
905 exactly one loop iteration. The code below will fail for this
906 case. This check does not apply if the loop has a NE
907 comparison at the end. */
908
909 if (loop_comparison_code != NE)
910 {
911 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
912 NULL_RTX, mode, 0, 0);
913 if (neg_inc)
914 emit_jump_insn (gen_ble (labels[1]));
915 else
916 emit_jump_insn (gen_bge (labels[1]));
917 JUMP_LABEL (get_last_insn ()) = labels[1];
918 LABEL_NUSES (labels[1])++;
919 }
920
921 /* Assuming the unroll_number is 4, and the increment is 2, then
922 for a negative increment: for a positive increment:
923 diff = 0,1 precond 0 diff = 0,7 precond 0
924 diff = 2,3 precond 3 diff = 1,2 precond 1
925 diff = 4,5 precond 2 diff = 3,4 precond 2
926 diff = 6,7 precond 1 diff = 5,6 precond 3 */
927
928 /* We only need to emit (unroll_number - 1) branches here, the
929 last case just falls through to the following code. */
930
931 /* ??? This would give better code if we emitted a tree of branches
932 instead of the current linear list of branches. */
933
934 for (i = 0; i < unroll_number - 1; i++)
935 {
936 int cmp_const;
937 enum rtx_code cmp_code;
938
939 /* For negative increments, must invert the constant compared
940 against, except when comparing against zero. */
941 if (i == 0)
942 {
943 cmp_const = 0;
944 cmp_code = EQ;
945 }
946 else if (neg_inc)
947 {
948 cmp_const = unroll_number - i;
949 cmp_code = GE;
950 }
951 else
952 {
953 cmp_const = i;
954 cmp_code = LE;
955 }
956
957 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
958 cmp_code, NULL_RTX, mode, 0, 0);
959
960 if (i == 0)
961 emit_jump_insn (gen_beq (labels[i]));
962 else if (neg_inc)
963 emit_jump_insn (gen_bge (labels[i]));
964 else
965 emit_jump_insn (gen_ble (labels[i]));
966 JUMP_LABEL (get_last_insn ()) = labels[i];
967 LABEL_NUSES (labels[i])++;
968 }
969
970 /* If the increment is greater than one, then we need another branch,
971 to handle other cases equivalent to 0. */
972
973 /* ??? This should be merged into the code above somehow to help
974 simplify the code here, and reduce the number of branches emitted.
975 For the negative increment case, the branch here could easily
976 be merged with the `0' case branch above. For the positive
977 increment case, it is not clear how this can be simplified. */
978
979 if (abs_inc != 1)
980 {
981 int cmp_const;
982 enum rtx_code cmp_code;
983
984 if (neg_inc)
985 {
986 cmp_const = abs_inc - 1;
987 cmp_code = LE;
988 }
989 else
990 {
991 cmp_const = abs_inc * (unroll_number - 1) + 1;
992 cmp_code = GE;
993 }
994
995 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
996 mode, 0, 0);
997
998 if (neg_inc)
999 emit_jump_insn (gen_ble (labels[0]));
1000 else
1001 emit_jump_insn (gen_bge (labels[0]));
1002 JUMP_LABEL (get_last_insn ()) = labels[0];
1003 LABEL_NUSES (labels[0])++;
1004 }
1005
1006 sequence = gen_sequence ();
1007 end_sequence ();
1008 emit_insn_before (sequence, loop_start);
1009
1010 /* Only the last copy of the loop body here needs the exit
1011 test, so set copy_end to exclude the compare/branch here,
1012 and then reset it inside the loop when get to the last
1013 copy. */
1014
1015 if (GET_CODE (last_loop_insn) == BARRIER)
1016 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1017 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1018 {
1019 #ifdef HAVE_cc0
1020 /* The immediately preceding insn is a compare which we do not
1021 want to copy. */
1022 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1023 #else
1024 /* The immediately preceding insn may not be a compare, so we
1025 must copy it. */
1026 copy_end = PREV_INSN (last_loop_insn);
1027 #endif
1028 }
1029 else
1030 abort ();
1031
1032 for (i = 1; i < unroll_number; i++)
1033 {
1034 emit_label_after (labels[unroll_number - i],
1035 PREV_INSN (loop_start));
1036
1037 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1038 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1039 bzero ((char *) map->const_age_map,
1040 maxregnum * sizeof (unsigned));
1041 map->const_age = 0;
1042
1043 for (j = 0; j < max_labelno; j++)
1044 if (local_label[j])
1045 map->label_map[j] = gen_label_rtx ();
1046
1047 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1048 if (local_regno[j])
1049 {
1050 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1051 record_base_value (REGNO (map->reg_map[j]),
1052 regno_reg_rtx[j]);
1053 }
1054 /* The last copy needs the compare/branch insns at the end,
1055 so reset copy_end here if the loop ends with a conditional
1056 branch. */
1057
1058 if (i == unroll_number - 1)
1059 {
1060 if (GET_CODE (last_loop_insn) == BARRIER)
1061 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1062 else
1063 copy_end = last_loop_insn;
1064 }
1065
1066 /* None of the copies are the `last_iteration', so just
1067 pass zero for that parameter. */
1068 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1069 unroll_type, start_label, loop_end,
1070 loop_start, copy_end);
1071 }
1072 emit_label_after (labels[0], PREV_INSN (loop_start));
1073
1074 if (GET_CODE (last_loop_insn) == BARRIER)
1075 {
1076 insert_before = PREV_INSN (last_loop_insn);
1077 copy_end = PREV_INSN (insert_before);
1078 }
1079 else
1080 {
1081 #ifdef HAVE_cc0
1082 /* The immediately preceding insn is a compare which we do not
1083 want to copy. */
1084 insert_before = PREV_INSN (last_loop_insn);
1085 copy_end = PREV_INSN (insert_before);
1086 #else
1087 /* The immediately preceding insn may not be a compare, so we
1088 must copy it. */
1089 insert_before = last_loop_insn;
1090 copy_end = PREV_INSN (last_loop_insn);
1091 #endif
1092 }
1093
1094 /* Set unroll type to MODULO now. */
1095 unroll_type = UNROLL_MODULO;
1096 loop_preconditioned = 1;
1097
1098 #ifdef HAIFA
1099 /* Fix the initial value for the loop as needed. */
1100 if (loop_n_iterations <= 0)
1101 loop_start_value [loop_number (loop_start, loop_end)]
1102 = initial_value;
1103 #endif
1104 }
1105 }
1106
1107 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1108 the loop unless all loops are being unrolled. */
1109 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1110 {
1111 if (loop_dump_stream)
1112 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1113 return;
1114 }
1115
1116 /* At this point, we are guaranteed to unroll the loop. */
1117
1118 /* Keep track of the unroll factor for each loop. */
1119 if (unroll_type == UNROLL_COMPLETELY)
1120 loop_unroll_factor [loop_number (loop_start, loop_end)] = -1;
1121 else
1122 loop_unroll_factor [loop_number (loop_start, loop_end)] = unroll_number;
1123
1124
1125 /* For each biv and giv, determine whether it can be safely split into
1126 a different variable for each unrolled copy of the loop body.
1127 We precalculate and save this info here, since computing it is
1128 expensive.
1129
1130 Do this before deleting any instructions from the loop, so that
1131 back_branch_in_range_p will work correctly. */
1132
1133 if (splitting_not_safe)
1134 temp = 0;
1135 else
1136 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1137 end_insert_before, unroll_number);
1138
1139 /* find_splittable_regs may have created some new registers, so must
1140 reallocate the reg_map with the new larger size, and must realloc
1141 the constant maps also. */
1142
1143 maxregnum = max_reg_num ();
1144 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1145
1146 init_reg_map (map, maxregnum);
1147
1148 /* Space is needed in some of the map for new registers, so new_maxregnum
1149 is an (over)estimate of how many registers will exist at the end. */
1150 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1151
1152 /* Must realloc space for the constant maps, because the number of registers
1153 may have changed. */
1154
1155 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1156 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1157
1158 map->const_equiv_map_size = new_maxregnum;
1159 global_const_equiv_map = map->const_equiv_map;
1160 global_const_equiv_map_size = new_maxregnum;
1161
1162 /* Search the list of bivs and givs to find ones which need to be remapped
1163 when split, and set their reg_map entry appropriately. */
1164
1165 for (bl = loop_iv_list; bl; bl = bl->next)
1166 {
1167 if (REGNO (bl->biv->src_reg) != bl->regno)
1168 map->reg_map[bl->regno] = bl->biv->src_reg;
1169 #if 0
1170 /* Currently, non-reduced/final-value givs are never split. */
1171 for (v = bl->giv; v; v = v->next_iv)
1172 if (REGNO (v->src_reg) != bl->regno)
1173 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1174 #endif
1175 }
1176
1177 /* Use our current register alignment and pointer flags. */
1178 map->regno_pointer_flag = regno_pointer_flag;
1179 map->regno_pointer_align = regno_pointer_align;
1180
1181 /* If the loop is being partially unrolled, and the iteration variables
1182 are being split, and are being renamed for the split, then must fix up
1183 the compare/jump instruction at the end of the loop to refer to the new
1184 registers. This compare isn't copied, so the registers used in it
1185 will never be replaced if it isn't done here. */
1186
1187 if (unroll_type == UNROLL_MODULO)
1188 {
1189 insn = NEXT_INSN (copy_end);
1190 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1191 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1192 }
1193
1194 /* For unroll_number - 1 times, make a copy of each instruction
1195 between copy_start and copy_end, and insert these new instructions
1196 before the end of the loop. */
1197
1198 for (i = 0; i < unroll_number; i++)
1199 {
1200 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1201 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1202 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1203 map->const_age = 0;
1204
1205 for (j = 0; j < max_labelno; j++)
1206 if (local_label[j])
1207 map->label_map[j] = gen_label_rtx ();
1208
1209 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1210 if (local_regno[j])
1211 {
1212 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1213 record_base_value (REGNO (map->reg_map[j]),
1214 regno_reg_rtx[j]);
1215 }
1216
1217 /* If loop starts with a branch to the test, then fix it so that
1218 it points to the test of the first unrolled copy of the loop. */
1219 if (i == 0 && loop_start != copy_start)
1220 {
1221 insn = PREV_INSN (copy_start);
1222 pattern = PATTERN (insn);
1223
1224 tem = map->label_map[CODE_LABEL_NUMBER
1225 (XEXP (SET_SRC (pattern), 0))];
1226 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1227
1228 /* Set the jump label so that it can be used by later loop unrolling
1229 passes. */
1230 JUMP_LABEL (insn) = tem;
1231 LABEL_NUSES (tem)++;
1232 }
1233
1234 copy_loop_body (copy_start, copy_end, map, exit_label,
1235 i == unroll_number - 1, unroll_type, start_label,
1236 loop_end, insert_before, insert_before);
1237 }
1238
1239 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1240 insn to be deleted. This prevents any runaway delete_insn call from
1241 more insns that it should, as it always stops at a CODE_LABEL. */
1242
1243 /* Delete the compare and branch at the end of the loop if completely
1244 unrolling the loop. Deleting the backward branch at the end also
1245 deletes the code label at the start of the loop. This is done at
1246 the very end to avoid problems with back_branch_in_range_p. */
1247
1248 if (unroll_type == UNROLL_COMPLETELY)
1249 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1250 else
1251 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1252
1253 /* Delete all of the original loop instructions. Don't delete the
1254 LOOP_BEG note, or the first code label in the loop. */
1255
1256 insn = NEXT_INSN (copy_start);
1257 while (insn != safety_label)
1258 {
1259 if (insn != start_label)
1260 insn = delete_insn (insn);
1261 else
1262 insn = NEXT_INSN (insn);
1263 }
1264
1265 /* Can now delete the 'safety' label emitted to protect us from runaway
1266 delete_insn calls. */
1267 if (INSN_DELETED_P (safety_label))
1268 abort ();
1269 delete_insn (safety_label);
1270
1271 /* If exit_label exists, emit it after the loop. Doing the emit here
1272 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1273 This is needed so that mostly_true_jump in reorg.c will treat jumps
1274 to this loop end label correctly, i.e. predict that they are usually
1275 not taken. */
1276 if (exit_label)
1277 emit_label_after (exit_label, loop_end);
1278 }
1279 \f
1280 /* Return true if the loop can be safely, and profitably, preconditioned
1281 so that the unrolled copies of the loop body don't need exit tests.
1282
1283 This only works if final_value, initial_value and increment can be
1284 determined, and if increment is a constant power of 2.
1285 If increment is not a power of 2, then the preconditioning modulo
1286 operation would require a real modulo instead of a boolean AND, and this
1287 is not considered `profitable'. */
1288
1289 /* ??? If the loop is known to be executed very many times, or the machine
1290 has a very cheap divide instruction, then preconditioning is a win even
1291 when the increment is not a power of 2. Use RTX_COST to compute
1292 whether divide is cheap. */
1293
1294 static int
1295 precondition_loop_p (initial_value, final_value, increment, loop_start,
1296 loop_end)
1297 rtx *initial_value, *final_value, *increment;
1298 rtx loop_start, loop_end;
1299 {
1300
1301 if (loop_n_iterations > 0)
1302 {
1303 *initial_value = const0_rtx;
1304 *increment = const1_rtx;
1305 *final_value = GEN_INT (loop_n_iterations);
1306
1307 if (loop_dump_stream)
1308 fprintf (loop_dump_stream,
1309 "Preconditioning: Success, number of iterations known, %d.\n",
1310 loop_n_iterations);
1311 return 1;
1312 }
1313
1314 if (loop_initial_value == 0)
1315 {
1316 if (loop_dump_stream)
1317 fprintf (loop_dump_stream,
1318 "Preconditioning: Could not find initial value.\n");
1319 return 0;
1320 }
1321 else if (loop_increment == 0)
1322 {
1323 if (loop_dump_stream)
1324 fprintf (loop_dump_stream,
1325 "Preconditioning: Could not find increment value.\n");
1326 return 0;
1327 }
1328 else if (GET_CODE (loop_increment) != CONST_INT)
1329 {
1330 if (loop_dump_stream)
1331 fprintf (loop_dump_stream,
1332 "Preconditioning: Increment not a constant.\n");
1333 return 0;
1334 }
1335 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1336 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1337 {
1338 if (loop_dump_stream)
1339 fprintf (loop_dump_stream,
1340 "Preconditioning: Increment not a constant power of 2.\n");
1341 return 0;
1342 }
1343
1344 /* Unsigned_compare and compare_dir can be ignored here, since they do
1345 not matter for preconditioning. */
1346
1347 if (loop_final_value == 0)
1348 {
1349 if (loop_dump_stream)
1350 fprintf (loop_dump_stream,
1351 "Preconditioning: EQ comparison loop.\n");
1352 return 0;
1353 }
1354
1355 /* Must ensure that final_value is invariant, so call invariant_p to
1356 check. Before doing so, must check regno against max_reg_before_loop
1357 to make sure that the register is in the range covered by invariant_p.
1358 If it isn't, then it is most likely a biv/giv which by definition are
1359 not invariant. */
1360 if ((GET_CODE (loop_final_value) == REG
1361 && REGNO (loop_final_value) >= max_reg_before_loop)
1362 || (GET_CODE (loop_final_value) == PLUS
1363 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1364 || ! invariant_p (loop_final_value))
1365 {
1366 if (loop_dump_stream)
1367 fprintf (loop_dump_stream,
1368 "Preconditioning: Final value not invariant.\n");
1369 return 0;
1370 }
1371
1372 /* Fail for floating point values, since the caller of this function
1373 does not have code to deal with them. */
1374 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1375 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1376 {
1377 if (loop_dump_stream)
1378 fprintf (loop_dump_stream,
1379 "Preconditioning: Floating point final or initial value.\n");
1380 return 0;
1381 }
1382
1383 /* Now set initial_value to be the iteration_var, since that may be a
1384 simpler expression, and is guaranteed to be correct if all of the
1385 above tests succeed.
1386
1387 We can not use the initial_value as calculated, because it will be
1388 one too small for loops of the form "while (i-- > 0)". We can not
1389 emit code before the loop_skip_over insns to fix this problem as this
1390 will then give a number one too large for loops of the form
1391 "while (--i > 0)".
1392
1393 Note that all loops that reach here are entered at the top, because
1394 this function is not called if the loop starts with a jump. */
1395
1396 /* Fail if loop_iteration_var is not live before loop_start, since we need
1397 to test its value in the preconditioning code. */
1398
1399 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1400 > INSN_LUID (loop_start))
1401 {
1402 if (loop_dump_stream)
1403 fprintf (loop_dump_stream,
1404 "Preconditioning: Iteration var not live before loop start.\n");
1405 return 0;
1406 }
1407
1408 *initial_value = loop_iteration_var;
1409 *increment = loop_increment;
1410 *final_value = loop_final_value;
1411
1412 /* Success! */
1413 if (loop_dump_stream)
1414 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1415 return 1;
1416 }
1417
1418
1419 /* All pseudo-registers must be mapped to themselves. Two hard registers
1420 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1421 REGNUM, to avoid function-inlining specific conversions of these
1422 registers. All other hard regs can not be mapped because they may be
1423 used with different
1424 modes. */
1425
1426 static void
1427 init_reg_map (map, maxregnum)
1428 struct inline_remap *map;
1429 int maxregnum;
1430 {
1431 int i;
1432
1433 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1434 map->reg_map[i] = regno_reg_rtx[i];
1435 /* Just clear the rest of the entries. */
1436 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1437 map->reg_map[i] = 0;
1438
1439 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1440 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1441 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1442 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1443 }
1444 \f
1445 /* Strength-reduction will often emit code for optimized biv/givs which
1446 calculates their value in a temporary register, and then copies the result
1447 to the iv. This procedure reconstructs the pattern computing the iv;
1448 verifying that all operands are of the proper form.
1449
1450 The return value is the amount that the giv is incremented by. */
1451
1452 static rtx
1453 calculate_giv_inc (pattern, src_insn, regno)
1454 rtx pattern, src_insn;
1455 int regno;
1456 {
1457 rtx increment;
1458 rtx increment_total = 0;
1459 int tries = 0;
1460
1461 retry:
1462 /* Verify that we have an increment insn here. First check for a plus
1463 as the set source. */
1464 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1465 {
1466 /* SR sometimes computes the new giv value in a temp, then copies it
1467 to the new_reg. */
1468 src_insn = PREV_INSN (src_insn);
1469 pattern = PATTERN (src_insn);
1470 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1471 abort ();
1472
1473 /* The last insn emitted is not needed, so delete it to avoid confusing
1474 the second cse pass. This insn sets the giv unnecessarily. */
1475 delete_insn (get_last_insn ());
1476 }
1477
1478 /* Verify that we have a constant as the second operand of the plus. */
1479 increment = XEXP (SET_SRC (pattern), 1);
1480 if (GET_CODE (increment) != CONST_INT)
1481 {
1482 /* SR sometimes puts the constant in a register, especially if it is
1483 too big to be an add immed operand. */
1484 src_insn = PREV_INSN (src_insn);
1485 increment = SET_SRC (PATTERN (src_insn));
1486
1487 /* SR may have used LO_SUM to compute the constant if it is too large
1488 for a load immed operand. In this case, the constant is in operand
1489 one of the LO_SUM rtx. */
1490 if (GET_CODE (increment) == LO_SUM)
1491 increment = XEXP (increment, 1);
1492 else if (GET_CODE (increment) == IOR
1493 || GET_CODE (increment) == ASHIFT
1494 || GET_CODE (increment) == PLUS)
1495 {
1496 /* The rs6000 port loads some constants with IOR.
1497 The alpha port loads some constants with ASHIFT and PLUS. */
1498 rtx second_part = XEXP (increment, 1);
1499 enum rtx_code code = GET_CODE (increment);
1500
1501 src_insn = PREV_INSN (src_insn);
1502 increment = SET_SRC (PATTERN (src_insn));
1503 /* Don't need the last insn anymore. */
1504 delete_insn (get_last_insn ());
1505
1506 if (GET_CODE (second_part) != CONST_INT
1507 || GET_CODE (increment) != CONST_INT)
1508 abort ();
1509
1510 if (code == IOR)
1511 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1512 else if (code == PLUS)
1513 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1514 else
1515 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1516 }
1517
1518 if (GET_CODE (increment) != CONST_INT)
1519 abort ();
1520
1521 /* The insn loading the constant into a register is no longer needed,
1522 so delete it. */
1523 delete_insn (get_last_insn ());
1524 }
1525
1526 if (increment_total)
1527 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1528 else
1529 increment_total = increment;
1530
1531 /* Check that the source register is the same as the register we expected
1532 to see as the source. If not, something is seriously wrong. */
1533 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1534 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1535 {
1536 /* Some machines (e.g. the romp), may emit two add instructions for
1537 certain constants, so lets try looking for another add immediately
1538 before this one if we have only seen one add insn so far. */
1539
1540 if (tries == 0)
1541 {
1542 tries++;
1543
1544 src_insn = PREV_INSN (src_insn);
1545 pattern = PATTERN (src_insn);
1546
1547 delete_insn (get_last_insn ());
1548
1549 goto retry;
1550 }
1551
1552 abort ();
1553 }
1554
1555 return increment_total;
1556 }
1557
1558 /* Copy REG_NOTES, except for insn references, because not all insn_map
1559 entries are valid yet. We do need to copy registers now though, because
1560 the reg_map entries can change during copying. */
1561
1562 static rtx
1563 initial_reg_note_copy (notes, map)
1564 rtx notes;
1565 struct inline_remap *map;
1566 {
1567 rtx copy;
1568
1569 if (notes == 0)
1570 return 0;
1571
1572 copy = rtx_alloc (GET_CODE (notes));
1573 PUT_MODE (copy, GET_MODE (notes));
1574
1575 if (GET_CODE (notes) == EXPR_LIST)
1576 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1577 else if (GET_CODE (notes) == INSN_LIST)
1578 /* Don't substitute for these yet. */
1579 XEXP (copy, 0) = XEXP (notes, 0);
1580 else
1581 abort ();
1582
1583 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1584
1585 return copy;
1586 }
1587
1588 /* Fixup insn references in copied REG_NOTES. */
1589
1590 static void
1591 final_reg_note_copy (notes, map)
1592 rtx notes;
1593 struct inline_remap *map;
1594 {
1595 rtx note;
1596
1597 for (note = notes; note; note = XEXP (note, 1))
1598 if (GET_CODE (note) == INSN_LIST)
1599 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1600 }
1601
1602 /* Copy each instruction in the loop, substituting from map as appropriate.
1603 This is very similar to a loop in expand_inline_function. */
1604
1605 static void
1606 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1607 unroll_type, start_label, loop_end, insert_before,
1608 copy_notes_from)
1609 rtx copy_start, copy_end;
1610 struct inline_remap *map;
1611 rtx exit_label;
1612 int last_iteration;
1613 enum unroll_types unroll_type;
1614 rtx start_label, loop_end, insert_before, copy_notes_from;
1615 {
1616 rtx insn, pattern;
1617 rtx tem, copy;
1618 int dest_reg_was_split, i;
1619 rtx cc0_insn = 0;
1620 rtx final_label = 0;
1621 rtx giv_inc, giv_dest_reg, giv_src_reg;
1622
1623 /* If this isn't the last iteration, then map any references to the
1624 start_label to final_label. Final label will then be emitted immediately
1625 after the end of this loop body if it was ever used.
1626
1627 If this is the last iteration, then map references to the start_label
1628 to itself. */
1629 if (! last_iteration)
1630 {
1631 final_label = gen_label_rtx ();
1632 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1633 }
1634 else
1635 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1636
1637 start_sequence ();
1638
1639 insn = copy_start;
1640 do
1641 {
1642 insn = NEXT_INSN (insn);
1643
1644 map->orig_asm_operands_vector = 0;
1645
1646 switch (GET_CODE (insn))
1647 {
1648 case INSN:
1649 pattern = PATTERN (insn);
1650 copy = 0;
1651 giv_inc = 0;
1652
1653 /* Check to see if this is a giv that has been combined with
1654 some split address givs. (Combined in the sense that
1655 `combine_givs' in loop.c has put two givs in the same register.)
1656 In this case, we must search all givs based on the same biv to
1657 find the address givs. Then split the address givs.
1658 Do this before splitting the giv, since that may map the
1659 SET_DEST to a new register. */
1660
1661 if (GET_CODE (pattern) == SET
1662 && GET_CODE (SET_DEST (pattern)) == REG
1663 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1664 {
1665 struct iv_class *bl;
1666 struct induction *v, *tv;
1667 int regno = REGNO (SET_DEST (pattern));
1668
1669 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1670 bl = reg_biv_class[REGNO (v->src_reg)];
1671
1672 /* Although the giv_inc amount is not needed here, we must call
1673 calculate_giv_inc here since it might try to delete the
1674 last insn emitted. If we wait until later to call it,
1675 we might accidentally delete insns generated immediately
1676 below by emit_unrolled_add. */
1677
1678 giv_inc = calculate_giv_inc (pattern, insn, regno);
1679
1680 /* Now find all address giv's that were combined with this
1681 giv 'v'. */
1682 for (tv = bl->giv; tv; tv = tv->next_iv)
1683 if (tv->giv_type == DEST_ADDR && tv->same == v)
1684 {
1685 int this_giv_inc;
1686
1687 /* If this DEST_ADDR giv was not split, then ignore it. */
1688 if (*tv->location != tv->dest_reg)
1689 continue;
1690
1691 /* Scale this_giv_inc if the multiplicative factors of
1692 the two givs are different. */
1693 this_giv_inc = INTVAL (giv_inc);
1694 if (tv->mult_val != v->mult_val)
1695 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1696 * INTVAL (tv->mult_val));
1697
1698 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1699 *tv->location = tv->dest_reg;
1700
1701 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1702 {
1703 /* Must emit an insn to increment the split address
1704 giv. Add in the const_adjust field in case there
1705 was a constant eliminated from the address. */
1706 rtx value, dest_reg;
1707
1708 /* tv->dest_reg will be either a bare register,
1709 or else a register plus a constant. */
1710 if (GET_CODE (tv->dest_reg) == REG)
1711 dest_reg = tv->dest_reg;
1712 else
1713 dest_reg = XEXP (tv->dest_reg, 0);
1714
1715 /* Check for shared address givs, and avoid
1716 incrementing the shared pseudo reg more than
1717 once. */
1718 if (! tv->same_insn && ! tv->shared)
1719 {
1720 /* tv->dest_reg may actually be a (PLUS (REG)
1721 (CONST)) here, so we must call plus_constant
1722 to add the const_adjust amount before calling
1723 emit_unrolled_add below. */
1724 value = plus_constant (tv->dest_reg,
1725 tv->const_adjust);
1726
1727 /* The constant could be too large for an add
1728 immediate, so can't directly emit an insn
1729 here. */
1730 emit_unrolled_add (dest_reg, XEXP (value, 0),
1731 XEXP (value, 1));
1732 }
1733
1734 /* Reset the giv to be just the register again, in case
1735 it is used after the set we have just emitted.
1736 We must subtract the const_adjust factor added in
1737 above. */
1738 tv->dest_reg = plus_constant (dest_reg,
1739 - tv->const_adjust);
1740 *tv->location = tv->dest_reg;
1741 }
1742 }
1743 }
1744
1745 /* If this is a setting of a splittable variable, then determine
1746 how to split the variable, create a new set based on this split,
1747 and set up the reg_map so that later uses of the variable will
1748 use the new split variable. */
1749
1750 dest_reg_was_split = 0;
1751
1752 if (GET_CODE (pattern) == SET
1753 && GET_CODE (SET_DEST (pattern)) == REG
1754 && splittable_regs[REGNO (SET_DEST (pattern))])
1755 {
1756 int regno = REGNO (SET_DEST (pattern));
1757
1758 dest_reg_was_split = 1;
1759
1760 /* Compute the increment value for the giv, if it wasn't
1761 already computed above. */
1762
1763 if (giv_inc == 0)
1764 giv_inc = calculate_giv_inc (pattern, insn, regno);
1765 giv_dest_reg = SET_DEST (pattern);
1766 giv_src_reg = SET_DEST (pattern);
1767
1768 if (unroll_type == UNROLL_COMPLETELY)
1769 {
1770 /* Completely unrolling the loop. Set the induction
1771 variable to a known constant value. */
1772
1773 /* The value in splittable_regs may be an invariant
1774 value, so we must use plus_constant here. */
1775 splittable_regs[regno]
1776 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1777
1778 if (GET_CODE (splittable_regs[regno]) == PLUS)
1779 {
1780 giv_src_reg = XEXP (splittable_regs[regno], 0);
1781 giv_inc = XEXP (splittable_regs[regno], 1);
1782 }
1783 else
1784 {
1785 /* The splittable_regs value must be a REG or a
1786 CONST_INT, so put the entire value in the giv_src_reg
1787 variable. */
1788 giv_src_reg = splittable_regs[regno];
1789 giv_inc = const0_rtx;
1790 }
1791 }
1792 else
1793 {
1794 /* Partially unrolling loop. Create a new pseudo
1795 register for the iteration variable, and set it to
1796 be a constant plus the original register. Except
1797 on the last iteration, when the result has to
1798 go back into the original iteration var register. */
1799
1800 /* Handle bivs which must be mapped to a new register
1801 when split. This happens for bivs which need their
1802 final value set before loop entry. The new register
1803 for the biv was stored in the biv's first struct
1804 induction entry by find_splittable_regs. */
1805
1806 if (regno < max_reg_before_loop
1807 && reg_iv_type[regno] == BASIC_INDUCT)
1808 {
1809 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1810 giv_dest_reg = giv_src_reg;
1811 }
1812
1813 #if 0
1814 /* If non-reduced/final-value givs were split, then
1815 this would have to remap those givs also. See
1816 find_splittable_regs. */
1817 #endif
1818
1819 splittable_regs[regno]
1820 = GEN_INT (INTVAL (giv_inc)
1821 + INTVAL (splittable_regs[regno]));
1822 giv_inc = splittable_regs[regno];
1823
1824 /* Now split the induction variable by changing the dest
1825 of this insn to a new register, and setting its
1826 reg_map entry to point to this new register.
1827
1828 If this is the last iteration, and this is the last insn
1829 that will update the iv, then reuse the original dest,
1830 to ensure that the iv will have the proper value when
1831 the loop exits or repeats.
1832
1833 Using splittable_regs_updates here like this is safe,
1834 because it can only be greater than one if all
1835 instructions modifying the iv are always executed in
1836 order. */
1837
1838 if (! last_iteration
1839 || (splittable_regs_updates[regno]-- != 1))
1840 {
1841 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1842 giv_dest_reg = tem;
1843 map->reg_map[regno] = tem;
1844 record_base_value (REGNO (tem), giv_src_reg);
1845 }
1846 else
1847 map->reg_map[regno] = giv_src_reg;
1848 }
1849
1850 /* The constant being added could be too large for an add
1851 immediate, so can't directly emit an insn here. */
1852 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1853 copy = get_last_insn ();
1854 pattern = PATTERN (copy);
1855 }
1856 else
1857 {
1858 pattern = copy_rtx_and_substitute (pattern, map);
1859 copy = emit_insn (pattern);
1860 }
1861 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1862
1863 #ifdef HAVE_cc0
1864 /* If this insn is setting CC0, it may need to look at
1865 the insn that uses CC0 to see what type of insn it is.
1866 In that case, the call to recog via validate_change will
1867 fail. So don't substitute constants here. Instead,
1868 do it when we emit the following insn.
1869
1870 For example, see the pyr.md file. That machine has signed and
1871 unsigned compares. The compare patterns must check the
1872 following branch insn to see which what kind of compare to
1873 emit.
1874
1875 If the previous insn set CC0, substitute constants on it as
1876 well. */
1877 if (sets_cc0_p (PATTERN (copy)) != 0)
1878 cc0_insn = copy;
1879 else
1880 {
1881 if (cc0_insn)
1882 try_constants (cc0_insn, map);
1883 cc0_insn = 0;
1884 try_constants (copy, map);
1885 }
1886 #else
1887 try_constants (copy, map);
1888 #endif
1889
1890 /* Make split induction variable constants `permanent' since we
1891 know there are no backward branches across iteration variable
1892 settings which would invalidate this. */
1893 if (dest_reg_was_split)
1894 {
1895 int regno = REGNO (SET_DEST (pattern));
1896
1897 if (regno < map->const_equiv_map_size
1898 && map->const_age_map[regno] == map->const_age)
1899 map->const_age_map[regno] = -1;
1900 }
1901 break;
1902
1903 case JUMP_INSN:
1904 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1905 copy = emit_jump_insn (pattern);
1906 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1907
1908 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1909 && ! last_iteration)
1910 {
1911 /* This is a branch to the beginning of the loop; this is the
1912 last insn being copied; and this is not the last iteration.
1913 In this case, we want to change the original fall through
1914 case to be a branch past the end of the loop, and the
1915 original jump label case to fall_through. */
1916
1917 if (invert_exp (pattern, copy))
1918 {
1919 if (! redirect_exp (&pattern,
1920 map->label_map[CODE_LABEL_NUMBER
1921 (JUMP_LABEL (insn))],
1922 exit_label, copy))
1923 abort ();
1924 }
1925 else
1926 {
1927 rtx jmp;
1928 rtx lab = gen_label_rtx ();
1929 /* Can't do it by reversing the jump (probably because we
1930 couldn't reverse the conditions), so emit a new
1931 jump_insn after COPY, and redirect the jump around
1932 that. */
1933 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1934 jmp = emit_barrier_after (jmp);
1935 emit_label_after (lab, jmp);
1936 LABEL_NUSES (lab) = 0;
1937 if (! redirect_exp (&pattern,
1938 map->label_map[CODE_LABEL_NUMBER
1939 (JUMP_LABEL (insn))],
1940 lab, copy))
1941 abort ();
1942 }
1943 }
1944
1945 #ifdef HAVE_cc0
1946 if (cc0_insn)
1947 try_constants (cc0_insn, map);
1948 cc0_insn = 0;
1949 #endif
1950 try_constants (copy, map);
1951
1952 /* Set the jump label of COPY correctly to avoid problems with
1953 later passes of unroll_loop, if INSN had jump label set. */
1954 if (JUMP_LABEL (insn))
1955 {
1956 rtx label = 0;
1957
1958 /* Can't use the label_map for every insn, since this may be
1959 the backward branch, and hence the label was not mapped. */
1960 if (GET_CODE (pattern) == SET)
1961 {
1962 tem = SET_SRC (pattern);
1963 if (GET_CODE (tem) == LABEL_REF)
1964 label = XEXP (tem, 0);
1965 else if (GET_CODE (tem) == IF_THEN_ELSE)
1966 {
1967 if (XEXP (tem, 1) != pc_rtx)
1968 label = XEXP (XEXP (tem, 1), 0);
1969 else
1970 label = XEXP (XEXP (tem, 2), 0);
1971 }
1972 }
1973
1974 if (label && GET_CODE (label) == CODE_LABEL)
1975 JUMP_LABEL (copy) = label;
1976 else
1977 {
1978 /* An unrecognizable jump insn, probably the entry jump
1979 for a switch statement. This label must have been mapped,
1980 so just use the label_map to get the new jump label. */
1981 JUMP_LABEL (copy)
1982 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1983 }
1984
1985 /* If this is a non-local jump, then must increase the label
1986 use count so that the label will not be deleted when the
1987 original jump is deleted. */
1988 LABEL_NUSES (JUMP_LABEL (copy))++;
1989 }
1990 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1991 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1992 {
1993 rtx pat = PATTERN (copy);
1994 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1995 int len = XVECLEN (pat, diff_vec_p);
1996 int i;
1997
1998 for (i = 0; i < len; i++)
1999 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2000 }
2001
2002 /* If this used to be a conditional jump insn but whose branch
2003 direction is now known, we must do something special. */
2004 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2005 {
2006 #ifdef HAVE_cc0
2007 /* The previous insn set cc0 for us. So delete it. */
2008 delete_insn (PREV_INSN (copy));
2009 #endif
2010
2011 /* If this is now a no-op, delete it. */
2012 if (map->last_pc_value == pc_rtx)
2013 {
2014 /* Don't let delete_insn delete the label referenced here,
2015 because we might possibly need it later for some other
2016 instruction in the loop. */
2017 if (JUMP_LABEL (copy))
2018 LABEL_NUSES (JUMP_LABEL (copy))++;
2019 delete_insn (copy);
2020 if (JUMP_LABEL (copy))
2021 LABEL_NUSES (JUMP_LABEL (copy))--;
2022 copy = 0;
2023 }
2024 else
2025 /* Otherwise, this is unconditional jump so we must put a
2026 BARRIER after it. We could do some dead code elimination
2027 here, but jump.c will do it just as well. */
2028 emit_barrier ();
2029 }
2030 break;
2031
2032 case CALL_INSN:
2033 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2034 copy = emit_call_insn (pattern);
2035 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2036
2037 /* Because the USAGE information potentially contains objects other
2038 than hard registers, we need to copy it. */
2039 CALL_INSN_FUNCTION_USAGE (copy)
2040 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2041
2042 #ifdef HAVE_cc0
2043 if (cc0_insn)
2044 try_constants (cc0_insn, map);
2045 cc0_insn = 0;
2046 #endif
2047 try_constants (copy, map);
2048
2049 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2051 map->const_equiv_map[i] = 0;
2052 break;
2053
2054 case CODE_LABEL:
2055 /* If this is the loop start label, then we don't need to emit a
2056 copy of this label since no one will use it. */
2057
2058 if (insn != start_label)
2059 {
2060 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2061 map->const_age++;
2062 }
2063 break;
2064
2065 case BARRIER:
2066 copy = emit_barrier ();
2067 break;
2068
2069 case NOTE:
2070 /* VTOP notes are valid only before the loop exit test. If placed
2071 anywhere else, loop may generate bad code. */
2072
2073 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2074 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2075 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2076 copy = emit_note (NOTE_SOURCE_FILE (insn),
2077 NOTE_LINE_NUMBER (insn));
2078 else
2079 copy = 0;
2080 break;
2081
2082 default:
2083 abort ();
2084 break;
2085 }
2086
2087 map->insn_map[INSN_UID (insn)] = copy;
2088 }
2089 while (insn != copy_end);
2090
2091 /* Now finish coping the REG_NOTES. */
2092 insn = copy_start;
2093 do
2094 {
2095 insn = NEXT_INSN (insn);
2096 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2097 || GET_CODE (insn) == CALL_INSN)
2098 && map->insn_map[INSN_UID (insn)])
2099 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2100 }
2101 while (insn != copy_end);
2102
2103 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2104 each of these notes here, since there may be some important ones, such as
2105 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2106 iteration, because the original notes won't be deleted.
2107
2108 We can't use insert_before here, because when from preconditioning,
2109 insert_before points before the loop. We can't use copy_end, because
2110 there may be insns already inserted after it (which we don't want to
2111 copy) when not from preconditioning code. */
2112
2113 if (! last_iteration)
2114 {
2115 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2116 {
2117 if (GET_CODE (insn) == NOTE
2118 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2119 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2120 }
2121 }
2122
2123 if (final_label && LABEL_NUSES (final_label) > 0)
2124 emit_label (final_label);
2125
2126 tem = gen_sequence ();
2127 end_sequence ();
2128 emit_insn_before (tem, insert_before);
2129 }
2130 \f
2131 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2132 emitted. This will correctly handle the case where the increment value
2133 won't fit in the immediate field of a PLUS insns. */
2134
2135 void
2136 emit_unrolled_add (dest_reg, src_reg, increment)
2137 rtx dest_reg, src_reg, increment;
2138 {
2139 rtx result;
2140
2141 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2142 dest_reg, 0, OPTAB_LIB_WIDEN);
2143
2144 if (dest_reg != result)
2145 emit_move_insn (dest_reg, result);
2146 }
2147 \f
2148 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2149 is a backward branch in that range that branches to somewhere between
2150 LOOP_START and INSN. Returns 0 otherwise. */
2151
2152 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2153 In practice, this is not a problem, because this function is seldom called,
2154 and uses a negligible amount of CPU time on average. */
2155
2156 int
2157 back_branch_in_range_p (insn, loop_start, loop_end)
2158 rtx insn;
2159 rtx loop_start, loop_end;
2160 {
2161 rtx p, q, target_insn;
2162
2163 /* Stop before we get to the backward branch at the end of the loop. */
2164 loop_end = prev_nonnote_insn (loop_end);
2165 if (GET_CODE (loop_end) == BARRIER)
2166 loop_end = PREV_INSN (loop_end);
2167
2168 /* Check in case insn has been deleted, search forward for first non
2169 deleted insn following it. */
2170 while (INSN_DELETED_P (insn))
2171 insn = NEXT_INSN (insn);
2172
2173 /* Check for the case where insn is the last insn in the loop. */
2174 if (insn == loop_end)
2175 return 0;
2176
2177 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2178 {
2179 if (GET_CODE (p) == JUMP_INSN)
2180 {
2181 target_insn = JUMP_LABEL (p);
2182
2183 /* Search from loop_start to insn, to see if one of them is
2184 the target_insn. We can't use INSN_LUID comparisons here,
2185 since insn may not have an LUID entry. */
2186 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2187 if (q == target_insn)
2188 return 1;
2189 }
2190 }
2191
2192 return 0;
2193 }
2194
2195 /* Try to generate the simplest rtx for the expression
2196 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2197 value of giv's. */
2198
2199 static rtx
2200 fold_rtx_mult_add (mult1, mult2, add1, mode)
2201 rtx mult1, mult2, add1;
2202 enum machine_mode mode;
2203 {
2204 rtx temp, mult_res;
2205 rtx result;
2206
2207 /* The modes must all be the same. This should always be true. For now,
2208 check to make sure. */
2209 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2210 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2211 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2212 abort ();
2213
2214 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2215 will be a constant. */
2216 if (GET_CODE (mult1) == CONST_INT)
2217 {
2218 temp = mult2;
2219 mult2 = mult1;
2220 mult1 = temp;
2221 }
2222
2223 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2224 if (! mult_res)
2225 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2226
2227 /* Again, put the constant second. */
2228 if (GET_CODE (add1) == CONST_INT)
2229 {
2230 temp = add1;
2231 add1 = mult_res;
2232 mult_res = temp;
2233 }
2234
2235 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2236 if (! result)
2237 result = gen_rtx (PLUS, mode, add1, mult_res);
2238
2239 return result;
2240 }
2241
2242 /* Searches the list of induction struct's for the biv BL, to try to calculate
2243 the total increment value for one iteration of the loop as a constant.
2244
2245 Returns the increment value as an rtx, simplified as much as possible,
2246 if it can be calculated. Otherwise, returns 0. */
2247
2248 rtx
2249 biv_total_increment (bl, loop_start, loop_end)
2250 struct iv_class *bl;
2251 rtx loop_start, loop_end;
2252 {
2253 struct induction *v;
2254 rtx result;
2255
2256 /* For increment, must check every instruction that sets it. Each
2257 instruction must be executed only once each time through the loop.
2258 To verify this, we check that the the insn is always executed, and that
2259 there are no backward branches after the insn that branch to before it.
2260 Also, the insn must have a mult_val of one (to make sure it really is
2261 an increment). */
2262
2263 result = const0_rtx;
2264 for (v = bl->biv; v; v = v->next_iv)
2265 {
2266 if (v->always_computable && v->mult_val == const1_rtx
2267 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2268 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2269 else
2270 return 0;
2271 }
2272
2273 return result;
2274 }
2275
2276 /* Determine the initial value of the iteration variable, and the amount
2277 that it is incremented each loop. Use the tables constructed by
2278 the strength reduction pass to calculate these values.
2279
2280 Initial_value and/or increment are set to zero if their values could not
2281 be calculated. */
2282
2283 void
2284 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2285 rtx iteration_var, *initial_value, *increment;
2286 rtx loop_start, loop_end;
2287 {
2288 struct iv_class *bl;
2289 struct induction *v, *b;
2290
2291 /* Clear the result values, in case no answer can be found. */
2292 *initial_value = 0;
2293 *increment = 0;
2294
2295 /* The iteration variable can be either a giv or a biv. Check to see
2296 which it is, and compute the variable's initial value, and increment
2297 value if possible. */
2298
2299 /* If this is a new register, can't handle it since we don't have any
2300 reg_iv_type entry for it. */
2301 if (REGNO (iteration_var) >= max_reg_before_loop)
2302 {
2303 if (loop_dump_stream)
2304 fprintf (loop_dump_stream,
2305 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2306 return;
2307 }
2308
2309 /* Reject iteration variables larger than the host wide int size, since they
2310 could result in a number of iterations greater than the range of our
2311 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2312 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2313 > HOST_BITS_PER_WIDE_INT))
2314 {
2315 if (loop_dump_stream)
2316 fprintf (loop_dump_stream,
2317 "Loop unrolling: Iteration var rejected because mode too large.\n");
2318 return;
2319 }
2320 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2321 {
2322 if (loop_dump_stream)
2323 fprintf (loop_dump_stream,
2324 "Loop unrolling: Iteration var not an integer.\n");
2325 return;
2326 }
2327 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2328 {
2329 /* Grab initial value, only useful if it is a constant. */
2330 bl = reg_biv_class[REGNO (iteration_var)];
2331 *initial_value = bl->initial_value;
2332
2333 *increment = biv_total_increment (bl, loop_start, loop_end);
2334 }
2335 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2336 {
2337 #if 1
2338 /* ??? The code below does not work because the incorrect number of
2339 iterations is calculated when the biv is incremented after the giv
2340 is set (which is the usual case). This can probably be accounted
2341 for by biasing the initial_value by subtracting the amount of the
2342 increment that occurs between the giv set and the giv test. However,
2343 a giv as an iterator is very rare, so it does not seem worthwhile
2344 to handle this. */
2345 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2346 if (loop_dump_stream)
2347 fprintf (loop_dump_stream,
2348 "Loop unrolling: Giv iterators are not handled.\n");
2349 return;
2350 #else
2351 /* Initial value is mult_val times the biv's initial value plus
2352 add_val. Only useful if it is a constant. */
2353 v = reg_iv_info[REGNO (iteration_var)];
2354 bl = reg_biv_class[REGNO (v->src_reg)];
2355 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2356 v->add_val, v->mode);
2357
2358 /* Increment value is mult_val times the increment value of the biv. */
2359
2360 *increment = biv_total_increment (bl, loop_start, loop_end);
2361 if (*increment)
2362 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2363 v->mode);
2364 #endif
2365 }
2366 else
2367 {
2368 if (loop_dump_stream)
2369 fprintf (loop_dump_stream,
2370 "Loop unrolling: Not basic or general induction var.\n");
2371 return;
2372 }
2373 }
2374
2375 /* Calculate the approximate final value of the iteration variable
2376 which has an loop exit test with code COMPARISON_CODE and comparison value
2377 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2378 was signed or unsigned, and the direction of the comparison. This info is
2379 needed to calculate the number of loop iterations. */
2380
2381 static rtx
2382 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2383 enum rtx_code comparison_code;
2384 rtx comparison_value;
2385 int *unsigned_p;
2386 int *compare_dir;
2387 {
2388 /* Calculate the final value of the induction variable.
2389 The exact final value depends on the branch operator, and increment sign.
2390 This is only an approximate value. It will be wrong if the iteration
2391 variable is not incremented by one each time through the loop, and
2392 approx final value - start value % increment != 0. */
2393
2394 *unsigned_p = 0;
2395 switch (comparison_code)
2396 {
2397 case LEU:
2398 *unsigned_p = 1;
2399 case LE:
2400 *compare_dir = 1;
2401 return plus_constant (comparison_value, 1);
2402 case GEU:
2403 *unsigned_p = 1;
2404 case GE:
2405 *compare_dir = -1;
2406 return plus_constant (comparison_value, -1);
2407 case EQ:
2408 /* Can not calculate a final value for this case. */
2409 *compare_dir = 0;
2410 return 0;
2411 case LTU:
2412 *unsigned_p = 1;
2413 case LT:
2414 *compare_dir = 1;
2415 return comparison_value;
2416 break;
2417 case GTU:
2418 *unsigned_p = 1;
2419 case GT:
2420 *compare_dir = -1;
2421 return comparison_value;
2422 case NE:
2423 *compare_dir = 0;
2424 return comparison_value;
2425 default:
2426 abort ();
2427 }
2428 }
2429
2430 /* For each biv and giv, determine whether it can be safely split into
2431 a different variable for each unrolled copy of the loop body. If it
2432 is safe to split, then indicate that by saving some useful info
2433 in the splittable_regs array.
2434
2435 If the loop is being completely unrolled, then splittable_regs will hold
2436 the current value of the induction variable while the loop is unrolled.
2437 It must be set to the initial value of the induction variable here.
2438 Otherwise, splittable_regs will hold the difference between the current
2439 value of the induction variable and the value the induction variable had
2440 at the top of the loop. It must be set to the value 0 here.
2441
2442 Returns the total number of instructions that set registers that are
2443 splittable. */
2444
2445 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2446 constant values are unnecessary, since we can easily calculate increment
2447 values in this case even if nothing is constant. The increment value
2448 should not involve a multiply however. */
2449
2450 /* ?? Even if the biv/giv increment values aren't constant, it may still
2451 be beneficial to split the variable if the loop is only unrolled a few
2452 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2453
2454 static int
2455 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2456 unroll_number)
2457 enum unroll_types unroll_type;
2458 rtx loop_start, loop_end;
2459 rtx end_insert_before;
2460 int unroll_number;
2461 {
2462 struct iv_class *bl;
2463 struct induction *v;
2464 rtx increment, tem;
2465 rtx biv_final_value;
2466 int biv_splittable;
2467 int result = 0;
2468
2469 for (bl = loop_iv_list; bl; bl = bl->next)
2470 {
2471 /* Biv_total_increment must return a constant value,
2472 otherwise we can not calculate the split values. */
2473
2474 increment = biv_total_increment (bl, loop_start, loop_end);
2475 if (! increment || GET_CODE (increment) != CONST_INT)
2476 continue;
2477
2478 /* The loop must be unrolled completely, or else have a known number
2479 of iterations and only one exit, or else the biv must be dead
2480 outside the loop, or else the final value must be known. Otherwise,
2481 it is unsafe to split the biv since it may not have the proper
2482 value on loop exit. */
2483
2484 /* loop_number_exit_count is non-zero if the loop has an exit other than
2485 a fall through at the end. */
2486
2487 biv_splittable = 1;
2488 biv_final_value = 0;
2489 if (unroll_type != UNROLL_COMPLETELY
2490 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2491 || unroll_type == UNROLL_NAIVE)
2492 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2493 || ! bl->init_insn
2494 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2495 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2496 < INSN_LUID (bl->init_insn))
2497 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2498 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2499 biv_splittable = 0;
2500
2501 /* If any of the insns setting the BIV don't do so with a simple
2502 PLUS, we don't know how to split it. */
2503 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2504 if ((tem = single_set (v->insn)) == 0
2505 || GET_CODE (SET_DEST (tem)) != REG
2506 || REGNO (SET_DEST (tem)) != bl->regno
2507 || GET_CODE (SET_SRC (tem)) != PLUS)
2508 biv_splittable = 0;
2509
2510 /* If final value is non-zero, then must emit an instruction which sets
2511 the value of the biv to the proper value. This is done after
2512 handling all of the givs, since some of them may need to use the
2513 biv's value in their initialization code. */
2514
2515 /* This biv is splittable. If completely unrolling the loop, save
2516 the biv's initial value. Otherwise, save the constant zero. */
2517
2518 if (biv_splittable == 1)
2519 {
2520 if (unroll_type == UNROLL_COMPLETELY)
2521 {
2522 /* If the initial value of the biv is itself (i.e. it is too
2523 complicated for strength_reduce to compute), or is a hard
2524 register, or it isn't invariant, then we must create a new
2525 pseudo reg to hold the initial value of the biv. */
2526
2527 if (GET_CODE (bl->initial_value) == REG
2528 && (REGNO (bl->initial_value) == bl->regno
2529 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2530 || ! invariant_p (bl->initial_value)))
2531 {
2532 rtx tem = gen_reg_rtx (bl->biv->mode);
2533
2534 record_base_value (REGNO (tem), bl->biv->add_val);
2535 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2536 loop_start);
2537
2538 if (loop_dump_stream)
2539 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2540 bl->regno, REGNO (tem));
2541
2542 splittable_regs[bl->regno] = tem;
2543 }
2544 else
2545 splittable_regs[bl->regno] = bl->initial_value;
2546 }
2547 else
2548 splittable_regs[bl->regno] = const0_rtx;
2549
2550 /* Save the number of instructions that modify the biv, so that
2551 we can treat the last one specially. */
2552
2553 splittable_regs_updates[bl->regno] = bl->biv_count;
2554 result += bl->biv_count;
2555
2556 if (loop_dump_stream)
2557 fprintf (loop_dump_stream,
2558 "Biv %d safe to split.\n", bl->regno);
2559 }
2560
2561 /* Check every giv that depends on this biv to see whether it is
2562 splittable also. Even if the biv isn't splittable, givs which
2563 depend on it may be splittable if the biv is live outside the
2564 loop, and the givs aren't. */
2565
2566 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2567 increment, unroll_number);
2568
2569 /* If final value is non-zero, then must emit an instruction which sets
2570 the value of the biv to the proper value. This is done after
2571 handling all of the givs, since some of them may need to use the
2572 biv's value in their initialization code. */
2573 if (biv_final_value)
2574 {
2575 /* If the loop has multiple exits, emit the insns before the
2576 loop to ensure that it will always be executed no matter
2577 how the loop exits. Otherwise emit the insn after the loop,
2578 since this is slightly more efficient. */
2579 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2580 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2581 biv_final_value),
2582 end_insert_before);
2583 else
2584 {
2585 /* Create a new register to hold the value of the biv, and then
2586 set the biv to its final value before the loop start. The biv
2587 is set to its final value before loop start to ensure that
2588 this insn will always be executed, no matter how the loop
2589 exits. */
2590 rtx tem = gen_reg_rtx (bl->biv->mode);
2591 record_base_value (REGNO (tem), bl->biv->add_val);
2592
2593 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2594 loop_start);
2595 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2596 biv_final_value),
2597 loop_start);
2598
2599 if (loop_dump_stream)
2600 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2601 REGNO (bl->biv->src_reg), REGNO (tem));
2602
2603 /* Set up the mapping from the original biv register to the new
2604 register. */
2605 bl->biv->src_reg = tem;
2606 }
2607 }
2608 }
2609 return result;
2610 }
2611
2612 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2613 for the instruction that is using it. Do not make any changes to that
2614 instruction. */
2615
2616 static int
2617 verify_addresses (v, giv_inc, unroll_number)
2618 struct induction *v;
2619 rtx giv_inc;
2620 int unroll_number;
2621 {
2622 int ret = 1;
2623 rtx orig_addr = *v->location;
2624 rtx last_addr = plus_constant (v->dest_reg,
2625 INTVAL (giv_inc) * (unroll_number - 1));
2626
2627 /* First check to see if either address would fail. */
2628 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2629 || ! validate_change (v->insn, v->location, last_addr, 0))
2630 ret = 0;
2631
2632 /* Now put things back the way they were before. This will always
2633 succeed. */
2634 validate_change (v->insn, v->location, orig_addr, 0);
2635
2636 return ret;
2637 }
2638
2639 /* For every giv based on the biv BL, check to determine whether it is
2640 splittable. This is a subroutine to find_splittable_regs ().
2641
2642 Return the number of instructions that set splittable registers. */
2643
2644 static int
2645 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2646 unroll_number)
2647 struct iv_class *bl;
2648 enum unroll_types unroll_type;
2649 rtx loop_start, loop_end;
2650 rtx increment;
2651 int unroll_number;
2652 {
2653 struct induction *v, *v2;
2654 rtx final_value;
2655 rtx tem;
2656 int result = 0;
2657
2658 /* Scan the list of givs, and set the same_insn field when there are
2659 multiple identical givs in the same insn. */
2660 for (v = bl->giv; v; v = v->next_iv)
2661 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2662 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2663 && ! v2->same_insn)
2664 v2->same_insn = v;
2665
2666 for (v = bl->giv; v; v = v->next_iv)
2667 {
2668 rtx giv_inc, value;
2669
2670 /* Only split the giv if it has already been reduced, or if the loop is
2671 being completely unrolled. */
2672 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2673 continue;
2674
2675 /* The giv can be split if the insn that sets the giv is executed once
2676 and only once on every iteration of the loop. */
2677 /* An address giv can always be split. v->insn is just a use not a set,
2678 and hence it does not matter whether it is always executed. All that
2679 matters is that all the biv increments are always executed, and we
2680 won't reach here if they aren't. */
2681 if (v->giv_type != DEST_ADDR
2682 && (! v->always_computable
2683 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2684 continue;
2685
2686 /* The giv increment value must be a constant. */
2687 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2688 v->mode);
2689 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2690 continue;
2691
2692 /* The loop must be unrolled completely, or else have a known number of
2693 iterations and only one exit, or else the giv must be dead outside
2694 the loop, or else the final value of the giv must be known.
2695 Otherwise, it is not safe to split the giv since it may not have the
2696 proper value on loop exit. */
2697
2698 /* The used outside loop test will fail for DEST_ADDR givs. They are
2699 never used outside the loop anyways, so it is always safe to split a
2700 DEST_ADDR giv. */
2701
2702 final_value = 0;
2703 if (unroll_type != UNROLL_COMPLETELY
2704 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2705 || unroll_type == UNROLL_NAIVE)
2706 && v->giv_type != DEST_ADDR
2707 && ((REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2708 /* Check for the case where the pseudo is set by a shift/add
2709 sequence, in which case the first insn setting the pseudo
2710 is the first insn of the shift/add sequence. */
2711 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2712 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2713 != INSN_UID (XEXP (tem, 0)))))
2714 /* Line above always fails if INSN was moved by loop opt. */
2715 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2716 >= INSN_LUID (loop_end)))
2717 && ! (final_value = v->final_value))
2718 continue;
2719
2720 #if 0
2721 /* Currently, non-reduced/final-value givs are never split. */
2722 /* Should emit insns after the loop if possible, as the biv final value
2723 code below does. */
2724
2725 /* If the final value is non-zero, and the giv has not been reduced,
2726 then must emit an instruction to set the final value. */
2727 if (final_value && !v->new_reg)
2728 {
2729 /* Create a new register to hold the value of the giv, and then set
2730 the giv to its final value before the loop start. The giv is set
2731 to its final value before loop start to ensure that this insn
2732 will always be executed, no matter how we exit. */
2733 tem = gen_reg_rtx (v->mode);
2734 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2735 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2736 loop_start);
2737
2738 if (loop_dump_stream)
2739 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2740 REGNO (v->dest_reg), REGNO (tem));
2741
2742 v->src_reg = tem;
2743 }
2744 #endif
2745
2746 /* This giv is splittable. If completely unrolling the loop, save the
2747 giv's initial value. Otherwise, save the constant zero for it. */
2748
2749 if (unroll_type == UNROLL_COMPLETELY)
2750 {
2751 /* It is not safe to use bl->initial_value here, because it may not
2752 be invariant. It is safe to use the initial value stored in
2753 the splittable_regs array if it is set. In rare cases, it won't
2754 be set, so then we do exactly the same thing as
2755 find_splittable_regs does to get a safe value. */
2756 rtx biv_initial_value;
2757
2758 if (splittable_regs[bl->regno])
2759 biv_initial_value = splittable_regs[bl->regno];
2760 else if (GET_CODE (bl->initial_value) != REG
2761 || (REGNO (bl->initial_value) != bl->regno
2762 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2763 biv_initial_value = bl->initial_value;
2764 else
2765 {
2766 rtx tem = gen_reg_rtx (bl->biv->mode);
2767
2768 record_base_value (REGNO (tem), bl->biv->add_val);
2769 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2770 loop_start);
2771 biv_initial_value = tem;
2772 }
2773 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2774 v->add_val, v->mode);
2775 }
2776 else
2777 value = const0_rtx;
2778
2779 if (v->new_reg)
2780 {
2781 /* If a giv was combined with another giv, then we can only split
2782 this giv if the giv it was combined with was reduced. This
2783 is because the value of v->new_reg is meaningless in this
2784 case. */
2785 if (v->same && ! v->same->new_reg)
2786 {
2787 if (loop_dump_stream)
2788 fprintf (loop_dump_stream,
2789 "giv combined with unreduced giv not split.\n");
2790 continue;
2791 }
2792 /* If the giv is an address destination, it could be something other
2793 than a simple register, these have to be treated differently. */
2794 else if (v->giv_type == DEST_REG)
2795 {
2796 /* If value is not a constant, register, or register plus
2797 constant, then compute its value into a register before
2798 loop start. This prevents invalid rtx sharing, and should
2799 generate better code. We can use bl->initial_value here
2800 instead of splittable_regs[bl->regno] because this code
2801 is going before the loop start. */
2802 if (unroll_type == UNROLL_COMPLETELY
2803 && GET_CODE (value) != CONST_INT
2804 && GET_CODE (value) != REG
2805 && (GET_CODE (value) != PLUS
2806 || GET_CODE (XEXP (value, 0)) != REG
2807 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2808 {
2809 rtx tem = gen_reg_rtx (v->mode);
2810 record_base_value (REGNO (tem), v->add_val);
2811 emit_iv_add_mult (bl->initial_value, v->mult_val,
2812 v->add_val, tem, loop_start);
2813 value = tem;
2814 }
2815
2816 splittable_regs[REGNO (v->new_reg)] = value;
2817 }
2818 else
2819 {
2820 /* Splitting address givs is useful since it will often allow us
2821 to eliminate some increment insns for the base giv as
2822 unnecessary. */
2823
2824 /* If the addr giv is combined with a dest_reg giv, then all
2825 references to that dest reg will be remapped, which is NOT
2826 what we want for split addr regs. We always create a new
2827 register for the split addr giv, just to be safe. */
2828
2829 /* If we have multiple identical address givs within a
2830 single instruction, then use a single pseudo reg for
2831 both. This is necessary in case one is a match_dup
2832 of the other. */
2833
2834 v->const_adjust = 0;
2835
2836 if (v->same_insn)
2837 {
2838 v->dest_reg = v->same_insn->dest_reg;
2839 if (loop_dump_stream)
2840 fprintf (loop_dump_stream,
2841 "Sharing address givs in insn %d\n",
2842 INSN_UID (v->insn));
2843 }
2844 /* If multiple address GIVs have been combined with the
2845 same dest_reg GIV, do not create a new register for
2846 each. */
2847 else if (unroll_type != UNROLL_COMPLETELY
2848 && v->giv_type == DEST_ADDR
2849 && v->same && v->same->giv_type == DEST_ADDR
2850 && v->same->unrolled
2851 /* combine_givs_p may return true for some cases
2852 where the add and mult values are not equal.
2853 To share a register here, the values must be
2854 equal. */
2855 && rtx_equal_p (v->same->mult_val, v->mult_val)
2856 && rtx_equal_p (v->same->add_val, v->add_val))
2857
2858 {
2859 v->dest_reg = v->same->dest_reg;
2860 v->shared = 1;
2861 }
2862 else if (unroll_type != UNROLL_COMPLETELY)
2863 {
2864 /* If not completely unrolling the loop, then create a new
2865 register to hold the split value of the DEST_ADDR giv.
2866 Emit insn to initialize its value before loop start. */
2867
2868 rtx tem = gen_reg_rtx (v->mode);
2869 record_base_value (REGNO (tem), v->add_val);
2870 v->unrolled = 1;
2871
2872 /* If the address giv has a constant in its new_reg value,
2873 then this constant can be pulled out and put in value,
2874 instead of being part of the initialization code. */
2875
2876 if (GET_CODE (v->new_reg) == PLUS
2877 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2878 {
2879 v->dest_reg
2880 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2881
2882 /* Only succeed if this will give valid addresses.
2883 Try to validate both the first and the last
2884 address resulting from loop unrolling, if
2885 one fails, then can't do const elim here. */
2886 if (verify_addresses (v, giv_inc, unroll_number))
2887 {
2888 /* Save the negative of the eliminated const, so
2889 that we can calculate the dest_reg's increment
2890 value later. */
2891 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2892
2893 v->new_reg = XEXP (v->new_reg, 0);
2894 if (loop_dump_stream)
2895 fprintf (loop_dump_stream,
2896 "Eliminating constant from giv %d\n",
2897 REGNO (tem));
2898 }
2899 else
2900 v->dest_reg = tem;
2901 }
2902 else
2903 v->dest_reg = tem;
2904
2905 /* If the address hasn't been checked for validity yet, do so
2906 now, and fail completely if either the first or the last
2907 unrolled copy of the address is not a valid address
2908 for the instruction that uses it. */
2909 if (v->dest_reg == tem
2910 && ! verify_addresses (v, giv_inc, unroll_number))
2911 {
2912 if (loop_dump_stream)
2913 fprintf (loop_dump_stream,
2914 "Invalid address for giv at insn %d\n",
2915 INSN_UID (v->insn));
2916 continue;
2917 }
2918
2919 /* To initialize the new register, just move the value of
2920 new_reg into it. This is not guaranteed to give a valid
2921 instruction on machines with complex addressing modes.
2922 If we can't recognize it, then delete it and emit insns
2923 to calculate the value from scratch. */
2924 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2925 copy_rtx (v->new_reg)),
2926 loop_start);
2927 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2928 {
2929 rtx sequence, ret;
2930
2931 /* We can't use bl->initial_value to compute the initial
2932 value, because the loop may have been preconditioned.
2933 We must calculate it from NEW_REG. Try using
2934 force_operand instead of emit_iv_add_mult. */
2935 delete_insn (PREV_INSN (loop_start));
2936
2937 start_sequence ();
2938 ret = force_operand (v->new_reg, tem);
2939 if (ret != tem)
2940 emit_move_insn (tem, ret);
2941 sequence = gen_sequence ();
2942 end_sequence ();
2943 emit_insn_before (sequence, loop_start);
2944
2945 if (loop_dump_stream)
2946 fprintf (loop_dump_stream,
2947 "Invalid init insn, rewritten.\n");
2948 }
2949 }
2950 else
2951 {
2952 v->dest_reg = value;
2953
2954 /* Check the resulting address for validity, and fail
2955 if the resulting address would be invalid. */
2956 if (! verify_addresses (v, giv_inc, unroll_number))
2957 {
2958 if (loop_dump_stream)
2959 fprintf (loop_dump_stream,
2960 "Invalid address for giv at insn %d\n",
2961 INSN_UID (v->insn));
2962 continue;
2963 }
2964 }
2965
2966 /* Store the value of dest_reg into the insn. This sharing
2967 will not be a problem as this insn will always be copied
2968 later. */
2969
2970 *v->location = v->dest_reg;
2971
2972 /* If this address giv is combined with a dest reg giv, then
2973 save the base giv's induction pointer so that we will be
2974 able to handle this address giv properly. The base giv
2975 itself does not have to be splittable. */
2976
2977 if (v->same && v->same->giv_type == DEST_REG)
2978 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2979
2980 if (GET_CODE (v->new_reg) == REG)
2981 {
2982 /* This giv maybe hasn't been combined with any others.
2983 Make sure that it's giv is marked as splittable here. */
2984
2985 splittable_regs[REGNO (v->new_reg)] = value;
2986
2987 /* Make it appear to depend upon itself, so that the
2988 giv will be properly split in the main loop above. */
2989 if (! v->same)
2990 {
2991 v->same = v;
2992 addr_combined_regs[REGNO (v->new_reg)] = v;
2993 }
2994 }
2995
2996 if (loop_dump_stream)
2997 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2998 }
2999 }
3000 else
3001 {
3002 #if 0
3003 /* Currently, unreduced giv's can't be split. This is not too much
3004 of a problem since unreduced giv's are not live across loop
3005 iterations anyways. When unrolling a loop completely though,
3006 it makes sense to reduce&split givs when possible, as this will
3007 result in simpler instructions, and will not require that a reg
3008 be live across loop iterations. */
3009
3010 splittable_regs[REGNO (v->dest_reg)] = value;
3011 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3012 REGNO (v->dest_reg), INSN_UID (v->insn));
3013 #else
3014 continue;
3015 #endif
3016 }
3017
3018 /* Unreduced givs are only updated once by definition. Reduced givs
3019 are updated as many times as their biv is. Mark it so if this is
3020 a splittable register. Don't need to do anything for address givs
3021 where this may not be a register. */
3022
3023 if (GET_CODE (v->new_reg) == REG)
3024 {
3025 int count = 1;
3026 if (! v->ignore)
3027 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3028
3029 splittable_regs_updates[REGNO (v->new_reg)] = count;
3030 }
3031
3032 result++;
3033
3034 if (loop_dump_stream)
3035 {
3036 int regnum;
3037
3038 if (GET_CODE (v->dest_reg) == CONST_INT)
3039 regnum = -1;
3040 else if (GET_CODE (v->dest_reg) != REG)
3041 regnum = REGNO (XEXP (v->dest_reg, 0));
3042 else
3043 regnum = REGNO (v->dest_reg);
3044 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3045 regnum, INSN_UID (v->insn));
3046 }
3047 }
3048
3049 return result;
3050 }
3051 \f
3052 /* Try to prove that the register is dead after the loop exits. Trace every
3053 loop exit looking for an insn that will always be executed, which sets
3054 the register to some value, and appears before the first use of the register
3055 is found. If successful, then return 1, otherwise return 0. */
3056
3057 /* ?? Could be made more intelligent in the handling of jumps, so that
3058 it can search past if statements and other similar structures. */
3059
3060 static int
3061 reg_dead_after_loop (reg, loop_start, loop_end)
3062 rtx reg, loop_start, loop_end;
3063 {
3064 rtx insn, label;
3065 enum rtx_code code;
3066 int jump_count = 0;
3067 int label_count = 0;
3068 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3069
3070 /* In addition to checking all exits of this loop, we must also check
3071 all exits of inner nested loops that would exit this loop. We don't
3072 have any way to identify those, so we just give up if there are any
3073 such inner loop exits. */
3074
3075 for (label = loop_number_exit_labels[this_loop_num]; label;
3076 label = LABEL_NEXTREF (label))
3077 label_count++;
3078
3079 if (label_count != loop_number_exit_count[this_loop_num])
3080 return 0;
3081
3082 /* HACK: Must also search the loop fall through exit, create a label_ref
3083 here which points to the loop_end, and append the loop_number_exit_labels
3084 list to it. */
3085 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3086 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3087
3088 for ( ; label; label = LABEL_NEXTREF (label))
3089 {
3090 /* Succeed if find an insn which sets the biv or if reach end of
3091 function. Fail if find an insn that uses the biv, or if come to
3092 a conditional jump. */
3093
3094 insn = NEXT_INSN (XEXP (label, 0));
3095 while (insn)
3096 {
3097 code = GET_CODE (insn);
3098 if (GET_RTX_CLASS (code) == 'i')
3099 {
3100 rtx set;
3101
3102 if (reg_referenced_p (reg, PATTERN (insn)))
3103 return 0;
3104
3105 set = single_set (insn);
3106 if (set && rtx_equal_p (SET_DEST (set), reg))
3107 break;
3108 }
3109
3110 if (code == JUMP_INSN)
3111 {
3112 if (GET_CODE (PATTERN (insn)) == RETURN)
3113 break;
3114 else if (! simplejump_p (insn)
3115 /* Prevent infinite loop following infinite loops. */
3116 || jump_count++ > 20)
3117 return 0;
3118 else
3119 insn = JUMP_LABEL (insn);
3120 }
3121
3122 insn = NEXT_INSN (insn);
3123 }
3124 }
3125
3126 /* Success, the register is dead on all loop exits. */
3127 return 1;
3128 }
3129
3130 /* Try to calculate the final value of the biv, the value it will have at
3131 the end of the loop. If we can do it, return that value. */
3132
3133 rtx
3134 final_biv_value (bl, loop_start, loop_end)
3135 struct iv_class *bl;
3136 rtx loop_start, loop_end;
3137 {
3138 rtx increment, tem;
3139
3140 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3141
3142 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3143 return 0;
3144
3145 /* The final value for reversed bivs must be calculated differently than
3146 for ordinary bivs. In this case, there is already an insn after the
3147 loop which sets this biv's final value (if necessary), and there are
3148 no other loop exits, so we can return any value. */
3149 if (bl->reversed)
3150 {
3151 if (loop_dump_stream)
3152 fprintf (loop_dump_stream,
3153 "Final biv value for %d, reversed biv.\n", bl->regno);
3154
3155 return const0_rtx;
3156 }
3157
3158 /* Try to calculate the final value as initial value + (number of iterations
3159 * increment). For this to work, increment must be invariant, the only
3160 exit from the loop must be the fall through at the bottom (otherwise
3161 it may not have its final value when the loop exits), and the initial
3162 value of the biv must be invariant. */
3163
3164 if (loop_n_iterations != 0
3165 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3166 && invariant_p (bl->initial_value))
3167 {
3168 increment = biv_total_increment (bl, loop_start, loop_end);
3169
3170 if (increment && invariant_p (increment))
3171 {
3172 /* Can calculate the loop exit value, emit insns after loop
3173 end to calculate this value into a temporary register in
3174 case it is needed later. */
3175
3176 tem = gen_reg_rtx (bl->biv->mode);
3177 record_base_value (REGNO (tem), bl->biv->add_val);
3178 /* Make sure loop_end is not the last insn. */
3179 if (NEXT_INSN (loop_end) == 0)
3180 emit_note_after (NOTE_INSN_DELETED, loop_end);
3181 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3182 bl->initial_value, tem, NEXT_INSN (loop_end));
3183
3184 if (loop_dump_stream)
3185 fprintf (loop_dump_stream,
3186 "Final biv value for %d, calculated.\n", bl->regno);
3187
3188 return tem;
3189 }
3190 }
3191
3192 /* Check to see if the biv is dead at all loop exits. */
3193 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3194 {
3195 if (loop_dump_stream)
3196 fprintf (loop_dump_stream,
3197 "Final biv value for %d, biv dead after loop exit.\n",
3198 bl->regno);
3199
3200 return const0_rtx;
3201 }
3202
3203 return 0;
3204 }
3205
3206 /* Try to calculate the final value of the giv, the value it will have at
3207 the end of the loop. If we can do it, return that value. */
3208
3209 rtx
3210 final_giv_value (v, loop_start, loop_end)
3211 struct induction *v;
3212 rtx loop_start, loop_end;
3213 {
3214 struct iv_class *bl;
3215 rtx insn;
3216 rtx increment, tem;
3217 rtx insert_before, seq;
3218
3219 bl = reg_biv_class[REGNO (v->src_reg)];
3220
3221 /* The final value for givs which depend on reversed bivs must be calculated
3222 differently than for ordinary givs. In this case, there is already an
3223 insn after the loop which sets this giv's final value (if necessary),
3224 and there are no other loop exits, so we can return any value. */
3225 if (bl->reversed)
3226 {
3227 if (loop_dump_stream)
3228 fprintf (loop_dump_stream,
3229 "Final giv value for %d, depends on reversed biv\n",
3230 REGNO (v->dest_reg));
3231 return const0_rtx;
3232 }
3233
3234 /* Try to calculate the final value as a function of the biv it depends
3235 upon. The only exit from the loop must be the fall through at the bottom
3236 (otherwise it may not have its final value when the loop exits). */
3237
3238 /* ??? Can calculate the final giv value by subtracting off the
3239 extra biv increments times the giv's mult_val. The loop must have
3240 only one exit for this to work, but the loop iterations does not need
3241 to be known. */
3242
3243 if (loop_n_iterations != 0
3244 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3245 {
3246 /* ?? It is tempting to use the biv's value here since these insns will
3247 be put after the loop, and hence the biv will have its final value
3248 then. However, this fails if the biv is subsequently eliminated.
3249 Perhaps determine whether biv's are eliminable before trying to
3250 determine whether giv's are replaceable so that we can use the
3251 biv value here if it is not eliminable. */
3252
3253 /* We are emitting code after the end of the loop, so we must make
3254 sure that bl->initial_value is still valid then. It will still
3255 be valid if it is invariant. */
3256
3257 increment = biv_total_increment (bl, loop_start, loop_end);
3258
3259 if (increment && invariant_p (increment)
3260 && invariant_p (bl->initial_value))
3261 {
3262 /* Can calculate the loop exit value of its biv as
3263 (loop_n_iterations * increment) + initial_value */
3264
3265 /* The loop exit value of the giv is then
3266 (final_biv_value - extra increments) * mult_val + add_val.
3267 The extra increments are any increments to the biv which
3268 occur in the loop after the giv's value is calculated.
3269 We must search from the insn that sets the giv to the end
3270 of the loop to calculate this value. */
3271
3272 insert_before = NEXT_INSN (loop_end);
3273
3274 /* Put the final biv value in tem. */
3275 tem = gen_reg_rtx (bl->biv->mode);
3276 record_base_value (REGNO (tem), bl->biv->add_val);
3277 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3278 bl->initial_value, tem, insert_before);
3279
3280 /* Subtract off extra increments as we find them. */
3281 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3282 insn = NEXT_INSN (insn))
3283 {
3284 struct induction *biv;
3285
3286 for (biv = bl->biv; biv; biv = biv->next_iv)
3287 if (biv->insn == insn)
3288 {
3289 start_sequence ();
3290 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3291 biv->add_val, NULL_RTX, 0,
3292 OPTAB_LIB_WIDEN);
3293 seq = gen_sequence ();
3294 end_sequence ();
3295 emit_insn_before (seq, insert_before);
3296 }
3297 }
3298
3299 /* Now calculate the giv's final value. */
3300 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3301 insert_before);
3302
3303 if (loop_dump_stream)
3304 fprintf (loop_dump_stream,
3305 "Final giv value for %d, calc from biv's value.\n",
3306 REGNO (v->dest_reg));
3307
3308 return tem;
3309 }
3310 }
3311
3312 /* Replaceable giv's should never reach here. */
3313 if (v->replaceable)
3314 abort ();
3315
3316 /* Check to see if the biv is dead at all loop exits. */
3317 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3318 {
3319 if (loop_dump_stream)
3320 fprintf (loop_dump_stream,
3321 "Final giv value for %d, giv dead after loop exit.\n",
3322 REGNO (v->dest_reg));
3323
3324 return const0_rtx;
3325 }
3326
3327 return 0;
3328 }
3329
3330
3331 /* Calculate the number of loop iterations. Returns the exact number of loop
3332 iterations if it can be calculated, otherwise returns zero. */
3333
3334 unsigned HOST_WIDE_INT
3335 loop_iterations (loop_start, loop_end)
3336 rtx loop_start, loop_end;
3337 {
3338 rtx comparison, comparison_value;
3339 rtx iteration_var, initial_value, increment, final_value;
3340 enum rtx_code comparison_code;
3341 HOST_WIDE_INT i;
3342 int increment_dir;
3343 int unsigned_compare, compare_dir, final_larger;
3344 unsigned long tempu;
3345 rtx last_loop_insn;
3346
3347 /* First find the iteration variable. If the last insn is a conditional
3348 branch, and the insn before tests a register value, make that the
3349 iteration variable. */
3350
3351 loop_initial_value = 0;
3352 loop_increment = 0;
3353 loop_final_value = 0;
3354 loop_iteration_var = 0;
3355
3356 /* We used to use pren_nonnote_insn here, but that fails because it might
3357 accidentally get the branch for a contained loop if the branch for this
3358 loop was deleted. We can only trust branches immediately before the
3359 loop_end. */
3360 last_loop_insn = PREV_INSN (loop_end);
3361
3362 comparison = get_condition_for_loop (last_loop_insn);
3363 if (comparison == 0)
3364 {
3365 if (loop_dump_stream)
3366 fprintf (loop_dump_stream,
3367 "Loop unrolling: No final conditional branch found.\n");
3368 return 0;
3369 }
3370
3371 /* ??? Get_condition may switch position of induction variable and
3372 invariant register when it canonicalizes the comparison. */
3373
3374 comparison_code = GET_CODE (comparison);
3375 iteration_var = XEXP (comparison, 0);
3376 comparison_value = XEXP (comparison, 1);
3377
3378 if (GET_CODE (iteration_var) != REG)
3379 {
3380 if (loop_dump_stream)
3381 fprintf (loop_dump_stream,
3382 "Loop unrolling: Comparison not against register.\n");
3383 return 0;
3384 }
3385
3386 /* Loop iterations is always called before any new registers are created
3387 now, so this should never occur. */
3388
3389 if (REGNO (iteration_var) >= max_reg_before_loop)
3390 abort ();
3391
3392 iteration_info (iteration_var, &initial_value, &increment,
3393 loop_start, loop_end);
3394 if (initial_value == 0)
3395 /* iteration_info already printed a message. */
3396 return 0;
3397
3398 /* If the comparison value is an invariant register, then try to find
3399 its value from the insns before the start of the loop. */
3400
3401 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3402 {
3403 rtx insn, set;
3404
3405 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3406 {
3407 if (GET_CODE (insn) == CODE_LABEL)
3408 break;
3409
3410 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3411 && reg_set_p (comparison_value, insn))
3412 {
3413 /* We found the last insn before the loop that sets the register.
3414 If it sets the entire register, and has a REG_EQUAL note,
3415 then use the value of the REG_EQUAL note. */
3416 if ((set = single_set (insn))
3417 && (SET_DEST (set) == comparison_value))
3418 {
3419 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3420
3421 /* Only use the REG_EQUAL note if it is a constant.
3422 Other things, divide in particular, will cause
3423 problems later if we use them. */
3424 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3425 && CONSTANT_P (XEXP (note, 0)))
3426 comparison_value = XEXP (note, 0);
3427 }
3428 break;
3429 }
3430 }
3431 }
3432
3433 final_value = approx_final_value (comparison_code, comparison_value,
3434 &unsigned_compare, &compare_dir);
3435
3436 /* Save the calculated values describing this loop's bounds, in case
3437 precondition_loop_p will need them later. These values can not be
3438 recalculated inside precondition_loop_p because strength reduction
3439 optimizations may obscure the loop's structure. */
3440
3441 loop_iteration_var = iteration_var;
3442 loop_initial_value = initial_value;
3443 loop_increment = increment;
3444 loop_final_value = final_value;
3445 loop_comparison_code = comparison_code;
3446
3447 if (increment == 0)
3448 {
3449 if (loop_dump_stream)
3450 fprintf (loop_dump_stream,
3451 "Loop unrolling: Increment value can't be calculated.\n");
3452 return 0;
3453 }
3454 else if (GET_CODE (increment) != CONST_INT)
3455 {
3456 if (loop_dump_stream)
3457 fprintf (loop_dump_stream,
3458 "Loop unrolling: Increment value not constant.\n");
3459 return 0;
3460 }
3461 else if (GET_CODE (initial_value) != CONST_INT)
3462 {
3463 if (loop_dump_stream)
3464 fprintf (loop_dump_stream,
3465 "Loop unrolling: Initial value not constant.\n");
3466 return 0;
3467 }
3468 else if (final_value == 0)
3469 {
3470 if (loop_dump_stream)
3471 fprintf (loop_dump_stream,
3472 "Loop unrolling: EQ comparison loop.\n");
3473 return 0;
3474 }
3475 else if (GET_CODE (final_value) != CONST_INT)
3476 {
3477 if (loop_dump_stream)
3478 fprintf (loop_dump_stream,
3479 "Loop unrolling: Final value not constant.\n");
3480 return 0;
3481 }
3482
3483 /* ?? Final value and initial value do not have to be constants.
3484 Only their difference has to be constant. When the iteration variable
3485 is an array address, the final value and initial value might both
3486 be addresses with the same base but different constant offsets.
3487 Final value must be invariant for this to work.
3488
3489 To do this, need some way to find the values of registers which are
3490 invariant. */
3491
3492 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3493 if (unsigned_compare)
3494 final_larger
3495 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3496 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3497 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3498 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3499 else
3500 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3501 - (INTVAL (final_value) < INTVAL (initial_value));
3502
3503 if (INTVAL (increment) > 0)
3504 increment_dir = 1;
3505 else if (INTVAL (increment) == 0)
3506 increment_dir = 0;
3507 else
3508 increment_dir = -1;
3509
3510 /* There are 27 different cases: compare_dir = -1, 0, 1;
3511 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3512 There are 4 normal cases, 4 reverse cases (where the iteration variable
3513 will overflow before the loop exits), 4 infinite loop cases, and 15
3514 immediate exit (0 or 1 iteration depending on loop type) cases.
3515 Only try to optimize the normal cases. */
3516
3517 /* (compare_dir/final_larger/increment_dir)
3518 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3519 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3520 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3521 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3522
3523 /* ?? If the meaning of reverse loops (where the iteration variable
3524 will overflow before the loop exits) is undefined, then could
3525 eliminate all of these special checks, and just always assume
3526 the loops are normal/immediate/infinite. Note that this means
3527 the sign of increment_dir does not have to be known. Also,
3528 since it does not really hurt if immediate exit loops or infinite loops
3529 are optimized, then that case could be ignored also, and hence all
3530 loops can be optimized.
3531
3532 According to ANSI Spec, the reverse loop case result is undefined,
3533 because the action on overflow is undefined.
3534
3535 See also the special test for NE loops below. */
3536
3537 if (final_larger == increment_dir && final_larger != 0
3538 && (final_larger == compare_dir || compare_dir == 0))
3539 /* Normal case. */
3540 ;
3541 else
3542 {
3543 if (loop_dump_stream)
3544 fprintf (loop_dump_stream,
3545 "Loop unrolling: Not normal loop.\n");
3546 return 0;
3547 }
3548
3549 /* Calculate the number of iterations, final_value is only an approximation,
3550 so correct for that. Note that tempu and loop_n_iterations are
3551 unsigned, because they can be as large as 2^n - 1. */
3552
3553 i = INTVAL (increment);
3554 if (i > 0)
3555 tempu = INTVAL (final_value) - INTVAL (initial_value);
3556 else if (i < 0)
3557 {
3558 tempu = INTVAL (initial_value) - INTVAL (final_value);
3559 i = -i;
3560 }
3561 else
3562 abort ();
3563
3564 /* For NE tests, make sure that the iteration variable won't miss the
3565 final value. If tempu mod i is not zero, then the iteration variable
3566 will overflow before the loop exits, and we can not calculate the
3567 number of iterations. */
3568 if (compare_dir == 0 && (tempu % i) != 0)
3569 return 0;
3570
3571 return tempu / i + ((tempu % i) != 0);
3572 }
3573
3574 /* Replace uses of split bivs with their split pseudo register. This is
3575 for original instructions which remain after loop unrolling without
3576 copying. */
3577
3578 static rtx
3579 remap_split_bivs (x)
3580 rtx x;
3581 {
3582 register enum rtx_code code;
3583 register int i;
3584 register char *fmt;
3585
3586 if (x == 0)
3587 return x;
3588
3589 code = GET_CODE (x);
3590 switch (code)
3591 {
3592 case SCRATCH:
3593 case PC:
3594 case CC0:
3595 case CONST_INT:
3596 case CONST_DOUBLE:
3597 case CONST:
3598 case SYMBOL_REF:
3599 case LABEL_REF:
3600 return x;
3601
3602 case REG:
3603 #if 0
3604 /* If non-reduced/final-value givs were split, then this would also
3605 have to remap those givs also. */
3606 #endif
3607 if (REGNO (x) < max_reg_before_loop
3608 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3609 return reg_biv_class[REGNO (x)]->biv->src_reg;
3610 }
3611
3612 fmt = GET_RTX_FORMAT (code);
3613 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3614 {
3615 if (fmt[i] == 'e')
3616 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3617 if (fmt[i] == 'E')
3618 {
3619 register int j;
3620 for (j = 0; j < XVECLEN (x, i); j++)
3621 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3622 }
3623 }
3624 return x;
3625 }
3626
3627 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3628 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3629 return 0. COPY_START is where we can start looking for the insns
3630 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3631 insns.
3632
3633 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3634 must dominate LAST_UID.
3635
3636 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3637 may not dominate LAST_UID.
3638
3639 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3640 must dominate LAST_UID. */
3641
3642 int
3643 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3644 int regno;
3645 int first_uid;
3646 int last_uid;
3647 rtx copy_start;
3648 rtx copy_end;
3649 {
3650 int passed_jump = 0;
3651 rtx p = NEXT_INSN (copy_start);
3652
3653 while (INSN_UID (p) != first_uid)
3654 {
3655 if (GET_CODE (p) == JUMP_INSN)
3656 passed_jump= 1;
3657 /* Could not find FIRST_UID. */
3658 if (p == copy_end)
3659 return 0;
3660 p = NEXT_INSN (p);
3661 }
3662
3663 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3664 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3665 || ! dead_or_set_regno_p (p, regno))
3666 return 0;
3667
3668 /* FIRST_UID is always executed. */
3669 if (passed_jump == 0)
3670 return 1;
3671
3672 while (INSN_UID (p) != last_uid)
3673 {
3674 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3675 can not be sure that FIRST_UID dominates LAST_UID. */
3676 if (GET_CODE (p) == CODE_LABEL)
3677 return 0;
3678 /* Could not find LAST_UID, but we reached the end of the loop, so
3679 it must be safe. */
3680 else if (p == copy_end)
3681 return 1;
3682 p = NEXT_INSN (p);
3683 }
3684
3685 /* FIRST_UID is always executed if LAST_UID is executed. */
3686 return 1;
3687 }