(remap_split_bivs): New function.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204 static rtx remap_split_bivs ();
205
206 /* Try to unroll one loop and split induction variables in the loop.
207
208 The loop is described by the arguments LOOP_END, INSN_COUNT, and
209 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
210 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
211 indicates whether information generated in the strength reduction pass
212 is available.
213
214 This function is intended to be called from within `strength_reduce'
215 in loop.c. */
216
217 void
218 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
219 strength_reduce_p)
220 rtx loop_end;
221 int insn_count;
222 rtx loop_start;
223 rtx end_insert_before;
224 int strength_reduce_p;
225 {
226 int i, j, temp;
227 int unroll_number = 1;
228 rtx copy_start, copy_end;
229 rtx insn, copy, sequence, pattern, tem;
230 int max_labelno, max_insnno;
231 rtx insert_before;
232 struct inline_remap *map;
233 char *local_label;
234 int maxregnum;
235 int new_maxregnum;
236 rtx exit_label = 0;
237 rtx start_label;
238 struct iv_class *bl;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603 if (LABEL_NAME (start_label))
604 {
605 /* The jump optimization pass must have combined the original start label
606 with a named label for a goto. We can't unroll this case because
607 jumps which go to the named label must be handled differently than
608 jumps to the loop start, and it is impossible to differentiate them
609 in this case. */
610 if (loop_dump_stream)
611 fprintf (loop_dump_stream,
612 "Unrolling failure: loop start label is gone\n");
613 return;
614 }
615
616 if (unroll_type == UNROLL_NAIVE
617 && GET_CODE (last_loop_insn) == BARRIER
618 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
619 {
620 /* In this case, we must copy the jump and barrier, because they will
621 not be converted to jumps to an immediately following label. */
622
623 insert_before = NEXT_INSN (last_loop_insn);
624 copy_end = last_loop_insn;
625 }
626
627 /* Allocate a translation table for the labels and insn numbers.
628 They will be filled in as we copy the insns in the loop. */
629
630 max_labelno = max_label_num ();
631 max_insnno = get_max_uid ();
632
633 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
634
635 map->integrating = 0;
636
637 /* Allocate the label map. */
638
639 if (max_labelno > 0)
640 {
641 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
642
643 local_label = (char *) alloca (max_labelno);
644 bzero (local_label, max_labelno);
645 }
646 else
647 map->label_map = 0;
648
649 /* Search the loop and mark all local labels, i.e. the ones which have to
650 be distinct labels when copied. For all labels which might be
651 non-local, set their label_map entries to point to themselves.
652 If they happen to be local their label_map entries will be overwritten
653 before the loop body is copied. The label_map entries for local labels
654 will be set to a different value each time the loop body is copied. */
655
656 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
657 {
658 if (GET_CODE (insn) == CODE_LABEL)
659 local_label[CODE_LABEL_NUMBER (insn)] = 1;
660 else if (GET_CODE (insn) == JUMP_INSN)
661 {
662 if (JUMP_LABEL (insn))
663 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
664 = JUMP_LABEL (insn);
665 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
666 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
667 {
668 rtx pat = PATTERN (insn);
669 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
670 int len = XVECLEN (pat, diff_vec_p);
671 rtx label;
672
673 for (i = 0; i < len; i++)
674 {
675 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
676 map->label_map[CODE_LABEL_NUMBER (label)] = label;
677 }
678 }
679 }
680 }
681
682 /* Allocate space for the insn map. */
683
684 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
685
686 /* Set this to zero, to indicate that we are doing loop unrolling,
687 not function inlining. */
688 map->inline_target = 0;
689
690 /* The register and constant maps depend on the number of registers
691 present, so the final maps can't be created until after
692 find_splittable_regs is called. However, they are needed for
693 preconditioning, so we create temporary maps when preconditioning
694 is performed. */
695
696 /* The preconditioning code may allocate two new pseudo registers. */
697 maxregnum = max_reg_num ();
698
699 /* Allocate and zero out the splittable_regs and addr_combined_regs
700 arrays. These must be zeroed here because they will be used if
701 loop preconditioning is performed, and must be zero for that case.
702
703 It is safe to do this here, since the extra registers created by the
704 preconditioning code and find_splittable_regs will never be used
705 to access the splittable_regs[] and addr_combined_regs[] arrays. */
706
707 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
708 bzero (splittable_regs, maxregnum * sizeof (rtx));
709 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
710 bzero (splittable_regs_updates, maxregnum * sizeof (int));
711 addr_combined_regs
712 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
713 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
714
715 /* If this loop requires exit tests when unrolled, check to see if we
716 can precondition the loop so as to make the exit tests unnecessary.
717 Just like variable splitting, this is not safe if the loop is entered
718 via a jump to the bottom. Also, can not do this if no strength
719 reduce info, because precondition_loop_p uses this info. */
720
721 /* Must copy the loop body for preconditioning before the following
722 find_splittable_regs call since that will emit insns which need to
723 be after the preconditioned loop copies, but immediately before the
724 unrolled loop copies. */
725
726 /* Also, it is not safe to split induction variables for the preconditioned
727 copies of the loop body. If we split induction variables, then the code
728 assumes that each induction variable can be represented as a function
729 of its initial value and the loop iteration number. This is not true
730 in this case, because the last preconditioned copy of the loop body
731 could be any iteration from the first up to the `unroll_number-1'th,
732 depending on the initial value of the iteration variable. Therefore
733 we can not split induction variables here, because we can not calculate
734 their value. Hence, this code must occur before find_splittable_regs
735 is called. */
736
737 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
738 {
739 rtx initial_value, final_value, increment;
740
741 if (precondition_loop_p (&initial_value, &final_value, &increment,
742 loop_start, loop_end))
743 {
744 register rtx diff, temp;
745 enum machine_mode mode;
746 rtx *labels;
747 int abs_inc, neg_inc;
748
749 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
750
751 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
752 map->const_age_map = (unsigned *) alloca (maxregnum
753 * sizeof (unsigned));
754 map->const_equiv_map_size = maxregnum;
755 global_const_equiv_map = map->const_equiv_map;
756 global_const_equiv_map_size = maxregnum;
757
758 init_reg_map (map, maxregnum);
759
760 /* Limit loop unrolling to 4, since this will make 7 copies of
761 the loop body. */
762 if (unroll_number > 4)
763 unroll_number = 4;
764
765 /* Save the absolute value of the increment, and also whether or
766 not it is negative. */
767 neg_inc = 0;
768 abs_inc = INTVAL (increment);
769 if (abs_inc < 0)
770 {
771 abs_inc = - abs_inc;
772 neg_inc = 1;
773 }
774
775 start_sequence ();
776
777 /* Decide what mode to do these calculations in. Choose the larger
778 of final_value's mode and initial_value's mode, or a full-word if
779 both are constants. */
780 mode = GET_MODE (final_value);
781 if (mode == VOIDmode)
782 {
783 mode = GET_MODE (initial_value);
784 if (mode == VOIDmode)
785 mode = word_mode;
786 }
787 else if (mode != GET_MODE (initial_value)
788 && (GET_MODE_SIZE (mode)
789 < GET_MODE_SIZE (GET_MODE (initial_value))))
790 mode = GET_MODE (initial_value);
791
792 /* Calculate the difference between the final and initial values.
793 Final value may be a (plus (reg x) (const_int 1)) rtx.
794 Let the following cse pass simplify this if initial value is
795 a constant.
796
797 We must copy the final and initial values here to avoid
798 improperly shared rtl. */
799
800 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
801 copy_rtx (initial_value), NULL_RTX, 0,
802 OPTAB_LIB_WIDEN);
803
804 /* Now calculate (diff % (unroll * abs (increment))) by using an
805 and instruction. */
806 diff = expand_binop (GET_MODE (diff), and_optab, diff,
807 GEN_INT (unroll_number * abs_inc - 1),
808 NULL_RTX, 0, OPTAB_LIB_WIDEN);
809
810 /* Now emit a sequence of branches to jump to the proper precond
811 loop entry point. */
812
813 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
814 for (i = 0; i < unroll_number; i++)
815 labels[i] = gen_label_rtx ();
816
817 /* Assuming the unroll_number is 4, and the increment is 2, then
818 for a negative increment: for a positive increment:
819 diff = 0,1 precond 0 diff = 0,7 precond 0
820 diff = 2,3 precond 3 diff = 1,2 precond 1
821 diff = 4,5 precond 2 diff = 3,4 precond 2
822 diff = 6,7 precond 1 diff = 5,6 precond 3 */
823
824 /* We only need to emit (unroll_number - 1) branches here, the
825 last case just falls through to the following code. */
826
827 /* ??? This would give better code if we emitted a tree of branches
828 instead of the current linear list of branches. */
829
830 for (i = 0; i < unroll_number - 1; i++)
831 {
832 int cmp_const;
833
834 /* For negative increments, must invert the constant compared
835 against, except when comparing against zero. */
836 if (i == 0)
837 cmp_const = 0;
838 else if (neg_inc)
839 cmp_const = unroll_number - i;
840 else
841 cmp_const = i;
842
843 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
844 EQ, NULL_RTX, mode, 0, 0);
845
846 if (i == 0)
847 emit_jump_insn (gen_beq (labels[i]));
848 else if (neg_inc)
849 emit_jump_insn (gen_bge (labels[i]));
850 else
851 emit_jump_insn (gen_ble (labels[i]));
852 JUMP_LABEL (get_last_insn ()) = labels[i];
853 LABEL_NUSES (labels[i])++;
854 }
855
856 /* If the increment is greater than one, then we need another branch,
857 to handle other cases equivalent to 0. */
858
859 /* ??? This should be merged into the code above somehow to help
860 simplify the code here, and reduce the number of branches emitted.
861 For the negative increment case, the branch here could easily
862 be merged with the `0' case branch above. For the positive
863 increment case, it is not clear how this can be simplified. */
864
865 if (abs_inc != 1)
866 {
867 int cmp_const;
868
869 if (neg_inc)
870 cmp_const = abs_inc - 1;
871 else
872 cmp_const = abs_inc * (unroll_number - 1) + 1;
873
874 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
875 mode, 0, 0);
876
877 if (neg_inc)
878 emit_jump_insn (gen_ble (labels[0]));
879 else
880 emit_jump_insn (gen_bge (labels[0]));
881 JUMP_LABEL (get_last_insn ()) = labels[0];
882 LABEL_NUSES (labels[0])++;
883 }
884
885 sequence = gen_sequence ();
886 end_sequence ();
887 emit_insn_before (sequence, loop_start);
888
889 /* Only the last copy of the loop body here needs the exit
890 test, so set copy_end to exclude the compare/branch here,
891 and then reset it inside the loop when get to the last
892 copy. */
893
894 if (GET_CODE (last_loop_insn) == BARRIER)
895 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
896 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
897 {
898 #ifdef HAVE_cc0
899 /* The immediately preceding insn is a compare which we do not
900 want to copy. */
901 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
902 #else
903 /* The immediately preceding insn may not be a compare, so we
904 must copy it. */
905 copy_end = PREV_INSN (last_loop_insn);
906 #endif
907 }
908 else
909 abort ();
910
911 for (i = 1; i < unroll_number; i++)
912 {
913 emit_label_after (labels[unroll_number - i],
914 PREV_INSN (loop_start));
915
916 bzero (map->insn_map, max_insnno * sizeof (rtx));
917 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
918 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
919 map->const_age = 0;
920
921 for (j = 0; j < max_labelno; j++)
922 if (local_label[j])
923 map->label_map[j] = gen_label_rtx ();
924
925 /* The last copy needs the compare/branch insns at the end,
926 so reset copy_end here if the loop ends with a conditional
927 branch. */
928
929 if (i == unroll_number - 1)
930 {
931 if (GET_CODE (last_loop_insn) == BARRIER)
932 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
933 else
934 copy_end = last_loop_insn;
935 }
936
937 /* None of the copies are the `last_iteration', so just
938 pass zero for that parameter. */
939 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
940 unroll_type, start_label, loop_end,
941 loop_start, copy_end);
942 }
943 emit_label_after (labels[0], PREV_INSN (loop_start));
944
945 if (GET_CODE (last_loop_insn) == BARRIER)
946 {
947 insert_before = PREV_INSN (last_loop_insn);
948 copy_end = PREV_INSN (insert_before);
949 }
950 else
951 {
952 #ifdef HAVE_cc0
953 /* The immediately preceding insn is a compare which we do not
954 want to copy. */
955 insert_before = PREV_INSN (last_loop_insn);
956 copy_end = PREV_INSN (insert_before);
957 #else
958 /* The immediately preceding insn may not be a compare, so we
959 must copy it. */
960 insert_before = last_loop_insn;
961 copy_end = PREV_INSN (last_loop_insn);
962 #endif
963 }
964
965 /* Set unroll type to MODULO now. */
966 unroll_type = UNROLL_MODULO;
967 loop_preconditioned = 1;
968 }
969 }
970
971 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
972 the loop unless all loops are being unrolled. */
973 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
974 {
975 if (loop_dump_stream)
976 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
977 return;
978 }
979
980 /* At this point, we are guaranteed to unroll the loop. */
981
982 /* For each biv and giv, determine whether it can be safely split into
983 a different variable for each unrolled copy of the loop body.
984 We precalculate and save this info here, since computing it is
985 expensive.
986
987 Do this before deleting any instructions from the loop, so that
988 back_branch_in_range_p will work correctly. */
989
990 if (splitting_not_safe)
991 temp = 0;
992 else
993 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
994 end_insert_before, unroll_number);
995
996 /* find_splittable_regs may have created some new registers, so must
997 reallocate the reg_map with the new larger size, and must realloc
998 the constant maps also. */
999
1000 maxregnum = max_reg_num ();
1001 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1002
1003 init_reg_map (map, maxregnum);
1004
1005 /* Space is needed in some of the map for new registers, so new_maxregnum
1006 is an (over)estimate of how many registers will exist at the end. */
1007 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1008
1009 /* Must realloc space for the constant maps, because the number of registers
1010 may have changed. */
1011
1012 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1013 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1014
1015 map->const_equiv_map_size = new_maxregnum;
1016 global_const_equiv_map = map->const_equiv_map;
1017 global_const_equiv_map_size = new_maxregnum;
1018
1019 /* Search the list of bivs and givs to find ones which need to be remapped
1020 when split, and set their reg_map entry appropriately. */
1021
1022 for (bl = loop_iv_list; bl; bl = bl->next)
1023 {
1024 if (REGNO (bl->biv->src_reg) != bl->regno)
1025 map->reg_map[bl->regno] = bl->biv->src_reg;
1026 #if 0
1027 /* Currently, non-reduced/final-value givs are never split. */
1028 for (v = bl->giv; v; v = v->next_iv)
1029 if (REGNO (v->src_reg) != bl->regno)
1030 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1031 #endif
1032 }
1033
1034 /* If the loop is being partially unrolled, and the iteration variables
1035 are being split, and are being renamed for the split, then must fix up
1036 the compare/jump instruction at the end of the loop to refer to the new
1037 registers. This compare isn't copied, so the registers used in it
1038 will never be replaced if it isn't done here. */
1039
1040 if (unroll_type == UNROLL_MODULO)
1041 {
1042 insn = NEXT_INSN (copy_end);
1043 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1044 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1045 }
1046
1047 /* For unroll_number - 1 times, make a copy of each instruction
1048 between copy_start and copy_end, and insert these new instructions
1049 before the end of the loop. */
1050
1051 for (i = 0; i < unroll_number; i++)
1052 {
1053 bzero (map->insn_map, max_insnno * sizeof (rtx));
1054 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1055 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1056 map->const_age = 0;
1057
1058 for (j = 0; j < max_labelno; j++)
1059 if (local_label[j])
1060 map->label_map[j] = gen_label_rtx ();
1061
1062 /* If loop starts with a branch to the test, then fix it so that
1063 it points to the test of the first unrolled copy of the loop. */
1064 if (i == 0 && loop_start != copy_start)
1065 {
1066 insn = PREV_INSN (copy_start);
1067 pattern = PATTERN (insn);
1068
1069 tem = map->label_map[CODE_LABEL_NUMBER
1070 (XEXP (SET_SRC (pattern), 0))];
1071 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1072
1073 /* Set the jump label so that it can be used by later loop unrolling
1074 passes. */
1075 JUMP_LABEL (insn) = tem;
1076 LABEL_NUSES (tem)++;
1077 }
1078
1079 copy_loop_body (copy_start, copy_end, map, exit_label,
1080 i == unroll_number - 1, unroll_type, start_label,
1081 loop_end, insert_before, insert_before);
1082 }
1083
1084 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1085 insn to be deleted. This prevents any runaway delete_insn call from
1086 more insns that it should, as it always stops at a CODE_LABEL. */
1087
1088 /* Delete the compare and branch at the end of the loop if completely
1089 unrolling the loop. Deleting the backward branch at the end also
1090 deletes the code label at the start of the loop. This is done at
1091 the very end to avoid problems with back_branch_in_range_p. */
1092
1093 if (unroll_type == UNROLL_COMPLETELY)
1094 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1095 else
1096 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1097
1098 /* Delete all of the original loop instructions. Don't delete the
1099 LOOP_BEG note, or the first code label in the loop. */
1100
1101 insn = NEXT_INSN (copy_start);
1102 while (insn != safety_label)
1103 {
1104 if (insn != start_label)
1105 insn = delete_insn (insn);
1106 else
1107 insn = NEXT_INSN (insn);
1108 }
1109
1110 /* Can now delete the 'safety' label emitted to protect us from runaway
1111 delete_insn calls. */
1112 if (INSN_DELETED_P (safety_label))
1113 abort ();
1114 delete_insn (safety_label);
1115
1116 /* If exit_label exists, emit it after the loop. Doing the emit here
1117 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1118 This is needed so that mostly_true_jump in reorg.c will treat jumps
1119 to this loop end label correctly, i.e. predict that they are usually
1120 not taken. */
1121 if (exit_label)
1122 emit_label_after (exit_label, loop_end);
1123 }
1124 \f
1125 /* Return true if the loop can be safely, and profitably, preconditioned
1126 so that the unrolled copies of the loop body don't need exit tests.
1127
1128 This only works if final_value, initial_value and increment can be
1129 determined, and if increment is a constant power of 2.
1130 If increment is not a power of 2, then the preconditioning modulo
1131 operation would require a real modulo instead of a boolean AND, and this
1132 is not considered `profitable'. */
1133
1134 /* ??? If the loop is known to be executed very many times, or the machine
1135 has a very cheap divide instruction, then preconditioning is a win even
1136 when the increment is not a power of 2. Use RTX_COST to compute
1137 whether divide is cheap. */
1138
1139 static int
1140 precondition_loop_p (initial_value, final_value, increment, loop_start,
1141 loop_end)
1142 rtx *initial_value, *final_value, *increment;
1143 rtx loop_start, loop_end;
1144 {
1145
1146 if (loop_n_iterations > 0)
1147 {
1148 *initial_value = const0_rtx;
1149 *increment = const1_rtx;
1150 *final_value = GEN_INT (loop_n_iterations);
1151
1152 if (loop_dump_stream)
1153 fprintf (loop_dump_stream,
1154 "Preconditioning: Success, number of iterations known, %d.\n",
1155 loop_n_iterations);
1156 return 1;
1157 }
1158
1159 if (loop_initial_value == 0)
1160 {
1161 if (loop_dump_stream)
1162 fprintf (loop_dump_stream,
1163 "Preconditioning: Could not find initial value.\n");
1164 return 0;
1165 }
1166 else if (loop_increment == 0)
1167 {
1168 if (loop_dump_stream)
1169 fprintf (loop_dump_stream,
1170 "Preconditioning: Could not find increment value.\n");
1171 return 0;
1172 }
1173 else if (GET_CODE (loop_increment) != CONST_INT)
1174 {
1175 if (loop_dump_stream)
1176 fprintf (loop_dump_stream,
1177 "Preconditioning: Increment not a constant.\n");
1178 return 0;
1179 }
1180 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1181 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1182 {
1183 if (loop_dump_stream)
1184 fprintf (loop_dump_stream,
1185 "Preconditioning: Increment not a constant power of 2.\n");
1186 return 0;
1187 }
1188
1189 /* Unsigned_compare and compare_dir can be ignored here, since they do
1190 not matter for preconditioning. */
1191
1192 if (loop_final_value == 0)
1193 {
1194 if (loop_dump_stream)
1195 fprintf (loop_dump_stream,
1196 "Preconditioning: EQ comparison loop.\n");
1197 return 0;
1198 }
1199
1200 /* Must ensure that final_value is invariant, so call invariant_p to
1201 check. Before doing so, must check regno against max_reg_before_loop
1202 to make sure that the register is in the range covered by invariant_p.
1203 If it isn't, then it is most likely a biv/giv which by definition are
1204 not invariant. */
1205 if ((GET_CODE (loop_final_value) == REG
1206 && REGNO (loop_final_value) >= max_reg_before_loop)
1207 || (GET_CODE (loop_final_value) == PLUS
1208 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1209 || ! invariant_p (loop_final_value))
1210 {
1211 if (loop_dump_stream)
1212 fprintf (loop_dump_stream,
1213 "Preconditioning: Final value not invariant.\n");
1214 return 0;
1215 }
1216
1217 /* Fail for floating point values, since the caller of this function
1218 does not have code to deal with them. */
1219 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1220 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1221 {
1222 if (loop_dump_stream)
1223 fprintf (loop_dump_stream,
1224 "Preconditioning: Floating point final or initial value.\n");
1225 return 0;
1226 }
1227
1228 /* Now set initial_value to be the iteration_var, since that may be a
1229 simpler expression, and is guaranteed to be correct if all of the
1230 above tests succeed.
1231
1232 We can not use the initial_value as calculated, because it will be
1233 one too small for loops of the form "while (i-- > 0)". We can not
1234 emit code before the loop_skip_over insns to fix this problem as this
1235 will then give a number one too large for loops of the form
1236 "while (--i > 0)".
1237
1238 Note that all loops that reach here are entered at the top, because
1239 this function is not called if the loop starts with a jump. */
1240
1241 /* Fail if loop_iteration_var is not live before loop_start, since we need
1242 to test its value in the preconditioning code. */
1243
1244 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1245 > INSN_LUID (loop_start))
1246 {
1247 if (loop_dump_stream)
1248 fprintf (loop_dump_stream,
1249 "Preconditioning: Iteration var not live before loop start.\n");
1250 return 0;
1251 }
1252
1253 *initial_value = loop_iteration_var;
1254 *increment = loop_increment;
1255 *final_value = loop_final_value;
1256
1257 /* Success! */
1258 if (loop_dump_stream)
1259 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1260 return 1;
1261 }
1262
1263
1264 /* All pseudo-registers must be mapped to themselves. Two hard registers
1265 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1266 REGNUM, to avoid function-inlining specific conversions of these
1267 registers. All other hard regs can not be mapped because they may be
1268 used with different
1269 modes. */
1270
1271 static void
1272 init_reg_map (map, maxregnum)
1273 struct inline_remap *map;
1274 int maxregnum;
1275 {
1276 int i;
1277
1278 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1279 map->reg_map[i] = regno_reg_rtx[i];
1280 /* Just clear the rest of the entries. */
1281 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1282 map->reg_map[i] = 0;
1283
1284 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1285 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1286 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1287 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1288 }
1289 \f
1290 /* Strength-reduction will often emit code for optimized biv/givs which
1291 calculates their value in a temporary register, and then copies the result
1292 to the iv. This procedure reconstructs the pattern computing the iv;
1293 verifying that all operands are of the proper form.
1294
1295 The return value is the amount that the giv is incremented by. */
1296
1297 static rtx
1298 calculate_giv_inc (pattern, src_insn, regno)
1299 rtx pattern, src_insn;
1300 int regno;
1301 {
1302 rtx increment;
1303 rtx increment_total = 0;
1304 int tries = 0;
1305
1306 retry:
1307 /* Verify that we have an increment insn here. First check for a plus
1308 as the set source. */
1309 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1310 {
1311 /* SR sometimes computes the new giv value in a temp, then copies it
1312 to the new_reg. */
1313 src_insn = PREV_INSN (src_insn);
1314 pattern = PATTERN (src_insn);
1315 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1316 abort ();
1317
1318 /* The last insn emitted is not needed, so delete it to avoid confusing
1319 the second cse pass. This insn sets the giv unnecessarily. */
1320 delete_insn (get_last_insn ());
1321 }
1322
1323 /* Verify that we have a constant as the second operand of the plus. */
1324 increment = XEXP (SET_SRC (pattern), 1);
1325 if (GET_CODE (increment) != CONST_INT)
1326 {
1327 /* SR sometimes puts the constant in a register, especially if it is
1328 too big to be an add immed operand. */
1329 src_insn = PREV_INSN (src_insn);
1330 increment = SET_SRC (PATTERN (src_insn));
1331
1332 /* SR may have used LO_SUM to compute the constant if it is too large
1333 for a load immed operand. In this case, the constant is in operand
1334 one of the LO_SUM rtx. */
1335 if (GET_CODE (increment) == LO_SUM)
1336 increment = XEXP (increment, 1);
1337
1338 if (GET_CODE (increment) != CONST_INT)
1339 abort ();
1340
1341 /* The insn loading the constant into a register is not longer needed,
1342 so delete it. */
1343 delete_insn (get_last_insn ());
1344 }
1345
1346 if (increment_total)
1347 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1348 else
1349 increment_total = increment;
1350
1351 /* Check that the source register is the same as the register we expected
1352 to see as the source. If not, something is seriously wrong. */
1353 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1354 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1355 {
1356 /* Some machines (e.g. the romp), may emit two add instructions for
1357 certain constants, so lets try looking for another add immediately
1358 before this one if we have only seen one add insn so far. */
1359
1360 if (tries == 0)
1361 {
1362 tries++;
1363
1364 src_insn = PREV_INSN (src_insn);
1365 pattern = PATTERN (src_insn);
1366
1367 delete_insn (get_last_insn ());
1368
1369 goto retry;
1370 }
1371
1372 abort ();
1373 }
1374
1375 return increment_total;
1376 }
1377
1378 /* Copy REG_NOTES, except for insn references, because not all insn_map
1379 entries are valid yet. We do need to copy registers now though, because
1380 the reg_map entries can change during copying. */
1381
1382 static rtx
1383 initial_reg_note_copy (notes, map)
1384 rtx notes;
1385 struct inline_remap *map;
1386 {
1387 rtx copy;
1388
1389 if (notes == 0)
1390 return 0;
1391
1392 copy = rtx_alloc (GET_CODE (notes));
1393 PUT_MODE (copy, GET_MODE (notes));
1394
1395 if (GET_CODE (notes) == EXPR_LIST)
1396 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1397 else if (GET_CODE (notes) == INSN_LIST)
1398 /* Don't substitute for these yet. */
1399 XEXP (copy, 0) = XEXP (notes, 0);
1400 else
1401 abort ();
1402
1403 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1404
1405 return copy;
1406 }
1407
1408 /* Fixup insn references in copied REG_NOTES. */
1409
1410 static void
1411 final_reg_note_copy (notes, map)
1412 rtx notes;
1413 struct inline_remap *map;
1414 {
1415 rtx note;
1416
1417 for (note = notes; note; note = XEXP (note, 1))
1418 if (GET_CODE (note) == INSN_LIST)
1419 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1420 }
1421
1422 /* Copy each instruction in the loop, substituting from map as appropriate.
1423 This is very similar to a loop in expand_inline_function. */
1424
1425 static void
1426 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1427 unroll_type, start_label, loop_end, insert_before,
1428 copy_notes_from)
1429 rtx copy_start, copy_end;
1430 struct inline_remap *map;
1431 rtx exit_label;
1432 int last_iteration;
1433 enum unroll_types unroll_type;
1434 rtx start_label, loop_end, insert_before, copy_notes_from;
1435 {
1436 rtx insn, pattern;
1437 rtx tem, copy;
1438 int dest_reg_was_split, i;
1439 rtx cc0_insn = 0;
1440 rtx final_label = 0;
1441 rtx giv_inc, giv_dest_reg, giv_src_reg;
1442
1443 /* If this isn't the last iteration, then map any references to the
1444 start_label to final_label. Final label will then be emitted immediately
1445 after the end of this loop body if it was ever used.
1446
1447 If this is the last iteration, then map references to the start_label
1448 to itself. */
1449 if (! last_iteration)
1450 {
1451 final_label = gen_label_rtx ();
1452 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1453 }
1454 else
1455 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1456
1457 start_sequence ();
1458
1459 insn = copy_start;
1460 do
1461 {
1462 insn = NEXT_INSN (insn);
1463
1464 map->orig_asm_operands_vector = 0;
1465
1466 switch (GET_CODE (insn))
1467 {
1468 case INSN:
1469 pattern = PATTERN (insn);
1470 copy = 0;
1471 giv_inc = 0;
1472
1473 /* Check to see if this is a giv that has been combined with
1474 some split address givs. (Combined in the sense that
1475 `combine_givs' in loop.c has put two givs in the same register.)
1476 In this case, we must search all givs based on the same biv to
1477 find the address givs. Then split the address givs.
1478 Do this before splitting the giv, since that may map the
1479 SET_DEST to a new register. */
1480
1481 if (GET_CODE (pattern) == SET
1482 && GET_CODE (SET_DEST (pattern)) == REG
1483 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1484 {
1485 struct iv_class *bl;
1486 struct induction *v, *tv;
1487 int regno = REGNO (SET_DEST (pattern));
1488
1489 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1490 bl = reg_biv_class[REGNO (v->src_reg)];
1491
1492 /* Although the giv_inc amount is not needed here, we must call
1493 calculate_giv_inc here since it might try to delete the
1494 last insn emitted. If we wait until later to call it,
1495 we might accidentally delete insns generated immediately
1496 below by emit_unrolled_add. */
1497
1498 giv_inc = calculate_giv_inc (pattern, insn, regno);
1499
1500 /* Now find all address giv's that were combined with this
1501 giv 'v'. */
1502 for (tv = bl->giv; tv; tv = tv->next_iv)
1503 if (tv->giv_type == DEST_ADDR && tv->same == v)
1504 {
1505 int this_giv_inc = INTVAL (giv_inc);
1506
1507 /* Scale this_giv_inc if the multiplicative factors of
1508 the two givs are different. */
1509 if (tv->mult_val != v->mult_val)
1510 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1511 * INTVAL (tv->mult_val));
1512
1513 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1514 *tv->location = tv->dest_reg;
1515
1516 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1517 {
1518 /* Must emit an insn to increment the split address
1519 giv. Add in the const_adjust field in case there
1520 was a constant eliminated from the address. */
1521 rtx value, dest_reg;
1522
1523 /* tv->dest_reg will be either a bare register,
1524 or else a register plus a constant. */
1525 if (GET_CODE (tv->dest_reg) == REG)
1526 dest_reg = tv->dest_reg;
1527 else
1528 dest_reg = XEXP (tv->dest_reg, 0);
1529
1530 /* Check for shared address givs, and avoid
1531 incrementing the shared psuedo reg more than
1532 once. */
1533 if (! (tv != v && tv->insn == v->insn
1534 && tv->new_reg == v->new_reg))
1535 {
1536 /* tv->dest_reg may actually be a (PLUS (REG)
1537 (CONST)) here, so we must call plus_constant
1538 to add the const_adjust amount before calling
1539 emit_unrolled_add below. */
1540 value = plus_constant (tv->dest_reg,
1541 tv->const_adjust);
1542
1543 /* The constant could be too large for an add
1544 immediate, so can't directly emit an insn
1545 here. */
1546 emit_unrolled_add (dest_reg, XEXP (value, 0),
1547 XEXP (value, 1));
1548 }
1549
1550 /* Reset the giv to be just the register again, in case
1551 it is used after the set we have just emitted.
1552 We must subtract the const_adjust factor added in
1553 above. */
1554 tv->dest_reg = plus_constant (dest_reg,
1555 - tv->const_adjust);
1556 *tv->location = tv->dest_reg;
1557 }
1558 }
1559 }
1560
1561 /* If this is a setting of a splittable variable, then determine
1562 how to split the variable, create a new set based on this split,
1563 and set up the reg_map so that later uses of the variable will
1564 use the new split variable. */
1565
1566 dest_reg_was_split = 0;
1567
1568 if (GET_CODE (pattern) == SET
1569 && GET_CODE (SET_DEST (pattern)) == REG
1570 && splittable_regs[REGNO (SET_DEST (pattern))])
1571 {
1572 int regno = REGNO (SET_DEST (pattern));
1573
1574 dest_reg_was_split = 1;
1575
1576 /* Compute the increment value for the giv, if it wasn't
1577 already computed above. */
1578
1579 if (giv_inc == 0)
1580 giv_inc = calculate_giv_inc (pattern, insn, regno);
1581 giv_dest_reg = SET_DEST (pattern);
1582 giv_src_reg = SET_DEST (pattern);
1583
1584 if (unroll_type == UNROLL_COMPLETELY)
1585 {
1586 /* Completely unrolling the loop. Set the induction
1587 variable to a known constant value. */
1588
1589 /* The value in splittable_regs may be an invariant
1590 value, so we must use plus_constant here. */
1591 splittable_regs[regno]
1592 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1593
1594 if (GET_CODE (splittable_regs[regno]) == PLUS)
1595 {
1596 giv_src_reg = XEXP (splittable_regs[regno], 0);
1597 giv_inc = XEXP (splittable_regs[regno], 1);
1598 }
1599 else
1600 {
1601 /* The splittable_regs value must be a REG or a
1602 CONST_INT, so put the entire value in the giv_src_reg
1603 variable. */
1604 giv_src_reg = splittable_regs[regno];
1605 giv_inc = const0_rtx;
1606 }
1607 }
1608 else
1609 {
1610 /* Partially unrolling loop. Create a new pseudo
1611 register for the iteration variable, and set it to
1612 be a constant plus the original register. Except
1613 on the last iteration, when the result has to
1614 go back into the original iteration var register. */
1615
1616 /* Handle bivs which must be mapped to a new register
1617 when split. This happens for bivs which need their
1618 final value set before loop entry. The new register
1619 for the biv was stored in the biv's first struct
1620 induction entry by find_splittable_regs. */
1621
1622 if (regno < max_reg_before_loop
1623 && reg_iv_type[regno] == BASIC_INDUCT)
1624 {
1625 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1626 giv_dest_reg = giv_src_reg;
1627 }
1628
1629 #if 0
1630 /* If non-reduced/final-value givs were split, then
1631 this would have to remap those givs also. See
1632 find_splittable_regs. */
1633 #endif
1634
1635 splittable_regs[regno]
1636 = GEN_INT (INTVAL (giv_inc)
1637 + INTVAL (splittable_regs[regno]));
1638 giv_inc = splittable_regs[regno];
1639
1640 /* Now split the induction variable by changing the dest
1641 of this insn to a new register, and setting its
1642 reg_map entry to point to this new register.
1643
1644 If this is the last iteration, and this is the last insn
1645 that will update the iv, then reuse the original dest,
1646 to ensure that the iv will have the proper value when
1647 the loop exits or repeats.
1648
1649 Using splittable_regs_updates here like this is safe,
1650 because it can only be greater than one if all
1651 instructions modifying the iv are always executed in
1652 order. */
1653
1654 if (! last_iteration
1655 || (splittable_regs_updates[regno]-- != 1))
1656 {
1657 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1658 giv_dest_reg = tem;
1659 map->reg_map[regno] = tem;
1660 }
1661 else
1662 map->reg_map[regno] = giv_src_reg;
1663 }
1664
1665 /* The constant being added could be too large for an add
1666 immediate, so can't directly emit an insn here. */
1667 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1668 copy = get_last_insn ();
1669 pattern = PATTERN (copy);
1670 }
1671 else
1672 {
1673 pattern = copy_rtx_and_substitute (pattern, map);
1674 copy = emit_insn (pattern);
1675 }
1676 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1677
1678 #ifdef HAVE_cc0
1679 /* If this insn is setting CC0, it may need to look at
1680 the insn that uses CC0 to see what type of insn it is.
1681 In that case, the call to recog via validate_change will
1682 fail. So don't substitute constants here. Instead,
1683 do it when we emit the following insn.
1684
1685 For example, see the pyr.md file. That machine has signed and
1686 unsigned compares. The compare patterns must check the
1687 following branch insn to see which what kind of compare to
1688 emit.
1689
1690 If the previous insn set CC0, substitute constants on it as
1691 well. */
1692 if (sets_cc0_p (copy) != 0)
1693 cc0_insn = copy;
1694 else
1695 {
1696 if (cc0_insn)
1697 try_constants (cc0_insn, map);
1698 cc0_insn = 0;
1699 try_constants (copy, map);
1700 }
1701 #else
1702 try_constants (copy, map);
1703 #endif
1704
1705 /* Make split induction variable constants `permanent' since we
1706 know there are no backward branches across iteration variable
1707 settings which would invalidate this. */
1708 if (dest_reg_was_split)
1709 {
1710 int regno = REGNO (SET_DEST (pattern));
1711
1712 if (regno < map->const_equiv_map_size
1713 && map->const_age_map[regno] == map->const_age)
1714 map->const_age_map[regno] = -1;
1715 }
1716 break;
1717
1718 case JUMP_INSN:
1719 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1720 copy = emit_jump_insn (pattern);
1721 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1722
1723 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1724 && ! last_iteration)
1725 {
1726 /* This is a branch to the beginning of the loop; this is the
1727 last insn being copied; and this is not the last iteration.
1728 In this case, we want to change the original fall through
1729 case to be a branch past the end of the loop, and the
1730 original jump label case to fall_through. */
1731
1732 if (! invert_exp (pattern, copy)
1733 || ! redirect_exp (&pattern,
1734 map->label_map[CODE_LABEL_NUMBER
1735 (JUMP_LABEL (insn))],
1736 exit_label, copy))
1737 abort ();
1738 }
1739
1740 #ifdef HAVE_cc0
1741 if (cc0_insn)
1742 try_constants (cc0_insn, map);
1743 cc0_insn = 0;
1744 #endif
1745 try_constants (copy, map);
1746
1747 /* Set the jump label of COPY correctly to avoid problems with
1748 later passes of unroll_loop, if INSN had jump label set. */
1749 if (JUMP_LABEL (insn))
1750 {
1751 rtx label = 0;
1752
1753 /* Can't use the label_map for every insn, since this may be
1754 the backward branch, and hence the label was not mapped. */
1755 if (GET_CODE (pattern) == SET)
1756 {
1757 tem = SET_SRC (pattern);
1758 if (GET_CODE (tem) == LABEL_REF)
1759 label = XEXP (tem, 0);
1760 else if (GET_CODE (tem) == IF_THEN_ELSE)
1761 {
1762 if (XEXP (tem, 1) != pc_rtx)
1763 label = XEXP (XEXP (tem, 1), 0);
1764 else
1765 label = XEXP (XEXP (tem, 2), 0);
1766 }
1767 }
1768
1769 if (label && GET_CODE (label) == CODE_LABEL)
1770 JUMP_LABEL (copy) = label;
1771 else
1772 {
1773 /* An unrecognizable jump insn, probably the entry jump
1774 for a switch statement. This label must have been mapped,
1775 so just use the label_map to get the new jump label. */
1776 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1777 (JUMP_LABEL (insn))];
1778 }
1779
1780 /* If this is a non-local jump, then must increase the label
1781 use count so that the label will not be deleted when the
1782 original jump is deleted. */
1783 LABEL_NUSES (JUMP_LABEL (copy))++;
1784 }
1785 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1786 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1787 {
1788 rtx pat = PATTERN (copy);
1789 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1790 int len = XVECLEN (pat, diff_vec_p);
1791 int i;
1792
1793 for (i = 0; i < len; i++)
1794 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1795 }
1796
1797 /* If this used to be a conditional jump insn but whose branch
1798 direction is now known, we must do something special. */
1799 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1800 {
1801 #ifdef HAVE_cc0
1802 /* The previous insn set cc0 for us. So delete it. */
1803 delete_insn (PREV_INSN (copy));
1804 #endif
1805
1806 /* If this is now a no-op, delete it. */
1807 if (map->last_pc_value == pc_rtx)
1808 {
1809 /* Don't let delete_insn delete the label referenced here,
1810 because we might possibly need it later for some other
1811 instruction in the loop. */
1812 if (JUMP_LABEL (copy))
1813 LABEL_NUSES (JUMP_LABEL (copy))++;
1814 delete_insn (copy);
1815 if (JUMP_LABEL (copy))
1816 LABEL_NUSES (JUMP_LABEL (copy))--;
1817 copy = 0;
1818 }
1819 else
1820 /* Otherwise, this is unconditional jump so we must put a
1821 BARRIER after it. We could do some dead code elimination
1822 here, but jump.c will do it just as well. */
1823 emit_barrier ();
1824 }
1825 break;
1826
1827 case CALL_INSN:
1828 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1829 copy = emit_call_insn (pattern);
1830 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1831
1832 #ifdef HAVE_cc0
1833 if (cc0_insn)
1834 try_constants (cc0_insn, map);
1835 cc0_insn = 0;
1836 #endif
1837 try_constants (copy, map);
1838
1839 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1840 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1841 map->const_equiv_map[i] = 0;
1842 break;
1843
1844 case CODE_LABEL:
1845 /* If this is the loop start label, then we don't need to emit a
1846 copy of this label since no one will use it. */
1847
1848 if (insn != start_label)
1849 {
1850 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1851 map->const_age++;
1852 }
1853 break;
1854
1855 case BARRIER:
1856 copy = emit_barrier ();
1857 break;
1858
1859 case NOTE:
1860 /* VTOP notes are valid only before the loop exit test. If placed
1861 anywhere else, loop may generate bad code. */
1862
1863 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1864 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1865 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1866 copy = emit_note (NOTE_SOURCE_FILE (insn),
1867 NOTE_LINE_NUMBER (insn));
1868 else
1869 copy = 0;
1870 break;
1871
1872 default:
1873 abort ();
1874 break;
1875 }
1876
1877 map->insn_map[INSN_UID (insn)] = copy;
1878 }
1879 while (insn != copy_end);
1880
1881 /* Now finish coping the REG_NOTES. */
1882 insn = copy_start;
1883 do
1884 {
1885 insn = NEXT_INSN (insn);
1886 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1887 || GET_CODE (insn) == CALL_INSN)
1888 && map->insn_map[INSN_UID (insn)])
1889 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
1890 }
1891 while (insn != copy_end);
1892
1893 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1894 each of these notes here, since there may be some important ones, such as
1895 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1896 iteration, because the original notes won't be deleted.
1897
1898 We can't use insert_before here, because when from preconditioning,
1899 insert_before points before the loop. We can't use copy_end, because
1900 there may be insns already inserted after it (which we don't want to
1901 copy) when not from preconditioning code. */
1902
1903 if (! last_iteration)
1904 {
1905 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1906 {
1907 if (GET_CODE (insn) == NOTE
1908 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1909 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1910 }
1911 }
1912
1913 if (final_label && LABEL_NUSES (final_label) > 0)
1914 emit_label (final_label);
1915
1916 tem = gen_sequence ();
1917 end_sequence ();
1918 emit_insn_before (tem, insert_before);
1919 }
1920 \f
1921 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1922 emitted. This will correctly handle the case where the increment value
1923 won't fit in the immediate field of a PLUS insns. */
1924
1925 void
1926 emit_unrolled_add (dest_reg, src_reg, increment)
1927 rtx dest_reg, src_reg, increment;
1928 {
1929 rtx result;
1930
1931 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1932 dest_reg, 0, OPTAB_LIB_WIDEN);
1933
1934 if (dest_reg != result)
1935 emit_move_insn (dest_reg, result);
1936 }
1937 \f
1938 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1939 is a backward branch in that range that branches to somewhere between
1940 LOOP_START and INSN. Returns 0 otherwise. */
1941
1942 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1943 In practice, this is not a problem, because this function is seldom called,
1944 and uses a negligible amount of CPU time on average. */
1945
1946 static int
1947 back_branch_in_range_p (insn, loop_start, loop_end)
1948 rtx insn;
1949 rtx loop_start, loop_end;
1950 {
1951 rtx p, q, target_insn;
1952
1953 /* Stop before we get to the backward branch at the end of the loop. */
1954 loop_end = prev_nonnote_insn (loop_end);
1955 if (GET_CODE (loop_end) == BARRIER)
1956 loop_end = PREV_INSN (loop_end);
1957
1958 /* Check in case insn has been deleted, search forward for first non
1959 deleted insn following it. */
1960 while (INSN_DELETED_P (insn))
1961 insn = NEXT_INSN (insn);
1962
1963 /* Check for the case where insn is the last insn in the loop. */
1964 if (insn == loop_end)
1965 return 0;
1966
1967 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1968 {
1969 if (GET_CODE (p) == JUMP_INSN)
1970 {
1971 target_insn = JUMP_LABEL (p);
1972
1973 /* Search from loop_start to insn, to see if one of them is
1974 the target_insn. We can't use INSN_LUID comparisons here,
1975 since insn may not have an LUID entry. */
1976 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1977 if (q == target_insn)
1978 return 1;
1979 }
1980 }
1981
1982 return 0;
1983 }
1984
1985 /* Try to generate the simplest rtx for the expression
1986 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1987 value of giv's. */
1988
1989 static rtx
1990 fold_rtx_mult_add (mult1, mult2, add1, mode)
1991 rtx mult1, mult2, add1;
1992 enum machine_mode mode;
1993 {
1994 rtx temp, mult_res;
1995 rtx result;
1996
1997 /* The modes must all be the same. This should always be true. For now,
1998 check to make sure. */
1999 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2000 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2001 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2002 abort ();
2003
2004 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2005 will be a constant. */
2006 if (GET_CODE (mult1) == CONST_INT)
2007 {
2008 temp = mult2;
2009 mult2 = mult1;
2010 mult1 = temp;
2011 }
2012
2013 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2014 if (! mult_res)
2015 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2016
2017 /* Again, put the constant second. */
2018 if (GET_CODE (add1) == CONST_INT)
2019 {
2020 temp = add1;
2021 add1 = mult_res;
2022 mult_res = temp;
2023 }
2024
2025 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2026 if (! result)
2027 result = gen_rtx (PLUS, mode, add1, mult_res);
2028
2029 return result;
2030 }
2031
2032 /* Searches the list of induction struct's for the biv BL, to try to calculate
2033 the total increment value for one iteration of the loop as a constant.
2034
2035 Returns the increment value as an rtx, simplified as much as possible,
2036 if it can be calculated. Otherwise, returns 0. */
2037
2038 rtx
2039 biv_total_increment (bl, loop_start, loop_end)
2040 struct iv_class *bl;
2041 rtx loop_start, loop_end;
2042 {
2043 struct induction *v;
2044 rtx result;
2045
2046 /* For increment, must check every instruction that sets it. Each
2047 instruction must be executed only once each time through the loop.
2048 To verify this, we check that the the insn is always executed, and that
2049 there are no backward branches after the insn that branch to before it.
2050 Also, the insn must have a mult_val of one (to make sure it really is
2051 an increment). */
2052
2053 result = const0_rtx;
2054 for (v = bl->biv; v; v = v->next_iv)
2055 {
2056 if (v->always_computable && v->mult_val == const1_rtx
2057 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2058 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2059 else
2060 return 0;
2061 }
2062
2063 return result;
2064 }
2065
2066 /* Determine the initial value of the iteration variable, and the amount
2067 that it is incremented each loop. Use the tables constructed by
2068 the strength reduction pass to calculate these values.
2069
2070 Initial_value and/or increment are set to zero if their values could not
2071 be calculated. */
2072
2073 static void
2074 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2075 rtx iteration_var, *initial_value, *increment;
2076 rtx loop_start, loop_end;
2077 {
2078 struct iv_class *bl;
2079 struct induction *v, *b;
2080
2081 /* Clear the result values, in case no answer can be found. */
2082 *initial_value = 0;
2083 *increment = 0;
2084
2085 /* The iteration variable can be either a giv or a biv. Check to see
2086 which it is, and compute the variable's initial value, and increment
2087 value if possible. */
2088
2089 /* If this is a new register, can't handle it since we don't have any
2090 reg_iv_type entry for it. */
2091 if (REGNO (iteration_var) >= max_reg_before_loop)
2092 {
2093 if (loop_dump_stream)
2094 fprintf (loop_dump_stream,
2095 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2096 return;
2097 }
2098 /* Reject iteration variables larger than the host long size, since they
2099 could result in a number of iterations greater than the range of our
2100 `unsigned long' variable loop_n_iterations. */
2101 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2102 {
2103 if (loop_dump_stream)
2104 fprintf (loop_dump_stream,
2105 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2106 return;
2107 }
2108 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2109 {
2110 if (loop_dump_stream)
2111 fprintf (loop_dump_stream,
2112 "Loop unrolling: Iteration var not an integer.\n");
2113 return;
2114 }
2115 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2116 {
2117 /* Grab initial value, only useful if it is a constant. */
2118 bl = reg_biv_class[REGNO (iteration_var)];
2119 *initial_value = bl->initial_value;
2120
2121 *increment = biv_total_increment (bl, loop_start, loop_end);
2122 }
2123 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2124 {
2125 #if 1
2126 /* ??? The code below does not work because the incorrect number of
2127 iterations is calculated when the biv is incremented after the giv
2128 is set (which is the usual case). This can probably be accounted
2129 for by biasing the initial_value by subtracting the amount of the
2130 increment that occurs between the giv set and the giv test. However,
2131 a giv as an iterator is very rare, so it does not seem worthwhile
2132 to handle this. */
2133 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2134 if (loop_dump_stream)
2135 fprintf (loop_dump_stream,
2136 "Loop unrolling: Giv iterators are not handled.\n");
2137 return;
2138 #else
2139 /* Initial value is mult_val times the biv's initial value plus
2140 add_val. Only useful if it is a constant. */
2141 v = reg_iv_info[REGNO (iteration_var)];
2142 bl = reg_biv_class[REGNO (v->src_reg)];
2143 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2144 v->add_val, v->mode);
2145
2146 /* Increment value is mult_val times the increment value of the biv. */
2147
2148 *increment = biv_total_increment (bl, loop_start, loop_end);
2149 if (*increment)
2150 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2151 v->mode);
2152 #endif
2153 }
2154 else
2155 {
2156 if (loop_dump_stream)
2157 fprintf (loop_dump_stream,
2158 "Loop unrolling: Not basic or general induction var.\n");
2159 return;
2160 }
2161 }
2162
2163 /* Calculate the approximate final value of the iteration variable
2164 which has an loop exit test with code COMPARISON_CODE and comparison value
2165 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2166 was signed or unsigned, and the direction of the comparison. This info is
2167 needed to calculate the number of loop iterations. */
2168
2169 static rtx
2170 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2171 enum rtx_code comparison_code;
2172 rtx comparison_value;
2173 int *unsigned_p;
2174 int *compare_dir;
2175 {
2176 /* Calculate the final value of the induction variable.
2177 The exact final value depends on the branch operator, and increment sign.
2178 This is only an approximate value. It will be wrong if the iteration
2179 variable is not incremented by one each time through the loop, and
2180 approx final value - start value % increment != 0. */
2181
2182 *unsigned_p = 0;
2183 switch (comparison_code)
2184 {
2185 case LEU:
2186 *unsigned_p = 1;
2187 case LE:
2188 *compare_dir = 1;
2189 return plus_constant (comparison_value, 1);
2190 case GEU:
2191 *unsigned_p = 1;
2192 case GE:
2193 *compare_dir = -1;
2194 return plus_constant (comparison_value, -1);
2195 case EQ:
2196 /* Can not calculate a final value for this case. */
2197 *compare_dir = 0;
2198 return 0;
2199 case LTU:
2200 *unsigned_p = 1;
2201 case LT:
2202 *compare_dir = 1;
2203 return comparison_value;
2204 break;
2205 case GTU:
2206 *unsigned_p = 1;
2207 case GT:
2208 *compare_dir = -1;
2209 return comparison_value;
2210 case NE:
2211 *compare_dir = 0;
2212 return comparison_value;
2213 default:
2214 abort ();
2215 }
2216 }
2217
2218 /* For each biv and giv, determine whether it can be safely split into
2219 a different variable for each unrolled copy of the loop body. If it
2220 is safe to split, then indicate that by saving some useful info
2221 in the splittable_regs array.
2222
2223 If the loop is being completely unrolled, then splittable_regs will hold
2224 the current value of the induction variable while the loop is unrolled.
2225 It must be set to the initial value of the induction variable here.
2226 Otherwise, splittable_regs will hold the difference between the current
2227 value of the induction variable and the value the induction variable had
2228 at the top of the loop. It must be set to the value 0 here.
2229
2230 Returns the total number of instructions that set registers that are
2231 splittable. */
2232
2233 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2234 constant values are unnecessary, since we can easily calculate increment
2235 values in this case even if nothing is constant. The increment value
2236 should not involve a multiply however. */
2237
2238 /* ?? Even if the biv/giv increment values aren't constant, it may still
2239 be beneficial to split the variable if the loop is only unrolled a few
2240 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2241
2242 static int
2243 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2244 unroll_number)
2245 enum unroll_types unroll_type;
2246 rtx loop_start, loop_end;
2247 rtx end_insert_before;
2248 int unroll_number;
2249 {
2250 struct iv_class *bl;
2251 struct induction *v;
2252 rtx increment, tem;
2253 rtx biv_final_value;
2254 int biv_splittable;
2255 int result = 0;
2256
2257 for (bl = loop_iv_list; bl; bl = bl->next)
2258 {
2259 /* Biv_total_increment must return a constant value,
2260 otherwise we can not calculate the split values. */
2261
2262 increment = biv_total_increment (bl, loop_start, loop_end);
2263 if (! increment || GET_CODE (increment) != CONST_INT)
2264 continue;
2265
2266 /* The loop must be unrolled completely, or else have a known number
2267 of iterations and only one exit, or else the biv must be dead
2268 outside the loop, or else the final value must be known. Otherwise,
2269 it is unsafe to split the biv since it may not have the proper
2270 value on loop exit. */
2271
2272 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2273 a fall through at the end. */
2274
2275 biv_splittable = 1;
2276 biv_final_value = 0;
2277 if (unroll_type != UNROLL_COMPLETELY
2278 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2279 || unroll_type == UNROLL_NAIVE)
2280 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2281 || ! bl->init_insn
2282 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2283 || (uid_luid[regno_first_uid[bl->regno]]
2284 < INSN_LUID (bl->init_insn))
2285 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2286 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2287 biv_splittable = 0;
2288
2289 /* If any of the insns setting the BIV don't do so with a simple
2290 PLUS, we don't know how to split it. */
2291 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2292 if ((tem = single_set (v->insn)) == 0
2293 || GET_CODE (SET_DEST (tem)) != REG
2294 || REGNO (SET_DEST (tem)) != bl->regno
2295 || GET_CODE (SET_SRC (tem)) != PLUS)
2296 biv_splittable = 0;
2297
2298 /* If final value is non-zero, then must emit an instruction which sets
2299 the value of the biv to the proper value. This is done after
2300 handling all of the givs, since some of them may need to use the
2301 biv's value in their initialization code. */
2302
2303 /* This biv is splittable. If completely unrolling the loop, save
2304 the biv's initial value. Otherwise, save the constant zero. */
2305
2306 if (biv_splittable == 1)
2307 {
2308 if (unroll_type == UNROLL_COMPLETELY)
2309 {
2310 /* If the initial value of the biv is itself (i.e. it is too
2311 complicated for strength_reduce to compute), or is a hard
2312 register, then we must create a new pseudo reg to hold the
2313 initial value of the biv. */
2314
2315 if (GET_CODE (bl->initial_value) == REG
2316 && (REGNO (bl->initial_value) == bl->regno
2317 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2318 {
2319 rtx tem = gen_reg_rtx (bl->biv->mode);
2320
2321 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2322 loop_start);
2323
2324 if (loop_dump_stream)
2325 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2326 bl->regno, REGNO (tem));
2327
2328 splittable_regs[bl->regno] = tem;
2329 }
2330 else
2331 splittable_regs[bl->regno] = bl->initial_value;
2332 }
2333 else
2334 splittable_regs[bl->regno] = const0_rtx;
2335
2336 /* Save the number of instructions that modify the biv, so that
2337 we can treat the last one specially. */
2338
2339 splittable_regs_updates[bl->regno] = bl->biv_count;
2340 result += bl->biv_count;
2341
2342 if (loop_dump_stream)
2343 fprintf (loop_dump_stream,
2344 "Biv %d safe to split.\n", bl->regno);
2345 }
2346
2347 /* Check every giv that depends on this biv to see whether it is
2348 splittable also. Even if the biv isn't splittable, givs which
2349 depend on it may be splittable if the biv is live outside the
2350 loop, and the givs aren't. */
2351
2352 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2353 increment, unroll_number);
2354
2355 /* If final value is non-zero, then must emit an instruction which sets
2356 the value of the biv to the proper value. This is done after
2357 handling all of the givs, since some of them may need to use the
2358 biv's value in their initialization code. */
2359 if (biv_final_value)
2360 {
2361 /* If the loop has multiple exits, emit the insns before the
2362 loop to ensure that it will always be executed no matter
2363 how the loop exits. Otherwise emit the insn after the loop,
2364 since this is slightly more efficient. */
2365 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2366 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2367 biv_final_value),
2368 end_insert_before);
2369 else
2370 {
2371 /* Create a new register to hold the value of the biv, and then
2372 set the biv to its final value before the loop start. The biv
2373 is set to its final value before loop start to ensure that
2374 this insn will always be executed, no matter how the loop
2375 exits. */
2376 rtx tem = gen_reg_rtx (bl->biv->mode);
2377 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2378 loop_start);
2379 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2380 biv_final_value),
2381 loop_start);
2382
2383 if (loop_dump_stream)
2384 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2385 REGNO (bl->biv->src_reg), REGNO (tem));
2386
2387 /* Set up the mapping from the original biv register to the new
2388 register. */
2389 bl->biv->src_reg = tem;
2390 }
2391 }
2392 }
2393 return result;
2394 }
2395
2396 /* For every giv based on the biv BL, check to determine whether it is
2397 splittable. This is a subroutine to find_splittable_regs ().
2398
2399 Return the number of instructions that set splittable registers. */
2400
2401 static int
2402 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2403 unroll_number)
2404 struct iv_class *bl;
2405 enum unroll_types unroll_type;
2406 rtx loop_start, loop_end;
2407 rtx increment;
2408 int unroll_number;
2409 {
2410 struct induction *v;
2411 rtx final_value;
2412 rtx tem;
2413 int result = 0;
2414
2415 for (v = bl->giv; v; v = v->next_iv)
2416 {
2417 rtx giv_inc, value;
2418
2419 /* Only split the giv if it has already been reduced, or if the loop is
2420 being completely unrolled. */
2421 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2422 continue;
2423
2424 /* The giv can be split if the insn that sets the giv is executed once
2425 and only once on every iteration of the loop. */
2426 /* An address giv can always be split. v->insn is just a use not a set,
2427 and hence it does not matter whether it is always executed. All that
2428 matters is that all the biv increments are always executed, and we
2429 won't reach here if they aren't. */
2430 if (v->giv_type != DEST_ADDR
2431 && (! v->always_computable
2432 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2433 continue;
2434
2435 /* The giv increment value must be a constant. */
2436 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2437 v->mode);
2438 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2439 continue;
2440
2441 /* The loop must be unrolled completely, or else have a known number of
2442 iterations and only one exit, or else the giv must be dead outside
2443 the loop, or else the final value of the giv must be known.
2444 Otherwise, it is not safe to split the giv since it may not have the
2445 proper value on loop exit. */
2446
2447 /* The used outside loop test will fail for DEST_ADDR givs. They are
2448 never used outside the loop anyways, so it is always safe to split a
2449 DEST_ADDR giv. */
2450
2451 final_value = 0;
2452 if (unroll_type != UNROLL_COMPLETELY
2453 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2454 || unroll_type == UNROLL_NAIVE)
2455 && v->giv_type != DEST_ADDR
2456 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2457 /* Check for the case where the pseudo is set by a shift/add
2458 sequence, in which case the first insn setting the pseudo
2459 is the first insn of the shift/add sequence. */
2460 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2461 || (regno_first_uid[REGNO (v->dest_reg)]
2462 != INSN_UID (XEXP (tem, 0)))))
2463 /* Line above always fails if INSN was moved by loop opt. */
2464 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2465 >= INSN_LUID (loop_end)))
2466 && ! (final_value = v->final_value))
2467 continue;
2468
2469 #if 0
2470 /* Currently, non-reduced/final-value givs are never split. */
2471 /* Should emit insns after the loop if possible, as the biv final value
2472 code below does. */
2473
2474 /* If the final value is non-zero, and the giv has not been reduced,
2475 then must emit an instruction to set the final value. */
2476 if (final_value && !v->new_reg)
2477 {
2478 /* Create a new register to hold the value of the giv, and then set
2479 the giv to its final value before the loop start. The giv is set
2480 to its final value before loop start to ensure that this insn
2481 will always be executed, no matter how we exit. */
2482 tem = gen_reg_rtx (v->mode);
2483 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2484 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2485 loop_start);
2486
2487 if (loop_dump_stream)
2488 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2489 REGNO (v->dest_reg), REGNO (tem));
2490
2491 v->src_reg = tem;
2492 }
2493 #endif
2494
2495 /* This giv is splittable. If completely unrolling the loop, save the
2496 giv's initial value. Otherwise, save the constant zero for it. */
2497
2498 if (unroll_type == UNROLL_COMPLETELY)
2499 {
2500 /* It is not safe to use bl->initial_value here, because it may not
2501 be invariant. It is safe to use the initial value stored in
2502 the splittable_regs array if it is set. In rare cases, it won't
2503 be set, so then we do exactly the same thing as
2504 find_splittable_regs does to get a safe value. */
2505 rtx biv_initial_value;
2506
2507 if (splittable_regs[bl->regno])
2508 biv_initial_value = splittable_regs[bl->regno];
2509 else if (GET_CODE (bl->initial_value) != REG
2510 || (REGNO (bl->initial_value) != bl->regno
2511 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2512 biv_initial_value = bl->initial_value;
2513 else
2514 {
2515 rtx tem = gen_reg_rtx (bl->biv->mode);
2516
2517 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2518 loop_start);
2519 biv_initial_value = tem;
2520 }
2521 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2522 v->add_val, v->mode);
2523 }
2524 else
2525 value = const0_rtx;
2526
2527 if (v->new_reg)
2528 {
2529 /* If a giv was combined with another giv, then we can only split
2530 this giv if the giv it was combined with was reduced. This
2531 is because the value of v->new_reg is meaningless in this
2532 case. */
2533 if (v->same && ! v->same->new_reg)
2534 {
2535 if (loop_dump_stream)
2536 fprintf (loop_dump_stream,
2537 "giv combined with unreduced giv not split.\n");
2538 continue;
2539 }
2540 /* If the giv is an address destination, it could be something other
2541 than a simple register, these have to be treated differently. */
2542 else if (v->giv_type == DEST_REG)
2543 {
2544 /* If value is not a constant, register, or register plus
2545 constant, then compute its value into a register before
2546 loop start. This prevents illegal rtx sharing, and should
2547 generate better code. We can use bl->initial_value here
2548 instead of splittable_regs[bl->regno] because this code
2549 is going before the loop start. */
2550 if (unroll_type == UNROLL_COMPLETELY
2551 && GET_CODE (value) != CONST_INT
2552 && GET_CODE (value) != REG
2553 && (GET_CODE (value) != PLUS
2554 || GET_CODE (XEXP (value, 0)) != REG
2555 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2556 {
2557 rtx tem = gen_reg_rtx (v->mode);
2558 emit_iv_add_mult (bl->initial_value, v->mult_val,
2559 v->add_val, tem, loop_start);
2560 value = tem;
2561 }
2562
2563 splittable_regs[REGNO (v->new_reg)] = value;
2564 }
2565 else
2566 {
2567 /* Splitting address givs is useful since it will often allow us
2568 to eliminate some increment insns for the base giv as
2569 unnecessary. */
2570
2571 /* If the addr giv is combined with a dest_reg giv, then all
2572 references to that dest reg will be remapped, which is NOT
2573 what we want for split addr regs. We always create a new
2574 register for the split addr giv, just to be safe. */
2575
2576 /* ??? If there are multiple address givs which have been
2577 combined with the same dest_reg giv, then we may only need
2578 one new register for them. Pulling out constants below will
2579 catch some of the common cases of this. Currently, I leave
2580 the work of simplifying multiple address givs to the
2581 following cse pass. */
2582
2583 /* As a special case, if we have multiple identical address givs
2584 within a single instruction, then we do use a single psuedo
2585 reg for both. This is necessary in case one is a match_dup
2586 of the other. */
2587
2588 v->const_adjust = 0;
2589
2590 if (v->same && v->same->insn == v->insn
2591 && v->new_reg == v->same->new_reg)
2592 {
2593 v->dest_reg = v->same->dest_reg;
2594 if (loop_dump_stream)
2595 fprintf (loop_dump_stream,
2596 "Sharing address givs with reg %d\n",
2597 REGNO (v->dest_reg));
2598 }
2599 else if (unroll_type != UNROLL_COMPLETELY)
2600 {
2601 /* If not completely unrolling the loop, then create a new
2602 register to hold the split value of the DEST_ADDR giv.
2603 Emit insn to initialize its value before loop start. */
2604 tem = gen_reg_rtx (v->mode);
2605
2606 /* If the address giv has a constant in its new_reg value,
2607 then this constant can be pulled out and put in value,
2608 instead of being part of the initialization code. */
2609
2610 if (GET_CODE (v->new_reg) == PLUS
2611 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2612 {
2613 v->dest_reg
2614 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2615
2616 /* Only succeed if this will give valid addresses.
2617 Try to validate both the first and the last
2618 address resulting from loop unrolling, if
2619 one fails, then can't do const elim here. */
2620 if (memory_address_p (v->mem_mode, v->dest_reg)
2621 && memory_address_p (v->mem_mode,
2622 plus_constant (v->dest_reg,
2623 INTVAL (giv_inc)
2624 * (unroll_number - 1))))
2625 {
2626 /* Save the negative of the eliminated const, so
2627 that we can calculate the dest_reg's increment
2628 value later. */
2629 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2630
2631 v->new_reg = XEXP (v->new_reg, 0);
2632 if (loop_dump_stream)
2633 fprintf (loop_dump_stream,
2634 "Eliminating constant from giv %d\n",
2635 REGNO (tem));
2636 }
2637 else
2638 v->dest_reg = tem;
2639 }
2640 else
2641 v->dest_reg = tem;
2642
2643 /* If the address hasn't been checked for validity yet, do so
2644 now, and fail completely if either the first or the last
2645 unrolled copy of the address is not a valid address. */
2646 if (v->dest_reg == tem
2647 && (! memory_address_p (v->mem_mode, v->dest_reg)
2648 || ! memory_address_p (v->mem_mode,
2649 plus_constant (v->dest_reg,
2650 INTVAL (giv_inc)
2651 * (unroll_number -1)))))
2652 {
2653 if (loop_dump_stream)
2654 fprintf (loop_dump_stream,
2655 "Illegal address for giv at insn %d\n",
2656 INSN_UID (v->insn));
2657 continue;
2658 }
2659
2660 /* To initialize the new register, just move the value of
2661 new_reg into it. This is not guaranteed to give a valid
2662 instruction on machines with complex addressing modes.
2663 If we can't recognize it, then delete it and emit insns
2664 to calculate the value from scratch. */
2665 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2666 copy_rtx (v->new_reg)),
2667 loop_start);
2668 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2669 {
2670 rtx sequence, ret;
2671
2672 /* We can't use bl->initial_value to compute the initial
2673 value, because the loop may have been preconditioned.
2674 We must calculate it from NEW_REG. Try using
2675 force_operand instead of emit_iv_add_mult. */
2676 delete_insn (PREV_INSN (loop_start));
2677
2678 start_sequence ();
2679 ret = force_operand (v->new_reg, tem);
2680 if (ret != tem)
2681 emit_move_insn (tem, ret);
2682 sequence = gen_sequence ();
2683 end_sequence ();
2684 emit_insn_before (sequence, loop_start);
2685
2686 if (loop_dump_stream)
2687 fprintf (loop_dump_stream,
2688 "Illegal init insn, rewritten.\n");
2689 }
2690 }
2691 else
2692 {
2693 v->dest_reg = value;
2694
2695 /* Check the resulting address for validity, and fail
2696 if the resulting address would be illegal. */
2697 if (! memory_address_p (v->mem_mode, v->dest_reg)
2698 || ! memory_address_p (v->mem_mode,
2699 plus_constant (v->dest_reg,
2700 INTVAL (giv_inc) *
2701 (unroll_number -1))))
2702 {
2703 if (loop_dump_stream)
2704 fprintf (loop_dump_stream,
2705 "Illegal address for giv at insn %d\n",
2706 INSN_UID (v->insn));
2707 continue;
2708 }
2709 }
2710
2711 /* Store the value of dest_reg into the insn. This sharing
2712 will not be a problem as this insn will always be copied
2713 later. */
2714
2715 *v->location = v->dest_reg;
2716
2717 /* If this address giv is combined with a dest reg giv, then
2718 save the base giv's induction pointer so that we will be
2719 able to handle this address giv properly. The base giv
2720 itself does not have to be splittable. */
2721
2722 if (v->same && v->same->giv_type == DEST_REG)
2723 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2724
2725 if (GET_CODE (v->new_reg) == REG)
2726 {
2727 /* This giv maybe hasn't been combined with any others.
2728 Make sure that it's giv is marked as splittable here. */
2729
2730 splittable_regs[REGNO (v->new_reg)] = value;
2731
2732 /* Make it appear to depend upon itself, so that the
2733 giv will be properly split in the main loop above. */
2734 if (! v->same)
2735 {
2736 v->same = v;
2737 addr_combined_regs[REGNO (v->new_reg)] = v;
2738 }
2739 }
2740
2741 if (loop_dump_stream)
2742 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2743 }
2744 }
2745 else
2746 {
2747 #if 0
2748 /* Currently, unreduced giv's can't be split. This is not too much
2749 of a problem since unreduced giv's are not live across loop
2750 iterations anyways. When unrolling a loop completely though,
2751 it makes sense to reduce&split givs when possible, as this will
2752 result in simpler instructions, and will not require that a reg
2753 be live across loop iterations. */
2754
2755 splittable_regs[REGNO (v->dest_reg)] = value;
2756 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2757 REGNO (v->dest_reg), INSN_UID (v->insn));
2758 #else
2759 continue;
2760 #endif
2761 }
2762
2763 /* Givs are only updated once by definition. Mark it so if this is
2764 a splittable register. Don't need to do anything for address givs
2765 where this may not be a register. */
2766
2767 if (GET_CODE (v->new_reg) == REG)
2768 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2769
2770 result++;
2771
2772 if (loop_dump_stream)
2773 {
2774 int regnum;
2775
2776 if (GET_CODE (v->dest_reg) == CONST_INT)
2777 regnum = -1;
2778 else if (GET_CODE (v->dest_reg) != REG)
2779 regnum = REGNO (XEXP (v->dest_reg, 0));
2780 else
2781 regnum = REGNO (v->dest_reg);
2782 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2783 regnum, INSN_UID (v->insn));
2784 }
2785 }
2786
2787 return result;
2788 }
2789 \f
2790 /* Try to prove that the register is dead after the loop exits. Trace every
2791 loop exit looking for an insn that will always be executed, which sets
2792 the register to some value, and appears before the first use of the register
2793 is found. If successful, then return 1, otherwise return 0. */
2794
2795 /* ?? Could be made more intelligent in the handling of jumps, so that
2796 it can search past if statements and other similar structures. */
2797
2798 static int
2799 reg_dead_after_loop (reg, loop_start, loop_end)
2800 rtx reg, loop_start, loop_end;
2801 {
2802 rtx insn, label;
2803 enum rtx_code code;
2804 int jump_count = 0;
2805
2806 /* HACK: Must also search the loop fall through exit, create a label_ref
2807 here which points to the loop_end, and append the loop_number_exit_labels
2808 list to it. */
2809 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2810 LABEL_NEXTREF (label)
2811 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2812
2813 for ( ; label; label = LABEL_NEXTREF (label))
2814 {
2815 /* Succeed if find an insn which sets the biv or if reach end of
2816 function. Fail if find an insn that uses the biv, or if come to
2817 a conditional jump. */
2818
2819 insn = NEXT_INSN (XEXP (label, 0));
2820 while (insn)
2821 {
2822 code = GET_CODE (insn);
2823 if (GET_RTX_CLASS (code) == 'i')
2824 {
2825 rtx set;
2826
2827 if (reg_referenced_p (reg, PATTERN (insn)))
2828 return 0;
2829
2830 set = single_set (insn);
2831 if (set && rtx_equal_p (SET_DEST (set), reg))
2832 break;
2833 }
2834
2835 if (code == JUMP_INSN)
2836 {
2837 if (GET_CODE (PATTERN (insn)) == RETURN)
2838 break;
2839 else if (! simplejump_p (insn)
2840 /* Prevent infinite loop following infinite loops. */
2841 || jump_count++ > 20)
2842 return 0;
2843 else
2844 insn = JUMP_LABEL (insn);
2845 }
2846
2847 insn = NEXT_INSN (insn);
2848 }
2849 }
2850
2851 /* Success, the register is dead on all loop exits. */
2852 return 1;
2853 }
2854
2855 /* Try to calculate the final value of the biv, the value it will have at
2856 the end of the loop. If we can do it, return that value. */
2857
2858 rtx
2859 final_biv_value (bl, loop_start, loop_end)
2860 struct iv_class *bl;
2861 rtx loop_start, loop_end;
2862 {
2863 rtx increment, tem;
2864
2865 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2866
2867 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2868 return 0;
2869
2870 /* The final value for reversed bivs must be calculated differently than
2871 for ordinary bivs. In this case, there is already an insn after the
2872 loop which sets this biv's final value (if necessary), and there are
2873 no other loop exits, so we can return any value. */
2874 if (bl->reversed)
2875 {
2876 if (loop_dump_stream)
2877 fprintf (loop_dump_stream,
2878 "Final biv value for %d, reversed biv.\n", bl->regno);
2879
2880 return const0_rtx;
2881 }
2882
2883 /* Try to calculate the final value as initial value + (number of iterations
2884 * increment). For this to work, increment must be invariant, the only
2885 exit from the loop must be the fall through at the bottom (otherwise
2886 it may not have its final value when the loop exits), and the initial
2887 value of the biv must be invariant. */
2888
2889 if (loop_n_iterations != 0
2890 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2891 && invariant_p (bl->initial_value))
2892 {
2893 increment = biv_total_increment (bl, loop_start, loop_end);
2894
2895 if (increment && invariant_p (increment))
2896 {
2897 /* Can calculate the loop exit value, emit insns after loop
2898 end to calculate this value into a temporary register in
2899 case it is needed later. */
2900
2901 tem = gen_reg_rtx (bl->biv->mode);
2902 /* Make sure loop_end is not the last insn. */
2903 if (NEXT_INSN (loop_end) == 0)
2904 emit_note_after (NOTE_INSN_DELETED, loop_end);
2905 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2906 bl->initial_value, tem, NEXT_INSN (loop_end));
2907
2908 if (loop_dump_stream)
2909 fprintf (loop_dump_stream,
2910 "Final biv value for %d, calculated.\n", bl->regno);
2911
2912 return tem;
2913 }
2914 }
2915
2916 /* Check to see if the biv is dead at all loop exits. */
2917 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2918 {
2919 if (loop_dump_stream)
2920 fprintf (loop_dump_stream,
2921 "Final biv value for %d, biv dead after loop exit.\n",
2922 bl->regno);
2923
2924 return const0_rtx;
2925 }
2926
2927 return 0;
2928 }
2929
2930 /* Try to calculate the final value of the giv, the value it will have at
2931 the end of the loop. If we can do it, return that value. */
2932
2933 rtx
2934 final_giv_value (v, loop_start, loop_end)
2935 struct induction *v;
2936 rtx loop_start, loop_end;
2937 {
2938 struct iv_class *bl;
2939 rtx insn;
2940 rtx increment, tem;
2941 rtx insert_before, seq;
2942
2943 bl = reg_biv_class[REGNO (v->src_reg)];
2944
2945 /* The final value for givs which depend on reversed bivs must be calculated
2946 differently than for ordinary givs. In this case, there is already an
2947 insn after the loop which sets this giv's final value (if necessary),
2948 and there are no other loop exits, so we can return any value. */
2949 if (bl->reversed)
2950 {
2951 if (loop_dump_stream)
2952 fprintf (loop_dump_stream,
2953 "Final giv value for %d, depends on reversed biv\n",
2954 REGNO (v->dest_reg));
2955 return const0_rtx;
2956 }
2957
2958 /* Try to calculate the final value as a function of the biv it depends
2959 upon. The only exit from the loop must be the fall through at the bottom
2960 (otherwise it may not have its final value when the loop exits). */
2961
2962 /* ??? Can calculate the final giv value by subtracting off the
2963 extra biv increments times the giv's mult_val. The loop must have
2964 only one exit for this to work, but the loop iterations does not need
2965 to be known. */
2966
2967 if (loop_n_iterations != 0
2968 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2969 {
2970 /* ?? It is tempting to use the biv's value here since these insns will
2971 be put after the loop, and hence the biv will have its final value
2972 then. However, this fails if the biv is subsequently eliminated.
2973 Perhaps determine whether biv's are eliminable before trying to
2974 determine whether giv's are replaceable so that we can use the
2975 biv value here if it is not eliminable. */
2976
2977 increment = biv_total_increment (bl, loop_start, loop_end);
2978
2979 if (increment && invariant_p (increment))
2980 {
2981 /* Can calculate the loop exit value of its biv as
2982 (loop_n_iterations * increment) + initial_value */
2983
2984 /* The loop exit value of the giv is then
2985 (final_biv_value - extra increments) * mult_val + add_val.
2986 The extra increments are any increments to the biv which
2987 occur in the loop after the giv's value is calculated.
2988 We must search from the insn that sets the giv to the end
2989 of the loop to calculate this value. */
2990
2991 insert_before = NEXT_INSN (loop_end);
2992
2993 /* Put the final biv value in tem. */
2994 tem = gen_reg_rtx (bl->biv->mode);
2995 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2996 bl->initial_value, tem, insert_before);
2997
2998 /* Subtract off extra increments as we find them. */
2999 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3000 insn = NEXT_INSN (insn))
3001 {
3002 struct induction *biv;
3003
3004 for (biv = bl->biv; biv; biv = biv->next_iv)
3005 if (biv->insn == insn)
3006 {
3007 start_sequence ();
3008 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3009 biv->add_val, NULL_RTX, 0,
3010 OPTAB_LIB_WIDEN);
3011 seq = gen_sequence ();
3012 end_sequence ();
3013 emit_insn_before (seq, insert_before);
3014 }
3015 }
3016
3017 /* Now calculate the giv's final value. */
3018 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3019 insert_before);
3020
3021 if (loop_dump_stream)
3022 fprintf (loop_dump_stream,
3023 "Final giv value for %d, calc from biv's value.\n",
3024 REGNO (v->dest_reg));
3025
3026 return tem;
3027 }
3028 }
3029
3030 /* Replaceable giv's should never reach here. */
3031 if (v->replaceable)
3032 abort ();
3033
3034 /* Check to see if the biv is dead at all loop exits. */
3035 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3036 {
3037 if (loop_dump_stream)
3038 fprintf (loop_dump_stream,
3039 "Final giv value for %d, giv dead after loop exit.\n",
3040 REGNO (v->dest_reg));
3041
3042 return const0_rtx;
3043 }
3044
3045 return 0;
3046 }
3047
3048
3049 /* Calculate the number of loop iterations. Returns the exact number of loop
3050 iterations if it can be calculated, otherwise returns zero. */
3051
3052 unsigned HOST_WIDE_INT
3053 loop_iterations (loop_start, loop_end)
3054 rtx loop_start, loop_end;
3055 {
3056 rtx comparison, comparison_value;
3057 rtx iteration_var, initial_value, increment, final_value;
3058 enum rtx_code comparison_code;
3059 HOST_WIDE_INT i;
3060 int increment_dir;
3061 int unsigned_compare, compare_dir, final_larger;
3062 unsigned long tempu;
3063 rtx last_loop_insn;
3064
3065 /* First find the iteration variable. If the last insn is a conditional
3066 branch, and the insn before tests a register value, make that the
3067 iteration variable. */
3068
3069 loop_initial_value = 0;
3070 loop_increment = 0;
3071 loop_final_value = 0;
3072 loop_iteration_var = 0;
3073
3074 last_loop_insn = prev_nonnote_insn (loop_end);
3075
3076 comparison = get_condition_for_loop (last_loop_insn);
3077 if (comparison == 0)
3078 {
3079 if (loop_dump_stream)
3080 fprintf (loop_dump_stream,
3081 "Loop unrolling: No final conditional branch found.\n");
3082 return 0;
3083 }
3084
3085 /* ??? Get_condition may switch position of induction variable and
3086 invariant register when it canonicalizes the comparison. */
3087
3088 comparison_code = GET_CODE (comparison);
3089 iteration_var = XEXP (comparison, 0);
3090 comparison_value = XEXP (comparison, 1);
3091
3092 if (GET_CODE (iteration_var) != REG)
3093 {
3094 if (loop_dump_stream)
3095 fprintf (loop_dump_stream,
3096 "Loop unrolling: Comparison not against register.\n");
3097 return 0;
3098 }
3099
3100 /* Loop iterations is always called before any new registers are created
3101 now, so this should never occur. */
3102
3103 if (REGNO (iteration_var) >= max_reg_before_loop)
3104 abort ();
3105
3106 iteration_info (iteration_var, &initial_value, &increment,
3107 loop_start, loop_end);
3108 if (initial_value == 0)
3109 /* iteration_info already printed a message. */
3110 return 0;
3111
3112 if (increment == 0)
3113 {
3114 if (loop_dump_stream)
3115 fprintf (loop_dump_stream,
3116 "Loop unrolling: Increment value can't be calculated.\n");
3117 return 0;
3118 }
3119 if (GET_CODE (increment) != CONST_INT)
3120 {
3121 if (loop_dump_stream)
3122 fprintf (loop_dump_stream,
3123 "Loop unrolling: Increment value not constant.\n");
3124 return 0;
3125 }
3126 if (GET_CODE (initial_value) != CONST_INT)
3127 {
3128 if (loop_dump_stream)
3129 fprintf (loop_dump_stream,
3130 "Loop unrolling: Initial value not constant.\n");
3131 return 0;
3132 }
3133
3134 /* If the comparison value is an invariant register, then try to find
3135 its value from the insns before the start of the loop. */
3136
3137 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3138 {
3139 rtx insn, set;
3140
3141 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3142 {
3143 if (GET_CODE (insn) == CODE_LABEL)
3144 break;
3145
3146 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3147 && reg_set_p (comparison_value, insn))
3148 {
3149 /* We found the last insn before the loop that sets the register.
3150 If it sets the entire register, and has a REG_EQUAL note,
3151 then use the value of the REG_EQUAL note. */
3152 if ((set = single_set (insn))
3153 && (SET_DEST (set) == comparison_value))
3154 {
3155 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3156
3157 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3158 comparison_value = XEXP (note, 0);
3159 }
3160 break;
3161 }
3162 }
3163 }
3164
3165 final_value = approx_final_value (comparison_code, comparison_value,
3166 &unsigned_compare, &compare_dir);
3167
3168 /* Save the calculated values describing this loop's bounds, in case
3169 precondition_loop_p will need them later. These values can not be
3170 recalculated inside precondition_loop_p because strength reduction
3171 optimizations may obscure the loop's structure. */
3172
3173 loop_iteration_var = iteration_var;
3174 loop_initial_value = initial_value;
3175 loop_increment = increment;
3176 loop_final_value = final_value;
3177
3178 if (final_value == 0)
3179 {
3180 if (loop_dump_stream)
3181 fprintf (loop_dump_stream,
3182 "Loop unrolling: EQ comparison loop.\n");
3183 return 0;
3184 }
3185 else if (GET_CODE (final_value) != CONST_INT)
3186 {
3187 if (loop_dump_stream)
3188 fprintf (loop_dump_stream,
3189 "Loop unrolling: Final value not constant.\n");
3190 return 0;
3191 }
3192
3193 /* ?? Final value and initial value do not have to be constants.
3194 Only their difference has to be constant. When the iteration variable
3195 is an array address, the final value and initial value might both
3196 be addresses with the same base but different constant offsets.
3197 Final value must be invariant for this to work.
3198
3199 To do this, need some way to find the values of registers which are
3200 invariant. */
3201
3202 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3203 if (unsigned_compare)
3204 final_larger
3205 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3206 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3207 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3208 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3209 else
3210 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3211 - (INTVAL (final_value) < INTVAL (initial_value));
3212
3213 if (INTVAL (increment) > 0)
3214 increment_dir = 1;
3215 else if (INTVAL (increment) == 0)
3216 increment_dir = 0;
3217 else
3218 increment_dir = -1;
3219
3220 /* There are 27 different cases: compare_dir = -1, 0, 1;
3221 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3222 There are 4 normal cases, 4 reverse cases (where the iteration variable
3223 will overflow before the loop exits), 4 infinite loop cases, and 15
3224 immediate exit (0 or 1 iteration depending on loop type) cases.
3225 Only try to optimize the normal cases. */
3226
3227 /* (compare_dir/final_larger/increment_dir)
3228 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3229 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3230 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3231 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3232
3233 /* ?? If the meaning of reverse loops (where the iteration variable
3234 will overflow before the loop exits) is undefined, then could
3235 eliminate all of these special checks, and just always assume
3236 the loops are normal/immediate/infinite. Note that this means
3237 the sign of increment_dir does not have to be known. Also,
3238 since it does not really hurt if immediate exit loops or infinite loops
3239 are optimized, then that case could be ignored also, and hence all
3240 loops can be optimized.
3241
3242 According to ANSI Spec, the reverse loop case result is undefined,
3243 because the action on overflow is undefined.
3244
3245 See also the special test for NE loops below. */
3246
3247 if (final_larger == increment_dir && final_larger != 0
3248 && (final_larger == compare_dir || compare_dir == 0))
3249 /* Normal case. */
3250 ;
3251 else
3252 {
3253 if (loop_dump_stream)
3254 fprintf (loop_dump_stream,
3255 "Loop unrolling: Not normal loop.\n");
3256 return 0;
3257 }
3258
3259 /* Calculate the number of iterations, final_value is only an approximation,
3260 so correct for that. Note that tempu and loop_n_iterations are
3261 unsigned, because they can be as large as 2^n - 1. */
3262
3263 i = INTVAL (increment);
3264 if (i > 0)
3265 tempu = INTVAL (final_value) - INTVAL (initial_value);
3266 else if (i < 0)
3267 {
3268 tempu = INTVAL (initial_value) - INTVAL (final_value);
3269 i = -i;
3270 }
3271 else
3272 abort ();
3273
3274 /* For NE tests, make sure that the iteration variable won't miss the
3275 final value. If tempu mod i is not zero, then the iteration variable
3276 will overflow before the loop exits, and we can not calculate the
3277 number of iterations. */
3278 if (compare_dir == 0 && (tempu % i) != 0)
3279 return 0;
3280
3281 return tempu / i + ((tempu % i) != 0);
3282 }
3283
3284 /* Replace uses of split bivs with their split psuedo register. This is
3285 for original instructions which remain after loop unrolling without
3286 copying. */
3287
3288 static rtx
3289 remap_split_bivs (x)
3290 rtx x;
3291 {
3292 register enum rtx_code code;
3293 register int i;
3294 register char *fmt;
3295
3296 if (x == 0)
3297 return x;
3298
3299 code = GET_CODE (x);
3300 switch (code)
3301 {
3302 case SCRATCH:
3303 case PC:
3304 case CC0:
3305 case CONST_INT:
3306 case CONST_DOUBLE:
3307 case CONST:
3308 case SYMBOL_REF:
3309 case LABEL_REF:
3310 return x;
3311
3312 case REG:
3313 #if 0
3314 /* If non-reduced/final-value givs were split, then this would also
3315 have to remap those givs also. */
3316 #endif
3317 if (REGNO (x) < max_reg_before_loop
3318 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3319 return reg_biv_class[REGNO (x)]->biv->src_reg;
3320 }
3321
3322 fmt = GET_RTX_FORMAT (code);
3323 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3324 {
3325 if (fmt[i] == 'e')
3326 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3327 if (fmt[i] == 'E')
3328 {
3329 register int j;
3330 for (j = 0; j < XVECLEN (x, i); j++)
3331 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3332 }
3333 }
3334 return x;
3335 }