loop.h (loop_info): New field 'vtop'.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "system.h"
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159 #include "toplev.h"
160
161 /* This controls which loops are unrolled, and by how much we unroll
162 them. */
163
164 #ifndef MAX_UNROLLED_INSNS
165 #define MAX_UNROLLED_INSNS 100
166 #endif
167
168 /* Indexed by register number, if non-zero, then it contains a pointer
169 to a struct induction for a DEST_REG giv which has been combined with
170 one of more address givs. This is needed because whenever such a DEST_REG
171 giv is modified, we must modify the value of all split address givs
172 that were combined with this DEST_REG giv. */
173
174 static struct induction **addr_combined_regs;
175
176 /* Indexed by register number, if this is a splittable induction variable,
177 then this will hold the current value of the register, which depends on the
178 iteration number. */
179
180 static rtx *splittable_regs;
181
182 /* Indexed by register number, if this is a splittable induction variable,
183 then this will hold the number of instructions in the loop that modify
184 the induction variable. Used to ensure that only the last insn modifying
185 a split iv will update the original iv of the dest. */
186
187 static int *splittable_regs_updates;
188
189 /* Forward declarations. */
190
191 static void init_reg_map PROTO((struct inline_remap *, int));
192 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
193 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
194 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
195 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
196 enum unroll_types, rtx, rtx, rtx, rtx));
197 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
198 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int,
199 unsigned HOST_WIDE_INT));
200 static int find_splittable_givs PROTO((struct iv_class *, enum unroll_types,
201 rtx, rtx, rtx, int));
202 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
203 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
204 static int verify_addresses PROTO((struct induction *, rtx, int));
205 static rtx remap_split_bivs PROTO((rtx));
206
207 /* Try to unroll one loop and split induction variables in the loop.
208
209 The loop is described by the arguments LOOP_END, INSN_COUNT, and
210 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
211 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
212 indicates whether information generated in the strength reduction pass
213 is available.
214
215 This function is intended to be called from within `strength_reduce'
216 in loop.c. */
217
218 void
219 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
220 loop_info, strength_reduce_p)
221 rtx loop_end;
222 int insn_count;
223 rtx loop_start;
224 rtx end_insert_before;
225 struct loop_info *loop_info;
226 int strength_reduce_p;
227 {
228 int i, j, temp;
229 int unroll_number = 1;
230 rtx copy_start, copy_end;
231 rtx insn, sequence, pattern, tem;
232 int max_labelno, max_insnno;
233 rtx insert_before;
234 struct inline_remap *map;
235 char *local_label;
236 char *local_regno;
237 int maxregnum;
238 int new_maxregnum;
239 rtx exit_label = 0;
240 rtx start_label;
241 struct iv_class *bl;
242 int splitting_not_safe = 0;
243 enum unroll_types unroll_type;
244 int loop_preconditioned = 0;
245 rtx safety_label;
246 /* This points to the last real insn in the loop, which should be either
247 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
248 jumps). */
249 rtx last_loop_insn;
250
251 /* Don't bother unrolling huge loops. Since the minimum factor is
252 two, loops greater than one half of MAX_UNROLLED_INSNS will never
253 be unrolled. */
254 if (insn_count > MAX_UNROLLED_INSNS / 2)
255 {
256 if (loop_dump_stream)
257 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
258 return;
259 }
260
261 /* When emitting debugger info, we can't unroll loops with unequal numbers
262 of block_beg and block_end notes, because that would unbalance the block
263 structure of the function. This can happen as a result of the
264 "if (foo) bar; else break;" optimization in jump.c. */
265 /* ??? Gcc has a general policy that -g is never supposed to change the code
266 that the compiler emits, so we must disable this optimization always,
267 even if debug info is not being output. This is rare, so this should
268 not be a significant performance problem. */
269
270 if (1 /* write_symbols != NO_DEBUG */)
271 {
272 int block_begins = 0;
273 int block_ends = 0;
274
275 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
276 {
277 if (GET_CODE (insn) == NOTE)
278 {
279 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
280 block_begins++;
281 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
282 block_ends++;
283 }
284 }
285
286 if (block_begins != block_ends)
287 {
288 if (loop_dump_stream)
289 fprintf (loop_dump_stream,
290 "Unrolling failure: Unbalanced block notes.\n");
291 return;
292 }
293 }
294
295 /* Determine type of unroll to perform. Depends on the number of iterations
296 and the size of the loop. */
297
298 /* If there is no strength reduce info, then set
299 loop_info->n_iterations to zero. This can happen if
300 strength_reduce can't find any bivs in the loop. A value of zero
301 indicates that the number of iterations could not be calculated. */
302
303 if (! strength_reduce_p)
304 loop_info->n_iterations = 0;
305
306 if (loop_dump_stream && loop_info->n_iterations > 0)
307 {
308 fputs ("Loop unrolling: ", loop_dump_stream);
309 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
310 loop_info->n_iterations);
311 fputs (" iterations.\n", loop_dump_stream);
312 }
313
314 /* Find and save a pointer to the last nonnote insn in the loop. */
315
316 last_loop_insn = prev_nonnote_insn (loop_end);
317
318 /* Calculate how many times to unroll the loop. Indicate whether or
319 not the loop is being completely unrolled. */
320
321 if (loop_info->n_iterations == 1)
322 {
323 /* If number of iterations is exactly 1, then eliminate the compare and
324 branch at the end of the loop since they will never be taken.
325 Then return, since no other action is needed here. */
326
327 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
328 don't do anything. */
329
330 if (GET_CODE (last_loop_insn) == BARRIER)
331 {
332 /* Delete the jump insn. This will delete the barrier also. */
333 delete_insn (PREV_INSN (last_loop_insn));
334 }
335 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
336 {
337 #ifdef HAVE_cc0
338 /* The immediately preceding insn is a compare which must be
339 deleted. */
340 delete_insn (last_loop_insn);
341 delete_insn (PREV_INSN (last_loop_insn));
342 #else
343 /* The immediately preceding insn may not be the compare, so don't
344 delete it. */
345 delete_insn (last_loop_insn);
346 #endif
347 }
348 return;
349 }
350 else if (loop_info->n_iterations > 0
351 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
352 {
353 unroll_number = loop_info->n_iterations;
354 unroll_type = UNROLL_COMPLETELY;
355 }
356 else if (loop_info->n_iterations > 0)
357 {
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
361
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
364
365 temp = loop_info->n_iterations;
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
368 {
369 factors[i].count++;
370 temp = temp / factors[i].factor;
371 }
372
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
375
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
380 {
381 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
382 {
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
385 }
386 else
387 break;
388 }
389
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
393 {
394 if (loop_dump_stream)
395 fprintf (loop_dump_stream,
396 "Loop unrolling: No factors found.\n");
397 }
398 else
399 unroll_type = UNROLL_MODULO;
400 }
401
402
403 /* Default case, calculate number of times to unroll loop based on its
404 size. */
405 if (unroll_number == 1)
406 {
407 if (8 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 8;
409 else if (4 * insn_count < MAX_UNROLLED_INSNS)
410 unroll_number = 4;
411 else
412 unroll_number = 2;
413
414 unroll_type = UNROLL_NAIVE;
415 }
416
417 /* Now we know how many times to unroll the loop. */
418
419 if (loop_dump_stream)
420 fprintf (loop_dump_stream,
421 "Unrolling loop %d times.\n", unroll_number);
422
423
424 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
425 {
426 /* Loops of these types can start with jump down to the exit condition
427 in rare circumstances.
428
429 Consider a pair of nested loops where the inner loop is part
430 of the exit code for the outer loop.
431
432 In this case jump.c will not duplicate the exit test for the outer
433 loop, so it will start with a jump to the exit code.
434
435 Then consider if the inner loop turns out to iterate once and
436 only once. We will end up deleting the jumps associated with
437 the inner loop. However, the loop notes are not removed from
438 the instruction stream.
439
440 And finally assume that we can compute the number of iterations
441 for the outer loop.
442
443 In this case unroll may want to unroll the outer loop even though
444 it starts with a jump to the outer loop's exit code.
445
446 We could try to optimize this case, but it hardly seems worth it.
447 Just return without unrolling the loop in such cases. */
448
449 insn = loop_start;
450 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
451 insn = NEXT_INSN (insn);
452 if (GET_CODE (insn) == JUMP_INSN)
453 return;
454 }
455
456 if (unroll_type == UNROLL_COMPLETELY)
457 {
458 /* Completely unrolling the loop: Delete the compare and branch at
459 the end (the last two instructions). This delete must done at the
460 very end of loop unrolling, to avoid problems with calls to
461 back_branch_in_range_p, which is called by find_splittable_regs.
462 All increments of splittable bivs/givs are changed to load constant
463 instructions. */
464
465 copy_start = loop_start;
466
467 /* Set insert_before to the instruction immediately after the JUMP_INSN
468 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
469 the loop will be correctly handled by copy_loop_body. */
470 insert_before = NEXT_INSN (last_loop_insn);
471
472 /* Set copy_end to the insn before the jump at the end of the loop. */
473 if (GET_CODE (last_loop_insn) == BARRIER)
474 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
475 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
476 {
477 #ifdef HAVE_cc0
478 /* The instruction immediately before the JUMP_INSN is a compare
479 instruction which we do not want to copy. */
480 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
481 #else
482 /* The instruction immediately before the JUMP_INSN may not be the
483 compare, so we must copy it. */
484 copy_end = PREV_INSN (last_loop_insn);
485 #endif
486 }
487 else
488 {
489 /* We currently can't unroll a loop if it doesn't end with a
490 JUMP_INSN. There would need to be a mechanism that recognizes
491 this case, and then inserts a jump after each loop body, which
492 jumps to after the last loop body. */
493 if (loop_dump_stream)
494 fprintf (loop_dump_stream,
495 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
496 return;
497 }
498 }
499 else if (unroll_type == UNROLL_MODULO)
500 {
501 /* Partially unrolling the loop: The compare and branch at the end
502 (the last two instructions) must remain. Don't copy the compare
503 and branch instructions at the end of the loop. Insert the unrolled
504 code immediately before the compare/branch at the end so that the
505 code will fall through to them as before. */
506
507 copy_start = loop_start;
508
509 /* Set insert_before to the jump insn at the end of the loop.
510 Set copy_end to before the jump insn at the end of the loop. */
511 if (GET_CODE (last_loop_insn) == BARRIER)
512 {
513 insert_before = PREV_INSN (last_loop_insn);
514 copy_end = PREV_INSN (insert_before);
515 }
516 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
517 {
518 #ifdef HAVE_cc0
519 /* The instruction immediately before the JUMP_INSN is a compare
520 instruction which we do not want to copy or delete. */
521 insert_before = PREV_INSN (last_loop_insn);
522 copy_end = PREV_INSN (insert_before);
523 #else
524 /* The instruction immediately before the JUMP_INSN may not be the
525 compare, so we must copy it. */
526 insert_before = last_loop_insn;
527 copy_end = PREV_INSN (last_loop_insn);
528 #endif
529 }
530 else
531 {
532 /* We currently can't unroll a loop if it doesn't end with a
533 JUMP_INSN. There would need to be a mechanism that recognizes
534 this case, and then inserts a jump after each loop body, which
535 jumps to after the last loop body. */
536 if (loop_dump_stream)
537 fprintf (loop_dump_stream,
538 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
539 return;
540 }
541 }
542 else
543 {
544 /* Normal case: Must copy the compare and branch instructions at the
545 end of the loop. */
546
547 if (GET_CODE (last_loop_insn) == BARRIER)
548 {
549 /* Loop ends with an unconditional jump and a barrier.
550 Handle this like above, don't copy jump and barrier.
551 This is not strictly necessary, but doing so prevents generating
552 unconditional jumps to an immediately following label.
553
554 This will be corrected below if the target of this jump is
555 not the start_label. */
556
557 insert_before = PREV_INSN (last_loop_insn);
558 copy_end = PREV_INSN (insert_before);
559 }
560 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
561 {
562 /* Set insert_before to immediately after the JUMP_INSN, so that
563 NOTEs at the end of the loop will be correctly handled by
564 copy_loop_body. */
565 insert_before = NEXT_INSN (last_loop_insn);
566 copy_end = last_loop_insn;
567 }
568 else
569 {
570 /* We currently can't unroll a loop if it doesn't end with a
571 JUMP_INSN. There would need to be a mechanism that recognizes
572 this case, and then inserts a jump after each loop body, which
573 jumps to after the last loop body. */
574 if (loop_dump_stream)
575 fprintf (loop_dump_stream,
576 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
577 return;
578 }
579
580 /* If copying exit test branches because they can not be eliminated,
581 then must convert the fall through case of the branch to a jump past
582 the end of the loop. Create a label to emit after the loop and save
583 it for later use. Do not use the label after the loop, if any, since
584 it might be used by insns outside the loop, or there might be insns
585 added before it later by final_[bg]iv_value which must be after
586 the real exit label. */
587 exit_label = gen_label_rtx ();
588
589 insn = loop_start;
590 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
591 insn = NEXT_INSN (insn);
592
593 if (GET_CODE (insn) == JUMP_INSN)
594 {
595 /* The loop starts with a jump down to the exit condition test.
596 Start copying the loop after the barrier following this
597 jump insn. */
598 copy_start = NEXT_INSN (insn);
599
600 /* Splitting induction variables doesn't work when the loop is
601 entered via a jump to the bottom, because then we end up doing
602 a comparison against a new register for a split variable, but
603 we did not execute the set insn for the new register because
604 it was skipped over. */
605 splitting_not_safe = 1;
606 if (loop_dump_stream)
607 fprintf (loop_dump_stream,
608 "Splitting not safe, because loop not entered at top.\n");
609 }
610 else
611 copy_start = loop_start;
612 }
613
614 /* This should always be the first label in the loop. */
615 start_label = NEXT_INSN (copy_start);
616 /* There may be a line number note and/or a loop continue note here. */
617 while (GET_CODE (start_label) == NOTE)
618 start_label = NEXT_INSN (start_label);
619 if (GET_CODE (start_label) != CODE_LABEL)
620 {
621 /* This can happen as a result of jump threading. If the first insns in
622 the loop test the same condition as the loop's backward jump, or the
623 opposite condition, then the backward jump will be modified to point
624 to elsewhere, and the loop's start label is deleted.
625
626 This case currently can not be handled by the loop unrolling code. */
627
628 if (loop_dump_stream)
629 fprintf (loop_dump_stream,
630 "Unrolling failure: unknown insns between BEG note and loop label.\n");
631 return;
632 }
633 if (LABEL_NAME (start_label))
634 {
635 /* The jump optimization pass must have combined the original start label
636 with a named label for a goto. We can't unroll this case because
637 jumps which go to the named label must be handled differently than
638 jumps to the loop start, and it is impossible to differentiate them
639 in this case. */
640 if (loop_dump_stream)
641 fprintf (loop_dump_stream,
642 "Unrolling failure: loop start label is gone\n");
643 return;
644 }
645
646 if (unroll_type == UNROLL_NAIVE
647 && GET_CODE (last_loop_insn) == BARRIER
648 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
649 {
650 /* In this case, we must copy the jump and barrier, because they will
651 not be converted to jumps to an immediately following label. */
652
653 insert_before = NEXT_INSN (last_loop_insn);
654 copy_end = last_loop_insn;
655 }
656
657 if (unroll_type == UNROLL_NAIVE
658 && GET_CODE (last_loop_insn) == JUMP_INSN
659 && start_label != JUMP_LABEL (last_loop_insn))
660 {
661 /* ??? The loop ends with a conditional branch that does not branch back
662 to the loop start label. In this case, we must emit an unconditional
663 branch to the loop exit after emitting the final branch.
664 copy_loop_body does not have support for this currently, so we
665 give up. It doesn't seem worthwhile to unroll anyways since
666 unrolling would increase the number of branch instructions
667 executed. */
668 if (loop_dump_stream)
669 fprintf (loop_dump_stream,
670 "Unrolling failure: final conditional branch not to loop start\n");
671 return;
672 }
673
674 /* Allocate a translation table for the labels and insn numbers.
675 They will be filled in as we copy the insns in the loop. */
676
677 max_labelno = max_label_num ();
678 max_insnno = get_max_uid ();
679
680 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
681
682 map->integrating = 0;
683
684 /* Allocate the label map. */
685
686 if (max_labelno > 0)
687 {
688 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
689
690 local_label = (char *) alloca (max_labelno);
691 bzero (local_label, max_labelno);
692 }
693 else
694 map->label_map = 0;
695
696 /* Search the loop and mark all local labels, i.e. the ones which have to
697 be distinct labels when copied. For all labels which might be
698 non-local, set their label_map entries to point to themselves.
699 If they happen to be local their label_map entries will be overwritten
700 before the loop body is copied. The label_map entries for local labels
701 will be set to a different value each time the loop body is copied. */
702
703 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
704 {
705 rtx note;
706
707 if (GET_CODE (insn) == CODE_LABEL)
708 local_label[CODE_LABEL_NUMBER (insn)] = 1;
709 else if (GET_CODE (insn) == JUMP_INSN)
710 {
711 if (JUMP_LABEL (insn))
712 set_label_in_map (map,
713 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
714 JUMP_LABEL (insn));
715 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
716 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
717 {
718 rtx pat = PATTERN (insn);
719 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
720 int len = XVECLEN (pat, diff_vec_p);
721 rtx label;
722
723 for (i = 0; i < len; i++)
724 {
725 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
726 set_label_in_map (map,
727 CODE_LABEL_NUMBER (label),
728 label);
729 }
730 }
731 }
732 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
733 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
734 XEXP (note, 0));
735 }
736
737 /* Allocate space for the insn map. */
738
739 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
740
741 /* Set this to zero, to indicate that we are doing loop unrolling,
742 not function inlining. */
743 map->inline_target = 0;
744
745 /* The register and constant maps depend on the number of registers
746 present, so the final maps can't be created until after
747 find_splittable_regs is called. However, they are needed for
748 preconditioning, so we create temporary maps when preconditioning
749 is performed. */
750
751 /* The preconditioning code may allocate two new pseudo registers. */
752 maxregnum = max_reg_num ();
753
754 /* Allocate and zero out the splittable_regs and addr_combined_regs
755 arrays. These must be zeroed here because they will be used if
756 loop preconditioning is performed, and must be zero for that case.
757
758 It is safe to do this here, since the extra registers created by the
759 preconditioning code and find_splittable_regs will never be used
760 to access the splittable_regs[] and addr_combined_regs[] arrays. */
761
762 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
763 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
764 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
765 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
766 addr_combined_regs
767 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
768 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
769 /* We must limit it to max_reg_before_loop, because only these pseudo
770 registers have valid regno_first_uid info. Any register created after
771 that is unlikely to be local to the loop anyways. */
772 local_regno = (char *) alloca (max_reg_before_loop);
773 bzero (local_regno, max_reg_before_loop);
774
775 /* Mark all local registers, i.e. the ones which are referenced only
776 inside the loop. */
777 if (INSN_UID (copy_end) < max_uid_for_loop)
778 {
779 int copy_start_luid = INSN_LUID (copy_start);
780 int copy_end_luid = INSN_LUID (copy_end);
781
782 /* If a register is used in the jump insn, we must not duplicate it
783 since it will also be used outside the loop. */
784 if (GET_CODE (copy_end) == JUMP_INSN)
785 copy_end_luid--;
786 /* If copy_start points to the NOTE that starts the loop, then we must
787 use the next luid, because invariant pseudo-regs moved out of the loop
788 have their lifetimes modified to start here, but they are not safe
789 to duplicate. */
790 if (copy_start == loop_start)
791 copy_start_luid++;
792
793 /* If a pseudo's lifetime is entirely contained within this loop, then we
794 can use a different pseudo in each unrolled copy of the loop. This
795 results in better code. */
796 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
797 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
798 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
799 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
800 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
801 {
802 /* However, we must also check for loop-carried dependencies.
803 If the value the pseudo has at the end of iteration X is
804 used by iteration X+1, then we can not use a different pseudo
805 for each unrolled copy of the loop. */
806 /* A pseudo is safe if regno_first_uid is a set, and this
807 set dominates all instructions from regno_first_uid to
808 regno_last_uid. */
809 /* ??? This check is simplistic. We would get better code if
810 this check was more sophisticated. */
811 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
812 copy_start, copy_end))
813 local_regno[j] = 1;
814
815 if (loop_dump_stream)
816 {
817 if (local_regno[j])
818 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
819 else
820 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
821 j);
822 }
823 }
824 }
825
826 /* If this loop requires exit tests when unrolled, check to see if we
827 can precondition the loop so as to make the exit tests unnecessary.
828 Just like variable splitting, this is not safe if the loop is entered
829 via a jump to the bottom. Also, can not do this if no strength
830 reduce info, because precondition_loop_p uses this info. */
831
832 /* Must copy the loop body for preconditioning before the following
833 find_splittable_regs call since that will emit insns which need to
834 be after the preconditioned loop copies, but immediately before the
835 unrolled loop copies. */
836
837 /* Also, it is not safe to split induction variables for the preconditioned
838 copies of the loop body. If we split induction variables, then the code
839 assumes that each induction variable can be represented as a function
840 of its initial value and the loop iteration number. This is not true
841 in this case, because the last preconditioned copy of the loop body
842 could be any iteration from the first up to the `unroll_number-1'th,
843 depending on the initial value of the iteration variable. Therefore
844 we can not split induction variables here, because we can not calculate
845 their value. Hence, this code must occur before find_splittable_regs
846 is called. */
847
848 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
849 {
850 rtx initial_value, final_value, increment;
851 enum machine_mode mode;
852
853 if (precondition_loop_p (loop_start, loop_info,
854 &initial_value, &final_value, &increment,
855 &mode))
856 {
857 register rtx diff ;
858 rtx *labels;
859 int abs_inc, neg_inc;
860
861 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
862
863 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
864 map->const_age_map = (unsigned *) alloca (maxregnum
865 * sizeof (unsigned));
866 map->const_equiv_map_size = maxregnum;
867 global_const_equiv_map = map->const_equiv_map;
868 global_const_equiv_map_size = maxregnum;
869
870 init_reg_map (map, maxregnum);
871
872 /* Limit loop unrolling to 4, since this will make 7 copies of
873 the loop body. */
874 if (unroll_number > 4)
875 unroll_number = 4;
876
877 /* Save the absolute value of the increment, and also whether or
878 not it is negative. */
879 neg_inc = 0;
880 abs_inc = INTVAL (increment);
881 if (abs_inc < 0)
882 {
883 abs_inc = - abs_inc;
884 neg_inc = 1;
885 }
886
887 start_sequence ();
888
889 /* Calculate the difference between the final and initial values.
890 Final value may be a (plus (reg x) (const_int 1)) rtx.
891 Let the following cse pass simplify this if initial value is
892 a constant.
893
894 We must copy the final and initial values here to avoid
895 improperly shared rtl. */
896
897 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
898 copy_rtx (initial_value), NULL_RTX, 0,
899 OPTAB_LIB_WIDEN);
900
901 /* Now calculate (diff % (unroll * abs (increment))) by using an
902 and instruction. */
903 diff = expand_binop (GET_MODE (diff), and_optab, diff,
904 GEN_INT (unroll_number * abs_inc - 1),
905 NULL_RTX, 0, OPTAB_LIB_WIDEN);
906
907 /* Now emit a sequence of branches to jump to the proper precond
908 loop entry point. */
909
910 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
911 for (i = 0; i < unroll_number; i++)
912 labels[i] = gen_label_rtx ();
913
914 /* Check for the case where the initial value is greater than or
915 equal to the final value. In that case, we want to execute
916 exactly one loop iteration. The code below will fail for this
917 case. This check does not apply if the loop has a NE
918 comparison at the end. */
919
920 if (loop_info->comparison_code != NE)
921 {
922 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
923 NULL_RTX, mode, 0, 0);
924 if (neg_inc)
925 emit_jump_insn (gen_ble (labels[1]));
926 else
927 emit_jump_insn (gen_bge (labels[1]));
928 JUMP_LABEL (get_last_insn ()) = labels[1];
929 LABEL_NUSES (labels[1])++;
930 }
931
932 /* Assuming the unroll_number is 4, and the increment is 2, then
933 for a negative increment: for a positive increment:
934 diff = 0,1 precond 0 diff = 0,7 precond 0
935 diff = 2,3 precond 3 diff = 1,2 precond 1
936 diff = 4,5 precond 2 diff = 3,4 precond 2
937 diff = 6,7 precond 1 diff = 5,6 precond 3 */
938
939 /* We only need to emit (unroll_number - 1) branches here, the
940 last case just falls through to the following code. */
941
942 /* ??? This would give better code if we emitted a tree of branches
943 instead of the current linear list of branches. */
944
945 for (i = 0; i < unroll_number - 1; i++)
946 {
947 int cmp_const;
948 enum rtx_code cmp_code;
949
950 /* For negative increments, must invert the constant compared
951 against, except when comparing against zero. */
952 if (i == 0)
953 {
954 cmp_const = 0;
955 cmp_code = EQ;
956 }
957 else if (neg_inc)
958 {
959 cmp_const = unroll_number - i;
960 cmp_code = GE;
961 }
962 else
963 {
964 cmp_const = i;
965 cmp_code = LE;
966 }
967
968 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
969 cmp_code, NULL_RTX, mode, 0, 0);
970
971 if (i == 0)
972 emit_jump_insn (gen_beq (labels[i]));
973 else if (neg_inc)
974 emit_jump_insn (gen_bge (labels[i]));
975 else
976 emit_jump_insn (gen_ble (labels[i]));
977 JUMP_LABEL (get_last_insn ()) = labels[i];
978 LABEL_NUSES (labels[i])++;
979 }
980
981 /* If the increment is greater than one, then we need another branch,
982 to handle other cases equivalent to 0. */
983
984 /* ??? This should be merged into the code above somehow to help
985 simplify the code here, and reduce the number of branches emitted.
986 For the negative increment case, the branch here could easily
987 be merged with the `0' case branch above. For the positive
988 increment case, it is not clear how this can be simplified. */
989
990 if (abs_inc != 1)
991 {
992 int cmp_const;
993 enum rtx_code cmp_code;
994
995 if (neg_inc)
996 {
997 cmp_const = abs_inc - 1;
998 cmp_code = LE;
999 }
1000 else
1001 {
1002 cmp_const = abs_inc * (unroll_number - 1) + 1;
1003 cmp_code = GE;
1004 }
1005
1006 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1007 mode, 0, 0);
1008
1009 if (neg_inc)
1010 emit_jump_insn (gen_ble (labels[0]));
1011 else
1012 emit_jump_insn (gen_bge (labels[0]));
1013 JUMP_LABEL (get_last_insn ()) = labels[0];
1014 LABEL_NUSES (labels[0])++;
1015 }
1016
1017 sequence = gen_sequence ();
1018 end_sequence ();
1019 emit_insn_before (sequence, loop_start);
1020
1021 /* Only the last copy of the loop body here needs the exit
1022 test, so set copy_end to exclude the compare/branch here,
1023 and then reset it inside the loop when get to the last
1024 copy. */
1025
1026 if (GET_CODE (last_loop_insn) == BARRIER)
1027 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1028 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1029 {
1030 #ifdef HAVE_cc0
1031 /* The immediately preceding insn is a compare which we do not
1032 want to copy. */
1033 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1034 #else
1035 /* The immediately preceding insn may not be a compare, so we
1036 must copy it. */
1037 copy_end = PREV_INSN (last_loop_insn);
1038 #endif
1039 }
1040 else
1041 abort ();
1042
1043 for (i = 1; i < unroll_number; i++)
1044 {
1045 emit_label_after (labels[unroll_number - i],
1046 PREV_INSN (loop_start));
1047
1048 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1049 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1050 bzero ((char *) map->const_age_map,
1051 maxregnum * sizeof (unsigned));
1052 map->const_age = 0;
1053
1054 for (j = 0; j < max_labelno; j++)
1055 if (local_label[j])
1056 set_label_in_map (map, j, gen_label_rtx ());
1057
1058 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1059 if (local_regno[j])
1060 {
1061 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1062 record_base_value (REGNO (map->reg_map[j]),
1063 regno_reg_rtx[j], 0);
1064 }
1065 /* The last copy needs the compare/branch insns at the end,
1066 so reset copy_end here if the loop ends with a conditional
1067 branch. */
1068
1069 if (i == unroll_number - 1)
1070 {
1071 if (GET_CODE (last_loop_insn) == BARRIER)
1072 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1073 else
1074 copy_end = last_loop_insn;
1075 }
1076
1077 /* None of the copies are the `last_iteration', so just
1078 pass zero for that parameter. */
1079 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1080 unroll_type, start_label, loop_end,
1081 loop_start, copy_end);
1082 }
1083 emit_label_after (labels[0], PREV_INSN (loop_start));
1084
1085 if (GET_CODE (last_loop_insn) == BARRIER)
1086 {
1087 insert_before = PREV_INSN (last_loop_insn);
1088 copy_end = PREV_INSN (insert_before);
1089 }
1090 else
1091 {
1092 #ifdef HAVE_cc0
1093 /* The immediately preceding insn is a compare which we do not
1094 want to copy. */
1095 insert_before = PREV_INSN (last_loop_insn);
1096 copy_end = PREV_INSN (insert_before);
1097 #else
1098 /* The immediately preceding insn may not be a compare, so we
1099 must copy it. */
1100 insert_before = last_loop_insn;
1101 copy_end = PREV_INSN (last_loop_insn);
1102 #endif
1103 }
1104
1105 /* Set unroll type to MODULO now. */
1106 unroll_type = UNROLL_MODULO;
1107 loop_preconditioned = 1;
1108 }
1109 }
1110
1111 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1112 the loop unless all loops are being unrolled. */
1113 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1114 {
1115 if (loop_dump_stream)
1116 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1117 return;
1118 }
1119
1120 /* At this point, we are guaranteed to unroll the loop. */
1121
1122 /* Keep track of the unroll factor for the loop. */
1123 if (unroll_type == UNROLL_COMPLETELY)
1124 loop_info->unroll_number = -1;
1125 else
1126 loop_info->unroll_number = unroll_number;
1127
1128
1129 /* For each biv and giv, determine whether it can be safely split into
1130 a different variable for each unrolled copy of the loop body.
1131 We precalculate and save this info here, since computing it is
1132 expensive.
1133
1134 Do this before deleting any instructions from the loop, so that
1135 back_branch_in_range_p will work correctly. */
1136
1137 if (splitting_not_safe)
1138 temp = 0;
1139 else
1140 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1141 end_insert_before, unroll_number,
1142 loop_info->n_iterations);
1143
1144 /* find_splittable_regs may have created some new registers, so must
1145 reallocate the reg_map with the new larger size, and must realloc
1146 the constant maps also. */
1147
1148 maxregnum = max_reg_num ();
1149 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1150
1151 init_reg_map (map, maxregnum);
1152
1153 /* Space is needed in some of the map for new registers, so new_maxregnum
1154 is an (over)estimate of how many registers will exist at the end. */
1155 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1156
1157 /* Must realloc space for the constant maps, because the number of registers
1158 may have changed. */
1159
1160 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1161 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1162
1163 map->const_equiv_map_size = new_maxregnum;
1164 global_const_equiv_map = map->const_equiv_map;
1165 global_const_equiv_map_size = new_maxregnum;
1166
1167 /* Search the list of bivs and givs to find ones which need to be remapped
1168 when split, and set their reg_map entry appropriately. */
1169
1170 for (bl = loop_iv_list; bl; bl = bl->next)
1171 {
1172 if (REGNO (bl->biv->src_reg) != bl->regno)
1173 map->reg_map[bl->regno] = bl->biv->src_reg;
1174 #if 0
1175 /* Currently, non-reduced/final-value givs are never split. */
1176 for (v = bl->giv; v; v = v->next_iv)
1177 if (REGNO (v->src_reg) != bl->regno)
1178 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1179 #endif
1180 }
1181
1182 /* Use our current register alignment and pointer flags. */
1183 map->regno_pointer_flag = regno_pointer_flag;
1184 map->regno_pointer_align = regno_pointer_align;
1185
1186 /* If the loop is being partially unrolled, and the iteration variables
1187 are being split, and are being renamed for the split, then must fix up
1188 the compare/jump instruction at the end of the loop to refer to the new
1189 registers. This compare isn't copied, so the registers used in it
1190 will never be replaced if it isn't done here. */
1191
1192 if (unroll_type == UNROLL_MODULO)
1193 {
1194 insn = NEXT_INSN (copy_end);
1195 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1196 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1197 }
1198
1199 /* For unroll_number times, make a copy of each instruction
1200 between copy_start and copy_end, and insert these new instructions
1201 before the end of the loop. */
1202
1203 for (i = 0; i < unroll_number; i++)
1204 {
1205 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1206 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1207 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1208 map->const_age = 0;
1209
1210 for (j = 0; j < max_labelno; j++)
1211 if (local_label[j])
1212 set_label_in_map (map, j, gen_label_rtx ());
1213
1214 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1215 if (local_regno[j])
1216 {
1217 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1218 record_base_value (REGNO (map->reg_map[j]),
1219 regno_reg_rtx[j], 0);
1220 }
1221
1222 /* If loop starts with a branch to the test, then fix it so that
1223 it points to the test of the first unrolled copy of the loop. */
1224 if (i == 0 && loop_start != copy_start)
1225 {
1226 insn = PREV_INSN (copy_start);
1227 pattern = PATTERN (insn);
1228
1229 tem = get_label_from_map (map,
1230 CODE_LABEL_NUMBER
1231 (XEXP (SET_SRC (pattern), 0)));
1232 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1233
1234 /* Set the jump label so that it can be used by later loop unrolling
1235 passes. */
1236 JUMP_LABEL (insn) = tem;
1237 LABEL_NUSES (tem)++;
1238 }
1239
1240 copy_loop_body (copy_start, copy_end, map, exit_label,
1241 i == unroll_number - 1, unroll_type, start_label,
1242 loop_end, insert_before, insert_before);
1243 }
1244
1245 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1246 insn to be deleted. This prevents any runaway delete_insn call from
1247 more insns that it should, as it always stops at a CODE_LABEL. */
1248
1249 /* Delete the compare and branch at the end of the loop if completely
1250 unrolling the loop. Deleting the backward branch at the end also
1251 deletes the code label at the start of the loop. This is done at
1252 the very end to avoid problems with back_branch_in_range_p. */
1253
1254 if (unroll_type == UNROLL_COMPLETELY)
1255 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1256 else
1257 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1258
1259 /* Delete all of the original loop instructions. Don't delete the
1260 LOOP_BEG note, or the first code label in the loop. */
1261
1262 insn = NEXT_INSN (copy_start);
1263 while (insn != safety_label)
1264 {
1265 if (insn != start_label)
1266 insn = delete_insn (insn);
1267 else
1268 insn = NEXT_INSN (insn);
1269 }
1270
1271 /* Can now delete the 'safety' label emitted to protect us from runaway
1272 delete_insn calls. */
1273 if (INSN_DELETED_P (safety_label))
1274 abort ();
1275 delete_insn (safety_label);
1276
1277 /* If exit_label exists, emit it after the loop. Doing the emit here
1278 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1279 This is needed so that mostly_true_jump in reorg.c will treat jumps
1280 to this loop end label correctly, i.e. predict that they are usually
1281 not taken. */
1282 if (exit_label)
1283 emit_label_after (exit_label, loop_end);
1284 }
1285 \f
1286 /* Return true if the loop can be safely, and profitably, preconditioned
1287 so that the unrolled copies of the loop body don't need exit tests.
1288
1289 This only works if final_value, initial_value and increment can be
1290 determined, and if increment is a constant power of 2.
1291 If increment is not a power of 2, then the preconditioning modulo
1292 operation would require a real modulo instead of a boolean AND, and this
1293 is not considered `profitable'. */
1294
1295 /* ??? If the loop is known to be executed very many times, or the machine
1296 has a very cheap divide instruction, then preconditioning is a win even
1297 when the increment is not a power of 2. Use RTX_COST to compute
1298 whether divide is cheap.
1299 ??? A divide by constant doesn't actually need a divide, look at
1300 expand_divmod. The reduced cost of this optimized modulo is not
1301 reflected in RTX_COST. */
1302
1303 int
1304 precondition_loop_p (loop_start, loop_info,
1305 initial_value, final_value, increment, mode)
1306 rtx loop_start;
1307 struct loop_info *loop_info;
1308 rtx *initial_value, *final_value, *increment;
1309 enum machine_mode *mode;
1310 {
1311
1312 if (loop_info->n_iterations > 0)
1313 {
1314 *initial_value = const0_rtx;
1315 *increment = const1_rtx;
1316 *final_value = GEN_INT (loop_info->n_iterations);
1317 *mode = word_mode;
1318
1319 if (loop_dump_stream)
1320 {
1321 fputs ("Preconditioning: Success, number of iterations known, ",
1322 loop_dump_stream);
1323 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1324 loop_info->n_iterations);
1325 fputs (".\n", loop_dump_stream);
1326 }
1327 return 1;
1328 }
1329
1330 if (loop_info->initial_value == 0)
1331 {
1332 if (loop_dump_stream)
1333 fprintf (loop_dump_stream,
1334 "Preconditioning: Could not find initial value.\n");
1335 return 0;
1336 }
1337 else if (loop_info->increment == 0)
1338 {
1339 if (loop_dump_stream)
1340 fprintf (loop_dump_stream,
1341 "Preconditioning: Could not find increment value.\n");
1342 return 0;
1343 }
1344 else if (GET_CODE (loop_info->increment) != CONST_INT)
1345 {
1346 if (loop_dump_stream)
1347 fprintf (loop_dump_stream,
1348 "Preconditioning: Increment not a constant.\n");
1349 return 0;
1350 }
1351 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1352 && (exact_log2 (- INTVAL (loop_info->increment)) < 0))
1353 {
1354 if (loop_dump_stream)
1355 fprintf (loop_dump_stream,
1356 "Preconditioning: Increment not a constant power of 2.\n");
1357 return 0;
1358 }
1359
1360 /* Unsigned_compare and compare_dir can be ignored here, since they do
1361 not matter for preconditioning. */
1362
1363 if (loop_info->final_value == 0)
1364 {
1365 if (loop_dump_stream)
1366 fprintf (loop_dump_stream,
1367 "Preconditioning: EQ comparison loop.\n");
1368 return 0;
1369 }
1370
1371 /* Must ensure that final_value is invariant, so call invariant_p to
1372 check. Before doing so, must check regno against max_reg_before_loop
1373 to make sure that the register is in the range covered by invariant_p.
1374 If it isn't, then it is most likely a biv/giv which by definition are
1375 not invariant. */
1376 if ((GET_CODE (loop_info->final_value) == REG
1377 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1378 || (GET_CODE (loop_info->final_value) == PLUS
1379 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1380 || ! invariant_p (loop_info->final_value))
1381 {
1382 if (loop_dump_stream)
1383 fprintf (loop_dump_stream,
1384 "Preconditioning: Final value not invariant.\n");
1385 return 0;
1386 }
1387
1388 /* Fail for floating point values, since the caller of this function
1389 does not have code to deal with them. */
1390 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1391 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1392 {
1393 if (loop_dump_stream)
1394 fprintf (loop_dump_stream,
1395 "Preconditioning: Floating point final or initial value.\n");
1396 return 0;
1397 }
1398
1399 /* Fail if loop_info->iteration_var is not live before loop_start,
1400 since we need to test its value in the preconditioning code. */
1401
1402 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_info->iteration_var))]
1403 > INSN_LUID (loop_start))
1404 {
1405 if (loop_dump_stream)
1406 fprintf (loop_dump_stream,
1407 "Preconditioning: Iteration var not live before loop start.\n");
1408 return 0;
1409 }
1410
1411 /* ??? Note that if iteration_info is modifed to allow GIV iterators
1412 such as "while (i-- > 0)", the initial value will be one too small.
1413 In this case, loop_iteration_var could be used to determine
1414 the correct initial value, provided the loop has not been reversed.
1415
1416 Also note that the absolute values of initial_value and
1417 final_value are unimportant as only their difference is used for
1418 calculating the number of loop iterations. */
1419 *initial_value = loop_info->initial_value;
1420 *increment = loop_info->increment;
1421 *final_value = loop_info->final_value;
1422
1423 /* Decide what mode to do these calculations in. Choose the larger
1424 of final_value's mode and initial_value's mode, or a full-word if
1425 both are constants. */
1426 *mode = GET_MODE (*final_value);
1427 if (*mode == VOIDmode)
1428 {
1429 *mode = GET_MODE (*initial_value);
1430 if (*mode == VOIDmode)
1431 *mode = word_mode;
1432 }
1433 else if (*mode != GET_MODE (*initial_value)
1434 && (GET_MODE_SIZE (*mode)
1435 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1436 *mode = GET_MODE (*initial_value);
1437
1438 /* Success! */
1439 if (loop_dump_stream)
1440 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1441 return 1;
1442 }
1443
1444
1445 /* All pseudo-registers must be mapped to themselves. Two hard registers
1446 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1447 REGNUM, to avoid function-inlining specific conversions of these
1448 registers. All other hard regs can not be mapped because they may be
1449 used with different
1450 modes. */
1451
1452 static void
1453 init_reg_map (map, maxregnum)
1454 struct inline_remap *map;
1455 int maxregnum;
1456 {
1457 int i;
1458
1459 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1460 map->reg_map[i] = regno_reg_rtx[i];
1461 /* Just clear the rest of the entries. */
1462 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1463 map->reg_map[i] = 0;
1464
1465 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1466 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1467 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1468 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1469 }
1470 \f
1471 /* Strength-reduction will often emit code for optimized biv/givs which
1472 calculates their value in a temporary register, and then copies the result
1473 to the iv. This procedure reconstructs the pattern computing the iv;
1474 verifying that all operands are of the proper form.
1475
1476 PATTERN must be the result of single_set.
1477 The return value is the amount that the giv is incremented by. */
1478
1479 static rtx
1480 calculate_giv_inc (pattern, src_insn, regno)
1481 rtx pattern, src_insn;
1482 int regno;
1483 {
1484 rtx increment;
1485 rtx increment_total = 0;
1486 int tries = 0;
1487
1488 retry:
1489 /* Verify that we have an increment insn here. First check for a plus
1490 as the set source. */
1491 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1492 {
1493 /* SR sometimes computes the new giv value in a temp, then copies it
1494 to the new_reg. */
1495 src_insn = PREV_INSN (src_insn);
1496 pattern = PATTERN (src_insn);
1497 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1498 abort ();
1499
1500 /* The last insn emitted is not needed, so delete it to avoid confusing
1501 the second cse pass. This insn sets the giv unnecessarily. */
1502 delete_insn (get_last_insn ());
1503 }
1504
1505 /* Verify that we have a constant as the second operand of the plus. */
1506 increment = XEXP (SET_SRC (pattern), 1);
1507 if (GET_CODE (increment) != CONST_INT)
1508 {
1509 /* SR sometimes puts the constant in a register, especially if it is
1510 too big to be an add immed operand. */
1511 src_insn = PREV_INSN (src_insn);
1512 increment = SET_SRC (PATTERN (src_insn));
1513
1514 /* SR may have used LO_SUM to compute the constant if it is too large
1515 for a load immed operand. In this case, the constant is in operand
1516 one of the LO_SUM rtx. */
1517 if (GET_CODE (increment) == LO_SUM)
1518 increment = XEXP (increment, 1);
1519
1520 /* Some ports store large constants in memory and add a REG_EQUAL
1521 note to the store insn. */
1522 else if (GET_CODE (increment) == MEM)
1523 {
1524 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1525 if (note)
1526 increment = XEXP (note, 0);
1527 }
1528
1529 else if (GET_CODE (increment) == IOR
1530 || GET_CODE (increment) == ASHIFT
1531 || GET_CODE (increment) == PLUS)
1532 {
1533 /* The rs6000 port loads some constants with IOR.
1534 The alpha port loads some constants with ASHIFT and PLUS. */
1535 rtx second_part = XEXP (increment, 1);
1536 enum rtx_code code = GET_CODE (increment);
1537
1538 src_insn = PREV_INSN (src_insn);
1539 increment = SET_SRC (PATTERN (src_insn));
1540 /* Don't need the last insn anymore. */
1541 delete_insn (get_last_insn ());
1542
1543 if (GET_CODE (second_part) != CONST_INT
1544 || GET_CODE (increment) != CONST_INT)
1545 abort ();
1546
1547 if (code == IOR)
1548 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1549 else if (code == PLUS)
1550 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1551 else
1552 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1553 }
1554
1555 if (GET_CODE (increment) != CONST_INT)
1556 abort ();
1557
1558 /* The insn loading the constant into a register is no longer needed,
1559 so delete it. */
1560 delete_insn (get_last_insn ());
1561 }
1562
1563 if (increment_total)
1564 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1565 else
1566 increment_total = increment;
1567
1568 /* Check that the source register is the same as the register we expected
1569 to see as the source. If not, something is seriously wrong. */
1570 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1571 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1572 {
1573 /* Some machines (e.g. the romp), may emit two add instructions for
1574 certain constants, so lets try looking for another add immediately
1575 before this one if we have only seen one add insn so far. */
1576
1577 if (tries == 0)
1578 {
1579 tries++;
1580
1581 src_insn = PREV_INSN (src_insn);
1582 pattern = PATTERN (src_insn);
1583
1584 delete_insn (get_last_insn ());
1585
1586 goto retry;
1587 }
1588
1589 abort ();
1590 }
1591
1592 return increment_total;
1593 }
1594
1595 /* Copy REG_NOTES, except for insn references, because not all insn_map
1596 entries are valid yet. We do need to copy registers now though, because
1597 the reg_map entries can change during copying. */
1598
1599 static rtx
1600 initial_reg_note_copy (notes, map)
1601 rtx notes;
1602 struct inline_remap *map;
1603 {
1604 rtx copy;
1605
1606 if (notes == 0)
1607 return 0;
1608
1609 copy = rtx_alloc (GET_CODE (notes));
1610 PUT_MODE (copy, GET_MODE (notes));
1611
1612 if (GET_CODE (notes) == EXPR_LIST)
1613 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1614 else if (GET_CODE (notes) == INSN_LIST)
1615 /* Don't substitute for these yet. */
1616 XEXP (copy, 0) = XEXP (notes, 0);
1617 else
1618 abort ();
1619
1620 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1621
1622 return copy;
1623 }
1624
1625 /* Fixup insn references in copied REG_NOTES. */
1626
1627 static void
1628 final_reg_note_copy (notes, map)
1629 rtx notes;
1630 struct inline_remap *map;
1631 {
1632 rtx note;
1633
1634 for (note = notes; note; note = XEXP (note, 1))
1635 if (GET_CODE (note) == INSN_LIST)
1636 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1637 }
1638
1639 /* Copy each instruction in the loop, substituting from map as appropriate.
1640 This is very similar to a loop in expand_inline_function. */
1641
1642 static void
1643 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1644 unroll_type, start_label, loop_end, insert_before,
1645 copy_notes_from)
1646 rtx copy_start, copy_end;
1647 struct inline_remap *map;
1648 rtx exit_label;
1649 int last_iteration;
1650 enum unroll_types unroll_type;
1651 rtx start_label, loop_end, insert_before, copy_notes_from;
1652 {
1653 rtx insn, pattern;
1654 rtx set, tem, copy;
1655 int dest_reg_was_split, i;
1656 #ifdef HAVE_cc0
1657 rtx cc0_insn = 0;
1658 #endif
1659 rtx final_label = 0;
1660 rtx giv_inc, giv_dest_reg, giv_src_reg;
1661
1662 /* If this isn't the last iteration, then map any references to the
1663 start_label to final_label. Final label will then be emitted immediately
1664 after the end of this loop body if it was ever used.
1665
1666 If this is the last iteration, then map references to the start_label
1667 to itself. */
1668 if (! last_iteration)
1669 {
1670 final_label = gen_label_rtx ();
1671 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1672 final_label);
1673 }
1674 else
1675 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1676
1677 start_sequence ();
1678
1679 insn = copy_start;
1680 do
1681 {
1682 insn = NEXT_INSN (insn);
1683
1684 map->orig_asm_operands_vector = 0;
1685
1686 switch (GET_CODE (insn))
1687 {
1688 case INSN:
1689 pattern = PATTERN (insn);
1690 copy = 0;
1691 giv_inc = 0;
1692
1693 /* Check to see if this is a giv that has been combined with
1694 some split address givs. (Combined in the sense that
1695 `combine_givs' in loop.c has put two givs in the same register.)
1696 In this case, we must search all givs based on the same biv to
1697 find the address givs. Then split the address givs.
1698 Do this before splitting the giv, since that may map the
1699 SET_DEST to a new register. */
1700
1701 if ((set = single_set (insn))
1702 && GET_CODE (SET_DEST (set)) == REG
1703 && addr_combined_regs[REGNO (SET_DEST (set))])
1704 {
1705 struct iv_class *bl;
1706 struct induction *v, *tv;
1707 int regno = REGNO (SET_DEST (set));
1708
1709 v = addr_combined_regs[REGNO (SET_DEST (set))];
1710 bl = reg_biv_class[REGNO (v->src_reg)];
1711
1712 /* Although the giv_inc amount is not needed here, we must call
1713 calculate_giv_inc here since it might try to delete the
1714 last insn emitted. If we wait until later to call it,
1715 we might accidentally delete insns generated immediately
1716 below by emit_unrolled_add. */
1717
1718 giv_inc = calculate_giv_inc (set, insn, regno);
1719
1720 /* Now find all address giv's that were combined with this
1721 giv 'v'. */
1722 for (tv = bl->giv; tv; tv = tv->next_iv)
1723 if (tv->giv_type == DEST_ADDR && tv->same == v)
1724 {
1725 int this_giv_inc;
1726
1727 /* If this DEST_ADDR giv was not split, then ignore it. */
1728 if (*tv->location != tv->dest_reg)
1729 continue;
1730
1731 /* Scale this_giv_inc if the multiplicative factors of
1732 the two givs are different. */
1733 this_giv_inc = INTVAL (giv_inc);
1734 if (tv->mult_val != v->mult_val)
1735 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1736 * INTVAL (tv->mult_val));
1737
1738 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1739 *tv->location = tv->dest_reg;
1740
1741 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1742 {
1743 /* Must emit an insn to increment the split address
1744 giv. Add in the const_adjust field in case there
1745 was a constant eliminated from the address. */
1746 rtx value, dest_reg;
1747
1748 /* tv->dest_reg will be either a bare register,
1749 or else a register plus a constant. */
1750 if (GET_CODE (tv->dest_reg) == REG)
1751 dest_reg = tv->dest_reg;
1752 else
1753 dest_reg = XEXP (tv->dest_reg, 0);
1754
1755 /* Check for shared address givs, and avoid
1756 incrementing the shared pseudo reg more than
1757 once. */
1758 if (! tv->same_insn && ! tv->shared)
1759 {
1760 /* tv->dest_reg may actually be a (PLUS (REG)
1761 (CONST)) here, so we must call plus_constant
1762 to add the const_adjust amount before calling
1763 emit_unrolled_add below. */
1764 value = plus_constant (tv->dest_reg,
1765 tv->const_adjust);
1766
1767 /* The constant could be too large for an add
1768 immediate, so can't directly emit an insn
1769 here. */
1770 emit_unrolled_add (dest_reg, XEXP (value, 0),
1771 XEXP (value, 1));
1772 }
1773
1774 /* Reset the giv to be just the register again, in case
1775 it is used after the set we have just emitted.
1776 We must subtract the const_adjust factor added in
1777 above. */
1778 tv->dest_reg = plus_constant (dest_reg,
1779 - tv->const_adjust);
1780 *tv->location = tv->dest_reg;
1781 }
1782 }
1783 }
1784
1785 /* If this is a setting of a splittable variable, then determine
1786 how to split the variable, create a new set based on this split,
1787 and set up the reg_map so that later uses of the variable will
1788 use the new split variable. */
1789
1790 dest_reg_was_split = 0;
1791
1792 if ((set = single_set (insn))
1793 && GET_CODE (SET_DEST (set)) == REG
1794 && splittable_regs[REGNO (SET_DEST (set))])
1795 {
1796 int regno = REGNO (SET_DEST (set));
1797
1798 dest_reg_was_split = 1;
1799
1800 /* Compute the increment value for the giv, if it wasn't
1801 already computed above. */
1802
1803 if (giv_inc == 0)
1804 giv_inc = calculate_giv_inc (set, insn, regno);
1805 giv_dest_reg = SET_DEST (set);
1806 giv_src_reg = SET_DEST (set);
1807
1808 if (unroll_type == UNROLL_COMPLETELY)
1809 {
1810 /* Completely unrolling the loop. Set the induction
1811 variable to a known constant value. */
1812
1813 /* The value in splittable_regs may be an invariant
1814 value, so we must use plus_constant here. */
1815 splittable_regs[regno]
1816 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1817
1818 if (GET_CODE (splittable_regs[regno]) == PLUS)
1819 {
1820 giv_src_reg = XEXP (splittable_regs[regno], 0);
1821 giv_inc = XEXP (splittable_regs[regno], 1);
1822 }
1823 else
1824 {
1825 /* The splittable_regs value must be a REG or a
1826 CONST_INT, so put the entire value in the giv_src_reg
1827 variable. */
1828 giv_src_reg = splittable_regs[regno];
1829 giv_inc = const0_rtx;
1830 }
1831 }
1832 else
1833 {
1834 /* Partially unrolling loop. Create a new pseudo
1835 register for the iteration variable, and set it to
1836 be a constant plus the original register. Except
1837 on the last iteration, when the result has to
1838 go back into the original iteration var register. */
1839
1840 /* Handle bivs which must be mapped to a new register
1841 when split. This happens for bivs which need their
1842 final value set before loop entry. The new register
1843 for the biv was stored in the biv's first struct
1844 induction entry by find_splittable_regs. */
1845
1846 if (regno < max_reg_before_loop
1847 && reg_iv_type[regno] == BASIC_INDUCT)
1848 {
1849 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1850 giv_dest_reg = giv_src_reg;
1851 }
1852
1853 #if 0
1854 /* If non-reduced/final-value givs were split, then
1855 this would have to remap those givs also. See
1856 find_splittable_regs. */
1857 #endif
1858
1859 splittable_regs[regno]
1860 = GEN_INT (INTVAL (giv_inc)
1861 + INTVAL (splittable_regs[regno]));
1862 giv_inc = splittable_regs[regno];
1863
1864 /* Now split the induction variable by changing the dest
1865 of this insn to a new register, and setting its
1866 reg_map entry to point to this new register.
1867
1868 If this is the last iteration, and this is the last insn
1869 that will update the iv, then reuse the original dest,
1870 to ensure that the iv will have the proper value when
1871 the loop exits or repeats.
1872
1873 Using splittable_regs_updates here like this is safe,
1874 because it can only be greater than one if all
1875 instructions modifying the iv are always executed in
1876 order. */
1877
1878 if (! last_iteration
1879 || (splittable_regs_updates[regno]-- != 1))
1880 {
1881 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1882 giv_dest_reg = tem;
1883 map->reg_map[regno] = tem;
1884 record_base_value (REGNO (tem),
1885 giv_inc == const0_rtx
1886 ? giv_src_reg
1887 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1888 giv_src_reg, giv_inc),
1889 1);
1890 }
1891 else
1892 map->reg_map[regno] = giv_src_reg;
1893 }
1894
1895 /* The constant being added could be too large for an add
1896 immediate, so can't directly emit an insn here. */
1897 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1898 copy = get_last_insn ();
1899 pattern = PATTERN (copy);
1900 }
1901 else
1902 {
1903 pattern = copy_rtx_and_substitute (pattern, map);
1904 copy = emit_insn (pattern);
1905 }
1906 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1907
1908 #ifdef HAVE_cc0
1909 /* If this insn is setting CC0, it may need to look at
1910 the insn that uses CC0 to see what type of insn it is.
1911 In that case, the call to recog via validate_change will
1912 fail. So don't substitute constants here. Instead,
1913 do it when we emit the following insn.
1914
1915 For example, see the pyr.md file. That machine has signed and
1916 unsigned compares. The compare patterns must check the
1917 following branch insn to see which what kind of compare to
1918 emit.
1919
1920 If the previous insn set CC0, substitute constants on it as
1921 well. */
1922 if (sets_cc0_p (PATTERN (copy)) != 0)
1923 cc0_insn = copy;
1924 else
1925 {
1926 if (cc0_insn)
1927 try_constants (cc0_insn, map);
1928 cc0_insn = 0;
1929 try_constants (copy, map);
1930 }
1931 #else
1932 try_constants (copy, map);
1933 #endif
1934
1935 /* Make split induction variable constants `permanent' since we
1936 know there are no backward branches across iteration variable
1937 settings which would invalidate this. */
1938 if (dest_reg_was_split)
1939 {
1940 int regno = REGNO (SET_DEST (pattern));
1941
1942 if (regno < map->const_equiv_map_size
1943 && map->const_age_map[regno] == map->const_age)
1944 map->const_age_map[regno] = -1;
1945 }
1946 break;
1947
1948 case JUMP_INSN:
1949 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1950 copy = emit_jump_insn (pattern);
1951 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1952
1953 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1954 && ! last_iteration)
1955 {
1956 /* This is a branch to the beginning of the loop; this is the
1957 last insn being copied; and this is not the last iteration.
1958 In this case, we want to change the original fall through
1959 case to be a branch past the end of the loop, and the
1960 original jump label case to fall_through. */
1961
1962 if (invert_exp (pattern, copy))
1963 {
1964 if (! redirect_exp (&pattern,
1965 get_label_from_map (map,
1966 CODE_LABEL_NUMBER
1967 (JUMP_LABEL (insn))),
1968 exit_label, copy))
1969 abort ();
1970 }
1971 else
1972 {
1973 rtx jmp;
1974 rtx lab = gen_label_rtx ();
1975 /* Can't do it by reversing the jump (probably because we
1976 couldn't reverse the conditions), so emit a new
1977 jump_insn after COPY, and redirect the jump around
1978 that. */
1979 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1980 jmp = emit_barrier_after (jmp);
1981 emit_label_after (lab, jmp);
1982 LABEL_NUSES (lab) = 0;
1983 if (! redirect_exp (&pattern,
1984 get_label_from_map (map,
1985 CODE_LABEL_NUMBER
1986 (JUMP_LABEL (insn))),
1987 lab, copy))
1988 abort ();
1989 }
1990 }
1991
1992 #ifdef HAVE_cc0
1993 if (cc0_insn)
1994 try_constants (cc0_insn, map);
1995 cc0_insn = 0;
1996 #endif
1997 try_constants (copy, map);
1998
1999 /* Set the jump label of COPY correctly to avoid problems with
2000 later passes of unroll_loop, if INSN had jump label set. */
2001 if (JUMP_LABEL (insn))
2002 {
2003 rtx label = 0;
2004
2005 /* Can't use the label_map for every insn, since this may be
2006 the backward branch, and hence the label was not mapped. */
2007 if ((set = single_set (copy)))
2008 {
2009 tem = SET_SRC (set);
2010 if (GET_CODE (tem) == LABEL_REF)
2011 label = XEXP (tem, 0);
2012 else if (GET_CODE (tem) == IF_THEN_ELSE)
2013 {
2014 if (XEXP (tem, 1) != pc_rtx)
2015 label = XEXP (XEXP (tem, 1), 0);
2016 else
2017 label = XEXP (XEXP (tem, 2), 0);
2018 }
2019 }
2020
2021 if (label && GET_CODE (label) == CODE_LABEL)
2022 JUMP_LABEL (copy) = label;
2023 else
2024 {
2025 /* An unrecognizable jump insn, probably the entry jump
2026 for a switch statement. This label must have been mapped,
2027 so just use the label_map to get the new jump label. */
2028 JUMP_LABEL (copy)
2029 = get_label_from_map (map,
2030 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2031 }
2032
2033 /* If this is a non-local jump, then must increase the label
2034 use count so that the label will not be deleted when the
2035 original jump is deleted. */
2036 LABEL_NUSES (JUMP_LABEL (copy))++;
2037 }
2038 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2039 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2040 {
2041 rtx pat = PATTERN (copy);
2042 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2043 int len = XVECLEN (pat, diff_vec_p);
2044 int i;
2045
2046 for (i = 0; i < len; i++)
2047 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2048 }
2049
2050 /* If this used to be a conditional jump insn but whose branch
2051 direction is now known, we must do something special. */
2052 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2053 {
2054 #ifdef HAVE_cc0
2055 /* The previous insn set cc0 for us. So delete it. */
2056 delete_insn (PREV_INSN (copy));
2057 #endif
2058
2059 /* If this is now a no-op, delete it. */
2060 if (map->last_pc_value == pc_rtx)
2061 {
2062 /* Don't let delete_insn delete the label referenced here,
2063 because we might possibly need it later for some other
2064 instruction in the loop. */
2065 if (JUMP_LABEL (copy))
2066 LABEL_NUSES (JUMP_LABEL (copy))++;
2067 delete_insn (copy);
2068 if (JUMP_LABEL (copy))
2069 LABEL_NUSES (JUMP_LABEL (copy))--;
2070 copy = 0;
2071 }
2072 else
2073 /* Otherwise, this is unconditional jump so we must put a
2074 BARRIER after it. We could do some dead code elimination
2075 here, but jump.c will do it just as well. */
2076 emit_barrier ();
2077 }
2078 break;
2079
2080 case CALL_INSN:
2081 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2082 copy = emit_call_insn (pattern);
2083 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2084
2085 /* Because the USAGE information potentially contains objects other
2086 than hard registers, we need to copy it. */
2087 CALL_INSN_FUNCTION_USAGE (copy)
2088 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2089
2090 #ifdef HAVE_cc0
2091 if (cc0_insn)
2092 try_constants (cc0_insn, map);
2093 cc0_insn = 0;
2094 #endif
2095 try_constants (copy, map);
2096
2097 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2098 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2099 map->const_equiv_map[i] = 0;
2100 break;
2101
2102 case CODE_LABEL:
2103 /* If this is the loop start label, then we don't need to emit a
2104 copy of this label since no one will use it. */
2105
2106 if (insn != start_label)
2107 {
2108 copy = emit_label (get_label_from_map (map,
2109 CODE_LABEL_NUMBER (insn)));
2110 map->const_age++;
2111 }
2112 break;
2113
2114 case BARRIER:
2115 copy = emit_barrier ();
2116 break;
2117
2118 case NOTE:
2119 /* VTOP notes are valid only before the loop exit test. If placed
2120 anywhere else, loop may generate bad code. */
2121
2122 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2123 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2124 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2125 copy = emit_note (NOTE_SOURCE_FILE (insn),
2126 NOTE_LINE_NUMBER (insn));
2127 else
2128 copy = 0;
2129 break;
2130
2131 default:
2132 abort ();
2133 break;
2134 }
2135
2136 map->insn_map[INSN_UID (insn)] = copy;
2137 }
2138 while (insn != copy_end);
2139
2140 /* Now finish coping the REG_NOTES. */
2141 insn = copy_start;
2142 do
2143 {
2144 insn = NEXT_INSN (insn);
2145 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2146 || GET_CODE (insn) == CALL_INSN)
2147 && map->insn_map[INSN_UID (insn)])
2148 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2149 }
2150 while (insn != copy_end);
2151
2152 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2153 each of these notes here, since there may be some important ones, such as
2154 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2155 iteration, because the original notes won't be deleted.
2156
2157 We can't use insert_before here, because when from preconditioning,
2158 insert_before points before the loop. We can't use copy_end, because
2159 there may be insns already inserted after it (which we don't want to
2160 copy) when not from preconditioning code. */
2161
2162 if (! last_iteration)
2163 {
2164 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2165 {
2166 if (GET_CODE (insn) == NOTE
2167 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2168 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2169 }
2170 }
2171
2172 if (final_label && LABEL_NUSES (final_label) > 0)
2173 emit_label (final_label);
2174
2175 tem = gen_sequence ();
2176 end_sequence ();
2177 emit_insn_before (tem, insert_before);
2178 }
2179 \f
2180 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2181 emitted. This will correctly handle the case where the increment value
2182 won't fit in the immediate field of a PLUS insns. */
2183
2184 void
2185 emit_unrolled_add (dest_reg, src_reg, increment)
2186 rtx dest_reg, src_reg, increment;
2187 {
2188 rtx result;
2189
2190 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2191 dest_reg, 0, OPTAB_LIB_WIDEN);
2192
2193 if (dest_reg != result)
2194 emit_move_insn (dest_reg, result);
2195 }
2196 \f
2197 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2198 is a backward branch in that range that branches to somewhere between
2199 LOOP_START and INSN. Returns 0 otherwise. */
2200
2201 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2202 In practice, this is not a problem, because this function is seldom called,
2203 and uses a negligible amount of CPU time on average. */
2204
2205 int
2206 back_branch_in_range_p (insn, loop_start, loop_end)
2207 rtx insn;
2208 rtx loop_start, loop_end;
2209 {
2210 rtx p, q, target_insn;
2211 rtx orig_loop_end = loop_end;
2212
2213 /* Stop before we get to the backward branch at the end of the loop. */
2214 loop_end = prev_nonnote_insn (loop_end);
2215 if (GET_CODE (loop_end) == BARRIER)
2216 loop_end = PREV_INSN (loop_end);
2217
2218 /* Check in case insn has been deleted, search forward for first non
2219 deleted insn following it. */
2220 while (INSN_DELETED_P (insn))
2221 insn = NEXT_INSN (insn);
2222
2223 /* Check for the case where insn is the last insn in the loop. Deal
2224 with the case where INSN was a deleted loop test insn, in which case
2225 it will now be the NOTE_LOOP_END. */
2226 if (insn == loop_end || insn == orig_loop_end)
2227 return 0;
2228
2229 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2230 {
2231 if (GET_CODE (p) == JUMP_INSN)
2232 {
2233 target_insn = JUMP_LABEL (p);
2234
2235 /* Search from loop_start to insn, to see if one of them is
2236 the target_insn. We can't use INSN_LUID comparisons here,
2237 since insn may not have an LUID entry. */
2238 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2239 if (q == target_insn)
2240 return 1;
2241 }
2242 }
2243
2244 return 0;
2245 }
2246
2247 /* Try to generate the simplest rtx for the expression
2248 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2249 value of giv's. */
2250
2251 static rtx
2252 fold_rtx_mult_add (mult1, mult2, add1, mode)
2253 rtx mult1, mult2, add1;
2254 enum machine_mode mode;
2255 {
2256 rtx temp, mult_res;
2257 rtx result;
2258
2259 /* The modes must all be the same. This should always be true. For now,
2260 check to make sure. */
2261 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2262 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2263 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2264 abort ();
2265
2266 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2267 will be a constant. */
2268 if (GET_CODE (mult1) == CONST_INT)
2269 {
2270 temp = mult2;
2271 mult2 = mult1;
2272 mult1 = temp;
2273 }
2274
2275 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2276 if (! mult_res)
2277 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2278
2279 /* Again, put the constant second. */
2280 if (GET_CODE (add1) == CONST_INT)
2281 {
2282 temp = add1;
2283 add1 = mult_res;
2284 mult_res = temp;
2285 }
2286
2287 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2288 if (! result)
2289 result = gen_rtx_PLUS (mode, add1, mult_res);
2290
2291 return result;
2292 }
2293
2294 /* Searches the list of induction struct's for the biv BL, to try to calculate
2295 the total increment value for one iteration of the loop as a constant.
2296
2297 Returns the increment value as an rtx, simplified as much as possible,
2298 if it can be calculated. Otherwise, returns 0. */
2299
2300 rtx
2301 biv_total_increment (bl, loop_start, loop_end)
2302 struct iv_class *bl;
2303 rtx loop_start, loop_end;
2304 {
2305 struct induction *v;
2306 rtx result;
2307
2308 /* For increment, must check every instruction that sets it. Each
2309 instruction must be executed only once each time through the loop.
2310 To verify this, we check that the insn is always executed, and that
2311 there are no backward branches after the insn that branch to before it.
2312 Also, the insn must have a mult_val of one (to make sure it really is
2313 an increment). */
2314
2315 result = const0_rtx;
2316 for (v = bl->biv; v; v = v->next_iv)
2317 {
2318 if (v->always_computable && v->mult_val == const1_rtx
2319 && ! v->maybe_multiple)
2320 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2321 else
2322 return 0;
2323 }
2324
2325 return result;
2326 }
2327
2328 /* Determine the initial value of the iteration variable, and the amount
2329 that it is incremented each loop. Use the tables constructed by
2330 the strength reduction pass to calculate these values.
2331
2332 Initial_value and/or increment are set to zero if their values could not
2333 be calculated. */
2334
2335 static void
2336 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2337 rtx iteration_var, *initial_value, *increment;
2338 rtx loop_start, loop_end;
2339 {
2340 struct iv_class *bl;
2341 #if 0
2342 struct induction *v;
2343 #endif
2344
2345 /* Clear the result values, in case no answer can be found. */
2346 *initial_value = 0;
2347 *increment = 0;
2348
2349 /* The iteration variable can be either a giv or a biv. Check to see
2350 which it is, and compute the variable's initial value, and increment
2351 value if possible. */
2352
2353 /* If this is a new register, can't handle it since we don't have any
2354 reg_iv_type entry for it. */
2355 if (REGNO (iteration_var) >= max_reg_before_loop)
2356 {
2357 if (loop_dump_stream)
2358 fprintf (loop_dump_stream,
2359 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2360 return;
2361 }
2362
2363 /* Reject iteration variables larger than the host wide int size, since they
2364 could result in a number of iterations greater than the range of our
2365 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
2366 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2367 > HOST_BITS_PER_WIDE_INT))
2368 {
2369 if (loop_dump_stream)
2370 fprintf (loop_dump_stream,
2371 "Loop unrolling: Iteration var rejected because mode too large.\n");
2372 return;
2373 }
2374 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2375 {
2376 if (loop_dump_stream)
2377 fprintf (loop_dump_stream,
2378 "Loop unrolling: Iteration var not an integer.\n");
2379 return;
2380 }
2381 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2382 {
2383 /* Grab initial value, only useful if it is a constant. */
2384 bl = reg_biv_class[REGNO (iteration_var)];
2385 *initial_value = bl->initial_value;
2386
2387 *increment = biv_total_increment (bl, loop_start, loop_end);
2388 }
2389 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2390 {
2391 #if 1
2392 /* ??? The code below does not work because the incorrect number of
2393 iterations is calculated when the biv is incremented after the giv
2394 is set (which is the usual case). This can probably be accounted
2395 for by biasing the initial_value by subtracting the amount of the
2396 increment that occurs between the giv set and the giv test. However,
2397 a giv as an iterator is very rare, so it does not seem worthwhile
2398 to handle this. */
2399 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2400 if (loop_dump_stream)
2401 fprintf (loop_dump_stream,
2402 "Loop unrolling: Giv iterators are not handled.\n");
2403 return;
2404 #else
2405 /* Initial value is mult_val times the biv's initial value plus
2406 add_val. Only useful if it is a constant. */
2407 v = reg_iv_info[REGNO (iteration_var)];
2408 bl = reg_biv_class[REGNO (v->src_reg)];
2409 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2410 v->add_val, v->mode);
2411
2412 /* Increment value is mult_val times the increment value of the biv. */
2413
2414 *increment = biv_total_increment (bl, loop_start, loop_end);
2415 if (*increment)
2416 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2417 v->mode);
2418 #endif
2419 }
2420 else
2421 {
2422 if (loop_dump_stream)
2423 fprintf (loop_dump_stream,
2424 "Loop unrolling: Not basic or general induction var.\n");
2425 return;
2426 }
2427 }
2428
2429
2430 /* For each biv and giv, determine whether it can be safely split into
2431 a different variable for each unrolled copy of the loop body. If it
2432 is safe to split, then indicate that by saving some useful info
2433 in the splittable_regs array.
2434
2435 If the loop is being completely unrolled, then splittable_regs will hold
2436 the current value of the induction variable while the loop is unrolled.
2437 It must be set to the initial value of the induction variable here.
2438 Otherwise, splittable_regs will hold the difference between the current
2439 value of the induction variable and the value the induction variable had
2440 at the top of the loop. It must be set to the value 0 here.
2441
2442 Returns the total number of instructions that set registers that are
2443 splittable. */
2444
2445 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2446 constant values are unnecessary, since we can easily calculate increment
2447 values in this case even if nothing is constant. The increment value
2448 should not involve a multiply however. */
2449
2450 /* ?? Even if the biv/giv increment values aren't constant, it may still
2451 be beneficial to split the variable if the loop is only unrolled a few
2452 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2453
2454 static int
2455 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2456 unroll_number, n_iterations)
2457 enum unroll_types unroll_type;
2458 rtx loop_start, loop_end;
2459 rtx end_insert_before;
2460 int unroll_number;
2461 unsigned HOST_WIDE_INT n_iterations;
2462 {
2463 struct iv_class *bl;
2464 struct induction *v;
2465 rtx increment, tem;
2466 rtx biv_final_value;
2467 int biv_splittable;
2468 int result = 0;
2469
2470 for (bl = loop_iv_list; bl; bl = bl->next)
2471 {
2472 /* Biv_total_increment must return a constant value,
2473 otherwise we can not calculate the split values. */
2474
2475 increment = biv_total_increment (bl, loop_start, loop_end);
2476 if (! increment || GET_CODE (increment) != CONST_INT)
2477 continue;
2478
2479 /* The loop must be unrolled completely, or else have a known number
2480 of iterations and only one exit, or else the biv must be dead
2481 outside the loop, or else the final value must be known. Otherwise,
2482 it is unsafe to split the biv since it may not have the proper
2483 value on loop exit. */
2484
2485 /* loop_number_exit_count is non-zero if the loop has an exit other than
2486 a fall through at the end. */
2487
2488 biv_splittable = 1;
2489 biv_final_value = 0;
2490 if (unroll_type != UNROLL_COMPLETELY
2491 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2492 || unroll_type == UNROLL_NAIVE)
2493 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2494 || ! bl->init_insn
2495 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2496 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2497 < INSN_LUID (bl->init_insn))
2498 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2499 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end,
2500 n_iterations)))
2501 biv_splittable = 0;
2502
2503 /* If any of the insns setting the BIV don't do so with a simple
2504 PLUS, we don't know how to split it. */
2505 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2506 if ((tem = single_set (v->insn)) == 0
2507 || GET_CODE (SET_DEST (tem)) != REG
2508 || REGNO (SET_DEST (tem)) != bl->regno
2509 || GET_CODE (SET_SRC (tem)) != PLUS)
2510 biv_splittable = 0;
2511
2512 /* If final value is non-zero, then must emit an instruction which sets
2513 the value of the biv to the proper value. This is done after
2514 handling all of the givs, since some of them may need to use the
2515 biv's value in their initialization code. */
2516
2517 /* This biv is splittable. If completely unrolling the loop, save
2518 the biv's initial value. Otherwise, save the constant zero. */
2519
2520 if (biv_splittable == 1)
2521 {
2522 if (unroll_type == UNROLL_COMPLETELY)
2523 {
2524 /* If the initial value of the biv is itself (i.e. it is too
2525 complicated for strength_reduce to compute), or is a hard
2526 register, or it isn't invariant, then we must create a new
2527 pseudo reg to hold the initial value of the biv. */
2528
2529 if (GET_CODE (bl->initial_value) == REG
2530 && (REGNO (bl->initial_value) == bl->regno
2531 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2532 || ! invariant_p (bl->initial_value)))
2533 {
2534 rtx tem = gen_reg_rtx (bl->biv->mode);
2535
2536 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2537 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2538 loop_start);
2539
2540 if (loop_dump_stream)
2541 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2542 bl->regno, REGNO (tem));
2543
2544 splittable_regs[bl->regno] = tem;
2545 }
2546 else
2547 splittable_regs[bl->regno] = bl->initial_value;
2548 }
2549 else
2550 splittable_regs[bl->regno] = const0_rtx;
2551
2552 /* Save the number of instructions that modify the biv, so that
2553 we can treat the last one specially. */
2554
2555 splittable_regs_updates[bl->regno] = bl->biv_count;
2556 result += bl->biv_count;
2557
2558 if (loop_dump_stream)
2559 fprintf (loop_dump_stream,
2560 "Biv %d safe to split.\n", bl->regno);
2561 }
2562
2563 /* Check every giv that depends on this biv to see whether it is
2564 splittable also. Even if the biv isn't splittable, givs which
2565 depend on it may be splittable if the biv is live outside the
2566 loop, and the givs aren't. */
2567
2568 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2569 increment, unroll_number);
2570
2571 /* If final value is non-zero, then must emit an instruction which sets
2572 the value of the biv to the proper value. This is done after
2573 handling all of the givs, since some of them may need to use the
2574 biv's value in their initialization code. */
2575 if (biv_final_value)
2576 {
2577 /* If the loop has multiple exits, emit the insns before the
2578 loop to ensure that it will always be executed no matter
2579 how the loop exits. Otherwise emit the insn after the loop,
2580 since this is slightly more efficient. */
2581 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2582 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2583 biv_final_value),
2584 end_insert_before);
2585 else
2586 {
2587 /* Create a new register to hold the value of the biv, and then
2588 set the biv to its final value before the loop start. The biv
2589 is set to its final value before loop start to ensure that
2590 this insn will always be executed, no matter how the loop
2591 exits. */
2592 rtx tem = gen_reg_rtx (bl->biv->mode);
2593 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2594
2595 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2596 loop_start);
2597 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2598 biv_final_value),
2599 loop_start);
2600
2601 if (loop_dump_stream)
2602 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2603 REGNO (bl->biv->src_reg), REGNO (tem));
2604
2605 /* Set up the mapping from the original biv register to the new
2606 register. */
2607 bl->biv->src_reg = tem;
2608 }
2609 }
2610 }
2611 return result;
2612 }
2613
2614 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2615 for the instruction that is using it. Do not make any changes to that
2616 instruction. */
2617
2618 static int
2619 verify_addresses (v, giv_inc, unroll_number)
2620 struct induction *v;
2621 rtx giv_inc;
2622 int unroll_number;
2623 {
2624 int ret = 1;
2625 rtx orig_addr = *v->location;
2626 rtx last_addr = plus_constant (v->dest_reg,
2627 INTVAL (giv_inc) * (unroll_number - 1));
2628
2629 /* First check to see if either address would fail. Handle the fact
2630 that we have may have a match_dup. */
2631 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2632 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2633 ret = 0;
2634
2635 /* Now put things back the way they were before. This should always
2636 succeed. */
2637 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2638 abort ();
2639
2640 return ret;
2641 }
2642
2643 /* For every giv based on the biv BL, check to determine whether it is
2644 splittable. This is a subroutine to find_splittable_regs ().
2645
2646 Return the number of instructions that set splittable registers. */
2647
2648 static int
2649 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2650 unroll_number)
2651 struct iv_class *bl;
2652 enum unroll_types unroll_type;
2653 rtx loop_start, loop_end;
2654 rtx increment;
2655 int unroll_number;
2656 {
2657 struct induction *v, *v2;
2658 rtx final_value;
2659 rtx tem;
2660 int result = 0;
2661
2662 /* Scan the list of givs, and set the same_insn field when there are
2663 multiple identical givs in the same insn. */
2664 for (v = bl->giv; v; v = v->next_iv)
2665 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2666 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2667 && ! v2->same_insn)
2668 v2->same_insn = v;
2669
2670 for (v = bl->giv; v; v = v->next_iv)
2671 {
2672 rtx giv_inc, value;
2673
2674 /* Only split the giv if it has already been reduced, or if the loop is
2675 being completely unrolled. */
2676 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2677 continue;
2678
2679 /* The giv can be split if the insn that sets the giv is executed once
2680 and only once on every iteration of the loop. */
2681 /* An address giv can always be split. v->insn is just a use not a set,
2682 and hence it does not matter whether it is always executed. All that
2683 matters is that all the biv increments are always executed, and we
2684 won't reach here if they aren't. */
2685 if (v->giv_type != DEST_ADDR
2686 && (! v->always_computable
2687 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2688 continue;
2689
2690 /* The giv increment value must be a constant. */
2691 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2692 v->mode);
2693 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2694 continue;
2695
2696 /* The loop must be unrolled completely, or else have a known number of
2697 iterations and only one exit, or else the giv must be dead outside
2698 the loop, or else the final value of the giv must be known.
2699 Otherwise, it is not safe to split the giv since it may not have the
2700 proper value on loop exit. */
2701
2702 /* The used outside loop test will fail for DEST_ADDR givs. They are
2703 never used outside the loop anyways, so it is always safe to split a
2704 DEST_ADDR giv. */
2705
2706 final_value = 0;
2707 if (unroll_type != UNROLL_COMPLETELY
2708 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2709 || unroll_type == UNROLL_NAIVE)
2710 && v->giv_type != DEST_ADDR
2711 /* The next part is true if the pseudo is used outside the loop.
2712 We assume that this is true for any pseudo created after loop
2713 starts, because we don't have a reg_n_info entry for them. */
2714 && (REGNO (v->dest_reg) >= max_reg_before_loop
2715 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2716 /* Check for the case where the pseudo is set by a shift/add
2717 sequence, in which case the first insn setting the pseudo
2718 is the first insn of the shift/add sequence. */
2719 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2720 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2721 != INSN_UID (XEXP (tem, 0)))))
2722 /* Line above always fails if INSN was moved by loop opt. */
2723 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2724 >= INSN_LUID (loop_end)))
2725 && ! (final_value = v->final_value))
2726 continue;
2727
2728 #if 0
2729 /* Currently, non-reduced/final-value givs are never split. */
2730 /* Should emit insns after the loop if possible, as the biv final value
2731 code below does. */
2732
2733 /* If the final value is non-zero, and the giv has not been reduced,
2734 then must emit an instruction to set the final value. */
2735 if (final_value && !v->new_reg)
2736 {
2737 /* Create a new register to hold the value of the giv, and then set
2738 the giv to its final value before the loop start. The giv is set
2739 to its final value before loop start to ensure that this insn
2740 will always be executed, no matter how we exit. */
2741 tem = gen_reg_rtx (v->mode);
2742 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2743 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2744 loop_start);
2745
2746 if (loop_dump_stream)
2747 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2748 REGNO (v->dest_reg), REGNO (tem));
2749
2750 v->src_reg = tem;
2751 }
2752 #endif
2753
2754 /* This giv is splittable. If completely unrolling the loop, save the
2755 giv's initial value. Otherwise, save the constant zero for it. */
2756
2757 if (unroll_type == UNROLL_COMPLETELY)
2758 {
2759 /* It is not safe to use bl->initial_value here, because it may not
2760 be invariant. It is safe to use the initial value stored in
2761 the splittable_regs array if it is set. In rare cases, it won't
2762 be set, so then we do exactly the same thing as
2763 find_splittable_regs does to get a safe value. */
2764 rtx biv_initial_value;
2765
2766 if (splittable_regs[bl->regno])
2767 biv_initial_value = splittable_regs[bl->regno];
2768 else if (GET_CODE (bl->initial_value) != REG
2769 || (REGNO (bl->initial_value) != bl->regno
2770 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2771 biv_initial_value = bl->initial_value;
2772 else
2773 {
2774 rtx tem = gen_reg_rtx (bl->biv->mode);
2775
2776 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2777 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2778 loop_start);
2779 biv_initial_value = tem;
2780 }
2781 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2782 v->add_val, v->mode);
2783 }
2784 else
2785 value = const0_rtx;
2786
2787 if (v->new_reg)
2788 {
2789 /* If a giv was combined with another giv, then we can only split
2790 this giv if the giv it was combined with was reduced. This
2791 is because the value of v->new_reg is meaningless in this
2792 case. */
2793 if (v->same && ! v->same->new_reg)
2794 {
2795 if (loop_dump_stream)
2796 fprintf (loop_dump_stream,
2797 "giv combined with unreduced giv not split.\n");
2798 continue;
2799 }
2800 /* If the giv is an address destination, it could be something other
2801 than a simple register, these have to be treated differently. */
2802 else if (v->giv_type == DEST_REG)
2803 {
2804 /* If value is not a constant, register, or register plus
2805 constant, then compute its value into a register before
2806 loop start. This prevents invalid rtx sharing, and should
2807 generate better code. We can use bl->initial_value here
2808 instead of splittable_regs[bl->regno] because this code
2809 is going before the loop start. */
2810 if (unroll_type == UNROLL_COMPLETELY
2811 && GET_CODE (value) != CONST_INT
2812 && GET_CODE (value) != REG
2813 && (GET_CODE (value) != PLUS
2814 || GET_CODE (XEXP (value, 0)) != REG
2815 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2816 {
2817 rtx tem = gen_reg_rtx (v->mode);
2818 record_base_value (REGNO (tem), v->add_val, 0);
2819 emit_iv_add_mult (bl->initial_value, v->mult_val,
2820 v->add_val, tem, loop_start);
2821 value = tem;
2822 }
2823
2824 splittable_regs[REGNO (v->new_reg)] = value;
2825 }
2826 else
2827 {
2828 /* Splitting address givs is useful since it will often allow us
2829 to eliminate some increment insns for the base giv as
2830 unnecessary. */
2831
2832 /* If the addr giv is combined with a dest_reg giv, then all
2833 references to that dest reg will be remapped, which is NOT
2834 what we want for split addr regs. We always create a new
2835 register for the split addr giv, just to be safe. */
2836
2837 /* If we have multiple identical address givs within a
2838 single instruction, then use a single pseudo reg for
2839 both. This is necessary in case one is a match_dup
2840 of the other. */
2841
2842 v->const_adjust = 0;
2843
2844 if (v->same_insn)
2845 {
2846 v->dest_reg = v->same_insn->dest_reg;
2847 if (loop_dump_stream)
2848 fprintf (loop_dump_stream,
2849 "Sharing address givs in insn %d\n",
2850 INSN_UID (v->insn));
2851 }
2852 /* If multiple address GIVs have been combined with the
2853 same dest_reg GIV, do not create a new register for
2854 each. */
2855 else if (unroll_type != UNROLL_COMPLETELY
2856 && v->giv_type == DEST_ADDR
2857 && v->same && v->same->giv_type == DEST_ADDR
2858 && v->same->unrolled
2859 /* combine_givs_p may return true for some cases
2860 where the add and mult values are not equal.
2861 To share a register here, the values must be
2862 equal. */
2863 && rtx_equal_p (v->same->mult_val, v->mult_val)
2864 && rtx_equal_p (v->same->add_val, v->add_val))
2865
2866 {
2867 v->dest_reg = v->same->dest_reg;
2868 v->shared = 1;
2869 }
2870 else if (unroll_type != UNROLL_COMPLETELY)
2871 {
2872 /* If not completely unrolling the loop, then create a new
2873 register to hold the split value of the DEST_ADDR giv.
2874 Emit insn to initialize its value before loop start. */
2875
2876 rtx tem = gen_reg_rtx (v->mode);
2877 record_base_value (REGNO (tem), v->add_val, 0);
2878
2879 /* If the address giv has a constant in its new_reg value,
2880 then this constant can be pulled out and put in value,
2881 instead of being part of the initialization code. */
2882
2883 if (GET_CODE (v->new_reg) == PLUS
2884 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2885 {
2886 v->dest_reg
2887 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2888
2889 /* Only succeed if this will give valid addresses.
2890 Try to validate both the first and the last
2891 address resulting from loop unrolling, if
2892 one fails, then can't do const elim here. */
2893 if (verify_addresses (v, giv_inc, unroll_number))
2894 {
2895 /* Save the negative of the eliminated const, so
2896 that we can calculate the dest_reg's increment
2897 value later. */
2898 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2899
2900 v->new_reg = XEXP (v->new_reg, 0);
2901 if (loop_dump_stream)
2902 fprintf (loop_dump_stream,
2903 "Eliminating constant from giv %d\n",
2904 REGNO (tem));
2905 }
2906 else
2907 v->dest_reg = tem;
2908 }
2909 else
2910 v->dest_reg = tem;
2911
2912 /* If the address hasn't been checked for validity yet, do so
2913 now, and fail completely if either the first or the last
2914 unrolled copy of the address is not a valid address
2915 for the instruction that uses it. */
2916 if (v->dest_reg == tem
2917 && ! verify_addresses (v, giv_inc, unroll_number))
2918 {
2919 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2920 if (v2->same_insn == v)
2921 v2->same_insn = 0;
2922
2923 if (loop_dump_stream)
2924 fprintf (loop_dump_stream,
2925 "Invalid address for giv at insn %d\n",
2926 INSN_UID (v->insn));
2927 continue;
2928 }
2929
2930 /* We set this after the address check, to guarantee that
2931 the register will be initialized. */
2932 v->unrolled = 1;
2933
2934 /* To initialize the new register, just move the value of
2935 new_reg into it. This is not guaranteed to give a valid
2936 instruction on machines with complex addressing modes.
2937 If we can't recognize it, then delete it and emit insns
2938 to calculate the value from scratch. */
2939 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
2940 copy_rtx (v->new_reg)),
2941 loop_start);
2942 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2943 {
2944 rtx sequence, ret;
2945
2946 /* We can't use bl->initial_value to compute the initial
2947 value, because the loop may have been preconditioned.
2948 We must calculate it from NEW_REG. Try using
2949 force_operand instead of emit_iv_add_mult. */
2950 delete_insn (PREV_INSN (loop_start));
2951
2952 start_sequence ();
2953 ret = force_operand (v->new_reg, tem);
2954 if (ret != tem)
2955 emit_move_insn (tem, ret);
2956 sequence = gen_sequence ();
2957 end_sequence ();
2958 emit_insn_before (sequence, loop_start);
2959
2960 if (loop_dump_stream)
2961 fprintf (loop_dump_stream,
2962 "Invalid init insn, rewritten.\n");
2963 }
2964 }
2965 else
2966 {
2967 v->dest_reg = value;
2968
2969 /* Check the resulting address for validity, and fail
2970 if the resulting address would be invalid. */
2971 if (! verify_addresses (v, giv_inc, unroll_number))
2972 {
2973 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2974 if (v2->same_insn == v)
2975 v2->same_insn = 0;
2976
2977 if (loop_dump_stream)
2978 fprintf (loop_dump_stream,
2979 "Invalid address for giv at insn %d\n",
2980 INSN_UID (v->insn));
2981 continue;
2982 }
2983 }
2984
2985 /* Store the value of dest_reg into the insn. This sharing
2986 will not be a problem as this insn will always be copied
2987 later. */
2988
2989 *v->location = v->dest_reg;
2990
2991 /* If this address giv is combined with a dest reg giv, then
2992 save the base giv's induction pointer so that we will be
2993 able to handle this address giv properly. The base giv
2994 itself does not have to be splittable. */
2995
2996 if (v->same && v->same->giv_type == DEST_REG)
2997 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2998
2999 if (GET_CODE (v->new_reg) == REG)
3000 {
3001 /* This giv maybe hasn't been combined with any others.
3002 Make sure that it's giv is marked as splittable here. */
3003
3004 splittable_regs[REGNO (v->new_reg)] = value;
3005
3006 /* Make it appear to depend upon itself, so that the
3007 giv will be properly split in the main loop above. */
3008 if (! v->same)
3009 {
3010 v->same = v;
3011 addr_combined_regs[REGNO (v->new_reg)] = v;
3012 }
3013 }
3014
3015 if (loop_dump_stream)
3016 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3017 }
3018 }
3019 else
3020 {
3021 #if 0
3022 /* Currently, unreduced giv's can't be split. This is not too much
3023 of a problem since unreduced giv's are not live across loop
3024 iterations anyways. When unrolling a loop completely though,
3025 it makes sense to reduce&split givs when possible, as this will
3026 result in simpler instructions, and will not require that a reg
3027 be live across loop iterations. */
3028
3029 splittable_regs[REGNO (v->dest_reg)] = value;
3030 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3031 REGNO (v->dest_reg), INSN_UID (v->insn));
3032 #else
3033 continue;
3034 #endif
3035 }
3036
3037 /* Unreduced givs are only updated once by definition. Reduced givs
3038 are updated as many times as their biv is. Mark it so if this is
3039 a splittable register. Don't need to do anything for address givs
3040 where this may not be a register. */
3041
3042 if (GET_CODE (v->new_reg) == REG)
3043 {
3044 int count = 1;
3045 if (! v->ignore)
3046 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3047
3048 splittable_regs_updates[REGNO (v->new_reg)] = count;
3049 }
3050
3051 result++;
3052
3053 if (loop_dump_stream)
3054 {
3055 int regnum;
3056
3057 if (GET_CODE (v->dest_reg) == CONST_INT)
3058 regnum = -1;
3059 else if (GET_CODE (v->dest_reg) != REG)
3060 regnum = REGNO (XEXP (v->dest_reg, 0));
3061 else
3062 regnum = REGNO (v->dest_reg);
3063 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3064 regnum, INSN_UID (v->insn));
3065 }
3066 }
3067
3068 return result;
3069 }
3070 \f
3071 /* Try to prove that the register is dead after the loop exits. Trace every
3072 loop exit looking for an insn that will always be executed, which sets
3073 the register to some value, and appears before the first use of the register
3074 is found. If successful, then return 1, otherwise return 0. */
3075
3076 /* ?? Could be made more intelligent in the handling of jumps, so that
3077 it can search past if statements and other similar structures. */
3078
3079 static int
3080 reg_dead_after_loop (reg, loop_start, loop_end)
3081 rtx reg, loop_start, loop_end;
3082 {
3083 rtx insn, label;
3084 enum rtx_code code;
3085 int jump_count = 0;
3086 int label_count = 0;
3087 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3088
3089 /* In addition to checking all exits of this loop, we must also check
3090 all exits of inner nested loops that would exit this loop. We don't
3091 have any way to identify those, so we just give up if there are any
3092 such inner loop exits. */
3093
3094 for (label = loop_number_exit_labels[this_loop_num]; label;
3095 label = LABEL_NEXTREF (label))
3096 label_count++;
3097
3098 if (label_count != loop_number_exit_count[this_loop_num])
3099 return 0;
3100
3101 /* HACK: Must also search the loop fall through exit, create a label_ref
3102 here which points to the loop_end, and append the loop_number_exit_labels
3103 list to it. */
3104 label = gen_rtx_LABEL_REF (VOIDmode, loop_end);
3105 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3106
3107 for ( ; label; label = LABEL_NEXTREF (label))
3108 {
3109 /* Succeed if find an insn which sets the biv or if reach end of
3110 function. Fail if find an insn that uses the biv, or if come to
3111 a conditional jump. */
3112
3113 insn = NEXT_INSN (XEXP (label, 0));
3114 while (insn)
3115 {
3116 code = GET_CODE (insn);
3117 if (GET_RTX_CLASS (code) == 'i')
3118 {
3119 rtx set;
3120
3121 if (reg_referenced_p (reg, PATTERN (insn)))
3122 return 0;
3123
3124 set = single_set (insn);
3125 if (set && rtx_equal_p (SET_DEST (set), reg))
3126 break;
3127 }
3128
3129 if (code == JUMP_INSN)
3130 {
3131 if (GET_CODE (PATTERN (insn)) == RETURN)
3132 break;
3133 else if (! simplejump_p (insn)
3134 /* Prevent infinite loop following infinite loops. */
3135 || jump_count++ > 20)
3136 return 0;
3137 else
3138 insn = JUMP_LABEL (insn);
3139 }
3140
3141 insn = NEXT_INSN (insn);
3142 }
3143 }
3144
3145 /* Success, the register is dead on all loop exits. */
3146 return 1;
3147 }
3148
3149 /* Try to calculate the final value of the biv, the value it will have at
3150 the end of the loop. If we can do it, return that value. */
3151
3152 rtx
3153 final_biv_value (bl, loop_start, loop_end, n_iterations)
3154 struct iv_class *bl;
3155 rtx loop_start, loop_end;
3156 unsigned HOST_WIDE_INT n_iterations;
3157 {
3158 rtx increment, tem;
3159
3160 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3161
3162 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3163 return 0;
3164
3165 /* The final value for reversed bivs must be calculated differently than
3166 for ordinary bivs. In this case, there is already an insn after the
3167 loop which sets this biv's final value (if necessary), and there are
3168 no other loop exits, so we can return any value. */
3169 if (bl->reversed)
3170 {
3171 if (loop_dump_stream)
3172 fprintf (loop_dump_stream,
3173 "Final biv value for %d, reversed biv.\n", bl->regno);
3174
3175 return const0_rtx;
3176 }
3177
3178 /* Try to calculate the final value as initial value + (number of iterations
3179 * increment). For this to work, increment must be invariant, the only
3180 exit from the loop must be the fall through at the bottom (otherwise
3181 it may not have its final value when the loop exits), and the initial
3182 value of the biv must be invariant. */
3183
3184 if (n_iterations != 0
3185 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3186 && invariant_p (bl->initial_value))
3187 {
3188 increment = biv_total_increment (bl, loop_start, loop_end);
3189
3190 if (increment && invariant_p (increment))
3191 {
3192 /* Can calculate the loop exit value, emit insns after loop
3193 end to calculate this value into a temporary register in
3194 case it is needed later. */
3195
3196 tem = gen_reg_rtx (bl->biv->mode);
3197 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3198 /* Make sure loop_end is not the last insn. */
3199 if (NEXT_INSN (loop_end) == 0)
3200 emit_note_after (NOTE_INSN_DELETED, loop_end);
3201 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3202 bl->initial_value, tem, NEXT_INSN (loop_end));
3203
3204 if (loop_dump_stream)
3205 fprintf (loop_dump_stream,
3206 "Final biv value for %d, calculated.\n", bl->regno);
3207
3208 return tem;
3209 }
3210 }
3211
3212 /* Check to see if the biv is dead at all loop exits. */
3213 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3214 {
3215 if (loop_dump_stream)
3216 fprintf (loop_dump_stream,
3217 "Final biv value for %d, biv dead after loop exit.\n",
3218 bl->regno);
3219
3220 return const0_rtx;
3221 }
3222
3223 return 0;
3224 }
3225
3226 /* Try to calculate the final value of the giv, the value it will have at
3227 the end of the loop. If we can do it, return that value. */
3228
3229 rtx
3230 final_giv_value (v, loop_start, loop_end, n_iterations)
3231 struct induction *v;
3232 rtx loop_start, loop_end;
3233 unsigned HOST_WIDE_INT n_iterations;
3234 {
3235 struct iv_class *bl;
3236 rtx insn;
3237 rtx increment, tem;
3238 rtx insert_before, seq;
3239
3240 bl = reg_biv_class[REGNO (v->src_reg)];
3241
3242 /* The final value for givs which depend on reversed bivs must be calculated
3243 differently than for ordinary givs. In this case, there is already an
3244 insn after the loop which sets this giv's final value (if necessary),
3245 and there are no other loop exits, so we can return any value. */
3246 if (bl->reversed)
3247 {
3248 if (loop_dump_stream)
3249 fprintf (loop_dump_stream,
3250 "Final giv value for %d, depends on reversed biv\n",
3251 REGNO (v->dest_reg));
3252 return const0_rtx;
3253 }
3254
3255 /* Try to calculate the final value as a function of the biv it depends
3256 upon. The only exit from the loop must be the fall through at the bottom
3257 (otherwise it may not have its final value when the loop exits). */
3258
3259 /* ??? Can calculate the final giv value by subtracting off the
3260 extra biv increments times the giv's mult_val. The loop must have
3261 only one exit for this to work, but the loop iterations does not need
3262 to be known. */
3263
3264 if (n_iterations != 0
3265 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3266 {
3267 /* ?? It is tempting to use the biv's value here since these insns will
3268 be put after the loop, and hence the biv will have its final value
3269 then. However, this fails if the biv is subsequently eliminated.
3270 Perhaps determine whether biv's are eliminable before trying to
3271 determine whether giv's are replaceable so that we can use the
3272 biv value here if it is not eliminable. */
3273
3274 /* We are emitting code after the end of the loop, so we must make
3275 sure that bl->initial_value is still valid then. It will still
3276 be valid if it is invariant. */
3277
3278 increment = biv_total_increment (bl, loop_start, loop_end);
3279
3280 if (increment && invariant_p (increment)
3281 && invariant_p (bl->initial_value))
3282 {
3283 /* Can calculate the loop exit value of its biv as
3284 (n_iterations * increment) + initial_value */
3285
3286 /* The loop exit value of the giv is then
3287 (final_biv_value - extra increments) * mult_val + add_val.
3288 The extra increments are any increments to the biv which
3289 occur in the loop after the giv's value is calculated.
3290 We must search from the insn that sets the giv to the end
3291 of the loop to calculate this value. */
3292
3293 insert_before = NEXT_INSN (loop_end);
3294
3295 /* Put the final biv value in tem. */
3296 tem = gen_reg_rtx (bl->biv->mode);
3297 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3298 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3299 bl->initial_value, tem, insert_before);
3300
3301 /* Subtract off extra increments as we find them. */
3302 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3303 insn = NEXT_INSN (insn))
3304 {
3305 struct induction *biv;
3306
3307 for (biv = bl->biv; biv; biv = biv->next_iv)
3308 if (biv->insn == insn)
3309 {
3310 start_sequence ();
3311 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3312 biv->add_val, NULL_RTX, 0,
3313 OPTAB_LIB_WIDEN);
3314 seq = gen_sequence ();
3315 end_sequence ();
3316 emit_insn_before (seq, insert_before);
3317 }
3318 }
3319
3320 /* Now calculate the giv's final value. */
3321 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3322 insert_before);
3323
3324 if (loop_dump_stream)
3325 fprintf (loop_dump_stream,
3326 "Final giv value for %d, calc from biv's value.\n",
3327 REGNO (v->dest_reg));
3328
3329 return tem;
3330 }
3331 }
3332
3333 /* Replaceable giv's should never reach here. */
3334 if (v->replaceable)
3335 abort ();
3336
3337 /* Check to see if the biv is dead at all loop exits. */
3338 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3339 {
3340 if (loop_dump_stream)
3341 fprintf (loop_dump_stream,
3342 "Final giv value for %d, giv dead after loop exit.\n",
3343 REGNO (v->dest_reg));
3344
3345 return const0_rtx;
3346 }
3347
3348 return 0;
3349 }
3350
3351
3352 /* Look back before LOOP_START for then insn that sets REG and return
3353 the equivalent constant if there is a REG_EQUAL note otherwise just
3354 the SET_SRC of REG. */
3355
3356 static rtx
3357 loop_find_equiv_value (loop_start, reg)
3358 rtx loop_start;
3359 rtx reg;
3360 {
3361 rtx insn, set;
3362 rtx ret;
3363
3364 ret = reg;
3365 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3366 {
3367 if (GET_CODE (insn) == CODE_LABEL)
3368 break;
3369
3370 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3371 && reg_set_p (reg, insn))
3372 {
3373 /* We found the last insn before the loop that sets the register.
3374 If it sets the entire register, and has a REG_EQUAL note,
3375 then use the value of the REG_EQUAL note. */
3376 if ((set = single_set (insn))
3377 && (SET_DEST (set) == reg))
3378 {
3379 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3380
3381 /* Only use the REG_EQUAL note if it is a constant.
3382 Other things, divide in particular, will cause
3383 problems later if we use them. */
3384 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3385 && CONSTANT_P (XEXP (note, 0)))
3386 ret = XEXP (note, 0);
3387 else
3388 ret = SET_SRC (set);
3389 }
3390 break;
3391 }
3392 }
3393 return ret;
3394 }
3395
3396
3397 /* Return a simplified rtx for the expression OP - REG.
3398
3399 REG must appear in OP, and OP must be a register or the sum of a register
3400 and a second term.
3401
3402 Thus, the return value must be const0_rtx or the second term.
3403
3404 The caller is responsible for verifying that REG appears in OP and OP has
3405 the proper form. */
3406
3407 static rtx
3408 subtract_reg_term (op, reg)
3409 rtx op, reg;
3410 {
3411 if (op == reg)
3412 return const0_rtx;
3413 if (GET_CODE (op) == PLUS)
3414 {
3415 if (XEXP (op, 0) == reg)
3416 return XEXP (op, 1);
3417 else if (XEXP (op, 1) == reg)
3418 return XEXP (op, 0);
3419 }
3420 /* OP does not contain REG as a term. */
3421 abort ();
3422 }
3423
3424
3425 /* Find and return register term common to both expressions OP0 and
3426 OP1 or NULL_RTX if no such term exists. Each expression must be a
3427 REG or a PLUS of a REG. */
3428
3429 static rtx
3430 find_common_reg_term (op0, op1)
3431 rtx op0, op1;
3432 {
3433 if ((GET_CODE (op0) == REG || GET_CODE (op0) == PLUS)
3434 && (GET_CODE (op1) == REG || GET_CODE (op1) == PLUS))
3435 {
3436 rtx op00;
3437 rtx op01;
3438 rtx op10;
3439 rtx op11;
3440
3441 if (GET_CODE (op0) == PLUS)
3442 op01 = XEXP (op0, 1), op00 = XEXP (op0, 0);
3443 else
3444 op01 = const0_rtx, op00 = op0;
3445
3446 if (GET_CODE (op1) == PLUS)
3447 op11 = XEXP (op1, 1), op10 = XEXP (op1, 0);
3448 else
3449 op11 = const0_rtx, op10 = op1;
3450
3451 /* Find and return common register term if present. */
3452 if (REG_P (op00) && (op00 == op10 || op00 == op11))
3453 return op00;
3454 else if (REG_P (op01) && (op01 == op10 || op01 == op11))
3455 return op01;
3456 }
3457
3458 /* No common register term found. */
3459 return NULL_RTX;
3460 }
3461
3462
3463 /* Calculate the number of loop iterations. Returns the exact number of loop
3464 iterations if it can be calculated, otherwise returns zero. */
3465
3466 unsigned HOST_WIDE_INT
3467 loop_iterations (loop_start, loop_end, loop_info)
3468 rtx loop_start, loop_end;
3469 struct loop_info *loop_info;
3470 {
3471 rtx comparison, comparison_value;
3472 rtx iteration_var, initial_value, increment, final_value;
3473 enum rtx_code comparison_code;
3474 HOST_WIDE_INT abs_inc;
3475 unsigned HOST_WIDE_INT abs_diff;
3476 int off_by_one;
3477 int increment_dir;
3478 int unsigned_p, compare_dir, final_larger;
3479 rtx last_loop_insn;
3480 rtx vtop;
3481 rtx reg_term;
3482
3483 loop_info->n_iterations = 0;
3484 loop_info->initial_value = 0;
3485 loop_info->initial_equiv_value = 0;
3486 loop_info->comparison_value = 0;
3487 loop_info->final_value = 0;
3488 loop_info->final_equiv_value = 0;
3489 loop_info->increment = 0;
3490 loop_info->iteration_var = 0;
3491 loop_info->unroll_number = 1;
3492 loop_info->vtop = 0;
3493
3494 /* First find the iteration variable. If the last insn is a conditional
3495 branch, and the insn before tests a register value, make that the
3496 iteration variable. */
3497
3498 /* We used to use prev_nonnote_insn here, but that fails because it might
3499 accidentally get the branch for a contained loop if the branch for this
3500 loop was deleted. We can only trust branches immediately before the
3501 loop_end. */
3502 last_loop_insn = PREV_INSN (loop_end);
3503
3504 comparison = get_condition_for_loop (last_loop_insn);
3505 if (comparison == 0)
3506 {
3507 if (loop_dump_stream)
3508 fprintf (loop_dump_stream,
3509 "Loop iterations: No final conditional branch found.\n");
3510 return 0;
3511 }
3512
3513 /* ??? Get_condition may switch position of induction variable and
3514 invariant register when it canonicalizes the comparison. */
3515
3516 comparison_code = GET_CODE (comparison);
3517 iteration_var = XEXP (comparison, 0);
3518 comparison_value = XEXP (comparison, 1);
3519
3520 /* Check if there is a NOTE_INSN_LOOP_VTOP note. If there is,
3521 that means that this is a for or while style loop, with
3522 a loop exit test at the start. Thus, we can assume that
3523 the loop condition was true when the loop was entered.
3524
3525 We start at the end and search backwards for the previous
3526 NOTE. If there is no NOTE_INSN_LOOP_VTOP for this loop,
3527 the search will stop at the NOTE_INSN_LOOP_CONT. */
3528 vtop = loop_end;
3529 do
3530 vtop = PREV_INSN (vtop);
3531 while (GET_CODE (vtop) != NOTE
3532 || NOTE_LINE_NUMBER (vtop) > 0
3533 || NOTE_LINE_NUMBER (vtop) == NOTE_REPEATED_LINE_NUMBER
3534 || NOTE_LINE_NUMBER (vtop) == NOTE_INSN_DELETED);
3535 if (NOTE_LINE_NUMBER (vtop) != NOTE_INSN_LOOP_VTOP)
3536 vtop = NULL_RTX;
3537 loop_info->vtop = vtop;
3538
3539 if (GET_CODE (iteration_var) != REG)
3540 {
3541 if (loop_dump_stream)
3542 fprintf (loop_dump_stream,
3543 "Loop iterations: Comparison not against register.\n");
3544 return 0;
3545 }
3546
3547 /* Loop iterations is always called before any new registers are created
3548 now, so this should never occur. */
3549
3550 if (REGNO (iteration_var) >= max_reg_before_loop)
3551 abort ();
3552
3553 iteration_info (iteration_var, &initial_value, &increment,
3554 loop_start, loop_end);
3555 if (initial_value == 0)
3556 /* iteration_info already printed a message. */
3557 return 0;
3558
3559 unsigned_p = 0;
3560 off_by_one = 0;
3561 switch (comparison_code)
3562 {
3563 case LEU:
3564 unsigned_p = 1;
3565 case LE:
3566 compare_dir = 1;
3567 off_by_one = 1;
3568 break;
3569 case GEU:
3570 unsigned_p = 1;
3571 case GE:
3572 compare_dir = -1;
3573 off_by_one = -1;
3574 break;
3575 case EQ:
3576 /* Cannot determine loop iterations with this case. */
3577 compare_dir = 0;
3578 break;
3579 case LTU:
3580 unsigned_p = 1;
3581 case LT:
3582 compare_dir = 1;
3583 break;
3584 case GTU:
3585 unsigned_p = 1;
3586 case GT:
3587 compare_dir = -1;
3588 case NE:
3589 compare_dir = 0;
3590 break;
3591 default:
3592 abort ();
3593 }
3594
3595 /* If the comparison value is an invariant register, then try to find
3596 its value from the insns before the start of the loop. */
3597
3598 final_value = comparison_value;
3599 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3600 {
3601 final_value = loop_find_equiv_value (loop_start, comparison_value);
3602 /* If we don't get an invariant final value, we are better
3603 off with the original register. */
3604 if (!invariant_p (final_value))
3605 final_value = comparison_value;
3606 }
3607
3608 /* Calculate the approximate final value of the induction variable
3609 (on the last successful iteration). The exact final value
3610 depends on the branch operator, and increment sign. It will be
3611 wrong if the iteration variable is not incremented by one each
3612 time through the loop and (comparison_value + off_by_one -
3613 initial_value) % increment != 0.
3614 ??? Note that the final_value may overflow and thus final_larger
3615 will be bogus. A potentially infinite loop will be classified
3616 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3617 if (off_by_one)
3618 final_value = plus_constant (final_value, off_by_one);
3619
3620 /* Save the calculated values describing this loop's bounds, in case
3621 precondition_loop_p will need them later. These values can not be
3622 recalculated inside precondition_loop_p because strength reduction
3623 optimizations may obscure the loop's structure.
3624
3625 These values are only required by precondition_loop_p and insert_bct
3626 whenever the number of iterations cannot be computed at compile time.
3627 Only the difference between final_value and initial_value is
3628 important. Note that final_value is only approximate. */
3629 loop_info->initial_value = initial_value;
3630 loop_info->comparison_value = comparison_value;
3631 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3632 loop_info->increment = increment;
3633 loop_info->iteration_var = iteration_var;
3634 loop_info->comparison_code = comparison_code;
3635
3636 /* Try to determine the iteration count for loops such
3637 as (for i = init; i < init + const; i++). When running the
3638 loop optimization twice, the first pass often converts simple
3639 loops into this form. */
3640
3641 if (REG_P (initial_value))
3642 {
3643 rtx reg1;
3644 rtx reg2;
3645 rtx const2;
3646
3647 reg1 = initial_value;
3648 if (GET_CODE (final_value) == PLUS)
3649 reg2 = XEXP (final_value, 0), const2 = XEXP (final_value, 1);
3650 else
3651 reg2 = final_value, const2 = const0_rtx;
3652
3653 /* Check for initial_value = reg1, final_value = reg2 + const2,
3654 where reg1 != reg2. */
3655 if (REG_P (reg2) && reg2 != reg1)
3656 {
3657 rtx temp;
3658
3659 /* Find what reg1 is equivalent to. Hopefully it will
3660 either be reg2 or reg2 plus a constant. */
3661 temp = loop_find_equiv_value (loop_start, reg1);
3662 if (find_common_reg_term (temp, reg2))
3663 initial_value = temp;
3664 else
3665 {
3666 /* Find what reg2 is equivalent to. Hopefully it will
3667 either be reg1 or reg1 plus a constant. Let's ignore
3668 the latter case for now since it is not so common. */
3669 temp = loop_find_equiv_value (loop_start, reg2);
3670 if (temp == loop_info->iteration_var)
3671 temp = initial_value;
3672 if (temp == reg1)
3673 final_value = (const2 == const0_rtx)
3674 ? reg1 : gen_rtx_PLUS (GET_MODE (reg1), reg1, const2);
3675 }
3676 }
3677 else if (loop_info->vtop && GET_CODE (reg2) == CONST_INT)
3678 {
3679 rtx temp;
3680
3681 /* When running the loop optimizer twice, check_dbra_loop
3682 further obfuscates reversible loops of the form:
3683 for (i = init; i < init + const; i++). We often end up with
3684 final_value = 0, initial_value = temp, temp = temp2 - init,
3685 where temp2 = init + const. If the loop has a vtop we
3686 can replace initial_value with const. */
3687
3688 temp = loop_find_equiv_value (loop_start, reg1);
3689 if (GET_CODE (temp) == MINUS && REG_P (XEXP (temp, 0)))
3690 {
3691 rtx temp2 = loop_find_equiv_value (loop_start, XEXP (temp, 0));
3692 if (GET_CODE (temp2) == PLUS
3693 && XEXP (temp2, 0) == XEXP (temp, 1))
3694 initial_value = XEXP (temp2, 1);
3695 }
3696 }
3697 }
3698
3699 /* If have initial_value = reg + const1 and final_value = reg +
3700 const2, then replace initial_value with const1 and final_value
3701 with const2. This should be safe since we are protected by the
3702 initial comparison before entering the loop if we have a vtop.
3703 For example, a + b < a + c is not equivalent to b < c for all a
3704 when using modulo arithmetic.
3705
3706 ??? Without a vtop we could still perform the optimization if we check
3707 the initial and final values carefully. */
3708 if (loop_info->vtop
3709 && (reg_term = find_common_reg_term (initial_value, final_value)))
3710 {
3711 initial_value = subtract_reg_term (initial_value, reg_term);
3712 final_value = subtract_reg_term (final_value, reg_term);
3713 }
3714
3715 loop_info->initial_equiv_value = initial_value;
3716 loop_info->final_equiv_value = final_value;
3717
3718 if (increment == 0)
3719 {
3720 if (loop_dump_stream)
3721 fprintf (loop_dump_stream,
3722 "Loop iterations: Increment value can't be calculated.\n");
3723 return 0;
3724 }
3725
3726 if (GET_CODE (increment) != CONST_INT)
3727 {
3728 increment = loop_find_equiv_value (loop_start, increment);
3729
3730 if (GET_CODE (increment) != CONST_INT)
3731 {
3732 if (loop_dump_stream)
3733 {
3734 fprintf (loop_dump_stream,
3735 "Loop iterations: Increment value not constant ");
3736 print_rtl (loop_dump_stream, increment);
3737 fprintf (loop_dump_stream, ".\n");
3738 }
3739 return 0;
3740 }
3741 loop_info->increment = increment;
3742 }
3743
3744 if (GET_CODE (initial_value) != CONST_INT)
3745 {
3746 if (loop_dump_stream)
3747 {
3748 fprintf (loop_dump_stream,
3749 "Loop iterations: Initial value not constant ");
3750 print_rtl (loop_dump_stream, initial_value);
3751 fprintf (loop_dump_stream, ".\n");
3752 }
3753 return 0;
3754 }
3755 else if (comparison_code == EQ)
3756 {
3757 if (loop_dump_stream)
3758 fprintf (loop_dump_stream,
3759 "Loop iterations: EQ comparison loop.\n");
3760 return 0;
3761 }
3762 else if (GET_CODE (final_value) != CONST_INT)
3763 {
3764 if (loop_dump_stream)
3765 {
3766 fprintf (loop_dump_stream,
3767 "Loop iterations: Final value not constant ");
3768 print_rtl (loop_dump_stream, final_value);
3769 fprintf (loop_dump_stream, ".\n");
3770 }
3771 return 0;
3772 }
3773
3774 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3775 if (unsigned_p)
3776 final_larger
3777 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3778 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3779 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3780 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3781 else
3782 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3783 - (INTVAL (final_value) < INTVAL (initial_value));
3784
3785 if (INTVAL (increment) > 0)
3786 increment_dir = 1;
3787 else if (INTVAL (increment) == 0)
3788 increment_dir = 0;
3789 else
3790 increment_dir = -1;
3791
3792 /* There are 27 different cases: compare_dir = -1, 0, 1;
3793 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3794 There are 4 normal cases, 4 reverse cases (where the iteration variable
3795 will overflow before the loop exits), 4 infinite loop cases, and 15
3796 immediate exit (0 or 1 iteration depending on loop type) cases.
3797 Only try to optimize the normal cases. */
3798
3799 /* (compare_dir/final_larger/increment_dir)
3800 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3801 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3802 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3803 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3804
3805 /* ?? If the meaning of reverse loops (where the iteration variable
3806 will overflow before the loop exits) is undefined, then could
3807 eliminate all of these special checks, and just always assume
3808 the loops are normal/immediate/infinite. Note that this means
3809 the sign of increment_dir does not have to be known. Also,
3810 since it does not really hurt if immediate exit loops or infinite loops
3811 are optimized, then that case could be ignored also, and hence all
3812 loops can be optimized.
3813
3814 According to ANSI Spec, the reverse loop case result is undefined,
3815 because the action on overflow is undefined.
3816
3817 See also the special test for NE loops below. */
3818
3819 if (final_larger == increment_dir && final_larger != 0
3820 && (final_larger == compare_dir || compare_dir == 0))
3821 /* Normal case. */
3822 ;
3823 else
3824 {
3825 if (loop_dump_stream)
3826 fprintf (loop_dump_stream,
3827 "Loop iterations: Not normal loop.\n");
3828 return 0;
3829 }
3830
3831 /* Calculate the number of iterations, final_value is only an approximation,
3832 so correct for that. Note that abs_diff and n_iterations are
3833 unsigned, because they can be as large as 2^n - 1. */
3834
3835 abs_inc = INTVAL (increment);
3836 if (abs_inc > 0)
3837 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3838 else if (abs_inc < 0)
3839 {
3840 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3841 abs_inc = -abs_inc;
3842 }
3843 else
3844 abort ();
3845
3846 /* For NE tests, make sure that the iteration variable won't miss
3847 the final value. If abs_diff mod abs_incr is not zero, then the
3848 iteration variable will overflow before the loop exits, and we
3849 can not calculate the number of iterations. */
3850 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3851 return 0;
3852
3853 /* Note that the number of iterations could be calculated using
3854 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3855 handle potential overflow of the summation. */
3856 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3857 return loop_info->n_iterations;
3858 }
3859
3860
3861 /* Replace uses of split bivs with their split pseudo register. This is
3862 for original instructions which remain after loop unrolling without
3863 copying. */
3864
3865 static rtx
3866 remap_split_bivs (x)
3867 rtx x;
3868 {
3869 register enum rtx_code code;
3870 register int i;
3871 register char *fmt;
3872
3873 if (x == 0)
3874 return x;
3875
3876 code = GET_CODE (x);
3877 switch (code)
3878 {
3879 case SCRATCH:
3880 case PC:
3881 case CC0:
3882 case CONST_INT:
3883 case CONST_DOUBLE:
3884 case CONST:
3885 case SYMBOL_REF:
3886 case LABEL_REF:
3887 return x;
3888
3889 case REG:
3890 #if 0
3891 /* If non-reduced/final-value givs were split, then this would also
3892 have to remap those givs also. */
3893 #endif
3894 if (REGNO (x) < max_reg_before_loop
3895 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3896 return reg_biv_class[REGNO (x)]->biv->src_reg;
3897 break;
3898
3899 default:
3900 break;
3901 }
3902
3903 fmt = GET_RTX_FORMAT (code);
3904 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3905 {
3906 if (fmt[i] == 'e')
3907 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3908 if (fmt[i] == 'E')
3909 {
3910 register int j;
3911 for (j = 0; j < XVECLEN (x, i); j++)
3912 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3913 }
3914 }
3915 return x;
3916 }
3917
3918 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3919 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3920 return 0. COPY_START is where we can start looking for the insns
3921 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3922 insns.
3923
3924 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3925 must dominate LAST_UID.
3926
3927 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3928 may not dominate LAST_UID.
3929
3930 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3931 must dominate LAST_UID. */
3932
3933 int
3934 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3935 int regno;
3936 int first_uid;
3937 int last_uid;
3938 rtx copy_start;
3939 rtx copy_end;
3940 {
3941 int passed_jump = 0;
3942 rtx p = NEXT_INSN (copy_start);
3943
3944 while (INSN_UID (p) != first_uid)
3945 {
3946 if (GET_CODE (p) == JUMP_INSN)
3947 passed_jump= 1;
3948 /* Could not find FIRST_UID. */
3949 if (p == copy_end)
3950 return 0;
3951 p = NEXT_INSN (p);
3952 }
3953
3954 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3955 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3956 || ! dead_or_set_regno_p (p, regno))
3957 return 0;
3958
3959 /* FIRST_UID is always executed. */
3960 if (passed_jump == 0)
3961 return 1;
3962
3963 while (INSN_UID (p) != last_uid)
3964 {
3965 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3966 can not be sure that FIRST_UID dominates LAST_UID. */
3967 if (GET_CODE (p) == CODE_LABEL)
3968 return 0;
3969 /* Could not find LAST_UID, but we reached the end of the loop, so
3970 it must be safe. */
3971 else if (p == copy_end)
3972 return 1;
3973 p = NEXT_INSN (p);
3974 }
3975
3976 /* FIRST_UID is always executed if LAST_UID is executed. */
3977 return 1;
3978 }