(find_splittable_givs): Pass mem_mode not mode to memory_address_p.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204
205 /* Try to unroll one loop and split induction variables in the loop.
206
207 The loop is described by the arguments LOOP_END, INSN_COUNT, and
208 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
209 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
210 indicates whether information generated in the strength reduction pass
211 is available.
212
213 This function is intended to be called from within `strength_reduce'
214 in loop.c. */
215
216 void
217 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
218 strength_reduce_p)
219 rtx loop_end;
220 int insn_count;
221 rtx loop_start;
222 rtx end_insert_before;
223 int strength_reduce_p;
224 {
225 int i, j, temp;
226 int unroll_number = 1;
227 rtx copy_start, copy_end;
228 rtx insn, copy, sequence, pattern, tem;
229 int max_labelno, max_insnno;
230 rtx insert_before;
231 struct inline_remap *map;
232 char *local_label;
233 int maxregnum;
234 int new_maxregnum;
235 rtx exit_label = 0;
236 rtx start_label;
237 struct iv_class *bl;
238 struct induction *v;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603
604 if (unroll_type == UNROLL_NAIVE
605 && GET_CODE (last_loop_insn) == BARRIER
606 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
607 {
608 /* In this case, we must copy the jump and barrier, because they will
609 not be converted to jumps to an immediately following label. */
610
611 insert_before = NEXT_INSN (last_loop_insn);
612 copy_end = last_loop_insn;
613 }
614
615 /* Allocate a translation table for the labels and insn numbers.
616 They will be filled in as we copy the insns in the loop. */
617
618 max_labelno = max_label_num ();
619 max_insnno = get_max_uid ();
620
621 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
622
623 /* Allocate the label map. */
624
625 if (max_labelno > 0)
626 {
627 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
628
629 local_label = (char *) alloca (max_labelno);
630 bzero (local_label, max_labelno);
631 }
632 else
633 map->label_map = 0;
634
635 /* Search the loop and mark all local labels, i.e. the ones which have to
636 be distinct labels when copied. For all labels which might be
637 non-local, set their label_map entries to point to themselves.
638 If they happen to be local their label_map entries will be overwritten
639 before the loop body is copied. The label_map entries for local labels
640 will be set to a different value each time the loop body is copied. */
641
642 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
643 {
644 if (GET_CODE (insn) == CODE_LABEL)
645 local_label[CODE_LABEL_NUMBER (insn)] = 1;
646 else if (GET_CODE (insn) == JUMP_INSN)
647 {
648 if (JUMP_LABEL (insn))
649 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
650 = JUMP_LABEL (insn);
651 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
653 {
654 rtx pat = PATTERN (insn);
655 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
656 int len = XVECLEN (pat, diff_vec_p);
657 rtx label;
658
659 for (i = 0; i < len; i++)
660 {
661 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
662 map->label_map[CODE_LABEL_NUMBER (label)] = label;
663 }
664 }
665 }
666 }
667
668 /* Allocate space for the insn map. */
669
670 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
671
672 /* Set this to zero, to indicate that we are doing loop unrolling,
673 not function inlining. */
674 map->inline_target = 0;
675
676 /* The register and constant maps depend on the number of registers
677 present, so the final maps can't be created until after
678 find_splittable_regs is called. However, they are needed for
679 preconditioning, so we create temporary maps when preconditioning
680 is performed. */
681
682 /* The preconditioning code may allocate two new pseudo registers. */
683 maxregnum = max_reg_num ();
684
685 /* Allocate and zero out the splittable_regs and addr_combined_regs
686 arrays. These must be zeroed here because they will be used if
687 loop preconditioning is performed, and must be zero for that case.
688
689 It is safe to do this here, since the extra registers created by the
690 preconditioning code and find_splittable_regs will never be used
691 to access the splittable_regs[] and addr_combined_regs[] arrays. */
692
693 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
694 bzero (splittable_regs, maxregnum * sizeof (rtx));
695 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
696 bzero (splittable_regs_updates, maxregnum * sizeof (int));
697 addr_combined_regs
698 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
699 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
700
701 /* If this loop requires exit tests when unrolled, check to see if we
702 can precondition the loop so as to make the exit tests unnecessary.
703 Just like variable splitting, this is not safe if the loop is entered
704 via a jump to the bottom. Also, can not do this if no strength
705 reduce info, because precondition_loop_p uses this info. */
706
707 /* Must copy the loop body for preconditioning before the following
708 find_splittable_regs call since that will emit insns which need to
709 be after the preconditioned loop copies, but immediately before the
710 unrolled loop copies. */
711
712 /* Also, it is not safe to split induction variables for the preconditioned
713 copies of the loop body. If we split induction variables, then the code
714 assumes that each induction variable can be represented as a function
715 of its initial value and the loop iteration number. This is not true
716 in this case, because the last preconditioned copy of the loop body
717 could be any iteration from the first up to the `unroll_number-1'th,
718 depending on the initial value of the iteration variable. Therefore
719 we can not split induction variables here, because we can not calculate
720 their value. Hence, this code must occur before find_splittable_regs
721 is called. */
722
723 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
724 {
725 rtx initial_value, final_value, increment;
726
727 if (precondition_loop_p (&initial_value, &final_value, &increment,
728 loop_start, loop_end))
729 {
730 register rtx diff, temp;
731 enum machine_mode mode;
732 rtx *labels;
733 int abs_inc, neg_inc;
734
735 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
736
737 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
738 map->const_age_map = (unsigned *) alloca (maxregnum
739 * sizeof (unsigned));
740 map->const_equiv_map_size = maxregnum;
741 global_const_equiv_map = map->const_equiv_map;
742
743 init_reg_map (map, maxregnum);
744
745 /* Limit loop unrolling to 4, since this will make 7 copies of
746 the loop body. */
747 if (unroll_number > 4)
748 unroll_number = 4;
749
750 /* Save the absolute value of the increment, and also whether or
751 not it is negative. */
752 neg_inc = 0;
753 abs_inc = INTVAL (increment);
754 if (abs_inc < 0)
755 {
756 abs_inc = - abs_inc;
757 neg_inc = 1;
758 }
759
760 start_sequence ();
761
762 /* Decide what mode to do these calculations in. Choose the larger
763 of final_value's mode and initial_value's mode, or a full-word if
764 both are constants. */
765 mode = GET_MODE (final_value);
766 if (mode == VOIDmode)
767 {
768 mode = GET_MODE (initial_value);
769 if (mode == VOIDmode)
770 mode = word_mode;
771 }
772 else if (mode != GET_MODE (initial_value)
773 && (GET_MODE_SIZE (mode)
774 < GET_MODE_SIZE (GET_MODE (initial_value))))
775 mode = GET_MODE (initial_value);
776
777 /* Calculate the difference between the final and initial values.
778 Final value may be a (plus (reg x) (const_int 1)) rtx.
779 Let the following cse pass simplify this if initial value is
780 a constant.
781
782 We must copy the final and initial values here to avoid
783 improperly shared rtl. */
784
785 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
786 copy_rtx (initial_value), NULL_RTX, 0,
787 OPTAB_LIB_WIDEN);
788
789 /* Now calculate (diff % (unroll * abs (increment))) by using an
790 and instruction. */
791 diff = expand_binop (GET_MODE (diff), and_optab, diff,
792 GEN_INT (unroll_number * abs_inc - 1),
793 NULL_RTX, 0, OPTAB_LIB_WIDEN);
794
795 /* Now emit a sequence of branches to jump to the proper precond
796 loop entry point. */
797
798 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
799 for (i = 0; i < unroll_number; i++)
800 labels[i] = gen_label_rtx ();
801
802 /* Assuming the unroll_number is 4, and the increment is 2, then
803 for a negative increment: for a positive increment:
804 diff = 0,1 precond 0 diff = 0,7 precond 0
805 diff = 2,3 precond 3 diff = 1,2 precond 1
806 diff = 4,5 precond 2 diff = 3,4 precond 2
807 diff = 6,7 precond 1 diff = 5,6 precond 3 */
808
809 /* We only need to emit (unroll_number - 1) branches here, the
810 last case just falls through to the following code. */
811
812 /* ??? This would give better code if we emitted a tree of branches
813 instead of the current linear list of branches. */
814
815 for (i = 0; i < unroll_number - 1; i++)
816 {
817 int cmp_const;
818
819 /* For negative increments, must invert the constant compared
820 against, except when comparing against zero. */
821 if (i == 0)
822 cmp_const = 0;
823 else if (neg_inc)
824 cmp_const = unroll_number - i;
825 else
826 cmp_const = i;
827
828 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
829 EQ, NULL_RTX, mode, 0, 0);
830
831 if (i == 0)
832 emit_jump_insn (gen_beq (labels[i]));
833 else if (neg_inc)
834 emit_jump_insn (gen_bge (labels[i]));
835 else
836 emit_jump_insn (gen_ble (labels[i]));
837 JUMP_LABEL (get_last_insn ()) = labels[i];
838 LABEL_NUSES (labels[i])++;
839 }
840
841 /* If the increment is greater than one, then we need another branch,
842 to handle other cases equivalent to 0. */
843
844 /* ??? This should be merged into the code above somehow to help
845 simplify the code here, and reduce the number of branches emitted.
846 For the negative increment case, the branch here could easily
847 be merged with the `0' case branch above. For the positive
848 increment case, it is not clear how this can be simplified. */
849
850 if (abs_inc != 1)
851 {
852 int cmp_const;
853
854 if (neg_inc)
855 cmp_const = abs_inc - 1;
856 else
857 cmp_const = abs_inc * (unroll_number - 1) + 1;
858
859 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
860 mode, 0, 0);
861
862 if (neg_inc)
863 emit_jump_insn (gen_ble (labels[0]));
864 else
865 emit_jump_insn (gen_bge (labels[0]));
866 JUMP_LABEL (get_last_insn ()) = labels[0];
867 LABEL_NUSES (labels[0])++;
868 }
869
870 sequence = gen_sequence ();
871 end_sequence ();
872 emit_insn_before (sequence, loop_start);
873
874 /* Only the last copy of the loop body here needs the exit
875 test, so set copy_end to exclude the compare/branch here,
876 and then reset it inside the loop when get to the last
877 copy. */
878
879 if (GET_CODE (last_loop_insn) == BARRIER)
880 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
881 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
882 {
883 #ifdef HAVE_cc0
884 /* The immediately preceding insn is a compare which we do not
885 want to copy. */
886 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
887 #else
888 /* The immediately preceding insn may not be a compare, so we
889 must copy it. */
890 copy_end = PREV_INSN (last_loop_insn);
891 #endif
892 }
893 else
894 abort ();
895
896 for (i = 1; i < unroll_number; i++)
897 {
898 emit_label_after (labels[unroll_number - i],
899 PREV_INSN (loop_start));
900
901 bzero (map->insn_map, max_insnno * sizeof (rtx));
902 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
903 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
904 map->const_age = 0;
905
906 for (j = 0; j < max_labelno; j++)
907 if (local_label[j])
908 map->label_map[j] = gen_label_rtx ();
909
910 /* The last copy needs the compare/branch insns at the end,
911 so reset copy_end here if the loop ends with a conditional
912 branch. */
913
914 if (i == unroll_number - 1)
915 {
916 if (GET_CODE (last_loop_insn) == BARRIER)
917 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
918 else
919 copy_end = last_loop_insn;
920 }
921
922 /* None of the copies are the `last_iteration', so just
923 pass zero for that parameter. */
924 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
925 unroll_type, start_label, loop_end,
926 loop_start, copy_end);
927 }
928 emit_label_after (labels[0], PREV_INSN (loop_start));
929
930 if (GET_CODE (last_loop_insn) == BARRIER)
931 {
932 insert_before = PREV_INSN (last_loop_insn);
933 copy_end = PREV_INSN (insert_before);
934 }
935 else
936 {
937 #ifdef HAVE_cc0
938 /* The immediately preceding insn is a compare which we do not
939 want to copy. */
940 insert_before = PREV_INSN (last_loop_insn);
941 copy_end = PREV_INSN (insert_before);
942 #else
943 /* The immediately preceding insn may not be a compare, so we
944 must copy it. */
945 insert_before = last_loop_insn;
946 copy_end = PREV_INSN (last_loop_insn);
947 #endif
948 }
949
950 /* Set unroll type to MODULO now. */
951 unroll_type = UNROLL_MODULO;
952 loop_preconditioned = 1;
953 }
954 }
955
956 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
957 the loop unless all loops are being unrolled. */
958 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
959 {
960 if (loop_dump_stream)
961 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
962 return;
963 }
964
965 /* At this point, we are guaranteed to unroll the loop. */
966
967 /* For each biv and giv, determine whether it can be safely split into
968 a different variable for each unrolled copy of the loop body.
969 We precalculate and save this info here, since computing it is
970 expensive.
971
972 Do this before deleting any instructions from the loop, so that
973 back_branch_in_range_p will work correctly. */
974
975 if (splitting_not_safe)
976 temp = 0;
977 else
978 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
979 end_insert_before, unroll_number);
980
981 /* find_splittable_regs may have created some new registers, so must
982 reallocate the reg_map with the new larger size, and must realloc
983 the constant maps also. */
984
985 maxregnum = max_reg_num ();
986 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
987
988 init_reg_map (map, maxregnum);
989
990 /* Space is needed in some of the map for new registers, so new_maxregnum
991 is an (over)estimate of how many registers will exist at the end. */
992 new_maxregnum = maxregnum + (temp * unroll_number * 2);
993
994 /* Must realloc space for the constant maps, because the number of registers
995 may have changed. */
996
997 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
998 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
999
1000 global_const_equiv_map = map->const_equiv_map;
1001
1002 /* Search the list of bivs and givs to find ones which need to be remapped
1003 when split, and set their reg_map entry appropriately. */
1004
1005 for (bl = loop_iv_list; bl; bl = bl->next)
1006 {
1007 if (REGNO (bl->biv->src_reg) != bl->regno)
1008 map->reg_map[bl->regno] = bl->biv->src_reg;
1009 #if 0
1010 /* Currently, non-reduced/final-value givs are never split. */
1011 for (v = bl->giv; v; v = v->next_iv)
1012 if (REGNO (v->src_reg) != bl->regno)
1013 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1014 #endif
1015 }
1016
1017 /* If the loop is being partially unrolled, and the iteration variables
1018 are being split, and are being renamed for the split, then must fix up
1019 the compare instruction at the end of the loop to refer to the new
1020 registers. This compare isn't copied, so the registers used in it
1021 will never be replaced if it isn't done here. */
1022
1023 if (unroll_type == UNROLL_MODULO)
1024 {
1025 insn = NEXT_INSN (copy_end);
1026 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET)
1027 {
1028 #if 0
1029 /* If non-reduced/final-value givs were split, then this would also
1030 have to remap those givs. */
1031 #endif
1032
1033 tem = SET_SRC (PATTERN (insn));
1034 /* The set source is a register. */
1035 if (GET_CODE (tem) == REG)
1036 {
1037 if (REGNO (tem) < max_reg_before_loop
1038 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1039 SET_SRC (PATTERN (insn))
1040 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1041 }
1042 else
1043 {
1044 /* The set source is a compare of some sort. */
1045 tem = XEXP (SET_SRC (PATTERN (insn)), 0);
1046 if (GET_CODE (tem) == REG
1047 && REGNO (tem) < max_reg_before_loop
1048 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1049 XEXP (SET_SRC (PATTERN (insn)), 0)
1050 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1051
1052 tem = XEXP (SET_SRC (PATTERN (insn)), 1);
1053 if (GET_CODE (tem) == REG
1054 && REGNO (tem) < max_reg_before_loop
1055 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1056 XEXP (SET_SRC (PATTERN (insn)), 1)
1057 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1058 }
1059 }
1060 }
1061
1062 /* For unroll_number - 1 times, make a copy of each instruction
1063 between copy_start and copy_end, and insert these new instructions
1064 before the end of the loop. */
1065
1066 for (i = 0; i < unroll_number; i++)
1067 {
1068 bzero (map->insn_map, max_insnno * sizeof (rtx));
1069 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1070 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1071 map->const_age = 0;
1072
1073 for (j = 0; j < max_labelno; j++)
1074 if (local_label[j])
1075 map->label_map[j] = gen_label_rtx ();
1076
1077 /* If loop starts with a branch to the test, then fix it so that
1078 it points to the test of the first unrolled copy of the loop. */
1079 if (i == 0 && loop_start != copy_start)
1080 {
1081 insn = PREV_INSN (copy_start);
1082 pattern = PATTERN (insn);
1083
1084 tem = map->label_map[CODE_LABEL_NUMBER
1085 (XEXP (SET_SRC (pattern), 0))];
1086 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1087
1088 /* Set the jump label so that it can be used by later loop unrolling
1089 passes. */
1090 JUMP_LABEL (insn) = tem;
1091 LABEL_NUSES (tem)++;
1092 }
1093
1094 copy_loop_body (copy_start, copy_end, map, exit_label,
1095 i == unroll_number - 1, unroll_type, start_label,
1096 loop_end, insert_before, insert_before);
1097 }
1098
1099 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1100 insn to be deleted. This prevents any runaway delete_insn call from
1101 more insns that it should, as it always stops at a CODE_LABEL. */
1102
1103 /* Delete the compare and branch at the end of the loop if completely
1104 unrolling the loop. Deleting the backward branch at the end also
1105 deletes the code label at the start of the loop. This is done at
1106 the very end to avoid problems with back_branch_in_range_p. */
1107
1108 if (unroll_type == UNROLL_COMPLETELY)
1109 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1110 else
1111 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1112
1113 /* Delete all of the original loop instructions. Don't delete the
1114 LOOP_BEG note, or the first code label in the loop. */
1115
1116 insn = NEXT_INSN (copy_start);
1117 while (insn != safety_label)
1118 {
1119 if (insn != start_label)
1120 insn = delete_insn (insn);
1121 else
1122 insn = NEXT_INSN (insn);
1123 }
1124
1125 /* Can now delete the 'safety' label emitted to protect us from runaway
1126 delete_insn calls. */
1127 if (INSN_DELETED_P (safety_label))
1128 abort ();
1129 delete_insn (safety_label);
1130
1131 /* If exit_label exists, emit it after the loop. Doing the emit here
1132 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1133 This is needed so that mostly_true_jump in reorg.c will treat jumps
1134 to this loop end label correctly, i.e. predict that they are usually
1135 not taken. */
1136 if (exit_label)
1137 emit_label_after (exit_label, loop_end);
1138 }
1139 \f
1140 /* Return true if the loop can be safely, and profitably, preconditioned
1141 so that the unrolled copies of the loop body don't need exit tests.
1142
1143 This only works if final_value, initial_value and increment can be
1144 determined, and if increment is a constant power of 2.
1145 If increment is not a power of 2, then the preconditioning modulo
1146 operation would require a real modulo instead of a boolean AND, and this
1147 is not considered `profitable'. */
1148
1149 /* ??? If the loop is known to be executed very many times, or the machine
1150 has a very cheap divide instruction, then preconditioning is a win even
1151 when the increment is not a power of 2. Use RTX_COST to compute
1152 whether divide is cheap. */
1153
1154 static int
1155 precondition_loop_p (initial_value, final_value, increment, loop_start,
1156 loop_end)
1157 rtx *initial_value, *final_value, *increment;
1158 rtx loop_start, loop_end;
1159 {
1160 int unsigned_compare, compare_dir;
1161
1162 if (loop_n_iterations > 0)
1163 {
1164 *initial_value = const0_rtx;
1165 *increment = const1_rtx;
1166 *final_value = GEN_INT (loop_n_iterations);
1167
1168 if (loop_dump_stream)
1169 fprintf (loop_dump_stream,
1170 "Preconditioning: Success, number of iterations known, %d.\n",
1171 loop_n_iterations);
1172 return 1;
1173 }
1174
1175 if (loop_initial_value == 0)
1176 {
1177 if (loop_dump_stream)
1178 fprintf (loop_dump_stream,
1179 "Preconditioning: Could not find initial value.\n");
1180 return 0;
1181 }
1182 else if (loop_increment == 0)
1183 {
1184 if (loop_dump_stream)
1185 fprintf (loop_dump_stream,
1186 "Preconditioning: Could not find increment value.\n");
1187 return 0;
1188 }
1189 else if (GET_CODE (loop_increment) != CONST_INT)
1190 {
1191 if (loop_dump_stream)
1192 fprintf (loop_dump_stream,
1193 "Preconditioning: Increment not a constant.\n");
1194 return 0;
1195 }
1196 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1197 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1198 {
1199 if (loop_dump_stream)
1200 fprintf (loop_dump_stream,
1201 "Preconditioning: Increment not a constant power of 2.\n");
1202 return 0;
1203 }
1204
1205 /* Unsigned_compare and compare_dir can be ignored here, since they do
1206 not matter for preconditioning. */
1207
1208 if (loop_final_value == 0)
1209 {
1210 if (loop_dump_stream)
1211 fprintf (loop_dump_stream,
1212 "Preconditioning: EQ comparison loop.\n");
1213 return 0;
1214 }
1215
1216 /* Must ensure that final_value is invariant, so call invariant_p to
1217 check. Before doing so, must check regno against max_reg_before_loop
1218 to make sure that the register is in the range covered by invariant_p.
1219 If it isn't, then it is most likely a biv/giv which by definition are
1220 not invariant. */
1221 if ((GET_CODE (loop_final_value) == REG
1222 && REGNO (loop_final_value) >= max_reg_before_loop)
1223 || (GET_CODE (loop_final_value) == PLUS
1224 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1225 || ! invariant_p (loop_final_value))
1226 {
1227 if (loop_dump_stream)
1228 fprintf (loop_dump_stream,
1229 "Preconditioning: Final value not invariant.\n");
1230 return 0;
1231 }
1232
1233 /* Fail for floating point values, since the caller of this function
1234 does not have code to deal with them. */
1235 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1236 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1237 {
1238 if (loop_dump_stream)
1239 fprintf (loop_dump_stream,
1240 "Preconditioning: Floating point final or initial value.\n");
1241 return 0;
1242 }
1243
1244 /* Now set initial_value to be the iteration_var, since that may be a
1245 simpler expression, and is guaranteed to be correct if all of the
1246 above tests succeed.
1247
1248 We can not use the initial_value as calculated, because it will be
1249 one too small for loops of the form "while (i-- > 0)". We can not
1250 emit code before the loop_skip_over insns to fix this problem as this
1251 will then give a number one too large for loops of the form
1252 "while (--i > 0)".
1253
1254 Note that all loops that reach here are entered at the top, because
1255 this function is not called if the loop starts with a jump. */
1256
1257 /* Fail if loop_iteration_var is not live before loop_start, since we need
1258 to test its value in the preconditioning code. */
1259
1260 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1261 > INSN_LUID (loop_start))
1262 {
1263 if (loop_dump_stream)
1264 fprintf (loop_dump_stream,
1265 "Preconditioning: Iteration var not live before loop start.\n");
1266 return 0;
1267 }
1268
1269 *initial_value = loop_iteration_var;
1270 *increment = loop_increment;
1271 *final_value = loop_final_value;
1272
1273 /* Success! */
1274 if (loop_dump_stream)
1275 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1276 return 1;
1277 }
1278
1279
1280 /* All pseudo-registers must be mapped to themselves. Two hard registers
1281 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1282 REGNUM, to avoid function-inlining specific conversions of these
1283 registers. All other hard regs can not be mapped because they may be
1284 used with different
1285 modes. */
1286
1287 static void
1288 init_reg_map (map, maxregnum)
1289 struct inline_remap *map;
1290 int maxregnum;
1291 {
1292 int i;
1293
1294 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1295 map->reg_map[i] = regno_reg_rtx[i];
1296 /* Just clear the rest of the entries. */
1297 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1298 map->reg_map[i] = 0;
1299
1300 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1301 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1302 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1303 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1304 }
1305 \f
1306 /* Strength-reduction will often emit code for optimized biv/givs which
1307 calculates their value in a temporary register, and then copies the result
1308 to the iv. This procedure reconstructs the pattern computing the iv;
1309 verifying that all operands are of the proper form.
1310
1311 The return value is the amount that the giv is incremented by. */
1312
1313 static rtx
1314 calculate_giv_inc (pattern, src_insn, regno)
1315 rtx pattern, src_insn;
1316 int regno;
1317 {
1318 rtx increment;
1319
1320 /* Verify that we have an increment insn here. First check for a plus
1321 as the set source. */
1322 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1323 {
1324 /* SR sometimes computes the new giv value in a temp, then copies it
1325 to the new_reg. */
1326 src_insn = PREV_INSN (src_insn);
1327 pattern = PATTERN (src_insn);
1328 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1329 abort ();
1330
1331 /* The last insn emitted is not needed, so delete it to avoid confusing
1332 the second cse pass. This insn sets the giv unnecessarily. */
1333 delete_insn (get_last_insn ());
1334 }
1335
1336 /* Verify that we have a constant as the second operand of the plus. */
1337 increment = XEXP (SET_SRC (pattern), 1);
1338 if (GET_CODE (increment) != CONST_INT)
1339 {
1340 /* SR sometimes puts the constant in a register, especially if it is
1341 too big to be an add immed operand. */
1342 increment = SET_SRC (PATTERN (PREV_INSN (src_insn)));
1343
1344 /* SR may have used LO_SUM to compute the constant if it is too large
1345 for a load immed operand. In this case, the constant is in operand
1346 one of the LO_SUM rtx. */
1347 if (GET_CODE (increment) == LO_SUM)
1348 increment = XEXP (increment, 1);
1349
1350 if (GET_CODE (increment) != CONST_INT)
1351 abort ();
1352
1353 /* The insn loading the constant into a register is not longer needed,
1354 so delete it. */
1355 delete_insn (get_last_insn ());
1356 }
1357
1358 /* Check that the source register is the same as the dest register. */
1359 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1360 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1361 abort ();
1362
1363 return increment;
1364 }
1365
1366
1367 /* Copy each instruction in the loop, substituting from map as appropriate.
1368 This is very similar to a loop in expand_inline_function. */
1369
1370 static void
1371 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1372 unroll_type, start_label, loop_end, insert_before,
1373 copy_notes_from)
1374 rtx copy_start, copy_end;
1375 struct inline_remap *map;
1376 rtx exit_label;
1377 int last_iteration;
1378 enum unroll_types unroll_type;
1379 rtx start_label, loop_end, insert_before, copy_notes_from;
1380 {
1381 rtx insn, pattern;
1382 rtx tem, copy;
1383 int dest_reg_was_split, i;
1384 rtx cc0_insn = 0;
1385 rtx final_label = 0;
1386 rtx giv_inc, giv_dest_reg, giv_src_reg;
1387
1388 /* If this isn't the last iteration, then map any references to the
1389 start_label to final_label. Final label will then be emitted immediately
1390 after the end of this loop body if it was ever used.
1391
1392 If this is the last iteration, then map references to the start_label
1393 to itself. */
1394 if (! last_iteration)
1395 {
1396 final_label = gen_label_rtx ();
1397 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1398 }
1399 else
1400 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1401
1402 start_sequence ();
1403
1404 insn = copy_start;
1405 do
1406 {
1407 insn = NEXT_INSN (insn);
1408
1409 map->orig_asm_operands_vector = 0;
1410
1411 switch (GET_CODE (insn))
1412 {
1413 case INSN:
1414 pattern = PATTERN (insn);
1415 copy = 0;
1416 giv_inc = 0;
1417
1418 /* Check to see if this is a giv that has been combined with
1419 some split address givs. (Combined in the sense that
1420 `combine_givs' in loop.c has put two givs in the same register.)
1421 In this case, we must search all givs based on the same biv to
1422 find the address givs. Then split the address givs.
1423 Do this before splitting the giv, since that may map the
1424 SET_DEST to a new register. */
1425
1426 if (GET_CODE (pattern) == SET
1427 && GET_CODE (SET_DEST (pattern)) == REG
1428 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1429 {
1430 struct iv_class *bl;
1431 struct induction *v, *tv;
1432 int regno = REGNO (SET_DEST (pattern));
1433
1434 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1435 bl = reg_biv_class[REGNO (v->src_reg)];
1436
1437 /* Although the giv_inc amount is not needed here, we must call
1438 calculate_giv_inc here since it might try to delete the
1439 last insn emitted. If we wait until later to call it,
1440 we might accidentally delete insns generated immediately
1441 below by emit_unrolled_add. */
1442
1443 giv_inc = calculate_giv_inc (pattern, insn, regno);
1444
1445 /* Now find all address giv's that were combined with this
1446 giv 'v'. */
1447 for (tv = bl->giv; tv; tv = tv->next_iv)
1448 if (tv->giv_type == DEST_ADDR && tv->same == v)
1449 {
1450 int this_giv_inc = INTVAL (giv_inc);
1451
1452 /* Scale this_giv_inc if the multiplicative factors of
1453 the two givs are different. */
1454 if (tv->mult_val != v->mult_val)
1455 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1456 * INTVAL (tv->mult_val));
1457
1458 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1459 *tv->location = tv->dest_reg;
1460
1461 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1462 {
1463 /* Must emit an insn to increment the split address
1464 giv. Add in the const_adjust field in case there
1465 was a constant eliminated from the address. */
1466 rtx value, dest_reg;
1467
1468 /* tv->dest_reg will be either a bare register,
1469 or else a register plus a constant. */
1470 if (GET_CODE (tv->dest_reg) == REG)
1471 dest_reg = tv->dest_reg;
1472 else
1473 dest_reg = XEXP (tv->dest_reg, 0);
1474
1475 /* tv->dest_reg may actually be a (PLUS (REG) (CONST))
1476 here, so we must call plus_constant to add
1477 the const_adjust amount before calling
1478 emit_unrolled_add below. */
1479 value = plus_constant (tv->dest_reg, tv->const_adjust);
1480
1481 /* The constant could be too large for an add
1482 immediate, so can't directly emit an insn here. */
1483 emit_unrolled_add (dest_reg, XEXP (value, 0),
1484 XEXP (value, 1));
1485
1486 /* Reset the giv to be just the register again, in case
1487 it is used after the set we have just emitted.
1488 We must subtract the const_adjust factor added in
1489 above. */
1490 tv->dest_reg = plus_constant (dest_reg,
1491 - tv->const_adjust);
1492 *tv->location = tv->dest_reg;
1493 }
1494 }
1495 }
1496
1497 /* If this is a setting of a splittable variable, then determine
1498 how to split the variable, create a new set based on this split,
1499 and set up the reg_map so that later uses of the variable will
1500 use the new split variable. */
1501
1502 dest_reg_was_split = 0;
1503
1504 if (GET_CODE (pattern) == SET
1505 && GET_CODE (SET_DEST (pattern)) == REG
1506 && splittable_regs[REGNO (SET_DEST (pattern))])
1507 {
1508 int regno = REGNO (SET_DEST (pattern));
1509
1510 dest_reg_was_split = 1;
1511
1512 /* Compute the increment value for the giv, if it wasn't
1513 already computed above. */
1514
1515 if (giv_inc == 0)
1516 giv_inc = calculate_giv_inc (pattern, insn, regno);
1517 giv_dest_reg = SET_DEST (pattern);
1518 giv_src_reg = SET_DEST (pattern);
1519
1520 if (unroll_type == UNROLL_COMPLETELY)
1521 {
1522 /* Completely unrolling the loop. Set the induction
1523 variable to a known constant value. */
1524
1525 /* The value in splittable_regs may be an invariant
1526 value, so we must use plus_constant here. */
1527 splittable_regs[regno]
1528 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1529
1530 if (GET_CODE (splittable_regs[regno]) == PLUS)
1531 {
1532 giv_src_reg = XEXP (splittable_regs[regno], 0);
1533 giv_inc = XEXP (splittable_regs[regno], 1);
1534 }
1535 else
1536 {
1537 /* The splittable_regs value must be a REG or a
1538 CONST_INT, so put the entire value in the giv_src_reg
1539 variable. */
1540 giv_src_reg = splittable_regs[regno];
1541 giv_inc = const0_rtx;
1542 }
1543 }
1544 else
1545 {
1546 /* Partially unrolling loop. Create a new pseudo
1547 register for the iteration variable, and set it to
1548 be a constant plus the original register. Except
1549 on the last iteration, when the result has to
1550 go back into the original iteration var register. */
1551
1552 /* Handle bivs which must be mapped to a new register
1553 when split. This happens for bivs which need their
1554 final value set before loop entry. The new register
1555 for the biv was stored in the biv's first struct
1556 induction entry by find_splittable_regs. */
1557
1558 if (regno < max_reg_before_loop
1559 && reg_iv_type[regno] == BASIC_INDUCT)
1560 {
1561 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1562 giv_dest_reg = giv_src_reg;
1563 }
1564
1565 #if 0
1566 /* If non-reduced/final-value givs were split, then
1567 this would have to remap those givs also. See
1568 find_splittable_regs. */
1569 #endif
1570
1571 splittable_regs[regno]
1572 = GEN_INT (INTVAL (giv_inc)
1573 + INTVAL (splittable_regs[regno]));
1574 giv_inc = splittable_regs[regno];
1575
1576 /* Now split the induction variable by changing the dest
1577 of this insn to a new register, and setting its
1578 reg_map entry to point to this new register.
1579
1580 If this is the last iteration, and this is the last insn
1581 that will update the iv, then reuse the original dest,
1582 to ensure that the iv will have the proper value when
1583 the loop exits or repeats.
1584
1585 Using splittable_regs_updates here like this is safe,
1586 because it can only be greater than one if all
1587 instructions modifying the iv are always executed in
1588 order. */
1589
1590 if (! last_iteration
1591 || (splittable_regs_updates[regno]-- != 1))
1592 {
1593 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1594 giv_dest_reg = tem;
1595 map->reg_map[regno] = tem;
1596 }
1597 else
1598 map->reg_map[regno] = giv_src_reg;
1599 }
1600
1601 /* The constant being added could be too large for an add
1602 immediate, so can't directly emit an insn here. */
1603 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1604 copy = get_last_insn ();
1605 pattern = PATTERN (copy);
1606 }
1607 else
1608 {
1609 pattern = copy_rtx_and_substitute (pattern, map);
1610 copy = emit_insn (pattern);
1611 }
1612 /* REG_NOTES will be copied later. */
1613
1614 #ifdef HAVE_cc0
1615 /* If this insn is setting CC0, it may need to look at
1616 the insn that uses CC0 to see what type of insn it is.
1617 In that case, the call to recog via validate_change will
1618 fail. So don't substitute constants here. Instead,
1619 do it when we emit the following insn.
1620
1621 For example, see the pyr.md file. That machine has signed and
1622 unsigned compares. The compare patterns must check the
1623 following branch insn to see which what kind of compare to
1624 emit.
1625
1626 If the previous insn set CC0, substitute constants on it as
1627 well. */
1628 if (sets_cc0_p (copy) != 0)
1629 cc0_insn = copy;
1630 else
1631 {
1632 if (cc0_insn)
1633 try_constants (cc0_insn, map);
1634 cc0_insn = 0;
1635 try_constants (copy, map);
1636 }
1637 #else
1638 try_constants (copy, map);
1639 #endif
1640
1641 /* Make split induction variable constants `permanent' since we
1642 know there are no backward branches across iteration variable
1643 settings which would invalidate this. */
1644 if (dest_reg_was_split)
1645 {
1646 int regno = REGNO (SET_DEST (pattern));
1647
1648 if (map->const_age_map[regno] == map->const_age)
1649 map->const_age_map[regno] = -1;
1650 }
1651 break;
1652
1653 case JUMP_INSN:
1654 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1655 && ! last_iteration)
1656 {
1657 /* This is a branch to the beginning of the loop; this is the
1658 last insn being copied; and this is not the last iteration.
1659 In this case, we want to change the original fall through
1660 case to be a branch past the end of the loop, and the
1661 original jump label case to fall_through. */
1662
1663 int fall_through;
1664
1665 /* Never map the label in this case. */
1666 rtx tmp_pattern = copy_rtx (PATTERN (insn));
1667
1668 /* Set the fall through case to the exit label. If we
1669 can't do this in place, abort for now. Maybe
1670 we can do something more sophisticated eventually. */
1671
1672 if (! invert_exp (tmp_pattern, insn)
1673 || ! redirect_exp (&tmp_pattern, JUMP_LABEL (insn),
1674 exit_label, insn))
1675 abort ();
1676
1677 pattern = tmp_pattern;
1678 }
1679 else
1680 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1681
1682 copy = emit_jump_insn (pattern);
1683
1684 #ifdef HAVE_cc0
1685 if (cc0_insn)
1686 try_constants (cc0_insn, map);
1687 cc0_insn = 0;
1688 #endif
1689 try_constants (copy, map);
1690
1691 /* Set the jump label of COPY correctly to avoid problems with
1692 later passes of unroll_loop, if INSN had jump label set. */
1693 if (JUMP_LABEL (insn))
1694 {
1695 rtx label = 0;
1696
1697 /* Can't use the label_map for every insn, since this may be
1698 the backward branch, and hence the label was not mapped. */
1699 if (GET_CODE (pattern) == SET)
1700 {
1701 tem = SET_SRC (pattern);
1702 if (GET_CODE (tem) == LABEL_REF)
1703 label = XEXP (tem, 0);
1704 else if (GET_CODE (tem) == IF_THEN_ELSE)
1705 {
1706 if (XEXP (tem, 1) != pc_rtx)
1707 label = XEXP (XEXP (tem, 1), 0);
1708 else
1709 label = XEXP (XEXP (tem, 2), 0);
1710 }
1711 else
1712 abort ();
1713 }
1714
1715 if (label && GET_CODE (label) == CODE_LABEL)
1716 JUMP_LABEL (copy) = label;
1717 else
1718 {
1719 /* An unrecognizable jump insn, probably the entry jump
1720 for a switch statement. This label must have been mapped,
1721 so just use the label_map to get the new jump label. */
1722 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1723 (JUMP_LABEL (insn))];
1724 }
1725
1726 /* If this is a non-local jump, then must increase the label
1727 use count so that the label will not be deleted when the
1728 original jump is deleted. */
1729 LABEL_NUSES (JUMP_LABEL (copy))++;
1730 }
1731 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1732 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1733 {
1734 rtx pat = PATTERN (copy);
1735 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1736 int len = XVECLEN (pat, diff_vec_p);
1737 int i;
1738
1739 for (i = 0; i < len; i++)
1740 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1741 }
1742
1743 /* If this used to be a conditional jump insn but whose branch
1744 direction is now known, we must do something special. */
1745 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1746 {
1747 #ifdef HAVE_cc0
1748 /* The previous insn set cc0 for us. So delete it. */
1749 delete_insn (PREV_INSN (copy));
1750 #endif
1751
1752 /* If this is now a no-op, delete it. */
1753 if (map->last_pc_value == pc_rtx)
1754 {
1755 delete_insn (copy);
1756 copy = 0;
1757 }
1758 else
1759 /* Otherwise, this is unconditional jump so we must put a
1760 BARRIER after it. We could do some dead code elimination
1761 here, but jump.c will do it just as well. */
1762 emit_barrier ();
1763 }
1764 break;
1765
1766 case CALL_INSN:
1767 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1768 copy = emit_call_insn (pattern);
1769
1770 #ifdef HAVE_cc0
1771 if (cc0_insn)
1772 try_constants (cc0_insn, map);
1773 cc0_insn = 0;
1774 #endif
1775 try_constants (copy, map);
1776
1777 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1778 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1779 map->const_equiv_map[i] = 0;
1780 break;
1781
1782 case CODE_LABEL:
1783 /* If this is the loop start label, then we don't need to emit a
1784 copy of this label since no one will use it. */
1785
1786 if (insn != start_label)
1787 {
1788 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1789 map->const_age++;
1790 }
1791 break;
1792
1793 case BARRIER:
1794 copy = emit_barrier ();
1795 break;
1796
1797 case NOTE:
1798 /* VTOP notes are valid only before the loop exit test. If placed
1799 anywhere else, loop may generate bad code. */
1800
1801 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1802 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1803 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1804 copy = emit_note (NOTE_SOURCE_FILE (insn),
1805 NOTE_LINE_NUMBER (insn));
1806 else
1807 copy = 0;
1808 break;
1809
1810 default:
1811 abort ();
1812 break;
1813 }
1814
1815 map->insn_map[INSN_UID (insn)] = copy;
1816 }
1817 while (insn != copy_end);
1818
1819 /* Now copy the REG_NOTES. */
1820 insn = copy_start;
1821 do
1822 {
1823 insn = NEXT_INSN (insn);
1824 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1825 || GET_CODE (insn) == CALL_INSN)
1826 && map->insn_map[INSN_UID (insn)])
1827 REG_NOTES (map->insn_map[INSN_UID (insn)])
1828 = copy_rtx_and_substitute (REG_NOTES (insn), map);
1829 }
1830 while (insn != copy_end);
1831
1832 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1833 each of these notes here, since there may be some important ones, such as
1834 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1835 iteration, because the original notes won't be deleted.
1836
1837 We can't use insert_before here, because when from preconditioning,
1838 insert_before points before the loop. We can't use copy_end, because
1839 there may be insns already inserted after it (which we don't want to
1840 copy) when not from preconditioning code. */
1841
1842 if (! last_iteration)
1843 {
1844 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1845 {
1846 if (GET_CODE (insn) == NOTE
1847 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1848 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1849 }
1850 }
1851
1852 if (final_label && LABEL_NUSES (final_label) > 0)
1853 emit_label (final_label);
1854
1855 tem = gen_sequence ();
1856 end_sequence ();
1857 emit_insn_before (tem, insert_before);
1858 }
1859 \f
1860 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1861 emitted. This will correctly handle the case where the increment value
1862 won't fit in the immediate field of a PLUS insns. */
1863
1864 void
1865 emit_unrolled_add (dest_reg, src_reg, increment)
1866 rtx dest_reg, src_reg, increment;
1867 {
1868 rtx result;
1869
1870 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1871 dest_reg, 0, OPTAB_LIB_WIDEN);
1872
1873 if (dest_reg != result)
1874 emit_move_insn (dest_reg, result);
1875 }
1876 \f
1877 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1878 is a backward branch in that range that branches to somewhere between
1879 LOOP_START and INSN. Returns 0 otherwise. */
1880
1881 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1882 In practice, this is not a problem, because this function is seldom called,
1883 and uses a negligible amount of CPU time on average. */
1884
1885 static int
1886 back_branch_in_range_p (insn, loop_start, loop_end)
1887 rtx insn;
1888 rtx loop_start, loop_end;
1889 {
1890 rtx p, q, target_insn;
1891
1892 /* Stop before we get to the backward branch at the end of the loop. */
1893 loop_end = prev_nonnote_insn (loop_end);
1894 if (GET_CODE (loop_end) == BARRIER)
1895 loop_end = PREV_INSN (loop_end);
1896
1897 /* Check in case insn has been deleted, search forward for first non
1898 deleted insn following it. */
1899 while (INSN_DELETED_P (insn))
1900 insn = NEXT_INSN (insn);
1901
1902 /* Check for the case where insn is the last insn in the loop. */
1903 if (insn == loop_end)
1904 return 0;
1905
1906 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1907 {
1908 if (GET_CODE (p) == JUMP_INSN)
1909 {
1910 target_insn = JUMP_LABEL (p);
1911
1912 /* Search from loop_start to insn, to see if one of them is
1913 the target_insn. We can't use INSN_LUID comparisons here,
1914 since insn may not have an LUID entry. */
1915 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1916 if (q == target_insn)
1917 return 1;
1918 }
1919 }
1920
1921 return 0;
1922 }
1923
1924 /* Try to generate the simplest rtx for the expression
1925 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1926 value of giv's. */
1927
1928 static rtx
1929 fold_rtx_mult_add (mult1, mult2, add1, mode)
1930 rtx mult1, mult2, add1;
1931 enum machine_mode mode;
1932 {
1933 rtx temp, mult_res;
1934 rtx result;
1935
1936 /* The modes must all be the same. This should always be true. For now,
1937 check to make sure. */
1938 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
1939 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
1940 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
1941 abort ();
1942
1943 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
1944 will be a constant. */
1945 if (GET_CODE (mult1) == CONST_INT)
1946 {
1947 temp = mult2;
1948 mult2 = mult1;
1949 mult1 = temp;
1950 }
1951
1952 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
1953 if (! mult_res)
1954 mult_res = gen_rtx (MULT, mode, mult1, mult2);
1955
1956 /* Again, put the constant second. */
1957 if (GET_CODE (add1) == CONST_INT)
1958 {
1959 temp = add1;
1960 add1 = mult_res;
1961 mult_res = temp;
1962 }
1963
1964 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
1965 if (! result)
1966 result = gen_rtx (PLUS, mode, add1, mult_res);
1967
1968 return result;
1969 }
1970
1971 /* Searches the list of induction struct's for the biv BL, to try to calculate
1972 the total increment value for one iteration of the loop as a constant.
1973
1974 Returns the increment value as an rtx, simplified as much as possible,
1975 if it can be calculated. Otherwise, returns 0. */
1976
1977 rtx
1978 biv_total_increment (bl, loop_start, loop_end)
1979 struct iv_class *bl;
1980 rtx loop_start, loop_end;
1981 {
1982 struct induction *v;
1983 rtx result;
1984
1985 /* For increment, must check every instruction that sets it. Each
1986 instruction must be executed only once each time through the loop.
1987 To verify this, we check that the the insn is always executed, and that
1988 there are no backward branches after the insn that branch to before it.
1989 Also, the insn must have a mult_val of one (to make sure it really is
1990 an increment). */
1991
1992 result = const0_rtx;
1993 for (v = bl->biv; v; v = v->next_iv)
1994 {
1995 if (v->always_computable && v->mult_val == const1_rtx
1996 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
1997 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
1998 else
1999 return 0;
2000 }
2001
2002 return result;
2003 }
2004
2005 /* Determine the initial value of the iteration variable, and the amount
2006 that it is incremented each loop. Use the tables constructed by
2007 the strength reduction pass to calculate these values.
2008
2009 Initial_value and/or increment are set to zero if their values could not
2010 be calculated. */
2011
2012 static void
2013 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2014 rtx iteration_var, *initial_value, *increment;
2015 rtx loop_start, loop_end;
2016 {
2017 struct iv_class *bl;
2018 struct induction *v, *b;
2019
2020 /* Clear the result values, in case no answer can be found. */
2021 *initial_value = 0;
2022 *increment = 0;
2023
2024 /* The iteration variable can be either a giv or a biv. Check to see
2025 which it is, and compute the variable's initial value, and increment
2026 value if possible. */
2027
2028 /* If this is a new register, can't handle it since we don't have any
2029 reg_iv_type entry for it. */
2030 if (REGNO (iteration_var) >= max_reg_before_loop)
2031 {
2032 if (loop_dump_stream)
2033 fprintf (loop_dump_stream,
2034 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2035 return;
2036 }
2037 /* Reject iteration variables larger than the host long size, since they
2038 could result in a number of iterations greater than the range of our
2039 `unsigned long' variable loop_n_iterations. */
2040 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2041 {
2042 if (loop_dump_stream)
2043 fprintf (loop_dump_stream,
2044 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2045 return;
2046 }
2047 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2048 {
2049 if (loop_dump_stream)
2050 fprintf (loop_dump_stream,
2051 "Loop unrolling: Iteration var not an integer.\n");
2052 return;
2053 }
2054 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2055 {
2056 /* Grab initial value, only useful if it is a constant. */
2057 bl = reg_biv_class[REGNO (iteration_var)];
2058 *initial_value = bl->initial_value;
2059
2060 *increment = biv_total_increment (bl, loop_start, loop_end);
2061 }
2062 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2063 {
2064 #if 1
2065 /* ??? The code below does not work because the incorrect number of
2066 iterations is calculated when the biv is incremented after the giv
2067 is set (which is the usual case). This can probably be accounted
2068 for by biasing the initial_value by subtracting the amount of the
2069 increment that occurs between the giv set and the giv test. However,
2070 a giv as an iterator is very rare, so it does not seem worthwhile
2071 to handle this. */
2072 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2073 if (loop_dump_stream)
2074 fprintf (loop_dump_stream,
2075 "Loop unrolling: Giv iterators are not handled.\n");
2076 return;
2077 #else
2078 /* Initial value is mult_val times the biv's initial value plus
2079 add_val. Only useful if it is a constant. */
2080 v = reg_iv_info[REGNO (iteration_var)];
2081 bl = reg_biv_class[REGNO (v->src_reg)];
2082 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2083 v->add_val, v->mode);
2084
2085 /* Increment value is mult_val times the increment value of the biv. */
2086
2087 *increment = biv_total_increment (bl, loop_start, loop_end);
2088 if (*increment)
2089 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2090 v->mode);
2091 #endif
2092 }
2093 else
2094 {
2095 if (loop_dump_stream)
2096 fprintf (loop_dump_stream,
2097 "Loop unrolling: Not basic or general induction var.\n");
2098 return;
2099 }
2100 }
2101
2102 /* Calculate the approximate final value of the iteration variable
2103 which has an loop exit test with code COMPARISON_CODE and comparison value
2104 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2105 was signed or unsigned, and the direction of the comparison. This info is
2106 needed to calculate the number of loop iterations. */
2107
2108 static rtx
2109 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2110 enum rtx_code comparison_code;
2111 rtx comparison_value;
2112 int *unsigned_p;
2113 int *compare_dir;
2114 {
2115 /* Calculate the final value of the induction variable.
2116 The exact final value depends on the branch operator, and increment sign.
2117 This is only an approximate value. It will be wrong if the iteration
2118 variable is not incremented by one each time through the loop, and
2119 approx final value - start value % increment != 0. */
2120
2121 *unsigned_p = 0;
2122 switch (comparison_code)
2123 {
2124 case LEU:
2125 *unsigned_p = 1;
2126 case LE:
2127 *compare_dir = 1;
2128 return plus_constant (comparison_value, 1);
2129 case GEU:
2130 *unsigned_p = 1;
2131 case GE:
2132 *compare_dir = -1;
2133 return plus_constant (comparison_value, -1);
2134 case EQ:
2135 /* Can not calculate a final value for this case. */
2136 *compare_dir = 0;
2137 return 0;
2138 case LTU:
2139 *unsigned_p = 1;
2140 case LT:
2141 *compare_dir = 1;
2142 return comparison_value;
2143 break;
2144 case GTU:
2145 *unsigned_p = 1;
2146 case GT:
2147 *compare_dir = -1;
2148 return comparison_value;
2149 case NE:
2150 *compare_dir = 0;
2151 return comparison_value;
2152 default:
2153 abort ();
2154 }
2155 }
2156
2157 /* For each biv and giv, determine whether it can be safely split into
2158 a different variable for each unrolled copy of the loop body. If it
2159 is safe to split, then indicate that by saving some useful info
2160 in the splittable_regs array.
2161
2162 If the loop is being completely unrolled, then splittable_regs will hold
2163 the current value of the induction variable while the loop is unrolled.
2164 It must be set to the initial value of the induction variable here.
2165 Otherwise, splittable_regs will hold the difference between the current
2166 value of the induction variable and the value the induction variable had
2167 at the top of the loop. It must be set to the value 0 here. */
2168
2169 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2170 constant values are unnecessary, since we can easily calculate increment
2171 values in this case even if nothing is constant. The increment value
2172 should not involve a multiply however. */
2173
2174 /* ?? Even if the biv/giv increment values aren't constant, it may still
2175 be beneficial to split the variable if the loop is only unrolled a few
2176 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2177
2178 static int
2179 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2180 unroll_number)
2181 enum unroll_types unroll_type;
2182 rtx loop_start, loop_end;
2183 rtx end_insert_before;
2184 int unroll_number;
2185 {
2186 struct iv_class *bl;
2187 struct induction *v;
2188 rtx increment, tem;
2189 rtx biv_final_value;
2190 int biv_splittable;
2191 int result = 0;
2192
2193 for (bl = loop_iv_list; bl; bl = bl->next)
2194 {
2195 /* Biv_total_increment must return a constant value,
2196 otherwise we can not calculate the split values. */
2197
2198 increment = biv_total_increment (bl, loop_start, loop_end);
2199 if (! increment || GET_CODE (increment) != CONST_INT)
2200 continue;
2201
2202 /* The loop must be unrolled completely, or else have a known number
2203 of iterations and only one exit, or else the biv must be dead
2204 outside the loop, or else the final value must be known. Otherwise,
2205 it is unsafe to split the biv since it may not have the proper
2206 value on loop exit. */
2207
2208 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2209 a fall through at the end. */
2210
2211 biv_splittable = 1;
2212 biv_final_value = 0;
2213 if (unroll_type != UNROLL_COMPLETELY
2214 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2215 || unroll_type == UNROLL_NAIVE)
2216 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2217 || ! bl->init_insn
2218 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2219 || (uid_luid[regno_first_uid[bl->regno]]
2220 < INSN_LUID (bl->init_insn))
2221 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2222 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2223 biv_splittable = 0;
2224
2225 /* If any of the insns setting the BIV don't do so with a simple
2226 PLUS, we don't know how to split it. */
2227 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2228 if ((tem = single_set (v->insn)) == 0
2229 || GET_CODE (SET_DEST (tem)) != REG
2230 || REGNO (SET_DEST (tem)) != bl->regno
2231 || GET_CODE (SET_SRC (tem)) != PLUS)
2232 biv_splittable = 0;
2233
2234 /* If final value is non-zero, then must emit an instruction which sets
2235 the value of the biv to the proper value. This is done after
2236 handling all of the givs, since some of them may need to use the
2237 biv's value in their initialization code. */
2238
2239 /* This biv is splittable. If completely unrolling the loop, save
2240 the biv's initial value. Otherwise, save the constant zero. */
2241
2242 if (biv_splittable == 1)
2243 {
2244 if (unroll_type == UNROLL_COMPLETELY)
2245 {
2246 /* If the initial value of the biv is itself (i.e. it is too
2247 complicated for strength_reduce to compute), or is a hard
2248 register, then we must create a new pseudo reg to hold the
2249 initial value of the biv. */
2250
2251 if (GET_CODE (bl->initial_value) == REG
2252 && (REGNO (bl->initial_value) == bl->regno
2253 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2254 {
2255 rtx tem = gen_reg_rtx (bl->biv->mode);
2256
2257 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2258 loop_start);
2259
2260 if (loop_dump_stream)
2261 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2262 bl->regno, REGNO (tem));
2263
2264 splittable_regs[bl->regno] = tem;
2265 }
2266 else
2267 splittable_regs[bl->regno] = bl->initial_value;
2268 }
2269 else
2270 splittable_regs[bl->regno] = const0_rtx;
2271
2272 /* Save the number of instructions that modify the biv, so that
2273 we can treat the last one specially. */
2274
2275 splittable_regs_updates[bl->regno] = bl->biv_count;
2276
2277 result++;
2278
2279 if (loop_dump_stream)
2280 fprintf (loop_dump_stream,
2281 "Biv %d safe to split.\n", bl->regno);
2282 }
2283
2284 /* Check every giv that depends on this biv to see whether it is
2285 splittable also. Even if the biv isn't splittable, givs which
2286 depend on it may be splittable if the biv is live outside the
2287 loop, and the givs aren't. */
2288
2289 result = find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2290 increment, unroll_number, result);
2291
2292 /* If final value is non-zero, then must emit an instruction which sets
2293 the value of the biv to the proper value. This is done after
2294 handling all of the givs, since some of them may need to use the
2295 biv's value in their initialization code. */
2296 if (biv_final_value)
2297 {
2298 /* If the loop has multiple exits, emit the insns before the
2299 loop to ensure that it will always be executed no matter
2300 how the loop exits. Otherwise emit the insn after the loop,
2301 since this is slightly more efficient. */
2302 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2303 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2304 biv_final_value),
2305 end_insert_before);
2306 else
2307 {
2308 /* Create a new register to hold the value of the biv, and then
2309 set the biv to its final value before the loop start. The biv
2310 is set to its final value before loop start to ensure that
2311 this insn will always be executed, no matter how the loop
2312 exits. */
2313 rtx tem = gen_reg_rtx (bl->biv->mode);
2314 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2315 loop_start);
2316 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2317 biv_final_value),
2318 loop_start);
2319
2320 if (loop_dump_stream)
2321 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2322 REGNO (bl->biv->src_reg), REGNO (tem));
2323
2324 /* Set up the mapping from the original biv register to the new
2325 register. */
2326 bl->biv->src_reg = tem;
2327 }
2328 }
2329 }
2330 return result;
2331 }
2332
2333 /* For every giv based on the biv BL, check to determine whether it is
2334 splittable. This is a subroutine to find_splittable_regs (). */
2335
2336 static int
2337 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2338 unroll_number, result)
2339 struct iv_class *bl;
2340 enum unroll_types unroll_type;
2341 rtx loop_start, loop_end;
2342 rtx increment;
2343 int unroll_number, result;
2344 {
2345 struct induction *v;
2346 rtx final_value;
2347 rtx tem;
2348
2349 for (v = bl->giv; v; v = v->next_iv)
2350 {
2351 rtx giv_inc, value;
2352
2353 /* Only split the giv if it has already been reduced, or if the loop is
2354 being completely unrolled. */
2355 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2356 continue;
2357
2358 /* The giv can be split if the insn that sets the giv is executed once
2359 and only once on every iteration of the loop. */
2360 /* An address giv can always be split. v->insn is just a use not a set,
2361 and hence it does not matter whether it is always executed. All that
2362 matters is that all the biv increments are always executed, and we
2363 won't reach here if they aren't. */
2364 if (v->giv_type != DEST_ADDR
2365 && (! v->always_computable
2366 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2367 continue;
2368
2369 /* The giv increment value must be a constant. */
2370 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2371 v->mode);
2372 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2373 continue;
2374
2375 /* The loop must be unrolled completely, or else have a known number of
2376 iterations and only one exit, or else the giv must be dead outside
2377 the loop, or else the final value of the giv must be known.
2378 Otherwise, it is not safe to split the giv since it may not have the
2379 proper value on loop exit. */
2380
2381 /* The used outside loop test will fail for DEST_ADDR givs. They are
2382 never used outside the loop anyways, so it is always safe to split a
2383 DEST_ADDR giv. */
2384
2385 final_value = 0;
2386 if (unroll_type != UNROLL_COMPLETELY
2387 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2388 || unroll_type == UNROLL_NAIVE)
2389 && v->giv_type != DEST_ADDR
2390 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2391 /* Check for the case where the pseudo is set by a shift/add
2392 sequence, in which case the first insn setting the pseudo
2393 is the first insn of the shift/add sequence. */
2394 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2395 || (regno_first_uid[REGNO (v->dest_reg)]
2396 != INSN_UID (XEXP (tem, 0)))))
2397 /* Line above always fails if INSN was moved by loop opt. */
2398 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2399 >= INSN_LUID (loop_end)))
2400 && ! (final_value = v->final_value))
2401 continue;
2402
2403 #if 0
2404 /* Currently, non-reduced/final-value givs are never split. */
2405 /* Should emit insns after the loop if possible, as the biv final value
2406 code below does. */
2407
2408 /* If the final value is non-zero, and the giv has not been reduced,
2409 then must emit an instruction to set the final value. */
2410 if (final_value && !v->new_reg)
2411 {
2412 /* Create a new register to hold the value of the giv, and then set
2413 the giv to its final value before the loop start. The giv is set
2414 to its final value before loop start to ensure that this insn
2415 will always be executed, no matter how we exit. */
2416 tem = gen_reg_rtx (v->mode);
2417 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2418 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2419 loop_start);
2420
2421 if (loop_dump_stream)
2422 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2423 REGNO (v->dest_reg), REGNO (tem));
2424
2425 v->src_reg = tem;
2426 }
2427 #endif
2428
2429 /* This giv is splittable. If completely unrolling the loop, save the
2430 giv's initial value. Otherwise, save the constant zero for it. */
2431
2432 if (unroll_type == UNROLL_COMPLETELY)
2433 {
2434 /* It is not safe to use bl->initial_value here, because it may not
2435 be invariant. It is safe to use the initial value stored in
2436 the splittable_regs array if it is set. In rare cases, it won't
2437 be set, so then we do exactly the same thing as
2438 find_splittable_regs does to get a safe value. */
2439 rtx biv_initial_value;
2440
2441 if (splittable_regs[bl->regno])
2442 biv_initial_value = splittable_regs[bl->regno];
2443 else if (GET_CODE (bl->initial_value) != REG
2444 || (REGNO (bl->initial_value) != bl->regno
2445 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2446 biv_initial_value = bl->initial_value;
2447 else
2448 {
2449 rtx tem = gen_reg_rtx (bl->biv->mode);
2450
2451 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2452 loop_start);
2453 biv_initial_value = tem;
2454 }
2455 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2456 v->add_val, v->mode);
2457 }
2458 else
2459 value = const0_rtx;
2460
2461 if (v->new_reg)
2462 {
2463 /* If a giv was combined with another giv, then we can only split
2464 this giv if the giv it was combined with was reduced. This
2465 is because the value of v->new_reg is meaningless in this
2466 case. */
2467 if (v->same && ! v->same->new_reg)
2468 {
2469 if (loop_dump_stream)
2470 fprintf (loop_dump_stream,
2471 "giv combined with unreduced giv not split.\n");
2472 continue;
2473 }
2474 /* If the giv is an address destination, it could be something other
2475 than a simple register, these have to be treated differently. */
2476 else if (v->giv_type == DEST_REG)
2477 {
2478 /* If value is not a constant, register, or register plus
2479 constant, then compute its value into a register before
2480 loop start. This prevents illegal rtx sharing, and should
2481 generate better code. We can use bl->initial_value here
2482 instead of splittable_regs[bl->regno] because this code
2483 is going before the loop start. */
2484 if (unroll_type == UNROLL_COMPLETELY
2485 && GET_CODE (value) != CONST_INT
2486 && GET_CODE (value) != REG
2487 && (GET_CODE (value) != PLUS
2488 || GET_CODE (XEXP (value, 0)) != REG
2489 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2490 {
2491 rtx tem = gen_reg_rtx (v->mode);
2492 emit_iv_add_mult (bl->initial_value, v->mult_val,
2493 v->add_val, tem, loop_start);
2494 value = tem;
2495 }
2496
2497 splittable_regs[REGNO (v->new_reg)] = value;
2498 }
2499 else
2500 {
2501 /* Splitting address givs is useful since it will often allow us
2502 to eliminate some increment insns for the base giv as
2503 unnecessary. */
2504
2505 /* If the addr giv is combined with a dest_reg giv, then all
2506 references to that dest reg will be remapped, which is NOT
2507 what we want for split addr regs. We always create a new
2508 register for the split addr giv, just to be safe. */
2509
2510 /* ??? If there are multiple address givs which have been
2511 combined with the same dest_reg giv, then we may only need
2512 one new register for them. Pulling out constants below will
2513 catch some of the common cases of this. Currently, I leave
2514 the work of simplifying multiple address givs to the
2515 following cse pass. */
2516
2517 v->const_adjust = 0;
2518 if (unroll_type != UNROLL_COMPLETELY)
2519 {
2520 /* If not completely unrolling the loop, then create a new
2521 register to hold the split value of the DEST_ADDR giv.
2522 Emit insn to initialize its value before loop start. */
2523 tem = gen_reg_rtx (v->mode);
2524
2525 /* If the address giv has a constant in its new_reg value,
2526 then this constant can be pulled out and put in value,
2527 instead of being part of the initialization code. */
2528
2529 if (GET_CODE (v->new_reg) == PLUS
2530 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2531 {
2532 v->dest_reg
2533 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2534
2535 /* Only succeed if this will give valid addresses.
2536 Try to validate both the first and the last
2537 address resulting from loop unrolling, if
2538 one fails, then can't do const elim here. */
2539 if (memory_address_p (v->mem_mode, v->dest_reg)
2540 && memory_address_p (v->mem_mode,
2541 plus_constant (v->dest_reg,
2542 INTVAL (giv_inc)
2543 * (unroll_number - 1))))
2544 {
2545 /* Save the negative of the eliminated const, so
2546 that we can calculate the dest_reg's increment
2547 value later. */
2548 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2549
2550 v->new_reg = XEXP (v->new_reg, 0);
2551 if (loop_dump_stream)
2552 fprintf (loop_dump_stream,
2553 "Eliminating constant from giv %d\n",
2554 REGNO (tem));
2555 }
2556 else
2557 v->dest_reg = tem;
2558 }
2559 else
2560 v->dest_reg = tem;
2561
2562 /* If the address hasn't been checked for validity yet, do so
2563 now, and fail completely if either the first or the last
2564 unrolled copy of the address is not a valid address. */
2565 if (v->dest_reg == tem
2566 && (! memory_address_p (v->mem_mode, v->dest_reg)
2567 || ! memory_address_p (v->mem_mode,
2568 plus_constant (v->dest_reg,
2569 INTVAL (giv_inc)
2570 * (unroll_number -1)))))
2571 {
2572 if (loop_dump_stream)
2573 fprintf (loop_dump_stream,
2574 "Illegal address for giv at insn %d\n",
2575 INSN_UID (v->insn));
2576 continue;
2577 }
2578
2579 /* To initialize the new register, just move the value of
2580 new_reg into it. This is not guaranteed to give a valid
2581 instruction on machines with complex addressing modes.
2582 If we can't recognize it, then delete it and emit insns
2583 to calculate the value from scratch. */
2584 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2585 copy_rtx (v->new_reg)),
2586 loop_start);
2587 if (! recog_memoized (PREV_INSN (loop_start)))
2588 {
2589 delete_insn (PREV_INSN (loop_start));
2590 emit_iv_add_mult (bl->initial_value, v->mult_val,
2591 v->add_val, tem, loop_start);
2592 if (loop_dump_stream)
2593 fprintf (loop_dump_stream,
2594 "Illegal init insn, rewritten.\n");
2595 }
2596 }
2597 else
2598 {
2599 v->dest_reg = value;
2600
2601 /* Check the resulting address for validity, and fail
2602 if the resulting address would be illegal. */
2603 if (! memory_address_p (v->mem_mode, v->dest_reg)
2604 || ! memory_address_p (v->mem_mode,
2605 plus_constant (v->dest_reg,
2606 INTVAL (giv_inc) *
2607 (unroll_number -1))))
2608 {
2609 if (loop_dump_stream)
2610 fprintf (loop_dump_stream,
2611 "Illegal address for giv at insn %d\n",
2612 INSN_UID (v->insn));
2613 continue;
2614 }
2615 }
2616
2617 /* Store the value of dest_reg into the insn. This sharing
2618 will not be a problem as this insn will always be copied
2619 later. */
2620
2621 *v->location = v->dest_reg;
2622
2623 /* If this address giv is combined with a dest reg giv, then
2624 save the base giv's induction pointer so that we will be
2625 able to handle this address giv properly. The base giv
2626 itself does not have to be splittable. */
2627
2628 if (v->same && v->same->giv_type == DEST_REG)
2629 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2630
2631 if (GET_CODE (v->new_reg) == REG)
2632 {
2633 /* This giv maybe hasn't been combined with any others.
2634 Make sure that it's giv is marked as splittable here. */
2635
2636 splittable_regs[REGNO (v->new_reg)] = value;
2637
2638 /* Make it appear to depend upon itself, so that the
2639 giv will be properly split in the main loop above. */
2640 if (! v->same)
2641 {
2642 v->same = v;
2643 addr_combined_regs[REGNO (v->new_reg)] = v;
2644 }
2645 }
2646
2647 if (loop_dump_stream)
2648 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2649 }
2650 }
2651 else
2652 {
2653 #if 0
2654 /* Currently, unreduced giv's can't be split. This is not too much
2655 of a problem since unreduced giv's are not live across loop
2656 iterations anyways. When unrolling a loop completely though,
2657 it makes sense to reduce&split givs when possible, as this will
2658 result in simpler instructions, and will not require that a reg
2659 be live across loop iterations. */
2660
2661 splittable_regs[REGNO (v->dest_reg)] = value;
2662 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2663 REGNO (v->dest_reg), INSN_UID (v->insn));
2664 #else
2665 continue;
2666 #endif
2667 }
2668
2669 /* Givs are only updated once by definition. Mark it so if this is
2670 a splittable register. Don't need to do anything for address givs
2671 where this may not be a register. */
2672
2673 if (GET_CODE (v->new_reg) == REG)
2674 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2675
2676 result++;
2677
2678 if (loop_dump_stream)
2679 {
2680 int regnum;
2681
2682 if (GET_CODE (v->dest_reg) == CONST_INT)
2683 regnum = -1;
2684 else if (GET_CODE (v->dest_reg) != REG)
2685 regnum = REGNO (XEXP (v->dest_reg, 0));
2686 else
2687 regnum = REGNO (v->dest_reg);
2688 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2689 regnum, INSN_UID (v->insn));
2690 }
2691 }
2692
2693 return result;
2694 }
2695 \f
2696 /* Try to prove that the register is dead after the loop exits. Trace every
2697 loop exit looking for an insn that will always be executed, which sets
2698 the register to some value, and appears before the first use of the register
2699 is found. If successful, then return 1, otherwise return 0. */
2700
2701 /* ?? Could be made more intelligent in the handling of jumps, so that
2702 it can search past if statements and other similar structures. */
2703
2704 static int
2705 reg_dead_after_loop (reg, loop_start, loop_end)
2706 rtx reg, loop_start, loop_end;
2707 {
2708 rtx insn, label;
2709 enum rtx_code code;
2710 int jump_count = 0;
2711
2712 /* HACK: Must also search the loop fall through exit, create a label_ref
2713 here which points to the loop_end, and append the loop_number_exit_labels
2714 list to it. */
2715 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2716 LABEL_NEXTREF (label)
2717 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2718
2719 for ( ; label; label = LABEL_NEXTREF (label))
2720 {
2721 /* Succeed if find an insn which sets the biv or if reach end of
2722 function. Fail if find an insn that uses the biv, or if come to
2723 a conditional jump. */
2724
2725 insn = NEXT_INSN (XEXP (label, 0));
2726 while (insn)
2727 {
2728 code = GET_CODE (insn);
2729 if (GET_RTX_CLASS (code) == 'i')
2730 {
2731 rtx set;
2732
2733 if (reg_referenced_p (reg, PATTERN (insn)))
2734 return 0;
2735
2736 set = single_set (insn);
2737 if (set && rtx_equal_p (SET_DEST (set), reg))
2738 break;
2739 }
2740
2741 if (code == JUMP_INSN)
2742 {
2743 if (GET_CODE (PATTERN (insn)) == RETURN)
2744 break;
2745 else if (! simplejump_p (insn)
2746 /* Prevent infinite loop following infinite loops. */
2747 || jump_count++ > 20)
2748 return 0;
2749 else
2750 insn = JUMP_LABEL (insn);
2751 }
2752
2753 insn = NEXT_INSN (insn);
2754 }
2755 }
2756
2757 /* Success, the register is dead on all loop exits. */
2758 return 1;
2759 }
2760
2761 /* Try to calculate the final value of the biv, the value it will have at
2762 the end of the loop. If we can do it, return that value. */
2763
2764 rtx
2765 final_biv_value (bl, loop_start, loop_end)
2766 struct iv_class *bl;
2767 rtx loop_start, loop_end;
2768 {
2769 rtx increment, tem;
2770
2771 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2772
2773 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2774 return 0;
2775
2776 /* The final value for reversed bivs must be calculated differently than
2777 for ordinary bivs. In this case, there is already an insn after the
2778 loop which sets this biv's final value (if necessary), and there are
2779 no other loop exits, so we can return any value. */
2780 if (bl->reversed)
2781 {
2782 if (loop_dump_stream)
2783 fprintf (loop_dump_stream,
2784 "Final biv value for %d, reversed biv.\n", bl->regno);
2785
2786 return const0_rtx;
2787 }
2788
2789 /* Try to calculate the final value as initial value + (number of iterations
2790 * increment). For this to work, increment must be invariant, the only
2791 exit from the loop must be the fall through at the bottom (otherwise
2792 it may not have its final value when the loop exits), and the initial
2793 value of the biv must be invariant. */
2794
2795 if (loop_n_iterations != 0
2796 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2797 && invariant_p (bl->initial_value))
2798 {
2799 increment = biv_total_increment (bl, loop_start, loop_end);
2800
2801 if (increment && invariant_p (increment))
2802 {
2803 /* Can calculate the loop exit value, emit insns after loop
2804 end to calculate this value into a temporary register in
2805 case it is needed later. */
2806
2807 tem = gen_reg_rtx (bl->biv->mode);
2808 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2809 bl->initial_value, tem, NEXT_INSN (loop_end));
2810
2811 if (loop_dump_stream)
2812 fprintf (loop_dump_stream,
2813 "Final biv value for %d, calculated.\n", bl->regno);
2814
2815 return tem;
2816 }
2817 }
2818
2819 /* Check to see if the biv is dead at all loop exits. */
2820 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2821 {
2822 if (loop_dump_stream)
2823 fprintf (loop_dump_stream,
2824 "Final biv value for %d, biv dead after loop exit.\n",
2825 bl->regno);
2826
2827 return const0_rtx;
2828 }
2829
2830 return 0;
2831 }
2832
2833 /* Try to calculate the final value of the giv, the value it will have at
2834 the end of the loop. If we can do it, return that value. */
2835
2836 rtx
2837 final_giv_value (v, loop_start, loop_end)
2838 struct induction *v;
2839 rtx loop_start, loop_end;
2840 {
2841 struct iv_class *bl;
2842 rtx insn;
2843 rtx increment, tem;
2844 enum rtx_code code;
2845 rtx insert_before, seq;
2846
2847 bl = reg_biv_class[REGNO (v->src_reg)];
2848
2849 /* The final value for givs which depend on reversed bivs must be calculated
2850 differently than for ordinary givs. In this case, there is already an
2851 insn after the loop which sets this giv's final value (if necessary),
2852 and there are no other loop exits, so we can return any value. */
2853 if (bl->reversed)
2854 {
2855 if (loop_dump_stream)
2856 fprintf (loop_dump_stream,
2857 "Final giv value for %d, depends on reversed biv\n",
2858 REGNO (v->dest_reg));
2859 return const0_rtx;
2860 }
2861
2862 /* Try to calculate the final value as a function of the biv it depends
2863 upon. The only exit from the loop must be the fall through at the bottom
2864 (otherwise it may not have its final value when the loop exits). */
2865
2866 /* ??? Can calculate the final giv value by subtracting off the
2867 extra biv increments times the giv's mult_val. The loop must have
2868 only one exit for this to work, but the loop iterations does not need
2869 to be known. */
2870
2871 if (loop_n_iterations != 0
2872 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2873 {
2874 /* ?? It is tempting to use the biv's value here since these insns will
2875 be put after the loop, and hence the biv will have its final value
2876 then. However, this fails if the biv is subsequently eliminated.
2877 Perhaps determine whether biv's are eliminable before trying to
2878 determine whether giv's are replaceable so that we can use the
2879 biv value here if it is not eliminable. */
2880
2881 increment = biv_total_increment (bl, loop_start, loop_end);
2882
2883 if (increment && invariant_p (increment))
2884 {
2885 /* Can calculate the loop exit value of its biv as
2886 (loop_n_iterations * increment) + initial_value */
2887
2888 /* The loop exit value of the giv is then
2889 (final_biv_value - extra increments) * mult_val + add_val.
2890 The extra increments are any increments to the biv which
2891 occur in the loop after the giv's value is calculated.
2892 We must search from the insn that sets the giv to the end
2893 of the loop to calculate this value. */
2894
2895 insert_before = NEXT_INSN (loop_end);
2896
2897 /* Put the final biv value in tem. */
2898 tem = gen_reg_rtx (bl->biv->mode);
2899 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2900 bl->initial_value, tem, insert_before);
2901
2902 /* Subtract off extra increments as we find them. */
2903 for (insn = NEXT_INSN (v->insn); insn != loop_end;
2904 insn = NEXT_INSN (insn))
2905 {
2906 struct induction *biv;
2907
2908 for (biv = bl->biv; biv; biv = biv->next_iv)
2909 if (biv->insn == insn)
2910 {
2911 start_sequence ();
2912 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
2913 biv->add_val, NULL_RTX, 0,
2914 OPTAB_LIB_WIDEN);
2915 seq = gen_sequence ();
2916 end_sequence ();
2917 emit_insn_before (seq, insert_before);
2918 }
2919 }
2920
2921 /* Now calculate the giv's final value. */
2922 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
2923 insert_before);
2924
2925 if (loop_dump_stream)
2926 fprintf (loop_dump_stream,
2927 "Final giv value for %d, calc from biv's value.\n",
2928 REGNO (v->dest_reg));
2929
2930 return tem;
2931 }
2932 }
2933
2934 /* Replaceable giv's should never reach here. */
2935 if (v->replaceable)
2936 abort ();
2937
2938 /* Check to see if the biv is dead at all loop exits. */
2939 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
2940 {
2941 if (loop_dump_stream)
2942 fprintf (loop_dump_stream,
2943 "Final giv value for %d, giv dead after loop exit.\n",
2944 REGNO (v->dest_reg));
2945
2946 return const0_rtx;
2947 }
2948
2949 return 0;
2950 }
2951
2952
2953 /* Calculate the number of loop iterations. Returns the exact number of loop
2954 iterations if it can be calculated, otherwise returns zero. */
2955
2956 unsigned HOST_WIDE_INT
2957 loop_iterations (loop_start, loop_end)
2958 rtx loop_start, loop_end;
2959 {
2960 rtx comparison, comparison_value;
2961 rtx iteration_var, initial_value, increment, final_value;
2962 enum rtx_code comparison_code;
2963 HOST_WIDE_INT i;
2964 int increment_dir;
2965 int unsigned_compare, compare_dir, final_larger;
2966 unsigned long tempu;
2967 rtx last_loop_insn;
2968
2969 /* First find the iteration variable. If the last insn is a conditional
2970 branch, and the insn before tests a register value, make that the
2971 iteration variable. */
2972
2973 loop_initial_value = 0;
2974 loop_increment = 0;
2975 loop_final_value = 0;
2976 loop_iteration_var = 0;
2977
2978 last_loop_insn = prev_nonnote_insn (loop_end);
2979
2980 comparison = get_condition_for_loop (last_loop_insn);
2981 if (comparison == 0)
2982 {
2983 if (loop_dump_stream)
2984 fprintf (loop_dump_stream,
2985 "Loop unrolling: No final conditional branch found.\n");
2986 return 0;
2987 }
2988
2989 /* ??? Get_condition may switch position of induction variable and
2990 invariant register when it canonicalizes the comparison. */
2991
2992 comparison_code = GET_CODE (comparison);
2993 iteration_var = XEXP (comparison, 0);
2994 comparison_value = XEXP (comparison, 1);
2995
2996 if (GET_CODE (iteration_var) != REG)
2997 {
2998 if (loop_dump_stream)
2999 fprintf (loop_dump_stream,
3000 "Loop unrolling: Comparison not against register.\n");
3001 return 0;
3002 }
3003
3004 /* Loop iterations is always called before any new registers are created
3005 now, so this should never occur. */
3006
3007 if (REGNO (iteration_var) >= max_reg_before_loop)
3008 abort ();
3009
3010 iteration_info (iteration_var, &initial_value, &increment,
3011 loop_start, loop_end);
3012 if (initial_value == 0)
3013 /* iteration_info already printed a message. */
3014 return 0;
3015
3016 if (increment == 0)
3017 {
3018 if (loop_dump_stream)
3019 fprintf (loop_dump_stream,
3020 "Loop unrolling: Increment value can't be calculated.\n");
3021 return 0;
3022 }
3023 if (GET_CODE (increment) != CONST_INT)
3024 {
3025 if (loop_dump_stream)
3026 fprintf (loop_dump_stream,
3027 "Loop unrolling: Increment value not constant.\n");
3028 return 0;
3029 }
3030 if (GET_CODE (initial_value) != CONST_INT)
3031 {
3032 if (loop_dump_stream)
3033 fprintf (loop_dump_stream,
3034 "Loop unrolling: Initial value not constant.\n");
3035 return 0;
3036 }
3037
3038 /* If the comparison value is an invariant register, then try to find
3039 its value from the insns before the start of the loop. */
3040
3041 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3042 {
3043 rtx insn, set;
3044
3045 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3046 {
3047 if (GET_CODE (insn) == CODE_LABEL)
3048 break;
3049
3050 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3051 && (set = single_set (insn))
3052 && (SET_DEST (set) == comparison_value))
3053 {
3054 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3055
3056 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3057 comparison_value = XEXP (note, 0);
3058
3059 break;
3060 }
3061 }
3062 }
3063
3064 final_value = approx_final_value (comparison_code, comparison_value,
3065 &unsigned_compare, &compare_dir);
3066
3067 /* Save the calculated values describing this loop's bounds, in case
3068 precondition_loop_p will need them later. These values can not be
3069 recalculated inside precondition_loop_p because strength reduction
3070 optimizations may obscure the loop's structure. */
3071
3072 loop_iteration_var = iteration_var;
3073 loop_initial_value = initial_value;
3074 loop_increment = increment;
3075 loop_final_value = final_value;
3076
3077 if (final_value == 0)
3078 {
3079 if (loop_dump_stream)
3080 fprintf (loop_dump_stream,
3081 "Loop unrolling: EQ comparison loop.\n");
3082 return 0;
3083 }
3084 else if (GET_CODE (final_value) != CONST_INT)
3085 {
3086 if (loop_dump_stream)
3087 fprintf (loop_dump_stream,
3088 "Loop unrolling: Final value not constant.\n");
3089 return 0;
3090 }
3091
3092 /* ?? Final value and initial value do not have to be constants.
3093 Only their difference has to be constant. When the iteration variable
3094 is an array address, the final value and initial value might both
3095 be addresses with the same base but different constant offsets.
3096 Final value must be invariant for this to work.
3097
3098 To do this, need some way to find the values of registers which are
3099 invariant. */
3100
3101 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3102 if (unsigned_compare)
3103 final_larger
3104 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3105 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3106 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3107 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3108 else
3109 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3110 - (INTVAL (final_value) < INTVAL (initial_value));
3111
3112 if (INTVAL (increment) > 0)
3113 increment_dir = 1;
3114 else if (INTVAL (increment) == 0)
3115 increment_dir = 0;
3116 else
3117 increment_dir = -1;
3118
3119 /* There are 27 different cases: compare_dir = -1, 0, 1;
3120 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3121 There are 4 normal cases, 4 reverse cases (where the iteration variable
3122 will overflow before the loop exits), 4 infinite loop cases, and 15
3123 immediate exit (0 or 1 iteration depending on loop type) cases.
3124 Only try to optimize the normal cases. */
3125
3126 /* (compare_dir/final_larger/increment_dir)
3127 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3128 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3129 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3130 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3131
3132 /* ?? If the meaning of reverse loops (where the iteration variable
3133 will overflow before the loop exits) is undefined, then could
3134 eliminate all of these special checks, and just always assume
3135 the loops are normal/immediate/infinite. Note that this means
3136 the sign of increment_dir does not have to be known. Also,
3137 since it does not really hurt if immediate exit loops or infinite loops
3138 are optimized, then that case could be ignored also, and hence all
3139 loops can be optimized.
3140
3141 According to ANSI Spec, the reverse loop case result is undefined,
3142 because the action on overflow is undefined.
3143
3144 See also the special test for NE loops below. */
3145
3146 if (final_larger == increment_dir && final_larger != 0
3147 && (final_larger == compare_dir || compare_dir == 0))
3148 /* Normal case. */
3149 ;
3150 else
3151 {
3152 if (loop_dump_stream)
3153 fprintf (loop_dump_stream,
3154 "Loop unrolling: Not normal loop.\n");
3155 return 0;
3156 }
3157
3158 /* Calculate the number of iterations, final_value is only an approximation,
3159 so correct for that. Note that tempu and loop_n_iterations are
3160 unsigned, because they can be as large as 2^n - 1. */
3161
3162 i = INTVAL (increment);
3163 if (i > 0)
3164 tempu = INTVAL (final_value) - INTVAL (initial_value);
3165 else if (i < 0)
3166 {
3167 tempu = INTVAL (initial_value) - INTVAL (final_value);
3168 i = -i;
3169 }
3170 else
3171 abort ();
3172
3173 /* For NE tests, make sure that the iteration variable won't miss the
3174 final value. If tempu mod i is not zero, then the iteration variable
3175 will overflow before the loop exits, and we can not calculate the
3176 number of iterations. */
3177 if (compare_dir == 0 && (tempu % i) != 0)
3178 return 0;
3179
3180 return tempu / i + ((tempu % i) != 0);
3181 }