print-rtl.c (print_rtx): Add prototype.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "system.h"
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159 #include "toplev.h"
160
161 /* This controls which loops are unrolled, and by how much we unroll
162 them. */
163
164 #ifndef MAX_UNROLLED_INSNS
165 #define MAX_UNROLLED_INSNS 100
166 #endif
167
168 /* Indexed by register number, if non-zero, then it contains a pointer
169 to a struct induction for a DEST_REG giv which has been combined with
170 one of more address givs. This is needed because whenever such a DEST_REG
171 giv is modified, we must modify the value of all split address givs
172 that were combined with this DEST_REG giv. */
173
174 static struct induction **addr_combined_regs;
175
176 /* Indexed by register number, if this is a splittable induction variable,
177 then this will hold the current value of the register, which depends on the
178 iteration number. */
179
180 static rtx *splittable_regs;
181
182 /* Indexed by register number, if this is a splittable induction variable,
183 then this will hold the number of instructions in the loop that modify
184 the induction variable. Used to ensure that only the last insn modifying
185 a split iv will update the original iv of the dest. */
186
187 static int *splittable_regs_updates;
188
189 /* Forward declarations. */
190
191 static void init_reg_map PROTO((struct inline_remap *, int));
192 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
193 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
194 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
195 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
196 enum unroll_types, rtx, rtx, rtx, rtx));
197 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
198 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int,
199 unsigned HOST_WIDE_INT));
200 static int find_splittable_givs PROTO((struct iv_class *, enum unroll_types,
201 rtx, rtx, rtx, int));
202 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
203 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
204 static int verify_addresses PROTO((struct induction *, rtx, int));
205 static rtx remap_split_bivs PROTO((rtx));
206
207 /* Try to unroll one loop and split induction variables in the loop.
208
209 The loop is described by the arguments LOOP_END, INSN_COUNT, and
210 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
211 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
212 indicates whether information generated in the strength reduction pass
213 is available.
214
215 This function is intended to be called from within `strength_reduce'
216 in loop.c. */
217
218 void
219 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
220 loop_info, strength_reduce_p)
221 rtx loop_end;
222 int insn_count;
223 rtx loop_start;
224 rtx end_insert_before;
225 struct loop_info *loop_info;
226 int strength_reduce_p;
227 {
228 int i, j, temp;
229 int unroll_number = 1;
230 rtx copy_start, copy_end;
231 rtx insn, sequence, pattern, tem;
232 int max_labelno, max_insnno;
233 rtx insert_before;
234 struct inline_remap *map;
235 char *local_label;
236 char *local_regno;
237 int maxregnum;
238 int new_maxregnum;
239 rtx exit_label = 0;
240 rtx start_label;
241 struct iv_class *bl;
242 int splitting_not_safe = 0;
243 enum unroll_types unroll_type;
244 int loop_preconditioned = 0;
245 rtx safety_label;
246 /* This points to the last real insn in the loop, which should be either
247 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
248 jumps). */
249 rtx last_loop_insn;
250
251 /* Don't bother unrolling huge loops. Since the minimum factor is
252 two, loops greater than one half of MAX_UNROLLED_INSNS will never
253 be unrolled. */
254 if (insn_count > MAX_UNROLLED_INSNS / 2)
255 {
256 if (loop_dump_stream)
257 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
258 return;
259 }
260
261 /* When emitting debugger info, we can't unroll loops with unequal numbers
262 of block_beg and block_end notes, because that would unbalance the block
263 structure of the function. This can happen as a result of the
264 "if (foo) bar; else break;" optimization in jump.c. */
265 /* ??? Gcc has a general policy that -g is never supposed to change the code
266 that the compiler emits, so we must disable this optimization always,
267 even if debug info is not being output. This is rare, so this should
268 not be a significant performance problem. */
269
270 if (1 /* write_symbols != NO_DEBUG */)
271 {
272 int block_begins = 0;
273 int block_ends = 0;
274
275 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
276 {
277 if (GET_CODE (insn) == NOTE)
278 {
279 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
280 block_begins++;
281 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
282 block_ends++;
283 }
284 }
285
286 if (block_begins != block_ends)
287 {
288 if (loop_dump_stream)
289 fprintf (loop_dump_stream,
290 "Unrolling failure: Unbalanced block notes.\n");
291 return;
292 }
293 }
294
295 /* Determine type of unroll to perform. Depends on the number of iterations
296 and the size of the loop. */
297
298 /* If there is no strength reduce info, then set
299 loop_info->n_iterations to zero. This can happen if
300 strength_reduce can't find any bivs in the loop. A value of zero
301 indicates that the number of iterations could not be calculated. */
302
303 if (! strength_reduce_p)
304 loop_info->n_iterations = 0;
305
306 if (loop_dump_stream && loop_info->n_iterations > 0)
307 {
308 fputs ("Loop unrolling: ", loop_dump_stream);
309 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
310 loop_info->n_iterations);
311 fputs (" iterations.\n", loop_dump_stream);
312 }
313
314 /* Find and save a pointer to the last nonnote insn in the loop. */
315
316 last_loop_insn = prev_nonnote_insn (loop_end);
317
318 /* Calculate how many times to unroll the loop. Indicate whether or
319 not the loop is being completely unrolled. */
320
321 if (loop_info->n_iterations == 1)
322 {
323 /* If number of iterations is exactly 1, then eliminate the compare and
324 branch at the end of the loop since they will never be taken.
325 Then return, since no other action is needed here. */
326
327 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
328 don't do anything. */
329
330 if (GET_CODE (last_loop_insn) == BARRIER)
331 {
332 /* Delete the jump insn. This will delete the barrier also. */
333 delete_insn (PREV_INSN (last_loop_insn));
334 }
335 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
336 {
337 #ifdef HAVE_cc0
338 /* The immediately preceding insn is a compare which must be
339 deleted. */
340 delete_insn (last_loop_insn);
341 delete_insn (PREV_INSN (last_loop_insn));
342 #else
343 /* The immediately preceding insn may not be the compare, so don't
344 delete it. */
345 delete_insn (last_loop_insn);
346 #endif
347 }
348 return;
349 }
350 else if (loop_info->n_iterations > 0
351 && loop_info->n_iterations * insn_count < MAX_UNROLLED_INSNS)
352 {
353 unroll_number = loop_info->n_iterations;
354 unroll_type = UNROLL_COMPLETELY;
355 }
356 else if (loop_info->n_iterations > 0)
357 {
358 /* Try to factor the number of iterations. Don't bother with the
359 general case, only using 2, 3, 5, and 7 will get 75% of all
360 numbers theoretically, and almost all in practice. */
361
362 for (i = 0; i < NUM_FACTORS; i++)
363 factors[i].count = 0;
364
365 temp = loop_info->n_iterations;
366 for (i = NUM_FACTORS - 1; i >= 0; i--)
367 while (temp % factors[i].factor == 0)
368 {
369 factors[i].count++;
370 temp = temp / factors[i].factor;
371 }
372
373 /* Start with the larger factors first so that we generally
374 get lots of unrolling. */
375
376 unroll_number = 1;
377 temp = insn_count;
378 for (i = 3; i >= 0; i--)
379 while (factors[i].count--)
380 {
381 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
382 {
383 unroll_number *= factors[i].factor;
384 temp *= factors[i].factor;
385 }
386 else
387 break;
388 }
389
390 /* If we couldn't find any factors, then unroll as in the normal
391 case. */
392 if (unroll_number == 1)
393 {
394 if (loop_dump_stream)
395 fprintf (loop_dump_stream,
396 "Loop unrolling: No factors found.\n");
397 }
398 else
399 unroll_type = UNROLL_MODULO;
400 }
401
402
403 /* Default case, calculate number of times to unroll loop based on its
404 size. */
405 if (unroll_number == 1)
406 {
407 if (8 * insn_count < MAX_UNROLLED_INSNS)
408 unroll_number = 8;
409 else if (4 * insn_count < MAX_UNROLLED_INSNS)
410 unroll_number = 4;
411 else
412 unroll_number = 2;
413
414 unroll_type = UNROLL_NAIVE;
415 }
416
417 /* Now we know how many times to unroll the loop. */
418
419 if (loop_dump_stream)
420 fprintf (loop_dump_stream,
421 "Unrolling loop %d times.\n", unroll_number);
422
423
424 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
425 {
426 /* Loops of these types can start with jump down to the exit condition
427 in rare circumstances.
428
429 Consider a pair of nested loops where the inner loop is part
430 of the exit code for the outer loop.
431
432 In this case jump.c will not duplicate the exit test for the outer
433 loop, so it will start with a jump to the exit code.
434
435 Then consider if the inner loop turns out to iterate once and
436 only once. We will end up deleting the jumps associated with
437 the inner loop. However, the loop notes are not removed from
438 the instruction stream.
439
440 And finally assume that we can compute the number of iterations
441 for the outer loop.
442
443 In this case unroll may want to unroll the outer loop even though
444 it starts with a jump to the outer loop's exit code.
445
446 We could try to optimize this case, but it hardly seems worth it.
447 Just return without unrolling the loop in such cases. */
448
449 insn = loop_start;
450 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
451 insn = NEXT_INSN (insn);
452 if (GET_CODE (insn) == JUMP_INSN)
453 return;
454 }
455
456 if (unroll_type == UNROLL_COMPLETELY)
457 {
458 /* Completely unrolling the loop: Delete the compare and branch at
459 the end (the last two instructions). This delete must done at the
460 very end of loop unrolling, to avoid problems with calls to
461 back_branch_in_range_p, which is called by find_splittable_regs.
462 All increments of splittable bivs/givs are changed to load constant
463 instructions. */
464
465 copy_start = loop_start;
466
467 /* Set insert_before to the instruction immediately after the JUMP_INSN
468 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
469 the loop will be correctly handled by copy_loop_body. */
470 insert_before = NEXT_INSN (last_loop_insn);
471
472 /* Set copy_end to the insn before the jump at the end of the loop. */
473 if (GET_CODE (last_loop_insn) == BARRIER)
474 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
475 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
476 {
477 #ifdef HAVE_cc0
478 /* The instruction immediately before the JUMP_INSN is a compare
479 instruction which we do not want to copy. */
480 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
481 #else
482 /* The instruction immediately before the JUMP_INSN may not be the
483 compare, so we must copy it. */
484 copy_end = PREV_INSN (last_loop_insn);
485 #endif
486 }
487 else
488 {
489 /* We currently can't unroll a loop if it doesn't end with a
490 JUMP_INSN. There would need to be a mechanism that recognizes
491 this case, and then inserts a jump after each loop body, which
492 jumps to after the last loop body. */
493 if (loop_dump_stream)
494 fprintf (loop_dump_stream,
495 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
496 return;
497 }
498 }
499 else if (unroll_type == UNROLL_MODULO)
500 {
501 /* Partially unrolling the loop: The compare and branch at the end
502 (the last two instructions) must remain. Don't copy the compare
503 and branch instructions at the end of the loop. Insert the unrolled
504 code immediately before the compare/branch at the end so that the
505 code will fall through to them as before. */
506
507 copy_start = loop_start;
508
509 /* Set insert_before to the jump insn at the end of the loop.
510 Set copy_end to before the jump insn at the end of the loop. */
511 if (GET_CODE (last_loop_insn) == BARRIER)
512 {
513 insert_before = PREV_INSN (last_loop_insn);
514 copy_end = PREV_INSN (insert_before);
515 }
516 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
517 {
518 #ifdef HAVE_cc0
519 /* The instruction immediately before the JUMP_INSN is a compare
520 instruction which we do not want to copy or delete. */
521 insert_before = PREV_INSN (last_loop_insn);
522 copy_end = PREV_INSN (insert_before);
523 #else
524 /* The instruction immediately before the JUMP_INSN may not be the
525 compare, so we must copy it. */
526 insert_before = last_loop_insn;
527 copy_end = PREV_INSN (last_loop_insn);
528 #endif
529 }
530 else
531 {
532 /* We currently can't unroll a loop if it doesn't end with a
533 JUMP_INSN. There would need to be a mechanism that recognizes
534 this case, and then inserts a jump after each loop body, which
535 jumps to after the last loop body. */
536 if (loop_dump_stream)
537 fprintf (loop_dump_stream,
538 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
539 return;
540 }
541 }
542 else
543 {
544 /* Normal case: Must copy the compare and branch instructions at the
545 end of the loop. */
546
547 if (GET_CODE (last_loop_insn) == BARRIER)
548 {
549 /* Loop ends with an unconditional jump and a barrier.
550 Handle this like above, don't copy jump and barrier.
551 This is not strictly necessary, but doing so prevents generating
552 unconditional jumps to an immediately following label.
553
554 This will be corrected below if the target of this jump is
555 not the start_label. */
556
557 insert_before = PREV_INSN (last_loop_insn);
558 copy_end = PREV_INSN (insert_before);
559 }
560 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
561 {
562 /* Set insert_before to immediately after the JUMP_INSN, so that
563 NOTEs at the end of the loop will be correctly handled by
564 copy_loop_body. */
565 insert_before = NEXT_INSN (last_loop_insn);
566 copy_end = last_loop_insn;
567 }
568 else
569 {
570 /* We currently can't unroll a loop if it doesn't end with a
571 JUMP_INSN. There would need to be a mechanism that recognizes
572 this case, and then inserts a jump after each loop body, which
573 jumps to after the last loop body. */
574 if (loop_dump_stream)
575 fprintf (loop_dump_stream,
576 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
577 return;
578 }
579
580 /* If copying exit test branches because they can not be eliminated,
581 then must convert the fall through case of the branch to a jump past
582 the end of the loop. Create a label to emit after the loop and save
583 it for later use. Do not use the label after the loop, if any, since
584 it might be used by insns outside the loop, or there might be insns
585 added before it later by final_[bg]iv_value which must be after
586 the real exit label. */
587 exit_label = gen_label_rtx ();
588
589 insn = loop_start;
590 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
591 insn = NEXT_INSN (insn);
592
593 if (GET_CODE (insn) == JUMP_INSN)
594 {
595 /* The loop starts with a jump down to the exit condition test.
596 Start copying the loop after the barrier following this
597 jump insn. */
598 copy_start = NEXT_INSN (insn);
599
600 /* Splitting induction variables doesn't work when the loop is
601 entered via a jump to the bottom, because then we end up doing
602 a comparison against a new register for a split variable, but
603 we did not execute the set insn for the new register because
604 it was skipped over. */
605 splitting_not_safe = 1;
606 if (loop_dump_stream)
607 fprintf (loop_dump_stream,
608 "Splitting not safe, because loop not entered at top.\n");
609 }
610 else
611 copy_start = loop_start;
612 }
613
614 /* This should always be the first label in the loop. */
615 start_label = NEXT_INSN (copy_start);
616 /* There may be a line number note and/or a loop continue note here. */
617 while (GET_CODE (start_label) == NOTE)
618 start_label = NEXT_INSN (start_label);
619 if (GET_CODE (start_label) != CODE_LABEL)
620 {
621 /* This can happen as a result of jump threading. If the first insns in
622 the loop test the same condition as the loop's backward jump, or the
623 opposite condition, then the backward jump will be modified to point
624 to elsewhere, and the loop's start label is deleted.
625
626 This case currently can not be handled by the loop unrolling code. */
627
628 if (loop_dump_stream)
629 fprintf (loop_dump_stream,
630 "Unrolling failure: unknown insns between BEG note and loop label.\n");
631 return;
632 }
633 if (LABEL_NAME (start_label))
634 {
635 /* The jump optimization pass must have combined the original start label
636 with a named label for a goto. We can't unroll this case because
637 jumps which go to the named label must be handled differently than
638 jumps to the loop start, and it is impossible to differentiate them
639 in this case. */
640 if (loop_dump_stream)
641 fprintf (loop_dump_stream,
642 "Unrolling failure: loop start label is gone\n");
643 return;
644 }
645
646 if (unroll_type == UNROLL_NAIVE
647 && GET_CODE (last_loop_insn) == BARRIER
648 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
649 {
650 /* In this case, we must copy the jump and barrier, because they will
651 not be converted to jumps to an immediately following label. */
652
653 insert_before = NEXT_INSN (last_loop_insn);
654 copy_end = last_loop_insn;
655 }
656
657 if (unroll_type == UNROLL_NAIVE
658 && GET_CODE (last_loop_insn) == JUMP_INSN
659 && start_label != JUMP_LABEL (last_loop_insn))
660 {
661 /* ??? The loop ends with a conditional branch that does not branch back
662 to the loop start label. In this case, we must emit an unconditional
663 branch to the loop exit after emitting the final branch.
664 copy_loop_body does not have support for this currently, so we
665 give up. It doesn't seem worthwhile to unroll anyways since
666 unrolling would increase the number of branch instructions
667 executed. */
668 if (loop_dump_stream)
669 fprintf (loop_dump_stream,
670 "Unrolling failure: final conditional branch not to loop start\n");
671 return;
672 }
673
674 /* Allocate a translation table for the labels and insn numbers.
675 They will be filled in as we copy the insns in the loop. */
676
677 max_labelno = max_label_num ();
678 max_insnno = get_max_uid ();
679
680 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
681
682 map->integrating = 0;
683
684 /* Allocate the label map. */
685
686 if (max_labelno > 0)
687 {
688 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
689
690 local_label = (char *) alloca (max_labelno);
691 bzero (local_label, max_labelno);
692 }
693 else
694 map->label_map = 0;
695
696 /* Search the loop and mark all local labels, i.e. the ones which have to
697 be distinct labels when copied. For all labels which might be
698 non-local, set their label_map entries to point to themselves.
699 If they happen to be local their label_map entries will be overwritten
700 before the loop body is copied. The label_map entries for local labels
701 will be set to a different value each time the loop body is copied. */
702
703 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
704 {
705 rtx note;
706
707 if (GET_CODE (insn) == CODE_LABEL)
708 local_label[CODE_LABEL_NUMBER (insn)] = 1;
709 else if (GET_CODE (insn) == JUMP_INSN)
710 {
711 if (JUMP_LABEL (insn))
712 set_label_in_map (map,
713 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
714 JUMP_LABEL (insn));
715 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
716 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
717 {
718 rtx pat = PATTERN (insn);
719 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
720 int len = XVECLEN (pat, diff_vec_p);
721 rtx label;
722
723 for (i = 0; i < len; i++)
724 {
725 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
726 set_label_in_map (map,
727 CODE_LABEL_NUMBER (label),
728 label);
729 }
730 }
731 }
732 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
733 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
734 XEXP (note, 0));
735 }
736
737 /* Allocate space for the insn map. */
738
739 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
740
741 /* Set this to zero, to indicate that we are doing loop unrolling,
742 not function inlining. */
743 map->inline_target = 0;
744
745 /* The register and constant maps depend on the number of registers
746 present, so the final maps can't be created until after
747 find_splittable_regs is called. However, they are needed for
748 preconditioning, so we create temporary maps when preconditioning
749 is performed. */
750
751 /* The preconditioning code may allocate two new pseudo registers. */
752 maxregnum = max_reg_num ();
753
754 /* Allocate and zero out the splittable_regs and addr_combined_regs
755 arrays. These must be zeroed here because they will be used if
756 loop preconditioning is performed, and must be zero for that case.
757
758 It is safe to do this here, since the extra registers created by the
759 preconditioning code and find_splittable_regs will never be used
760 to access the splittable_regs[] and addr_combined_regs[] arrays. */
761
762 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
763 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
764 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
765 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
766 addr_combined_regs
767 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
768 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
769 /* We must limit it to max_reg_before_loop, because only these pseudo
770 registers have valid regno_first_uid info. Any register created after
771 that is unlikely to be local to the loop anyways. */
772 local_regno = (char *) alloca (max_reg_before_loop);
773 bzero (local_regno, max_reg_before_loop);
774
775 /* Mark all local registers, i.e. the ones which are referenced only
776 inside the loop. */
777 if (INSN_UID (copy_end) < max_uid_for_loop)
778 {
779 int copy_start_luid = INSN_LUID (copy_start);
780 int copy_end_luid = INSN_LUID (copy_end);
781
782 /* If a register is used in the jump insn, we must not duplicate it
783 since it will also be used outside the loop. */
784 if (GET_CODE (copy_end) == JUMP_INSN)
785 copy_end_luid--;
786 /* If copy_start points to the NOTE that starts the loop, then we must
787 use the next luid, because invariant pseudo-regs moved out of the loop
788 have their lifetimes modified to start here, but they are not safe
789 to duplicate. */
790 if (copy_start == loop_start)
791 copy_start_luid++;
792
793 /* If a pseudo's lifetime is entirely contained within this loop, then we
794 can use a different pseudo in each unrolled copy of the loop. This
795 results in better code. */
796 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
797 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
798 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
799 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
800 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
801 {
802 /* However, we must also check for loop-carried dependencies.
803 If the value the pseudo has at the end of iteration X is
804 used by iteration X+1, then we can not use a different pseudo
805 for each unrolled copy of the loop. */
806 /* A pseudo is safe if regno_first_uid is a set, and this
807 set dominates all instructions from regno_first_uid to
808 regno_last_uid. */
809 /* ??? This check is simplistic. We would get better code if
810 this check was more sophisticated. */
811 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
812 copy_start, copy_end))
813 local_regno[j] = 1;
814
815 if (loop_dump_stream)
816 {
817 if (local_regno[j])
818 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
819 else
820 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
821 j);
822 }
823 }
824 }
825
826 /* If this loop requires exit tests when unrolled, check to see if we
827 can precondition the loop so as to make the exit tests unnecessary.
828 Just like variable splitting, this is not safe if the loop is entered
829 via a jump to the bottom. Also, can not do this if no strength
830 reduce info, because precondition_loop_p uses this info. */
831
832 /* Must copy the loop body for preconditioning before the following
833 find_splittable_regs call since that will emit insns which need to
834 be after the preconditioned loop copies, but immediately before the
835 unrolled loop copies. */
836
837 /* Also, it is not safe to split induction variables for the preconditioned
838 copies of the loop body. If we split induction variables, then the code
839 assumes that each induction variable can be represented as a function
840 of its initial value and the loop iteration number. This is not true
841 in this case, because the last preconditioned copy of the loop body
842 could be any iteration from the first up to the `unroll_number-1'th,
843 depending on the initial value of the iteration variable. Therefore
844 we can not split induction variables here, because we can not calculate
845 their value. Hence, this code must occur before find_splittable_regs
846 is called. */
847
848 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
849 {
850 rtx initial_value, final_value, increment;
851 enum machine_mode mode;
852
853 if (precondition_loop_p (loop_start, loop_info,
854 &initial_value, &final_value, &increment,
855 &mode))
856 {
857 register rtx diff ;
858 rtx *labels;
859 int abs_inc, neg_inc;
860
861 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
862
863 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
864 map->const_age_map = (unsigned *) alloca (maxregnum
865 * sizeof (unsigned));
866 map->const_equiv_map_size = maxregnum;
867 global_const_equiv_map = map->const_equiv_map;
868 global_const_equiv_map_size = maxregnum;
869
870 init_reg_map (map, maxregnum);
871
872 /* Limit loop unrolling to 4, since this will make 7 copies of
873 the loop body. */
874 if (unroll_number > 4)
875 unroll_number = 4;
876
877 /* Save the absolute value of the increment, and also whether or
878 not it is negative. */
879 neg_inc = 0;
880 abs_inc = INTVAL (increment);
881 if (abs_inc < 0)
882 {
883 abs_inc = - abs_inc;
884 neg_inc = 1;
885 }
886
887 start_sequence ();
888
889 /* Calculate the difference between the final and initial values.
890 Final value may be a (plus (reg x) (const_int 1)) rtx.
891 Let the following cse pass simplify this if initial value is
892 a constant.
893
894 We must copy the final and initial values here to avoid
895 improperly shared rtl. */
896
897 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
898 copy_rtx (initial_value), NULL_RTX, 0,
899 OPTAB_LIB_WIDEN);
900
901 /* Now calculate (diff % (unroll * abs (increment))) by using an
902 and instruction. */
903 diff = expand_binop (GET_MODE (diff), and_optab, diff,
904 GEN_INT (unroll_number * abs_inc - 1),
905 NULL_RTX, 0, OPTAB_LIB_WIDEN);
906
907 /* Now emit a sequence of branches to jump to the proper precond
908 loop entry point. */
909
910 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
911 for (i = 0; i < unroll_number; i++)
912 labels[i] = gen_label_rtx ();
913
914 /* Check for the case where the initial value is greater than or
915 equal to the final value. In that case, we want to execute
916 exactly one loop iteration. The code below will fail for this
917 case. This check does not apply if the loop has a NE
918 comparison at the end. */
919
920 if (loop_info->comparison_code != NE)
921 {
922 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
923 NULL_RTX, mode, 0, 0);
924 if (neg_inc)
925 emit_jump_insn (gen_ble (labels[1]));
926 else
927 emit_jump_insn (gen_bge (labels[1]));
928 JUMP_LABEL (get_last_insn ()) = labels[1];
929 LABEL_NUSES (labels[1])++;
930 }
931
932 /* Assuming the unroll_number is 4, and the increment is 2, then
933 for a negative increment: for a positive increment:
934 diff = 0,1 precond 0 diff = 0,7 precond 0
935 diff = 2,3 precond 3 diff = 1,2 precond 1
936 diff = 4,5 precond 2 diff = 3,4 precond 2
937 diff = 6,7 precond 1 diff = 5,6 precond 3 */
938
939 /* We only need to emit (unroll_number - 1) branches here, the
940 last case just falls through to the following code. */
941
942 /* ??? This would give better code if we emitted a tree of branches
943 instead of the current linear list of branches. */
944
945 for (i = 0; i < unroll_number - 1; i++)
946 {
947 int cmp_const;
948 enum rtx_code cmp_code;
949
950 /* For negative increments, must invert the constant compared
951 against, except when comparing against zero. */
952 if (i == 0)
953 {
954 cmp_const = 0;
955 cmp_code = EQ;
956 }
957 else if (neg_inc)
958 {
959 cmp_const = unroll_number - i;
960 cmp_code = GE;
961 }
962 else
963 {
964 cmp_const = i;
965 cmp_code = LE;
966 }
967
968 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
969 cmp_code, NULL_RTX, mode, 0, 0);
970
971 if (i == 0)
972 emit_jump_insn (gen_beq (labels[i]));
973 else if (neg_inc)
974 emit_jump_insn (gen_bge (labels[i]));
975 else
976 emit_jump_insn (gen_ble (labels[i]));
977 JUMP_LABEL (get_last_insn ()) = labels[i];
978 LABEL_NUSES (labels[i])++;
979 }
980
981 /* If the increment is greater than one, then we need another branch,
982 to handle other cases equivalent to 0. */
983
984 /* ??? This should be merged into the code above somehow to help
985 simplify the code here, and reduce the number of branches emitted.
986 For the negative increment case, the branch here could easily
987 be merged with the `0' case branch above. For the positive
988 increment case, it is not clear how this can be simplified. */
989
990 if (abs_inc != 1)
991 {
992 int cmp_const;
993 enum rtx_code cmp_code;
994
995 if (neg_inc)
996 {
997 cmp_const = abs_inc - 1;
998 cmp_code = LE;
999 }
1000 else
1001 {
1002 cmp_const = abs_inc * (unroll_number - 1) + 1;
1003 cmp_code = GE;
1004 }
1005
1006 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1007 mode, 0, 0);
1008
1009 if (neg_inc)
1010 emit_jump_insn (gen_ble (labels[0]));
1011 else
1012 emit_jump_insn (gen_bge (labels[0]));
1013 JUMP_LABEL (get_last_insn ()) = labels[0];
1014 LABEL_NUSES (labels[0])++;
1015 }
1016
1017 sequence = gen_sequence ();
1018 end_sequence ();
1019 emit_insn_before (sequence, loop_start);
1020
1021 /* Only the last copy of the loop body here needs the exit
1022 test, so set copy_end to exclude the compare/branch here,
1023 and then reset it inside the loop when get to the last
1024 copy. */
1025
1026 if (GET_CODE (last_loop_insn) == BARRIER)
1027 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1028 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1029 {
1030 #ifdef HAVE_cc0
1031 /* The immediately preceding insn is a compare which we do not
1032 want to copy. */
1033 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1034 #else
1035 /* The immediately preceding insn may not be a compare, so we
1036 must copy it. */
1037 copy_end = PREV_INSN (last_loop_insn);
1038 #endif
1039 }
1040 else
1041 abort ();
1042
1043 for (i = 1; i < unroll_number; i++)
1044 {
1045 emit_label_after (labels[unroll_number - i],
1046 PREV_INSN (loop_start));
1047
1048 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1049 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1050 bzero ((char *) map->const_age_map,
1051 maxregnum * sizeof (unsigned));
1052 map->const_age = 0;
1053
1054 for (j = 0; j < max_labelno; j++)
1055 if (local_label[j])
1056 set_label_in_map (map, j, gen_label_rtx ());
1057
1058 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1059 if (local_regno[j])
1060 {
1061 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1062 record_base_value (REGNO (map->reg_map[j]),
1063 regno_reg_rtx[j], 0);
1064 }
1065 /* The last copy needs the compare/branch insns at the end,
1066 so reset copy_end here if the loop ends with a conditional
1067 branch. */
1068
1069 if (i == unroll_number - 1)
1070 {
1071 if (GET_CODE (last_loop_insn) == BARRIER)
1072 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1073 else
1074 copy_end = last_loop_insn;
1075 }
1076
1077 /* None of the copies are the `last_iteration', so just
1078 pass zero for that parameter. */
1079 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1080 unroll_type, start_label, loop_end,
1081 loop_start, copy_end);
1082 }
1083 emit_label_after (labels[0], PREV_INSN (loop_start));
1084
1085 if (GET_CODE (last_loop_insn) == BARRIER)
1086 {
1087 insert_before = PREV_INSN (last_loop_insn);
1088 copy_end = PREV_INSN (insert_before);
1089 }
1090 else
1091 {
1092 #ifdef HAVE_cc0
1093 /* The immediately preceding insn is a compare which we do not
1094 want to copy. */
1095 insert_before = PREV_INSN (last_loop_insn);
1096 copy_end = PREV_INSN (insert_before);
1097 #else
1098 /* The immediately preceding insn may not be a compare, so we
1099 must copy it. */
1100 insert_before = last_loop_insn;
1101 copy_end = PREV_INSN (last_loop_insn);
1102 #endif
1103 }
1104
1105 /* Set unroll type to MODULO now. */
1106 unroll_type = UNROLL_MODULO;
1107 loop_preconditioned = 1;
1108 }
1109 }
1110
1111 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1112 the loop unless all loops are being unrolled. */
1113 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1114 {
1115 if (loop_dump_stream)
1116 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1117 return;
1118 }
1119
1120 /* At this point, we are guaranteed to unroll the loop. */
1121
1122 /* Keep track of the unroll factor for the loop. */
1123 if (unroll_type == UNROLL_COMPLETELY)
1124 loop_info->unroll_number = -1;
1125 else
1126 loop_info->unroll_number = unroll_number;
1127
1128
1129 /* For each biv and giv, determine whether it can be safely split into
1130 a different variable for each unrolled copy of the loop body.
1131 We precalculate and save this info here, since computing it is
1132 expensive.
1133
1134 Do this before deleting any instructions from the loop, so that
1135 back_branch_in_range_p will work correctly. */
1136
1137 if (splitting_not_safe)
1138 temp = 0;
1139 else
1140 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1141 end_insert_before, unroll_number,
1142 loop_info->n_iterations);
1143
1144 /* find_splittable_regs may have created some new registers, so must
1145 reallocate the reg_map with the new larger size, and must realloc
1146 the constant maps also. */
1147
1148 maxregnum = max_reg_num ();
1149 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1150
1151 init_reg_map (map, maxregnum);
1152
1153 /* Space is needed in some of the map for new registers, so new_maxregnum
1154 is an (over)estimate of how many registers will exist at the end. */
1155 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1156
1157 /* Must realloc space for the constant maps, because the number of registers
1158 may have changed. */
1159
1160 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1161 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1162
1163 map->const_equiv_map_size = new_maxregnum;
1164 global_const_equiv_map = map->const_equiv_map;
1165 global_const_equiv_map_size = new_maxregnum;
1166
1167 /* Search the list of bivs and givs to find ones which need to be remapped
1168 when split, and set their reg_map entry appropriately. */
1169
1170 for (bl = loop_iv_list; bl; bl = bl->next)
1171 {
1172 if (REGNO (bl->biv->src_reg) != bl->regno)
1173 map->reg_map[bl->regno] = bl->biv->src_reg;
1174 #if 0
1175 /* Currently, non-reduced/final-value givs are never split. */
1176 for (v = bl->giv; v; v = v->next_iv)
1177 if (REGNO (v->src_reg) != bl->regno)
1178 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1179 #endif
1180 }
1181
1182 /* Use our current register alignment and pointer flags. */
1183 map->regno_pointer_flag = regno_pointer_flag;
1184 map->regno_pointer_align = regno_pointer_align;
1185
1186 /* If the loop is being partially unrolled, and the iteration variables
1187 are being split, and are being renamed for the split, then must fix up
1188 the compare/jump instruction at the end of the loop to refer to the new
1189 registers. This compare isn't copied, so the registers used in it
1190 will never be replaced if it isn't done here. */
1191
1192 if (unroll_type == UNROLL_MODULO)
1193 {
1194 insn = NEXT_INSN (copy_end);
1195 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1196 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1197 }
1198
1199 /* For unroll_number - 1 times, make a copy of each instruction
1200 between copy_start and copy_end, and insert these new instructions
1201 before the end of the loop. */
1202
1203 for (i = 0; i < unroll_number; i++)
1204 {
1205 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1206 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1207 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1208 map->const_age = 0;
1209
1210 for (j = 0; j < max_labelno; j++)
1211 if (local_label[j])
1212 set_label_in_map (map, j, gen_label_rtx ());
1213
1214 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1215 if (local_regno[j])
1216 {
1217 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1218 record_base_value (REGNO (map->reg_map[j]),
1219 regno_reg_rtx[j], 0);
1220 }
1221
1222 /* If loop starts with a branch to the test, then fix it so that
1223 it points to the test of the first unrolled copy of the loop. */
1224 if (i == 0 && loop_start != copy_start)
1225 {
1226 insn = PREV_INSN (copy_start);
1227 pattern = PATTERN (insn);
1228
1229 tem = get_label_from_map (map,
1230 CODE_LABEL_NUMBER
1231 (XEXP (SET_SRC (pattern), 0)));
1232 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1233
1234 /* Set the jump label so that it can be used by later loop unrolling
1235 passes. */
1236 JUMP_LABEL (insn) = tem;
1237 LABEL_NUSES (tem)++;
1238 }
1239
1240 copy_loop_body (copy_start, copy_end, map, exit_label,
1241 i == unroll_number - 1, unroll_type, start_label,
1242 loop_end, insert_before, insert_before);
1243 }
1244
1245 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1246 insn to be deleted. This prevents any runaway delete_insn call from
1247 more insns that it should, as it always stops at a CODE_LABEL. */
1248
1249 /* Delete the compare and branch at the end of the loop if completely
1250 unrolling the loop. Deleting the backward branch at the end also
1251 deletes the code label at the start of the loop. This is done at
1252 the very end to avoid problems with back_branch_in_range_p. */
1253
1254 if (unroll_type == UNROLL_COMPLETELY)
1255 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1256 else
1257 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1258
1259 /* Delete all of the original loop instructions. Don't delete the
1260 LOOP_BEG note, or the first code label in the loop. */
1261
1262 insn = NEXT_INSN (copy_start);
1263 while (insn != safety_label)
1264 {
1265 if (insn != start_label)
1266 insn = delete_insn (insn);
1267 else
1268 insn = NEXT_INSN (insn);
1269 }
1270
1271 /* Can now delete the 'safety' label emitted to protect us from runaway
1272 delete_insn calls. */
1273 if (INSN_DELETED_P (safety_label))
1274 abort ();
1275 delete_insn (safety_label);
1276
1277 /* If exit_label exists, emit it after the loop. Doing the emit here
1278 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1279 This is needed so that mostly_true_jump in reorg.c will treat jumps
1280 to this loop end label correctly, i.e. predict that they are usually
1281 not taken. */
1282 if (exit_label)
1283 emit_label_after (exit_label, loop_end);
1284 }
1285 \f
1286 /* Return true if the loop can be safely, and profitably, preconditioned
1287 so that the unrolled copies of the loop body don't need exit tests.
1288
1289 This only works if final_value, initial_value and increment can be
1290 determined, and if increment is a constant power of 2.
1291 If increment is not a power of 2, then the preconditioning modulo
1292 operation would require a real modulo instead of a boolean AND, and this
1293 is not considered `profitable'. */
1294
1295 /* ??? If the loop is known to be executed very many times, or the machine
1296 has a very cheap divide instruction, then preconditioning is a win even
1297 when the increment is not a power of 2. Use RTX_COST to compute
1298 whether divide is cheap. */
1299
1300 int
1301 precondition_loop_p (loop_start, loop_info,
1302 initial_value, final_value, increment, mode)
1303 rtx loop_start;
1304 struct loop_info *loop_info;
1305 rtx *initial_value, *final_value, *increment;
1306 enum machine_mode *mode;
1307 {
1308
1309 if (loop_info->n_iterations > 0)
1310 {
1311 *initial_value = const0_rtx;
1312 *increment = const1_rtx;
1313 *final_value = GEN_INT (loop_info->n_iterations);
1314 *mode = word_mode;
1315
1316 if (loop_dump_stream)
1317 {
1318 fputs ("Preconditioning: Success, number of iterations known, ",
1319 loop_dump_stream);
1320 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1321 loop_info->n_iterations);
1322 fputs (".\n", loop_dump_stream);
1323 }
1324 return 1;
1325 }
1326
1327 if (loop_info->initial_value == 0)
1328 {
1329 if (loop_dump_stream)
1330 fprintf (loop_dump_stream,
1331 "Preconditioning: Could not find initial value.\n");
1332 return 0;
1333 }
1334 else if (loop_info->increment == 0)
1335 {
1336 if (loop_dump_stream)
1337 fprintf (loop_dump_stream,
1338 "Preconditioning: Could not find increment value.\n");
1339 return 0;
1340 }
1341 else if (GET_CODE (loop_info->increment) != CONST_INT)
1342 {
1343 if (loop_dump_stream)
1344 fprintf (loop_dump_stream,
1345 "Preconditioning: Increment not a constant.\n");
1346 return 0;
1347 }
1348 else if ((exact_log2 (INTVAL (loop_info->increment)) < 0)
1349 && (exact_log2 (- INTVAL (loop_info->increment)) < 0))
1350 {
1351 if (loop_dump_stream)
1352 fprintf (loop_dump_stream,
1353 "Preconditioning: Increment not a constant power of 2.\n");
1354 return 0;
1355 }
1356
1357 /* Unsigned_compare and compare_dir can be ignored here, since they do
1358 not matter for preconditioning. */
1359
1360 if (loop_info->final_value == 0)
1361 {
1362 if (loop_dump_stream)
1363 fprintf (loop_dump_stream,
1364 "Preconditioning: EQ comparison loop.\n");
1365 return 0;
1366 }
1367
1368 /* Must ensure that final_value is invariant, so call invariant_p to
1369 check. Before doing so, must check regno against max_reg_before_loop
1370 to make sure that the register is in the range covered by invariant_p.
1371 If it isn't, then it is most likely a biv/giv which by definition are
1372 not invariant. */
1373 if ((GET_CODE (loop_info->final_value) == REG
1374 && REGNO (loop_info->final_value) >= max_reg_before_loop)
1375 || (GET_CODE (loop_info->final_value) == PLUS
1376 && REGNO (XEXP (loop_info->final_value, 0)) >= max_reg_before_loop)
1377 || ! invariant_p (loop_info->final_value))
1378 {
1379 if (loop_dump_stream)
1380 fprintf (loop_dump_stream,
1381 "Preconditioning: Final value not invariant.\n");
1382 return 0;
1383 }
1384
1385 /* Fail for floating point values, since the caller of this function
1386 does not have code to deal with them. */
1387 if (GET_MODE_CLASS (GET_MODE (loop_info->final_value)) == MODE_FLOAT
1388 || GET_MODE_CLASS (GET_MODE (loop_info->initial_value)) == MODE_FLOAT)
1389 {
1390 if (loop_dump_stream)
1391 fprintf (loop_dump_stream,
1392 "Preconditioning: Floating point final or initial value.\n");
1393 return 0;
1394 }
1395
1396 /* Fail if loop_info->iteration_var is not live before loop_start,
1397 since we need to test its value in the preconditioning code. */
1398
1399 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_info->iteration_var))]
1400 > INSN_LUID (loop_start))
1401 {
1402 if (loop_dump_stream)
1403 fprintf (loop_dump_stream,
1404 "Preconditioning: Iteration var not live before loop start.\n");
1405 return 0;
1406 }
1407
1408 /* ??? Note that if iteration_info is modifed to allow GIV iterators
1409 such as "while (i-- > 0)", the initial value will be one too small.
1410 In this case, loop_iteration_var could be used to determine
1411 the correct initial value, provided the loop has not been reversed.
1412
1413 Also note that the absolute values of initial_value and
1414 final_value are unimportant as only their difference is used for
1415 calculating the number of loop iterations. */
1416 *initial_value = loop_info->initial_value;
1417 *increment = loop_info->increment;
1418 *final_value = loop_info->final_value;
1419
1420 /* Decide what mode to do these calculations in. Choose the larger
1421 of final_value's mode and initial_value's mode, or a full-word if
1422 both are constants. */
1423 *mode = GET_MODE (*final_value);
1424 if (*mode == VOIDmode)
1425 {
1426 *mode = GET_MODE (*initial_value);
1427 if (*mode == VOIDmode)
1428 *mode = word_mode;
1429 }
1430 else if (*mode != GET_MODE (*initial_value)
1431 && (GET_MODE_SIZE (*mode)
1432 < GET_MODE_SIZE (GET_MODE (*initial_value))))
1433 *mode = GET_MODE (*initial_value);
1434
1435 /* Success! */
1436 if (loop_dump_stream)
1437 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1438 return 1;
1439 }
1440
1441
1442 /* All pseudo-registers must be mapped to themselves. Two hard registers
1443 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1444 REGNUM, to avoid function-inlining specific conversions of these
1445 registers. All other hard regs can not be mapped because they may be
1446 used with different
1447 modes. */
1448
1449 static void
1450 init_reg_map (map, maxregnum)
1451 struct inline_remap *map;
1452 int maxregnum;
1453 {
1454 int i;
1455
1456 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1457 map->reg_map[i] = regno_reg_rtx[i];
1458 /* Just clear the rest of the entries. */
1459 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1460 map->reg_map[i] = 0;
1461
1462 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1463 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1464 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1465 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1466 }
1467 \f
1468 /* Strength-reduction will often emit code for optimized biv/givs which
1469 calculates their value in a temporary register, and then copies the result
1470 to the iv. This procedure reconstructs the pattern computing the iv;
1471 verifying that all operands are of the proper form.
1472
1473 PATTERN must be the result of single_set.
1474 The return value is the amount that the giv is incremented by. */
1475
1476 static rtx
1477 calculate_giv_inc (pattern, src_insn, regno)
1478 rtx pattern, src_insn;
1479 int regno;
1480 {
1481 rtx increment;
1482 rtx increment_total = 0;
1483 int tries = 0;
1484
1485 retry:
1486 /* Verify that we have an increment insn here. First check for a plus
1487 as the set source. */
1488 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1489 {
1490 /* SR sometimes computes the new giv value in a temp, then copies it
1491 to the new_reg. */
1492 src_insn = PREV_INSN (src_insn);
1493 pattern = PATTERN (src_insn);
1494 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1495 abort ();
1496
1497 /* The last insn emitted is not needed, so delete it to avoid confusing
1498 the second cse pass. This insn sets the giv unnecessarily. */
1499 delete_insn (get_last_insn ());
1500 }
1501
1502 /* Verify that we have a constant as the second operand of the plus. */
1503 increment = XEXP (SET_SRC (pattern), 1);
1504 if (GET_CODE (increment) != CONST_INT)
1505 {
1506 /* SR sometimes puts the constant in a register, especially if it is
1507 too big to be an add immed operand. */
1508 src_insn = PREV_INSN (src_insn);
1509 increment = SET_SRC (PATTERN (src_insn));
1510
1511 /* SR may have used LO_SUM to compute the constant if it is too large
1512 for a load immed operand. In this case, the constant is in operand
1513 one of the LO_SUM rtx. */
1514 if (GET_CODE (increment) == LO_SUM)
1515 increment = XEXP (increment, 1);
1516
1517 /* Some ports store large constants in memory and add a REG_EQUAL
1518 note to the store insn. */
1519 else if (GET_CODE (increment) == MEM)
1520 {
1521 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1522 if (note)
1523 increment = XEXP (note, 0);
1524 }
1525
1526 else if (GET_CODE (increment) == IOR
1527 || GET_CODE (increment) == ASHIFT
1528 || GET_CODE (increment) == PLUS)
1529 {
1530 /* The rs6000 port loads some constants with IOR.
1531 The alpha port loads some constants with ASHIFT and PLUS. */
1532 rtx second_part = XEXP (increment, 1);
1533 enum rtx_code code = GET_CODE (increment);
1534
1535 src_insn = PREV_INSN (src_insn);
1536 increment = SET_SRC (PATTERN (src_insn));
1537 /* Don't need the last insn anymore. */
1538 delete_insn (get_last_insn ());
1539
1540 if (GET_CODE (second_part) != CONST_INT
1541 || GET_CODE (increment) != CONST_INT)
1542 abort ();
1543
1544 if (code == IOR)
1545 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1546 else if (code == PLUS)
1547 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1548 else
1549 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1550 }
1551
1552 if (GET_CODE (increment) != CONST_INT)
1553 abort ();
1554
1555 /* The insn loading the constant into a register is no longer needed,
1556 so delete it. */
1557 delete_insn (get_last_insn ());
1558 }
1559
1560 if (increment_total)
1561 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1562 else
1563 increment_total = increment;
1564
1565 /* Check that the source register is the same as the register we expected
1566 to see as the source. If not, something is seriously wrong. */
1567 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1568 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1569 {
1570 /* Some machines (e.g. the romp), may emit two add instructions for
1571 certain constants, so lets try looking for another add immediately
1572 before this one if we have only seen one add insn so far. */
1573
1574 if (tries == 0)
1575 {
1576 tries++;
1577
1578 src_insn = PREV_INSN (src_insn);
1579 pattern = PATTERN (src_insn);
1580
1581 delete_insn (get_last_insn ());
1582
1583 goto retry;
1584 }
1585
1586 abort ();
1587 }
1588
1589 return increment_total;
1590 }
1591
1592 /* Copy REG_NOTES, except for insn references, because not all insn_map
1593 entries are valid yet. We do need to copy registers now though, because
1594 the reg_map entries can change during copying. */
1595
1596 static rtx
1597 initial_reg_note_copy (notes, map)
1598 rtx notes;
1599 struct inline_remap *map;
1600 {
1601 rtx copy;
1602
1603 if (notes == 0)
1604 return 0;
1605
1606 copy = rtx_alloc (GET_CODE (notes));
1607 PUT_MODE (copy, GET_MODE (notes));
1608
1609 if (GET_CODE (notes) == EXPR_LIST)
1610 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1611 else if (GET_CODE (notes) == INSN_LIST)
1612 /* Don't substitute for these yet. */
1613 XEXP (copy, 0) = XEXP (notes, 0);
1614 else
1615 abort ();
1616
1617 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1618
1619 return copy;
1620 }
1621
1622 /* Fixup insn references in copied REG_NOTES. */
1623
1624 static void
1625 final_reg_note_copy (notes, map)
1626 rtx notes;
1627 struct inline_remap *map;
1628 {
1629 rtx note;
1630
1631 for (note = notes; note; note = XEXP (note, 1))
1632 if (GET_CODE (note) == INSN_LIST)
1633 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1634 }
1635
1636 /* Copy each instruction in the loop, substituting from map as appropriate.
1637 This is very similar to a loop in expand_inline_function. */
1638
1639 static void
1640 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1641 unroll_type, start_label, loop_end, insert_before,
1642 copy_notes_from)
1643 rtx copy_start, copy_end;
1644 struct inline_remap *map;
1645 rtx exit_label;
1646 int last_iteration;
1647 enum unroll_types unroll_type;
1648 rtx start_label, loop_end, insert_before, copy_notes_from;
1649 {
1650 rtx insn, pattern;
1651 rtx set, tem, copy;
1652 int dest_reg_was_split, i;
1653 #ifdef HAVE_cc0
1654 rtx cc0_insn = 0;
1655 #endif
1656 rtx final_label = 0;
1657 rtx giv_inc, giv_dest_reg, giv_src_reg;
1658
1659 /* If this isn't the last iteration, then map any references to the
1660 start_label to final_label. Final label will then be emitted immediately
1661 after the end of this loop body if it was ever used.
1662
1663 If this is the last iteration, then map references to the start_label
1664 to itself. */
1665 if (! last_iteration)
1666 {
1667 final_label = gen_label_rtx ();
1668 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1669 final_label);
1670 }
1671 else
1672 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1673
1674 start_sequence ();
1675
1676 insn = copy_start;
1677 do
1678 {
1679 insn = NEXT_INSN (insn);
1680
1681 map->orig_asm_operands_vector = 0;
1682
1683 switch (GET_CODE (insn))
1684 {
1685 case INSN:
1686 pattern = PATTERN (insn);
1687 copy = 0;
1688 giv_inc = 0;
1689
1690 /* Check to see if this is a giv that has been combined with
1691 some split address givs. (Combined in the sense that
1692 `combine_givs' in loop.c has put two givs in the same register.)
1693 In this case, we must search all givs based on the same biv to
1694 find the address givs. Then split the address givs.
1695 Do this before splitting the giv, since that may map the
1696 SET_DEST to a new register. */
1697
1698 if ((set = single_set (insn))
1699 && GET_CODE (SET_DEST (set)) == REG
1700 && addr_combined_regs[REGNO (SET_DEST (set))])
1701 {
1702 struct iv_class *bl;
1703 struct induction *v, *tv;
1704 int regno = REGNO (SET_DEST (set));
1705
1706 v = addr_combined_regs[REGNO (SET_DEST (set))];
1707 bl = reg_biv_class[REGNO (v->src_reg)];
1708
1709 /* Although the giv_inc amount is not needed here, we must call
1710 calculate_giv_inc here since it might try to delete the
1711 last insn emitted. If we wait until later to call it,
1712 we might accidentally delete insns generated immediately
1713 below by emit_unrolled_add. */
1714
1715 giv_inc = calculate_giv_inc (set, insn, regno);
1716
1717 /* Now find all address giv's that were combined with this
1718 giv 'v'. */
1719 for (tv = bl->giv; tv; tv = tv->next_iv)
1720 if (tv->giv_type == DEST_ADDR && tv->same == v)
1721 {
1722 int this_giv_inc;
1723
1724 /* If this DEST_ADDR giv was not split, then ignore it. */
1725 if (*tv->location != tv->dest_reg)
1726 continue;
1727
1728 /* Scale this_giv_inc if the multiplicative factors of
1729 the two givs are different. */
1730 this_giv_inc = INTVAL (giv_inc);
1731 if (tv->mult_val != v->mult_val)
1732 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1733 * INTVAL (tv->mult_val));
1734
1735 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1736 *tv->location = tv->dest_reg;
1737
1738 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1739 {
1740 /* Must emit an insn to increment the split address
1741 giv. Add in the const_adjust field in case there
1742 was a constant eliminated from the address. */
1743 rtx value, dest_reg;
1744
1745 /* tv->dest_reg will be either a bare register,
1746 or else a register plus a constant. */
1747 if (GET_CODE (tv->dest_reg) == REG)
1748 dest_reg = tv->dest_reg;
1749 else
1750 dest_reg = XEXP (tv->dest_reg, 0);
1751
1752 /* Check for shared address givs, and avoid
1753 incrementing the shared pseudo reg more than
1754 once. */
1755 if (! tv->same_insn && ! tv->shared)
1756 {
1757 /* tv->dest_reg may actually be a (PLUS (REG)
1758 (CONST)) here, so we must call plus_constant
1759 to add the const_adjust amount before calling
1760 emit_unrolled_add below. */
1761 value = plus_constant (tv->dest_reg,
1762 tv->const_adjust);
1763
1764 /* The constant could be too large for an add
1765 immediate, so can't directly emit an insn
1766 here. */
1767 emit_unrolled_add (dest_reg, XEXP (value, 0),
1768 XEXP (value, 1));
1769 }
1770
1771 /* Reset the giv to be just the register again, in case
1772 it is used after the set we have just emitted.
1773 We must subtract the const_adjust factor added in
1774 above. */
1775 tv->dest_reg = plus_constant (dest_reg,
1776 - tv->const_adjust);
1777 *tv->location = tv->dest_reg;
1778 }
1779 }
1780 }
1781
1782 /* If this is a setting of a splittable variable, then determine
1783 how to split the variable, create a new set based on this split,
1784 and set up the reg_map so that later uses of the variable will
1785 use the new split variable. */
1786
1787 dest_reg_was_split = 0;
1788
1789 if ((set = single_set (insn))
1790 && GET_CODE (SET_DEST (set)) == REG
1791 && splittable_regs[REGNO (SET_DEST (set))])
1792 {
1793 int regno = REGNO (SET_DEST (set));
1794
1795 dest_reg_was_split = 1;
1796
1797 /* Compute the increment value for the giv, if it wasn't
1798 already computed above. */
1799
1800 if (giv_inc == 0)
1801 giv_inc = calculate_giv_inc (set, insn, regno);
1802 giv_dest_reg = SET_DEST (set);
1803 giv_src_reg = SET_DEST (set);
1804
1805 if (unroll_type == UNROLL_COMPLETELY)
1806 {
1807 /* Completely unrolling the loop. Set the induction
1808 variable to a known constant value. */
1809
1810 /* The value in splittable_regs may be an invariant
1811 value, so we must use plus_constant here. */
1812 splittable_regs[regno]
1813 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1814
1815 if (GET_CODE (splittable_regs[regno]) == PLUS)
1816 {
1817 giv_src_reg = XEXP (splittable_regs[regno], 0);
1818 giv_inc = XEXP (splittable_regs[regno], 1);
1819 }
1820 else
1821 {
1822 /* The splittable_regs value must be a REG or a
1823 CONST_INT, so put the entire value in the giv_src_reg
1824 variable. */
1825 giv_src_reg = splittable_regs[regno];
1826 giv_inc = const0_rtx;
1827 }
1828 }
1829 else
1830 {
1831 /* Partially unrolling loop. Create a new pseudo
1832 register for the iteration variable, and set it to
1833 be a constant plus the original register. Except
1834 on the last iteration, when the result has to
1835 go back into the original iteration var register. */
1836
1837 /* Handle bivs which must be mapped to a new register
1838 when split. This happens for bivs which need their
1839 final value set before loop entry. The new register
1840 for the biv was stored in the biv's first struct
1841 induction entry by find_splittable_regs. */
1842
1843 if (regno < max_reg_before_loop
1844 && reg_iv_type[regno] == BASIC_INDUCT)
1845 {
1846 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1847 giv_dest_reg = giv_src_reg;
1848 }
1849
1850 #if 0
1851 /* If non-reduced/final-value givs were split, then
1852 this would have to remap those givs also. See
1853 find_splittable_regs. */
1854 #endif
1855
1856 splittable_regs[regno]
1857 = GEN_INT (INTVAL (giv_inc)
1858 + INTVAL (splittable_regs[regno]));
1859 giv_inc = splittable_regs[regno];
1860
1861 /* Now split the induction variable by changing the dest
1862 of this insn to a new register, and setting its
1863 reg_map entry to point to this new register.
1864
1865 If this is the last iteration, and this is the last insn
1866 that will update the iv, then reuse the original dest,
1867 to ensure that the iv will have the proper value when
1868 the loop exits or repeats.
1869
1870 Using splittable_regs_updates here like this is safe,
1871 because it can only be greater than one if all
1872 instructions modifying the iv are always executed in
1873 order. */
1874
1875 if (! last_iteration
1876 || (splittable_regs_updates[regno]-- != 1))
1877 {
1878 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1879 giv_dest_reg = tem;
1880 map->reg_map[regno] = tem;
1881 record_base_value (REGNO (tem),
1882 giv_inc == const0_rtx
1883 ? giv_src_reg
1884 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1885 giv_src_reg, giv_inc),
1886 1);
1887 }
1888 else
1889 map->reg_map[regno] = giv_src_reg;
1890 }
1891
1892 /* The constant being added could be too large for an add
1893 immediate, so can't directly emit an insn here. */
1894 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1895 copy = get_last_insn ();
1896 pattern = PATTERN (copy);
1897 }
1898 else
1899 {
1900 pattern = copy_rtx_and_substitute (pattern, map);
1901 copy = emit_insn (pattern);
1902 }
1903 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1904
1905 #ifdef HAVE_cc0
1906 /* If this insn is setting CC0, it may need to look at
1907 the insn that uses CC0 to see what type of insn it is.
1908 In that case, the call to recog via validate_change will
1909 fail. So don't substitute constants here. Instead,
1910 do it when we emit the following insn.
1911
1912 For example, see the pyr.md file. That machine has signed and
1913 unsigned compares. The compare patterns must check the
1914 following branch insn to see which what kind of compare to
1915 emit.
1916
1917 If the previous insn set CC0, substitute constants on it as
1918 well. */
1919 if (sets_cc0_p (PATTERN (copy)) != 0)
1920 cc0_insn = copy;
1921 else
1922 {
1923 if (cc0_insn)
1924 try_constants (cc0_insn, map);
1925 cc0_insn = 0;
1926 try_constants (copy, map);
1927 }
1928 #else
1929 try_constants (copy, map);
1930 #endif
1931
1932 /* Make split induction variable constants `permanent' since we
1933 know there are no backward branches across iteration variable
1934 settings which would invalidate this. */
1935 if (dest_reg_was_split)
1936 {
1937 int regno = REGNO (SET_DEST (pattern));
1938
1939 if (regno < map->const_equiv_map_size
1940 && map->const_age_map[regno] == map->const_age)
1941 map->const_age_map[regno] = -1;
1942 }
1943 break;
1944
1945 case JUMP_INSN:
1946 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1947 copy = emit_jump_insn (pattern);
1948 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1949
1950 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1951 && ! last_iteration)
1952 {
1953 /* This is a branch to the beginning of the loop; this is the
1954 last insn being copied; and this is not the last iteration.
1955 In this case, we want to change the original fall through
1956 case to be a branch past the end of the loop, and the
1957 original jump label case to fall_through. */
1958
1959 if (invert_exp (pattern, copy))
1960 {
1961 if (! redirect_exp (&pattern,
1962 get_label_from_map (map,
1963 CODE_LABEL_NUMBER
1964 (JUMP_LABEL (insn))),
1965 exit_label, copy))
1966 abort ();
1967 }
1968 else
1969 {
1970 rtx jmp;
1971 rtx lab = gen_label_rtx ();
1972 /* Can't do it by reversing the jump (probably because we
1973 couldn't reverse the conditions), so emit a new
1974 jump_insn after COPY, and redirect the jump around
1975 that. */
1976 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1977 jmp = emit_barrier_after (jmp);
1978 emit_label_after (lab, jmp);
1979 LABEL_NUSES (lab) = 0;
1980 if (! redirect_exp (&pattern,
1981 get_label_from_map (map,
1982 CODE_LABEL_NUMBER
1983 (JUMP_LABEL (insn))),
1984 lab, copy))
1985 abort ();
1986 }
1987 }
1988
1989 #ifdef HAVE_cc0
1990 if (cc0_insn)
1991 try_constants (cc0_insn, map);
1992 cc0_insn = 0;
1993 #endif
1994 try_constants (copy, map);
1995
1996 /* Set the jump label of COPY correctly to avoid problems with
1997 later passes of unroll_loop, if INSN had jump label set. */
1998 if (JUMP_LABEL (insn))
1999 {
2000 rtx label = 0;
2001
2002 /* Can't use the label_map for every insn, since this may be
2003 the backward branch, and hence the label was not mapped. */
2004 if ((set = single_set (copy)))
2005 {
2006 tem = SET_SRC (set);
2007 if (GET_CODE (tem) == LABEL_REF)
2008 label = XEXP (tem, 0);
2009 else if (GET_CODE (tem) == IF_THEN_ELSE)
2010 {
2011 if (XEXP (tem, 1) != pc_rtx)
2012 label = XEXP (XEXP (tem, 1), 0);
2013 else
2014 label = XEXP (XEXP (tem, 2), 0);
2015 }
2016 }
2017
2018 if (label && GET_CODE (label) == CODE_LABEL)
2019 JUMP_LABEL (copy) = label;
2020 else
2021 {
2022 /* An unrecognizable jump insn, probably the entry jump
2023 for a switch statement. This label must have been mapped,
2024 so just use the label_map to get the new jump label. */
2025 JUMP_LABEL (copy)
2026 = get_label_from_map (map,
2027 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2028 }
2029
2030 /* If this is a non-local jump, then must increase the label
2031 use count so that the label will not be deleted when the
2032 original jump is deleted. */
2033 LABEL_NUSES (JUMP_LABEL (copy))++;
2034 }
2035 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2036 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2037 {
2038 rtx pat = PATTERN (copy);
2039 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2040 int len = XVECLEN (pat, diff_vec_p);
2041 int i;
2042
2043 for (i = 0; i < len; i++)
2044 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2045 }
2046
2047 /* If this used to be a conditional jump insn but whose branch
2048 direction is now known, we must do something special. */
2049 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2050 {
2051 #ifdef HAVE_cc0
2052 /* The previous insn set cc0 for us. So delete it. */
2053 delete_insn (PREV_INSN (copy));
2054 #endif
2055
2056 /* If this is now a no-op, delete it. */
2057 if (map->last_pc_value == pc_rtx)
2058 {
2059 /* Don't let delete_insn delete the label referenced here,
2060 because we might possibly need it later for some other
2061 instruction in the loop. */
2062 if (JUMP_LABEL (copy))
2063 LABEL_NUSES (JUMP_LABEL (copy))++;
2064 delete_insn (copy);
2065 if (JUMP_LABEL (copy))
2066 LABEL_NUSES (JUMP_LABEL (copy))--;
2067 copy = 0;
2068 }
2069 else
2070 /* Otherwise, this is unconditional jump so we must put a
2071 BARRIER after it. We could do some dead code elimination
2072 here, but jump.c will do it just as well. */
2073 emit_barrier ();
2074 }
2075 break;
2076
2077 case CALL_INSN:
2078 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2079 copy = emit_call_insn (pattern);
2080 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2081
2082 /* Because the USAGE information potentially contains objects other
2083 than hard registers, we need to copy it. */
2084 CALL_INSN_FUNCTION_USAGE (copy)
2085 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2086
2087 #ifdef HAVE_cc0
2088 if (cc0_insn)
2089 try_constants (cc0_insn, map);
2090 cc0_insn = 0;
2091 #endif
2092 try_constants (copy, map);
2093
2094 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2095 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2096 map->const_equiv_map[i] = 0;
2097 break;
2098
2099 case CODE_LABEL:
2100 /* If this is the loop start label, then we don't need to emit a
2101 copy of this label since no one will use it. */
2102
2103 if (insn != start_label)
2104 {
2105 copy = emit_label (get_label_from_map (map,
2106 CODE_LABEL_NUMBER (insn)));
2107 map->const_age++;
2108 }
2109 break;
2110
2111 case BARRIER:
2112 copy = emit_barrier ();
2113 break;
2114
2115 case NOTE:
2116 /* VTOP notes are valid only before the loop exit test. If placed
2117 anywhere else, loop may generate bad code. */
2118
2119 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2120 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2121 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2122 copy = emit_note (NOTE_SOURCE_FILE (insn),
2123 NOTE_LINE_NUMBER (insn));
2124 else
2125 copy = 0;
2126 break;
2127
2128 default:
2129 abort ();
2130 break;
2131 }
2132
2133 map->insn_map[INSN_UID (insn)] = copy;
2134 }
2135 while (insn != copy_end);
2136
2137 /* Now finish coping the REG_NOTES. */
2138 insn = copy_start;
2139 do
2140 {
2141 insn = NEXT_INSN (insn);
2142 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2143 || GET_CODE (insn) == CALL_INSN)
2144 && map->insn_map[INSN_UID (insn)])
2145 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2146 }
2147 while (insn != copy_end);
2148
2149 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2150 each of these notes here, since there may be some important ones, such as
2151 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2152 iteration, because the original notes won't be deleted.
2153
2154 We can't use insert_before here, because when from preconditioning,
2155 insert_before points before the loop. We can't use copy_end, because
2156 there may be insns already inserted after it (which we don't want to
2157 copy) when not from preconditioning code. */
2158
2159 if (! last_iteration)
2160 {
2161 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2162 {
2163 if (GET_CODE (insn) == NOTE
2164 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2165 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2166 }
2167 }
2168
2169 if (final_label && LABEL_NUSES (final_label) > 0)
2170 emit_label (final_label);
2171
2172 tem = gen_sequence ();
2173 end_sequence ();
2174 emit_insn_before (tem, insert_before);
2175 }
2176 \f
2177 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2178 emitted. This will correctly handle the case where the increment value
2179 won't fit in the immediate field of a PLUS insns. */
2180
2181 void
2182 emit_unrolled_add (dest_reg, src_reg, increment)
2183 rtx dest_reg, src_reg, increment;
2184 {
2185 rtx result;
2186
2187 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2188 dest_reg, 0, OPTAB_LIB_WIDEN);
2189
2190 if (dest_reg != result)
2191 emit_move_insn (dest_reg, result);
2192 }
2193 \f
2194 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2195 is a backward branch in that range that branches to somewhere between
2196 LOOP_START and INSN. Returns 0 otherwise. */
2197
2198 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2199 In practice, this is not a problem, because this function is seldom called,
2200 and uses a negligible amount of CPU time on average. */
2201
2202 int
2203 back_branch_in_range_p (insn, loop_start, loop_end)
2204 rtx insn;
2205 rtx loop_start, loop_end;
2206 {
2207 rtx p, q, target_insn;
2208 rtx orig_loop_end = loop_end;
2209
2210 /* Stop before we get to the backward branch at the end of the loop. */
2211 loop_end = prev_nonnote_insn (loop_end);
2212 if (GET_CODE (loop_end) == BARRIER)
2213 loop_end = PREV_INSN (loop_end);
2214
2215 /* Check in case insn has been deleted, search forward for first non
2216 deleted insn following it. */
2217 while (INSN_DELETED_P (insn))
2218 insn = NEXT_INSN (insn);
2219
2220 /* Check for the case where insn is the last insn in the loop. Deal
2221 with the case where INSN was a deleted loop test insn, in which case
2222 it will now be the NOTE_LOOP_END. */
2223 if (insn == loop_end || insn == orig_loop_end)
2224 return 0;
2225
2226 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2227 {
2228 if (GET_CODE (p) == JUMP_INSN)
2229 {
2230 target_insn = JUMP_LABEL (p);
2231
2232 /* Search from loop_start to insn, to see if one of them is
2233 the target_insn. We can't use INSN_LUID comparisons here,
2234 since insn may not have an LUID entry. */
2235 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2236 if (q == target_insn)
2237 return 1;
2238 }
2239 }
2240
2241 return 0;
2242 }
2243
2244 /* Try to generate the simplest rtx for the expression
2245 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2246 value of giv's. */
2247
2248 static rtx
2249 fold_rtx_mult_add (mult1, mult2, add1, mode)
2250 rtx mult1, mult2, add1;
2251 enum machine_mode mode;
2252 {
2253 rtx temp, mult_res;
2254 rtx result;
2255
2256 /* The modes must all be the same. This should always be true. For now,
2257 check to make sure. */
2258 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2259 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2260 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2261 abort ();
2262
2263 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2264 will be a constant. */
2265 if (GET_CODE (mult1) == CONST_INT)
2266 {
2267 temp = mult2;
2268 mult2 = mult1;
2269 mult1 = temp;
2270 }
2271
2272 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2273 if (! mult_res)
2274 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2275
2276 /* Again, put the constant second. */
2277 if (GET_CODE (add1) == CONST_INT)
2278 {
2279 temp = add1;
2280 add1 = mult_res;
2281 mult_res = temp;
2282 }
2283
2284 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2285 if (! result)
2286 result = gen_rtx_PLUS (mode, add1, mult_res);
2287
2288 return result;
2289 }
2290
2291 /* Searches the list of induction struct's for the biv BL, to try to calculate
2292 the total increment value for one iteration of the loop as a constant.
2293
2294 Returns the increment value as an rtx, simplified as much as possible,
2295 if it can be calculated. Otherwise, returns 0. */
2296
2297 rtx
2298 biv_total_increment (bl, loop_start, loop_end)
2299 struct iv_class *bl;
2300 rtx loop_start, loop_end;
2301 {
2302 struct induction *v;
2303 rtx result;
2304
2305 /* For increment, must check every instruction that sets it. Each
2306 instruction must be executed only once each time through the loop.
2307 To verify this, we check that the insn is always executed, and that
2308 there are no backward branches after the insn that branch to before it.
2309 Also, the insn must have a mult_val of one (to make sure it really is
2310 an increment). */
2311
2312 result = const0_rtx;
2313 for (v = bl->biv; v; v = v->next_iv)
2314 {
2315 if (v->always_computable && v->mult_val == const1_rtx
2316 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2317 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2318 else
2319 return 0;
2320 }
2321
2322 return result;
2323 }
2324
2325 /* Determine the initial value of the iteration variable, and the amount
2326 that it is incremented each loop. Use the tables constructed by
2327 the strength reduction pass to calculate these values.
2328
2329 Initial_value and/or increment are set to zero if their values could not
2330 be calculated. */
2331
2332 static void
2333 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2334 rtx iteration_var, *initial_value, *increment;
2335 rtx loop_start, loop_end;
2336 {
2337 struct iv_class *bl;
2338 #if 0
2339 struct induction *v;
2340 #endif
2341
2342 /* Clear the result values, in case no answer can be found. */
2343 *initial_value = 0;
2344 *increment = 0;
2345
2346 /* The iteration variable can be either a giv or a biv. Check to see
2347 which it is, and compute the variable's initial value, and increment
2348 value if possible. */
2349
2350 /* If this is a new register, can't handle it since we don't have any
2351 reg_iv_type entry for it. */
2352 if (REGNO (iteration_var) >= max_reg_before_loop)
2353 {
2354 if (loop_dump_stream)
2355 fprintf (loop_dump_stream,
2356 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2357 return;
2358 }
2359
2360 /* Reject iteration variables larger than the host wide int size, since they
2361 could result in a number of iterations greater than the range of our
2362 `unsigned HOST_WIDE_INT' variable loop_info->n_iterations. */
2363 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2364 > HOST_BITS_PER_WIDE_INT))
2365 {
2366 if (loop_dump_stream)
2367 fprintf (loop_dump_stream,
2368 "Loop unrolling: Iteration var rejected because mode too large.\n");
2369 return;
2370 }
2371 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2372 {
2373 if (loop_dump_stream)
2374 fprintf (loop_dump_stream,
2375 "Loop unrolling: Iteration var not an integer.\n");
2376 return;
2377 }
2378 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2379 {
2380 /* Grab initial value, only useful if it is a constant. */
2381 bl = reg_biv_class[REGNO (iteration_var)];
2382 *initial_value = bl->initial_value;
2383
2384 *increment = biv_total_increment (bl, loop_start, loop_end);
2385 }
2386 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2387 {
2388 #if 1
2389 /* ??? The code below does not work because the incorrect number of
2390 iterations is calculated when the biv is incremented after the giv
2391 is set (which is the usual case). This can probably be accounted
2392 for by biasing the initial_value by subtracting the amount of the
2393 increment that occurs between the giv set and the giv test. However,
2394 a giv as an iterator is very rare, so it does not seem worthwhile
2395 to handle this. */
2396 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2397 if (loop_dump_stream)
2398 fprintf (loop_dump_stream,
2399 "Loop unrolling: Giv iterators are not handled.\n");
2400 return;
2401 #else
2402 /* Initial value is mult_val times the biv's initial value plus
2403 add_val. Only useful if it is a constant. */
2404 v = reg_iv_info[REGNO (iteration_var)];
2405 bl = reg_biv_class[REGNO (v->src_reg)];
2406 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2407 v->add_val, v->mode);
2408
2409 /* Increment value is mult_val times the increment value of the biv. */
2410
2411 *increment = biv_total_increment (bl, loop_start, loop_end);
2412 if (*increment)
2413 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2414 v->mode);
2415 #endif
2416 }
2417 else
2418 {
2419 if (loop_dump_stream)
2420 fprintf (loop_dump_stream,
2421 "Loop unrolling: Not basic or general induction var.\n");
2422 return;
2423 }
2424 }
2425
2426
2427 /* For each biv and giv, determine whether it can be safely split into
2428 a different variable for each unrolled copy of the loop body. If it
2429 is safe to split, then indicate that by saving some useful info
2430 in the splittable_regs array.
2431
2432 If the loop is being completely unrolled, then splittable_regs will hold
2433 the current value of the induction variable while the loop is unrolled.
2434 It must be set to the initial value of the induction variable here.
2435 Otherwise, splittable_regs will hold the difference between the current
2436 value of the induction variable and the value the induction variable had
2437 at the top of the loop. It must be set to the value 0 here.
2438
2439 Returns the total number of instructions that set registers that are
2440 splittable. */
2441
2442 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2443 constant values are unnecessary, since we can easily calculate increment
2444 values in this case even if nothing is constant. The increment value
2445 should not involve a multiply however. */
2446
2447 /* ?? Even if the biv/giv increment values aren't constant, it may still
2448 be beneficial to split the variable if the loop is only unrolled a few
2449 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2450
2451 static int
2452 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2453 unroll_number, n_iterations)
2454 enum unroll_types unroll_type;
2455 rtx loop_start, loop_end;
2456 rtx end_insert_before;
2457 int unroll_number;
2458 unsigned HOST_WIDE_INT n_iterations;
2459 {
2460 struct iv_class *bl;
2461 struct induction *v;
2462 rtx increment, tem;
2463 rtx biv_final_value;
2464 int biv_splittable;
2465 int result = 0;
2466
2467 for (bl = loop_iv_list; bl; bl = bl->next)
2468 {
2469 /* Biv_total_increment must return a constant value,
2470 otherwise we can not calculate the split values. */
2471
2472 increment = biv_total_increment (bl, loop_start, loop_end);
2473 if (! increment || GET_CODE (increment) != CONST_INT)
2474 continue;
2475
2476 /* The loop must be unrolled completely, or else have a known number
2477 of iterations and only one exit, or else the biv must be dead
2478 outside the loop, or else the final value must be known. Otherwise,
2479 it is unsafe to split the biv since it may not have the proper
2480 value on loop exit. */
2481
2482 /* loop_number_exit_count is non-zero if the loop has an exit other than
2483 a fall through at the end. */
2484
2485 biv_splittable = 1;
2486 biv_final_value = 0;
2487 if (unroll_type != UNROLL_COMPLETELY
2488 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2489 || unroll_type == UNROLL_NAIVE)
2490 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2491 || ! bl->init_insn
2492 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2493 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2494 < INSN_LUID (bl->init_insn))
2495 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2496 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end,
2497 n_iterations)))
2498 biv_splittable = 0;
2499
2500 /* If any of the insns setting the BIV don't do so with a simple
2501 PLUS, we don't know how to split it. */
2502 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2503 if ((tem = single_set (v->insn)) == 0
2504 || GET_CODE (SET_DEST (tem)) != REG
2505 || REGNO (SET_DEST (tem)) != bl->regno
2506 || GET_CODE (SET_SRC (tem)) != PLUS)
2507 biv_splittable = 0;
2508
2509 /* If final value is non-zero, then must emit an instruction which sets
2510 the value of the biv to the proper value. This is done after
2511 handling all of the givs, since some of them may need to use the
2512 biv's value in their initialization code. */
2513
2514 /* This biv is splittable. If completely unrolling the loop, save
2515 the biv's initial value. Otherwise, save the constant zero. */
2516
2517 if (biv_splittable == 1)
2518 {
2519 if (unroll_type == UNROLL_COMPLETELY)
2520 {
2521 /* If the initial value of the biv is itself (i.e. it is too
2522 complicated for strength_reduce to compute), or is a hard
2523 register, or it isn't invariant, then we must create a new
2524 pseudo reg to hold the initial value of the biv. */
2525
2526 if (GET_CODE (bl->initial_value) == REG
2527 && (REGNO (bl->initial_value) == bl->regno
2528 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2529 || ! invariant_p (bl->initial_value)))
2530 {
2531 rtx tem = gen_reg_rtx (bl->biv->mode);
2532
2533 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2534 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2535 loop_start);
2536
2537 if (loop_dump_stream)
2538 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2539 bl->regno, REGNO (tem));
2540
2541 splittable_regs[bl->regno] = tem;
2542 }
2543 else
2544 splittable_regs[bl->regno] = bl->initial_value;
2545 }
2546 else
2547 splittable_regs[bl->regno] = const0_rtx;
2548
2549 /* Save the number of instructions that modify the biv, so that
2550 we can treat the last one specially. */
2551
2552 splittable_regs_updates[bl->regno] = bl->biv_count;
2553 result += bl->biv_count;
2554
2555 if (loop_dump_stream)
2556 fprintf (loop_dump_stream,
2557 "Biv %d safe to split.\n", bl->regno);
2558 }
2559
2560 /* Check every giv that depends on this biv to see whether it is
2561 splittable also. Even if the biv isn't splittable, givs which
2562 depend on it may be splittable if the biv is live outside the
2563 loop, and the givs aren't. */
2564
2565 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2566 increment, unroll_number);
2567
2568 /* If final value is non-zero, then must emit an instruction which sets
2569 the value of the biv to the proper value. This is done after
2570 handling all of the givs, since some of them may need to use the
2571 biv's value in their initialization code. */
2572 if (biv_final_value)
2573 {
2574 /* If the loop has multiple exits, emit the insns before the
2575 loop to ensure that it will always be executed no matter
2576 how the loop exits. Otherwise emit the insn after the loop,
2577 since this is slightly more efficient. */
2578 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2579 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2580 biv_final_value),
2581 end_insert_before);
2582 else
2583 {
2584 /* Create a new register to hold the value of the biv, and then
2585 set the biv to its final value before the loop start. The biv
2586 is set to its final value before loop start to ensure that
2587 this insn will always be executed, no matter how the loop
2588 exits. */
2589 rtx tem = gen_reg_rtx (bl->biv->mode);
2590 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2591
2592 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2593 loop_start);
2594 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2595 biv_final_value),
2596 loop_start);
2597
2598 if (loop_dump_stream)
2599 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2600 REGNO (bl->biv->src_reg), REGNO (tem));
2601
2602 /* Set up the mapping from the original biv register to the new
2603 register. */
2604 bl->biv->src_reg = tem;
2605 }
2606 }
2607 }
2608 return result;
2609 }
2610
2611 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2612 for the instruction that is using it. Do not make any changes to that
2613 instruction. */
2614
2615 static int
2616 verify_addresses (v, giv_inc, unroll_number)
2617 struct induction *v;
2618 rtx giv_inc;
2619 int unroll_number;
2620 {
2621 int ret = 1;
2622 rtx orig_addr = *v->location;
2623 rtx last_addr = plus_constant (v->dest_reg,
2624 INTVAL (giv_inc) * (unroll_number - 1));
2625
2626 /* First check to see if either address would fail. Handle the fact
2627 that we have may have a match_dup. */
2628 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2629 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2630 ret = 0;
2631
2632 /* Now put things back the way they were before. This should always
2633 succeed. */
2634 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2635 abort ();
2636
2637 return ret;
2638 }
2639
2640 /* For every giv based on the biv BL, check to determine whether it is
2641 splittable. This is a subroutine to find_splittable_regs ().
2642
2643 Return the number of instructions that set splittable registers. */
2644
2645 static int
2646 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2647 unroll_number)
2648 struct iv_class *bl;
2649 enum unroll_types unroll_type;
2650 rtx loop_start, loop_end;
2651 rtx increment;
2652 int unroll_number;
2653 {
2654 struct induction *v, *v2;
2655 rtx final_value;
2656 rtx tem;
2657 int result = 0;
2658
2659 /* Scan the list of givs, and set the same_insn field when there are
2660 multiple identical givs in the same insn. */
2661 for (v = bl->giv; v; v = v->next_iv)
2662 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2663 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2664 && ! v2->same_insn)
2665 v2->same_insn = v;
2666
2667 for (v = bl->giv; v; v = v->next_iv)
2668 {
2669 rtx giv_inc, value;
2670
2671 /* Only split the giv if it has already been reduced, or if the loop is
2672 being completely unrolled. */
2673 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2674 continue;
2675
2676 /* The giv can be split if the insn that sets the giv is executed once
2677 and only once on every iteration of the loop. */
2678 /* An address giv can always be split. v->insn is just a use not a set,
2679 and hence it does not matter whether it is always executed. All that
2680 matters is that all the biv increments are always executed, and we
2681 won't reach here if they aren't. */
2682 if (v->giv_type != DEST_ADDR
2683 && (! v->always_computable
2684 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2685 continue;
2686
2687 /* The giv increment value must be a constant. */
2688 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2689 v->mode);
2690 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2691 continue;
2692
2693 /* The loop must be unrolled completely, or else have a known number of
2694 iterations and only one exit, or else the giv must be dead outside
2695 the loop, or else the final value of the giv must be known.
2696 Otherwise, it is not safe to split the giv since it may not have the
2697 proper value on loop exit. */
2698
2699 /* The used outside loop test will fail for DEST_ADDR givs. They are
2700 never used outside the loop anyways, so it is always safe to split a
2701 DEST_ADDR giv. */
2702
2703 final_value = 0;
2704 if (unroll_type != UNROLL_COMPLETELY
2705 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2706 || unroll_type == UNROLL_NAIVE)
2707 && v->giv_type != DEST_ADDR
2708 /* The next part is true if the pseudo is used outside the loop.
2709 We assume that this is true for any pseudo created after loop
2710 starts, because we don't have a reg_n_info entry for them. */
2711 && (REGNO (v->dest_reg) >= max_reg_before_loop
2712 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2713 /* Check for the case where the pseudo is set by a shift/add
2714 sequence, in which case the first insn setting the pseudo
2715 is the first insn of the shift/add sequence. */
2716 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2717 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2718 != INSN_UID (XEXP (tem, 0)))))
2719 /* Line above always fails if INSN was moved by loop opt. */
2720 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2721 >= INSN_LUID (loop_end)))
2722 && ! (final_value = v->final_value))
2723 continue;
2724
2725 #if 0
2726 /* Currently, non-reduced/final-value givs are never split. */
2727 /* Should emit insns after the loop if possible, as the biv final value
2728 code below does. */
2729
2730 /* If the final value is non-zero, and the giv has not been reduced,
2731 then must emit an instruction to set the final value. */
2732 if (final_value && !v->new_reg)
2733 {
2734 /* Create a new register to hold the value of the giv, and then set
2735 the giv to its final value before the loop start. The giv is set
2736 to its final value before loop start to ensure that this insn
2737 will always be executed, no matter how we exit. */
2738 tem = gen_reg_rtx (v->mode);
2739 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2740 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2741 loop_start);
2742
2743 if (loop_dump_stream)
2744 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2745 REGNO (v->dest_reg), REGNO (tem));
2746
2747 v->src_reg = tem;
2748 }
2749 #endif
2750
2751 /* This giv is splittable. If completely unrolling the loop, save the
2752 giv's initial value. Otherwise, save the constant zero for it. */
2753
2754 if (unroll_type == UNROLL_COMPLETELY)
2755 {
2756 /* It is not safe to use bl->initial_value here, because it may not
2757 be invariant. It is safe to use the initial value stored in
2758 the splittable_regs array if it is set. In rare cases, it won't
2759 be set, so then we do exactly the same thing as
2760 find_splittable_regs does to get a safe value. */
2761 rtx biv_initial_value;
2762
2763 if (splittable_regs[bl->regno])
2764 biv_initial_value = splittable_regs[bl->regno];
2765 else if (GET_CODE (bl->initial_value) != REG
2766 || (REGNO (bl->initial_value) != bl->regno
2767 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2768 biv_initial_value = bl->initial_value;
2769 else
2770 {
2771 rtx tem = gen_reg_rtx (bl->biv->mode);
2772
2773 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2774 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2775 loop_start);
2776 biv_initial_value = tem;
2777 }
2778 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2779 v->add_val, v->mode);
2780 }
2781 else
2782 value = const0_rtx;
2783
2784 if (v->new_reg)
2785 {
2786 /* If a giv was combined with another giv, then we can only split
2787 this giv if the giv it was combined with was reduced. This
2788 is because the value of v->new_reg is meaningless in this
2789 case. */
2790 if (v->same && ! v->same->new_reg)
2791 {
2792 if (loop_dump_stream)
2793 fprintf (loop_dump_stream,
2794 "giv combined with unreduced giv not split.\n");
2795 continue;
2796 }
2797 /* If the giv is an address destination, it could be something other
2798 than a simple register, these have to be treated differently. */
2799 else if (v->giv_type == DEST_REG)
2800 {
2801 /* If value is not a constant, register, or register plus
2802 constant, then compute its value into a register before
2803 loop start. This prevents invalid rtx sharing, and should
2804 generate better code. We can use bl->initial_value here
2805 instead of splittable_regs[bl->regno] because this code
2806 is going before the loop start. */
2807 if (unroll_type == UNROLL_COMPLETELY
2808 && GET_CODE (value) != CONST_INT
2809 && GET_CODE (value) != REG
2810 && (GET_CODE (value) != PLUS
2811 || GET_CODE (XEXP (value, 0)) != REG
2812 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2813 {
2814 rtx tem = gen_reg_rtx (v->mode);
2815 record_base_value (REGNO (tem), v->add_val, 0);
2816 emit_iv_add_mult (bl->initial_value, v->mult_val,
2817 v->add_val, tem, loop_start);
2818 value = tem;
2819 }
2820
2821 splittable_regs[REGNO (v->new_reg)] = value;
2822 }
2823 else
2824 {
2825 /* Splitting address givs is useful since it will often allow us
2826 to eliminate some increment insns for the base giv as
2827 unnecessary. */
2828
2829 /* If the addr giv is combined with a dest_reg giv, then all
2830 references to that dest reg will be remapped, which is NOT
2831 what we want for split addr regs. We always create a new
2832 register for the split addr giv, just to be safe. */
2833
2834 /* If we have multiple identical address givs within a
2835 single instruction, then use a single pseudo reg for
2836 both. This is necessary in case one is a match_dup
2837 of the other. */
2838
2839 v->const_adjust = 0;
2840
2841 if (v->same_insn)
2842 {
2843 v->dest_reg = v->same_insn->dest_reg;
2844 if (loop_dump_stream)
2845 fprintf (loop_dump_stream,
2846 "Sharing address givs in insn %d\n",
2847 INSN_UID (v->insn));
2848 }
2849 /* If multiple address GIVs have been combined with the
2850 same dest_reg GIV, do not create a new register for
2851 each. */
2852 else if (unroll_type != UNROLL_COMPLETELY
2853 && v->giv_type == DEST_ADDR
2854 && v->same && v->same->giv_type == DEST_ADDR
2855 && v->same->unrolled
2856 /* combine_givs_p may return true for some cases
2857 where the add and mult values are not equal.
2858 To share a register here, the values must be
2859 equal. */
2860 && rtx_equal_p (v->same->mult_val, v->mult_val)
2861 && rtx_equal_p (v->same->add_val, v->add_val))
2862
2863 {
2864 v->dest_reg = v->same->dest_reg;
2865 v->shared = 1;
2866 }
2867 else if (unroll_type != UNROLL_COMPLETELY)
2868 {
2869 /* If not completely unrolling the loop, then create a new
2870 register to hold the split value of the DEST_ADDR giv.
2871 Emit insn to initialize its value before loop start. */
2872
2873 rtx tem = gen_reg_rtx (v->mode);
2874 record_base_value (REGNO (tem), v->add_val, 0);
2875
2876 /* If the address giv has a constant in its new_reg value,
2877 then this constant can be pulled out and put in value,
2878 instead of being part of the initialization code. */
2879
2880 if (GET_CODE (v->new_reg) == PLUS
2881 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2882 {
2883 v->dest_reg
2884 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2885
2886 /* Only succeed if this will give valid addresses.
2887 Try to validate both the first and the last
2888 address resulting from loop unrolling, if
2889 one fails, then can't do const elim here. */
2890 if (verify_addresses (v, giv_inc, unroll_number))
2891 {
2892 /* Save the negative of the eliminated const, so
2893 that we can calculate the dest_reg's increment
2894 value later. */
2895 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2896
2897 v->new_reg = XEXP (v->new_reg, 0);
2898 if (loop_dump_stream)
2899 fprintf (loop_dump_stream,
2900 "Eliminating constant from giv %d\n",
2901 REGNO (tem));
2902 }
2903 else
2904 v->dest_reg = tem;
2905 }
2906 else
2907 v->dest_reg = tem;
2908
2909 /* If the address hasn't been checked for validity yet, do so
2910 now, and fail completely if either the first or the last
2911 unrolled copy of the address is not a valid address
2912 for the instruction that uses it. */
2913 if (v->dest_reg == tem
2914 && ! verify_addresses (v, giv_inc, unroll_number))
2915 {
2916 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2917 if (v2->same_insn == v)
2918 v2->same_insn = 0;
2919
2920 if (loop_dump_stream)
2921 fprintf (loop_dump_stream,
2922 "Invalid address for giv at insn %d\n",
2923 INSN_UID (v->insn));
2924 continue;
2925 }
2926
2927 /* We set this after the address check, to guarantee that
2928 the register will be initialized. */
2929 v->unrolled = 1;
2930
2931 /* To initialize the new register, just move the value of
2932 new_reg into it. This is not guaranteed to give a valid
2933 instruction on machines with complex addressing modes.
2934 If we can't recognize it, then delete it and emit insns
2935 to calculate the value from scratch. */
2936 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
2937 copy_rtx (v->new_reg)),
2938 loop_start);
2939 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2940 {
2941 rtx sequence, ret;
2942
2943 /* We can't use bl->initial_value to compute the initial
2944 value, because the loop may have been preconditioned.
2945 We must calculate it from NEW_REG. Try using
2946 force_operand instead of emit_iv_add_mult. */
2947 delete_insn (PREV_INSN (loop_start));
2948
2949 start_sequence ();
2950 ret = force_operand (v->new_reg, tem);
2951 if (ret != tem)
2952 emit_move_insn (tem, ret);
2953 sequence = gen_sequence ();
2954 end_sequence ();
2955 emit_insn_before (sequence, loop_start);
2956
2957 if (loop_dump_stream)
2958 fprintf (loop_dump_stream,
2959 "Invalid init insn, rewritten.\n");
2960 }
2961 }
2962 else
2963 {
2964 v->dest_reg = value;
2965
2966 /* Check the resulting address for validity, and fail
2967 if the resulting address would be invalid. */
2968 if (! verify_addresses (v, giv_inc, unroll_number))
2969 {
2970 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2971 if (v2->same_insn == v)
2972 v2->same_insn = 0;
2973
2974 if (loop_dump_stream)
2975 fprintf (loop_dump_stream,
2976 "Invalid address for giv at insn %d\n",
2977 INSN_UID (v->insn));
2978 continue;
2979 }
2980 }
2981
2982 /* Store the value of dest_reg into the insn. This sharing
2983 will not be a problem as this insn will always be copied
2984 later. */
2985
2986 *v->location = v->dest_reg;
2987
2988 /* If this address giv is combined with a dest reg giv, then
2989 save the base giv's induction pointer so that we will be
2990 able to handle this address giv properly. The base giv
2991 itself does not have to be splittable. */
2992
2993 if (v->same && v->same->giv_type == DEST_REG)
2994 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2995
2996 if (GET_CODE (v->new_reg) == REG)
2997 {
2998 /* This giv maybe hasn't been combined with any others.
2999 Make sure that it's giv is marked as splittable here. */
3000
3001 splittable_regs[REGNO (v->new_reg)] = value;
3002
3003 /* Make it appear to depend upon itself, so that the
3004 giv will be properly split in the main loop above. */
3005 if (! v->same)
3006 {
3007 v->same = v;
3008 addr_combined_regs[REGNO (v->new_reg)] = v;
3009 }
3010 }
3011
3012 if (loop_dump_stream)
3013 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3014 }
3015 }
3016 else
3017 {
3018 #if 0
3019 /* Currently, unreduced giv's can't be split. This is not too much
3020 of a problem since unreduced giv's are not live across loop
3021 iterations anyways. When unrolling a loop completely though,
3022 it makes sense to reduce&split givs when possible, as this will
3023 result in simpler instructions, and will not require that a reg
3024 be live across loop iterations. */
3025
3026 splittable_regs[REGNO (v->dest_reg)] = value;
3027 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3028 REGNO (v->dest_reg), INSN_UID (v->insn));
3029 #else
3030 continue;
3031 #endif
3032 }
3033
3034 /* Unreduced givs are only updated once by definition. Reduced givs
3035 are updated as many times as their biv is. Mark it so if this is
3036 a splittable register. Don't need to do anything for address givs
3037 where this may not be a register. */
3038
3039 if (GET_CODE (v->new_reg) == REG)
3040 {
3041 int count = 1;
3042 if (! v->ignore)
3043 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3044
3045 splittable_regs_updates[REGNO (v->new_reg)] = count;
3046 }
3047
3048 result++;
3049
3050 if (loop_dump_stream)
3051 {
3052 int regnum;
3053
3054 if (GET_CODE (v->dest_reg) == CONST_INT)
3055 regnum = -1;
3056 else if (GET_CODE (v->dest_reg) != REG)
3057 regnum = REGNO (XEXP (v->dest_reg, 0));
3058 else
3059 regnum = REGNO (v->dest_reg);
3060 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3061 regnum, INSN_UID (v->insn));
3062 }
3063 }
3064
3065 return result;
3066 }
3067 \f
3068 /* Try to prove that the register is dead after the loop exits. Trace every
3069 loop exit looking for an insn that will always be executed, which sets
3070 the register to some value, and appears before the first use of the register
3071 is found. If successful, then return 1, otherwise return 0. */
3072
3073 /* ?? Could be made more intelligent in the handling of jumps, so that
3074 it can search past if statements and other similar structures. */
3075
3076 static int
3077 reg_dead_after_loop (reg, loop_start, loop_end)
3078 rtx reg, loop_start, loop_end;
3079 {
3080 rtx insn, label;
3081 enum rtx_code code;
3082 int jump_count = 0;
3083 int label_count = 0;
3084 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3085
3086 /* In addition to checking all exits of this loop, we must also check
3087 all exits of inner nested loops that would exit this loop. We don't
3088 have any way to identify those, so we just give up if there are any
3089 such inner loop exits. */
3090
3091 for (label = loop_number_exit_labels[this_loop_num]; label;
3092 label = LABEL_NEXTREF (label))
3093 label_count++;
3094
3095 if (label_count != loop_number_exit_count[this_loop_num])
3096 return 0;
3097
3098 /* HACK: Must also search the loop fall through exit, create a label_ref
3099 here which points to the loop_end, and append the loop_number_exit_labels
3100 list to it. */
3101 label = gen_rtx_LABEL_REF (VOIDmode, loop_end);
3102 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3103
3104 for ( ; label; label = LABEL_NEXTREF (label))
3105 {
3106 /* Succeed if find an insn which sets the biv or if reach end of
3107 function. Fail if find an insn that uses the biv, or if come to
3108 a conditional jump. */
3109
3110 insn = NEXT_INSN (XEXP (label, 0));
3111 while (insn)
3112 {
3113 code = GET_CODE (insn);
3114 if (GET_RTX_CLASS (code) == 'i')
3115 {
3116 rtx set;
3117
3118 if (reg_referenced_p (reg, PATTERN (insn)))
3119 return 0;
3120
3121 set = single_set (insn);
3122 if (set && rtx_equal_p (SET_DEST (set), reg))
3123 break;
3124 }
3125
3126 if (code == JUMP_INSN)
3127 {
3128 if (GET_CODE (PATTERN (insn)) == RETURN)
3129 break;
3130 else if (! simplejump_p (insn)
3131 /* Prevent infinite loop following infinite loops. */
3132 || jump_count++ > 20)
3133 return 0;
3134 else
3135 insn = JUMP_LABEL (insn);
3136 }
3137
3138 insn = NEXT_INSN (insn);
3139 }
3140 }
3141
3142 /* Success, the register is dead on all loop exits. */
3143 return 1;
3144 }
3145
3146 /* Try to calculate the final value of the biv, the value it will have at
3147 the end of the loop. If we can do it, return that value. */
3148
3149 rtx
3150 final_biv_value (bl, loop_start, loop_end, n_iterations)
3151 struct iv_class *bl;
3152 rtx loop_start, loop_end;
3153 unsigned HOST_WIDE_INT n_iterations;
3154 {
3155 rtx increment, tem;
3156
3157 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3158
3159 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3160 return 0;
3161
3162 /* The final value for reversed bivs must be calculated differently than
3163 for ordinary bivs. In this case, there is already an insn after the
3164 loop which sets this biv's final value (if necessary), and there are
3165 no other loop exits, so we can return any value. */
3166 if (bl->reversed)
3167 {
3168 if (loop_dump_stream)
3169 fprintf (loop_dump_stream,
3170 "Final biv value for %d, reversed biv.\n", bl->regno);
3171
3172 return const0_rtx;
3173 }
3174
3175 /* Try to calculate the final value as initial value + (number of iterations
3176 * increment). For this to work, increment must be invariant, the only
3177 exit from the loop must be the fall through at the bottom (otherwise
3178 it may not have its final value when the loop exits), and the initial
3179 value of the biv must be invariant. */
3180
3181 if (n_iterations != 0
3182 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3183 && invariant_p (bl->initial_value))
3184 {
3185 increment = biv_total_increment (bl, loop_start, loop_end);
3186
3187 if (increment && invariant_p (increment))
3188 {
3189 /* Can calculate the loop exit value, emit insns after loop
3190 end to calculate this value into a temporary register in
3191 case it is needed later. */
3192
3193 tem = gen_reg_rtx (bl->biv->mode);
3194 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3195 /* Make sure loop_end is not the last insn. */
3196 if (NEXT_INSN (loop_end) == 0)
3197 emit_note_after (NOTE_INSN_DELETED, loop_end);
3198 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3199 bl->initial_value, tem, NEXT_INSN (loop_end));
3200
3201 if (loop_dump_stream)
3202 fprintf (loop_dump_stream,
3203 "Final biv value for %d, calculated.\n", bl->regno);
3204
3205 return tem;
3206 }
3207 }
3208
3209 /* Check to see if the biv is dead at all loop exits. */
3210 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3211 {
3212 if (loop_dump_stream)
3213 fprintf (loop_dump_stream,
3214 "Final biv value for %d, biv dead after loop exit.\n",
3215 bl->regno);
3216
3217 return const0_rtx;
3218 }
3219
3220 return 0;
3221 }
3222
3223 /* Try to calculate the final value of the giv, the value it will have at
3224 the end of the loop. If we can do it, return that value. */
3225
3226 rtx
3227 final_giv_value (v, loop_start, loop_end, n_iterations)
3228 struct induction *v;
3229 rtx loop_start, loop_end;
3230 unsigned HOST_WIDE_INT n_iterations;
3231 {
3232 struct iv_class *bl;
3233 rtx insn;
3234 rtx increment, tem;
3235 rtx insert_before, seq;
3236
3237 bl = reg_biv_class[REGNO (v->src_reg)];
3238
3239 /* The final value for givs which depend on reversed bivs must be calculated
3240 differently than for ordinary givs. In this case, there is already an
3241 insn after the loop which sets this giv's final value (if necessary),
3242 and there are no other loop exits, so we can return any value. */
3243 if (bl->reversed)
3244 {
3245 if (loop_dump_stream)
3246 fprintf (loop_dump_stream,
3247 "Final giv value for %d, depends on reversed biv\n",
3248 REGNO (v->dest_reg));
3249 return const0_rtx;
3250 }
3251
3252 /* Try to calculate the final value as a function of the biv it depends
3253 upon. The only exit from the loop must be the fall through at the bottom
3254 (otherwise it may not have its final value when the loop exits). */
3255
3256 /* ??? Can calculate the final giv value by subtracting off the
3257 extra biv increments times the giv's mult_val. The loop must have
3258 only one exit for this to work, but the loop iterations does not need
3259 to be known. */
3260
3261 if (n_iterations != 0
3262 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3263 {
3264 /* ?? It is tempting to use the biv's value here since these insns will
3265 be put after the loop, and hence the biv will have its final value
3266 then. However, this fails if the biv is subsequently eliminated.
3267 Perhaps determine whether biv's are eliminable before trying to
3268 determine whether giv's are replaceable so that we can use the
3269 biv value here if it is not eliminable. */
3270
3271 /* We are emitting code after the end of the loop, so we must make
3272 sure that bl->initial_value is still valid then. It will still
3273 be valid if it is invariant. */
3274
3275 increment = biv_total_increment (bl, loop_start, loop_end);
3276
3277 if (increment && invariant_p (increment)
3278 && invariant_p (bl->initial_value))
3279 {
3280 /* Can calculate the loop exit value of its biv as
3281 (n_iterations * increment) + initial_value */
3282
3283 /* The loop exit value of the giv is then
3284 (final_biv_value - extra increments) * mult_val + add_val.
3285 The extra increments are any increments to the biv which
3286 occur in the loop after the giv's value is calculated.
3287 We must search from the insn that sets the giv to the end
3288 of the loop to calculate this value. */
3289
3290 insert_before = NEXT_INSN (loop_end);
3291
3292 /* Put the final biv value in tem. */
3293 tem = gen_reg_rtx (bl->biv->mode);
3294 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3295 emit_iv_add_mult (increment, GEN_INT (n_iterations),
3296 bl->initial_value, tem, insert_before);
3297
3298 /* Subtract off extra increments as we find them. */
3299 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3300 insn = NEXT_INSN (insn))
3301 {
3302 struct induction *biv;
3303
3304 for (biv = bl->biv; biv; biv = biv->next_iv)
3305 if (biv->insn == insn)
3306 {
3307 start_sequence ();
3308 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3309 biv->add_val, NULL_RTX, 0,
3310 OPTAB_LIB_WIDEN);
3311 seq = gen_sequence ();
3312 end_sequence ();
3313 emit_insn_before (seq, insert_before);
3314 }
3315 }
3316
3317 /* Now calculate the giv's final value. */
3318 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3319 insert_before);
3320
3321 if (loop_dump_stream)
3322 fprintf (loop_dump_stream,
3323 "Final giv value for %d, calc from biv's value.\n",
3324 REGNO (v->dest_reg));
3325
3326 return tem;
3327 }
3328 }
3329
3330 /* Replaceable giv's should never reach here. */
3331 if (v->replaceable)
3332 abort ();
3333
3334 /* Check to see if the biv is dead at all loop exits. */
3335 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3336 {
3337 if (loop_dump_stream)
3338 fprintf (loop_dump_stream,
3339 "Final giv value for %d, giv dead after loop exit.\n",
3340 REGNO (v->dest_reg));
3341
3342 return const0_rtx;
3343 }
3344
3345 return 0;
3346 }
3347
3348
3349 /* Look back before LOOP_START for then insn that sets REG and return
3350 the equivalent constant if there is a REG_EQUAL note otherwise just
3351 the SET_SRC of REG. */
3352
3353 static rtx
3354 loop_find_equiv_value (loop_start, reg)
3355 rtx loop_start;
3356 rtx reg;
3357 {
3358 rtx insn, set;
3359 rtx ret;
3360
3361 ret = reg;
3362 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3363 {
3364 if (GET_CODE (insn) == CODE_LABEL)
3365 break;
3366
3367 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3368 && reg_set_p (reg, insn))
3369 {
3370 /* We found the last insn before the loop that sets the register.
3371 If it sets the entire register, and has a REG_EQUAL note,
3372 then use the value of the REG_EQUAL note. */
3373 if ((set = single_set (insn))
3374 && (SET_DEST (set) == reg))
3375 {
3376 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3377
3378 /* Only use the REG_EQUAL note if it is a constant.
3379 Other things, divide in particular, will cause
3380 problems later if we use them. */
3381 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3382 && CONSTANT_P (XEXP (note, 0)))
3383 ret = XEXP (note, 0);
3384 else
3385 ret = SET_SRC (set);
3386 }
3387 break;
3388 }
3389 }
3390 return ret;
3391 }
3392
3393
3394 /* Calculate the number of loop iterations. Returns the exact number of loop
3395 iterations if it can be calculated, otherwise returns zero. */
3396
3397 unsigned HOST_WIDE_INT
3398 loop_iterations (loop_start, loop_end, loop_info)
3399 rtx loop_start, loop_end;
3400 struct loop_info *loop_info;
3401 {
3402 rtx comparison, comparison_value;
3403 rtx iteration_var, initial_value, increment, final_value;
3404 enum rtx_code comparison_code;
3405 HOST_WIDE_INT abs_inc;
3406 unsigned HOST_WIDE_INT abs_diff;
3407 int off_by_one;
3408 int increment_dir;
3409 int unsigned_p, compare_dir, final_larger;
3410 rtx last_loop_insn;
3411
3412 loop_info->n_iterations = 0;
3413 loop_info->initial_value = 0;
3414 loop_info->initial_equiv_value = 0;
3415 loop_info->comparison_value = 0;
3416 loop_info->final_value = 0;
3417 loop_info->final_equiv_value = 0;
3418 loop_info->increment = 0;
3419 loop_info->iteration_var = 0;
3420 loop_info->unroll_number = 1;
3421
3422 /* First find the iteration variable. If the last insn is a conditional
3423 branch, and the insn before tests a register value, make that the
3424 iteration variable. */
3425
3426 /* We used to use prev_nonnote_insn here, but that fails because it might
3427 accidentally get the branch for a contained loop if the branch for this
3428 loop was deleted. We can only trust branches immediately before the
3429 loop_end. */
3430 last_loop_insn = PREV_INSN (loop_end);
3431
3432 comparison = get_condition_for_loop (last_loop_insn);
3433 if (comparison == 0)
3434 {
3435 if (loop_dump_stream)
3436 fprintf (loop_dump_stream,
3437 "Loop iterations: No final conditional branch found.\n");
3438 return 0;
3439 }
3440
3441 /* ??? Get_condition may switch position of induction variable and
3442 invariant register when it canonicalizes the comparison. */
3443
3444 comparison_code = GET_CODE (comparison);
3445 iteration_var = XEXP (comparison, 0);
3446 comparison_value = XEXP (comparison, 1);
3447
3448 if (GET_CODE (iteration_var) != REG)
3449 {
3450 if (loop_dump_stream)
3451 fprintf (loop_dump_stream,
3452 "Loop iterations: Comparison not against register.\n");
3453 return 0;
3454 }
3455
3456 /* Loop iterations is always called before any new registers are created
3457 now, so this should never occur. */
3458
3459 if (REGNO (iteration_var) >= max_reg_before_loop)
3460 abort ();
3461
3462 iteration_info (iteration_var, &initial_value, &increment,
3463 loop_start, loop_end);
3464 if (initial_value == 0)
3465 /* iteration_info already printed a message. */
3466 return 0;
3467
3468 unsigned_p = 0;
3469 off_by_one = 0;
3470 switch (comparison_code)
3471 {
3472 case LEU:
3473 unsigned_p = 1;
3474 case LE:
3475 compare_dir = 1;
3476 off_by_one = 1;
3477 break;
3478 case GEU:
3479 unsigned_p = 1;
3480 case GE:
3481 compare_dir = -1;
3482 off_by_one = -1;
3483 break;
3484 case EQ:
3485 /* Cannot determine loop iterations with this case. */
3486 compare_dir = 0;
3487 break;
3488 case LTU:
3489 unsigned_p = 1;
3490 case LT:
3491 compare_dir = 1;
3492 break;
3493 case GTU:
3494 unsigned_p = 1;
3495 case GT:
3496 compare_dir = -1;
3497 case NE:
3498 compare_dir = 0;
3499 break;
3500 default:
3501 abort ();
3502 }
3503
3504 /* If the comparison value is an invariant register, then try to find
3505 its value from the insns before the start of the loop. */
3506
3507 final_value = comparison_value;
3508 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3509 {
3510 final_value = loop_find_equiv_value (loop_start, comparison_value);
3511 /* If we don't get an invariant final value, we are better
3512 off with the original register. */
3513 if (!invariant_p (final_value))
3514 final_value = comparison_value;
3515 }
3516
3517 /* Calculate the approximate final value of the induction variable
3518 (on the last successful iteration). The exact final value
3519 depends on the branch operator, and increment sign. It will be
3520 wrong if the iteration variable is not incremented by one each
3521 time through the loop and (comparison_value + off_by_one -
3522 initial_value) % increment != 0.
3523 ??? Note that the final_value may overflow and thus final_larger
3524 will be bogus. A potentially infinite loop will be classified
3525 as immediate, e.g. for (i = 0x7ffffff0; i <= 0x7fffffff; i++) */
3526 if (off_by_one)
3527 final_value = plus_constant (final_value, off_by_one);
3528
3529 /* Save the calculated values describing this loop's bounds, in case
3530 precondition_loop_p will need them later. These values can not be
3531 recalculated inside precondition_loop_p because strength reduction
3532 optimizations may obscure the loop's structure.
3533
3534 These values are only required by precondition_loop_p and insert_bct
3535 whenever the number of iterations cannot be computed at compile time.
3536 Only the difference between final_value and initial_value is
3537 important. Note that final_value is only approximate. */
3538 loop_info->initial_value = initial_value;
3539 loop_info->comparison_value = comparison_value;
3540 loop_info->final_value = plus_constant (comparison_value, off_by_one);
3541 loop_info->increment = increment;
3542 loop_info->iteration_var = iteration_var;
3543 loop_info->comparison_code = comparison_code;
3544
3545 if (REG_P (initial_value))
3546 {
3547 rtx temp = final_value;
3548
3549 /* initial_value = reg1, final_value = reg2 + const, where reg1
3550 != reg2. Try to find what reg1 is equivalent to. Hopefully
3551 it will either be reg2 or reg2 plus a constant. */
3552 if (GET_CODE (temp) == PLUS)
3553 temp = XEXP (temp, 0);
3554 if (REG_P (temp) && REGNO (temp) != REGNO (initial_value))
3555 initial_value = loop_find_equiv_value (loop_start, initial_value);
3556 }
3557
3558 /* If have initial_value = reg + const1 and final_value = reg +
3559 const2, then replace initial_value with const1 and final_value
3560 with const2. This should be safe since we are protected by the
3561 initial comparison before entering the loop. */
3562 if ((GET_CODE (initial_value) == REG || GET_CODE (initial_value) == PLUS)
3563 && (GET_CODE (final_value) == REG || GET_CODE (final_value) == PLUS))
3564 {
3565 rtx init_op0;
3566 rtx fini_op0;
3567 rtx init_op1;
3568 rtx fini_op1;
3569
3570 if (GET_CODE (initial_value) == PLUS)
3571 init_op1 = XEXP (initial_value, 1), init_op0 = XEXP (initial_value, 0);
3572 else
3573 init_op1 = const0_rtx, init_op0 = initial_value;
3574
3575 if (GET_CODE (final_value) == PLUS)
3576 fini_op1 = XEXP (final_value, 1), fini_op0 = XEXP (final_value, 0);
3577 else
3578 fini_op1 = const0_rtx, fini_op0 = final_value;
3579
3580 /* Remove register common factor if present. */
3581 if (REG_P (init_op0) && init_op0 == fini_op0)
3582 {
3583 initial_value = init_op1;
3584 final_value = fini_op1;
3585 }
3586 else if (REG_P (init_op0) && init_op0 == fini_op1)
3587 {
3588 initial_value = init_op1;
3589 final_value = fini_op0;
3590 }
3591 else if (REG_P (init_op1) && init_op1 == fini_op0)
3592 {
3593 initial_value = init_op0;
3594 final_value = fini_op1;
3595 }
3596 else if (REG_P (init_op1) && init_op1 == fini_op1)
3597 {
3598 initial_value = init_op0;
3599 final_value = fini_op0;
3600 }
3601 }
3602 loop_info->initial_equiv_value = initial_value;
3603 loop_info->final_equiv_value = final_value;
3604
3605 if (increment == 0)
3606 {
3607 if (loop_dump_stream)
3608 fprintf (loop_dump_stream,
3609 "Loop iterations: Increment value can't be calculated.\n");
3610 return 0;
3611 }
3612
3613 if (GET_CODE (increment) != CONST_INT)
3614 {
3615 increment = loop_find_equiv_value (loop_start, increment);
3616
3617 if (GET_CODE (increment) != CONST_INT)
3618 {
3619 if (loop_dump_stream)
3620 {
3621 fprintf (loop_dump_stream,
3622 "Loop iterations: Increment value not constant ");
3623 print_rtl (loop_dump_stream, increment);
3624 fprintf (loop_dump_stream, ".\n");
3625 }
3626 return 0;
3627 }
3628 loop_info->increment = increment;
3629 }
3630
3631 if (GET_CODE (initial_value) != CONST_INT)
3632 {
3633 if (loop_dump_stream)
3634 {
3635 fprintf (loop_dump_stream,
3636 "Loop iterations: Initial value not constant ");
3637 print_rtl (loop_dump_stream, initial_value);
3638 fprintf (loop_dump_stream, ".\n");
3639 }
3640 return 0;
3641 }
3642 else if (comparison_code == EQ)
3643 {
3644 if (loop_dump_stream)
3645 fprintf (loop_dump_stream,
3646 "Loop iterations: EQ comparison loop.\n");
3647 return 0;
3648 }
3649 else if (GET_CODE (final_value) != CONST_INT)
3650 {
3651 if (loop_dump_stream)
3652 {
3653 fprintf (loop_dump_stream,
3654 "Loop iterations: Final value not constant ");
3655 print_rtl (loop_dump_stream, final_value);
3656 fprintf (loop_dump_stream, ".\n");
3657 }
3658 return 0;
3659 }
3660
3661 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3662 if (unsigned_p)
3663 final_larger
3664 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3665 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3666 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3667 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3668 else
3669 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3670 - (INTVAL (final_value) < INTVAL (initial_value));
3671
3672 if (INTVAL (increment) > 0)
3673 increment_dir = 1;
3674 else if (INTVAL (increment) == 0)
3675 increment_dir = 0;
3676 else
3677 increment_dir = -1;
3678
3679 /* There are 27 different cases: compare_dir = -1, 0, 1;
3680 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3681 There are 4 normal cases, 4 reverse cases (where the iteration variable
3682 will overflow before the loop exits), 4 infinite loop cases, and 15
3683 immediate exit (0 or 1 iteration depending on loop type) cases.
3684 Only try to optimize the normal cases. */
3685
3686 /* (compare_dir/final_larger/increment_dir)
3687 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3688 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3689 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3690 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3691
3692 /* ?? If the meaning of reverse loops (where the iteration variable
3693 will overflow before the loop exits) is undefined, then could
3694 eliminate all of these special checks, and just always assume
3695 the loops are normal/immediate/infinite. Note that this means
3696 the sign of increment_dir does not have to be known. Also,
3697 since it does not really hurt if immediate exit loops or infinite loops
3698 are optimized, then that case could be ignored also, and hence all
3699 loops can be optimized.
3700
3701 According to ANSI Spec, the reverse loop case result is undefined,
3702 because the action on overflow is undefined.
3703
3704 See also the special test for NE loops below. */
3705
3706 if (final_larger == increment_dir && final_larger != 0
3707 && (final_larger == compare_dir || compare_dir == 0))
3708 /* Normal case. */
3709 ;
3710 else
3711 {
3712 if (loop_dump_stream)
3713 fprintf (loop_dump_stream,
3714 "Loop iterations: Not normal loop.\n");
3715 return 0;
3716 }
3717
3718 /* Calculate the number of iterations, final_value is only an approximation,
3719 so correct for that. Note that abs_diff and n_iterations are
3720 unsigned, because they can be as large as 2^n - 1. */
3721
3722 abs_inc = INTVAL (increment);
3723 if (abs_inc > 0)
3724 abs_diff = INTVAL (final_value) - INTVAL (initial_value);
3725 else if (abs_inc < 0)
3726 {
3727 abs_diff = INTVAL (initial_value) - INTVAL (final_value);
3728 abs_inc = -abs_inc;
3729 }
3730 else
3731 abort ();
3732
3733 /* For NE tests, make sure that the iteration variable won't miss
3734 the final value. If abs_diff mod abs_incr is not zero, then the
3735 iteration variable will overflow before the loop exits, and we
3736 can not calculate the number of iterations. */
3737 if (compare_dir == 0 && (abs_diff % abs_inc) != 0)
3738 return 0;
3739
3740 /* Note that the number of iterations could be calculated using
3741 (abs_diff + abs_inc - 1) / abs_inc, provided care was taken to
3742 handle potential overflow of the summation. */
3743 loop_info->n_iterations = abs_diff / abs_inc + ((abs_diff % abs_inc) != 0);
3744 return loop_info->n_iterations;
3745 }
3746
3747
3748 /* Replace uses of split bivs with their split pseudo register. This is
3749 for original instructions which remain after loop unrolling without
3750 copying. */
3751
3752 static rtx
3753 remap_split_bivs (x)
3754 rtx x;
3755 {
3756 register enum rtx_code code;
3757 register int i;
3758 register char *fmt;
3759
3760 if (x == 0)
3761 return x;
3762
3763 code = GET_CODE (x);
3764 switch (code)
3765 {
3766 case SCRATCH:
3767 case PC:
3768 case CC0:
3769 case CONST_INT:
3770 case CONST_DOUBLE:
3771 case CONST:
3772 case SYMBOL_REF:
3773 case LABEL_REF:
3774 return x;
3775
3776 case REG:
3777 #if 0
3778 /* If non-reduced/final-value givs were split, then this would also
3779 have to remap those givs also. */
3780 #endif
3781 if (REGNO (x) < max_reg_before_loop
3782 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3783 return reg_biv_class[REGNO (x)]->biv->src_reg;
3784 break;
3785
3786 default:
3787 break;
3788 }
3789
3790 fmt = GET_RTX_FORMAT (code);
3791 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3792 {
3793 if (fmt[i] == 'e')
3794 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3795 if (fmt[i] == 'E')
3796 {
3797 register int j;
3798 for (j = 0; j < XVECLEN (x, i); j++)
3799 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3800 }
3801 }
3802 return x;
3803 }
3804
3805 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3806 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3807 return 0. COPY_START is where we can start looking for the insns
3808 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3809 insns.
3810
3811 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3812 must dominate LAST_UID.
3813
3814 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3815 may not dominate LAST_UID.
3816
3817 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3818 must dominate LAST_UID. */
3819
3820 int
3821 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3822 int regno;
3823 int first_uid;
3824 int last_uid;
3825 rtx copy_start;
3826 rtx copy_end;
3827 {
3828 int passed_jump = 0;
3829 rtx p = NEXT_INSN (copy_start);
3830
3831 while (INSN_UID (p) != first_uid)
3832 {
3833 if (GET_CODE (p) == JUMP_INSN)
3834 passed_jump= 1;
3835 /* Could not find FIRST_UID. */
3836 if (p == copy_end)
3837 return 0;
3838 p = NEXT_INSN (p);
3839 }
3840
3841 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3842 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3843 || ! dead_or_set_regno_p (p, regno))
3844 return 0;
3845
3846 /* FIRST_UID is always executed. */
3847 if (passed_jump == 0)
3848 return 1;
3849
3850 while (INSN_UID (p) != last_uid)
3851 {
3852 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3853 can not be sure that FIRST_UID dominates LAST_UID. */
3854 if (GET_CODE (p) == CODE_LABEL)
3855 return 0;
3856 /* Could not find LAST_UID, but we reached the end of the loop, so
3857 it must be safe. */
3858 else if (p == copy_end)
3859 return 1;
3860 p = NEXT_INSN (p);
3861 }
3862
3863 /* FIRST_UID is always executed if LAST_UID is executed. */
3864 return 1;
3865 }