(copy_loop_body): When delete simplified condjump,
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204
205 /* Try to unroll one loop and split induction variables in the loop.
206
207 The loop is described by the arguments LOOP_END, INSN_COUNT, and
208 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
209 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
210 indicates whether information generated in the strength reduction pass
211 is available.
212
213 This function is intended to be called from within `strength_reduce'
214 in loop.c. */
215
216 void
217 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
218 strength_reduce_p)
219 rtx loop_end;
220 int insn_count;
221 rtx loop_start;
222 rtx end_insert_before;
223 int strength_reduce_p;
224 {
225 int i, j, temp;
226 int unroll_number = 1;
227 rtx copy_start, copy_end;
228 rtx insn, copy, sequence, pattern, tem;
229 int max_labelno, max_insnno;
230 rtx insert_before;
231 struct inline_remap *map;
232 char *local_label;
233 int maxregnum;
234 int new_maxregnum;
235 rtx exit_label = 0;
236 rtx start_label;
237 struct iv_class *bl;
238 struct induction *v;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603 if (LABEL_NAME (start_label))
604 {
605 /* The jump optimization pass must have combined the original start label
606 with a named label for a goto. We can't unroll this case because
607 jumps which go to the named label must be handled differently than
608 jumps to the loop start, and it is impossible to differentiate them
609 in this case. */
610 if (loop_dump_stream)
611 fprintf (loop_dump_stream,
612 "Unrolling failure: loop start label is gone\n");
613 return;
614 }
615
616 if (unroll_type == UNROLL_NAIVE
617 && GET_CODE (last_loop_insn) == BARRIER
618 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
619 {
620 /* In this case, we must copy the jump and barrier, because they will
621 not be converted to jumps to an immediately following label. */
622
623 insert_before = NEXT_INSN (last_loop_insn);
624 copy_end = last_loop_insn;
625 }
626
627 /* Allocate a translation table for the labels and insn numbers.
628 They will be filled in as we copy the insns in the loop. */
629
630 max_labelno = max_label_num ();
631 max_insnno = get_max_uid ();
632
633 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
634
635 map->integrating = 0;
636
637 /* Allocate the label map. */
638
639 if (max_labelno > 0)
640 {
641 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
642
643 local_label = (char *) alloca (max_labelno);
644 bzero (local_label, max_labelno);
645 }
646 else
647 map->label_map = 0;
648
649 /* Search the loop and mark all local labels, i.e. the ones which have to
650 be distinct labels when copied. For all labels which might be
651 non-local, set their label_map entries to point to themselves.
652 If they happen to be local their label_map entries will be overwritten
653 before the loop body is copied. The label_map entries for local labels
654 will be set to a different value each time the loop body is copied. */
655
656 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
657 {
658 if (GET_CODE (insn) == CODE_LABEL)
659 local_label[CODE_LABEL_NUMBER (insn)] = 1;
660 else if (GET_CODE (insn) == JUMP_INSN)
661 {
662 if (JUMP_LABEL (insn))
663 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
664 = JUMP_LABEL (insn);
665 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
666 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
667 {
668 rtx pat = PATTERN (insn);
669 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
670 int len = XVECLEN (pat, diff_vec_p);
671 rtx label;
672
673 for (i = 0; i < len; i++)
674 {
675 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
676 map->label_map[CODE_LABEL_NUMBER (label)] = label;
677 }
678 }
679 }
680 }
681
682 /* Allocate space for the insn map. */
683
684 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
685
686 /* Set this to zero, to indicate that we are doing loop unrolling,
687 not function inlining. */
688 map->inline_target = 0;
689
690 /* The register and constant maps depend on the number of registers
691 present, so the final maps can't be created until after
692 find_splittable_regs is called. However, they are needed for
693 preconditioning, so we create temporary maps when preconditioning
694 is performed. */
695
696 /* The preconditioning code may allocate two new pseudo registers. */
697 maxregnum = max_reg_num ();
698
699 /* Allocate and zero out the splittable_regs and addr_combined_regs
700 arrays. These must be zeroed here because they will be used if
701 loop preconditioning is performed, and must be zero for that case.
702
703 It is safe to do this here, since the extra registers created by the
704 preconditioning code and find_splittable_regs will never be used
705 to access the splittable_regs[] and addr_combined_regs[] arrays. */
706
707 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
708 bzero (splittable_regs, maxregnum * sizeof (rtx));
709 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
710 bzero (splittable_regs_updates, maxregnum * sizeof (int));
711 addr_combined_regs
712 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
713 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
714
715 /* If this loop requires exit tests when unrolled, check to see if we
716 can precondition the loop so as to make the exit tests unnecessary.
717 Just like variable splitting, this is not safe if the loop is entered
718 via a jump to the bottom. Also, can not do this if no strength
719 reduce info, because precondition_loop_p uses this info. */
720
721 /* Must copy the loop body for preconditioning before the following
722 find_splittable_regs call since that will emit insns which need to
723 be after the preconditioned loop copies, but immediately before the
724 unrolled loop copies. */
725
726 /* Also, it is not safe to split induction variables for the preconditioned
727 copies of the loop body. If we split induction variables, then the code
728 assumes that each induction variable can be represented as a function
729 of its initial value and the loop iteration number. This is not true
730 in this case, because the last preconditioned copy of the loop body
731 could be any iteration from the first up to the `unroll_number-1'th,
732 depending on the initial value of the iteration variable. Therefore
733 we can not split induction variables here, because we can not calculate
734 their value. Hence, this code must occur before find_splittable_regs
735 is called. */
736
737 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
738 {
739 rtx initial_value, final_value, increment;
740
741 if (precondition_loop_p (&initial_value, &final_value, &increment,
742 loop_start, loop_end))
743 {
744 register rtx diff, temp;
745 enum machine_mode mode;
746 rtx *labels;
747 int abs_inc, neg_inc;
748
749 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
750
751 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
752 map->const_age_map = (unsigned *) alloca (maxregnum
753 * sizeof (unsigned));
754 map->const_equiv_map_size = maxregnum;
755 global_const_equiv_map = map->const_equiv_map;
756 global_const_equiv_map_size = maxregnum;
757
758 init_reg_map (map, maxregnum);
759
760 /* Limit loop unrolling to 4, since this will make 7 copies of
761 the loop body. */
762 if (unroll_number > 4)
763 unroll_number = 4;
764
765 /* Save the absolute value of the increment, and also whether or
766 not it is negative. */
767 neg_inc = 0;
768 abs_inc = INTVAL (increment);
769 if (abs_inc < 0)
770 {
771 abs_inc = - abs_inc;
772 neg_inc = 1;
773 }
774
775 start_sequence ();
776
777 /* Decide what mode to do these calculations in. Choose the larger
778 of final_value's mode and initial_value's mode, or a full-word if
779 both are constants. */
780 mode = GET_MODE (final_value);
781 if (mode == VOIDmode)
782 {
783 mode = GET_MODE (initial_value);
784 if (mode == VOIDmode)
785 mode = word_mode;
786 }
787 else if (mode != GET_MODE (initial_value)
788 && (GET_MODE_SIZE (mode)
789 < GET_MODE_SIZE (GET_MODE (initial_value))))
790 mode = GET_MODE (initial_value);
791
792 /* Calculate the difference between the final and initial values.
793 Final value may be a (plus (reg x) (const_int 1)) rtx.
794 Let the following cse pass simplify this if initial value is
795 a constant.
796
797 We must copy the final and initial values here to avoid
798 improperly shared rtl. */
799
800 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
801 copy_rtx (initial_value), NULL_RTX, 0,
802 OPTAB_LIB_WIDEN);
803
804 /* Now calculate (diff % (unroll * abs (increment))) by using an
805 and instruction. */
806 diff = expand_binop (GET_MODE (diff), and_optab, diff,
807 GEN_INT (unroll_number * abs_inc - 1),
808 NULL_RTX, 0, OPTAB_LIB_WIDEN);
809
810 /* Now emit a sequence of branches to jump to the proper precond
811 loop entry point. */
812
813 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
814 for (i = 0; i < unroll_number; i++)
815 labels[i] = gen_label_rtx ();
816
817 /* Assuming the unroll_number is 4, and the increment is 2, then
818 for a negative increment: for a positive increment:
819 diff = 0,1 precond 0 diff = 0,7 precond 0
820 diff = 2,3 precond 3 diff = 1,2 precond 1
821 diff = 4,5 precond 2 diff = 3,4 precond 2
822 diff = 6,7 precond 1 diff = 5,6 precond 3 */
823
824 /* We only need to emit (unroll_number - 1) branches here, the
825 last case just falls through to the following code. */
826
827 /* ??? This would give better code if we emitted a tree of branches
828 instead of the current linear list of branches. */
829
830 for (i = 0; i < unroll_number - 1; i++)
831 {
832 int cmp_const;
833
834 /* For negative increments, must invert the constant compared
835 against, except when comparing against zero. */
836 if (i == 0)
837 cmp_const = 0;
838 else if (neg_inc)
839 cmp_const = unroll_number - i;
840 else
841 cmp_const = i;
842
843 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
844 EQ, NULL_RTX, mode, 0, 0);
845
846 if (i == 0)
847 emit_jump_insn (gen_beq (labels[i]));
848 else if (neg_inc)
849 emit_jump_insn (gen_bge (labels[i]));
850 else
851 emit_jump_insn (gen_ble (labels[i]));
852 JUMP_LABEL (get_last_insn ()) = labels[i];
853 LABEL_NUSES (labels[i])++;
854 }
855
856 /* If the increment is greater than one, then we need another branch,
857 to handle other cases equivalent to 0. */
858
859 /* ??? This should be merged into the code above somehow to help
860 simplify the code here, and reduce the number of branches emitted.
861 For the negative increment case, the branch here could easily
862 be merged with the `0' case branch above. For the positive
863 increment case, it is not clear how this can be simplified. */
864
865 if (abs_inc != 1)
866 {
867 int cmp_const;
868
869 if (neg_inc)
870 cmp_const = abs_inc - 1;
871 else
872 cmp_const = abs_inc * (unroll_number - 1) + 1;
873
874 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
875 mode, 0, 0);
876
877 if (neg_inc)
878 emit_jump_insn (gen_ble (labels[0]));
879 else
880 emit_jump_insn (gen_bge (labels[0]));
881 JUMP_LABEL (get_last_insn ()) = labels[0];
882 LABEL_NUSES (labels[0])++;
883 }
884
885 sequence = gen_sequence ();
886 end_sequence ();
887 emit_insn_before (sequence, loop_start);
888
889 /* Only the last copy of the loop body here needs the exit
890 test, so set copy_end to exclude the compare/branch here,
891 and then reset it inside the loop when get to the last
892 copy. */
893
894 if (GET_CODE (last_loop_insn) == BARRIER)
895 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
896 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
897 {
898 #ifdef HAVE_cc0
899 /* The immediately preceding insn is a compare which we do not
900 want to copy. */
901 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
902 #else
903 /* The immediately preceding insn may not be a compare, so we
904 must copy it. */
905 copy_end = PREV_INSN (last_loop_insn);
906 #endif
907 }
908 else
909 abort ();
910
911 for (i = 1; i < unroll_number; i++)
912 {
913 emit_label_after (labels[unroll_number - i],
914 PREV_INSN (loop_start));
915
916 bzero (map->insn_map, max_insnno * sizeof (rtx));
917 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
918 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
919 map->const_age = 0;
920
921 for (j = 0; j < max_labelno; j++)
922 if (local_label[j])
923 map->label_map[j] = gen_label_rtx ();
924
925 /* The last copy needs the compare/branch insns at the end,
926 so reset copy_end here if the loop ends with a conditional
927 branch. */
928
929 if (i == unroll_number - 1)
930 {
931 if (GET_CODE (last_loop_insn) == BARRIER)
932 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
933 else
934 copy_end = last_loop_insn;
935 }
936
937 /* None of the copies are the `last_iteration', so just
938 pass zero for that parameter. */
939 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
940 unroll_type, start_label, loop_end,
941 loop_start, copy_end);
942 }
943 emit_label_after (labels[0], PREV_INSN (loop_start));
944
945 if (GET_CODE (last_loop_insn) == BARRIER)
946 {
947 insert_before = PREV_INSN (last_loop_insn);
948 copy_end = PREV_INSN (insert_before);
949 }
950 else
951 {
952 #ifdef HAVE_cc0
953 /* The immediately preceding insn is a compare which we do not
954 want to copy. */
955 insert_before = PREV_INSN (last_loop_insn);
956 copy_end = PREV_INSN (insert_before);
957 #else
958 /* The immediately preceding insn may not be a compare, so we
959 must copy it. */
960 insert_before = last_loop_insn;
961 copy_end = PREV_INSN (last_loop_insn);
962 #endif
963 }
964
965 /* Set unroll type to MODULO now. */
966 unroll_type = UNROLL_MODULO;
967 loop_preconditioned = 1;
968 }
969 }
970
971 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
972 the loop unless all loops are being unrolled. */
973 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
974 {
975 if (loop_dump_stream)
976 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
977 return;
978 }
979
980 /* At this point, we are guaranteed to unroll the loop. */
981
982 /* For each biv and giv, determine whether it can be safely split into
983 a different variable for each unrolled copy of the loop body.
984 We precalculate and save this info here, since computing it is
985 expensive.
986
987 Do this before deleting any instructions from the loop, so that
988 back_branch_in_range_p will work correctly. */
989
990 if (splitting_not_safe)
991 temp = 0;
992 else
993 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
994 end_insert_before, unroll_number);
995
996 /* find_splittable_regs may have created some new registers, so must
997 reallocate the reg_map with the new larger size, and must realloc
998 the constant maps also. */
999
1000 maxregnum = max_reg_num ();
1001 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1002
1003 init_reg_map (map, maxregnum);
1004
1005 /* Space is needed in some of the map for new registers, so new_maxregnum
1006 is an (over)estimate of how many registers will exist at the end. */
1007 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1008
1009 /* Must realloc space for the constant maps, because the number of registers
1010 may have changed. */
1011
1012 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1013 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1014
1015 map->const_equiv_map_size = new_maxregnum;
1016 global_const_equiv_map = map->const_equiv_map;
1017 global_const_equiv_map_size = new_maxregnum;
1018
1019 /* Search the list of bivs and givs to find ones which need to be remapped
1020 when split, and set their reg_map entry appropriately. */
1021
1022 for (bl = loop_iv_list; bl; bl = bl->next)
1023 {
1024 if (REGNO (bl->biv->src_reg) != bl->regno)
1025 map->reg_map[bl->regno] = bl->biv->src_reg;
1026 #if 0
1027 /* Currently, non-reduced/final-value givs are never split. */
1028 for (v = bl->giv; v; v = v->next_iv)
1029 if (REGNO (v->src_reg) != bl->regno)
1030 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1031 #endif
1032 }
1033
1034 /* If the loop is being partially unrolled, and the iteration variables
1035 are being split, and are being renamed for the split, then must fix up
1036 the compare instruction at the end of the loop to refer to the new
1037 registers. This compare isn't copied, so the registers used in it
1038 will never be replaced if it isn't done here. */
1039
1040 if (unroll_type == UNROLL_MODULO)
1041 {
1042 insn = NEXT_INSN (copy_end);
1043 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET)
1044 {
1045 #if 0
1046 /* If non-reduced/final-value givs were split, then this would also
1047 have to remap those givs. */
1048 #endif
1049
1050 tem = SET_SRC (PATTERN (insn));
1051 /* The set source is a register. */
1052 if (GET_CODE (tem) == REG)
1053 {
1054 if (REGNO (tem) < max_reg_before_loop
1055 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1056 SET_SRC (PATTERN (insn))
1057 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1058 }
1059 else
1060 {
1061 /* The set source is a compare of some sort. */
1062 tem = XEXP (SET_SRC (PATTERN (insn)), 0);
1063 if (GET_CODE (tem) == REG
1064 && REGNO (tem) < max_reg_before_loop
1065 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1066 XEXP (SET_SRC (PATTERN (insn)), 0)
1067 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1068
1069 tem = XEXP (SET_SRC (PATTERN (insn)), 1);
1070 if (GET_CODE (tem) == REG
1071 && REGNO (tem) < max_reg_before_loop
1072 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1073 XEXP (SET_SRC (PATTERN (insn)), 1)
1074 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1075 }
1076 }
1077 }
1078
1079 /* For unroll_number - 1 times, make a copy of each instruction
1080 between copy_start and copy_end, and insert these new instructions
1081 before the end of the loop. */
1082
1083 for (i = 0; i < unroll_number; i++)
1084 {
1085 bzero (map->insn_map, max_insnno * sizeof (rtx));
1086 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1087 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1088 map->const_age = 0;
1089
1090 for (j = 0; j < max_labelno; j++)
1091 if (local_label[j])
1092 map->label_map[j] = gen_label_rtx ();
1093
1094 /* If loop starts with a branch to the test, then fix it so that
1095 it points to the test of the first unrolled copy of the loop. */
1096 if (i == 0 && loop_start != copy_start)
1097 {
1098 insn = PREV_INSN (copy_start);
1099 pattern = PATTERN (insn);
1100
1101 tem = map->label_map[CODE_LABEL_NUMBER
1102 (XEXP (SET_SRC (pattern), 0))];
1103 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1104
1105 /* Set the jump label so that it can be used by later loop unrolling
1106 passes. */
1107 JUMP_LABEL (insn) = tem;
1108 LABEL_NUSES (tem)++;
1109 }
1110
1111 copy_loop_body (copy_start, copy_end, map, exit_label,
1112 i == unroll_number - 1, unroll_type, start_label,
1113 loop_end, insert_before, insert_before);
1114 }
1115
1116 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1117 insn to be deleted. This prevents any runaway delete_insn call from
1118 more insns that it should, as it always stops at a CODE_LABEL. */
1119
1120 /* Delete the compare and branch at the end of the loop if completely
1121 unrolling the loop. Deleting the backward branch at the end also
1122 deletes the code label at the start of the loop. This is done at
1123 the very end to avoid problems with back_branch_in_range_p. */
1124
1125 if (unroll_type == UNROLL_COMPLETELY)
1126 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1127 else
1128 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1129
1130 /* Delete all of the original loop instructions. Don't delete the
1131 LOOP_BEG note, or the first code label in the loop. */
1132
1133 insn = NEXT_INSN (copy_start);
1134 while (insn != safety_label)
1135 {
1136 if (insn != start_label)
1137 insn = delete_insn (insn);
1138 else
1139 insn = NEXT_INSN (insn);
1140 }
1141
1142 /* Can now delete the 'safety' label emitted to protect us from runaway
1143 delete_insn calls. */
1144 if (INSN_DELETED_P (safety_label))
1145 abort ();
1146 delete_insn (safety_label);
1147
1148 /* If exit_label exists, emit it after the loop. Doing the emit here
1149 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1150 This is needed so that mostly_true_jump in reorg.c will treat jumps
1151 to this loop end label correctly, i.e. predict that they are usually
1152 not taken. */
1153 if (exit_label)
1154 emit_label_after (exit_label, loop_end);
1155 }
1156 \f
1157 /* Return true if the loop can be safely, and profitably, preconditioned
1158 so that the unrolled copies of the loop body don't need exit tests.
1159
1160 This only works if final_value, initial_value and increment can be
1161 determined, and if increment is a constant power of 2.
1162 If increment is not a power of 2, then the preconditioning modulo
1163 operation would require a real modulo instead of a boolean AND, and this
1164 is not considered `profitable'. */
1165
1166 /* ??? If the loop is known to be executed very many times, or the machine
1167 has a very cheap divide instruction, then preconditioning is a win even
1168 when the increment is not a power of 2. Use RTX_COST to compute
1169 whether divide is cheap. */
1170
1171 static int
1172 precondition_loop_p (initial_value, final_value, increment, loop_start,
1173 loop_end)
1174 rtx *initial_value, *final_value, *increment;
1175 rtx loop_start, loop_end;
1176 {
1177 int unsigned_compare, compare_dir;
1178
1179 if (loop_n_iterations > 0)
1180 {
1181 *initial_value = const0_rtx;
1182 *increment = const1_rtx;
1183 *final_value = GEN_INT (loop_n_iterations);
1184
1185 if (loop_dump_stream)
1186 fprintf (loop_dump_stream,
1187 "Preconditioning: Success, number of iterations known, %d.\n",
1188 loop_n_iterations);
1189 return 1;
1190 }
1191
1192 if (loop_initial_value == 0)
1193 {
1194 if (loop_dump_stream)
1195 fprintf (loop_dump_stream,
1196 "Preconditioning: Could not find initial value.\n");
1197 return 0;
1198 }
1199 else if (loop_increment == 0)
1200 {
1201 if (loop_dump_stream)
1202 fprintf (loop_dump_stream,
1203 "Preconditioning: Could not find increment value.\n");
1204 return 0;
1205 }
1206 else if (GET_CODE (loop_increment) != CONST_INT)
1207 {
1208 if (loop_dump_stream)
1209 fprintf (loop_dump_stream,
1210 "Preconditioning: Increment not a constant.\n");
1211 return 0;
1212 }
1213 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1214 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1215 {
1216 if (loop_dump_stream)
1217 fprintf (loop_dump_stream,
1218 "Preconditioning: Increment not a constant power of 2.\n");
1219 return 0;
1220 }
1221
1222 /* Unsigned_compare and compare_dir can be ignored here, since they do
1223 not matter for preconditioning. */
1224
1225 if (loop_final_value == 0)
1226 {
1227 if (loop_dump_stream)
1228 fprintf (loop_dump_stream,
1229 "Preconditioning: EQ comparison loop.\n");
1230 return 0;
1231 }
1232
1233 /* Must ensure that final_value is invariant, so call invariant_p to
1234 check. Before doing so, must check regno against max_reg_before_loop
1235 to make sure that the register is in the range covered by invariant_p.
1236 If it isn't, then it is most likely a biv/giv which by definition are
1237 not invariant. */
1238 if ((GET_CODE (loop_final_value) == REG
1239 && REGNO (loop_final_value) >= max_reg_before_loop)
1240 || (GET_CODE (loop_final_value) == PLUS
1241 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1242 || ! invariant_p (loop_final_value))
1243 {
1244 if (loop_dump_stream)
1245 fprintf (loop_dump_stream,
1246 "Preconditioning: Final value not invariant.\n");
1247 return 0;
1248 }
1249
1250 /* Fail for floating point values, since the caller of this function
1251 does not have code to deal with them. */
1252 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1253 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1254 {
1255 if (loop_dump_stream)
1256 fprintf (loop_dump_stream,
1257 "Preconditioning: Floating point final or initial value.\n");
1258 return 0;
1259 }
1260
1261 /* Now set initial_value to be the iteration_var, since that may be a
1262 simpler expression, and is guaranteed to be correct if all of the
1263 above tests succeed.
1264
1265 We can not use the initial_value as calculated, because it will be
1266 one too small for loops of the form "while (i-- > 0)". We can not
1267 emit code before the loop_skip_over insns to fix this problem as this
1268 will then give a number one too large for loops of the form
1269 "while (--i > 0)".
1270
1271 Note that all loops that reach here are entered at the top, because
1272 this function is not called if the loop starts with a jump. */
1273
1274 /* Fail if loop_iteration_var is not live before loop_start, since we need
1275 to test its value in the preconditioning code. */
1276
1277 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1278 > INSN_LUID (loop_start))
1279 {
1280 if (loop_dump_stream)
1281 fprintf (loop_dump_stream,
1282 "Preconditioning: Iteration var not live before loop start.\n");
1283 return 0;
1284 }
1285
1286 *initial_value = loop_iteration_var;
1287 *increment = loop_increment;
1288 *final_value = loop_final_value;
1289
1290 /* Success! */
1291 if (loop_dump_stream)
1292 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1293 return 1;
1294 }
1295
1296
1297 /* All pseudo-registers must be mapped to themselves. Two hard registers
1298 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1299 REGNUM, to avoid function-inlining specific conversions of these
1300 registers. All other hard regs can not be mapped because they may be
1301 used with different
1302 modes. */
1303
1304 static void
1305 init_reg_map (map, maxregnum)
1306 struct inline_remap *map;
1307 int maxregnum;
1308 {
1309 int i;
1310
1311 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1312 map->reg_map[i] = regno_reg_rtx[i];
1313 /* Just clear the rest of the entries. */
1314 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1315 map->reg_map[i] = 0;
1316
1317 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1318 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1319 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1320 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1321 }
1322 \f
1323 /* Strength-reduction will often emit code for optimized biv/givs which
1324 calculates their value in a temporary register, and then copies the result
1325 to the iv. This procedure reconstructs the pattern computing the iv;
1326 verifying that all operands are of the proper form.
1327
1328 The return value is the amount that the giv is incremented by. */
1329
1330 static rtx
1331 calculate_giv_inc (pattern, src_insn, regno)
1332 rtx pattern, src_insn;
1333 int regno;
1334 {
1335 rtx increment;
1336 rtx increment_total = 0;
1337 int tries = 0;
1338
1339 retry:
1340 /* Verify that we have an increment insn here. First check for a plus
1341 as the set source. */
1342 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1343 {
1344 /* SR sometimes computes the new giv value in a temp, then copies it
1345 to the new_reg. */
1346 src_insn = PREV_INSN (src_insn);
1347 pattern = PATTERN (src_insn);
1348 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1349 abort ();
1350
1351 /* The last insn emitted is not needed, so delete it to avoid confusing
1352 the second cse pass. This insn sets the giv unnecessarily. */
1353 delete_insn (get_last_insn ());
1354 }
1355
1356 /* Verify that we have a constant as the second operand of the plus. */
1357 increment = XEXP (SET_SRC (pattern), 1);
1358 if (GET_CODE (increment) != CONST_INT)
1359 {
1360 /* SR sometimes puts the constant in a register, especially if it is
1361 too big to be an add immed operand. */
1362 src_insn = PREV_INSN (src_insn);
1363 increment = SET_SRC (PATTERN (src_insn));
1364
1365 /* SR may have used LO_SUM to compute the constant if it is too large
1366 for a load immed operand. In this case, the constant is in operand
1367 one of the LO_SUM rtx. */
1368 if (GET_CODE (increment) == LO_SUM)
1369 increment = XEXP (increment, 1);
1370
1371 if (GET_CODE (increment) != CONST_INT)
1372 abort ();
1373
1374 /* The insn loading the constant into a register is not longer needed,
1375 so delete it. */
1376 delete_insn (get_last_insn ());
1377 }
1378
1379 if (increment_total)
1380 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1381 else
1382 increment_total = increment;
1383
1384 /* Check that the source register is the same as the register we expected
1385 to see as the source. If not, something is seriously wrong. */
1386 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1387 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1388 {
1389 /* Some machines (e.g. the romp), may emit two add instructions for
1390 certain constants, so lets try looking for another add immediately
1391 before this one if we have only seen one add insn so far. */
1392
1393 if (tries == 0)
1394 {
1395 tries++;
1396
1397 src_insn = PREV_INSN (src_insn);
1398 pattern = PATTERN (src_insn);
1399
1400 delete_insn (get_last_insn ());
1401
1402 goto retry;
1403 }
1404
1405 abort ();
1406 }
1407
1408 return increment_total;
1409 }
1410
1411 /* Copy REG_NOTES, except for insn references, because not all insn_map
1412 entries are valid yet. We do need to copy registers now though, because
1413 the reg_map entries can change during copying. */
1414
1415 static rtx
1416 initial_reg_note_copy (notes, map)
1417 rtx notes;
1418 struct inline_remap *map;
1419 {
1420 rtx copy;
1421
1422 if (notes == 0)
1423 return 0;
1424
1425 copy = rtx_alloc (GET_CODE (notes));
1426 PUT_MODE (copy, GET_MODE (notes));
1427
1428 if (GET_CODE (notes) == EXPR_LIST)
1429 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1430 else if (GET_CODE (notes) == INSN_LIST)
1431 /* Don't substitute for these yet. */
1432 XEXP (copy, 0) = XEXP (notes, 0);
1433 else
1434 abort ();
1435
1436 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1437
1438 return copy;
1439 }
1440
1441 /* Fixup insn references in copied REG_NOTES. */
1442
1443 static void
1444 final_reg_note_copy (notes, map)
1445 rtx notes;
1446 struct inline_remap *map;
1447 {
1448 rtx note;
1449
1450 for (note = notes; note; note = XEXP (note, 1))
1451 if (GET_CODE (note) == INSN_LIST)
1452 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1453 }
1454
1455 /* Copy each instruction in the loop, substituting from map as appropriate.
1456 This is very similar to a loop in expand_inline_function. */
1457
1458 static void
1459 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1460 unroll_type, start_label, loop_end, insert_before,
1461 copy_notes_from)
1462 rtx copy_start, copy_end;
1463 struct inline_remap *map;
1464 rtx exit_label;
1465 int last_iteration;
1466 enum unroll_types unroll_type;
1467 rtx start_label, loop_end, insert_before, copy_notes_from;
1468 {
1469 rtx insn, pattern;
1470 rtx tem, copy;
1471 int dest_reg_was_split, i;
1472 rtx cc0_insn = 0;
1473 rtx final_label = 0;
1474 rtx giv_inc, giv_dest_reg, giv_src_reg;
1475
1476 /* If this isn't the last iteration, then map any references to the
1477 start_label to final_label. Final label will then be emitted immediately
1478 after the end of this loop body if it was ever used.
1479
1480 If this is the last iteration, then map references to the start_label
1481 to itself. */
1482 if (! last_iteration)
1483 {
1484 final_label = gen_label_rtx ();
1485 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1486 }
1487 else
1488 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1489
1490 start_sequence ();
1491
1492 insn = copy_start;
1493 do
1494 {
1495 insn = NEXT_INSN (insn);
1496
1497 map->orig_asm_operands_vector = 0;
1498
1499 switch (GET_CODE (insn))
1500 {
1501 case INSN:
1502 pattern = PATTERN (insn);
1503 copy = 0;
1504 giv_inc = 0;
1505
1506 /* Check to see if this is a giv that has been combined with
1507 some split address givs. (Combined in the sense that
1508 `combine_givs' in loop.c has put two givs in the same register.)
1509 In this case, we must search all givs based on the same biv to
1510 find the address givs. Then split the address givs.
1511 Do this before splitting the giv, since that may map the
1512 SET_DEST to a new register. */
1513
1514 if (GET_CODE (pattern) == SET
1515 && GET_CODE (SET_DEST (pattern)) == REG
1516 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1517 {
1518 struct iv_class *bl;
1519 struct induction *v, *tv;
1520 int regno = REGNO (SET_DEST (pattern));
1521
1522 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1523 bl = reg_biv_class[REGNO (v->src_reg)];
1524
1525 /* Although the giv_inc amount is not needed here, we must call
1526 calculate_giv_inc here since it might try to delete the
1527 last insn emitted. If we wait until later to call it,
1528 we might accidentally delete insns generated immediately
1529 below by emit_unrolled_add. */
1530
1531 giv_inc = calculate_giv_inc (pattern, insn, regno);
1532
1533 /* Now find all address giv's that were combined with this
1534 giv 'v'. */
1535 for (tv = bl->giv; tv; tv = tv->next_iv)
1536 if (tv->giv_type == DEST_ADDR && tv->same == v)
1537 {
1538 int this_giv_inc = INTVAL (giv_inc);
1539
1540 /* Scale this_giv_inc if the multiplicative factors of
1541 the two givs are different. */
1542 if (tv->mult_val != v->mult_val)
1543 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1544 * INTVAL (tv->mult_val));
1545
1546 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1547 *tv->location = tv->dest_reg;
1548
1549 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1550 {
1551 /* Must emit an insn to increment the split address
1552 giv. Add in the const_adjust field in case there
1553 was a constant eliminated from the address. */
1554 rtx value, dest_reg;
1555
1556 /* tv->dest_reg will be either a bare register,
1557 or else a register plus a constant. */
1558 if (GET_CODE (tv->dest_reg) == REG)
1559 dest_reg = tv->dest_reg;
1560 else
1561 dest_reg = XEXP (tv->dest_reg, 0);
1562
1563 /* tv->dest_reg may actually be a (PLUS (REG) (CONST))
1564 here, so we must call plus_constant to add
1565 the const_adjust amount before calling
1566 emit_unrolled_add below. */
1567 value = plus_constant (tv->dest_reg, tv->const_adjust);
1568
1569 /* The constant could be too large for an add
1570 immediate, so can't directly emit an insn here. */
1571 emit_unrolled_add (dest_reg, XEXP (value, 0),
1572 XEXP (value, 1));
1573
1574 /* Reset the giv to be just the register again, in case
1575 it is used after the set we have just emitted.
1576 We must subtract the const_adjust factor added in
1577 above. */
1578 tv->dest_reg = plus_constant (dest_reg,
1579 - tv->const_adjust);
1580 *tv->location = tv->dest_reg;
1581 }
1582 }
1583 }
1584
1585 /* If this is a setting of a splittable variable, then determine
1586 how to split the variable, create a new set based on this split,
1587 and set up the reg_map so that later uses of the variable will
1588 use the new split variable. */
1589
1590 dest_reg_was_split = 0;
1591
1592 if (GET_CODE (pattern) == SET
1593 && GET_CODE (SET_DEST (pattern)) == REG
1594 && splittable_regs[REGNO (SET_DEST (pattern))])
1595 {
1596 int regno = REGNO (SET_DEST (pattern));
1597
1598 dest_reg_was_split = 1;
1599
1600 /* Compute the increment value for the giv, if it wasn't
1601 already computed above. */
1602
1603 if (giv_inc == 0)
1604 giv_inc = calculate_giv_inc (pattern, insn, regno);
1605 giv_dest_reg = SET_DEST (pattern);
1606 giv_src_reg = SET_DEST (pattern);
1607
1608 if (unroll_type == UNROLL_COMPLETELY)
1609 {
1610 /* Completely unrolling the loop. Set the induction
1611 variable to a known constant value. */
1612
1613 /* The value in splittable_regs may be an invariant
1614 value, so we must use plus_constant here. */
1615 splittable_regs[regno]
1616 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1617
1618 if (GET_CODE (splittable_regs[regno]) == PLUS)
1619 {
1620 giv_src_reg = XEXP (splittable_regs[regno], 0);
1621 giv_inc = XEXP (splittable_regs[regno], 1);
1622 }
1623 else
1624 {
1625 /* The splittable_regs value must be a REG or a
1626 CONST_INT, so put the entire value in the giv_src_reg
1627 variable. */
1628 giv_src_reg = splittable_regs[regno];
1629 giv_inc = const0_rtx;
1630 }
1631 }
1632 else
1633 {
1634 /* Partially unrolling loop. Create a new pseudo
1635 register for the iteration variable, and set it to
1636 be a constant plus the original register. Except
1637 on the last iteration, when the result has to
1638 go back into the original iteration var register. */
1639
1640 /* Handle bivs which must be mapped to a new register
1641 when split. This happens for bivs which need their
1642 final value set before loop entry. The new register
1643 for the biv was stored in the biv's first struct
1644 induction entry by find_splittable_regs. */
1645
1646 if (regno < max_reg_before_loop
1647 && reg_iv_type[regno] == BASIC_INDUCT)
1648 {
1649 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1650 giv_dest_reg = giv_src_reg;
1651 }
1652
1653 #if 0
1654 /* If non-reduced/final-value givs were split, then
1655 this would have to remap those givs also. See
1656 find_splittable_regs. */
1657 #endif
1658
1659 splittable_regs[regno]
1660 = GEN_INT (INTVAL (giv_inc)
1661 + INTVAL (splittable_regs[regno]));
1662 giv_inc = splittable_regs[regno];
1663
1664 /* Now split the induction variable by changing the dest
1665 of this insn to a new register, and setting its
1666 reg_map entry to point to this new register.
1667
1668 If this is the last iteration, and this is the last insn
1669 that will update the iv, then reuse the original dest,
1670 to ensure that the iv will have the proper value when
1671 the loop exits or repeats.
1672
1673 Using splittable_regs_updates here like this is safe,
1674 because it can only be greater than one if all
1675 instructions modifying the iv are always executed in
1676 order. */
1677
1678 if (! last_iteration
1679 || (splittable_regs_updates[regno]-- != 1))
1680 {
1681 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1682 giv_dest_reg = tem;
1683 map->reg_map[regno] = tem;
1684 }
1685 else
1686 map->reg_map[regno] = giv_src_reg;
1687 }
1688
1689 /* The constant being added could be too large for an add
1690 immediate, so can't directly emit an insn here. */
1691 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1692 copy = get_last_insn ();
1693 pattern = PATTERN (copy);
1694 }
1695 else
1696 {
1697 pattern = copy_rtx_and_substitute (pattern, map);
1698 copy = emit_insn (pattern);
1699 }
1700 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1701
1702 #ifdef HAVE_cc0
1703 /* If this insn is setting CC0, it may need to look at
1704 the insn that uses CC0 to see what type of insn it is.
1705 In that case, the call to recog via validate_change will
1706 fail. So don't substitute constants here. Instead,
1707 do it when we emit the following insn.
1708
1709 For example, see the pyr.md file. That machine has signed and
1710 unsigned compares. The compare patterns must check the
1711 following branch insn to see which what kind of compare to
1712 emit.
1713
1714 If the previous insn set CC0, substitute constants on it as
1715 well. */
1716 if (sets_cc0_p (copy) != 0)
1717 cc0_insn = copy;
1718 else
1719 {
1720 if (cc0_insn)
1721 try_constants (cc0_insn, map);
1722 cc0_insn = 0;
1723 try_constants (copy, map);
1724 }
1725 #else
1726 try_constants (copy, map);
1727 #endif
1728
1729 /* Make split induction variable constants `permanent' since we
1730 know there are no backward branches across iteration variable
1731 settings which would invalidate this. */
1732 if (dest_reg_was_split)
1733 {
1734 int regno = REGNO (SET_DEST (pattern));
1735
1736 if (regno < map->const_equiv_map_size
1737 && map->const_age_map[regno] == map->const_age)
1738 map->const_age_map[regno] = -1;
1739 }
1740 break;
1741
1742 case JUMP_INSN:
1743 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1744 copy = emit_jump_insn (pattern);
1745 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1746
1747 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1748 && ! last_iteration)
1749 {
1750 /* This is a branch to the beginning of the loop; this is the
1751 last insn being copied; and this is not the last iteration.
1752 In this case, we want to change the original fall through
1753 case to be a branch past the end of the loop, and the
1754 original jump label case to fall_through. */
1755
1756 if (! invert_exp (pattern, copy)
1757 || ! redirect_exp (&pattern,
1758 map->label_map[CODE_LABEL_NUMBER
1759 (JUMP_LABEL (insn))],
1760 exit_label, copy))
1761 abort ();
1762 }
1763
1764 #ifdef HAVE_cc0
1765 if (cc0_insn)
1766 try_constants (cc0_insn, map);
1767 cc0_insn = 0;
1768 #endif
1769 try_constants (copy, map);
1770
1771 /* Set the jump label of COPY correctly to avoid problems with
1772 later passes of unroll_loop, if INSN had jump label set. */
1773 if (JUMP_LABEL (insn))
1774 {
1775 rtx label = 0;
1776
1777 /* Can't use the label_map for every insn, since this may be
1778 the backward branch, and hence the label was not mapped. */
1779 if (GET_CODE (pattern) == SET)
1780 {
1781 tem = SET_SRC (pattern);
1782 if (GET_CODE (tem) == LABEL_REF)
1783 label = XEXP (tem, 0);
1784 else if (GET_CODE (tem) == IF_THEN_ELSE)
1785 {
1786 if (XEXP (tem, 1) != pc_rtx)
1787 label = XEXP (XEXP (tem, 1), 0);
1788 else
1789 label = XEXP (XEXP (tem, 2), 0);
1790 }
1791 }
1792
1793 if (label && GET_CODE (label) == CODE_LABEL)
1794 JUMP_LABEL (copy) = label;
1795 else
1796 {
1797 /* An unrecognizable jump insn, probably the entry jump
1798 for a switch statement. This label must have been mapped,
1799 so just use the label_map to get the new jump label. */
1800 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1801 (JUMP_LABEL (insn))];
1802 }
1803
1804 /* If this is a non-local jump, then must increase the label
1805 use count so that the label will not be deleted when the
1806 original jump is deleted. */
1807 LABEL_NUSES (JUMP_LABEL (copy))++;
1808 }
1809 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1810 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1811 {
1812 rtx pat = PATTERN (copy);
1813 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1814 int len = XVECLEN (pat, diff_vec_p);
1815 int i;
1816
1817 for (i = 0; i < len; i++)
1818 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1819 }
1820
1821 /* If this used to be a conditional jump insn but whose branch
1822 direction is now known, we must do something special. */
1823 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1824 {
1825 #ifdef HAVE_cc0
1826 /* The previous insn set cc0 for us. So delete it. */
1827 delete_insn (PREV_INSN (copy));
1828 #endif
1829
1830 /* If this is now a no-op, delete it. */
1831 if (map->last_pc_value == pc_rtx)
1832 {
1833 /* Don't let delete_insn delete the label referenced here,
1834 because we might possibly need it later for some other
1835 instruction in the loop. */
1836 if (JUMP_LABEL (copy))
1837 LABEL_NUSES (JUMP_LABEL (copy))++;
1838 delete_insn (copy);
1839 if (JUMP_LABEL (copy))
1840 LABEL_NUSES (JUMP_LABEL (copy))--;
1841 copy = 0;
1842 }
1843 else
1844 /* Otherwise, this is unconditional jump so we must put a
1845 BARRIER after it. We could do some dead code elimination
1846 here, but jump.c will do it just as well. */
1847 emit_barrier ();
1848 }
1849 break;
1850
1851 case CALL_INSN:
1852 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1853 copy = emit_call_insn (pattern);
1854 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1855
1856 #ifdef HAVE_cc0
1857 if (cc0_insn)
1858 try_constants (cc0_insn, map);
1859 cc0_insn = 0;
1860 #endif
1861 try_constants (copy, map);
1862
1863 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1864 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1865 map->const_equiv_map[i] = 0;
1866 break;
1867
1868 case CODE_LABEL:
1869 /* If this is the loop start label, then we don't need to emit a
1870 copy of this label since no one will use it. */
1871
1872 if (insn != start_label)
1873 {
1874 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1875 map->const_age++;
1876 }
1877 break;
1878
1879 case BARRIER:
1880 copy = emit_barrier ();
1881 break;
1882
1883 case NOTE:
1884 /* VTOP notes are valid only before the loop exit test. If placed
1885 anywhere else, loop may generate bad code. */
1886
1887 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1888 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1889 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1890 copy = emit_note (NOTE_SOURCE_FILE (insn),
1891 NOTE_LINE_NUMBER (insn));
1892 else
1893 copy = 0;
1894 break;
1895
1896 default:
1897 abort ();
1898 break;
1899 }
1900
1901 map->insn_map[INSN_UID (insn)] = copy;
1902 }
1903 while (insn != copy_end);
1904
1905 /* Now finish coping the REG_NOTES. */
1906 insn = copy_start;
1907 do
1908 {
1909 insn = NEXT_INSN (insn);
1910 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1911 || GET_CODE (insn) == CALL_INSN)
1912 && map->insn_map[INSN_UID (insn)])
1913 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
1914 }
1915 while (insn != copy_end);
1916
1917 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1918 each of these notes here, since there may be some important ones, such as
1919 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1920 iteration, because the original notes won't be deleted.
1921
1922 We can't use insert_before here, because when from preconditioning,
1923 insert_before points before the loop. We can't use copy_end, because
1924 there may be insns already inserted after it (which we don't want to
1925 copy) when not from preconditioning code. */
1926
1927 if (! last_iteration)
1928 {
1929 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1930 {
1931 if (GET_CODE (insn) == NOTE
1932 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1933 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1934 }
1935 }
1936
1937 if (final_label && LABEL_NUSES (final_label) > 0)
1938 emit_label (final_label);
1939
1940 tem = gen_sequence ();
1941 end_sequence ();
1942 emit_insn_before (tem, insert_before);
1943 }
1944 \f
1945 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1946 emitted. This will correctly handle the case where the increment value
1947 won't fit in the immediate field of a PLUS insns. */
1948
1949 void
1950 emit_unrolled_add (dest_reg, src_reg, increment)
1951 rtx dest_reg, src_reg, increment;
1952 {
1953 rtx result;
1954
1955 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1956 dest_reg, 0, OPTAB_LIB_WIDEN);
1957
1958 if (dest_reg != result)
1959 emit_move_insn (dest_reg, result);
1960 }
1961 \f
1962 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1963 is a backward branch in that range that branches to somewhere between
1964 LOOP_START and INSN. Returns 0 otherwise. */
1965
1966 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1967 In practice, this is not a problem, because this function is seldom called,
1968 and uses a negligible amount of CPU time on average. */
1969
1970 static int
1971 back_branch_in_range_p (insn, loop_start, loop_end)
1972 rtx insn;
1973 rtx loop_start, loop_end;
1974 {
1975 rtx p, q, target_insn;
1976
1977 /* Stop before we get to the backward branch at the end of the loop. */
1978 loop_end = prev_nonnote_insn (loop_end);
1979 if (GET_CODE (loop_end) == BARRIER)
1980 loop_end = PREV_INSN (loop_end);
1981
1982 /* Check in case insn has been deleted, search forward for first non
1983 deleted insn following it. */
1984 while (INSN_DELETED_P (insn))
1985 insn = NEXT_INSN (insn);
1986
1987 /* Check for the case where insn is the last insn in the loop. */
1988 if (insn == loop_end)
1989 return 0;
1990
1991 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1992 {
1993 if (GET_CODE (p) == JUMP_INSN)
1994 {
1995 target_insn = JUMP_LABEL (p);
1996
1997 /* Search from loop_start to insn, to see if one of them is
1998 the target_insn. We can't use INSN_LUID comparisons here,
1999 since insn may not have an LUID entry. */
2000 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2001 if (q == target_insn)
2002 return 1;
2003 }
2004 }
2005
2006 return 0;
2007 }
2008
2009 /* Try to generate the simplest rtx for the expression
2010 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2011 value of giv's. */
2012
2013 static rtx
2014 fold_rtx_mult_add (mult1, mult2, add1, mode)
2015 rtx mult1, mult2, add1;
2016 enum machine_mode mode;
2017 {
2018 rtx temp, mult_res;
2019 rtx result;
2020
2021 /* The modes must all be the same. This should always be true. For now,
2022 check to make sure. */
2023 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2024 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2025 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2026 abort ();
2027
2028 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2029 will be a constant. */
2030 if (GET_CODE (mult1) == CONST_INT)
2031 {
2032 temp = mult2;
2033 mult2 = mult1;
2034 mult1 = temp;
2035 }
2036
2037 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2038 if (! mult_res)
2039 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2040
2041 /* Again, put the constant second. */
2042 if (GET_CODE (add1) == CONST_INT)
2043 {
2044 temp = add1;
2045 add1 = mult_res;
2046 mult_res = temp;
2047 }
2048
2049 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2050 if (! result)
2051 result = gen_rtx (PLUS, mode, add1, mult_res);
2052
2053 return result;
2054 }
2055
2056 /* Searches the list of induction struct's for the biv BL, to try to calculate
2057 the total increment value for one iteration of the loop as a constant.
2058
2059 Returns the increment value as an rtx, simplified as much as possible,
2060 if it can be calculated. Otherwise, returns 0. */
2061
2062 rtx
2063 biv_total_increment (bl, loop_start, loop_end)
2064 struct iv_class *bl;
2065 rtx loop_start, loop_end;
2066 {
2067 struct induction *v;
2068 rtx result;
2069
2070 /* For increment, must check every instruction that sets it. Each
2071 instruction must be executed only once each time through the loop.
2072 To verify this, we check that the the insn is always executed, and that
2073 there are no backward branches after the insn that branch to before it.
2074 Also, the insn must have a mult_val of one (to make sure it really is
2075 an increment). */
2076
2077 result = const0_rtx;
2078 for (v = bl->biv; v; v = v->next_iv)
2079 {
2080 if (v->always_computable && v->mult_val == const1_rtx
2081 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2082 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2083 else
2084 return 0;
2085 }
2086
2087 return result;
2088 }
2089
2090 /* Determine the initial value of the iteration variable, and the amount
2091 that it is incremented each loop. Use the tables constructed by
2092 the strength reduction pass to calculate these values.
2093
2094 Initial_value and/or increment are set to zero if their values could not
2095 be calculated. */
2096
2097 static void
2098 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2099 rtx iteration_var, *initial_value, *increment;
2100 rtx loop_start, loop_end;
2101 {
2102 struct iv_class *bl;
2103 struct induction *v, *b;
2104
2105 /* Clear the result values, in case no answer can be found. */
2106 *initial_value = 0;
2107 *increment = 0;
2108
2109 /* The iteration variable can be either a giv or a biv. Check to see
2110 which it is, and compute the variable's initial value, and increment
2111 value if possible. */
2112
2113 /* If this is a new register, can't handle it since we don't have any
2114 reg_iv_type entry for it. */
2115 if (REGNO (iteration_var) >= max_reg_before_loop)
2116 {
2117 if (loop_dump_stream)
2118 fprintf (loop_dump_stream,
2119 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2120 return;
2121 }
2122 /* Reject iteration variables larger than the host long size, since they
2123 could result in a number of iterations greater than the range of our
2124 `unsigned long' variable loop_n_iterations. */
2125 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2126 {
2127 if (loop_dump_stream)
2128 fprintf (loop_dump_stream,
2129 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2130 return;
2131 }
2132 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2133 {
2134 if (loop_dump_stream)
2135 fprintf (loop_dump_stream,
2136 "Loop unrolling: Iteration var not an integer.\n");
2137 return;
2138 }
2139 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2140 {
2141 /* Grab initial value, only useful if it is a constant. */
2142 bl = reg_biv_class[REGNO (iteration_var)];
2143 *initial_value = bl->initial_value;
2144
2145 *increment = biv_total_increment (bl, loop_start, loop_end);
2146 }
2147 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2148 {
2149 #if 1
2150 /* ??? The code below does not work because the incorrect number of
2151 iterations is calculated when the biv is incremented after the giv
2152 is set (which is the usual case). This can probably be accounted
2153 for by biasing the initial_value by subtracting the amount of the
2154 increment that occurs between the giv set and the giv test. However,
2155 a giv as an iterator is very rare, so it does not seem worthwhile
2156 to handle this. */
2157 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2158 if (loop_dump_stream)
2159 fprintf (loop_dump_stream,
2160 "Loop unrolling: Giv iterators are not handled.\n");
2161 return;
2162 #else
2163 /* Initial value is mult_val times the biv's initial value plus
2164 add_val. Only useful if it is a constant. */
2165 v = reg_iv_info[REGNO (iteration_var)];
2166 bl = reg_biv_class[REGNO (v->src_reg)];
2167 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2168 v->add_val, v->mode);
2169
2170 /* Increment value is mult_val times the increment value of the biv. */
2171
2172 *increment = biv_total_increment (bl, loop_start, loop_end);
2173 if (*increment)
2174 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2175 v->mode);
2176 #endif
2177 }
2178 else
2179 {
2180 if (loop_dump_stream)
2181 fprintf (loop_dump_stream,
2182 "Loop unrolling: Not basic or general induction var.\n");
2183 return;
2184 }
2185 }
2186
2187 /* Calculate the approximate final value of the iteration variable
2188 which has an loop exit test with code COMPARISON_CODE and comparison value
2189 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2190 was signed or unsigned, and the direction of the comparison. This info is
2191 needed to calculate the number of loop iterations. */
2192
2193 static rtx
2194 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2195 enum rtx_code comparison_code;
2196 rtx comparison_value;
2197 int *unsigned_p;
2198 int *compare_dir;
2199 {
2200 /* Calculate the final value of the induction variable.
2201 The exact final value depends on the branch operator, and increment sign.
2202 This is only an approximate value. It will be wrong if the iteration
2203 variable is not incremented by one each time through the loop, and
2204 approx final value - start value % increment != 0. */
2205
2206 *unsigned_p = 0;
2207 switch (comparison_code)
2208 {
2209 case LEU:
2210 *unsigned_p = 1;
2211 case LE:
2212 *compare_dir = 1;
2213 return plus_constant (comparison_value, 1);
2214 case GEU:
2215 *unsigned_p = 1;
2216 case GE:
2217 *compare_dir = -1;
2218 return plus_constant (comparison_value, -1);
2219 case EQ:
2220 /* Can not calculate a final value for this case. */
2221 *compare_dir = 0;
2222 return 0;
2223 case LTU:
2224 *unsigned_p = 1;
2225 case LT:
2226 *compare_dir = 1;
2227 return comparison_value;
2228 break;
2229 case GTU:
2230 *unsigned_p = 1;
2231 case GT:
2232 *compare_dir = -1;
2233 return comparison_value;
2234 case NE:
2235 *compare_dir = 0;
2236 return comparison_value;
2237 default:
2238 abort ();
2239 }
2240 }
2241
2242 /* For each biv and giv, determine whether it can be safely split into
2243 a different variable for each unrolled copy of the loop body. If it
2244 is safe to split, then indicate that by saving some useful info
2245 in the splittable_regs array.
2246
2247 If the loop is being completely unrolled, then splittable_regs will hold
2248 the current value of the induction variable while the loop is unrolled.
2249 It must be set to the initial value of the induction variable here.
2250 Otherwise, splittable_regs will hold the difference between the current
2251 value of the induction variable and the value the induction variable had
2252 at the top of the loop. It must be set to the value 0 here.
2253
2254 Returns the total number of instructions that set registers that are
2255 splittable. */
2256
2257 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2258 constant values are unnecessary, since we can easily calculate increment
2259 values in this case even if nothing is constant. The increment value
2260 should not involve a multiply however. */
2261
2262 /* ?? Even if the biv/giv increment values aren't constant, it may still
2263 be beneficial to split the variable if the loop is only unrolled a few
2264 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2265
2266 static int
2267 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2268 unroll_number)
2269 enum unroll_types unroll_type;
2270 rtx loop_start, loop_end;
2271 rtx end_insert_before;
2272 int unroll_number;
2273 {
2274 struct iv_class *bl;
2275 struct induction *v;
2276 rtx increment, tem;
2277 rtx biv_final_value;
2278 int biv_splittable;
2279 int result = 0;
2280
2281 for (bl = loop_iv_list; bl; bl = bl->next)
2282 {
2283 /* Biv_total_increment must return a constant value,
2284 otherwise we can not calculate the split values. */
2285
2286 increment = biv_total_increment (bl, loop_start, loop_end);
2287 if (! increment || GET_CODE (increment) != CONST_INT)
2288 continue;
2289
2290 /* The loop must be unrolled completely, or else have a known number
2291 of iterations and only one exit, or else the biv must be dead
2292 outside the loop, or else the final value must be known. Otherwise,
2293 it is unsafe to split the biv since it may not have the proper
2294 value on loop exit. */
2295
2296 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2297 a fall through at the end. */
2298
2299 biv_splittable = 1;
2300 biv_final_value = 0;
2301 if (unroll_type != UNROLL_COMPLETELY
2302 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2303 || unroll_type == UNROLL_NAIVE)
2304 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2305 || ! bl->init_insn
2306 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2307 || (uid_luid[regno_first_uid[bl->regno]]
2308 < INSN_LUID (bl->init_insn))
2309 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2310 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2311 biv_splittable = 0;
2312
2313 /* If any of the insns setting the BIV don't do so with a simple
2314 PLUS, we don't know how to split it. */
2315 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2316 if ((tem = single_set (v->insn)) == 0
2317 || GET_CODE (SET_DEST (tem)) != REG
2318 || REGNO (SET_DEST (tem)) != bl->regno
2319 || GET_CODE (SET_SRC (tem)) != PLUS)
2320 biv_splittable = 0;
2321
2322 /* If final value is non-zero, then must emit an instruction which sets
2323 the value of the biv to the proper value. This is done after
2324 handling all of the givs, since some of them may need to use the
2325 biv's value in their initialization code. */
2326
2327 /* This biv is splittable. If completely unrolling the loop, save
2328 the biv's initial value. Otherwise, save the constant zero. */
2329
2330 if (biv_splittable == 1)
2331 {
2332 if (unroll_type == UNROLL_COMPLETELY)
2333 {
2334 /* If the initial value of the biv is itself (i.e. it is too
2335 complicated for strength_reduce to compute), or is a hard
2336 register, then we must create a new pseudo reg to hold the
2337 initial value of the biv. */
2338
2339 if (GET_CODE (bl->initial_value) == REG
2340 && (REGNO (bl->initial_value) == bl->regno
2341 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2342 {
2343 rtx tem = gen_reg_rtx (bl->biv->mode);
2344
2345 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2346 loop_start);
2347
2348 if (loop_dump_stream)
2349 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2350 bl->regno, REGNO (tem));
2351
2352 splittable_regs[bl->regno] = tem;
2353 }
2354 else
2355 splittable_regs[bl->regno] = bl->initial_value;
2356 }
2357 else
2358 splittable_regs[bl->regno] = const0_rtx;
2359
2360 /* Save the number of instructions that modify the biv, so that
2361 we can treat the last one specially. */
2362
2363 splittable_regs_updates[bl->regno] = bl->biv_count;
2364 result += bl->biv_count;
2365
2366 if (loop_dump_stream)
2367 fprintf (loop_dump_stream,
2368 "Biv %d safe to split.\n", bl->regno);
2369 }
2370
2371 /* Check every giv that depends on this biv to see whether it is
2372 splittable also. Even if the biv isn't splittable, givs which
2373 depend on it may be splittable if the biv is live outside the
2374 loop, and the givs aren't. */
2375
2376 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2377 increment, unroll_number);
2378
2379 /* If final value is non-zero, then must emit an instruction which sets
2380 the value of the biv to the proper value. This is done after
2381 handling all of the givs, since some of them may need to use the
2382 biv's value in their initialization code. */
2383 if (biv_final_value)
2384 {
2385 /* If the loop has multiple exits, emit the insns before the
2386 loop to ensure that it will always be executed no matter
2387 how the loop exits. Otherwise emit the insn after the loop,
2388 since this is slightly more efficient. */
2389 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2390 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2391 biv_final_value),
2392 end_insert_before);
2393 else
2394 {
2395 /* Create a new register to hold the value of the biv, and then
2396 set the biv to its final value before the loop start. The biv
2397 is set to its final value before loop start to ensure that
2398 this insn will always be executed, no matter how the loop
2399 exits. */
2400 rtx tem = gen_reg_rtx (bl->biv->mode);
2401 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2402 loop_start);
2403 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2404 biv_final_value),
2405 loop_start);
2406
2407 if (loop_dump_stream)
2408 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2409 REGNO (bl->biv->src_reg), REGNO (tem));
2410
2411 /* Set up the mapping from the original biv register to the new
2412 register. */
2413 bl->biv->src_reg = tem;
2414 }
2415 }
2416 }
2417 return result;
2418 }
2419
2420 /* For every giv based on the biv BL, check to determine whether it is
2421 splittable. This is a subroutine to find_splittable_regs ().
2422
2423 Return the number of instructions that set splittable registers. */
2424
2425 static int
2426 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2427 unroll_number)
2428 struct iv_class *bl;
2429 enum unroll_types unroll_type;
2430 rtx loop_start, loop_end;
2431 rtx increment;
2432 int unroll_number;
2433 {
2434 struct induction *v;
2435 rtx final_value;
2436 rtx tem;
2437 int result = 0;
2438
2439 for (v = bl->giv; v; v = v->next_iv)
2440 {
2441 rtx giv_inc, value;
2442
2443 /* Only split the giv if it has already been reduced, or if the loop is
2444 being completely unrolled. */
2445 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2446 continue;
2447
2448 /* The giv can be split if the insn that sets the giv is executed once
2449 and only once on every iteration of the loop. */
2450 /* An address giv can always be split. v->insn is just a use not a set,
2451 and hence it does not matter whether it is always executed. All that
2452 matters is that all the biv increments are always executed, and we
2453 won't reach here if they aren't. */
2454 if (v->giv_type != DEST_ADDR
2455 && (! v->always_computable
2456 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2457 continue;
2458
2459 /* The giv increment value must be a constant. */
2460 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2461 v->mode);
2462 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2463 continue;
2464
2465 /* The loop must be unrolled completely, or else have a known number of
2466 iterations and only one exit, or else the giv must be dead outside
2467 the loop, or else the final value of the giv must be known.
2468 Otherwise, it is not safe to split the giv since it may not have the
2469 proper value on loop exit. */
2470
2471 /* The used outside loop test will fail for DEST_ADDR givs. They are
2472 never used outside the loop anyways, so it is always safe to split a
2473 DEST_ADDR giv. */
2474
2475 final_value = 0;
2476 if (unroll_type != UNROLL_COMPLETELY
2477 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2478 || unroll_type == UNROLL_NAIVE)
2479 && v->giv_type != DEST_ADDR
2480 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2481 /* Check for the case where the pseudo is set by a shift/add
2482 sequence, in which case the first insn setting the pseudo
2483 is the first insn of the shift/add sequence. */
2484 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2485 || (regno_first_uid[REGNO (v->dest_reg)]
2486 != INSN_UID (XEXP (tem, 0)))))
2487 /* Line above always fails if INSN was moved by loop opt. */
2488 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2489 >= INSN_LUID (loop_end)))
2490 && ! (final_value = v->final_value))
2491 continue;
2492
2493 #if 0
2494 /* Currently, non-reduced/final-value givs are never split. */
2495 /* Should emit insns after the loop if possible, as the biv final value
2496 code below does. */
2497
2498 /* If the final value is non-zero, and the giv has not been reduced,
2499 then must emit an instruction to set the final value. */
2500 if (final_value && !v->new_reg)
2501 {
2502 /* Create a new register to hold the value of the giv, and then set
2503 the giv to its final value before the loop start. The giv is set
2504 to its final value before loop start to ensure that this insn
2505 will always be executed, no matter how we exit. */
2506 tem = gen_reg_rtx (v->mode);
2507 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2508 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2509 loop_start);
2510
2511 if (loop_dump_stream)
2512 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2513 REGNO (v->dest_reg), REGNO (tem));
2514
2515 v->src_reg = tem;
2516 }
2517 #endif
2518
2519 /* This giv is splittable. If completely unrolling the loop, save the
2520 giv's initial value. Otherwise, save the constant zero for it. */
2521
2522 if (unroll_type == UNROLL_COMPLETELY)
2523 {
2524 /* It is not safe to use bl->initial_value here, because it may not
2525 be invariant. It is safe to use the initial value stored in
2526 the splittable_regs array if it is set. In rare cases, it won't
2527 be set, so then we do exactly the same thing as
2528 find_splittable_regs does to get a safe value. */
2529 rtx biv_initial_value;
2530
2531 if (splittable_regs[bl->regno])
2532 biv_initial_value = splittable_regs[bl->regno];
2533 else if (GET_CODE (bl->initial_value) != REG
2534 || (REGNO (bl->initial_value) != bl->regno
2535 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2536 biv_initial_value = bl->initial_value;
2537 else
2538 {
2539 rtx tem = gen_reg_rtx (bl->biv->mode);
2540
2541 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2542 loop_start);
2543 biv_initial_value = tem;
2544 }
2545 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2546 v->add_val, v->mode);
2547 }
2548 else
2549 value = const0_rtx;
2550
2551 if (v->new_reg)
2552 {
2553 /* If a giv was combined with another giv, then we can only split
2554 this giv if the giv it was combined with was reduced. This
2555 is because the value of v->new_reg is meaningless in this
2556 case. */
2557 if (v->same && ! v->same->new_reg)
2558 {
2559 if (loop_dump_stream)
2560 fprintf (loop_dump_stream,
2561 "giv combined with unreduced giv not split.\n");
2562 continue;
2563 }
2564 /* If the giv is an address destination, it could be something other
2565 than a simple register, these have to be treated differently. */
2566 else if (v->giv_type == DEST_REG)
2567 {
2568 /* If value is not a constant, register, or register plus
2569 constant, then compute its value into a register before
2570 loop start. This prevents illegal rtx sharing, and should
2571 generate better code. We can use bl->initial_value here
2572 instead of splittable_regs[bl->regno] because this code
2573 is going before the loop start. */
2574 if (unroll_type == UNROLL_COMPLETELY
2575 && GET_CODE (value) != CONST_INT
2576 && GET_CODE (value) != REG
2577 && (GET_CODE (value) != PLUS
2578 || GET_CODE (XEXP (value, 0)) != REG
2579 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2580 {
2581 rtx tem = gen_reg_rtx (v->mode);
2582 emit_iv_add_mult (bl->initial_value, v->mult_val,
2583 v->add_val, tem, loop_start);
2584 value = tem;
2585 }
2586
2587 splittable_regs[REGNO (v->new_reg)] = value;
2588 }
2589 else
2590 {
2591 /* Splitting address givs is useful since it will often allow us
2592 to eliminate some increment insns for the base giv as
2593 unnecessary. */
2594
2595 /* If the addr giv is combined with a dest_reg giv, then all
2596 references to that dest reg will be remapped, which is NOT
2597 what we want for split addr regs. We always create a new
2598 register for the split addr giv, just to be safe. */
2599
2600 /* ??? If there are multiple address givs which have been
2601 combined with the same dest_reg giv, then we may only need
2602 one new register for them. Pulling out constants below will
2603 catch some of the common cases of this. Currently, I leave
2604 the work of simplifying multiple address givs to the
2605 following cse pass. */
2606
2607 v->const_adjust = 0;
2608 if (unroll_type != UNROLL_COMPLETELY)
2609 {
2610 /* If not completely unrolling the loop, then create a new
2611 register to hold the split value of the DEST_ADDR giv.
2612 Emit insn to initialize its value before loop start. */
2613 tem = gen_reg_rtx (v->mode);
2614
2615 /* If the address giv has a constant in its new_reg value,
2616 then this constant can be pulled out and put in value,
2617 instead of being part of the initialization code. */
2618
2619 if (GET_CODE (v->new_reg) == PLUS
2620 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2621 {
2622 v->dest_reg
2623 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2624
2625 /* Only succeed if this will give valid addresses.
2626 Try to validate both the first and the last
2627 address resulting from loop unrolling, if
2628 one fails, then can't do const elim here. */
2629 if (memory_address_p (v->mem_mode, v->dest_reg)
2630 && memory_address_p (v->mem_mode,
2631 plus_constant (v->dest_reg,
2632 INTVAL (giv_inc)
2633 * (unroll_number - 1))))
2634 {
2635 /* Save the negative of the eliminated const, so
2636 that we can calculate the dest_reg's increment
2637 value later. */
2638 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2639
2640 v->new_reg = XEXP (v->new_reg, 0);
2641 if (loop_dump_stream)
2642 fprintf (loop_dump_stream,
2643 "Eliminating constant from giv %d\n",
2644 REGNO (tem));
2645 }
2646 else
2647 v->dest_reg = tem;
2648 }
2649 else
2650 v->dest_reg = tem;
2651
2652 /* If the address hasn't been checked for validity yet, do so
2653 now, and fail completely if either the first or the last
2654 unrolled copy of the address is not a valid address. */
2655 if (v->dest_reg == tem
2656 && (! memory_address_p (v->mem_mode, v->dest_reg)
2657 || ! memory_address_p (v->mem_mode,
2658 plus_constant (v->dest_reg,
2659 INTVAL (giv_inc)
2660 * (unroll_number -1)))))
2661 {
2662 if (loop_dump_stream)
2663 fprintf (loop_dump_stream,
2664 "Illegal address for giv at insn %d\n",
2665 INSN_UID (v->insn));
2666 continue;
2667 }
2668
2669 /* To initialize the new register, just move the value of
2670 new_reg into it. This is not guaranteed to give a valid
2671 instruction on machines with complex addressing modes.
2672 If we can't recognize it, then delete it and emit insns
2673 to calculate the value from scratch. */
2674 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2675 copy_rtx (v->new_reg)),
2676 loop_start);
2677 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2678 {
2679 rtx sequence, ret;
2680
2681 /* We can't use bl->initial_value to compute the initial
2682 value, because the loop may have been preconditioned.
2683 We must calculate it from NEW_REG. Try using
2684 force_operand instead of emit_iv_add_mult. */
2685 delete_insn (PREV_INSN (loop_start));
2686
2687 start_sequence ();
2688 ret = force_operand (v->new_reg, tem);
2689 if (ret != tem)
2690 emit_move_insn (tem, ret);
2691 sequence = gen_sequence ();
2692 end_sequence ();
2693 emit_insn_before (sequence, loop_start);
2694
2695 if (loop_dump_stream)
2696 fprintf (loop_dump_stream,
2697 "Illegal init insn, rewritten.\n");
2698 }
2699 }
2700 else
2701 {
2702 v->dest_reg = value;
2703
2704 /* Check the resulting address for validity, and fail
2705 if the resulting address would be illegal. */
2706 if (! memory_address_p (v->mem_mode, v->dest_reg)
2707 || ! memory_address_p (v->mem_mode,
2708 plus_constant (v->dest_reg,
2709 INTVAL (giv_inc) *
2710 (unroll_number -1))))
2711 {
2712 if (loop_dump_stream)
2713 fprintf (loop_dump_stream,
2714 "Illegal address for giv at insn %d\n",
2715 INSN_UID (v->insn));
2716 continue;
2717 }
2718 }
2719
2720 /* Store the value of dest_reg into the insn. This sharing
2721 will not be a problem as this insn will always be copied
2722 later. */
2723
2724 *v->location = v->dest_reg;
2725
2726 /* If this address giv is combined with a dest reg giv, then
2727 save the base giv's induction pointer so that we will be
2728 able to handle this address giv properly. The base giv
2729 itself does not have to be splittable. */
2730
2731 if (v->same && v->same->giv_type == DEST_REG)
2732 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2733
2734 if (GET_CODE (v->new_reg) == REG)
2735 {
2736 /* This giv maybe hasn't been combined with any others.
2737 Make sure that it's giv is marked as splittable here. */
2738
2739 splittable_regs[REGNO (v->new_reg)] = value;
2740
2741 /* Make it appear to depend upon itself, so that the
2742 giv will be properly split in the main loop above. */
2743 if (! v->same)
2744 {
2745 v->same = v;
2746 addr_combined_regs[REGNO (v->new_reg)] = v;
2747 }
2748 }
2749
2750 if (loop_dump_stream)
2751 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2752 }
2753 }
2754 else
2755 {
2756 #if 0
2757 /* Currently, unreduced giv's can't be split. This is not too much
2758 of a problem since unreduced giv's are not live across loop
2759 iterations anyways. When unrolling a loop completely though,
2760 it makes sense to reduce&split givs when possible, as this will
2761 result in simpler instructions, and will not require that a reg
2762 be live across loop iterations. */
2763
2764 splittable_regs[REGNO (v->dest_reg)] = value;
2765 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2766 REGNO (v->dest_reg), INSN_UID (v->insn));
2767 #else
2768 continue;
2769 #endif
2770 }
2771
2772 /* Givs are only updated once by definition. Mark it so if this is
2773 a splittable register. Don't need to do anything for address givs
2774 where this may not be a register. */
2775
2776 if (GET_CODE (v->new_reg) == REG)
2777 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2778
2779 result++;
2780
2781 if (loop_dump_stream)
2782 {
2783 int regnum;
2784
2785 if (GET_CODE (v->dest_reg) == CONST_INT)
2786 regnum = -1;
2787 else if (GET_CODE (v->dest_reg) != REG)
2788 regnum = REGNO (XEXP (v->dest_reg, 0));
2789 else
2790 regnum = REGNO (v->dest_reg);
2791 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2792 regnum, INSN_UID (v->insn));
2793 }
2794 }
2795
2796 return result;
2797 }
2798 \f
2799 /* Try to prove that the register is dead after the loop exits. Trace every
2800 loop exit looking for an insn that will always be executed, which sets
2801 the register to some value, and appears before the first use of the register
2802 is found. If successful, then return 1, otherwise return 0. */
2803
2804 /* ?? Could be made more intelligent in the handling of jumps, so that
2805 it can search past if statements and other similar structures. */
2806
2807 static int
2808 reg_dead_after_loop (reg, loop_start, loop_end)
2809 rtx reg, loop_start, loop_end;
2810 {
2811 rtx insn, label;
2812 enum rtx_code code;
2813 int jump_count = 0;
2814
2815 /* HACK: Must also search the loop fall through exit, create a label_ref
2816 here which points to the loop_end, and append the loop_number_exit_labels
2817 list to it. */
2818 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2819 LABEL_NEXTREF (label)
2820 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2821
2822 for ( ; label; label = LABEL_NEXTREF (label))
2823 {
2824 /* Succeed if find an insn which sets the biv or if reach end of
2825 function. Fail if find an insn that uses the biv, or if come to
2826 a conditional jump. */
2827
2828 insn = NEXT_INSN (XEXP (label, 0));
2829 while (insn)
2830 {
2831 code = GET_CODE (insn);
2832 if (GET_RTX_CLASS (code) == 'i')
2833 {
2834 rtx set;
2835
2836 if (reg_referenced_p (reg, PATTERN (insn)))
2837 return 0;
2838
2839 set = single_set (insn);
2840 if (set && rtx_equal_p (SET_DEST (set), reg))
2841 break;
2842 }
2843
2844 if (code == JUMP_INSN)
2845 {
2846 if (GET_CODE (PATTERN (insn)) == RETURN)
2847 break;
2848 else if (! simplejump_p (insn)
2849 /* Prevent infinite loop following infinite loops. */
2850 || jump_count++ > 20)
2851 return 0;
2852 else
2853 insn = JUMP_LABEL (insn);
2854 }
2855
2856 insn = NEXT_INSN (insn);
2857 }
2858 }
2859
2860 /* Success, the register is dead on all loop exits. */
2861 return 1;
2862 }
2863
2864 /* Try to calculate the final value of the biv, the value it will have at
2865 the end of the loop. If we can do it, return that value. */
2866
2867 rtx
2868 final_biv_value (bl, loop_start, loop_end)
2869 struct iv_class *bl;
2870 rtx loop_start, loop_end;
2871 {
2872 rtx increment, tem;
2873
2874 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2875
2876 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2877 return 0;
2878
2879 /* The final value for reversed bivs must be calculated differently than
2880 for ordinary bivs. In this case, there is already an insn after the
2881 loop which sets this biv's final value (if necessary), and there are
2882 no other loop exits, so we can return any value. */
2883 if (bl->reversed)
2884 {
2885 if (loop_dump_stream)
2886 fprintf (loop_dump_stream,
2887 "Final biv value for %d, reversed biv.\n", bl->regno);
2888
2889 return const0_rtx;
2890 }
2891
2892 /* Try to calculate the final value as initial value + (number of iterations
2893 * increment). For this to work, increment must be invariant, the only
2894 exit from the loop must be the fall through at the bottom (otherwise
2895 it may not have its final value when the loop exits), and the initial
2896 value of the biv must be invariant. */
2897
2898 if (loop_n_iterations != 0
2899 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2900 && invariant_p (bl->initial_value))
2901 {
2902 increment = biv_total_increment (bl, loop_start, loop_end);
2903
2904 if (increment && invariant_p (increment))
2905 {
2906 /* Can calculate the loop exit value, emit insns after loop
2907 end to calculate this value into a temporary register in
2908 case it is needed later. */
2909
2910 tem = gen_reg_rtx (bl->biv->mode);
2911 /* Make sure loop_end is not the last insn. */
2912 if (NEXT_INSN (loop_end) == 0)
2913 emit_note_after (NOTE_INSN_DELETED, loop_end);
2914 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2915 bl->initial_value, tem, NEXT_INSN (loop_end));
2916
2917 if (loop_dump_stream)
2918 fprintf (loop_dump_stream,
2919 "Final biv value for %d, calculated.\n", bl->regno);
2920
2921 return tem;
2922 }
2923 }
2924
2925 /* Check to see if the biv is dead at all loop exits. */
2926 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2927 {
2928 if (loop_dump_stream)
2929 fprintf (loop_dump_stream,
2930 "Final biv value for %d, biv dead after loop exit.\n",
2931 bl->regno);
2932
2933 return const0_rtx;
2934 }
2935
2936 return 0;
2937 }
2938
2939 /* Try to calculate the final value of the giv, the value it will have at
2940 the end of the loop. If we can do it, return that value. */
2941
2942 rtx
2943 final_giv_value (v, loop_start, loop_end)
2944 struct induction *v;
2945 rtx loop_start, loop_end;
2946 {
2947 struct iv_class *bl;
2948 rtx insn;
2949 rtx increment, tem;
2950 enum rtx_code code;
2951 rtx insert_before, seq;
2952
2953 bl = reg_biv_class[REGNO (v->src_reg)];
2954
2955 /* The final value for givs which depend on reversed bivs must be calculated
2956 differently than for ordinary givs. In this case, there is already an
2957 insn after the loop which sets this giv's final value (if necessary),
2958 and there are no other loop exits, so we can return any value. */
2959 if (bl->reversed)
2960 {
2961 if (loop_dump_stream)
2962 fprintf (loop_dump_stream,
2963 "Final giv value for %d, depends on reversed biv\n",
2964 REGNO (v->dest_reg));
2965 return const0_rtx;
2966 }
2967
2968 /* Try to calculate the final value as a function of the biv it depends
2969 upon. The only exit from the loop must be the fall through at the bottom
2970 (otherwise it may not have its final value when the loop exits). */
2971
2972 /* ??? Can calculate the final giv value by subtracting off the
2973 extra biv increments times the giv's mult_val. The loop must have
2974 only one exit for this to work, but the loop iterations does not need
2975 to be known. */
2976
2977 if (loop_n_iterations != 0
2978 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2979 {
2980 /* ?? It is tempting to use the biv's value here since these insns will
2981 be put after the loop, and hence the biv will have its final value
2982 then. However, this fails if the biv is subsequently eliminated.
2983 Perhaps determine whether biv's are eliminable before trying to
2984 determine whether giv's are replaceable so that we can use the
2985 biv value here if it is not eliminable. */
2986
2987 increment = biv_total_increment (bl, loop_start, loop_end);
2988
2989 if (increment && invariant_p (increment))
2990 {
2991 /* Can calculate the loop exit value of its biv as
2992 (loop_n_iterations * increment) + initial_value */
2993
2994 /* The loop exit value of the giv is then
2995 (final_biv_value - extra increments) * mult_val + add_val.
2996 The extra increments are any increments to the biv which
2997 occur in the loop after the giv's value is calculated.
2998 We must search from the insn that sets the giv to the end
2999 of the loop to calculate this value. */
3000
3001 insert_before = NEXT_INSN (loop_end);
3002
3003 /* Put the final biv value in tem. */
3004 tem = gen_reg_rtx (bl->biv->mode);
3005 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3006 bl->initial_value, tem, insert_before);
3007
3008 /* Subtract off extra increments as we find them. */
3009 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3010 insn = NEXT_INSN (insn))
3011 {
3012 struct induction *biv;
3013
3014 for (biv = bl->biv; biv; biv = biv->next_iv)
3015 if (biv->insn == insn)
3016 {
3017 start_sequence ();
3018 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3019 biv->add_val, NULL_RTX, 0,
3020 OPTAB_LIB_WIDEN);
3021 seq = gen_sequence ();
3022 end_sequence ();
3023 emit_insn_before (seq, insert_before);
3024 }
3025 }
3026
3027 /* Now calculate the giv's final value. */
3028 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3029 insert_before);
3030
3031 if (loop_dump_stream)
3032 fprintf (loop_dump_stream,
3033 "Final giv value for %d, calc from biv's value.\n",
3034 REGNO (v->dest_reg));
3035
3036 return tem;
3037 }
3038 }
3039
3040 /* Replaceable giv's should never reach here. */
3041 if (v->replaceable)
3042 abort ();
3043
3044 /* Check to see if the biv is dead at all loop exits. */
3045 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3046 {
3047 if (loop_dump_stream)
3048 fprintf (loop_dump_stream,
3049 "Final giv value for %d, giv dead after loop exit.\n",
3050 REGNO (v->dest_reg));
3051
3052 return const0_rtx;
3053 }
3054
3055 return 0;
3056 }
3057
3058
3059 /* Calculate the number of loop iterations. Returns the exact number of loop
3060 iterations if it can be calculated, otherwise returns zero. */
3061
3062 unsigned HOST_WIDE_INT
3063 loop_iterations (loop_start, loop_end)
3064 rtx loop_start, loop_end;
3065 {
3066 rtx comparison, comparison_value;
3067 rtx iteration_var, initial_value, increment, final_value;
3068 enum rtx_code comparison_code;
3069 HOST_WIDE_INT i;
3070 int increment_dir;
3071 int unsigned_compare, compare_dir, final_larger;
3072 unsigned long tempu;
3073 rtx last_loop_insn;
3074
3075 /* First find the iteration variable. If the last insn is a conditional
3076 branch, and the insn before tests a register value, make that the
3077 iteration variable. */
3078
3079 loop_initial_value = 0;
3080 loop_increment = 0;
3081 loop_final_value = 0;
3082 loop_iteration_var = 0;
3083
3084 last_loop_insn = prev_nonnote_insn (loop_end);
3085
3086 comparison = get_condition_for_loop (last_loop_insn);
3087 if (comparison == 0)
3088 {
3089 if (loop_dump_stream)
3090 fprintf (loop_dump_stream,
3091 "Loop unrolling: No final conditional branch found.\n");
3092 return 0;
3093 }
3094
3095 /* ??? Get_condition may switch position of induction variable and
3096 invariant register when it canonicalizes the comparison. */
3097
3098 comparison_code = GET_CODE (comparison);
3099 iteration_var = XEXP (comparison, 0);
3100 comparison_value = XEXP (comparison, 1);
3101
3102 if (GET_CODE (iteration_var) != REG)
3103 {
3104 if (loop_dump_stream)
3105 fprintf (loop_dump_stream,
3106 "Loop unrolling: Comparison not against register.\n");
3107 return 0;
3108 }
3109
3110 /* Loop iterations is always called before any new registers are created
3111 now, so this should never occur. */
3112
3113 if (REGNO (iteration_var) >= max_reg_before_loop)
3114 abort ();
3115
3116 iteration_info (iteration_var, &initial_value, &increment,
3117 loop_start, loop_end);
3118 if (initial_value == 0)
3119 /* iteration_info already printed a message. */
3120 return 0;
3121
3122 if (increment == 0)
3123 {
3124 if (loop_dump_stream)
3125 fprintf (loop_dump_stream,
3126 "Loop unrolling: Increment value can't be calculated.\n");
3127 return 0;
3128 }
3129 if (GET_CODE (increment) != CONST_INT)
3130 {
3131 if (loop_dump_stream)
3132 fprintf (loop_dump_stream,
3133 "Loop unrolling: Increment value not constant.\n");
3134 return 0;
3135 }
3136 if (GET_CODE (initial_value) != CONST_INT)
3137 {
3138 if (loop_dump_stream)
3139 fprintf (loop_dump_stream,
3140 "Loop unrolling: Initial value not constant.\n");
3141 return 0;
3142 }
3143
3144 /* If the comparison value is an invariant register, then try to find
3145 its value from the insns before the start of the loop. */
3146
3147 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3148 {
3149 rtx insn, set;
3150
3151 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3152 {
3153 if (GET_CODE (insn) == CODE_LABEL)
3154 break;
3155
3156 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3157 && reg_set_p (comparison_value, insn))
3158 {
3159 /* We found the last insn before the loop that sets the register.
3160 If it sets the entire register, and has a REG_EQUAL note,
3161 then use the value of the REG_EQUAL note. */
3162 if ((set = single_set (insn))
3163 && (SET_DEST (set) == comparison_value))
3164 {
3165 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3166
3167 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3168 comparison_value = XEXP (note, 0);
3169 }
3170 break;
3171 }
3172 }
3173 }
3174
3175 final_value = approx_final_value (comparison_code, comparison_value,
3176 &unsigned_compare, &compare_dir);
3177
3178 /* Save the calculated values describing this loop's bounds, in case
3179 precondition_loop_p will need them later. These values can not be
3180 recalculated inside precondition_loop_p because strength reduction
3181 optimizations may obscure the loop's structure. */
3182
3183 loop_iteration_var = iteration_var;
3184 loop_initial_value = initial_value;
3185 loop_increment = increment;
3186 loop_final_value = final_value;
3187
3188 if (final_value == 0)
3189 {
3190 if (loop_dump_stream)
3191 fprintf (loop_dump_stream,
3192 "Loop unrolling: EQ comparison loop.\n");
3193 return 0;
3194 }
3195 else if (GET_CODE (final_value) != CONST_INT)
3196 {
3197 if (loop_dump_stream)
3198 fprintf (loop_dump_stream,
3199 "Loop unrolling: Final value not constant.\n");
3200 return 0;
3201 }
3202
3203 /* ?? Final value and initial value do not have to be constants.
3204 Only their difference has to be constant. When the iteration variable
3205 is an array address, the final value and initial value might both
3206 be addresses with the same base but different constant offsets.
3207 Final value must be invariant for this to work.
3208
3209 To do this, need some way to find the values of registers which are
3210 invariant. */
3211
3212 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3213 if (unsigned_compare)
3214 final_larger
3215 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3216 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3217 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3218 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3219 else
3220 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3221 - (INTVAL (final_value) < INTVAL (initial_value));
3222
3223 if (INTVAL (increment) > 0)
3224 increment_dir = 1;
3225 else if (INTVAL (increment) == 0)
3226 increment_dir = 0;
3227 else
3228 increment_dir = -1;
3229
3230 /* There are 27 different cases: compare_dir = -1, 0, 1;
3231 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3232 There are 4 normal cases, 4 reverse cases (where the iteration variable
3233 will overflow before the loop exits), 4 infinite loop cases, and 15
3234 immediate exit (0 or 1 iteration depending on loop type) cases.
3235 Only try to optimize the normal cases. */
3236
3237 /* (compare_dir/final_larger/increment_dir)
3238 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3239 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3240 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3241 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3242
3243 /* ?? If the meaning of reverse loops (where the iteration variable
3244 will overflow before the loop exits) is undefined, then could
3245 eliminate all of these special checks, and just always assume
3246 the loops are normal/immediate/infinite. Note that this means
3247 the sign of increment_dir does not have to be known. Also,
3248 since it does not really hurt if immediate exit loops or infinite loops
3249 are optimized, then that case could be ignored also, and hence all
3250 loops can be optimized.
3251
3252 According to ANSI Spec, the reverse loop case result is undefined,
3253 because the action on overflow is undefined.
3254
3255 See also the special test for NE loops below. */
3256
3257 if (final_larger == increment_dir && final_larger != 0
3258 && (final_larger == compare_dir || compare_dir == 0))
3259 /* Normal case. */
3260 ;
3261 else
3262 {
3263 if (loop_dump_stream)
3264 fprintf (loop_dump_stream,
3265 "Loop unrolling: Not normal loop.\n");
3266 return 0;
3267 }
3268
3269 /* Calculate the number of iterations, final_value is only an approximation,
3270 so correct for that. Note that tempu and loop_n_iterations are
3271 unsigned, because they can be as large as 2^n - 1. */
3272
3273 i = INTVAL (increment);
3274 if (i > 0)
3275 tempu = INTVAL (final_value) - INTVAL (initial_value);
3276 else if (i < 0)
3277 {
3278 tempu = INTVAL (initial_value) - INTVAL (final_value);
3279 i = -i;
3280 }
3281 else
3282 abort ();
3283
3284 /* For NE tests, make sure that the iteration variable won't miss the
3285 final value. If tempu mod i is not zero, then the iteration variable
3286 will overflow before the loop exits, and we can not calculate the
3287 number of iterations. */
3288 if (compare_dir == 0 && (tempu % i) != 0)
3289 return 0;
3290
3291 return tempu / i + ((tempu % i) != 0);
3292 }