(final_biv_value): Make a note after loop_end
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204
205 /* Try to unroll one loop and split induction variables in the loop.
206
207 The loop is described by the arguments LOOP_END, INSN_COUNT, and
208 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
209 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
210 indicates whether information generated in the strength reduction pass
211 is available.
212
213 This function is intended to be called from within `strength_reduce'
214 in loop.c. */
215
216 void
217 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
218 strength_reduce_p)
219 rtx loop_end;
220 int insn_count;
221 rtx loop_start;
222 rtx end_insert_before;
223 int strength_reduce_p;
224 {
225 int i, j, temp;
226 int unroll_number = 1;
227 rtx copy_start, copy_end;
228 rtx insn, copy, sequence, pattern, tem;
229 int max_labelno, max_insnno;
230 rtx insert_before;
231 struct inline_remap *map;
232 char *local_label;
233 int maxregnum;
234 int new_maxregnum;
235 rtx exit_label = 0;
236 rtx start_label;
237 struct iv_class *bl;
238 struct induction *v;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603
604 if (unroll_type == UNROLL_NAIVE
605 && GET_CODE (last_loop_insn) == BARRIER
606 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
607 {
608 /* In this case, we must copy the jump and barrier, because they will
609 not be converted to jumps to an immediately following label. */
610
611 insert_before = NEXT_INSN (last_loop_insn);
612 copy_end = last_loop_insn;
613 }
614
615 /* Allocate a translation table for the labels and insn numbers.
616 They will be filled in as we copy the insns in the loop. */
617
618 max_labelno = max_label_num ();
619 max_insnno = get_max_uid ();
620
621 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
622
623 /* Allocate the label map. */
624
625 if (max_labelno > 0)
626 {
627 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
628
629 local_label = (char *) alloca (max_labelno);
630 bzero (local_label, max_labelno);
631 }
632 else
633 map->label_map = 0;
634
635 /* Search the loop and mark all local labels, i.e. the ones which have to
636 be distinct labels when copied. For all labels which might be
637 non-local, set their label_map entries to point to themselves.
638 If they happen to be local their label_map entries will be overwritten
639 before the loop body is copied. The label_map entries for local labels
640 will be set to a different value each time the loop body is copied. */
641
642 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
643 {
644 if (GET_CODE (insn) == CODE_LABEL)
645 local_label[CODE_LABEL_NUMBER (insn)] = 1;
646 else if (GET_CODE (insn) == JUMP_INSN)
647 {
648 if (JUMP_LABEL (insn))
649 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
650 = JUMP_LABEL (insn);
651 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
652 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
653 {
654 rtx pat = PATTERN (insn);
655 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
656 int len = XVECLEN (pat, diff_vec_p);
657 rtx label;
658
659 for (i = 0; i < len; i++)
660 {
661 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
662 map->label_map[CODE_LABEL_NUMBER (label)] = label;
663 }
664 }
665 }
666 }
667
668 /* Allocate space for the insn map. */
669
670 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
671
672 /* Set this to zero, to indicate that we are doing loop unrolling,
673 not function inlining. */
674 map->inline_target = 0;
675
676 /* The register and constant maps depend on the number of registers
677 present, so the final maps can't be created until after
678 find_splittable_regs is called. However, they are needed for
679 preconditioning, so we create temporary maps when preconditioning
680 is performed. */
681
682 /* The preconditioning code may allocate two new pseudo registers. */
683 maxregnum = max_reg_num ();
684
685 /* Allocate and zero out the splittable_regs and addr_combined_regs
686 arrays. These must be zeroed here because they will be used if
687 loop preconditioning is performed, and must be zero for that case.
688
689 It is safe to do this here, since the extra registers created by the
690 preconditioning code and find_splittable_regs will never be used
691 to access the splittable_regs[] and addr_combined_regs[] arrays. */
692
693 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
694 bzero (splittable_regs, maxregnum * sizeof (rtx));
695 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
696 bzero (splittable_regs_updates, maxregnum * sizeof (int));
697 addr_combined_regs
698 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
699 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
700
701 /* If this loop requires exit tests when unrolled, check to see if we
702 can precondition the loop so as to make the exit tests unnecessary.
703 Just like variable splitting, this is not safe if the loop is entered
704 via a jump to the bottom. Also, can not do this if no strength
705 reduce info, because precondition_loop_p uses this info. */
706
707 /* Must copy the loop body for preconditioning before the following
708 find_splittable_regs call since that will emit insns which need to
709 be after the preconditioned loop copies, but immediately before the
710 unrolled loop copies. */
711
712 /* Also, it is not safe to split induction variables for the preconditioned
713 copies of the loop body. If we split induction variables, then the code
714 assumes that each induction variable can be represented as a function
715 of its initial value and the loop iteration number. This is not true
716 in this case, because the last preconditioned copy of the loop body
717 could be any iteration from the first up to the `unroll_number-1'th,
718 depending on the initial value of the iteration variable. Therefore
719 we can not split induction variables here, because we can not calculate
720 their value. Hence, this code must occur before find_splittable_regs
721 is called. */
722
723 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
724 {
725 rtx initial_value, final_value, increment;
726
727 if (precondition_loop_p (&initial_value, &final_value, &increment,
728 loop_start, loop_end))
729 {
730 register rtx diff, temp;
731 enum machine_mode mode;
732 rtx *labels;
733 int abs_inc, neg_inc;
734
735 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
736
737 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
738 map->const_age_map = (unsigned *) alloca (maxregnum
739 * sizeof (unsigned));
740 map->const_equiv_map_size = maxregnum;
741 global_const_equiv_map = map->const_equiv_map;
742
743 init_reg_map (map, maxregnum);
744
745 /* Limit loop unrolling to 4, since this will make 7 copies of
746 the loop body. */
747 if (unroll_number > 4)
748 unroll_number = 4;
749
750 /* Save the absolute value of the increment, and also whether or
751 not it is negative. */
752 neg_inc = 0;
753 abs_inc = INTVAL (increment);
754 if (abs_inc < 0)
755 {
756 abs_inc = - abs_inc;
757 neg_inc = 1;
758 }
759
760 start_sequence ();
761
762 /* Decide what mode to do these calculations in. Choose the larger
763 of final_value's mode and initial_value's mode, or a full-word if
764 both are constants. */
765 mode = GET_MODE (final_value);
766 if (mode == VOIDmode)
767 {
768 mode = GET_MODE (initial_value);
769 if (mode == VOIDmode)
770 mode = word_mode;
771 }
772 else if (mode != GET_MODE (initial_value)
773 && (GET_MODE_SIZE (mode)
774 < GET_MODE_SIZE (GET_MODE (initial_value))))
775 mode = GET_MODE (initial_value);
776
777 /* Calculate the difference between the final and initial values.
778 Final value may be a (plus (reg x) (const_int 1)) rtx.
779 Let the following cse pass simplify this if initial value is
780 a constant.
781
782 We must copy the final and initial values here to avoid
783 improperly shared rtl. */
784
785 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
786 copy_rtx (initial_value), NULL_RTX, 0,
787 OPTAB_LIB_WIDEN);
788
789 /* Now calculate (diff % (unroll * abs (increment))) by using an
790 and instruction. */
791 diff = expand_binop (GET_MODE (diff), and_optab, diff,
792 GEN_INT (unroll_number * abs_inc - 1),
793 NULL_RTX, 0, OPTAB_LIB_WIDEN);
794
795 /* Now emit a sequence of branches to jump to the proper precond
796 loop entry point. */
797
798 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
799 for (i = 0; i < unroll_number; i++)
800 labels[i] = gen_label_rtx ();
801
802 /* Assuming the unroll_number is 4, and the increment is 2, then
803 for a negative increment: for a positive increment:
804 diff = 0,1 precond 0 diff = 0,7 precond 0
805 diff = 2,3 precond 3 diff = 1,2 precond 1
806 diff = 4,5 precond 2 diff = 3,4 precond 2
807 diff = 6,7 precond 1 diff = 5,6 precond 3 */
808
809 /* We only need to emit (unroll_number - 1) branches here, the
810 last case just falls through to the following code. */
811
812 /* ??? This would give better code if we emitted a tree of branches
813 instead of the current linear list of branches. */
814
815 for (i = 0; i < unroll_number - 1; i++)
816 {
817 int cmp_const;
818
819 /* For negative increments, must invert the constant compared
820 against, except when comparing against zero. */
821 if (i == 0)
822 cmp_const = 0;
823 else if (neg_inc)
824 cmp_const = unroll_number - i;
825 else
826 cmp_const = i;
827
828 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
829 EQ, NULL_RTX, mode, 0, 0);
830
831 if (i == 0)
832 emit_jump_insn (gen_beq (labels[i]));
833 else if (neg_inc)
834 emit_jump_insn (gen_bge (labels[i]));
835 else
836 emit_jump_insn (gen_ble (labels[i]));
837 JUMP_LABEL (get_last_insn ()) = labels[i];
838 LABEL_NUSES (labels[i])++;
839 }
840
841 /* If the increment is greater than one, then we need another branch,
842 to handle other cases equivalent to 0. */
843
844 /* ??? This should be merged into the code above somehow to help
845 simplify the code here, and reduce the number of branches emitted.
846 For the negative increment case, the branch here could easily
847 be merged with the `0' case branch above. For the positive
848 increment case, it is not clear how this can be simplified. */
849
850 if (abs_inc != 1)
851 {
852 int cmp_const;
853
854 if (neg_inc)
855 cmp_const = abs_inc - 1;
856 else
857 cmp_const = abs_inc * (unroll_number - 1) + 1;
858
859 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
860 mode, 0, 0);
861
862 if (neg_inc)
863 emit_jump_insn (gen_ble (labels[0]));
864 else
865 emit_jump_insn (gen_bge (labels[0]));
866 JUMP_LABEL (get_last_insn ()) = labels[0];
867 LABEL_NUSES (labels[0])++;
868 }
869
870 sequence = gen_sequence ();
871 end_sequence ();
872 emit_insn_before (sequence, loop_start);
873
874 /* Only the last copy of the loop body here needs the exit
875 test, so set copy_end to exclude the compare/branch here,
876 and then reset it inside the loop when get to the last
877 copy. */
878
879 if (GET_CODE (last_loop_insn) == BARRIER)
880 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
881 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
882 {
883 #ifdef HAVE_cc0
884 /* The immediately preceding insn is a compare which we do not
885 want to copy. */
886 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
887 #else
888 /* The immediately preceding insn may not be a compare, so we
889 must copy it. */
890 copy_end = PREV_INSN (last_loop_insn);
891 #endif
892 }
893 else
894 abort ();
895
896 for (i = 1; i < unroll_number; i++)
897 {
898 emit_label_after (labels[unroll_number - i],
899 PREV_INSN (loop_start));
900
901 bzero (map->insn_map, max_insnno * sizeof (rtx));
902 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
903 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
904 map->const_age = 0;
905
906 for (j = 0; j < max_labelno; j++)
907 if (local_label[j])
908 map->label_map[j] = gen_label_rtx ();
909
910 /* The last copy needs the compare/branch insns at the end,
911 so reset copy_end here if the loop ends with a conditional
912 branch. */
913
914 if (i == unroll_number - 1)
915 {
916 if (GET_CODE (last_loop_insn) == BARRIER)
917 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
918 else
919 copy_end = last_loop_insn;
920 }
921
922 /* None of the copies are the `last_iteration', so just
923 pass zero for that parameter. */
924 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
925 unroll_type, start_label, loop_end,
926 loop_start, copy_end);
927 }
928 emit_label_after (labels[0], PREV_INSN (loop_start));
929
930 if (GET_CODE (last_loop_insn) == BARRIER)
931 {
932 insert_before = PREV_INSN (last_loop_insn);
933 copy_end = PREV_INSN (insert_before);
934 }
935 else
936 {
937 #ifdef HAVE_cc0
938 /* The immediately preceding insn is a compare which we do not
939 want to copy. */
940 insert_before = PREV_INSN (last_loop_insn);
941 copy_end = PREV_INSN (insert_before);
942 #else
943 /* The immediately preceding insn may not be a compare, so we
944 must copy it. */
945 insert_before = last_loop_insn;
946 copy_end = PREV_INSN (last_loop_insn);
947 #endif
948 }
949
950 /* Set unroll type to MODULO now. */
951 unroll_type = UNROLL_MODULO;
952 loop_preconditioned = 1;
953 }
954 }
955
956 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
957 the loop unless all loops are being unrolled. */
958 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
959 {
960 if (loop_dump_stream)
961 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
962 return;
963 }
964
965 /* At this point, we are guaranteed to unroll the loop. */
966
967 /* For each biv and giv, determine whether it can be safely split into
968 a different variable for each unrolled copy of the loop body.
969 We precalculate and save this info here, since computing it is
970 expensive.
971
972 Do this before deleting any instructions from the loop, so that
973 back_branch_in_range_p will work correctly. */
974
975 if (splitting_not_safe)
976 temp = 0;
977 else
978 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
979 end_insert_before, unroll_number);
980
981 /* find_splittable_regs may have created some new registers, so must
982 reallocate the reg_map with the new larger size, and must realloc
983 the constant maps also. */
984
985 maxregnum = max_reg_num ();
986 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
987
988 init_reg_map (map, maxregnum);
989
990 /* Space is needed in some of the map for new registers, so new_maxregnum
991 is an (over)estimate of how many registers will exist at the end. */
992 new_maxregnum = maxregnum + (temp * unroll_number * 2);
993
994 /* Must realloc space for the constant maps, because the number of registers
995 may have changed. */
996
997 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
998 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
999
1000 global_const_equiv_map = map->const_equiv_map;
1001
1002 /* Search the list of bivs and givs to find ones which need to be remapped
1003 when split, and set their reg_map entry appropriately. */
1004
1005 for (bl = loop_iv_list; bl; bl = bl->next)
1006 {
1007 if (REGNO (bl->biv->src_reg) != bl->regno)
1008 map->reg_map[bl->regno] = bl->biv->src_reg;
1009 #if 0
1010 /* Currently, non-reduced/final-value givs are never split. */
1011 for (v = bl->giv; v; v = v->next_iv)
1012 if (REGNO (v->src_reg) != bl->regno)
1013 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1014 #endif
1015 }
1016
1017 /* If the loop is being partially unrolled, and the iteration variables
1018 are being split, and are being renamed for the split, then must fix up
1019 the compare instruction at the end of the loop to refer to the new
1020 registers. This compare isn't copied, so the registers used in it
1021 will never be replaced if it isn't done here. */
1022
1023 if (unroll_type == UNROLL_MODULO)
1024 {
1025 insn = NEXT_INSN (copy_end);
1026 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET)
1027 {
1028 #if 0
1029 /* If non-reduced/final-value givs were split, then this would also
1030 have to remap those givs. */
1031 #endif
1032
1033 tem = SET_SRC (PATTERN (insn));
1034 /* The set source is a register. */
1035 if (GET_CODE (tem) == REG)
1036 {
1037 if (REGNO (tem) < max_reg_before_loop
1038 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1039 SET_SRC (PATTERN (insn))
1040 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1041 }
1042 else
1043 {
1044 /* The set source is a compare of some sort. */
1045 tem = XEXP (SET_SRC (PATTERN (insn)), 0);
1046 if (GET_CODE (tem) == REG
1047 && REGNO (tem) < max_reg_before_loop
1048 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1049 XEXP (SET_SRC (PATTERN (insn)), 0)
1050 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1051
1052 tem = XEXP (SET_SRC (PATTERN (insn)), 1);
1053 if (GET_CODE (tem) == REG
1054 && REGNO (tem) < max_reg_before_loop
1055 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1056 XEXP (SET_SRC (PATTERN (insn)), 1)
1057 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1058 }
1059 }
1060 }
1061
1062 /* For unroll_number - 1 times, make a copy of each instruction
1063 between copy_start and copy_end, and insert these new instructions
1064 before the end of the loop. */
1065
1066 for (i = 0; i < unroll_number; i++)
1067 {
1068 bzero (map->insn_map, max_insnno * sizeof (rtx));
1069 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1070 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1071 map->const_age = 0;
1072
1073 for (j = 0; j < max_labelno; j++)
1074 if (local_label[j])
1075 map->label_map[j] = gen_label_rtx ();
1076
1077 /* If loop starts with a branch to the test, then fix it so that
1078 it points to the test of the first unrolled copy of the loop. */
1079 if (i == 0 && loop_start != copy_start)
1080 {
1081 insn = PREV_INSN (copy_start);
1082 pattern = PATTERN (insn);
1083
1084 tem = map->label_map[CODE_LABEL_NUMBER
1085 (XEXP (SET_SRC (pattern), 0))];
1086 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1087
1088 /* Set the jump label so that it can be used by later loop unrolling
1089 passes. */
1090 JUMP_LABEL (insn) = tem;
1091 LABEL_NUSES (tem)++;
1092 }
1093
1094 copy_loop_body (copy_start, copy_end, map, exit_label,
1095 i == unroll_number - 1, unroll_type, start_label,
1096 loop_end, insert_before, insert_before);
1097 }
1098
1099 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1100 insn to be deleted. This prevents any runaway delete_insn call from
1101 more insns that it should, as it always stops at a CODE_LABEL. */
1102
1103 /* Delete the compare and branch at the end of the loop if completely
1104 unrolling the loop. Deleting the backward branch at the end also
1105 deletes the code label at the start of the loop. This is done at
1106 the very end to avoid problems with back_branch_in_range_p. */
1107
1108 if (unroll_type == UNROLL_COMPLETELY)
1109 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1110 else
1111 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1112
1113 /* Delete all of the original loop instructions. Don't delete the
1114 LOOP_BEG note, or the first code label in the loop. */
1115
1116 insn = NEXT_INSN (copy_start);
1117 while (insn != safety_label)
1118 {
1119 if (insn != start_label)
1120 insn = delete_insn (insn);
1121 else
1122 insn = NEXT_INSN (insn);
1123 }
1124
1125 /* Can now delete the 'safety' label emitted to protect us from runaway
1126 delete_insn calls. */
1127 if (INSN_DELETED_P (safety_label))
1128 abort ();
1129 delete_insn (safety_label);
1130
1131 /* If exit_label exists, emit it after the loop. Doing the emit here
1132 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1133 This is needed so that mostly_true_jump in reorg.c will treat jumps
1134 to this loop end label correctly, i.e. predict that they are usually
1135 not taken. */
1136 if (exit_label)
1137 emit_label_after (exit_label, loop_end);
1138 }
1139 \f
1140 /* Return true if the loop can be safely, and profitably, preconditioned
1141 so that the unrolled copies of the loop body don't need exit tests.
1142
1143 This only works if final_value, initial_value and increment can be
1144 determined, and if increment is a constant power of 2.
1145 If increment is not a power of 2, then the preconditioning modulo
1146 operation would require a real modulo instead of a boolean AND, and this
1147 is not considered `profitable'. */
1148
1149 /* ??? If the loop is known to be executed very many times, or the machine
1150 has a very cheap divide instruction, then preconditioning is a win even
1151 when the increment is not a power of 2. Use RTX_COST to compute
1152 whether divide is cheap. */
1153
1154 static int
1155 precondition_loop_p (initial_value, final_value, increment, loop_start,
1156 loop_end)
1157 rtx *initial_value, *final_value, *increment;
1158 rtx loop_start, loop_end;
1159 {
1160 int unsigned_compare, compare_dir;
1161
1162 if (loop_n_iterations > 0)
1163 {
1164 *initial_value = const0_rtx;
1165 *increment = const1_rtx;
1166 *final_value = GEN_INT (loop_n_iterations);
1167
1168 if (loop_dump_stream)
1169 fprintf (loop_dump_stream,
1170 "Preconditioning: Success, number of iterations known, %d.\n",
1171 loop_n_iterations);
1172 return 1;
1173 }
1174
1175 if (loop_initial_value == 0)
1176 {
1177 if (loop_dump_stream)
1178 fprintf (loop_dump_stream,
1179 "Preconditioning: Could not find initial value.\n");
1180 return 0;
1181 }
1182 else if (loop_increment == 0)
1183 {
1184 if (loop_dump_stream)
1185 fprintf (loop_dump_stream,
1186 "Preconditioning: Could not find increment value.\n");
1187 return 0;
1188 }
1189 else if (GET_CODE (loop_increment) != CONST_INT)
1190 {
1191 if (loop_dump_stream)
1192 fprintf (loop_dump_stream,
1193 "Preconditioning: Increment not a constant.\n");
1194 return 0;
1195 }
1196 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1197 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1198 {
1199 if (loop_dump_stream)
1200 fprintf (loop_dump_stream,
1201 "Preconditioning: Increment not a constant power of 2.\n");
1202 return 0;
1203 }
1204
1205 /* Unsigned_compare and compare_dir can be ignored here, since they do
1206 not matter for preconditioning. */
1207
1208 if (loop_final_value == 0)
1209 {
1210 if (loop_dump_stream)
1211 fprintf (loop_dump_stream,
1212 "Preconditioning: EQ comparison loop.\n");
1213 return 0;
1214 }
1215
1216 /* Must ensure that final_value is invariant, so call invariant_p to
1217 check. Before doing so, must check regno against max_reg_before_loop
1218 to make sure that the register is in the range covered by invariant_p.
1219 If it isn't, then it is most likely a biv/giv which by definition are
1220 not invariant. */
1221 if ((GET_CODE (loop_final_value) == REG
1222 && REGNO (loop_final_value) >= max_reg_before_loop)
1223 || (GET_CODE (loop_final_value) == PLUS
1224 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1225 || ! invariant_p (loop_final_value))
1226 {
1227 if (loop_dump_stream)
1228 fprintf (loop_dump_stream,
1229 "Preconditioning: Final value not invariant.\n");
1230 return 0;
1231 }
1232
1233 /* Fail for floating point values, since the caller of this function
1234 does not have code to deal with them. */
1235 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1236 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1237 {
1238 if (loop_dump_stream)
1239 fprintf (loop_dump_stream,
1240 "Preconditioning: Floating point final or initial value.\n");
1241 return 0;
1242 }
1243
1244 /* Now set initial_value to be the iteration_var, since that may be a
1245 simpler expression, and is guaranteed to be correct if all of the
1246 above tests succeed.
1247
1248 We can not use the initial_value as calculated, because it will be
1249 one too small for loops of the form "while (i-- > 0)". We can not
1250 emit code before the loop_skip_over insns to fix this problem as this
1251 will then give a number one too large for loops of the form
1252 "while (--i > 0)".
1253
1254 Note that all loops that reach here are entered at the top, because
1255 this function is not called if the loop starts with a jump. */
1256
1257 /* Fail if loop_iteration_var is not live before loop_start, since we need
1258 to test its value in the preconditioning code. */
1259
1260 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1261 > INSN_LUID (loop_start))
1262 {
1263 if (loop_dump_stream)
1264 fprintf (loop_dump_stream,
1265 "Preconditioning: Iteration var not live before loop start.\n");
1266 return 0;
1267 }
1268
1269 *initial_value = loop_iteration_var;
1270 *increment = loop_increment;
1271 *final_value = loop_final_value;
1272
1273 /* Success! */
1274 if (loop_dump_stream)
1275 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1276 return 1;
1277 }
1278
1279
1280 /* All pseudo-registers must be mapped to themselves. Two hard registers
1281 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1282 REGNUM, to avoid function-inlining specific conversions of these
1283 registers. All other hard regs can not be mapped because they may be
1284 used with different
1285 modes. */
1286
1287 static void
1288 init_reg_map (map, maxregnum)
1289 struct inline_remap *map;
1290 int maxregnum;
1291 {
1292 int i;
1293
1294 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1295 map->reg_map[i] = regno_reg_rtx[i];
1296 /* Just clear the rest of the entries. */
1297 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1298 map->reg_map[i] = 0;
1299
1300 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1301 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1302 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1303 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1304 }
1305 \f
1306 /* Strength-reduction will often emit code for optimized biv/givs which
1307 calculates their value in a temporary register, and then copies the result
1308 to the iv. This procedure reconstructs the pattern computing the iv;
1309 verifying that all operands are of the proper form.
1310
1311 The return value is the amount that the giv is incremented by. */
1312
1313 static rtx
1314 calculate_giv_inc (pattern, src_insn, regno)
1315 rtx pattern, src_insn;
1316 int regno;
1317 {
1318 rtx increment;
1319
1320 /* Verify that we have an increment insn here. First check for a plus
1321 as the set source. */
1322 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1323 {
1324 /* SR sometimes computes the new giv value in a temp, then copies it
1325 to the new_reg. */
1326 src_insn = PREV_INSN (src_insn);
1327 pattern = PATTERN (src_insn);
1328 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1329 abort ();
1330
1331 /* The last insn emitted is not needed, so delete it to avoid confusing
1332 the second cse pass. This insn sets the giv unnecessarily. */
1333 delete_insn (get_last_insn ());
1334 }
1335
1336 /* Verify that we have a constant as the second operand of the plus. */
1337 increment = XEXP (SET_SRC (pattern), 1);
1338 if (GET_CODE (increment) != CONST_INT)
1339 {
1340 /* SR sometimes puts the constant in a register, especially if it is
1341 too big to be an add immed operand. */
1342 increment = SET_SRC (PATTERN (PREV_INSN (src_insn)));
1343
1344 /* SR may have used LO_SUM to compute the constant if it is too large
1345 for a load immed operand. In this case, the constant is in operand
1346 one of the LO_SUM rtx. */
1347 if (GET_CODE (increment) == LO_SUM)
1348 increment = XEXP (increment, 1);
1349
1350 if (GET_CODE (increment) != CONST_INT)
1351 abort ();
1352
1353 /* The insn loading the constant into a register is not longer needed,
1354 so delete it. */
1355 delete_insn (get_last_insn ());
1356 }
1357
1358 /* Check that the source register is the same as the dest register. */
1359 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1360 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1361 abort ();
1362
1363 return increment;
1364 }
1365
1366
1367 /* Copy each instruction in the loop, substituting from map as appropriate.
1368 This is very similar to a loop in expand_inline_function. */
1369
1370 static void
1371 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1372 unroll_type, start_label, loop_end, insert_before,
1373 copy_notes_from)
1374 rtx copy_start, copy_end;
1375 struct inline_remap *map;
1376 rtx exit_label;
1377 int last_iteration;
1378 enum unroll_types unroll_type;
1379 rtx start_label, loop_end, insert_before, copy_notes_from;
1380 {
1381 rtx insn, pattern;
1382 rtx tem, copy;
1383 int dest_reg_was_split, i;
1384 rtx cc0_insn = 0;
1385 rtx final_label = 0;
1386 rtx giv_inc, giv_dest_reg, giv_src_reg;
1387
1388 /* If this isn't the last iteration, then map any references to the
1389 start_label to final_label. Final label will then be emitted immediately
1390 after the end of this loop body if it was ever used.
1391
1392 If this is the last iteration, then map references to the start_label
1393 to itself. */
1394 if (! last_iteration)
1395 {
1396 final_label = gen_label_rtx ();
1397 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1398 }
1399 else
1400 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1401
1402 start_sequence ();
1403
1404 insn = copy_start;
1405 do
1406 {
1407 insn = NEXT_INSN (insn);
1408
1409 map->orig_asm_operands_vector = 0;
1410
1411 switch (GET_CODE (insn))
1412 {
1413 case INSN:
1414 pattern = PATTERN (insn);
1415 copy = 0;
1416 giv_inc = 0;
1417
1418 /* Check to see if this is a giv that has been combined with
1419 some split address givs. (Combined in the sense that
1420 `combine_givs' in loop.c has put two givs in the same register.)
1421 In this case, we must search all givs based on the same biv to
1422 find the address givs. Then split the address givs.
1423 Do this before splitting the giv, since that may map the
1424 SET_DEST to a new register. */
1425
1426 if (GET_CODE (pattern) == SET
1427 && GET_CODE (SET_DEST (pattern)) == REG
1428 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1429 {
1430 struct iv_class *bl;
1431 struct induction *v, *tv;
1432 int regno = REGNO (SET_DEST (pattern));
1433
1434 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1435 bl = reg_biv_class[REGNO (v->src_reg)];
1436
1437 /* Although the giv_inc amount is not needed here, we must call
1438 calculate_giv_inc here since it might try to delete the
1439 last insn emitted. If we wait until later to call it,
1440 we might accidentally delete insns generated immediately
1441 below by emit_unrolled_add. */
1442
1443 giv_inc = calculate_giv_inc (pattern, insn, regno);
1444
1445 /* Now find all address giv's that were combined with this
1446 giv 'v'. */
1447 for (tv = bl->giv; tv; tv = tv->next_iv)
1448 if (tv->giv_type == DEST_ADDR && tv->same == v)
1449 {
1450 int this_giv_inc = INTVAL (giv_inc);
1451
1452 /* Scale this_giv_inc if the multiplicative factors of
1453 the two givs are different. */
1454 if (tv->mult_val != v->mult_val)
1455 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1456 * INTVAL (tv->mult_val));
1457
1458 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1459 *tv->location = tv->dest_reg;
1460
1461 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1462 {
1463 /* Must emit an insn to increment the split address
1464 giv. Add in the const_adjust field in case there
1465 was a constant eliminated from the address. */
1466 rtx value, dest_reg;
1467
1468 /* tv->dest_reg will be either a bare register,
1469 or else a register plus a constant. */
1470 if (GET_CODE (tv->dest_reg) == REG)
1471 dest_reg = tv->dest_reg;
1472 else
1473 dest_reg = XEXP (tv->dest_reg, 0);
1474
1475 /* tv->dest_reg may actually be a (PLUS (REG) (CONST))
1476 here, so we must call plus_constant to add
1477 the const_adjust amount before calling
1478 emit_unrolled_add below. */
1479 value = plus_constant (tv->dest_reg, tv->const_adjust);
1480
1481 /* The constant could be too large for an add
1482 immediate, so can't directly emit an insn here. */
1483 emit_unrolled_add (dest_reg, XEXP (value, 0),
1484 XEXP (value, 1));
1485
1486 /* Reset the giv to be just the register again, in case
1487 it is used after the set we have just emitted.
1488 We must subtract the const_adjust factor added in
1489 above. */
1490 tv->dest_reg = plus_constant (dest_reg,
1491 - tv->const_adjust);
1492 *tv->location = tv->dest_reg;
1493 }
1494 }
1495 }
1496
1497 /* If this is a setting of a splittable variable, then determine
1498 how to split the variable, create a new set based on this split,
1499 and set up the reg_map so that later uses of the variable will
1500 use the new split variable. */
1501
1502 dest_reg_was_split = 0;
1503
1504 if (GET_CODE (pattern) == SET
1505 && GET_CODE (SET_DEST (pattern)) == REG
1506 && splittable_regs[REGNO (SET_DEST (pattern))])
1507 {
1508 int regno = REGNO (SET_DEST (pattern));
1509
1510 dest_reg_was_split = 1;
1511
1512 /* Compute the increment value for the giv, if it wasn't
1513 already computed above. */
1514
1515 if (giv_inc == 0)
1516 giv_inc = calculate_giv_inc (pattern, insn, regno);
1517 giv_dest_reg = SET_DEST (pattern);
1518 giv_src_reg = SET_DEST (pattern);
1519
1520 if (unroll_type == UNROLL_COMPLETELY)
1521 {
1522 /* Completely unrolling the loop. Set the induction
1523 variable to a known constant value. */
1524
1525 /* The value in splittable_regs may be an invariant
1526 value, so we must use plus_constant here. */
1527 splittable_regs[regno]
1528 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1529
1530 if (GET_CODE (splittable_regs[regno]) == PLUS)
1531 {
1532 giv_src_reg = XEXP (splittable_regs[regno], 0);
1533 giv_inc = XEXP (splittable_regs[regno], 1);
1534 }
1535 else
1536 {
1537 /* The splittable_regs value must be a REG or a
1538 CONST_INT, so put the entire value in the giv_src_reg
1539 variable. */
1540 giv_src_reg = splittable_regs[regno];
1541 giv_inc = const0_rtx;
1542 }
1543 }
1544 else
1545 {
1546 /* Partially unrolling loop. Create a new pseudo
1547 register for the iteration variable, and set it to
1548 be a constant plus the original register. Except
1549 on the last iteration, when the result has to
1550 go back into the original iteration var register. */
1551
1552 /* Handle bivs which must be mapped to a new register
1553 when split. This happens for bivs which need their
1554 final value set before loop entry. The new register
1555 for the biv was stored in the biv's first struct
1556 induction entry by find_splittable_regs. */
1557
1558 if (regno < max_reg_before_loop
1559 && reg_iv_type[regno] == BASIC_INDUCT)
1560 {
1561 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1562 giv_dest_reg = giv_src_reg;
1563 }
1564
1565 #if 0
1566 /* If non-reduced/final-value givs were split, then
1567 this would have to remap those givs also. See
1568 find_splittable_regs. */
1569 #endif
1570
1571 splittable_regs[regno]
1572 = GEN_INT (INTVAL (giv_inc)
1573 + INTVAL (splittable_regs[regno]));
1574 giv_inc = splittable_regs[regno];
1575
1576 /* Now split the induction variable by changing the dest
1577 of this insn to a new register, and setting its
1578 reg_map entry to point to this new register.
1579
1580 If this is the last iteration, and this is the last insn
1581 that will update the iv, then reuse the original dest,
1582 to ensure that the iv will have the proper value when
1583 the loop exits or repeats.
1584
1585 Using splittable_regs_updates here like this is safe,
1586 because it can only be greater than one if all
1587 instructions modifying the iv are always executed in
1588 order. */
1589
1590 if (! last_iteration
1591 || (splittable_regs_updates[regno]-- != 1))
1592 {
1593 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1594 giv_dest_reg = tem;
1595 map->reg_map[regno] = tem;
1596 }
1597 else
1598 map->reg_map[regno] = giv_src_reg;
1599 }
1600
1601 /* The constant being added could be too large for an add
1602 immediate, so can't directly emit an insn here. */
1603 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1604 copy = get_last_insn ();
1605 pattern = PATTERN (copy);
1606 }
1607 else
1608 {
1609 pattern = copy_rtx_and_substitute (pattern, map);
1610 copy = emit_insn (pattern);
1611 }
1612 /* REG_NOTES will be copied later. */
1613
1614 #ifdef HAVE_cc0
1615 /* If this insn is setting CC0, it may need to look at
1616 the insn that uses CC0 to see what type of insn it is.
1617 In that case, the call to recog via validate_change will
1618 fail. So don't substitute constants here. Instead,
1619 do it when we emit the following insn.
1620
1621 For example, see the pyr.md file. That machine has signed and
1622 unsigned compares. The compare patterns must check the
1623 following branch insn to see which what kind of compare to
1624 emit.
1625
1626 If the previous insn set CC0, substitute constants on it as
1627 well. */
1628 if (sets_cc0_p (copy) != 0)
1629 cc0_insn = copy;
1630 else
1631 {
1632 if (cc0_insn)
1633 try_constants (cc0_insn, map);
1634 cc0_insn = 0;
1635 try_constants (copy, map);
1636 }
1637 #else
1638 try_constants (copy, map);
1639 #endif
1640
1641 /* Make split induction variable constants `permanent' since we
1642 know there are no backward branches across iteration variable
1643 settings which would invalidate this. */
1644 if (dest_reg_was_split)
1645 {
1646 int regno = REGNO (SET_DEST (pattern));
1647
1648 if (map->const_age_map[regno] == map->const_age)
1649 map->const_age_map[regno] = -1;
1650 }
1651 break;
1652
1653 case JUMP_INSN:
1654 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1655 && ! last_iteration)
1656 {
1657 /* This is a branch to the beginning of the loop; this is the
1658 last insn being copied; and this is not the last iteration.
1659 In this case, we want to change the original fall through
1660 case to be a branch past the end of the loop, and the
1661 original jump label case to fall_through. */
1662 /* Never map the label in this case. */
1663
1664 pattern = copy_rtx (PATTERN (insn));
1665 copy = emit_jump_insn (pattern);
1666
1667 if (! invert_exp (pattern, copy)
1668 || ! redirect_exp (&pattern, JUMP_LABEL (insn),
1669 exit_label, copy))
1670 abort ();
1671 }
1672 else
1673 {
1674 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1675 copy = emit_jump_insn (pattern);
1676 }
1677
1678 #ifdef HAVE_cc0
1679 if (cc0_insn)
1680 try_constants (cc0_insn, map);
1681 cc0_insn = 0;
1682 #endif
1683 try_constants (copy, map);
1684
1685 /* Set the jump label of COPY correctly to avoid problems with
1686 later passes of unroll_loop, if INSN had jump label set. */
1687 if (JUMP_LABEL (insn))
1688 {
1689 rtx label = 0;
1690
1691 /* Can't use the label_map for every insn, since this may be
1692 the backward branch, and hence the label was not mapped. */
1693 if (GET_CODE (pattern) == SET)
1694 {
1695 tem = SET_SRC (pattern);
1696 if (GET_CODE (tem) == LABEL_REF)
1697 label = XEXP (tem, 0);
1698 else if (GET_CODE (tem) == IF_THEN_ELSE)
1699 {
1700 if (XEXP (tem, 1) != pc_rtx)
1701 label = XEXP (XEXP (tem, 1), 0);
1702 else
1703 label = XEXP (XEXP (tem, 2), 0);
1704 }
1705 }
1706
1707 if (label && GET_CODE (label) == CODE_LABEL)
1708 JUMP_LABEL (copy) = label;
1709 else
1710 {
1711 /* An unrecognizable jump insn, probably the entry jump
1712 for a switch statement. This label must have been mapped,
1713 so just use the label_map to get the new jump label. */
1714 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1715 (JUMP_LABEL (insn))];
1716 }
1717
1718 /* If this is a non-local jump, then must increase the label
1719 use count so that the label will not be deleted when the
1720 original jump is deleted. */
1721 LABEL_NUSES (JUMP_LABEL (copy))++;
1722 }
1723 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1724 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1725 {
1726 rtx pat = PATTERN (copy);
1727 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1728 int len = XVECLEN (pat, diff_vec_p);
1729 int i;
1730
1731 for (i = 0; i < len; i++)
1732 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1733 }
1734
1735 /* If this used to be a conditional jump insn but whose branch
1736 direction is now known, we must do something special. */
1737 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1738 {
1739 #ifdef HAVE_cc0
1740 /* The previous insn set cc0 for us. So delete it. */
1741 delete_insn (PREV_INSN (copy));
1742 #endif
1743
1744 /* If this is now a no-op, delete it. */
1745 if (map->last_pc_value == pc_rtx)
1746 {
1747 delete_insn (copy);
1748 copy = 0;
1749 }
1750 else
1751 /* Otherwise, this is unconditional jump so we must put a
1752 BARRIER after it. We could do some dead code elimination
1753 here, but jump.c will do it just as well. */
1754 emit_barrier ();
1755 }
1756 break;
1757
1758 case CALL_INSN:
1759 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1760 copy = emit_call_insn (pattern);
1761
1762 #ifdef HAVE_cc0
1763 if (cc0_insn)
1764 try_constants (cc0_insn, map);
1765 cc0_insn = 0;
1766 #endif
1767 try_constants (copy, map);
1768
1769 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1770 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1771 map->const_equiv_map[i] = 0;
1772 break;
1773
1774 case CODE_LABEL:
1775 /* If this is the loop start label, then we don't need to emit a
1776 copy of this label since no one will use it. */
1777
1778 if (insn != start_label)
1779 {
1780 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1781 map->const_age++;
1782 }
1783 break;
1784
1785 case BARRIER:
1786 copy = emit_barrier ();
1787 break;
1788
1789 case NOTE:
1790 /* VTOP notes are valid only before the loop exit test. If placed
1791 anywhere else, loop may generate bad code. */
1792
1793 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1794 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1795 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1796 copy = emit_note (NOTE_SOURCE_FILE (insn),
1797 NOTE_LINE_NUMBER (insn));
1798 else
1799 copy = 0;
1800 break;
1801
1802 default:
1803 abort ();
1804 break;
1805 }
1806
1807 map->insn_map[INSN_UID (insn)] = copy;
1808 }
1809 while (insn != copy_end);
1810
1811 /* Now copy the REG_NOTES. */
1812 insn = copy_start;
1813 do
1814 {
1815 insn = NEXT_INSN (insn);
1816 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1817 || GET_CODE (insn) == CALL_INSN)
1818 && map->insn_map[INSN_UID (insn)])
1819 REG_NOTES (map->insn_map[INSN_UID (insn)])
1820 = copy_rtx_and_substitute (REG_NOTES (insn), map);
1821 }
1822 while (insn != copy_end);
1823
1824 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1825 each of these notes here, since there may be some important ones, such as
1826 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1827 iteration, because the original notes won't be deleted.
1828
1829 We can't use insert_before here, because when from preconditioning,
1830 insert_before points before the loop. We can't use copy_end, because
1831 there may be insns already inserted after it (which we don't want to
1832 copy) when not from preconditioning code. */
1833
1834 if (! last_iteration)
1835 {
1836 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1837 {
1838 if (GET_CODE (insn) == NOTE
1839 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1840 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1841 }
1842 }
1843
1844 if (final_label && LABEL_NUSES (final_label) > 0)
1845 emit_label (final_label);
1846
1847 tem = gen_sequence ();
1848 end_sequence ();
1849 emit_insn_before (tem, insert_before);
1850 }
1851 \f
1852 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1853 emitted. This will correctly handle the case where the increment value
1854 won't fit in the immediate field of a PLUS insns. */
1855
1856 void
1857 emit_unrolled_add (dest_reg, src_reg, increment)
1858 rtx dest_reg, src_reg, increment;
1859 {
1860 rtx result;
1861
1862 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1863 dest_reg, 0, OPTAB_LIB_WIDEN);
1864
1865 if (dest_reg != result)
1866 emit_move_insn (dest_reg, result);
1867 }
1868 \f
1869 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1870 is a backward branch in that range that branches to somewhere between
1871 LOOP_START and INSN. Returns 0 otherwise. */
1872
1873 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1874 In practice, this is not a problem, because this function is seldom called,
1875 and uses a negligible amount of CPU time on average. */
1876
1877 static int
1878 back_branch_in_range_p (insn, loop_start, loop_end)
1879 rtx insn;
1880 rtx loop_start, loop_end;
1881 {
1882 rtx p, q, target_insn;
1883
1884 /* Stop before we get to the backward branch at the end of the loop. */
1885 loop_end = prev_nonnote_insn (loop_end);
1886 if (GET_CODE (loop_end) == BARRIER)
1887 loop_end = PREV_INSN (loop_end);
1888
1889 /* Check in case insn has been deleted, search forward for first non
1890 deleted insn following it. */
1891 while (INSN_DELETED_P (insn))
1892 insn = NEXT_INSN (insn);
1893
1894 /* Check for the case where insn is the last insn in the loop. */
1895 if (insn == loop_end)
1896 return 0;
1897
1898 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1899 {
1900 if (GET_CODE (p) == JUMP_INSN)
1901 {
1902 target_insn = JUMP_LABEL (p);
1903
1904 /* Search from loop_start to insn, to see if one of them is
1905 the target_insn. We can't use INSN_LUID comparisons here,
1906 since insn may not have an LUID entry. */
1907 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1908 if (q == target_insn)
1909 return 1;
1910 }
1911 }
1912
1913 return 0;
1914 }
1915
1916 /* Try to generate the simplest rtx for the expression
1917 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1918 value of giv's. */
1919
1920 static rtx
1921 fold_rtx_mult_add (mult1, mult2, add1, mode)
1922 rtx mult1, mult2, add1;
1923 enum machine_mode mode;
1924 {
1925 rtx temp, mult_res;
1926 rtx result;
1927
1928 /* The modes must all be the same. This should always be true. For now,
1929 check to make sure. */
1930 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
1931 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
1932 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
1933 abort ();
1934
1935 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
1936 will be a constant. */
1937 if (GET_CODE (mult1) == CONST_INT)
1938 {
1939 temp = mult2;
1940 mult2 = mult1;
1941 mult1 = temp;
1942 }
1943
1944 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
1945 if (! mult_res)
1946 mult_res = gen_rtx (MULT, mode, mult1, mult2);
1947
1948 /* Again, put the constant second. */
1949 if (GET_CODE (add1) == CONST_INT)
1950 {
1951 temp = add1;
1952 add1 = mult_res;
1953 mult_res = temp;
1954 }
1955
1956 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
1957 if (! result)
1958 result = gen_rtx (PLUS, mode, add1, mult_res);
1959
1960 return result;
1961 }
1962
1963 /* Searches the list of induction struct's for the biv BL, to try to calculate
1964 the total increment value for one iteration of the loop as a constant.
1965
1966 Returns the increment value as an rtx, simplified as much as possible,
1967 if it can be calculated. Otherwise, returns 0. */
1968
1969 rtx
1970 biv_total_increment (bl, loop_start, loop_end)
1971 struct iv_class *bl;
1972 rtx loop_start, loop_end;
1973 {
1974 struct induction *v;
1975 rtx result;
1976
1977 /* For increment, must check every instruction that sets it. Each
1978 instruction must be executed only once each time through the loop.
1979 To verify this, we check that the the insn is always executed, and that
1980 there are no backward branches after the insn that branch to before it.
1981 Also, the insn must have a mult_val of one (to make sure it really is
1982 an increment). */
1983
1984 result = const0_rtx;
1985 for (v = bl->biv; v; v = v->next_iv)
1986 {
1987 if (v->always_computable && v->mult_val == const1_rtx
1988 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
1989 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
1990 else
1991 return 0;
1992 }
1993
1994 return result;
1995 }
1996
1997 /* Determine the initial value of the iteration variable, and the amount
1998 that it is incremented each loop. Use the tables constructed by
1999 the strength reduction pass to calculate these values.
2000
2001 Initial_value and/or increment are set to zero if their values could not
2002 be calculated. */
2003
2004 static void
2005 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2006 rtx iteration_var, *initial_value, *increment;
2007 rtx loop_start, loop_end;
2008 {
2009 struct iv_class *bl;
2010 struct induction *v, *b;
2011
2012 /* Clear the result values, in case no answer can be found. */
2013 *initial_value = 0;
2014 *increment = 0;
2015
2016 /* The iteration variable can be either a giv or a biv. Check to see
2017 which it is, and compute the variable's initial value, and increment
2018 value if possible. */
2019
2020 /* If this is a new register, can't handle it since we don't have any
2021 reg_iv_type entry for it. */
2022 if (REGNO (iteration_var) >= max_reg_before_loop)
2023 {
2024 if (loop_dump_stream)
2025 fprintf (loop_dump_stream,
2026 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2027 return;
2028 }
2029 /* Reject iteration variables larger than the host long size, since they
2030 could result in a number of iterations greater than the range of our
2031 `unsigned long' variable loop_n_iterations. */
2032 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2033 {
2034 if (loop_dump_stream)
2035 fprintf (loop_dump_stream,
2036 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2037 return;
2038 }
2039 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2040 {
2041 if (loop_dump_stream)
2042 fprintf (loop_dump_stream,
2043 "Loop unrolling: Iteration var not an integer.\n");
2044 return;
2045 }
2046 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2047 {
2048 /* Grab initial value, only useful if it is a constant. */
2049 bl = reg_biv_class[REGNO (iteration_var)];
2050 *initial_value = bl->initial_value;
2051
2052 *increment = biv_total_increment (bl, loop_start, loop_end);
2053 }
2054 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2055 {
2056 #if 1
2057 /* ??? The code below does not work because the incorrect number of
2058 iterations is calculated when the biv is incremented after the giv
2059 is set (which is the usual case). This can probably be accounted
2060 for by biasing the initial_value by subtracting the amount of the
2061 increment that occurs between the giv set and the giv test. However,
2062 a giv as an iterator is very rare, so it does not seem worthwhile
2063 to handle this. */
2064 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2065 if (loop_dump_stream)
2066 fprintf (loop_dump_stream,
2067 "Loop unrolling: Giv iterators are not handled.\n");
2068 return;
2069 #else
2070 /* Initial value is mult_val times the biv's initial value plus
2071 add_val. Only useful if it is a constant. */
2072 v = reg_iv_info[REGNO (iteration_var)];
2073 bl = reg_biv_class[REGNO (v->src_reg)];
2074 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2075 v->add_val, v->mode);
2076
2077 /* Increment value is mult_val times the increment value of the biv. */
2078
2079 *increment = biv_total_increment (bl, loop_start, loop_end);
2080 if (*increment)
2081 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2082 v->mode);
2083 #endif
2084 }
2085 else
2086 {
2087 if (loop_dump_stream)
2088 fprintf (loop_dump_stream,
2089 "Loop unrolling: Not basic or general induction var.\n");
2090 return;
2091 }
2092 }
2093
2094 /* Calculate the approximate final value of the iteration variable
2095 which has an loop exit test with code COMPARISON_CODE and comparison value
2096 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2097 was signed or unsigned, and the direction of the comparison. This info is
2098 needed to calculate the number of loop iterations. */
2099
2100 static rtx
2101 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2102 enum rtx_code comparison_code;
2103 rtx comparison_value;
2104 int *unsigned_p;
2105 int *compare_dir;
2106 {
2107 /* Calculate the final value of the induction variable.
2108 The exact final value depends on the branch operator, and increment sign.
2109 This is only an approximate value. It will be wrong if the iteration
2110 variable is not incremented by one each time through the loop, and
2111 approx final value - start value % increment != 0. */
2112
2113 *unsigned_p = 0;
2114 switch (comparison_code)
2115 {
2116 case LEU:
2117 *unsigned_p = 1;
2118 case LE:
2119 *compare_dir = 1;
2120 return plus_constant (comparison_value, 1);
2121 case GEU:
2122 *unsigned_p = 1;
2123 case GE:
2124 *compare_dir = -1;
2125 return plus_constant (comparison_value, -1);
2126 case EQ:
2127 /* Can not calculate a final value for this case. */
2128 *compare_dir = 0;
2129 return 0;
2130 case LTU:
2131 *unsigned_p = 1;
2132 case LT:
2133 *compare_dir = 1;
2134 return comparison_value;
2135 break;
2136 case GTU:
2137 *unsigned_p = 1;
2138 case GT:
2139 *compare_dir = -1;
2140 return comparison_value;
2141 case NE:
2142 *compare_dir = 0;
2143 return comparison_value;
2144 default:
2145 abort ();
2146 }
2147 }
2148
2149 /* For each biv and giv, determine whether it can be safely split into
2150 a different variable for each unrolled copy of the loop body. If it
2151 is safe to split, then indicate that by saving some useful info
2152 in the splittable_regs array.
2153
2154 If the loop is being completely unrolled, then splittable_regs will hold
2155 the current value of the induction variable while the loop is unrolled.
2156 It must be set to the initial value of the induction variable here.
2157 Otherwise, splittable_regs will hold the difference between the current
2158 value of the induction variable and the value the induction variable had
2159 at the top of the loop. It must be set to the value 0 here. */
2160
2161 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2162 constant values are unnecessary, since we can easily calculate increment
2163 values in this case even if nothing is constant. The increment value
2164 should not involve a multiply however. */
2165
2166 /* ?? Even if the biv/giv increment values aren't constant, it may still
2167 be beneficial to split the variable if the loop is only unrolled a few
2168 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2169
2170 static int
2171 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2172 unroll_number)
2173 enum unroll_types unroll_type;
2174 rtx loop_start, loop_end;
2175 rtx end_insert_before;
2176 int unroll_number;
2177 {
2178 struct iv_class *bl;
2179 struct induction *v;
2180 rtx increment, tem;
2181 rtx biv_final_value;
2182 int biv_splittable;
2183 int result = 0;
2184
2185 for (bl = loop_iv_list; bl; bl = bl->next)
2186 {
2187 /* Biv_total_increment must return a constant value,
2188 otherwise we can not calculate the split values. */
2189
2190 increment = biv_total_increment (bl, loop_start, loop_end);
2191 if (! increment || GET_CODE (increment) != CONST_INT)
2192 continue;
2193
2194 /* The loop must be unrolled completely, or else have a known number
2195 of iterations and only one exit, or else the biv must be dead
2196 outside the loop, or else the final value must be known. Otherwise,
2197 it is unsafe to split the biv since it may not have the proper
2198 value on loop exit. */
2199
2200 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2201 a fall through at the end. */
2202
2203 biv_splittable = 1;
2204 biv_final_value = 0;
2205 if (unroll_type != UNROLL_COMPLETELY
2206 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2207 || unroll_type == UNROLL_NAIVE)
2208 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2209 || ! bl->init_insn
2210 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2211 || (uid_luid[regno_first_uid[bl->regno]]
2212 < INSN_LUID (bl->init_insn))
2213 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2214 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2215 biv_splittable = 0;
2216
2217 /* If any of the insns setting the BIV don't do so with a simple
2218 PLUS, we don't know how to split it. */
2219 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2220 if ((tem = single_set (v->insn)) == 0
2221 || GET_CODE (SET_DEST (tem)) != REG
2222 || REGNO (SET_DEST (tem)) != bl->regno
2223 || GET_CODE (SET_SRC (tem)) != PLUS)
2224 biv_splittable = 0;
2225
2226 /* If final value is non-zero, then must emit an instruction which sets
2227 the value of the biv to the proper value. This is done after
2228 handling all of the givs, since some of them may need to use the
2229 biv's value in their initialization code. */
2230
2231 /* This biv is splittable. If completely unrolling the loop, save
2232 the biv's initial value. Otherwise, save the constant zero. */
2233
2234 if (biv_splittable == 1)
2235 {
2236 if (unroll_type == UNROLL_COMPLETELY)
2237 {
2238 /* If the initial value of the biv is itself (i.e. it is too
2239 complicated for strength_reduce to compute), or is a hard
2240 register, then we must create a new pseudo reg to hold the
2241 initial value of the biv. */
2242
2243 if (GET_CODE (bl->initial_value) == REG
2244 && (REGNO (bl->initial_value) == bl->regno
2245 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2246 {
2247 rtx tem = gen_reg_rtx (bl->biv->mode);
2248
2249 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2250 loop_start);
2251
2252 if (loop_dump_stream)
2253 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2254 bl->regno, REGNO (tem));
2255
2256 splittable_regs[bl->regno] = tem;
2257 }
2258 else
2259 splittable_regs[bl->regno] = bl->initial_value;
2260 }
2261 else
2262 splittable_regs[bl->regno] = const0_rtx;
2263
2264 /* Save the number of instructions that modify the biv, so that
2265 we can treat the last one specially. */
2266
2267 splittable_regs_updates[bl->regno] = bl->biv_count;
2268
2269 result++;
2270
2271 if (loop_dump_stream)
2272 fprintf (loop_dump_stream,
2273 "Biv %d safe to split.\n", bl->regno);
2274 }
2275
2276 /* Check every giv that depends on this biv to see whether it is
2277 splittable also. Even if the biv isn't splittable, givs which
2278 depend on it may be splittable if the biv is live outside the
2279 loop, and the givs aren't. */
2280
2281 result = find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2282 increment, unroll_number, result);
2283
2284 /* If final value is non-zero, then must emit an instruction which sets
2285 the value of the biv to the proper value. This is done after
2286 handling all of the givs, since some of them may need to use the
2287 biv's value in their initialization code. */
2288 if (biv_final_value)
2289 {
2290 /* If the loop has multiple exits, emit the insns before the
2291 loop to ensure that it will always be executed no matter
2292 how the loop exits. Otherwise emit the insn after the loop,
2293 since this is slightly more efficient. */
2294 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2295 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2296 biv_final_value),
2297 end_insert_before);
2298 else
2299 {
2300 /* Create a new register to hold the value of the biv, and then
2301 set the biv to its final value before the loop start. The biv
2302 is set to its final value before loop start to ensure that
2303 this insn will always be executed, no matter how the loop
2304 exits. */
2305 rtx tem = gen_reg_rtx (bl->biv->mode);
2306 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2307 loop_start);
2308 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2309 biv_final_value),
2310 loop_start);
2311
2312 if (loop_dump_stream)
2313 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2314 REGNO (bl->biv->src_reg), REGNO (tem));
2315
2316 /* Set up the mapping from the original biv register to the new
2317 register. */
2318 bl->biv->src_reg = tem;
2319 }
2320 }
2321 }
2322 return result;
2323 }
2324
2325 /* For every giv based on the biv BL, check to determine whether it is
2326 splittable. This is a subroutine to find_splittable_regs (). */
2327
2328 static int
2329 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2330 unroll_number, result)
2331 struct iv_class *bl;
2332 enum unroll_types unroll_type;
2333 rtx loop_start, loop_end;
2334 rtx increment;
2335 int unroll_number, result;
2336 {
2337 struct induction *v;
2338 rtx final_value;
2339 rtx tem;
2340
2341 for (v = bl->giv; v; v = v->next_iv)
2342 {
2343 rtx giv_inc, value;
2344
2345 /* Only split the giv if it has already been reduced, or if the loop is
2346 being completely unrolled. */
2347 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2348 continue;
2349
2350 /* The giv can be split if the insn that sets the giv is executed once
2351 and only once on every iteration of the loop. */
2352 /* An address giv can always be split. v->insn is just a use not a set,
2353 and hence it does not matter whether it is always executed. All that
2354 matters is that all the biv increments are always executed, and we
2355 won't reach here if they aren't. */
2356 if (v->giv_type != DEST_ADDR
2357 && (! v->always_computable
2358 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2359 continue;
2360
2361 /* The giv increment value must be a constant. */
2362 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2363 v->mode);
2364 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2365 continue;
2366
2367 /* The loop must be unrolled completely, or else have a known number of
2368 iterations and only one exit, or else the giv must be dead outside
2369 the loop, or else the final value of the giv must be known.
2370 Otherwise, it is not safe to split the giv since it may not have the
2371 proper value on loop exit. */
2372
2373 /* The used outside loop test will fail for DEST_ADDR givs. They are
2374 never used outside the loop anyways, so it is always safe to split a
2375 DEST_ADDR giv. */
2376
2377 final_value = 0;
2378 if (unroll_type != UNROLL_COMPLETELY
2379 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2380 || unroll_type == UNROLL_NAIVE)
2381 && v->giv_type != DEST_ADDR
2382 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2383 /* Check for the case where the pseudo is set by a shift/add
2384 sequence, in which case the first insn setting the pseudo
2385 is the first insn of the shift/add sequence. */
2386 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2387 || (regno_first_uid[REGNO (v->dest_reg)]
2388 != INSN_UID (XEXP (tem, 0)))))
2389 /* Line above always fails if INSN was moved by loop opt. */
2390 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2391 >= INSN_LUID (loop_end)))
2392 && ! (final_value = v->final_value))
2393 continue;
2394
2395 #if 0
2396 /* Currently, non-reduced/final-value givs are never split. */
2397 /* Should emit insns after the loop if possible, as the biv final value
2398 code below does. */
2399
2400 /* If the final value is non-zero, and the giv has not been reduced,
2401 then must emit an instruction to set the final value. */
2402 if (final_value && !v->new_reg)
2403 {
2404 /* Create a new register to hold the value of the giv, and then set
2405 the giv to its final value before the loop start. The giv is set
2406 to its final value before loop start to ensure that this insn
2407 will always be executed, no matter how we exit. */
2408 tem = gen_reg_rtx (v->mode);
2409 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2410 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2411 loop_start);
2412
2413 if (loop_dump_stream)
2414 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2415 REGNO (v->dest_reg), REGNO (tem));
2416
2417 v->src_reg = tem;
2418 }
2419 #endif
2420
2421 /* This giv is splittable. If completely unrolling the loop, save the
2422 giv's initial value. Otherwise, save the constant zero for it. */
2423
2424 if (unroll_type == UNROLL_COMPLETELY)
2425 {
2426 /* It is not safe to use bl->initial_value here, because it may not
2427 be invariant. It is safe to use the initial value stored in
2428 the splittable_regs array if it is set. In rare cases, it won't
2429 be set, so then we do exactly the same thing as
2430 find_splittable_regs does to get a safe value. */
2431 rtx biv_initial_value;
2432
2433 if (splittable_regs[bl->regno])
2434 biv_initial_value = splittable_regs[bl->regno];
2435 else if (GET_CODE (bl->initial_value) != REG
2436 || (REGNO (bl->initial_value) != bl->regno
2437 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2438 biv_initial_value = bl->initial_value;
2439 else
2440 {
2441 rtx tem = gen_reg_rtx (bl->biv->mode);
2442
2443 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2444 loop_start);
2445 biv_initial_value = tem;
2446 }
2447 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2448 v->add_val, v->mode);
2449 }
2450 else
2451 value = const0_rtx;
2452
2453 if (v->new_reg)
2454 {
2455 /* If a giv was combined with another giv, then we can only split
2456 this giv if the giv it was combined with was reduced. This
2457 is because the value of v->new_reg is meaningless in this
2458 case. */
2459 if (v->same && ! v->same->new_reg)
2460 {
2461 if (loop_dump_stream)
2462 fprintf (loop_dump_stream,
2463 "giv combined with unreduced giv not split.\n");
2464 continue;
2465 }
2466 /* If the giv is an address destination, it could be something other
2467 than a simple register, these have to be treated differently. */
2468 else if (v->giv_type == DEST_REG)
2469 {
2470 /* If value is not a constant, register, or register plus
2471 constant, then compute its value into a register before
2472 loop start. This prevents illegal rtx sharing, and should
2473 generate better code. We can use bl->initial_value here
2474 instead of splittable_regs[bl->regno] because this code
2475 is going before the loop start. */
2476 if (unroll_type == UNROLL_COMPLETELY
2477 && GET_CODE (value) != CONST_INT
2478 && GET_CODE (value) != REG
2479 && (GET_CODE (value) != PLUS
2480 || GET_CODE (XEXP (value, 0)) != REG
2481 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2482 {
2483 rtx tem = gen_reg_rtx (v->mode);
2484 emit_iv_add_mult (bl->initial_value, v->mult_val,
2485 v->add_val, tem, loop_start);
2486 value = tem;
2487 }
2488
2489 splittable_regs[REGNO (v->new_reg)] = value;
2490 }
2491 else
2492 {
2493 /* Splitting address givs is useful since it will often allow us
2494 to eliminate some increment insns for the base giv as
2495 unnecessary. */
2496
2497 /* If the addr giv is combined with a dest_reg giv, then all
2498 references to that dest reg will be remapped, which is NOT
2499 what we want for split addr regs. We always create a new
2500 register for the split addr giv, just to be safe. */
2501
2502 /* ??? If there are multiple address givs which have been
2503 combined with the same dest_reg giv, then we may only need
2504 one new register for them. Pulling out constants below will
2505 catch some of the common cases of this. Currently, I leave
2506 the work of simplifying multiple address givs to the
2507 following cse pass. */
2508
2509 v->const_adjust = 0;
2510 if (unroll_type != UNROLL_COMPLETELY)
2511 {
2512 /* If not completely unrolling the loop, then create a new
2513 register to hold the split value of the DEST_ADDR giv.
2514 Emit insn to initialize its value before loop start. */
2515 tem = gen_reg_rtx (v->mode);
2516
2517 /* If the address giv has a constant in its new_reg value,
2518 then this constant can be pulled out and put in value,
2519 instead of being part of the initialization code. */
2520
2521 if (GET_CODE (v->new_reg) == PLUS
2522 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2523 {
2524 v->dest_reg
2525 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2526
2527 /* Only succeed if this will give valid addresses.
2528 Try to validate both the first and the last
2529 address resulting from loop unrolling, if
2530 one fails, then can't do const elim here. */
2531 if (memory_address_p (v->mem_mode, v->dest_reg)
2532 && memory_address_p (v->mem_mode,
2533 plus_constant (v->dest_reg,
2534 INTVAL (giv_inc)
2535 * (unroll_number - 1))))
2536 {
2537 /* Save the negative of the eliminated const, so
2538 that we can calculate the dest_reg's increment
2539 value later. */
2540 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2541
2542 v->new_reg = XEXP (v->new_reg, 0);
2543 if (loop_dump_stream)
2544 fprintf (loop_dump_stream,
2545 "Eliminating constant from giv %d\n",
2546 REGNO (tem));
2547 }
2548 else
2549 v->dest_reg = tem;
2550 }
2551 else
2552 v->dest_reg = tem;
2553
2554 /* If the address hasn't been checked for validity yet, do so
2555 now, and fail completely if either the first or the last
2556 unrolled copy of the address is not a valid address. */
2557 if (v->dest_reg == tem
2558 && (! memory_address_p (v->mem_mode, v->dest_reg)
2559 || ! memory_address_p (v->mem_mode,
2560 plus_constant (v->dest_reg,
2561 INTVAL (giv_inc)
2562 * (unroll_number -1)))))
2563 {
2564 if (loop_dump_stream)
2565 fprintf (loop_dump_stream,
2566 "Illegal address for giv at insn %d\n",
2567 INSN_UID (v->insn));
2568 continue;
2569 }
2570
2571 /* To initialize the new register, just move the value of
2572 new_reg into it. This is not guaranteed to give a valid
2573 instruction on machines with complex addressing modes.
2574 If we can't recognize it, then delete it and emit insns
2575 to calculate the value from scratch. */
2576 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2577 copy_rtx (v->new_reg)),
2578 loop_start);
2579 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2580 {
2581 delete_insn (PREV_INSN (loop_start));
2582 emit_iv_add_mult (bl->initial_value, v->mult_val,
2583 v->add_val, tem, loop_start);
2584 if (loop_dump_stream)
2585 fprintf (loop_dump_stream,
2586 "Illegal init insn, rewritten.\n");
2587 }
2588 }
2589 else
2590 {
2591 v->dest_reg = value;
2592
2593 /* Check the resulting address for validity, and fail
2594 if the resulting address would be illegal. */
2595 if (! memory_address_p (v->mem_mode, v->dest_reg)
2596 || ! memory_address_p (v->mem_mode,
2597 plus_constant (v->dest_reg,
2598 INTVAL (giv_inc) *
2599 (unroll_number -1))))
2600 {
2601 if (loop_dump_stream)
2602 fprintf (loop_dump_stream,
2603 "Illegal address for giv at insn %d\n",
2604 INSN_UID (v->insn));
2605 continue;
2606 }
2607 }
2608
2609 /* Store the value of dest_reg into the insn. This sharing
2610 will not be a problem as this insn will always be copied
2611 later. */
2612
2613 *v->location = v->dest_reg;
2614
2615 /* If this address giv is combined with a dest reg giv, then
2616 save the base giv's induction pointer so that we will be
2617 able to handle this address giv properly. The base giv
2618 itself does not have to be splittable. */
2619
2620 if (v->same && v->same->giv_type == DEST_REG)
2621 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2622
2623 if (GET_CODE (v->new_reg) == REG)
2624 {
2625 /* This giv maybe hasn't been combined with any others.
2626 Make sure that it's giv is marked as splittable here. */
2627
2628 splittable_regs[REGNO (v->new_reg)] = value;
2629
2630 /* Make it appear to depend upon itself, so that the
2631 giv will be properly split in the main loop above. */
2632 if (! v->same)
2633 {
2634 v->same = v;
2635 addr_combined_regs[REGNO (v->new_reg)] = v;
2636 }
2637 }
2638
2639 if (loop_dump_stream)
2640 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2641 }
2642 }
2643 else
2644 {
2645 #if 0
2646 /* Currently, unreduced giv's can't be split. This is not too much
2647 of a problem since unreduced giv's are not live across loop
2648 iterations anyways. When unrolling a loop completely though,
2649 it makes sense to reduce&split givs when possible, as this will
2650 result in simpler instructions, and will not require that a reg
2651 be live across loop iterations. */
2652
2653 splittable_regs[REGNO (v->dest_reg)] = value;
2654 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2655 REGNO (v->dest_reg), INSN_UID (v->insn));
2656 #else
2657 continue;
2658 #endif
2659 }
2660
2661 /* Givs are only updated once by definition. Mark it so if this is
2662 a splittable register. Don't need to do anything for address givs
2663 where this may not be a register. */
2664
2665 if (GET_CODE (v->new_reg) == REG)
2666 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2667
2668 result++;
2669
2670 if (loop_dump_stream)
2671 {
2672 int regnum;
2673
2674 if (GET_CODE (v->dest_reg) == CONST_INT)
2675 regnum = -1;
2676 else if (GET_CODE (v->dest_reg) != REG)
2677 regnum = REGNO (XEXP (v->dest_reg, 0));
2678 else
2679 regnum = REGNO (v->dest_reg);
2680 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2681 regnum, INSN_UID (v->insn));
2682 }
2683 }
2684
2685 return result;
2686 }
2687 \f
2688 /* Try to prove that the register is dead after the loop exits. Trace every
2689 loop exit looking for an insn that will always be executed, which sets
2690 the register to some value, and appears before the first use of the register
2691 is found. If successful, then return 1, otherwise return 0. */
2692
2693 /* ?? Could be made more intelligent in the handling of jumps, so that
2694 it can search past if statements and other similar structures. */
2695
2696 static int
2697 reg_dead_after_loop (reg, loop_start, loop_end)
2698 rtx reg, loop_start, loop_end;
2699 {
2700 rtx insn, label;
2701 enum rtx_code code;
2702 int jump_count = 0;
2703
2704 /* HACK: Must also search the loop fall through exit, create a label_ref
2705 here which points to the loop_end, and append the loop_number_exit_labels
2706 list to it. */
2707 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2708 LABEL_NEXTREF (label)
2709 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2710
2711 for ( ; label; label = LABEL_NEXTREF (label))
2712 {
2713 /* Succeed if find an insn which sets the biv or if reach end of
2714 function. Fail if find an insn that uses the biv, or if come to
2715 a conditional jump. */
2716
2717 insn = NEXT_INSN (XEXP (label, 0));
2718 while (insn)
2719 {
2720 code = GET_CODE (insn);
2721 if (GET_RTX_CLASS (code) == 'i')
2722 {
2723 rtx set;
2724
2725 if (reg_referenced_p (reg, PATTERN (insn)))
2726 return 0;
2727
2728 set = single_set (insn);
2729 if (set && rtx_equal_p (SET_DEST (set), reg))
2730 break;
2731 }
2732
2733 if (code == JUMP_INSN)
2734 {
2735 if (GET_CODE (PATTERN (insn)) == RETURN)
2736 break;
2737 else if (! simplejump_p (insn)
2738 /* Prevent infinite loop following infinite loops. */
2739 || jump_count++ > 20)
2740 return 0;
2741 else
2742 insn = JUMP_LABEL (insn);
2743 }
2744
2745 insn = NEXT_INSN (insn);
2746 }
2747 }
2748
2749 /* Success, the register is dead on all loop exits. */
2750 return 1;
2751 }
2752
2753 /* Try to calculate the final value of the biv, the value it will have at
2754 the end of the loop. If we can do it, return that value. */
2755
2756 rtx
2757 final_biv_value (bl, loop_start, loop_end)
2758 struct iv_class *bl;
2759 rtx loop_start, loop_end;
2760 {
2761 rtx increment, tem;
2762
2763 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2764
2765 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2766 return 0;
2767
2768 /* The final value for reversed bivs must be calculated differently than
2769 for ordinary bivs. In this case, there is already an insn after the
2770 loop which sets this biv's final value (if necessary), and there are
2771 no other loop exits, so we can return any value. */
2772 if (bl->reversed)
2773 {
2774 if (loop_dump_stream)
2775 fprintf (loop_dump_stream,
2776 "Final biv value for %d, reversed biv.\n", bl->regno);
2777
2778 return const0_rtx;
2779 }
2780
2781 /* Try to calculate the final value as initial value + (number of iterations
2782 * increment). For this to work, increment must be invariant, the only
2783 exit from the loop must be the fall through at the bottom (otherwise
2784 it may not have its final value when the loop exits), and the initial
2785 value of the biv must be invariant. */
2786
2787 if (loop_n_iterations != 0
2788 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2789 && invariant_p (bl->initial_value))
2790 {
2791 increment = biv_total_increment (bl, loop_start, loop_end);
2792
2793 if (increment && invariant_p (increment))
2794 {
2795 /* Can calculate the loop exit value, emit insns after loop
2796 end to calculate this value into a temporary register in
2797 case it is needed later. */
2798
2799 tem = gen_reg_rtx (bl->biv->mode);
2800 /* Make sure loop_end is not the last insn. */
2801 if (NEXT_INSN (loop_end) == 0)
2802 emit_note_after (NOTE_INSN_DELETED, loop_end);
2803 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2804 bl->initial_value, tem, NEXT_INSN (loop_end));
2805
2806 if (loop_dump_stream)
2807 fprintf (loop_dump_stream,
2808 "Final biv value for %d, calculated.\n", bl->regno);
2809
2810 return tem;
2811 }
2812 }
2813
2814 /* Check to see if the biv is dead at all loop exits. */
2815 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2816 {
2817 if (loop_dump_stream)
2818 fprintf (loop_dump_stream,
2819 "Final biv value for %d, biv dead after loop exit.\n",
2820 bl->regno);
2821
2822 return const0_rtx;
2823 }
2824
2825 return 0;
2826 }
2827
2828 /* Try to calculate the final value of the giv, the value it will have at
2829 the end of the loop. If we can do it, return that value. */
2830
2831 rtx
2832 final_giv_value (v, loop_start, loop_end)
2833 struct induction *v;
2834 rtx loop_start, loop_end;
2835 {
2836 struct iv_class *bl;
2837 rtx insn;
2838 rtx increment, tem;
2839 enum rtx_code code;
2840 rtx insert_before, seq;
2841
2842 bl = reg_biv_class[REGNO (v->src_reg)];
2843
2844 /* The final value for givs which depend on reversed bivs must be calculated
2845 differently than for ordinary givs. In this case, there is already an
2846 insn after the loop which sets this giv's final value (if necessary),
2847 and there are no other loop exits, so we can return any value. */
2848 if (bl->reversed)
2849 {
2850 if (loop_dump_stream)
2851 fprintf (loop_dump_stream,
2852 "Final giv value for %d, depends on reversed biv\n",
2853 REGNO (v->dest_reg));
2854 return const0_rtx;
2855 }
2856
2857 /* Try to calculate the final value as a function of the biv it depends
2858 upon. The only exit from the loop must be the fall through at the bottom
2859 (otherwise it may not have its final value when the loop exits). */
2860
2861 /* ??? Can calculate the final giv value by subtracting off the
2862 extra biv increments times the giv's mult_val. The loop must have
2863 only one exit for this to work, but the loop iterations does not need
2864 to be known. */
2865
2866 if (loop_n_iterations != 0
2867 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2868 {
2869 /* ?? It is tempting to use the biv's value here since these insns will
2870 be put after the loop, and hence the biv will have its final value
2871 then. However, this fails if the biv is subsequently eliminated.
2872 Perhaps determine whether biv's are eliminable before trying to
2873 determine whether giv's are replaceable so that we can use the
2874 biv value here if it is not eliminable. */
2875
2876 increment = biv_total_increment (bl, loop_start, loop_end);
2877
2878 if (increment && invariant_p (increment))
2879 {
2880 /* Can calculate the loop exit value of its biv as
2881 (loop_n_iterations * increment) + initial_value */
2882
2883 /* The loop exit value of the giv is then
2884 (final_biv_value - extra increments) * mult_val + add_val.
2885 The extra increments are any increments to the biv which
2886 occur in the loop after the giv's value is calculated.
2887 We must search from the insn that sets the giv to the end
2888 of the loop to calculate this value. */
2889
2890 insert_before = NEXT_INSN (loop_end);
2891
2892 /* Put the final biv value in tem. */
2893 tem = gen_reg_rtx (bl->biv->mode);
2894 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2895 bl->initial_value, tem, insert_before);
2896
2897 /* Subtract off extra increments as we find them. */
2898 for (insn = NEXT_INSN (v->insn); insn != loop_end;
2899 insn = NEXT_INSN (insn))
2900 {
2901 struct induction *biv;
2902
2903 for (biv = bl->biv; biv; biv = biv->next_iv)
2904 if (biv->insn == insn)
2905 {
2906 start_sequence ();
2907 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
2908 biv->add_val, NULL_RTX, 0,
2909 OPTAB_LIB_WIDEN);
2910 seq = gen_sequence ();
2911 end_sequence ();
2912 emit_insn_before (seq, insert_before);
2913 }
2914 }
2915
2916 /* Now calculate the giv's final value. */
2917 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
2918 insert_before);
2919
2920 if (loop_dump_stream)
2921 fprintf (loop_dump_stream,
2922 "Final giv value for %d, calc from biv's value.\n",
2923 REGNO (v->dest_reg));
2924
2925 return tem;
2926 }
2927 }
2928
2929 /* Replaceable giv's should never reach here. */
2930 if (v->replaceable)
2931 abort ();
2932
2933 /* Check to see if the biv is dead at all loop exits. */
2934 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
2935 {
2936 if (loop_dump_stream)
2937 fprintf (loop_dump_stream,
2938 "Final giv value for %d, giv dead after loop exit.\n",
2939 REGNO (v->dest_reg));
2940
2941 return const0_rtx;
2942 }
2943
2944 return 0;
2945 }
2946
2947
2948 /* Calculate the number of loop iterations. Returns the exact number of loop
2949 iterations if it can be calculated, otherwise returns zero. */
2950
2951 unsigned HOST_WIDE_INT
2952 loop_iterations (loop_start, loop_end)
2953 rtx loop_start, loop_end;
2954 {
2955 rtx comparison, comparison_value;
2956 rtx iteration_var, initial_value, increment, final_value;
2957 enum rtx_code comparison_code;
2958 HOST_WIDE_INT i;
2959 int increment_dir;
2960 int unsigned_compare, compare_dir, final_larger;
2961 unsigned long tempu;
2962 rtx last_loop_insn;
2963
2964 /* First find the iteration variable. If the last insn is a conditional
2965 branch, and the insn before tests a register value, make that the
2966 iteration variable. */
2967
2968 loop_initial_value = 0;
2969 loop_increment = 0;
2970 loop_final_value = 0;
2971 loop_iteration_var = 0;
2972
2973 last_loop_insn = prev_nonnote_insn (loop_end);
2974
2975 comparison = get_condition_for_loop (last_loop_insn);
2976 if (comparison == 0)
2977 {
2978 if (loop_dump_stream)
2979 fprintf (loop_dump_stream,
2980 "Loop unrolling: No final conditional branch found.\n");
2981 return 0;
2982 }
2983
2984 /* ??? Get_condition may switch position of induction variable and
2985 invariant register when it canonicalizes the comparison. */
2986
2987 comparison_code = GET_CODE (comparison);
2988 iteration_var = XEXP (comparison, 0);
2989 comparison_value = XEXP (comparison, 1);
2990
2991 if (GET_CODE (iteration_var) != REG)
2992 {
2993 if (loop_dump_stream)
2994 fprintf (loop_dump_stream,
2995 "Loop unrolling: Comparison not against register.\n");
2996 return 0;
2997 }
2998
2999 /* Loop iterations is always called before any new registers are created
3000 now, so this should never occur. */
3001
3002 if (REGNO (iteration_var) >= max_reg_before_loop)
3003 abort ();
3004
3005 iteration_info (iteration_var, &initial_value, &increment,
3006 loop_start, loop_end);
3007 if (initial_value == 0)
3008 /* iteration_info already printed a message. */
3009 return 0;
3010
3011 if (increment == 0)
3012 {
3013 if (loop_dump_stream)
3014 fprintf (loop_dump_stream,
3015 "Loop unrolling: Increment value can't be calculated.\n");
3016 return 0;
3017 }
3018 if (GET_CODE (increment) != CONST_INT)
3019 {
3020 if (loop_dump_stream)
3021 fprintf (loop_dump_stream,
3022 "Loop unrolling: Increment value not constant.\n");
3023 return 0;
3024 }
3025 if (GET_CODE (initial_value) != CONST_INT)
3026 {
3027 if (loop_dump_stream)
3028 fprintf (loop_dump_stream,
3029 "Loop unrolling: Initial value not constant.\n");
3030 return 0;
3031 }
3032
3033 /* If the comparison value is an invariant register, then try to find
3034 its value from the insns before the start of the loop. */
3035
3036 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3037 {
3038 rtx insn, set;
3039
3040 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3041 {
3042 if (GET_CODE (insn) == CODE_LABEL)
3043 break;
3044
3045 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3046 && (set = single_set (insn))
3047 && (SET_DEST (set) == comparison_value))
3048 {
3049 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3050
3051 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3052 comparison_value = XEXP (note, 0);
3053
3054 break;
3055 }
3056 }
3057 }
3058
3059 final_value = approx_final_value (comparison_code, comparison_value,
3060 &unsigned_compare, &compare_dir);
3061
3062 /* Save the calculated values describing this loop's bounds, in case
3063 precondition_loop_p will need them later. These values can not be
3064 recalculated inside precondition_loop_p because strength reduction
3065 optimizations may obscure the loop's structure. */
3066
3067 loop_iteration_var = iteration_var;
3068 loop_initial_value = initial_value;
3069 loop_increment = increment;
3070 loop_final_value = final_value;
3071
3072 if (final_value == 0)
3073 {
3074 if (loop_dump_stream)
3075 fprintf (loop_dump_stream,
3076 "Loop unrolling: EQ comparison loop.\n");
3077 return 0;
3078 }
3079 else if (GET_CODE (final_value) != CONST_INT)
3080 {
3081 if (loop_dump_stream)
3082 fprintf (loop_dump_stream,
3083 "Loop unrolling: Final value not constant.\n");
3084 return 0;
3085 }
3086
3087 /* ?? Final value and initial value do not have to be constants.
3088 Only their difference has to be constant. When the iteration variable
3089 is an array address, the final value and initial value might both
3090 be addresses with the same base but different constant offsets.
3091 Final value must be invariant for this to work.
3092
3093 To do this, need some way to find the values of registers which are
3094 invariant. */
3095
3096 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3097 if (unsigned_compare)
3098 final_larger
3099 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3100 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3101 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3102 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3103 else
3104 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3105 - (INTVAL (final_value) < INTVAL (initial_value));
3106
3107 if (INTVAL (increment) > 0)
3108 increment_dir = 1;
3109 else if (INTVAL (increment) == 0)
3110 increment_dir = 0;
3111 else
3112 increment_dir = -1;
3113
3114 /* There are 27 different cases: compare_dir = -1, 0, 1;
3115 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3116 There are 4 normal cases, 4 reverse cases (where the iteration variable
3117 will overflow before the loop exits), 4 infinite loop cases, and 15
3118 immediate exit (0 or 1 iteration depending on loop type) cases.
3119 Only try to optimize the normal cases. */
3120
3121 /* (compare_dir/final_larger/increment_dir)
3122 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3123 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3124 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3125 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3126
3127 /* ?? If the meaning of reverse loops (where the iteration variable
3128 will overflow before the loop exits) is undefined, then could
3129 eliminate all of these special checks, and just always assume
3130 the loops are normal/immediate/infinite. Note that this means
3131 the sign of increment_dir does not have to be known. Also,
3132 since it does not really hurt if immediate exit loops or infinite loops
3133 are optimized, then that case could be ignored also, and hence all
3134 loops can be optimized.
3135
3136 According to ANSI Spec, the reverse loop case result is undefined,
3137 because the action on overflow is undefined.
3138
3139 See also the special test for NE loops below. */
3140
3141 if (final_larger == increment_dir && final_larger != 0
3142 && (final_larger == compare_dir || compare_dir == 0))
3143 /* Normal case. */
3144 ;
3145 else
3146 {
3147 if (loop_dump_stream)
3148 fprintf (loop_dump_stream,
3149 "Loop unrolling: Not normal loop.\n");
3150 return 0;
3151 }
3152
3153 /* Calculate the number of iterations, final_value is only an approximation,
3154 so correct for that. Note that tempu and loop_n_iterations are
3155 unsigned, because they can be as large as 2^n - 1. */
3156
3157 i = INTVAL (increment);
3158 if (i > 0)
3159 tempu = INTVAL (final_value) - INTVAL (initial_value);
3160 else if (i < 0)
3161 {
3162 tempu = INTVAL (initial_value) - INTVAL (final_value);
3163 i = -i;
3164 }
3165 else
3166 abort ();
3167
3168 /* For NE tests, make sure that the iteration variable won't miss the
3169 final value. If tempu mod i is not zero, then the iteration variable
3170 will overflow before the loop exits, and we can not calculate the
3171 number of iterations. */
3172 if (compare_dir == 0 && (tempu % i) != 0)
3173 return 0;
3174
3175 return tempu / i + ((tempu % i) != 0);
3176 }