(back_branch_in_range_p): No longer static.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map PROTO((struct inline_remap *, int));
197 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
198 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
199 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
200 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
201 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
202 enum unroll_types, rtx, rtx, rtx, rtx));
203 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
204 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
205 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
206 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
207 rtx, rtx, rtx, int));
208 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
209 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
210 static rtx remap_split_bivs PROTO((rtx));
211
212 /* Try to unroll one loop and split induction variables in the loop.
213
214 The loop is described by the arguments LOOP_END, INSN_COUNT, and
215 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
216 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
217 indicates whether information generated in the strength reduction pass
218 is available.
219
220 This function is intended to be called from within `strength_reduce'
221 in loop.c. */
222
223 void
224 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
225 strength_reduce_p)
226 rtx loop_end;
227 int insn_count;
228 rtx loop_start;
229 rtx end_insert_before;
230 int strength_reduce_p;
231 {
232 int i, j, temp;
233 int unroll_number = 1;
234 rtx copy_start, copy_end;
235 rtx insn, copy, sequence, pattern, tem;
236 int max_labelno, max_insnno;
237 rtx insert_before;
238 struct inline_remap *map;
239 char *local_label;
240 char *local_regno;
241 int maxregnum;
242 int new_maxregnum;
243 rtx exit_label = 0;
244 rtx start_label;
245 struct iv_class *bl;
246 int splitting_not_safe = 0;
247 enum unroll_types unroll_type;
248 int loop_preconditioned = 0;
249 rtx safety_label;
250 /* This points to the last real insn in the loop, which should be either
251 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
252 jumps). */
253 rtx last_loop_insn;
254
255 /* Don't bother unrolling huge loops. Since the minimum factor is
256 two, loops greater than one half of MAX_UNROLLED_INSNS will never
257 be unrolled. */
258 if (insn_count > MAX_UNROLLED_INSNS / 2)
259 {
260 if (loop_dump_stream)
261 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
262 return;
263 }
264
265 /* When emitting debugger info, we can't unroll loops with unequal numbers
266 of block_beg and block_end notes, because that would unbalance the block
267 structure of the function. This can happen as a result of the
268 "if (foo) bar; else break;" optimization in jump.c. */
269
270 if (write_symbols != NO_DEBUG)
271 {
272 int block_begins = 0;
273 int block_ends = 0;
274
275 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
276 {
277 if (GET_CODE (insn) == NOTE)
278 {
279 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
280 block_begins++;
281 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
282 block_ends++;
283 }
284 }
285
286 if (block_begins != block_ends)
287 {
288 if (loop_dump_stream)
289 fprintf (loop_dump_stream,
290 "Unrolling failure: Unbalanced block notes.\n");
291 return;
292 }
293 }
294
295 /* Determine type of unroll to perform. Depends on the number of iterations
296 and the size of the loop. */
297
298 /* If there is no strength reduce info, then set loop_n_iterations to zero.
299 This can happen if strength_reduce can't find any bivs in the loop.
300 A value of zero indicates that the number of iterations could not be
301 calculated. */
302
303 if (! strength_reduce_p)
304 loop_n_iterations = 0;
305
306 if (loop_dump_stream && loop_n_iterations > 0)
307 fprintf (loop_dump_stream,
308 "Loop unrolling: %d iterations.\n", loop_n_iterations);
309
310 /* Find and save a pointer to the last nonnote insn in the loop. */
311
312 last_loop_insn = prev_nonnote_insn (loop_end);
313
314 /* Calculate how many times to unroll the loop. Indicate whether or
315 not the loop is being completely unrolled. */
316
317 if (loop_n_iterations == 1)
318 {
319 /* If number of iterations is exactly 1, then eliminate the compare and
320 branch at the end of the loop since they will never be taken.
321 Then return, since no other action is needed here. */
322
323 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
324 don't do anything. */
325
326 if (GET_CODE (last_loop_insn) == BARRIER)
327 {
328 /* Delete the jump insn. This will delete the barrier also. */
329 delete_insn (PREV_INSN (last_loop_insn));
330 }
331 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
332 {
333 #ifdef HAVE_cc0
334 /* The immediately preceding insn is a compare which must be
335 deleted. */
336 delete_insn (last_loop_insn);
337 delete_insn (PREV_INSN (last_loop_insn));
338 #else
339 /* The immediately preceding insn may not be the compare, so don't
340 delete it. */
341 delete_insn (last_loop_insn);
342 #endif
343 }
344 return;
345 }
346 else if (loop_n_iterations > 0
347 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
348 {
349 unroll_number = loop_n_iterations;
350 unroll_type = UNROLL_COMPLETELY;
351 }
352 else if (loop_n_iterations > 0)
353 {
354 /* Try to factor the number of iterations. Don't bother with the
355 general case, only using 2, 3, 5, and 7 will get 75% of all
356 numbers theoretically, and almost all in practice. */
357
358 for (i = 0; i < NUM_FACTORS; i++)
359 factors[i].count = 0;
360
361 temp = loop_n_iterations;
362 for (i = NUM_FACTORS - 1; i >= 0; i--)
363 while (temp % factors[i].factor == 0)
364 {
365 factors[i].count++;
366 temp = temp / factors[i].factor;
367 }
368
369 /* Start with the larger factors first so that we generally
370 get lots of unrolling. */
371
372 unroll_number = 1;
373 temp = insn_count;
374 for (i = 3; i >= 0; i--)
375 while (factors[i].count--)
376 {
377 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
378 {
379 unroll_number *= factors[i].factor;
380 temp *= factors[i].factor;
381 }
382 else
383 break;
384 }
385
386 /* If we couldn't find any factors, then unroll as in the normal
387 case. */
388 if (unroll_number == 1)
389 {
390 if (loop_dump_stream)
391 fprintf (loop_dump_stream,
392 "Loop unrolling: No factors found.\n");
393 }
394 else
395 unroll_type = UNROLL_MODULO;
396 }
397
398
399 /* Default case, calculate number of times to unroll loop based on its
400 size. */
401 if (unroll_number == 1)
402 {
403 if (8 * insn_count < MAX_UNROLLED_INSNS)
404 unroll_number = 8;
405 else if (4 * insn_count < MAX_UNROLLED_INSNS)
406 unroll_number = 4;
407 else
408 unroll_number = 2;
409
410 unroll_type = UNROLL_NAIVE;
411 }
412
413 /* Now we know how many times to unroll the loop. */
414
415 if (loop_dump_stream)
416 fprintf (loop_dump_stream,
417 "Unrolling loop %d times.\n", unroll_number);
418
419
420 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
421 {
422 /* Loops of these types should never start with a jump down to
423 the exit condition test. For now, check for this case just to
424 be sure. UNROLL_NAIVE loops can be of this form, this case is
425 handled below. */
426 insn = loop_start;
427 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
428 insn = NEXT_INSN (insn);
429 if (GET_CODE (insn) == JUMP_INSN)
430 abort ();
431 }
432
433 if (unroll_type == UNROLL_COMPLETELY)
434 {
435 /* Completely unrolling the loop: Delete the compare and branch at
436 the end (the last two instructions). This delete must done at the
437 very end of loop unrolling, to avoid problems with calls to
438 back_branch_in_range_p, which is called by find_splittable_regs.
439 All increments of splittable bivs/givs are changed to load constant
440 instructions. */
441
442 copy_start = loop_start;
443
444 /* Set insert_before to the instruction immediately after the JUMP_INSN
445 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
446 the loop will be correctly handled by copy_loop_body. */
447 insert_before = NEXT_INSN (last_loop_insn);
448
449 /* Set copy_end to the insn before the jump at the end of the loop. */
450 if (GET_CODE (last_loop_insn) == BARRIER)
451 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
452 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
453 {
454 #ifdef HAVE_cc0
455 /* The instruction immediately before the JUMP_INSN is a compare
456 instruction which we do not want to copy. */
457 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
458 #else
459 /* The instruction immediately before the JUMP_INSN may not be the
460 compare, so we must copy it. */
461 copy_end = PREV_INSN (last_loop_insn);
462 #endif
463 }
464 else
465 {
466 /* We currently can't unroll a loop if it doesn't end with a
467 JUMP_INSN. There would need to be a mechanism that recognizes
468 this case, and then inserts a jump after each loop body, which
469 jumps to after the last loop body. */
470 if (loop_dump_stream)
471 fprintf (loop_dump_stream,
472 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
473 return;
474 }
475 }
476 else if (unroll_type == UNROLL_MODULO)
477 {
478 /* Partially unrolling the loop: The compare and branch at the end
479 (the last two instructions) must remain. Don't copy the compare
480 and branch instructions at the end of the loop. Insert the unrolled
481 code immediately before the compare/branch at the end so that the
482 code will fall through to them as before. */
483
484 copy_start = loop_start;
485
486 /* Set insert_before to the jump insn at the end of the loop.
487 Set copy_end to before the jump insn at the end of the loop. */
488 if (GET_CODE (last_loop_insn) == BARRIER)
489 {
490 insert_before = PREV_INSN (last_loop_insn);
491 copy_end = PREV_INSN (insert_before);
492 }
493 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
494 {
495 #ifdef HAVE_cc0
496 /* The instruction immediately before the JUMP_INSN is a compare
497 instruction which we do not want to copy or delete. */
498 insert_before = PREV_INSN (last_loop_insn);
499 copy_end = PREV_INSN (insert_before);
500 #else
501 /* The instruction immediately before the JUMP_INSN may not be the
502 compare, so we must copy it. */
503 insert_before = last_loop_insn;
504 copy_end = PREV_INSN (last_loop_insn);
505 #endif
506 }
507 else
508 {
509 /* We currently can't unroll a loop if it doesn't end with a
510 JUMP_INSN. There would need to be a mechanism that recognizes
511 this case, and then inserts a jump after each loop body, which
512 jumps to after the last loop body. */
513 if (loop_dump_stream)
514 fprintf (loop_dump_stream,
515 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
516 return;
517 }
518 }
519 else
520 {
521 /* Normal case: Must copy the compare and branch instructions at the
522 end of the loop. */
523
524 if (GET_CODE (last_loop_insn) == BARRIER)
525 {
526 /* Loop ends with an unconditional jump and a barrier.
527 Handle this like above, don't copy jump and barrier.
528 This is not strictly necessary, but doing so prevents generating
529 unconditional jumps to an immediately following label.
530
531 This will be corrected below if the target of this jump is
532 not the start_label. */
533
534 insert_before = PREV_INSN (last_loop_insn);
535 copy_end = PREV_INSN (insert_before);
536 }
537 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
538 {
539 /* Set insert_before to immediately after the JUMP_INSN, so that
540 NOTEs at the end of the loop will be correctly handled by
541 copy_loop_body. */
542 insert_before = NEXT_INSN (last_loop_insn);
543 copy_end = last_loop_insn;
544 }
545 else
546 {
547 /* We currently can't unroll a loop if it doesn't end with a
548 JUMP_INSN. There would need to be a mechanism that recognizes
549 this case, and then inserts a jump after each loop body, which
550 jumps to after the last loop body. */
551 if (loop_dump_stream)
552 fprintf (loop_dump_stream,
553 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
554 return;
555 }
556
557 /* If copying exit test branches because they can not be eliminated,
558 then must convert the fall through case of the branch to a jump past
559 the end of the loop. Create a label to emit after the loop and save
560 it for later use. Do not use the label after the loop, if any, since
561 it might be used by insns outside the loop, or there might be insns
562 added before it later by final_[bg]iv_value which must be after
563 the real exit label. */
564 exit_label = gen_label_rtx ();
565
566 insn = loop_start;
567 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
568 insn = NEXT_INSN (insn);
569
570 if (GET_CODE (insn) == JUMP_INSN)
571 {
572 /* The loop starts with a jump down to the exit condition test.
573 Start copying the loop after the barrier following this
574 jump insn. */
575 copy_start = NEXT_INSN (insn);
576
577 /* Splitting induction variables doesn't work when the loop is
578 entered via a jump to the bottom, because then we end up doing
579 a comparison against a new register for a split variable, but
580 we did not execute the set insn for the new register because
581 it was skipped over. */
582 splitting_not_safe = 1;
583 if (loop_dump_stream)
584 fprintf (loop_dump_stream,
585 "Splitting not safe, because loop not entered at top.\n");
586 }
587 else
588 copy_start = loop_start;
589 }
590
591 /* This should always be the first label in the loop. */
592 start_label = NEXT_INSN (copy_start);
593 /* There may be a line number note and/or a loop continue note here. */
594 while (GET_CODE (start_label) == NOTE)
595 start_label = NEXT_INSN (start_label);
596 if (GET_CODE (start_label) != CODE_LABEL)
597 {
598 /* This can happen as a result of jump threading. If the first insns in
599 the loop test the same condition as the loop's backward jump, or the
600 opposite condition, then the backward jump will be modified to point
601 to elsewhere, and the loop's start label is deleted.
602
603 This case currently can not be handled by the loop unrolling code. */
604
605 if (loop_dump_stream)
606 fprintf (loop_dump_stream,
607 "Unrolling failure: unknown insns between BEG note and loop label.\n");
608 return;
609 }
610 if (LABEL_NAME (start_label))
611 {
612 /* The jump optimization pass must have combined the original start label
613 with a named label for a goto. We can't unroll this case because
614 jumps which go to the named label must be handled differently than
615 jumps to the loop start, and it is impossible to differentiate them
616 in this case. */
617 if (loop_dump_stream)
618 fprintf (loop_dump_stream,
619 "Unrolling failure: loop start label is gone\n");
620 return;
621 }
622
623 if (unroll_type == UNROLL_NAIVE
624 && GET_CODE (last_loop_insn) == BARRIER
625 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
626 {
627 /* In this case, we must copy the jump and barrier, because they will
628 not be converted to jumps to an immediately following label. */
629
630 insert_before = NEXT_INSN (last_loop_insn);
631 copy_end = last_loop_insn;
632 }
633
634 /* Allocate a translation table for the labels and insn numbers.
635 They will be filled in as we copy the insns in the loop. */
636
637 max_labelno = max_label_num ();
638 max_insnno = get_max_uid ();
639
640 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
641
642 map->integrating = 0;
643
644 /* Allocate the label map. */
645
646 if (max_labelno > 0)
647 {
648 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
649
650 local_label = (char *) alloca (max_labelno);
651 bzero (local_label, max_labelno);
652 }
653 else
654 map->label_map = 0;
655
656 /* Search the loop and mark all local labels, i.e. the ones which have to
657 be distinct labels when copied. For all labels which might be
658 non-local, set their label_map entries to point to themselves.
659 If they happen to be local their label_map entries will be overwritten
660 before the loop body is copied. The label_map entries for local labels
661 will be set to a different value each time the loop body is copied. */
662
663 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
664 {
665 if (GET_CODE (insn) == CODE_LABEL)
666 local_label[CODE_LABEL_NUMBER (insn)] = 1;
667 else if (GET_CODE (insn) == JUMP_INSN)
668 {
669 if (JUMP_LABEL (insn))
670 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
671 = JUMP_LABEL (insn);
672 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
673 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
674 {
675 rtx pat = PATTERN (insn);
676 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
677 int len = XVECLEN (pat, diff_vec_p);
678 rtx label;
679
680 for (i = 0; i < len; i++)
681 {
682 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
683 map->label_map[CODE_LABEL_NUMBER (label)] = label;
684 }
685 }
686 }
687 }
688
689 /* Allocate space for the insn map. */
690
691 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
692
693 /* Set this to zero, to indicate that we are doing loop unrolling,
694 not function inlining. */
695 map->inline_target = 0;
696
697 /* The register and constant maps depend on the number of registers
698 present, so the final maps can't be created until after
699 find_splittable_regs is called. However, they are needed for
700 preconditioning, so we create temporary maps when preconditioning
701 is performed. */
702
703 /* The preconditioning code may allocate two new pseudo registers. */
704 maxregnum = max_reg_num ();
705
706 /* Allocate and zero out the splittable_regs and addr_combined_regs
707 arrays. These must be zeroed here because they will be used if
708 loop preconditioning is performed, and must be zero for that case.
709
710 It is safe to do this here, since the extra registers created by the
711 preconditioning code and find_splittable_regs will never be used
712 to access the splittable_regs[] and addr_combined_regs[] arrays. */
713
714 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
715 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
716 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
717 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
718 addr_combined_regs
719 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
720 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
721 local_regno = (char *) alloca (maxregnum);
722 bzero (local_regno, maxregnum);
723
724 /* Mark all local registers, i.e. the ones which are referenced only
725 inside the loop. */
726 {
727 int copy_start_luid = INSN_LUID (copy_start);
728 int copy_end_luid = INSN_LUID (copy_end);
729
730 /* If a register is used in the jump insn, we must not duplicate it
731 since it will also be used outside the loop. */
732 if (GET_CODE (copy_end) == JUMP_INSN)
733 copy_end_luid--;
734
735 for (j = FIRST_PSEUDO_REGISTER; j < maxregnum; ++j)
736 if (regno_first_uid[j] > 0 && regno_first_uid[j] <= max_uid_for_loop
737 && uid_luid[regno_first_uid[j]] >= copy_start_luid
738 && regno_last_uid[j] > 0 && regno_last_uid[j] <= max_uid_for_loop
739 && uid_luid[regno_last_uid[j]] <= copy_end_luid)
740 local_regno[j] = 1;
741 }
742
743 /* If this loop requires exit tests when unrolled, check to see if we
744 can precondition the loop so as to make the exit tests unnecessary.
745 Just like variable splitting, this is not safe if the loop is entered
746 via a jump to the bottom. Also, can not do this if no strength
747 reduce info, because precondition_loop_p uses this info. */
748
749 /* Must copy the loop body for preconditioning before the following
750 find_splittable_regs call since that will emit insns which need to
751 be after the preconditioned loop copies, but immediately before the
752 unrolled loop copies. */
753
754 /* Also, it is not safe to split induction variables for the preconditioned
755 copies of the loop body. If we split induction variables, then the code
756 assumes that each induction variable can be represented as a function
757 of its initial value and the loop iteration number. This is not true
758 in this case, because the last preconditioned copy of the loop body
759 could be any iteration from the first up to the `unroll_number-1'th,
760 depending on the initial value of the iteration variable. Therefore
761 we can not split induction variables here, because we can not calculate
762 their value. Hence, this code must occur before find_splittable_regs
763 is called. */
764
765 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
766 {
767 rtx initial_value, final_value, increment;
768
769 if (precondition_loop_p (&initial_value, &final_value, &increment,
770 loop_start, loop_end))
771 {
772 register rtx diff, temp;
773 enum machine_mode mode;
774 rtx *labels;
775 int abs_inc, neg_inc;
776
777 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
778
779 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
780 map->const_age_map = (unsigned *) alloca (maxregnum
781 * sizeof (unsigned));
782 map->const_equiv_map_size = maxregnum;
783 global_const_equiv_map = map->const_equiv_map;
784 global_const_equiv_map_size = maxregnum;
785
786 init_reg_map (map, maxregnum);
787
788 /* Limit loop unrolling to 4, since this will make 7 copies of
789 the loop body. */
790 if (unroll_number > 4)
791 unroll_number = 4;
792
793 /* Save the absolute value of the increment, and also whether or
794 not it is negative. */
795 neg_inc = 0;
796 abs_inc = INTVAL (increment);
797 if (abs_inc < 0)
798 {
799 abs_inc = - abs_inc;
800 neg_inc = 1;
801 }
802
803 start_sequence ();
804
805 /* Decide what mode to do these calculations in. Choose the larger
806 of final_value's mode and initial_value's mode, or a full-word if
807 both are constants. */
808 mode = GET_MODE (final_value);
809 if (mode == VOIDmode)
810 {
811 mode = GET_MODE (initial_value);
812 if (mode == VOIDmode)
813 mode = word_mode;
814 }
815 else if (mode != GET_MODE (initial_value)
816 && (GET_MODE_SIZE (mode)
817 < GET_MODE_SIZE (GET_MODE (initial_value))))
818 mode = GET_MODE (initial_value);
819
820 /* Calculate the difference between the final and initial values.
821 Final value may be a (plus (reg x) (const_int 1)) rtx.
822 Let the following cse pass simplify this if initial value is
823 a constant.
824
825 We must copy the final and initial values here to avoid
826 improperly shared rtl. */
827
828 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
829 copy_rtx (initial_value), NULL_RTX, 0,
830 OPTAB_LIB_WIDEN);
831
832 /* Now calculate (diff % (unroll * abs (increment))) by using an
833 and instruction. */
834 diff = expand_binop (GET_MODE (diff), and_optab, diff,
835 GEN_INT (unroll_number * abs_inc - 1),
836 NULL_RTX, 0, OPTAB_LIB_WIDEN);
837
838 /* Now emit a sequence of branches to jump to the proper precond
839 loop entry point. */
840
841 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
842 for (i = 0; i < unroll_number; i++)
843 labels[i] = gen_label_rtx ();
844
845 /* Assuming the unroll_number is 4, and the increment is 2, then
846 for a negative increment: for a positive increment:
847 diff = 0,1 precond 0 diff = 0,7 precond 0
848 diff = 2,3 precond 3 diff = 1,2 precond 1
849 diff = 4,5 precond 2 diff = 3,4 precond 2
850 diff = 6,7 precond 1 diff = 5,6 precond 3 */
851
852 /* We only need to emit (unroll_number - 1) branches here, the
853 last case just falls through to the following code. */
854
855 /* ??? This would give better code if we emitted a tree of branches
856 instead of the current linear list of branches. */
857
858 for (i = 0; i < unroll_number - 1; i++)
859 {
860 int cmp_const;
861
862 /* For negative increments, must invert the constant compared
863 against, except when comparing against zero. */
864 if (i == 0)
865 cmp_const = 0;
866 else if (neg_inc)
867 cmp_const = unroll_number - i;
868 else
869 cmp_const = i;
870
871 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
872 EQ, NULL_RTX, mode, 0, 0);
873
874 if (i == 0)
875 emit_jump_insn (gen_beq (labels[i]));
876 else if (neg_inc)
877 emit_jump_insn (gen_bge (labels[i]));
878 else
879 emit_jump_insn (gen_ble (labels[i]));
880 JUMP_LABEL (get_last_insn ()) = labels[i];
881 LABEL_NUSES (labels[i])++;
882 }
883
884 /* If the increment is greater than one, then we need another branch,
885 to handle other cases equivalent to 0. */
886
887 /* ??? This should be merged into the code above somehow to help
888 simplify the code here, and reduce the number of branches emitted.
889 For the negative increment case, the branch here could easily
890 be merged with the `0' case branch above. For the positive
891 increment case, it is not clear how this can be simplified. */
892
893 if (abs_inc != 1)
894 {
895 int cmp_const;
896
897 if (neg_inc)
898 cmp_const = abs_inc - 1;
899 else
900 cmp_const = abs_inc * (unroll_number - 1) + 1;
901
902 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
903 mode, 0, 0);
904
905 if (neg_inc)
906 emit_jump_insn (gen_ble (labels[0]));
907 else
908 emit_jump_insn (gen_bge (labels[0]));
909 JUMP_LABEL (get_last_insn ()) = labels[0];
910 LABEL_NUSES (labels[0])++;
911 }
912
913 sequence = gen_sequence ();
914 end_sequence ();
915 emit_insn_before (sequence, loop_start);
916
917 /* Only the last copy of the loop body here needs the exit
918 test, so set copy_end to exclude the compare/branch here,
919 and then reset it inside the loop when get to the last
920 copy. */
921
922 if (GET_CODE (last_loop_insn) == BARRIER)
923 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
924 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
925 {
926 #ifdef HAVE_cc0
927 /* The immediately preceding insn is a compare which we do not
928 want to copy. */
929 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
930 #else
931 /* The immediately preceding insn may not be a compare, so we
932 must copy it. */
933 copy_end = PREV_INSN (last_loop_insn);
934 #endif
935 }
936 else
937 abort ();
938
939 for (i = 1; i < unroll_number; i++)
940 {
941 emit_label_after (labels[unroll_number - i],
942 PREV_INSN (loop_start));
943
944 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
945 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
946 bzero ((char *) map->const_age_map,
947 maxregnum * sizeof (unsigned));
948 map->const_age = 0;
949
950 for (j = 0; j < max_labelno; j++)
951 if (local_label[j])
952 map->label_map[j] = gen_label_rtx ();
953
954 for (j = FIRST_PSEUDO_REGISTER; j < maxregnum; j++)
955 if (local_regno[j])
956 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
957
958 /* The last copy needs the compare/branch insns at the end,
959 so reset copy_end here if the loop ends with a conditional
960 branch. */
961
962 if (i == unroll_number - 1)
963 {
964 if (GET_CODE (last_loop_insn) == BARRIER)
965 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
966 else
967 copy_end = last_loop_insn;
968 }
969
970 /* None of the copies are the `last_iteration', so just
971 pass zero for that parameter. */
972 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
973 unroll_type, start_label, loop_end,
974 loop_start, copy_end);
975 }
976 emit_label_after (labels[0], PREV_INSN (loop_start));
977
978 if (GET_CODE (last_loop_insn) == BARRIER)
979 {
980 insert_before = PREV_INSN (last_loop_insn);
981 copy_end = PREV_INSN (insert_before);
982 }
983 else
984 {
985 #ifdef HAVE_cc0
986 /* The immediately preceding insn is a compare which we do not
987 want to copy. */
988 insert_before = PREV_INSN (last_loop_insn);
989 copy_end = PREV_INSN (insert_before);
990 #else
991 /* The immediately preceding insn may not be a compare, so we
992 must copy it. */
993 insert_before = last_loop_insn;
994 copy_end = PREV_INSN (last_loop_insn);
995 #endif
996 }
997
998 /* Set unroll type to MODULO now. */
999 unroll_type = UNROLL_MODULO;
1000 loop_preconditioned = 1;
1001 }
1002 }
1003
1004 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1005 the loop unless all loops are being unrolled. */
1006 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1007 {
1008 if (loop_dump_stream)
1009 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1010 return;
1011 }
1012
1013 /* At this point, we are guaranteed to unroll the loop. */
1014
1015 /* For each biv and giv, determine whether it can be safely split into
1016 a different variable for each unrolled copy of the loop body.
1017 We precalculate and save this info here, since computing it is
1018 expensive.
1019
1020 Do this before deleting any instructions from the loop, so that
1021 back_branch_in_range_p will work correctly. */
1022
1023 if (splitting_not_safe)
1024 temp = 0;
1025 else
1026 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1027 end_insert_before, unroll_number);
1028
1029 /* find_splittable_regs may have created some new registers, so must
1030 reallocate the reg_map with the new larger size, and must realloc
1031 the constant maps also. */
1032
1033 maxregnum = max_reg_num ();
1034 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1035
1036 init_reg_map (map, maxregnum);
1037
1038 /* Space is needed in some of the map for new registers, so new_maxregnum
1039 is an (over)estimate of how many registers will exist at the end. */
1040 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1041
1042 /* Must realloc space for the constant maps, because the number of registers
1043 may have changed. */
1044
1045 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1046 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1047
1048 map->const_equiv_map_size = new_maxregnum;
1049 global_const_equiv_map = map->const_equiv_map;
1050 global_const_equiv_map_size = new_maxregnum;
1051
1052 /* Search the list of bivs and givs to find ones which need to be remapped
1053 when split, and set their reg_map entry appropriately. */
1054
1055 for (bl = loop_iv_list; bl; bl = bl->next)
1056 {
1057 if (REGNO (bl->biv->src_reg) != bl->regno)
1058 map->reg_map[bl->regno] = bl->biv->src_reg;
1059 #if 0
1060 /* Currently, non-reduced/final-value givs are never split. */
1061 for (v = bl->giv; v; v = v->next_iv)
1062 if (REGNO (v->src_reg) != bl->regno)
1063 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1064 #endif
1065 }
1066
1067 /* If the loop is being partially unrolled, and the iteration variables
1068 are being split, and are being renamed for the split, then must fix up
1069 the compare/jump instruction at the end of the loop to refer to the new
1070 registers. This compare isn't copied, so the registers used in it
1071 will never be replaced if it isn't done here. */
1072
1073 if (unroll_type == UNROLL_MODULO)
1074 {
1075 insn = NEXT_INSN (copy_end);
1076 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1077 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1078 }
1079
1080 /* For unroll_number - 1 times, make a copy of each instruction
1081 between copy_start and copy_end, and insert these new instructions
1082 before the end of the loop. */
1083
1084 for (i = 0; i < unroll_number; i++)
1085 {
1086 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1087 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1088 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1089 map->const_age = 0;
1090
1091 for (j = 0; j < max_labelno; j++)
1092 if (local_label[j])
1093 map->label_map[j] = gen_label_rtx ();
1094
1095 for (j = FIRST_PSEUDO_REGISTER; j < maxregnum; j++)
1096 if (local_regno[j])
1097 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1098
1099 /* If loop starts with a branch to the test, then fix it so that
1100 it points to the test of the first unrolled copy of the loop. */
1101 if (i == 0 && loop_start != copy_start)
1102 {
1103 insn = PREV_INSN (copy_start);
1104 pattern = PATTERN (insn);
1105
1106 tem = map->label_map[CODE_LABEL_NUMBER
1107 (XEXP (SET_SRC (pattern), 0))];
1108 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1109
1110 /* Set the jump label so that it can be used by later loop unrolling
1111 passes. */
1112 JUMP_LABEL (insn) = tem;
1113 LABEL_NUSES (tem)++;
1114 }
1115
1116 copy_loop_body (copy_start, copy_end, map, exit_label,
1117 i == unroll_number - 1, unroll_type, start_label,
1118 loop_end, insert_before, insert_before);
1119 }
1120
1121 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1122 insn to be deleted. This prevents any runaway delete_insn call from
1123 more insns that it should, as it always stops at a CODE_LABEL. */
1124
1125 /* Delete the compare and branch at the end of the loop if completely
1126 unrolling the loop. Deleting the backward branch at the end also
1127 deletes the code label at the start of the loop. This is done at
1128 the very end to avoid problems with back_branch_in_range_p. */
1129
1130 if (unroll_type == UNROLL_COMPLETELY)
1131 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1132 else
1133 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1134
1135 /* Delete all of the original loop instructions. Don't delete the
1136 LOOP_BEG note, or the first code label in the loop. */
1137
1138 insn = NEXT_INSN (copy_start);
1139 while (insn != safety_label)
1140 {
1141 if (insn != start_label)
1142 insn = delete_insn (insn);
1143 else
1144 insn = NEXT_INSN (insn);
1145 }
1146
1147 /* Can now delete the 'safety' label emitted to protect us from runaway
1148 delete_insn calls. */
1149 if (INSN_DELETED_P (safety_label))
1150 abort ();
1151 delete_insn (safety_label);
1152
1153 /* If exit_label exists, emit it after the loop. Doing the emit here
1154 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1155 This is needed so that mostly_true_jump in reorg.c will treat jumps
1156 to this loop end label correctly, i.e. predict that they are usually
1157 not taken. */
1158 if (exit_label)
1159 emit_label_after (exit_label, loop_end);
1160 }
1161 \f
1162 /* Return true if the loop can be safely, and profitably, preconditioned
1163 so that the unrolled copies of the loop body don't need exit tests.
1164
1165 This only works if final_value, initial_value and increment can be
1166 determined, and if increment is a constant power of 2.
1167 If increment is not a power of 2, then the preconditioning modulo
1168 operation would require a real modulo instead of a boolean AND, and this
1169 is not considered `profitable'. */
1170
1171 /* ??? If the loop is known to be executed very many times, or the machine
1172 has a very cheap divide instruction, then preconditioning is a win even
1173 when the increment is not a power of 2. Use RTX_COST to compute
1174 whether divide is cheap. */
1175
1176 static int
1177 precondition_loop_p (initial_value, final_value, increment, loop_start,
1178 loop_end)
1179 rtx *initial_value, *final_value, *increment;
1180 rtx loop_start, loop_end;
1181 {
1182
1183 if (loop_n_iterations > 0)
1184 {
1185 *initial_value = const0_rtx;
1186 *increment = const1_rtx;
1187 *final_value = GEN_INT (loop_n_iterations);
1188
1189 if (loop_dump_stream)
1190 fprintf (loop_dump_stream,
1191 "Preconditioning: Success, number of iterations known, %d.\n",
1192 loop_n_iterations);
1193 return 1;
1194 }
1195
1196 if (loop_initial_value == 0)
1197 {
1198 if (loop_dump_stream)
1199 fprintf (loop_dump_stream,
1200 "Preconditioning: Could not find initial value.\n");
1201 return 0;
1202 }
1203 else if (loop_increment == 0)
1204 {
1205 if (loop_dump_stream)
1206 fprintf (loop_dump_stream,
1207 "Preconditioning: Could not find increment value.\n");
1208 return 0;
1209 }
1210 else if (GET_CODE (loop_increment) != CONST_INT)
1211 {
1212 if (loop_dump_stream)
1213 fprintf (loop_dump_stream,
1214 "Preconditioning: Increment not a constant.\n");
1215 return 0;
1216 }
1217 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1218 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1219 {
1220 if (loop_dump_stream)
1221 fprintf (loop_dump_stream,
1222 "Preconditioning: Increment not a constant power of 2.\n");
1223 return 0;
1224 }
1225
1226 /* Unsigned_compare and compare_dir can be ignored here, since they do
1227 not matter for preconditioning. */
1228
1229 if (loop_final_value == 0)
1230 {
1231 if (loop_dump_stream)
1232 fprintf (loop_dump_stream,
1233 "Preconditioning: EQ comparison loop.\n");
1234 return 0;
1235 }
1236
1237 /* Must ensure that final_value is invariant, so call invariant_p to
1238 check. Before doing so, must check regno against max_reg_before_loop
1239 to make sure that the register is in the range covered by invariant_p.
1240 If it isn't, then it is most likely a biv/giv which by definition are
1241 not invariant. */
1242 if ((GET_CODE (loop_final_value) == REG
1243 && REGNO (loop_final_value) >= max_reg_before_loop)
1244 || (GET_CODE (loop_final_value) == PLUS
1245 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1246 || ! invariant_p (loop_final_value))
1247 {
1248 if (loop_dump_stream)
1249 fprintf (loop_dump_stream,
1250 "Preconditioning: Final value not invariant.\n");
1251 return 0;
1252 }
1253
1254 /* Fail for floating point values, since the caller of this function
1255 does not have code to deal with them. */
1256 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1257 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1258 {
1259 if (loop_dump_stream)
1260 fprintf (loop_dump_stream,
1261 "Preconditioning: Floating point final or initial value.\n");
1262 return 0;
1263 }
1264
1265 /* Now set initial_value to be the iteration_var, since that may be a
1266 simpler expression, and is guaranteed to be correct if all of the
1267 above tests succeed.
1268
1269 We can not use the initial_value as calculated, because it will be
1270 one too small for loops of the form "while (i-- > 0)". We can not
1271 emit code before the loop_skip_over insns to fix this problem as this
1272 will then give a number one too large for loops of the form
1273 "while (--i > 0)".
1274
1275 Note that all loops that reach here are entered at the top, because
1276 this function is not called if the loop starts with a jump. */
1277
1278 /* Fail if loop_iteration_var is not live before loop_start, since we need
1279 to test its value in the preconditioning code. */
1280
1281 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1282 > INSN_LUID (loop_start))
1283 {
1284 if (loop_dump_stream)
1285 fprintf (loop_dump_stream,
1286 "Preconditioning: Iteration var not live before loop start.\n");
1287 return 0;
1288 }
1289
1290 *initial_value = loop_iteration_var;
1291 *increment = loop_increment;
1292 *final_value = loop_final_value;
1293
1294 /* Success! */
1295 if (loop_dump_stream)
1296 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1297 return 1;
1298 }
1299
1300
1301 /* All pseudo-registers must be mapped to themselves. Two hard registers
1302 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1303 REGNUM, to avoid function-inlining specific conversions of these
1304 registers. All other hard regs can not be mapped because they may be
1305 used with different
1306 modes. */
1307
1308 static void
1309 init_reg_map (map, maxregnum)
1310 struct inline_remap *map;
1311 int maxregnum;
1312 {
1313 int i;
1314
1315 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1316 map->reg_map[i] = regno_reg_rtx[i];
1317 /* Just clear the rest of the entries. */
1318 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1319 map->reg_map[i] = 0;
1320
1321 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1322 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1323 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1324 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1325 }
1326 \f
1327 /* Strength-reduction will often emit code for optimized biv/givs which
1328 calculates their value in a temporary register, and then copies the result
1329 to the iv. This procedure reconstructs the pattern computing the iv;
1330 verifying that all operands are of the proper form.
1331
1332 The return value is the amount that the giv is incremented by. */
1333
1334 static rtx
1335 calculate_giv_inc (pattern, src_insn, regno)
1336 rtx pattern, src_insn;
1337 int regno;
1338 {
1339 rtx increment;
1340 rtx increment_total = 0;
1341 int tries = 0;
1342
1343 retry:
1344 /* Verify that we have an increment insn here. First check for a plus
1345 as the set source. */
1346 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1347 {
1348 /* SR sometimes computes the new giv value in a temp, then copies it
1349 to the new_reg. */
1350 src_insn = PREV_INSN (src_insn);
1351 pattern = PATTERN (src_insn);
1352 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1353 abort ();
1354
1355 /* The last insn emitted is not needed, so delete it to avoid confusing
1356 the second cse pass. This insn sets the giv unnecessarily. */
1357 delete_insn (get_last_insn ());
1358 }
1359
1360 /* Verify that we have a constant as the second operand of the plus. */
1361 increment = XEXP (SET_SRC (pattern), 1);
1362 if (GET_CODE (increment) != CONST_INT)
1363 {
1364 /* SR sometimes puts the constant in a register, especially if it is
1365 too big to be an add immed operand. */
1366 src_insn = PREV_INSN (src_insn);
1367 increment = SET_SRC (PATTERN (src_insn));
1368
1369 /* SR may have used LO_SUM to compute the constant if it is too large
1370 for a load immed operand. In this case, the constant is in operand
1371 one of the LO_SUM rtx. */
1372 if (GET_CODE (increment) == LO_SUM)
1373 increment = XEXP (increment, 1);
1374 else if (GET_CODE (increment) == IOR)
1375 {
1376 /* The rs6000 port loads some constants with IOR. */
1377 rtx second_part = XEXP (increment, 1);
1378
1379 src_insn = PREV_INSN (src_insn);
1380 increment = SET_SRC (PATTERN (src_insn));
1381 /* Don't need the last insn anymore. */
1382 delete_insn (get_last_insn ());
1383
1384 if (GET_CODE (second_part) != CONST_INT
1385 || GET_CODE (increment) != CONST_INT)
1386 abort ();
1387
1388 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1389 }
1390
1391 if (GET_CODE (increment) != CONST_INT)
1392 abort ();
1393
1394 /* The insn loading the constant into a register is no longer needed,
1395 so delete it. */
1396 delete_insn (get_last_insn ());
1397 }
1398
1399 if (increment_total)
1400 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1401 else
1402 increment_total = increment;
1403
1404 /* Check that the source register is the same as the register we expected
1405 to see as the source. If not, something is seriously wrong. */
1406 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1407 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1408 {
1409 /* Some machines (e.g. the romp), may emit two add instructions for
1410 certain constants, so lets try looking for another add immediately
1411 before this one if we have only seen one add insn so far. */
1412
1413 if (tries == 0)
1414 {
1415 tries++;
1416
1417 src_insn = PREV_INSN (src_insn);
1418 pattern = PATTERN (src_insn);
1419
1420 delete_insn (get_last_insn ());
1421
1422 goto retry;
1423 }
1424
1425 abort ();
1426 }
1427
1428 return increment_total;
1429 }
1430
1431 /* Copy REG_NOTES, except for insn references, because not all insn_map
1432 entries are valid yet. We do need to copy registers now though, because
1433 the reg_map entries can change during copying. */
1434
1435 static rtx
1436 initial_reg_note_copy (notes, map)
1437 rtx notes;
1438 struct inline_remap *map;
1439 {
1440 rtx copy;
1441
1442 if (notes == 0)
1443 return 0;
1444
1445 copy = rtx_alloc (GET_CODE (notes));
1446 PUT_MODE (copy, GET_MODE (notes));
1447
1448 if (GET_CODE (notes) == EXPR_LIST)
1449 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1450 else if (GET_CODE (notes) == INSN_LIST)
1451 /* Don't substitute for these yet. */
1452 XEXP (copy, 0) = XEXP (notes, 0);
1453 else
1454 abort ();
1455
1456 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1457
1458 return copy;
1459 }
1460
1461 /* Fixup insn references in copied REG_NOTES. */
1462
1463 static void
1464 final_reg_note_copy (notes, map)
1465 rtx notes;
1466 struct inline_remap *map;
1467 {
1468 rtx note;
1469
1470 for (note = notes; note; note = XEXP (note, 1))
1471 if (GET_CODE (note) == INSN_LIST)
1472 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1473 }
1474
1475 /* Copy each instruction in the loop, substituting from map as appropriate.
1476 This is very similar to a loop in expand_inline_function. */
1477
1478 static void
1479 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1480 unroll_type, start_label, loop_end, insert_before,
1481 copy_notes_from)
1482 rtx copy_start, copy_end;
1483 struct inline_remap *map;
1484 rtx exit_label;
1485 int last_iteration;
1486 enum unroll_types unroll_type;
1487 rtx start_label, loop_end, insert_before, copy_notes_from;
1488 {
1489 rtx insn, pattern;
1490 rtx tem, copy;
1491 int dest_reg_was_split, i;
1492 rtx cc0_insn = 0;
1493 rtx final_label = 0;
1494 rtx giv_inc, giv_dest_reg, giv_src_reg;
1495
1496 /* If this isn't the last iteration, then map any references to the
1497 start_label to final_label. Final label will then be emitted immediately
1498 after the end of this loop body if it was ever used.
1499
1500 If this is the last iteration, then map references to the start_label
1501 to itself. */
1502 if (! last_iteration)
1503 {
1504 final_label = gen_label_rtx ();
1505 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1506 }
1507 else
1508 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1509
1510 start_sequence ();
1511
1512 insn = copy_start;
1513 do
1514 {
1515 insn = NEXT_INSN (insn);
1516
1517 map->orig_asm_operands_vector = 0;
1518
1519 switch (GET_CODE (insn))
1520 {
1521 case INSN:
1522 pattern = PATTERN (insn);
1523 copy = 0;
1524 giv_inc = 0;
1525
1526 /* Check to see if this is a giv that has been combined with
1527 some split address givs. (Combined in the sense that
1528 `combine_givs' in loop.c has put two givs in the same register.)
1529 In this case, we must search all givs based on the same biv to
1530 find the address givs. Then split the address givs.
1531 Do this before splitting the giv, since that may map the
1532 SET_DEST to a new register. */
1533
1534 if (GET_CODE (pattern) == SET
1535 && GET_CODE (SET_DEST (pattern)) == REG
1536 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1537 {
1538 struct iv_class *bl;
1539 struct induction *v, *tv;
1540 int regno = REGNO (SET_DEST (pattern));
1541
1542 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1543 bl = reg_biv_class[REGNO (v->src_reg)];
1544
1545 /* Although the giv_inc amount is not needed here, we must call
1546 calculate_giv_inc here since it might try to delete the
1547 last insn emitted. If we wait until later to call it,
1548 we might accidentally delete insns generated immediately
1549 below by emit_unrolled_add. */
1550
1551 giv_inc = calculate_giv_inc (pattern, insn, regno);
1552
1553 /* Now find all address giv's that were combined with this
1554 giv 'v'. */
1555 for (tv = bl->giv; tv; tv = tv->next_iv)
1556 if (tv->giv_type == DEST_ADDR && tv->same == v)
1557 {
1558 int this_giv_inc = INTVAL (giv_inc);
1559
1560 /* Scale this_giv_inc if the multiplicative factors of
1561 the two givs are different. */
1562 if (tv->mult_val != v->mult_val)
1563 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1564 * INTVAL (tv->mult_val));
1565
1566 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1567 *tv->location = tv->dest_reg;
1568
1569 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1570 {
1571 /* Must emit an insn to increment the split address
1572 giv. Add in the const_adjust field in case there
1573 was a constant eliminated from the address. */
1574 rtx value, dest_reg;
1575
1576 /* tv->dest_reg will be either a bare register,
1577 or else a register plus a constant. */
1578 if (GET_CODE (tv->dest_reg) == REG)
1579 dest_reg = tv->dest_reg;
1580 else
1581 dest_reg = XEXP (tv->dest_reg, 0);
1582
1583 /* Check for shared address givs, and avoid
1584 incrementing the shared psuedo reg more than
1585 once. */
1586 if (! tv->same_insn)
1587 {
1588 /* tv->dest_reg may actually be a (PLUS (REG)
1589 (CONST)) here, so we must call plus_constant
1590 to add the const_adjust amount before calling
1591 emit_unrolled_add below. */
1592 value = plus_constant (tv->dest_reg,
1593 tv->const_adjust);
1594
1595 /* The constant could be too large for an add
1596 immediate, so can't directly emit an insn
1597 here. */
1598 emit_unrolled_add (dest_reg, XEXP (value, 0),
1599 XEXP (value, 1));
1600 }
1601
1602 /* Reset the giv to be just the register again, in case
1603 it is used after the set we have just emitted.
1604 We must subtract the const_adjust factor added in
1605 above. */
1606 tv->dest_reg = plus_constant (dest_reg,
1607 - tv->const_adjust);
1608 *tv->location = tv->dest_reg;
1609 }
1610 }
1611 }
1612
1613 /* If this is a setting of a splittable variable, then determine
1614 how to split the variable, create a new set based on this split,
1615 and set up the reg_map so that later uses of the variable will
1616 use the new split variable. */
1617
1618 dest_reg_was_split = 0;
1619
1620 if (GET_CODE (pattern) == SET
1621 && GET_CODE (SET_DEST (pattern)) == REG
1622 && splittable_regs[REGNO (SET_DEST (pattern))])
1623 {
1624 int regno = REGNO (SET_DEST (pattern));
1625
1626 dest_reg_was_split = 1;
1627
1628 /* Compute the increment value for the giv, if it wasn't
1629 already computed above. */
1630
1631 if (giv_inc == 0)
1632 giv_inc = calculate_giv_inc (pattern, insn, regno);
1633 giv_dest_reg = SET_DEST (pattern);
1634 giv_src_reg = SET_DEST (pattern);
1635
1636 if (unroll_type == UNROLL_COMPLETELY)
1637 {
1638 /* Completely unrolling the loop. Set the induction
1639 variable to a known constant value. */
1640
1641 /* The value in splittable_regs may be an invariant
1642 value, so we must use plus_constant here. */
1643 splittable_regs[regno]
1644 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1645
1646 if (GET_CODE (splittable_regs[regno]) == PLUS)
1647 {
1648 giv_src_reg = XEXP (splittable_regs[regno], 0);
1649 giv_inc = XEXP (splittable_regs[regno], 1);
1650 }
1651 else
1652 {
1653 /* The splittable_regs value must be a REG or a
1654 CONST_INT, so put the entire value in the giv_src_reg
1655 variable. */
1656 giv_src_reg = splittable_regs[regno];
1657 giv_inc = const0_rtx;
1658 }
1659 }
1660 else
1661 {
1662 /* Partially unrolling loop. Create a new pseudo
1663 register for the iteration variable, and set it to
1664 be a constant plus the original register. Except
1665 on the last iteration, when the result has to
1666 go back into the original iteration var register. */
1667
1668 /* Handle bivs which must be mapped to a new register
1669 when split. This happens for bivs which need their
1670 final value set before loop entry. The new register
1671 for the biv was stored in the biv's first struct
1672 induction entry by find_splittable_regs. */
1673
1674 if (regno < max_reg_before_loop
1675 && reg_iv_type[regno] == BASIC_INDUCT)
1676 {
1677 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1678 giv_dest_reg = giv_src_reg;
1679 }
1680
1681 #if 0
1682 /* If non-reduced/final-value givs were split, then
1683 this would have to remap those givs also. See
1684 find_splittable_regs. */
1685 #endif
1686
1687 splittable_regs[regno]
1688 = GEN_INT (INTVAL (giv_inc)
1689 + INTVAL (splittable_regs[regno]));
1690 giv_inc = splittable_regs[regno];
1691
1692 /* Now split the induction variable by changing the dest
1693 of this insn to a new register, and setting its
1694 reg_map entry to point to this new register.
1695
1696 If this is the last iteration, and this is the last insn
1697 that will update the iv, then reuse the original dest,
1698 to ensure that the iv will have the proper value when
1699 the loop exits or repeats.
1700
1701 Using splittable_regs_updates here like this is safe,
1702 because it can only be greater than one if all
1703 instructions modifying the iv are always executed in
1704 order. */
1705
1706 if (! last_iteration
1707 || (splittable_regs_updates[regno]-- != 1))
1708 {
1709 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1710 giv_dest_reg = tem;
1711 map->reg_map[regno] = tem;
1712 }
1713 else
1714 map->reg_map[regno] = giv_src_reg;
1715 }
1716
1717 /* The constant being added could be too large for an add
1718 immediate, so can't directly emit an insn here. */
1719 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1720 copy = get_last_insn ();
1721 pattern = PATTERN (copy);
1722 }
1723 else
1724 {
1725 pattern = copy_rtx_and_substitute (pattern, map);
1726 copy = emit_insn (pattern);
1727 }
1728 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1729
1730 #ifdef HAVE_cc0
1731 /* If this insn is setting CC0, it may need to look at
1732 the insn that uses CC0 to see what type of insn it is.
1733 In that case, the call to recog via validate_change will
1734 fail. So don't substitute constants here. Instead,
1735 do it when we emit the following insn.
1736
1737 For example, see the pyr.md file. That machine has signed and
1738 unsigned compares. The compare patterns must check the
1739 following branch insn to see which what kind of compare to
1740 emit.
1741
1742 If the previous insn set CC0, substitute constants on it as
1743 well. */
1744 if (sets_cc0_p (copy) != 0)
1745 cc0_insn = copy;
1746 else
1747 {
1748 if (cc0_insn)
1749 try_constants (cc0_insn, map);
1750 cc0_insn = 0;
1751 try_constants (copy, map);
1752 }
1753 #else
1754 try_constants (copy, map);
1755 #endif
1756
1757 /* Make split induction variable constants `permanent' since we
1758 know there are no backward branches across iteration variable
1759 settings which would invalidate this. */
1760 if (dest_reg_was_split)
1761 {
1762 int regno = REGNO (SET_DEST (pattern));
1763
1764 if (regno < map->const_equiv_map_size
1765 && map->const_age_map[regno] == map->const_age)
1766 map->const_age_map[regno] = -1;
1767 }
1768 break;
1769
1770 case JUMP_INSN:
1771 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1772 copy = emit_jump_insn (pattern);
1773 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1774
1775 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1776 && ! last_iteration)
1777 {
1778 /* This is a branch to the beginning of the loop; this is the
1779 last insn being copied; and this is not the last iteration.
1780 In this case, we want to change the original fall through
1781 case to be a branch past the end of the loop, and the
1782 original jump label case to fall_through. */
1783
1784 if (invert_exp (pattern, copy))
1785 {
1786 if (! redirect_exp (&pattern,
1787 map->label_map[CODE_LABEL_NUMBER
1788 (JUMP_LABEL (insn))],
1789 exit_label, copy))
1790 abort ();
1791 }
1792 else
1793 {
1794 rtx jmp;
1795 rtx lab = gen_label_rtx ();
1796 /* Can't do it by reversing the jump (probably becasue we
1797 couln't reverse the conditions), so emit a new
1798 jump_insn after COPY, and redirect the jump around
1799 that. */
1800 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1801 jmp = emit_barrier_after (jmp);
1802 emit_label_after (lab, jmp);
1803 LABEL_NUSES (lab) = 0;
1804 if (! redirect_exp (&pattern,
1805 map->label_map[CODE_LABEL_NUMBER
1806 (JUMP_LABEL (insn))],
1807 lab, copy))
1808 abort ();
1809 }
1810 }
1811
1812 #ifdef HAVE_cc0
1813 if (cc0_insn)
1814 try_constants (cc0_insn, map);
1815 cc0_insn = 0;
1816 #endif
1817 try_constants (copy, map);
1818
1819 /* Set the jump label of COPY correctly to avoid problems with
1820 later passes of unroll_loop, if INSN had jump label set. */
1821 if (JUMP_LABEL (insn))
1822 {
1823 rtx label = 0;
1824
1825 /* Can't use the label_map for every insn, since this may be
1826 the backward branch, and hence the label was not mapped. */
1827 if (GET_CODE (pattern) == SET)
1828 {
1829 tem = SET_SRC (pattern);
1830 if (GET_CODE (tem) == LABEL_REF)
1831 label = XEXP (tem, 0);
1832 else if (GET_CODE (tem) == IF_THEN_ELSE)
1833 {
1834 if (XEXP (tem, 1) != pc_rtx)
1835 label = XEXP (XEXP (tem, 1), 0);
1836 else
1837 label = XEXP (XEXP (tem, 2), 0);
1838 }
1839 }
1840
1841 if (label && GET_CODE (label) == CODE_LABEL)
1842 JUMP_LABEL (copy) = label;
1843 else
1844 {
1845 /* An unrecognizable jump insn, probably the entry jump
1846 for a switch statement. This label must have been mapped,
1847 so just use the label_map to get the new jump label. */
1848 JUMP_LABEL (copy)
1849 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1850 }
1851
1852 /* If this is a non-local jump, then must increase the label
1853 use count so that the label will not be deleted when the
1854 original jump is deleted. */
1855 LABEL_NUSES (JUMP_LABEL (copy))++;
1856 }
1857 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1858 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1859 {
1860 rtx pat = PATTERN (copy);
1861 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1862 int len = XVECLEN (pat, diff_vec_p);
1863 int i;
1864
1865 for (i = 0; i < len; i++)
1866 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1867 }
1868
1869 /* If this used to be a conditional jump insn but whose branch
1870 direction is now known, we must do something special. */
1871 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1872 {
1873 #ifdef HAVE_cc0
1874 /* The previous insn set cc0 for us. So delete it. */
1875 delete_insn (PREV_INSN (copy));
1876 #endif
1877
1878 /* If this is now a no-op, delete it. */
1879 if (map->last_pc_value == pc_rtx)
1880 {
1881 /* Don't let delete_insn delete the label referenced here,
1882 because we might possibly need it later for some other
1883 instruction in the loop. */
1884 if (JUMP_LABEL (copy))
1885 LABEL_NUSES (JUMP_LABEL (copy))++;
1886 delete_insn (copy);
1887 if (JUMP_LABEL (copy))
1888 LABEL_NUSES (JUMP_LABEL (copy))--;
1889 copy = 0;
1890 }
1891 else
1892 /* Otherwise, this is unconditional jump so we must put a
1893 BARRIER after it. We could do some dead code elimination
1894 here, but jump.c will do it just as well. */
1895 emit_barrier ();
1896 }
1897 break;
1898
1899 case CALL_INSN:
1900 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1901 copy = emit_call_insn (pattern);
1902 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1903
1904 /* Because the USAGE information potentially contains objects other
1905 than hard registers, we need to copy it. */
1906 CALL_INSN_FUNCTION_USAGE (copy) =
1907 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1908
1909 #ifdef HAVE_cc0
1910 if (cc0_insn)
1911 try_constants (cc0_insn, map);
1912 cc0_insn = 0;
1913 #endif
1914 try_constants (copy, map);
1915
1916 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1917 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1918 map->const_equiv_map[i] = 0;
1919 break;
1920
1921 case CODE_LABEL:
1922 /* If this is the loop start label, then we don't need to emit a
1923 copy of this label since no one will use it. */
1924
1925 if (insn != start_label)
1926 {
1927 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1928 map->const_age++;
1929 }
1930 break;
1931
1932 case BARRIER:
1933 copy = emit_barrier ();
1934 break;
1935
1936 case NOTE:
1937 /* VTOP notes are valid only before the loop exit test. If placed
1938 anywhere else, loop may generate bad code. */
1939
1940 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1941 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1942 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1943 copy = emit_note (NOTE_SOURCE_FILE (insn),
1944 NOTE_LINE_NUMBER (insn));
1945 else
1946 copy = 0;
1947 break;
1948
1949 default:
1950 abort ();
1951 break;
1952 }
1953
1954 map->insn_map[INSN_UID (insn)] = copy;
1955 }
1956 while (insn != copy_end);
1957
1958 /* Now finish coping the REG_NOTES. */
1959 insn = copy_start;
1960 do
1961 {
1962 insn = NEXT_INSN (insn);
1963 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1964 || GET_CODE (insn) == CALL_INSN)
1965 && map->insn_map[INSN_UID (insn)])
1966 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
1967 }
1968 while (insn != copy_end);
1969
1970 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1971 each of these notes here, since there may be some important ones, such as
1972 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1973 iteration, because the original notes won't be deleted.
1974
1975 We can't use insert_before here, because when from preconditioning,
1976 insert_before points before the loop. We can't use copy_end, because
1977 there may be insns already inserted after it (which we don't want to
1978 copy) when not from preconditioning code. */
1979
1980 if (! last_iteration)
1981 {
1982 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1983 {
1984 if (GET_CODE (insn) == NOTE
1985 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1986 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1987 }
1988 }
1989
1990 if (final_label && LABEL_NUSES (final_label) > 0)
1991 emit_label (final_label);
1992
1993 tem = gen_sequence ();
1994 end_sequence ();
1995 emit_insn_before (tem, insert_before);
1996 }
1997 \f
1998 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1999 emitted. This will correctly handle the case where the increment value
2000 won't fit in the immediate field of a PLUS insns. */
2001
2002 void
2003 emit_unrolled_add (dest_reg, src_reg, increment)
2004 rtx dest_reg, src_reg, increment;
2005 {
2006 rtx result;
2007
2008 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2009 dest_reg, 0, OPTAB_LIB_WIDEN);
2010
2011 if (dest_reg != result)
2012 emit_move_insn (dest_reg, result);
2013 }
2014 \f
2015 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2016 is a backward branch in that range that branches to somewhere between
2017 LOOP_START and INSN. Returns 0 otherwise. */
2018
2019 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2020 In practice, this is not a problem, because this function is seldom called,
2021 and uses a negligible amount of CPU time on average. */
2022
2023 int
2024 back_branch_in_range_p (insn, loop_start, loop_end)
2025 rtx insn;
2026 rtx loop_start, loop_end;
2027 {
2028 rtx p, q, target_insn;
2029
2030 /* Stop before we get to the backward branch at the end of the loop. */
2031 loop_end = prev_nonnote_insn (loop_end);
2032 if (GET_CODE (loop_end) == BARRIER)
2033 loop_end = PREV_INSN (loop_end);
2034
2035 /* Check in case insn has been deleted, search forward for first non
2036 deleted insn following it. */
2037 while (INSN_DELETED_P (insn))
2038 insn = NEXT_INSN (insn);
2039
2040 /* Check for the case where insn is the last insn in the loop. */
2041 if (insn == loop_end)
2042 return 0;
2043
2044 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2045 {
2046 if (GET_CODE (p) == JUMP_INSN)
2047 {
2048 target_insn = JUMP_LABEL (p);
2049
2050 /* Search from loop_start to insn, to see if one of them is
2051 the target_insn. We can't use INSN_LUID comparisons here,
2052 since insn may not have an LUID entry. */
2053 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2054 if (q == target_insn)
2055 return 1;
2056 }
2057 }
2058
2059 return 0;
2060 }
2061
2062 /* Try to generate the simplest rtx for the expression
2063 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2064 value of giv's. */
2065
2066 static rtx
2067 fold_rtx_mult_add (mult1, mult2, add1, mode)
2068 rtx mult1, mult2, add1;
2069 enum machine_mode mode;
2070 {
2071 rtx temp, mult_res;
2072 rtx result;
2073
2074 /* The modes must all be the same. This should always be true. For now,
2075 check to make sure. */
2076 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2077 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2078 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2079 abort ();
2080
2081 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2082 will be a constant. */
2083 if (GET_CODE (mult1) == CONST_INT)
2084 {
2085 temp = mult2;
2086 mult2 = mult1;
2087 mult1 = temp;
2088 }
2089
2090 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2091 if (! mult_res)
2092 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2093
2094 /* Again, put the constant second. */
2095 if (GET_CODE (add1) == CONST_INT)
2096 {
2097 temp = add1;
2098 add1 = mult_res;
2099 mult_res = temp;
2100 }
2101
2102 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2103 if (! result)
2104 result = gen_rtx (PLUS, mode, add1, mult_res);
2105
2106 return result;
2107 }
2108
2109 /* Searches the list of induction struct's for the biv BL, to try to calculate
2110 the total increment value for one iteration of the loop as a constant.
2111
2112 Returns the increment value as an rtx, simplified as much as possible,
2113 if it can be calculated. Otherwise, returns 0. */
2114
2115 rtx
2116 biv_total_increment (bl, loop_start, loop_end)
2117 struct iv_class *bl;
2118 rtx loop_start, loop_end;
2119 {
2120 struct induction *v;
2121 rtx result;
2122
2123 /* For increment, must check every instruction that sets it. Each
2124 instruction must be executed only once each time through the loop.
2125 To verify this, we check that the the insn is always executed, and that
2126 there are no backward branches after the insn that branch to before it.
2127 Also, the insn must have a mult_val of one (to make sure it really is
2128 an increment). */
2129
2130 result = const0_rtx;
2131 for (v = bl->biv; v; v = v->next_iv)
2132 {
2133 if (v->always_computable && v->mult_val == const1_rtx
2134 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2135 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2136 else
2137 return 0;
2138 }
2139
2140 return result;
2141 }
2142
2143 /* Determine the initial value of the iteration variable, and the amount
2144 that it is incremented each loop. Use the tables constructed by
2145 the strength reduction pass to calculate these values.
2146
2147 Initial_value and/or increment are set to zero if their values could not
2148 be calculated. */
2149
2150 static void
2151 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2152 rtx iteration_var, *initial_value, *increment;
2153 rtx loop_start, loop_end;
2154 {
2155 struct iv_class *bl;
2156 struct induction *v, *b;
2157
2158 /* Clear the result values, in case no answer can be found. */
2159 *initial_value = 0;
2160 *increment = 0;
2161
2162 /* The iteration variable can be either a giv or a biv. Check to see
2163 which it is, and compute the variable's initial value, and increment
2164 value if possible. */
2165
2166 /* If this is a new register, can't handle it since we don't have any
2167 reg_iv_type entry for it. */
2168 if (REGNO (iteration_var) >= max_reg_before_loop)
2169 {
2170 if (loop_dump_stream)
2171 fprintf (loop_dump_stream,
2172 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2173 return;
2174 }
2175 /* Reject iteration variables larger than the host long size, since they
2176 could result in a number of iterations greater than the range of our
2177 `unsigned long' variable loop_n_iterations. */
2178 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2179 {
2180 if (loop_dump_stream)
2181 fprintf (loop_dump_stream,
2182 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2183 return;
2184 }
2185 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2186 {
2187 if (loop_dump_stream)
2188 fprintf (loop_dump_stream,
2189 "Loop unrolling: Iteration var not an integer.\n");
2190 return;
2191 }
2192 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2193 {
2194 /* Grab initial value, only useful if it is a constant. */
2195 bl = reg_biv_class[REGNO (iteration_var)];
2196 *initial_value = bl->initial_value;
2197
2198 *increment = biv_total_increment (bl, loop_start, loop_end);
2199 }
2200 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2201 {
2202 #if 1
2203 /* ??? The code below does not work because the incorrect number of
2204 iterations is calculated when the biv is incremented after the giv
2205 is set (which is the usual case). This can probably be accounted
2206 for by biasing the initial_value by subtracting the amount of the
2207 increment that occurs between the giv set and the giv test. However,
2208 a giv as an iterator is very rare, so it does not seem worthwhile
2209 to handle this. */
2210 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2211 if (loop_dump_stream)
2212 fprintf (loop_dump_stream,
2213 "Loop unrolling: Giv iterators are not handled.\n");
2214 return;
2215 #else
2216 /* Initial value is mult_val times the biv's initial value plus
2217 add_val. Only useful if it is a constant. */
2218 v = reg_iv_info[REGNO (iteration_var)];
2219 bl = reg_biv_class[REGNO (v->src_reg)];
2220 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2221 v->add_val, v->mode);
2222
2223 /* Increment value is mult_val times the increment value of the biv. */
2224
2225 *increment = biv_total_increment (bl, loop_start, loop_end);
2226 if (*increment)
2227 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2228 v->mode);
2229 #endif
2230 }
2231 else
2232 {
2233 if (loop_dump_stream)
2234 fprintf (loop_dump_stream,
2235 "Loop unrolling: Not basic or general induction var.\n");
2236 return;
2237 }
2238 }
2239
2240 /* Calculate the approximate final value of the iteration variable
2241 which has an loop exit test with code COMPARISON_CODE and comparison value
2242 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2243 was signed or unsigned, and the direction of the comparison. This info is
2244 needed to calculate the number of loop iterations. */
2245
2246 static rtx
2247 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2248 enum rtx_code comparison_code;
2249 rtx comparison_value;
2250 int *unsigned_p;
2251 int *compare_dir;
2252 {
2253 /* Calculate the final value of the induction variable.
2254 The exact final value depends on the branch operator, and increment sign.
2255 This is only an approximate value. It will be wrong if the iteration
2256 variable is not incremented by one each time through the loop, and
2257 approx final value - start value % increment != 0. */
2258
2259 *unsigned_p = 0;
2260 switch (comparison_code)
2261 {
2262 case LEU:
2263 *unsigned_p = 1;
2264 case LE:
2265 *compare_dir = 1;
2266 return plus_constant (comparison_value, 1);
2267 case GEU:
2268 *unsigned_p = 1;
2269 case GE:
2270 *compare_dir = -1;
2271 return plus_constant (comparison_value, -1);
2272 case EQ:
2273 /* Can not calculate a final value for this case. */
2274 *compare_dir = 0;
2275 return 0;
2276 case LTU:
2277 *unsigned_p = 1;
2278 case LT:
2279 *compare_dir = 1;
2280 return comparison_value;
2281 break;
2282 case GTU:
2283 *unsigned_p = 1;
2284 case GT:
2285 *compare_dir = -1;
2286 return comparison_value;
2287 case NE:
2288 *compare_dir = 0;
2289 return comparison_value;
2290 default:
2291 abort ();
2292 }
2293 }
2294
2295 /* For each biv and giv, determine whether it can be safely split into
2296 a different variable for each unrolled copy of the loop body. If it
2297 is safe to split, then indicate that by saving some useful info
2298 in the splittable_regs array.
2299
2300 If the loop is being completely unrolled, then splittable_regs will hold
2301 the current value of the induction variable while the loop is unrolled.
2302 It must be set to the initial value of the induction variable here.
2303 Otherwise, splittable_regs will hold the difference between the current
2304 value of the induction variable and the value the induction variable had
2305 at the top of the loop. It must be set to the value 0 here.
2306
2307 Returns the total number of instructions that set registers that are
2308 splittable. */
2309
2310 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2311 constant values are unnecessary, since we can easily calculate increment
2312 values in this case even if nothing is constant. The increment value
2313 should not involve a multiply however. */
2314
2315 /* ?? Even if the biv/giv increment values aren't constant, it may still
2316 be beneficial to split the variable if the loop is only unrolled a few
2317 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2318
2319 static int
2320 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2321 unroll_number)
2322 enum unroll_types unroll_type;
2323 rtx loop_start, loop_end;
2324 rtx end_insert_before;
2325 int unroll_number;
2326 {
2327 struct iv_class *bl;
2328 struct induction *v;
2329 rtx increment, tem;
2330 rtx biv_final_value;
2331 int biv_splittable;
2332 int result = 0;
2333
2334 for (bl = loop_iv_list; bl; bl = bl->next)
2335 {
2336 /* Biv_total_increment must return a constant value,
2337 otherwise we can not calculate the split values. */
2338
2339 increment = biv_total_increment (bl, loop_start, loop_end);
2340 if (! increment || GET_CODE (increment) != CONST_INT)
2341 continue;
2342
2343 /* The loop must be unrolled completely, or else have a known number
2344 of iterations and only one exit, or else the biv must be dead
2345 outside the loop, or else the final value must be known. Otherwise,
2346 it is unsafe to split the biv since it may not have the proper
2347 value on loop exit. */
2348
2349 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2350 a fall through at the end. */
2351
2352 biv_splittable = 1;
2353 biv_final_value = 0;
2354 if (unroll_type != UNROLL_COMPLETELY
2355 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2356 || unroll_type == UNROLL_NAIVE)
2357 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2358 || ! bl->init_insn
2359 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2360 || (uid_luid[regno_first_uid[bl->regno]]
2361 < INSN_LUID (bl->init_insn))
2362 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2363 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2364 biv_splittable = 0;
2365
2366 /* If any of the insns setting the BIV don't do so with a simple
2367 PLUS, we don't know how to split it. */
2368 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2369 if ((tem = single_set (v->insn)) == 0
2370 || GET_CODE (SET_DEST (tem)) != REG
2371 || REGNO (SET_DEST (tem)) != bl->regno
2372 || GET_CODE (SET_SRC (tem)) != PLUS)
2373 biv_splittable = 0;
2374
2375 /* If final value is non-zero, then must emit an instruction which sets
2376 the value of the biv to the proper value. This is done after
2377 handling all of the givs, since some of them may need to use the
2378 biv's value in their initialization code. */
2379
2380 /* This biv is splittable. If completely unrolling the loop, save
2381 the biv's initial value. Otherwise, save the constant zero. */
2382
2383 if (biv_splittable == 1)
2384 {
2385 if (unroll_type == UNROLL_COMPLETELY)
2386 {
2387 /* If the initial value of the biv is itself (i.e. it is too
2388 complicated for strength_reduce to compute), or is a hard
2389 register, then we must create a new pseudo reg to hold the
2390 initial value of the biv. */
2391
2392 if (GET_CODE (bl->initial_value) == REG
2393 && (REGNO (bl->initial_value) == bl->regno
2394 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2395 {
2396 rtx tem = gen_reg_rtx (bl->biv->mode);
2397
2398 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2399 loop_start);
2400
2401 if (loop_dump_stream)
2402 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2403 bl->regno, REGNO (tem));
2404
2405 splittable_regs[bl->regno] = tem;
2406 }
2407 else
2408 splittable_regs[bl->regno] = bl->initial_value;
2409 }
2410 else
2411 splittable_regs[bl->regno] = const0_rtx;
2412
2413 /* Save the number of instructions that modify the biv, so that
2414 we can treat the last one specially. */
2415
2416 splittable_regs_updates[bl->regno] = bl->biv_count;
2417 result += bl->biv_count;
2418
2419 if (loop_dump_stream)
2420 fprintf (loop_dump_stream,
2421 "Biv %d safe to split.\n", bl->regno);
2422 }
2423
2424 /* Check every giv that depends on this biv to see whether it is
2425 splittable also. Even if the biv isn't splittable, givs which
2426 depend on it may be splittable if the biv is live outside the
2427 loop, and the givs aren't. */
2428
2429 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2430 increment, unroll_number);
2431
2432 /* If final value is non-zero, then must emit an instruction which sets
2433 the value of the biv to the proper value. This is done after
2434 handling all of the givs, since some of them may need to use the
2435 biv's value in their initialization code. */
2436 if (biv_final_value)
2437 {
2438 /* If the loop has multiple exits, emit the insns before the
2439 loop to ensure that it will always be executed no matter
2440 how the loop exits. Otherwise emit the insn after the loop,
2441 since this is slightly more efficient. */
2442 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2443 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2444 biv_final_value),
2445 end_insert_before);
2446 else
2447 {
2448 /* Create a new register to hold the value of the biv, and then
2449 set the biv to its final value before the loop start. The biv
2450 is set to its final value before loop start to ensure that
2451 this insn will always be executed, no matter how the loop
2452 exits. */
2453 rtx tem = gen_reg_rtx (bl->biv->mode);
2454 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2455 loop_start);
2456 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2457 biv_final_value),
2458 loop_start);
2459
2460 if (loop_dump_stream)
2461 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2462 REGNO (bl->biv->src_reg), REGNO (tem));
2463
2464 /* Set up the mapping from the original biv register to the new
2465 register. */
2466 bl->biv->src_reg = tem;
2467 }
2468 }
2469 }
2470 return result;
2471 }
2472
2473 /* For every giv based on the biv BL, check to determine whether it is
2474 splittable. This is a subroutine to find_splittable_regs ().
2475
2476 Return the number of instructions that set splittable registers. */
2477
2478 static int
2479 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2480 unroll_number)
2481 struct iv_class *bl;
2482 enum unroll_types unroll_type;
2483 rtx loop_start, loop_end;
2484 rtx increment;
2485 int unroll_number;
2486 {
2487 struct induction *v, *v2;
2488 rtx final_value;
2489 rtx tem;
2490 int result = 0;
2491
2492 /* Scan the list of givs, and set the same_insn field when there are
2493 multiple identical givs in the same insn. */
2494 for (v = bl->giv; v; v = v->next_iv)
2495 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2496 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2497 && ! v2->same_insn)
2498 v2->same_insn = v;
2499
2500 for (v = bl->giv; v; v = v->next_iv)
2501 {
2502 rtx giv_inc, value;
2503
2504 /* Only split the giv if it has already been reduced, or if the loop is
2505 being completely unrolled. */
2506 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2507 continue;
2508
2509 /* The giv can be split if the insn that sets the giv is executed once
2510 and only once on every iteration of the loop. */
2511 /* An address giv can always be split. v->insn is just a use not a set,
2512 and hence it does not matter whether it is always executed. All that
2513 matters is that all the biv increments are always executed, and we
2514 won't reach here if they aren't. */
2515 if (v->giv_type != DEST_ADDR
2516 && (! v->always_computable
2517 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2518 continue;
2519
2520 /* The giv increment value must be a constant. */
2521 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2522 v->mode);
2523 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2524 continue;
2525
2526 /* The loop must be unrolled completely, or else have a known number of
2527 iterations and only one exit, or else the giv must be dead outside
2528 the loop, or else the final value of the giv must be known.
2529 Otherwise, it is not safe to split the giv since it may not have the
2530 proper value on loop exit. */
2531
2532 /* The used outside loop test will fail for DEST_ADDR givs. They are
2533 never used outside the loop anyways, so it is always safe to split a
2534 DEST_ADDR giv. */
2535
2536 final_value = 0;
2537 if (unroll_type != UNROLL_COMPLETELY
2538 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2539 || unroll_type == UNROLL_NAIVE)
2540 && v->giv_type != DEST_ADDR
2541 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2542 /* Check for the case where the pseudo is set by a shift/add
2543 sequence, in which case the first insn setting the pseudo
2544 is the first insn of the shift/add sequence. */
2545 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2546 || (regno_first_uid[REGNO (v->dest_reg)]
2547 != INSN_UID (XEXP (tem, 0)))))
2548 /* Line above always fails if INSN was moved by loop opt. */
2549 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2550 >= INSN_LUID (loop_end)))
2551 && ! (final_value = v->final_value))
2552 continue;
2553
2554 #if 0
2555 /* Currently, non-reduced/final-value givs are never split. */
2556 /* Should emit insns after the loop if possible, as the biv final value
2557 code below does. */
2558
2559 /* If the final value is non-zero, and the giv has not been reduced,
2560 then must emit an instruction to set the final value. */
2561 if (final_value && !v->new_reg)
2562 {
2563 /* Create a new register to hold the value of the giv, and then set
2564 the giv to its final value before the loop start. The giv is set
2565 to its final value before loop start to ensure that this insn
2566 will always be executed, no matter how we exit. */
2567 tem = gen_reg_rtx (v->mode);
2568 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2569 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2570 loop_start);
2571
2572 if (loop_dump_stream)
2573 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2574 REGNO (v->dest_reg), REGNO (tem));
2575
2576 v->src_reg = tem;
2577 }
2578 #endif
2579
2580 /* This giv is splittable. If completely unrolling the loop, save the
2581 giv's initial value. Otherwise, save the constant zero for it. */
2582
2583 if (unroll_type == UNROLL_COMPLETELY)
2584 {
2585 /* It is not safe to use bl->initial_value here, because it may not
2586 be invariant. It is safe to use the initial value stored in
2587 the splittable_regs array if it is set. In rare cases, it won't
2588 be set, so then we do exactly the same thing as
2589 find_splittable_regs does to get a safe value. */
2590 rtx biv_initial_value;
2591
2592 if (splittable_regs[bl->regno])
2593 biv_initial_value = splittable_regs[bl->regno];
2594 else if (GET_CODE (bl->initial_value) != REG
2595 || (REGNO (bl->initial_value) != bl->regno
2596 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2597 biv_initial_value = bl->initial_value;
2598 else
2599 {
2600 rtx tem = gen_reg_rtx (bl->biv->mode);
2601
2602 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2603 loop_start);
2604 biv_initial_value = tem;
2605 }
2606 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2607 v->add_val, v->mode);
2608 }
2609 else
2610 value = const0_rtx;
2611
2612 if (v->new_reg)
2613 {
2614 /* If a giv was combined with another giv, then we can only split
2615 this giv if the giv it was combined with was reduced. This
2616 is because the value of v->new_reg is meaningless in this
2617 case. */
2618 if (v->same && ! v->same->new_reg)
2619 {
2620 if (loop_dump_stream)
2621 fprintf (loop_dump_stream,
2622 "giv combined with unreduced giv not split.\n");
2623 continue;
2624 }
2625 /* If the giv is an address destination, it could be something other
2626 than a simple register, these have to be treated differently. */
2627 else if (v->giv_type == DEST_REG)
2628 {
2629 /* If value is not a constant, register, or register plus
2630 constant, then compute its value into a register before
2631 loop start. This prevents invalid rtx sharing, and should
2632 generate better code. We can use bl->initial_value here
2633 instead of splittable_regs[bl->regno] because this code
2634 is going before the loop start. */
2635 if (unroll_type == UNROLL_COMPLETELY
2636 && GET_CODE (value) != CONST_INT
2637 && GET_CODE (value) != REG
2638 && (GET_CODE (value) != PLUS
2639 || GET_CODE (XEXP (value, 0)) != REG
2640 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2641 {
2642 rtx tem = gen_reg_rtx (v->mode);
2643 emit_iv_add_mult (bl->initial_value, v->mult_val,
2644 v->add_val, tem, loop_start);
2645 value = tem;
2646 }
2647
2648 splittable_regs[REGNO (v->new_reg)] = value;
2649 }
2650 else
2651 {
2652 /* Splitting address givs is useful since it will often allow us
2653 to eliminate some increment insns for the base giv as
2654 unnecessary. */
2655
2656 /* If the addr giv is combined with a dest_reg giv, then all
2657 references to that dest reg will be remapped, which is NOT
2658 what we want for split addr regs. We always create a new
2659 register for the split addr giv, just to be safe. */
2660
2661 /* ??? If there are multiple address givs which have been
2662 combined with the same dest_reg giv, then we may only need
2663 one new register for them. Pulling out constants below will
2664 catch some of the common cases of this. Currently, I leave
2665 the work of simplifying multiple address givs to the
2666 following cse pass. */
2667
2668 /* As a special case, if we have multiple identical address givs
2669 within a single instruction, then we do use a single psuedo
2670 reg for both. This is necessary in case one is a match_dup
2671 of the other. */
2672
2673 v->const_adjust = 0;
2674
2675 if (v->same_insn)
2676 {
2677 v->dest_reg = v->same_insn->dest_reg;
2678 if (loop_dump_stream)
2679 fprintf (loop_dump_stream,
2680 "Sharing address givs in insn %d\n",
2681 INSN_UID (v->insn));
2682 }
2683 else if (unroll_type != UNROLL_COMPLETELY)
2684 {
2685 /* If not completely unrolling the loop, then create a new
2686 register to hold the split value of the DEST_ADDR giv.
2687 Emit insn to initialize its value before loop start. */
2688 tem = gen_reg_rtx (v->mode);
2689
2690 /* If the address giv has a constant in its new_reg value,
2691 then this constant can be pulled out and put in value,
2692 instead of being part of the initialization code. */
2693
2694 if (GET_CODE (v->new_reg) == PLUS
2695 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2696 {
2697 v->dest_reg
2698 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2699
2700 /* Only succeed if this will give valid addresses.
2701 Try to validate both the first and the last
2702 address resulting from loop unrolling, if
2703 one fails, then can't do const elim here. */
2704 if (memory_address_p (v->mem_mode, v->dest_reg)
2705 && memory_address_p (v->mem_mode,
2706 plus_constant (v->dest_reg,
2707 INTVAL (giv_inc)
2708 * (unroll_number - 1))))
2709 {
2710 /* Save the negative of the eliminated const, so
2711 that we can calculate the dest_reg's increment
2712 value later. */
2713 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2714
2715 v->new_reg = XEXP (v->new_reg, 0);
2716 if (loop_dump_stream)
2717 fprintf (loop_dump_stream,
2718 "Eliminating constant from giv %d\n",
2719 REGNO (tem));
2720 }
2721 else
2722 v->dest_reg = tem;
2723 }
2724 else
2725 v->dest_reg = tem;
2726
2727 /* If the address hasn't been checked for validity yet, do so
2728 now, and fail completely if either the first or the last
2729 unrolled copy of the address is not a valid address. */
2730 if (v->dest_reg == tem
2731 && (! memory_address_p (v->mem_mode, v->dest_reg)
2732 || ! memory_address_p (v->mem_mode,
2733 plus_constant (v->dest_reg,
2734 INTVAL (giv_inc)
2735 * (unroll_number -1)))))
2736 {
2737 if (loop_dump_stream)
2738 fprintf (loop_dump_stream,
2739 "Invalid address for giv at insn %d\n",
2740 INSN_UID (v->insn));
2741 continue;
2742 }
2743
2744 /* To initialize the new register, just move the value of
2745 new_reg into it. This is not guaranteed to give a valid
2746 instruction on machines with complex addressing modes.
2747 If we can't recognize it, then delete it and emit insns
2748 to calculate the value from scratch. */
2749 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2750 copy_rtx (v->new_reg)),
2751 loop_start);
2752 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2753 {
2754 rtx sequence, ret;
2755
2756 /* We can't use bl->initial_value to compute the initial
2757 value, because the loop may have been preconditioned.
2758 We must calculate it from NEW_REG. Try using
2759 force_operand instead of emit_iv_add_mult. */
2760 delete_insn (PREV_INSN (loop_start));
2761
2762 start_sequence ();
2763 ret = force_operand (v->new_reg, tem);
2764 if (ret != tem)
2765 emit_move_insn (tem, ret);
2766 sequence = gen_sequence ();
2767 end_sequence ();
2768 emit_insn_before (sequence, loop_start);
2769
2770 if (loop_dump_stream)
2771 fprintf (loop_dump_stream,
2772 "Invalid init insn, rewritten.\n");
2773 }
2774 }
2775 else
2776 {
2777 v->dest_reg = value;
2778
2779 /* Check the resulting address for validity, and fail
2780 if the resulting address would be invalid. */
2781 if (! memory_address_p (v->mem_mode, v->dest_reg)
2782 || ! memory_address_p (v->mem_mode,
2783 plus_constant (v->dest_reg,
2784 INTVAL (giv_inc) *
2785 (unroll_number -1))))
2786 {
2787 if (loop_dump_stream)
2788 fprintf (loop_dump_stream,
2789 "Invalid address for giv at insn %d\n",
2790 INSN_UID (v->insn));
2791 continue;
2792 }
2793 }
2794
2795 /* Store the value of dest_reg into the insn. This sharing
2796 will not be a problem as this insn will always be copied
2797 later. */
2798
2799 *v->location = v->dest_reg;
2800
2801 /* If this address giv is combined with a dest reg giv, then
2802 save the base giv's induction pointer so that we will be
2803 able to handle this address giv properly. The base giv
2804 itself does not have to be splittable. */
2805
2806 if (v->same && v->same->giv_type == DEST_REG)
2807 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2808
2809 if (GET_CODE (v->new_reg) == REG)
2810 {
2811 /* This giv maybe hasn't been combined with any others.
2812 Make sure that it's giv is marked as splittable here. */
2813
2814 splittable_regs[REGNO (v->new_reg)] = value;
2815
2816 /* Make it appear to depend upon itself, so that the
2817 giv will be properly split in the main loop above. */
2818 if (! v->same)
2819 {
2820 v->same = v;
2821 addr_combined_regs[REGNO (v->new_reg)] = v;
2822 }
2823 }
2824
2825 if (loop_dump_stream)
2826 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2827 }
2828 }
2829 else
2830 {
2831 #if 0
2832 /* Currently, unreduced giv's can't be split. This is not too much
2833 of a problem since unreduced giv's are not live across loop
2834 iterations anyways. When unrolling a loop completely though,
2835 it makes sense to reduce&split givs when possible, as this will
2836 result in simpler instructions, and will not require that a reg
2837 be live across loop iterations. */
2838
2839 splittable_regs[REGNO (v->dest_reg)] = value;
2840 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2841 REGNO (v->dest_reg), INSN_UID (v->insn));
2842 #else
2843 continue;
2844 #endif
2845 }
2846
2847 /* Givs are only updated once by definition. Mark it so if this is
2848 a splittable register. Don't need to do anything for address givs
2849 where this may not be a register. */
2850
2851 if (GET_CODE (v->new_reg) == REG)
2852 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2853
2854 result++;
2855
2856 if (loop_dump_stream)
2857 {
2858 int regnum;
2859
2860 if (GET_CODE (v->dest_reg) == CONST_INT)
2861 regnum = -1;
2862 else if (GET_CODE (v->dest_reg) != REG)
2863 regnum = REGNO (XEXP (v->dest_reg, 0));
2864 else
2865 regnum = REGNO (v->dest_reg);
2866 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2867 regnum, INSN_UID (v->insn));
2868 }
2869 }
2870
2871 return result;
2872 }
2873 \f
2874 /* Try to prove that the register is dead after the loop exits. Trace every
2875 loop exit looking for an insn that will always be executed, which sets
2876 the register to some value, and appears before the first use of the register
2877 is found. If successful, then return 1, otherwise return 0. */
2878
2879 /* ?? Could be made more intelligent in the handling of jumps, so that
2880 it can search past if statements and other similar structures. */
2881
2882 static int
2883 reg_dead_after_loop (reg, loop_start, loop_end)
2884 rtx reg, loop_start, loop_end;
2885 {
2886 rtx insn, label;
2887 enum rtx_code code;
2888 int jump_count = 0;
2889
2890 /* HACK: Must also search the loop fall through exit, create a label_ref
2891 here which points to the loop_end, and append the loop_number_exit_labels
2892 list to it. */
2893 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2894 LABEL_NEXTREF (label)
2895 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2896
2897 for ( ; label; label = LABEL_NEXTREF (label))
2898 {
2899 /* Succeed if find an insn which sets the biv or if reach end of
2900 function. Fail if find an insn that uses the biv, or if come to
2901 a conditional jump. */
2902
2903 insn = NEXT_INSN (XEXP (label, 0));
2904 while (insn)
2905 {
2906 code = GET_CODE (insn);
2907 if (GET_RTX_CLASS (code) == 'i')
2908 {
2909 rtx set;
2910
2911 if (reg_referenced_p (reg, PATTERN (insn)))
2912 return 0;
2913
2914 set = single_set (insn);
2915 if (set && rtx_equal_p (SET_DEST (set), reg))
2916 break;
2917 }
2918
2919 if (code == JUMP_INSN)
2920 {
2921 if (GET_CODE (PATTERN (insn)) == RETURN)
2922 break;
2923 else if (! simplejump_p (insn)
2924 /* Prevent infinite loop following infinite loops. */
2925 || jump_count++ > 20)
2926 return 0;
2927 else
2928 insn = JUMP_LABEL (insn);
2929 }
2930
2931 insn = NEXT_INSN (insn);
2932 }
2933 }
2934
2935 /* Success, the register is dead on all loop exits. */
2936 return 1;
2937 }
2938
2939 /* Try to calculate the final value of the biv, the value it will have at
2940 the end of the loop. If we can do it, return that value. */
2941
2942 rtx
2943 final_biv_value (bl, loop_start, loop_end)
2944 struct iv_class *bl;
2945 rtx loop_start, loop_end;
2946 {
2947 rtx increment, tem;
2948
2949 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2950
2951 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2952 return 0;
2953
2954 /* The final value for reversed bivs must be calculated differently than
2955 for ordinary bivs. In this case, there is already an insn after the
2956 loop which sets this biv's final value (if necessary), and there are
2957 no other loop exits, so we can return any value. */
2958 if (bl->reversed)
2959 {
2960 if (loop_dump_stream)
2961 fprintf (loop_dump_stream,
2962 "Final biv value for %d, reversed biv.\n", bl->regno);
2963
2964 return const0_rtx;
2965 }
2966
2967 /* Try to calculate the final value as initial value + (number of iterations
2968 * increment). For this to work, increment must be invariant, the only
2969 exit from the loop must be the fall through at the bottom (otherwise
2970 it may not have its final value when the loop exits), and the initial
2971 value of the biv must be invariant. */
2972
2973 if (loop_n_iterations != 0
2974 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2975 && invariant_p (bl->initial_value))
2976 {
2977 increment = biv_total_increment (bl, loop_start, loop_end);
2978
2979 if (increment && invariant_p (increment))
2980 {
2981 /* Can calculate the loop exit value, emit insns after loop
2982 end to calculate this value into a temporary register in
2983 case it is needed later. */
2984
2985 tem = gen_reg_rtx (bl->biv->mode);
2986 /* Make sure loop_end is not the last insn. */
2987 if (NEXT_INSN (loop_end) == 0)
2988 emit_note_after (NOTE_INSN_DELETED, loop_end);
2989 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2990 bl->initial_value, tem, NEXT_INSN (loop_end));
2991
2992 if (loop_dump_stream)
2993 fprintf (loop_dump_stream,
2994 "Final biv value for %d, calculated.\n", bl->regno);
2995
2996 return tem;
2997 }
2998 }
2999
3000 /* Check to see if the biv is dead at all loop exits. */
3001 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3002 {
3003 if (loop_dump_stream)
3004 fprintf (loop_dump_stream,
3005 "Final biv value for %d, biv dead after loop exit.\n",
3006 bl->regno);
3007
3008 return const0_rtx;
3009 }
3010
3011 return 0;
3012 }
3013
3014 /* Try to calculate the final value of the giv, the value it will have at
3015 the end of the loop. If we can do it, return that value. */
3016
3017 rtx
3018 final_giv_value (v, loop_start, loop_end)
3019 struct induction *v;
3020 rtx loop_start, loop_end;
3021 {
3022 struct iv_class *bl;
3023 rtx insn;
3024 rtx increment, tem;
3025 rtx insert_before, seq;
3026
3027 bl = reg_biv_class[REGNO (v->src_reg)];
3028
3029 /* The final value for givs which depend on reversed bivs must be calculated
3030 differently than for ordinary givs. In this case, there is already an
3031 insn after the loop which sets this giv's final value (if necessary),
3032 and there are no other loop exits, so we can return any value. */
3033 if (bl->reversed)
3034 {
3035 if (loop_dump_stream)
3036 fprintf (loop_dump_stream,
3037 "Final giv value for %d, depends on reversed biv\n",
3038 REGNO (v->dest_reg));
3039 return const0_rtx;
3040 }
3041
3042 /* Try to calculate the final value as a function of the biv it depends
3043 upon. The only exit from the loop must be the fall through at the bottom
3044 (otherwise it may not have its final value when the loop exits). */
3045
3046 /* ??? Can calculate the final giv value by subtracting off the
3047 extra biv increments times the giv's mult_val. The loop must have
3048 only one exit for this to work, but the loop iterations does not need
3049 to be known. */
3050
3051 if (loop_n_iterations != 0
3052 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3053 {
3054 /* ?? It is tempting to use the biv's value here since these insns will
3055 be put after the loop, and hence the biv will have its final value
3056 then. However, this fails if the biv is subsequently eliminated.
3057 Perhaps determine whether biv's are eliminable before trying to
3058 determine whether giv's are replaceable so that we can use the
3059 biv value here if it is not eliminable. */
3060
3061 increment = biv_total_increment (bl, loop_start, loop_end);
3062
3063 if (increment && invariant_p (increment))
3064 {
3065 /* Can calculate the loop exit value of its biv as
3066 (loop_n_iterations * increment) + initial_value */
3067
3068 /* The loop exit value of the giv is then
3069 (final_biv_value - extra increments) * mult_val + add_val.
3070 The extra increments are any increments to the biv which
3071 occur in the loop after the giv's value is calculated.
3072 We must search from the insn that sets the giv to the end
3073 of the loop to calculate this value. */
3074
3075 insert_before = NEXT_INSN (loop_end);
3076
3077 /* Put the final biv value in tem. */
3078 tem = gen_reg_rtx (bl->biv->mode);
3079 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3080 bl->initial_value, tem, insert_before);
3081
3082 /* Subtract off extra increments as we find them. */
3083 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3084 insn = NEXT_INSN (insn))
3085 {
3086 struct induction *biv;
3087
3088 for (biv = bl->biv; biv; biv = biv->next_iv)
3089 if (biv->insn == insn)
3090 {
3091 start_sequence ();
3092 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3093 biv->add_val, NULL_RTX, 0,
3094 OPTAB_LIB_WIDEN);
3095 seq = gen_sequence ();
3096 end_sequence ();
3097 emit_insn_before (seq, insert_before);
3098 }
3099 }
3100
3101 /* Now calculate the giv's final value. */
3102 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3103 insert_before);
3104
3105 if (loop_dump_stream)
3106 fprintf (loop_dump_stream,
3107 "Final giv value for %d, calc from biv's value.\n",
3108 REGNO (v->dest_reg));
3109
3110 return tem;
3111 }
3112 }
3113
3114 /* Replaceable giv's should never reach here. */
3115 if (v->replaceable)
3116 abort ();
3117
3118 /* Check to see if the biv is dead at all loop exits. */
3119 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3120 {
3121 if (loop_dump_stream)
3122 fprintf (loop_dump_stream,
3123 "Final giv value for %d, giv dead after loop exit.\n",
3124 REGNO (v->dest_reg));
3125
3126 return const0_rtx;
3127 }
3128
3129 return 0;
3130 }
3131
3132
3133 /* Calculate the number of loop iterations. Returns the exact number of loop
3134 iterations if it can be calculated, otherwise returns zero. */
3135
3136 unsigned HOST_WIDE_INT
3137 loop_iterations (loop_start, loop_end)
3138 rtx loop_start, loop_end;
3139 {
3140 rtx comparison, comparison_value;
3141 rtx iteration_var, initial_value, increment, final_value;
3142 enum rtx_code comparison_code;
3143 HOST_WIDE_INT i;
3144 int increment_dir;
3145 int unsigned_compare, compare_dir, final_larger;
3146 unsigned long tempu;
3147 rtx last_loop_insn;
3148
3149 /* First find the iteration variable. If the last insn is a conditional
3150 branch, and the insn before tests a register value, make that the
3151 iteration variable. */
3152
3153 loop_initial_value = 0;
3154 loop_increment = 0;
3155 loop_final_value = 0;
3156 loop_iteration_var = 0;
3157
3158 /* We used to use pren_nonnote_insn here, but that fails because it might
3159 accidentally get the branch for a contained loop if the branch for this
3160 loop was deleted. We can only trust branches immediately before the
3161 loop_end. */
3162 last_loop_insn = PREV_INSN (loop_end);
3163
3164 comparison = get_condition_for_loop (last_loop_insn);
3165 if (comparison == 0)
3166 {
3167 if (loop_dump_stream)
3168 fprintf (loop_dump_stream,
3169 "Loop unrolling: No final conditional branch found.\n");
3170 return 0;
3171 }
3172
3173 /* ??? Get_condition may switch position of induction variable and
3174 invariant register when it canonicalizes the comparison. */
3175
3176 comparison_code = GET_CODE (comparison);
3177 iteration_var = XEXP (comparison, 0);
3178 comparison_value = XEXP (comparison, 1);
3179
3180 if (GET_CODE (iteration_var) != REG)
3181 {
3182 if (loop_dump_stream)
3183 fprintf (loop_dump_stream,
3184 "Loop unrolling: Comparison not against register.\n");
3185 return 0;
3186 }
3187
3188 /* Loop iterations is always called before any new registers are created
3189 now, so this should never occur. */
3190
3191 if (REGNO (iteration_var) >= max_reg_before_loop)
3192 abort ();
3193
3194 iteration_info (iteration_var, &initial_value, &increment,
3195 loop_start, loop_end);
3196 if (initial_value == 0)
3197 /* iteration_info already printed a message. */
3198 return 0;
3199
3200 /* If the comparison value is an invariant register, then try to find
3201 its value from the insns before the start of the loop. */
3202
3203 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3204 {
3205 rtx insn, set;
3206
3207 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3208 {
3209 if (GET_CODE (insn) == CODE_LABEL)
3210 break;
3211
3212 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3213 && reg_set_p (comparison_value, insn))
3214 {
3215 /* We found the last insn before the loop that sets the register.
3216 If it sets the entire register, and has a REG_EQUAL note,
3217 then use the value of the REG_EQUAL note. */
3218 if ((set = single_set (insn))
3219 && (SET_DEST (set) == comparison_value))
3220 {
3221 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3222
3223 /* Only use the REG_EQUAL note if it is a constant.
3224 Other things, divide in particular, will cause
3225 problems later if we use them. */
3226 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3227 && CONSTANT_P (XEXP (note, 0)))
3228 comparison_value = XEXP (note, 0);
3229 }
3230 break;
3231 }
3232 }
3233 }
3234
3235 final_value = approx_final_value (comparison_code, comparison_value,
3236 &unsigned_compare, &compare_dir);
3237
3238 /* Save the calculated values describing this loop's bounds, in case
3239 precondition_loop_p will need them later. These values can not be
3240 recalculated inside precondition_loop_p because strength reduction
3241 optimizations may obscure the loop's structure. */
3242
3243 loop_iteration_var = iteration_var;
3244 loop_initial_value = initial_value;
3245 loop_increment = increment;
3246 loop_final_value = final_value;
3247
3248 if (increment == 0)
3249 {
3250 if (loop_dump_stream)
3251 fprintf (loop_dump_stream,
3252 "Loop unrolling: Increment value can't be calculated.\n");
3253 return 0;
3254 }
3255 else if (GET_CODE (increment) != CONST_INT)
3256 {
3257 if (loop_dump_stream)
3258 fprintf (loop_dump_stream,
3259 "Loop unrolling: Increment value not constant.\n");
3260 return 0;
3261 }
3262 else if (GET_CODE (initial_value) != CONST_INT)
3263 {
3264 if (loop_dump_stream)
3265 fprintf (loop_dump_stream,
3266 "Loop unrolling: Initial value not constant.\n");
3267 return 0;
3268 }
3269 else if (final_value == 0)
3270 {
3271 if (loop_dump_stream)
3272 fprintf (loop_dump_stream,
3273 "Loop unrolling: EQ comparison loop.\n");
3274 return 0;
3275 }
3276 else if (GET_CODE (final_value) != CONST_INT)
3277 {
3278 if (loop_dump_stream)
3279 fprintf (loop_dump_stream,
3280 "Loop unrolling: Final value not constant.\n");
3281 return 0;
3282 }
3283
3284 /* ?? Final value and initial value do not have to be constants.
3285 Only their difference has to be constant. When the iteration variable
3286 is an array address, the final value and initial value might both
3287 be addresses with the same base but different constant offsets.
3288 Final value must be invariant for this to work.
3289
3290 To do this, need some way to find the values of registers which are
3291 invariant. */
3292
3293 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3294 if (unsigned_compare)
3295 final_larger
3296 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3297 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3298 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3299 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3300 else
3301 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3302 - (INTVAL (final_value) < INTVAL (initial_value));
3303
3304 if (INTVAL (increment) > 0)
3305 increment_dir = 1;
3306 else if (INTVAL (increment) == 0)
3307 increment_dir = 0;
3308 else
3309 increment_dir = -1;
3310
3311 /* There are 27 different cases: compare_dir = -1, 0, 1;
3312 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3313 There are 4 normal cases, 4 reverse cases (where the iteration variable
3314 will overflow before the loop exits), 4 infinite loop cases, and 15
3315 immediate exit (0 or 1 iteration depending on loop type) cases.
3316 Only try to optimize the normal cases. */
3317
3318 /* (compare_dir/final_larger/increment_dir)
3319 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3320 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3321 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3322 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3323
3324 /* ?? If the meaning of reverse loops (where the iteration variable
3325 will overflow before the loop exits) is undefined, then could
3326 eliminate all of these special checks, and just always assume
3327 the loops are normal/immediate/infinite. Note that this means
3328 the sign of increment_dir does not have to be known. Also,
3329 since it does not really hurt if immediate exit loops or infinite loops
3330 are optimized, then that case could be ignored also, and hence all
3331 loops can be optimized.
3332
3333 According to ANSI Spec, the reverse loop case result is undefined,
3334 because the action on overflow is undefined.
3335
3336 See also the special test for NE loops below. */
3337
3338 if (final_larger == increment_dir && final_larger != 0
3339 && (final_larger == compare_dir || compare_dir == 0))
3340 /* Normal case. */
3341 ;
3342 else
3343 {
3344 if (loop_dump_stream)
3345 fprintf (loop_dump_stream,
3346 "Loop unrolling: Not normal loop.\n");
3347 return 0;
3348 }
3349
3350 /* Calculate the number of iterations, final_value is only an approximation,
3351 so correct for that. Note that tempu and loop_n_iterations are
3352 unsigned, because they can be as large as 2^n - 1. */
3353
3354 i = INTVAL (increment);
3355 if (i > 0)
3356 tempu = INTVAL (final_value) - INTVAL (initial_value);
3357 else if (i < 0)
3358 {
3359 tempu = INTVAL (initial_value) - INTVAL (final_value);
3360 i = -i;
3361 }
3362 else
3363 abort ();
3364
3365 /* For NE tests, make sure that the iteration variable won't miss the
3366 final value. If tempu mod i is not zero, then the iteration variable
3367 will overflow before the loop exits, and we can not calculate the
3368 number of iterations. */
3369 if (compare_dir == 0 && (tempu % i) != 0)
3370 return 0;
3371
3372 return tempu / i + ((tempu % i) != 0);
3373 }
3374
3375 /* Replace uses of split bivs with their split psuedo register. This is
3376 for original instructions which remain after loop unrolling without
3377 copying. */
3378
3379 static rtx
3380 remap_split_bivs (x)
3381 rtx x;
3382 {
3383 register enum rtx_code code;
3384 register int i;
3385 register char *fmt;
3386
3387 if (x == 0)
3388 return x;
3389
3390 code = GET_CODE (x);
3391 switch (code)
3392 {
3393 case SCRATCH:
3394 case PC:
3395 case CC0:
3396 case CONST_INT:
3397 case CONST_DOUBLE:
3398 case CONST:
3399 case SYMBOL_REF:
3400 case LABEL_REF:
3401 return x;
3402
3403 case REG:
3404 #if 0
3405 /* If non-reduced/final-value givs were split, then this would also
3406 have to remap those givs also. */
3407 #endif
3408 if (REGNO (x) < max_reg_before_loop
3409 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3410 return reg_biv_class[REGNO (x)]->biv->src_reg;
3411 }
3412
3413 fmt = GET_RTX_FORMAT (code);
3414 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3415 {
3416 if (fmt[i] == 'e')
3417 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3418 if (fmt[i] == 'E')
3419 {
3420 register int j;
3421 for (j = 0; j < XVECLEN (x, i); j++)
3422 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3423 }
3424 }
3425 return x;
3426 }