* Integrate alias analysis changes from jfc@mit.edu
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
158
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
161
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
165
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
171
172 static struct induction **addr_combined_regs;
173
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
177
178 static rtx *splittable_regs;
179
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
184
185 static int *splittable_regs_updates;
186
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
189
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
194 static enum rtx_code loop_comparison_code;
195
196 /* Forward declarations. */
197
198 static void init_reg_map PROTO((struct inline_remap *, int));
199 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
200 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
201 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
204 enum unroll_types, rtx, rtx, rtx, rtx));
205 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
206 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
207 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
208 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
209 rtx, rtx, rtx, int));
210 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
211 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
212 static rtx remap_split_bivs PROTO((rtx));
213
214 /* Try to unroll one loop and split induction variables in the loop.
215
216 The loop is described by the arguments LOOP_END, INSN_COUNT, and
217 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
218 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
219 indicates whether information generated in the strength reduction pass
220 is available.
221
222 This function is intended to be called from within `strength_reduce'
223 in loop.c. */
224
225 void
226 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
227 strength_reduce_p)
228 rtx loop_end;
229 int insn_count;
230 rtx loop_start;
231 rtx end_insert_before;
232 int strength_reduce_p;
233 {
234 int i, j, temp;
235 int unroll_number = 1;
236 rtx copy_start, copy_end;
237 rtx insn, copy, sequence, pattern, tem;
238 int max_labelno, max_insnno;
239 rtx insert_before;
240 struct inline_remap *map;
241 char *local_label;
242 char *local_regno;
243 int maxregnum;
244 int new_maxregnum;
245 rtx exit_label = 0;
246 rtx start_label;
247 struct iv_class *bl;
248 int splitting_not_safe = 0;
249 enum unroll_types unroll_type;
250 int loop_preconditioned = 0;
251 rtx safety_label;
252 /* This points to the last real insn in the loop, which should be either
253 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
254 jumps). */
255 rtx last_loop_insn;
256
257 /* Don't bother unrolling huge loops. Since the minimum factor is
258 two, loops greater than one half of MAX_UNROLLED_INSNS will never
259 be unrolled. */
260 if (insn_count > MAX_UNROLLED_INSNS / 2)
261 {
262 if (loop_dump_stream)
263 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
264 return;
265 }
266
267 /* When emitting debugger info, we can't unroll loops with unequal numbers
268 of block_beg and block_end notes, because that would unbalance the block
269 structure of the function. This can happen as a result of the
270 "if (foo) bar; else break;" optimization in jump.c. */
271 /* ??? Gcc has a general policy that -g is never supposed to change the code
272 that the compiler emits, so we must disable this optimization always,
273 even if debug info is not being output. This is rare, so this should
274 not be a significant performance problem. */
275
276 if (1 /* write_symbols != NO_DEBUG */)
277 {
278 int block_begins = 0;
279 int block_ends = 0;
280
281 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
282 {
283 if (GET_CODE (insn) == NOTE)
284 {
285 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
286 block_begins++;
287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
288 block_ends++;
289 }
290 }
291
292 if (block_begins != block_ends)
293 {
294 if (loop_dump_stream)
295 fprintf (loop_dump_stream,
296 "Unrolling failure: Unbalanced block notes.\n");
297 return;
298 }
299 }
300
301 /* Determine type of unroll to perform. Depends on the number of iterations
302 and the size of the loop. */
303
304 /* If there is no strength reduce info, then set loop_n_iterations to zero.
305 This can happen if strength_reduce can't find any bivs in the loop.
306 A value of zero indicates that the number of iterations could not be
307 calculated. */
308
309 if (! strength_reduce_p)
310 loop_n_iterations = 0;
311
312 if (loop_dump_stream && loop_n_iterations > 0)
313 fprintf (loop_dump_stream,
314 "Loop unrolling: %d iterations.\n", loop_n_iterations);
315
316 /* Find and save a pointer to the last nonnote insn in the loop. */
317
318 last_loop_insn = prev_nonnote_insn (loop_end);
319
320 /* Calculate how many times to unroll the loop. Indicate whether or
321 not the loop is being completely unrolled. */
322
323 if (loop_n_iterations == 1)
324 {
325 /* If number of iterations is exactly 1, then eliminate the compare and
326 branch at the end of the loop since they will never be taken.
327 Then return, since no other action is needed here. */
328
329 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
330 don't do anything. */
331
332 if (GET_CODE (last_loop_insn) == BARRIER)
333 {
334 /* Delete the jump insn. This will delete the barrier also. */
335 delete_insn (PREV_INSN (last_loop_insn));
336 }
337 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
338 {
339 #ifdef HAVE_cc0
340 /* The immediately preceding insn is a compare which must be
341 deleted. */
342 delete_insn (last_loop_insn);
343 delete_insn (PREV_INSN (last_loop_insn));
344 #else
345 /* The immediately preceding insn may not be the compare, so don't
346 delete it. */
347 delete_insn (last_loop_insn);
348 #endif
349 }
350 return;
351 }
352 else if (loop_n_iterations > 0
353 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
354 {
355 unroll_number = loop_n_iterations;
356 unroll_type = UNROLL_COMPLETELY;
357 }
358 else if (loop_n_iterations > 0)
359 {
360 /* Try to factor the number of iterations. Don't bother with the
361 general case, only using 2, 3, 5, and 7 will get 75% of all
362 numbers theoretically, and almost all in practice. */
363
364 for (i = 0; i < NUM_FACTORS; i++)
365 factors[i].count = 0;
366
367 temp = loop_n_iterations;
368 for (i = NUM_FACTORS - 1; i >= 0; i--)
369 while (temp % factors[i].factor == 0)
370 {
371 factors[i].count++;
372 temp = temp / factors[i].factor;
373 }
374
375 /* Start with the larger factors first so that we generally
376 get lots of unrolling. */
377
378 unroll_number = 1;
379 temp = insn_count;
380 for (i = 3; i >= 0; i--)
381 while (factors[i].count--)
382 {
383 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
384 {
385 unroll_number *= factors[i].factor;
386 temp *= factors[i].factor;
387 }
388 else
389 break;
390 }
391
392 /* If we couldn't find any factors, then unroll as in the normal
393 case. */
394 if (unroll_number == 1)
395 {
396 if (loop_dump_stream)
397 fprintf (loop_dump_stream,
398 "Loop unrolling: No factors found.\n");
399 }
400 else
401 unroll_type = UNROLL_MODULO;
402 }
403
404
405 /* Default case, calculate number of times to unroll loop based on its
406 size. */
407 if (unroll_number == 1)
408 {
409 if (8 * insn_count < MAX_UNROLLED_INSNS)
410 unroll_number = 8;
411 else if (4 * insn_count < MAX_UNROLLED_INSNS)
412 unroll_number = 4;
413 else
414 unroll_number = 2;
415
416 unroll_type = UNROLL_NAIVE;
417 }
418
419 /* Now we know how many times to unroll the loop. */
420
421 if (loop_dump_stream)
422 fprintf (loop_dump_stream,
423 "Unrolling loop %d times.\n", unroll_number);
424
425
426 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
427 {
428 /* Loops of these types should never start with a jump down to
429 the exit condition test. For now, check for this case just to
430 be sure. UNROLL_NAIVE loops can be of this form, this case is
431 handled below. */
432 insn = loop_start;
433 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
434 insn = NEXT_INSN (insn);
435 if (GET_CODE (insn) == JUMP_INSN)
436 abort ();
437 }
438
439 if (unroll_type == UNROLL_COMPLETELY)
440 {
441 /* Completely unrolling the loop: Delete the compare and branch at
442 the end (the last two instructions). This delete must done at the
443 very end of loop unrolling, to avoid problems with calls to
444 back_branch_in_range_p, which is called by find_splittable_regs.
445 All increments of splittable bivs/givs are changed to load constant
446 instructions. */
447
448 copy_start = loop_start;
449
450 /* Set insert_before to the instruction immediately after the JUMP_INSN
451 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
452 the loop will be correctly handled by copy_loop_body. */
453 insert_before = NEXT_INSN (last_loop_insn);
454
455 /* Set copy_end to the insn before the jump at the end of the loop. */
456 if (GET_CODE (last_loop_insn) == BARRIER)
457 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
458 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
459 {
460 #ifdef HAVE_cc0
461 /* The instruction immediately before the JUMP_INSN is a compare
462 instruction which we do not want to copy. */
463 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
464 #else
465 /* The instruction immediately before the JUMP_INSN may not be the
466 compare, so we must copy it. */
467 copy_end = PREV_INSN (last_loop_insn);
468 #endif
469 }
470 else
471 {
472 /* We currently can't unroll a loop if it doesn't end with a
473 JUMP_INSN. There would need to be a mechanism that recognizes
474 this case, and then inserts a jump after each loop body, which
475 jumps to after the last loop body. */
476 if (loop_dump_stream)
477 fprintf (loop_dump_stream,
478 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
479 return;
480 }
481 }
482 else if (unroll_type == UNROLL_MODULO)
483 {
484 /* Partially unrolling the loop: The compare and branch at the end
485 (the last two instructions) must remain. Don't copy the compare
486 and branch instructions at the end of the loop. Insert the unrolled
487 code immediately before the compare/branch at the end so that the
488 code will fall through to them as before. */
489
490 copy_start = loop_start;
491
492 /* Set insert_before to the jump insn at the end of the loop.
493 Set copy_end to before the jump insn at the end of the loop. */
494 if (GET_CODE (last_loop_insn) == BARRIER)
495 {
496 insert_before = PREV_INSN (last_loop_insn);
497 copy_end = PREV_INSN (insert_before);
498 }
499 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
500 {
501 #ifdef HAVE_cc0
502 /* The instruction immediately before the JUMP_INSN is a compare
503 instruction which we do not want to copy or delete. */
504 insert_before = PREV_INSN (last_loop_insn);
505 copy_end = PREV_INSN (insert_before);
506 #else
507 /* The instruction immediately before the JUMP_INSN may not be the
508 compare, so we must copy it. */
509 insert_before = last_loop_insn;
510 copy_end = PREV_INSN (last_loop_insn);
511 #endif
512 }
513 else
514 {
515 /* We currently can't unroll a loop if it doesn't end with a
516 JUMP_INSN. There would need to be a mechanism that recognizes
517 this case, and then inserts a jump after each loop body, which
518 jumps to after the last loop body. */
519 if (loop_dump_stream)
520 fprintf (loop_dump_stream,
521 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
522 return;
523 }
524 }
525 else
526 {
527 /* Normal case: Must copy the compare and branch instructions at the
528 end of the loop. */
529
530 if (GET_CODE (last_loop_insn) == BARRIER)
531 {
532 /* Loop ends with an unconditional jump and a barrier.
533 Handle this like above, don't copy jump and barrier.
534 This is not strictly necessary, but doing so prevents generating
535 unconditional jumps to an immediately following label.
536
537 This will be corrected below if the target of this jump is
538 not the start_label. */
539
540 insert_before = PREV_INSN (last_loop_insn);
541 copy_end = PREV_INSN (insert_before);
542 }
543 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
544 {
545 /* Set insert_before to immediately after the JUMP_INSN, so that
546 NOTEs at the end of the loop will be correctly handled by
547 copy_loop_body. */
548 insert_before = NEXT_INSN (last_loop_insn);
549 copy_end = last_loop_insn;
550 }
551 else
552 {
553 /* We currently can't unroll a loop if it doesn't end with a
554 JUMP_INSN. There would need to be a mechanism that recognizes
555 this case, and then inserts a jump after each loop body, which
556 jumps to after the last loop body. */
557 if (loop_dump_stream)
558 fprintf (loop_dump_stream,
559 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
560 return;
561 }
562
563 /* If copying exit test branches because they can not be eliminated,
564 then must convert the fall through case of the branch to a jump past
565 the end of the loop. Create a label to emit after the loop and save
566 it for later use. Do not use the label after the loop, if any, since
567 it might be used by insns outside the loop, or there might be insns
568 added before it later by final_[bg]iv_value which must be after
569 the real exit label. */
570 exit_label = gen_label_rtx ();
571
572 insn = loop_start;
573 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
574 insn = NEXT_INSN (insn);
575
576 if (GET_CODE (insn) == JUMP_INSN)
577 {
578 /* The loop starts with a jump down to the exit condition test.
579 Start copying the loop after the barrier following this
580 jump insn. */
581 copy_start = NEXT_INSN (insn);
582
583 /* Splitting induction variables doesn't work when the loop is
584 entered via a jump to the bottom, because then we end up doing
585 a comparison against a new register for a split variable, but
586 we did not execute the set insn for the new register because
587 it was skipped over. */
588 splitting_not_safe = 1;
589 if (loop_dump_stream)
590 fprintf (loop_dump_stream,
591 "Splitting not safe, because loop not entered at top.\n");
592 }
593 else
594 copy_start = loop_start;
595 }
596
597 /* This should always be the first label in the loop. */
598 start_label = NEXT_INSN (copy_start);
599 /* There may be a line number note and/or a loop continue note here. */
600 while (GET_CODE (start_label) == NOTE)
601 start_label = NEXT_INSN (start_label);
602 if (GET_CODE (start_label) != CODE_LABEL)
603 {
604 /* This can happen as a result of jump threading. If the first insns in
605 the loop test the same condition as the loop's backward jump, or the
606 opposite condition, then the backward jump will be modified to point
607 to elsewhere, and the loop's start label is deleted.
608
609 This case currently can not be handled by the loop unrolling code. */
610
611 if (loop_dump_stream)
612 fprintf (loop_dump_stream,
613 "Unrolling failure: unknown insns between BEG note and loop label.\n");
614 return;
615 }
616 if (LABEL_NAME (start_label))
617 {
618 /* The jump optimization pass must have combined the original start label
619 with a named label for a goto. We can't unroll this case because
620 jumps which go to the named label must be handled differently than
621 jumps to the loop start, and it is impossible to differentiate them
622 in this case. */
623 if (loop_dump_stream)
624 fprintf (loop_dump_stream,
625 "Unrolling failure: loop start label is gone\n");
626 return;
627 }
628
629 if (unroll_type == UNROLL_NAIVE
630 && GET_CODE (last_loop_insn) == BARRIER
631 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
632 {
633 /* In this case, we must copy the jump and barrier, because they will
634 not be converted to jumps to an immediately following label. */
635
636 insert_before = NEXT_INSN (last_loop_insn);
637 copy_end = last_loop_insn;
638 }
639
640 if (unroll_type == UNROLL_NAIVE
641 && GET_CODE (last_loop_insn) == JUMP_INSN
642 && start_label != JUMP_LABEL (last_loop_insn))
643 {
644 /* ??? The loop ends with a conditional branch that does not branch back
645 to the loop start label. In this case, we must emit an unconditional
646 branch to the loop exit after emitting the final branch.
647 copy_loop_body does not have support for this currently, so we
648 give up. It doesn't seem worthwhile to unroll anyways since
649 unrolling would increase the number of branch instructions
650 executed. */
651 if (loop_dump_stream)
652 fprintf (loop_dump_stream,
653 "Unrolling failure: final conditional branch not to loop start\n");
654 return;
655 }
656
657 /* Allocate a translation table for the labels and insn numbers.
658 They will be filled in as we copy the insns in the loop. */
659
660 max_labelno = max_label_num ();
661 max_insnno = get_max_uid ();
662
663 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
664
665 map->integrating = 0;
666
667 /* Allocate the label map. */
668
669 if (max_labelno > 0)
670 {
671 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
672
673 local_label = (char *) alloca (max_labelno);
674 bzero (local_label, max_labelno);
675 }
676 else
677 map->label_map = 0;
678
679 /* Search the loop and mark all local labels, i.e. the ones which have to
680 be distinct labels when copied. For all labels which might be
681 non-local, set their label_map entries to point to themselves.
682 If they happen to be local their label_map entries will be overwritten
683 before the loop body is copied. The label_map entries for local labels
684 will be set to a different value each time the loop body is copied. */
685
686 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
687 {
688 if (GET_CODE (insn) == CODE_LABEL)
689 local_label[CODE_LABEL_NUMBER (insn)] = 1;
690 else if (GET_CODE (insn) == JUMP_INSN)
691 {
692 if (JUMP_LABEL (insn))
693 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
694 = JUMP_LABEL (insn);
695 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
696 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
697 {
698 rtx pat = PATTERN (insn);
699 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
700 int len = XVECLEN (pat, diff_vec_p);
701 rtx label;
702
703 for (i = 0; i < len; i++)
704 {
705 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
706 map->label_map[CODE_LABEL_NUMBER (label)] = label;
707 }
708 }
709 }
710 }
711
712 /* Allocate space for the insn map. */
713
714 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
715
716 /* Set this to zero, to indicate that we are doing loop unrolling,
717 not function inlining. */
718 map->inline_target = 0;
719
720 /* The register and constant maps depend on the number of registers
721 present, so the final maps can't be created until after
722 find_splittable_regs is called. However, they are needed for
723 preconditioning, so we create temporary maps when preconditioning
724 is performed. */
725
726 /* The preconditioning code may allocate two new pseudo registers. */
727 maxregnum = max_reg_num ();
728
729 /* Allocate and zero out the splittable_regs and addr_combined_regs
730 arrays. These must be zeroed here because they will be used if
731 loop preconditioning is performed, and must be zero for that case.
732
733 It is safe to do this here, since the extra registers created by the
734 preconditioning code and find_splittable_regs will never be used
735 to access the splittable_regs[] and addr_combined_regs[] arrays. */
736
737 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
738 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
739 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
740 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
741 addr_combined_regs
742 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
743 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
744 /* We must limit it to max_reg_before_loop, because only these pseudo
745 registers have valid regno_first_uid info. Any register created after
746 that is unlikely to be local to the loop anyways. */
747 local_regno = (char *) alloca (max_reg_before_loop);
748 bzero (local_regno, max_reg_before_loop);
749
750 /* Mark all local registers, i.e. the ones which are referenced only
751 inside the loop. */
752 if (INSN_UID (copy_end) < max_uid_for_loop)
753 {
754 int copy_start_luid = INSN_LUID (copy_start);
755 int copy_end_luid = INSN_LUID (copy_end);
756
757 /* If a register is used in the jump insn, we must not duplicate it
758 since it will also be used outside the loop. */
759 if (GET_CODE (copy_end) == JUMP_INSN)
760 copy_end_luid--;
761 /* If copy_start points to the NOTE that starts the loop, then we must
762 use the next luid, because invariant pseudo-regs moved out of the loop
763 have their lifetimes modified to start here, but they are not safe
764 to duplicate. */
765 if (copy_start == loop_start)
766 copy_start_luid++;
767
768 /* If a pseudo's lifetime is entirely contained within this loop, then we
769 can use a different pseudo in each unrolled copy of the loop. This
770 results in better code. */
771 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
772 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
773 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
774 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
775 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
776 {
777 /* However, we must also check for loop-carried dependencies.
778 If the value the pseudo has at the end of iteration X is
779 used by iteration X+1, then we can not use a different pseudo
780 for each unrolled copy of the loop. */
781 /* A pseudo is safe if regno_first_uid is a set, and this
782 set dominates all instructions from regno_first_uid to
783 regno_last_uid. */
784 /* ??? This check is simplistic. We would get better code if
785 this check was more sophisticated. */
786 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
787 copy_start, copy_end))
788 local_regno[j] = 1;
789
790 if (loop_dump_stream)
791 {
792 if (local_regno[j])
793 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
794 else
795 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
796 j);
797 }
798 }
799 }
800
801 /* If this loop requires exit tests when unrolled, check to see if we
802 can precondition the loop so as to make the exit tests unnecessary.
803 Just like variable splitting, this is not safe if the loop is entered
804 via a jump to the bottom. Also, can not do this if no strength
805 reduce info, because precondition_loop_p uses this info. */
806
807 /* Must copy the loop body for preconditioning before the following
808 find_splittable_regs call since that will emit insns which need to
809 be after the preconditioned loop copies, but immediately before the
810 unrolled loop copies. */
811
812 /* Also, it is not safe to split induction variables for the preconditioned
813 copies of the loop body. If we split induction variables, then the code
814 assumes that each induction variable can be represented as a function
815 of its initial value and the loop iteration number. This is not true
816 in this case, because the last preconditioned copy of the loop body
817 could be any iteration from the first up to the `unroll_number-1'th,
818 depending on the initial value of the iteration variable. Therefore
819 we can not split induction variables here, because we can not calculate
820 their value. Hence, this code must occur before find_splittable_regs
821 is called. */
822
823 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
824 {
825 rtx initial_value, final_value, increment;
826
827 if (precondition_loop_p (&initial_value, &final_value, &increment,
828 loop_start, loop_end))
829 {
830 register rtx diff, temp;
831 enum machine_mode mode;
832 rtx *labels;
833 int abs_inc, neg_inc;
834
835 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
836
837 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
838 map->const_age_map = (unsigned *) alloca (maxregnum
839 * sizeof (unsigned));
840 map->const_equiv_map_size = maxregnum;
841 global_const_equiv_map = map->const_equiv_map;
842 global_const_equiv_map_size = maxregnum;
843
844 init_reg_map (map, maxregnum);
845
846 /* Limit loop unrolling to 4, since this will make 7 copies of
847 the loop body. */
848 if (unroll_number > 4)
849 unroll_number = 4;
850
851 /* Save the absolute value of the increment, and also whether or
852 not it is negative. */
853 neg_inc = 0;
854 abs_inc = INTVAL (increment);
855 if (abs_inc < 0)
856 {
857 abs_inc = - abs_inc;
858 neg_inc = 1;
859 }
860
861 start_sequence ();
862
863 /* Decide what mode to do these calculations in. Choose the larger
864 of final_value's mode and initial_value's mode, or a full-word if
865 both are constants. */
866 mode = GET_MODE (final_value);
867 if (mode == VOIDmode)
868 {
869 mode = GET_MODE (initial_value);
870 if (mode == VOIDmode)
871 mode = word_mode;
872 }
873 else if (mode != GET_MODE (initial_value)
874 && (GET_MODE_SIZE (mode)
875 < GET_MODE_SIZE (GET_MODE (initial_value))))
876 mode = GET_MODE (initial_value);
877
878 /* Calculate the difference between the final and initial values.
879 Final value may be a (plus (reg x) (const_int 1)) rtx.
880 Let the following cse pass simplify this if initial value is
881 a constant.
882
883 We must copy the final and initial values here to avoid
884 improperly shared rtl. */
885
886 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
887 copy_rtx (initial_value), NULL_RTX, 0,
888 OPTAB_LIB_WIDEN);
889
890 /* Now calculate (diff % (unroll * abs (increment))) by using an
891 and instruction. */
892 diff = expand_binop (GET_MODE (diff), and_optab, diff,
893 GEN_INT (unroll_number * abs_inc - 1),
894 NULL_RTX, 0, OPTAB_LIB_WIDEN);
895
896 /* Now emit a sequence of branches to jump to the proper precond
897 loop entry point. */
898
899 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
900 for (i = 0; i < unroll_number; i++)
901 labels[i] = gen_label_rtx ();
902
903 /* Check for the case where the initial value is greater than or
904 equal to the final value. In that case, we want to execute
905 exactly one loop iteration. The code below will fail for this
906 case. This check does not apply if the loop has a NE
907 comparison at the end. */
908
909 if (loop_comparison_code != NE)
910 {
911 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
912 NULL_RTX, mode, 0, 0);
913 if (neg_inc)
914 emit_jump_insn (gen_ble (labels[1]));
915 else
916 emit_jump_insn (gen_bge (labels[1]));
917 JUMP_LABEL (get_last_insn ()) = labels[1];
918 LABEL_NUSES (labels[1])++;
919 }
920
921 /* Assuming the unroll_number is 4, and the increment is 2, then
922 for a negative increment: for a positive increment:
923 diff = 0,1 precond 0 diff = 0,7 precond 0
924 diff = 2,3 precond 3 diff = 1,2 precond 1
925 diff = 4,5 precond 2 diff = 3,4 precond 2
926 diff = 6,7 precond 1 diff = 5,6 precond 3 */
927
928 /* We only need to emit (unroll_number - 1) branches here, the
929 last case just falls through to the following code. */
930
931 /* ??? This would give better code if we emitted a tree of branches
932 instead of the current linear list of branches. */
933
934 for (i = 0; i < unroll_number - 1; i++)
935 {
936 int cmp_const;
937 enum rtx_code cmp_code;
938
939 /* For negative increments, must invert the constant compared
940 against, except when comparing against zero. */
941 if (i == 0)
942 {
943 cmp_const = 0;
944 cmp_code = EQ;
945 }
946 else if (neg_inc)
947 {
948 cmp_const = unroll_number - i;
949 cmp_code = GE;
950 }
951 else
952 {
953 cmp_const = i;
954 cmp_code = LE;
955 }
956
957 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
958 cmp_code, NULL_RTX, mode, 0, 0);
959
960 if (i == 0)
961 emit_jump_insn (gen_beq (labels[i]));
962 else if (neg_inc)
963 emit_jump_insn (gen_bge (labels[i]));
964 else
965 emit_jump_insn (gen_ble (labels[i]));
966 JUMP_LABEL (get_last_insn ()) = labels[i];
967 LABEL_NUSES (labels[i])++;
968 }
969
970 /* If the increment is greater than one, then we need another branch,
971 to handle other cases equivalent to 0. */
972
973 /* ??? This should be merged into the code above somehow to help
974 simplify the code here, and reduce the number of branches emitted.
975 For the negative increment case, the branch here could easily
976 be merged with the `0' case branch above. For the positive
977 increment case, it is not clear how this can be simplified. */
978
979 if (abs_inc != 1)
980 {
981 int cmp_const;
982 enum rtx_code cmp_code;
983
984 if (neg_inc)
985 {
986 cmp_const = abs_inc - 1;
987 cmp_code = LE;
988 }
989 else
990 {
991 cmp_const = abs_inc * (unroll_number - 1) + 1;
992 cmp_code = GE;
993 }
994
995 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
996 mode, 0, 0);
997
998 if (neg_inc)
999 emit_jump_insn (gen_ble (labels[0]));
1000 else
1001 emit_jump_insn (gen_bge (labels[0]));
1002 JUMP_LABEL (get_last_insn ()) = labels[0];
1003 LABEL_NUSES (labels[0])++;
1004 }
1005
1006 sequence = gen_sequence ();
1007 end_sequence ();
1008 emit_insn_before (sequence, loop_start);
1009
1010 /* Only the last copy of the loop body here needs the exit
1011 test, so set copy_end to exclude the compare/branch here,
1012 and then reset it inside the loop when get to the last
1013 copy. */
1014
1015 if (GET_CODE (last_loop_insn) == BARRIER)
1016 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1017 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1018 {
1019 #ifdef HAVE_cc0
1020 /* The immediately preceding insn is a compare which we do not
1021 want to copy. */
1022 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1023 #else
1024 /* The immediately preceding insn may not be a compare, so we
1025 must copy it. */
1026 copy_end = PREV_INSN (last_loop_insn);
1027 #endif
1028 }
1029 else
1030 abort ();
1031
1032 for (i = 1; i < unroll_number; i++)
1033 {
1034 emit_label_after (labels[unroll_number - i],
1035 PREV_INSN (loop_start));
1036
1037 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1038 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1039 bzero ((char *) map->const_age_map,
1040 maxregnum * sizeof (unsigned));
1041 map->const_age = 0;
1042
1043 for (j = 0; j < max_labelno; j++)
1044 if (local_label[j])
1045 map->label_map[j] = gen_label_rtx ();
1046
1047 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1048 if (local_regno[j])
1049 {
1050 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1051 record_base_value (REGNO (map->reg_map[j]),
1052 regno_reg_rtx[j]);
1053 }
1054 /* The last copy needs the compare/branch insns at the end,
1055 so reset copy_end here if the loop ends with a conditional
1056 branch. */
1057
1058 if (i == unroll_number - 1)
1059 {
1060 if (GET_CODE (last_loop_insn) == BARRIER)
1061 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1062 else
1063 copy_end = last_loop_insn;
1064 }
1065
1066 /* None of the copies are the `last_iteration', so just
1067 pass zero for that parameter. */
1068 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1069 unroll_type, start_label, loop_end,
1070 loop_start, copy_end);
1071 }
1072 emit_label_after (labels[0], PREV_INSN (loop_start));
1073
1074 if (GET_CODE (last_loop_insn) == BARRIER)
1075 {
1076 insert_before = PREV_INSN (last_loop_insn);
1077 copy_end = PREV_INSN (insert_before);
1078 }
1079 else
1080 {
1081 #ifdef HAVE_cc0
1082 /* The immediately preceding insn is a compare which we do not
1083 want to copy. */
1084 insert_before = PREV_INSN (last_loop_insn);
1085 copy_end = PREV_INSN (insert_before);
1086 #else
1087 /* The immediately preceding insn may not be a compare, so we
1088 must copy it. */
1089 insert_before = last_loop_insn;
1090 copy_end = PREV_INSN (last_loop_insn);
1091 #endif
1092 }
1093
1094 /* Set unroll type to MODULO now. */
1095 unroll_type = UNROLL_MODULO;
1096 loop_preconditioned = 1;
1097 }
1098 }
1099
1100 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1101 the loop unless all loops are being unrolled. */
1102 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1103 {
1104 if (loop_dump_stream)
1105 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1106 return;
1107 }
1108
1109 /* At this point, we are guaranteed to unroll the loop. */
1110
1111 /* For each biv and giv, determine whether it can be safely split into
1112 a different variable for each unrolled copy of the loop body.
1113 We precalculate and save this info here, since computing it is
1114 expensive.
1115
1116 Do this before deleting any instructions from the loop, so that
1117 back_branch_in_range_p will work correctly. */
1118
1119 if (splitting_not_safe)
1120 temp = 0;
1121 else
1122 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1123 end_insert_before, unroll_number);
1124
1125 /* find_splittable_regs may have created some new registers, so must
1126 reallocate the reg_map with the new larger size, and must realloc
1127 the constant maps also. */
1128
1129 maxregnum = max_reg_num ();
1130 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1131
1132 init_reg_map (map, maxregnum);
1133
1134 /* Space is needed in some of the map for new registers, so new_maxregnum
1135 is an (over)estimate of how many registers will exist at the end. */
1136 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1137
1138 /* Must realloc space for the constant maps, because the number of registers
1139 may have changed. */
1140
1141 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1142 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1143
1144 map->const_equiv_map_size = new_maxregnum;
1145 global_const_equiv_map = map->const_equiv_map;
1146 global_const_equiv_map_size = new_maxregnum;
1147
1148 /* Search the list of bivs and givs to find ones which need to be remapped
1149 when split, and set their reg_map entry appropriately. */
1150
1151 for (bl = loop_iv_list; bl; bl = bl->next)
1152 {
1153 if (REGNO (bl->biv->src_reg) != bl->regno)
1154 map->reg_map[bl->regno] = bl->biv->src_reg;
1155 #if 0
1156 /* Currently, non-reduced/final-value givs are never split. */
1157 for (v = bl->giv; v; v = v->next_iv)
1158 if (REGNO (v->src_reg) != bl->regno)
1159 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1160 #endif
1161 }
1162
1163 /* Use our current register alignment and pointer flags. */
1164 map->regno_pointer_flag = regno_pointer_flag;
1165 map->regno_pointer_align = regno_pointer_align;
1166
1167 /* If the loop is being partially unrolled, and the iteration variables
1168 are being split, and are being renamed for the split, then must fix up
1169 the compare/jump instruction at the end of the loop to refer to the new
1170 registers. This compare isn't copied, so the registers used in it
1171 will never be replaced if it isn't done here. */
1172
1173 if (unroll_type == UNROLL_MODULO)
1174 {
1175 insn = NEXT_INSN (copy_end);
1176 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1177 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1178 }
1179
1180 /* For unroll_number - 1 times, make a copy of each instruction
1181 between copy_start and copy_end, and insert these new instructions
1182 before the end of the loop. */
1183
1184 for (i = 0; i < unroll_number; i++)
1185 {
1186 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1187 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1188 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1189 map->const_age = 0;
1190
1191 for (j = 0; j < max_labelno; j++)
1192 if (local_label[j])
1193 map->label_map[j] = gen_label_rtx ();
1194
1195 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1196 if (local_regno[j])
1197 {
1198 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1199 record_base_value (REGNO (map->reg_map[j]),
1200 regno_reg_rtx[j]);
1201 }
1202
1203 /* If loop starts with a branch to the test, then fix it so that
1204 it points to the test of the first unrolled copy of the loop. */
1205 if (i == 0 && loop_start != copy_start)
1206 {
1207 insn = PREV_INSN (copy_start);
1208 pattern = PATTERN (insn);
1209
1210 tem = map->label_map[CODE_LABEL_NUMBER
1211 (XEXP (SET_SRC (pattern), 0))];
1212 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1213
1214 /* Set the jump label so that it can be used by later loop unrolling
1215 passes. */
1216 JUMP_LABEL (insn) = tem;
1217 LABEL_NUSES (tem)++;
1218 }
1219
1220 copy_loop_body (copy_start, copy_end, map, exit_label,
1221 i == unroll_number - 1, unroll_type, start_label,
1222 loop_end, insert_before, insert_before);
1223 }
1224
1225 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1226 insn to be deleted. This prevents any runaway delete_insn call from
1227 more insns that it should, as it always stops at a CODE_LABEL. */
1228
1229 /* Delete the compare and branch at the end of the loop if completely
1230 unrolling the loop. Deleting the backward branch at the end also
1231 deletes the code label at the start of the loop. This is done at
1232 the very end to avoid problems with back_branch_in_range_p. */
1233
1234 if (unroll_type == UNROLL_COMPLETELY)
1235 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1236 else
1237 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1238
1239 /* Delete all of the original loop instructions. Don't delete the
1240 LOOP_BEG note, or the first code label in the loop. */
1241
1242 insn = NEXT_INSN (copy_start);
1243 while (insn != safety_label)
1244 {
1245 if (insn != start_label)
1246 insn = delete_insn (insn);
1247 else
1248 insn = NEXT_INSN (insn);
1249 }
1250
1251 /* Can now delete the 'safety' label emitted to protect us from runaway
1252 delete_insn calls. */
1253 if (INSN_DELETED_P (safety_label))
1254 abort ();
1255 delete_insn (safety_label);
1256
1257 /* If exit_label exists, emit it after the loop. Doing the emit here
1258 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1259 This is needed so that mostly_true_jump in reorg.c will treat jumps
1260 to this loop end label correctly, i.e. predict that they are usually
1261 not taken. */
1262 if (exit_label)
1263 emit_label_after (exit_label, loop_end);
1264 }
1265 \f
1266 /* Return true if the loop can be safely, and profitably, preconditioned
1267 so that the unrolled copies of the loop body don't need exit tests.
1268
1269 This only works if final_value, initial_value and increment can be
1270 determined, and if increment is a constant power of 2.
1271 If increment is not a power of 2, then the preconditioning modulo
1272 operation would require a real modulo instead of a boolean AND, and this
1273 is not considered `profitable'. */
1274
1275 /* ??? If the loop is known to be executed very many times, or the machine
1276 has a very cheap divide instruction, then preconditioning is a win even
1277 when the increment is not a power of 2. Use RTX_COST to compute
1278 whether divide is cheap. */
1279
1280 static int
1281 precondition_loop_p (initial_value, final_value, increment, loop_start,
1282 loop_end)
1283 rtx *initial_value, *final_value, *increment;
1284 rtx loop_start, loop_end;
1285 {
1286
1287 if (loop_n_iterations > 0)
1288 {
1289 *initial_value = const0_rtx;
1290 *increment = const1_rtx;
1291 *final_value = GEN_INT (loop_n_iterations);
1292
1293 if (loop_dump_stream)
1294 fprintf (loop_dump_stream,
1295 "Preconditioning: Success, number of iterations known, %d.\n",
1296 loop_n_iterations);
1297 return 1;
1298 }
1299
1300 if (loop_initial_value == 0)
1301 {
1302 if (loop_dump_stream)
1303 fprintf (loop_dump_stream,
1304 "Preconditioning: Could not find initial value.\n");
1305 return 0;
1306 }
1307 else if (loop_increment == 0)
1308 {
1309 if (loop_dump_stream)
1310 fprintf (loop_dump_stream,
1311 "Preconditioning: Could not find increment value.\n");
1312 return 0;
1313 }
1314 else if (GET_CODE (loop_increment) != CONST_INT)
1315 {
1316 if (loop_dump_stream)
1317 fprintf (loop_dump_stream,
1318 "Preconditioning: Increment not a constant.\n");
1319 return 0;
1320 }
1321 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1322 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1323 {
1324 if (loop_dump_stream)
1325 fprintf (loop_dump_stream,
1326 "Preconditioning: Increment not a constant power of 2.\n");
1327 return 0;
1328 }
1329
1330 /* Unsigned_compare and compare_dir can be ignored here, since they do
1331 not matter for preconditioning. */
1332
1333 if (loop_final_value == 0)
1334 {
1335 if (loop_dump_stream)
1336 fprintf (loop_dump_stream,
1337 "Preconditioning: EQ comparison loop.\n");
1338 return 0;
1339 }
1340
1341 /* Must ensure that final_value is invariant, so call invariant_p to
1342 check. Before doing so, must check regno against max_reg_before_loop
1343 to make sure that the register is in the range covered by invariant_p.
1344 If it isn't, then it is most likely a biv/giv which by definition are
1345 not invariant. */
1346 if ((GET_CODE (loop_final_value) == REG
1347 && REGNO (loop_final_value) >= max_reg_before_loop)
1348 || (GET_CODE (loop_final_value) == PLUS
1349 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1350 || ! invariant_p (loop_final_value))
1351 {
1352 if (loop_dump_stream)
1353 fprintf (loop_dump_stream,
1354 "Preconditioning: Final value not invariant.\n");
1355 return 0;
1356 }
1357
1358 /* Fail for floating point values, since the caller of this function
1359 does not have code to deal with them. */
1360 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1361 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1362 {
1363 if (loop_dump_stream)
1364 fprintf (loop_dump_stream,
1365 "Preconditioning: Floating point final or initial value.\n");
1366 return 0;
1367 }
1368
1369 /* Now set initial_value to be the iteration_var, since that may be a
1370 simpler expression, and is guaranteed to be correct if all of the
1371 above tests succeed.
1372
1373 We can not use the initial_value as calculated, because it will be
1374 one too small for loops of the form "while (i-- > 0)". We can not
1375 emit code before the loop_skip_over insns to fix this problem as this
1376 will then give a number one too large for loops of the form
1377 "while (--i > 0)".
1378
1379 Note that all loops that reach here are entered at the top, because
1380 this function is not called if the loop starts with a jump. */
1381
1382 /* Fail if loop_iteration_var is not live before loop_start, since we need
1383 to test its value in the preconditioning code. */
1384
1385 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1386 > INSN_LUID (loop_start))
1387 {
1388 if (loop_dump_stream)
1389 fprintf (loop_dump_stream,
1390 "Preconditioning: Iteration var not live before loop start.\n");
1391 return 0;
1392 }
1393
1394 *initial_value = loop_iteration_var;
1395 *increment = loop_increment;
1396 *final_value = loop_final_value;
1397
1398 /* Success! */
1399 if (loop_dump_stream)
1400 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1401 return 1;
1402 }
1403
1404
1405 /* All pseudo-registers must be mapped to themselves. Two hard registers
1406 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1407 REGNUM, to avoid function-inlining specific conversions of these
1408 registers. All other hard regs can not be mapped because they may be
1409 used with different
1410 modes. */
1411
1412 static void
1413 init_reg_map (map, maxregnum)
1414 struct inline_remap *map;
1415 int maxregnum;
1416 {
1417 int i;
1418
1419 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1420 map->reg_map[i] = regno_reg_rtx[i];
1421 /* Just clear the rest of the entries. */
1422 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1423 map->reg_map[i] = 0;
1424
1425 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1426 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1427 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1428 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1429 }
1430 \f
1431 /* Strength-reduction will often emit code for optimized biv/givs which
1432 calculates their value in a temporary register, and then copies the result
1433 to the iv. This procedure reconstructs the pattern computing the iv;
1434 verifying that all operands are of the proper form.
1435
1436 The return value is the amount that the giv is incremented by. */
1437
1438 static rtx
1439 calculate_giv_inc (pattern, src_insn, regno)
1440 rtx pattern, src_insn;
1441 int regno;
1442 {
1443 rtx increment;
1444 rtx increment_total = 0;
1445 int tries = 0;
1446
1447 retry:
1448 /* Verify that we have an increment insn here. First check for a plus
1449 as the set source. */
1450 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1451 {
1452 /* SR sometimes computes the new giv value in a temp, then copies it
1453 to the new_reg. */
1454 src_insn = PREV_INSN (src_insn);
1455 pattern = PATTERN (src_insn);
1456 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1457 abort ();
1458
1459 /* The last insn emitted is not needed, so delete it to avoid confusing
1460 the second cse pass. This insn sets the giv unnecessarily. */
1461 delete_insn (get_last_insn ());
1462 }
1463
1464 /* Verify that we have a constant as the second operand of the plus. */
1465 increment = XEXP (SET_SRC (pattern), 1);
1466 if (GET_CODE (increment) != CONST_INT)
1467 {
1468 /* SR sometimes puts the constant in a register, especially if it is
1469 too big to be an add immed operand. */
1470 src_insn = PREV_INSN (src_insn);
1471 increment = SET_SRC (PATTERN (src_insn));
1472
1473 /* SR may have used LO_SUM to compute the constant if it is too large
1474 for a load immed operand. In this case, the constant is in operand
1475 one of the LO_SUM rtx. */
1476 if (GET_CODE (increment) == LO_SUM)
1477 increment = XEXP (increment, 1);
1478 else if (GET_CODE (increment) == IOR
1479 || GET_CODE (increment) == ASHIFT)
1480 {
1481 /* The rs6000 port loads some constants with IOR.
1482 The alpha port loads some constants with ASHIFT. */
1483 rtx second_part = XEXP (increment, 1);
1484 enum rtx_code code = GET_CODE (increment);
1485
1486 src_insn = PREV_INSN (src_insn);
1487 increment = SET_SRC (PATTERN (src_insn));
1488 /* Don't need the last insn anymore. */
1489 delete_insn (get_last_insn ());
1490
1491 if (GET_CODE (second_part) != CONST_INT
1492 || GET_CODE (increment) != CONST_INT)
1493 abort ();
1494
1495 if (code == IOR)
1496 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1497 else
1498 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1499 }
1500
1501 if (GET_CODE (increment) != CONST_INT)
1502 abort ();
1503
1504 /* The insn loading the constant into a register is no longer needed,
1505 so delete it. */
1506 delete_insn (get_last_insn ());
1507 }
1508
1509 if (increment_total)
1510 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1511 else
1512 increment_total = increment;
1513
1514 /* Check that the source register is the same as the register we expected
1515 to see as the source. If not, something is seriously wrong. */
1516 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1517 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1518 {
1519 /* Some machines (e.g. the romp), may emit two add instructions for
1520 certain constants, so lets try looking for another add immediately
1521 before this one if we have only seen one add insn so far. */
1522
1523 if (tries == 0)
1524 {
1525 tries++;
1526
1527 src_insn = PREV_INSN (src_insn);
1528 pattern = PATTERN (src_insn);
1529
1530 delete_insn (get_last_insn ());
1531
1532 goto retry;
1533 }
1534
1535 abort ();
1536 }
1537
1538 return increment_total;
1539 }
1540
1541 /* Copy REG_NOTES, except for insn references, because not all insn_map
1542 entries are valid yet. We do need to copy registers now though, because
1543 the reg_map entries can change during copying. */
1544
1545 static rtx
1546 initial_reg_note_copy (notes, map)
1547 rtx notes;
1548 struct inline_remap *map;
1549 {
1550 rtx copy;
1551
1552 if (notes == 0)
1553 return 0;
1554
1555 copy = rtx_alloc (GET_CODE (notes));
1556 PUT_MODE (copy, GET_MODE (notes));
1557
1558 if (GET_CODE (notes) == EXPR_LIST)
1559 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1560 else if (GET_CODE (notes) == INSN_LIST)
1561 /* Don't substitute for these yet. */
1562 XEXP (copy, 0) = XEXP (notes, 0);
1563 else
1564 abort ();
1565
1566 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1567
1568 return copy;
1569 }
1570
1571 /* Fixup insn references in copied REG_NOTES. */
1572
1573 static void
1574 final_reg_note_copy (notes, map)
1575 rtx notes;
1576 struct inline_remap *map;
1577 {
1578 rtx note;
1579
1580 for (note = notes; note; note = XEXP (note, 1))
1581 if (GET_CODE (note) == INSN_LIST)
1582 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1583 }
1584
1585 /* Copy each instruction in the loop, substituting from map as appropriate.
1586 This is very similar to a loop in expand_inline_function. */
1587
1588 static void
1589 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1590 unroll_type, start_label, loop_end, insert_before,
1591 copy_notes_from)
1592 rtx copy_start, copy_end;
1593 struct inline_remap *map;
1594 rtx exit_label;
1595 int last_iteration;
1596 enum unroll_types unroll_type;
1597 rtx start_label, loop_end, insert_before, copy_notes_from;
1598 {
1599 rtx insn, pattern;
1600 rtx tem, copy;
1601 int dest_reg_was_split, i;
1602 rtx cc0_insn = 0;
1603 rtx final_label = 0;
1604 rtx giv_inc, giv_dest_reg, giv_src_reg;
1605
1606 /* If this isn't the last iteration, then map any references to the
1607 start_label to final_label. Final label will then be emitted immediately
1608 after the end of this loop body if it was ever used.
1609
1610 If this is the last iteration, then map references to the start_label
1611 to itself. */
1612 if (! last_iteration)
1613 {
1614 final_label = gen_label_rtx ();
1615 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1616 }
1617 else
1618 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1619
1620 start_sequence ();
1621
1622 insn = copy_start;
1623 do
1624 {
1625 insn = NEXT_INSN (insn);
1626
1627 map->orig_asm_operands_vector = 0;
1628
1629 switch (GET_CODE (insn))
1630 {
1631 case INSN:
1632 pattern = PATTERN (insn);
1633 copy = 0;
1634 giv_inc = 0;
1635
1636 /* Check to see if this is a giv that has been combined with
1637 some split address givs. (Combined in the sense that
1638 `combine_givs' in loop.c has put two givs in the same register.)
1639 In this case, we must search all givs based on the same biv to
1640 find the address givs. Then split the address givs.
1641 Do this before splitting the giv, since that may map the
1642 SET_DEST to a new register. */
1643
1644 if (GET_CODE (pattern) == SET
1645 && GET_CODE (SET_DEST (pattern)) == REG
1646 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1647 {
1648 struct iv_class *bl;
1649 struct induction *v, *tv;
1650 int regno = REGNO (SET_DEST (pattern));
1651
1652 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1653 bl = reg_biv_class[REGNO (v->src_reg)];
1654
1655 /* Although the giv_inc amount is not needed here, we must call
1656 calculate_giv_inc here since it might try to delete the
1657 last insn emitted. If we wait until later to call it,
1658 we might accidentally delete insns generated immediately
1659 below by emit_unrolled_add. */
1660
1661 giv_inc = calculate_giv_inc (pattern, insn, regno);
1662
1663 /* Now find all address giv's that were combined with this
1664 giv 'v'. */
1665 for (tv = bl->giv; tv; tv = tv->next_iv)
1666 if (tv->giv_type == DEST_ADDR && tv->same == v)
1667 {
1668 int this_giv_inc;
1669
1670 /* If this DEST_ADDR giv was not split, then ignore it. */
1671 if (*tv->location != tv->dest_reg)
1672 continue;
1673
1674 /* Scale this_giv_inc if the multiplicative factors of
1675 the two givs are different. */
1676 this_giv_inc = INTVAL (giv_inc);
1677 if (tv->mult_val != v->mult_val)
1678 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1679 * INTVAL (tv->mult_val));
1680
1681 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1682 *tv->location = tv->dest_reg;
1683
1684 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1685 {
1686 /* Must emit an insn to increment the split address
1687 giv. Add in the const_adjust field in case there
1688 was a constant eliminated from the address. */
1689 rtx value, dest_reg;
1690
1691 /* tv->dest_reg will be either a bare register,
1692 or else a register plus a constant. */
1693 if (GET_CODE (tv->dest_reg) == REG)
1694 dest_reg = tv->dest_reg;
1695 else
1696 dest_reg = XEXP (tv->dest_reg, 0);
1697
1698 /* Check for shared address givs, and avoid
1699 incrementing the shared pseudo reg more than
1700 once. */
1701 if (! tv->same_insn && ! tv->shared)
1702 {
1703 /* tv->dest_reg may actually be a (PLUS (REG)
1704 (CONST)) here, so we must call plus_constant
1705 to add the const_adjust amount before calling
1706 emit_unrolled_add below. */
1707 value = plus_constant (tv->dest_reg,
1708 tv->const_adjust);
1709
1710 /* The constant could be too large for an add
1711 immediate, so can't directly emit an insn
1712 here. */
1713 emit_unrolled_add (dest_reg, XEXP (value, 0),
1714 XEXP (value, 1));
1715 }
1716
1717 /* Reset the giv to be just the register again, in case
1718 it is used after the set we have just emitted.
1719 We must subtract the const_adjust factor added in
1720 above. */
1721 tv->dest_reg = plus_constant (dest_reg,
1722 - tv->const_adjust);
1723 *tv->location = tv->dest_reg;
1724 }
1725 }
1726 }
1727
1728 /* If this is a setting of a splittable variable, then determine
1729 how to split the variable, create a new set based on this split,
1730 and set up the reg_map so that later uses of the variable will
1731 use the new split variable. */
1732
1733 dest_reg_was_split = 0;
1734
1735 if (GET_CODE (pattern) == SET
1736 && GET_CODE (SET_DEST (pattern)) == REG
1737 && splittable_regs[REGNO (SET_DEST (pattern))])
1738 {
1739 int regno = REGNO (SET_DEST (pattern));
1740
1741 dest_reg_was_split = 1;
1742
1743 /* Compute the increment value for the giv, if it wasn't
1744 already computed above. */
1745
1746 if (giv_inc == 0)
1747 giv_inc = calculate_giv_inc (pattern, insn, regno);
1748 giv_dest_reg = SET_DEST (pattern);
1749 giv_src_reg = SET_DEST (pattern);
1750
1751 if (unroll_type == UNROLL_COMPLETELY)
1752 {
1753 /* Completely unrolling the loop. Set the induction
1754 variable to a known constant value. */
1755
1756 /* The value in splittable_regs may be an invariant
1757 value, so we must use plus_constant here. */
1758 splittable_regs[regno]
1759 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1760
1761 if (GET_CODE (splittable_regs[regno]) == PLUS)
1762 {
1763 giv_src_reg = XEXP (splittable_regs[regno], 0);
1764 giv_inc = XEXP (splittable_regs[regno], 1);
1765 }
1766 else
1767 {
1768 /* The splittable_regs value must be a REG or a
1769 CONST_INT, so put the entire value in the giv_src_reg
1770 variable. */
1771 giv_src_reg = splittable_regs[regno];
1772 giv_inc = const0_rtx;
1773 }
1774 }
1775 else
1776 {
1777 /* Partially unrolling loop. Create a new pseudo
1778 register for the iteration variable, and set it to
1779 be a constant plus the original register. Except
1780 on the last iteration, when the result has to
1781 go back into the original iteration var register. */
1782
1783 /* Handle bivs which must be mapped to a new register
1784 when split. This happens for bivs which need their
1785 final value set before loop entry. The new register
1786 for the biv was stored in the biv's first struct
1787 induction entry by find_splittable_regs. */
1788
1789 if (regno < max_reg_before_loop
1790 && reg_iv_type[regno] == BASIC_INDUCT)
1791 {
1792 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1793 giv_dest_reg = giv_src_reg;
1794 }
1795
1796 #if 0
1797 /* If non-reduced/final-value givs were split, then
1798 this would have to remap those givs also. See
1799 find_splittable_regs. */
1800 #endif
1801
1802 splittable_regs[regno]
1803 = GEN_INT (INTVAL (giv_inc)
1804 + INTVAL (splittable_regs[regno]));
1805 giv_inc = splittable_regs[regno];
1806
1807 /* Now split the induction variable by changing the dest
1808 of this insn to a new register, and setting its
1809 reg_map entry to point to this new register.
1810
1811 If this is the last iteration, and this is the last insn
1812 that will update the iv, then reuse the original dest,
1813 to ensure that the iv will have the proper value when
1814 the loop exits or repeats.
1815
1816 Using splittable_regs_updates here like this is safe,
1817 because it can only be greater than one if all
1818 instructions modifying the iv are always executed in
1819 order. */
1820
1821 if (! last_iteration
1822 || (splittable_regs_updates[regno]-- != 1))
1823 {
1824 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1825 giv_dest_reg = tem;
1826 map->reg_map[regno] = tem;
1827 record_base_value (REGNO (tem), giv_src_reg);
1828 }
1829 else
1830 map->reg_map[regno] = giv_src_reg;
1831 }
1832
1833 /* The constant being added could be too large for an add
1834 immediate, so can't directly emit an insn here. */
1835 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1836 copy = get_last_insn ();
1837 pattern = PATTERN (copy);
1838 }
1839 else
1840 {
1841 pattern = copy_rtx_and_substitute (pattern, map);
1842 copy = emit_insn (pattern);
1843 }
1844 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1845
1846 #ifdef HAVE_cc0
1847 /* If this insn is setting CC0, it may need to look at
1848 the insn that uses CC0 to see what type of insn it is.
1849 In that case, the call to recog via validate_change will
1850 fail. So don't substitute constants here. Instead,
1851 do it when we emit the following insn.
1852
1853 For example, see the pyr.md file. That machine has signed and
1854 unsigned compares. The compare patterns must check the
1855 following branch insn to see which what kind of compare to
1856 emit.
1857
1858 If the previous insn set CC0, substitute constants on it as
1859 well. */
1860 if (sets_cc0_p (PATTERN (copy)) != 0)
1861 cc0_insn = copy;
1862 else
1863 {
1864 if (cc0_insn)
1865 try_constants (cc0_insn, map);
1866 cc0_insn = 0;
1867 try_constants (copy, map);
1868 }
1869 #else
1870 try_constants (copy, map);
1871 #endif
1872
1873 /* Make split induction variable constants `permanent' since we
1874 know there are no backward branches across iteration variable
1875 settings which would invalidate this. */
1876 if (dest_reg_was_split)
1877 {
1878 int regno = REGNO (SET_DEST (pattern));
1879
1880 if (regno < map->const_equiv_map_size
1881 && map->const_age_map[regno] == map->const_age)
1882 map->const_age_map[regno] = -1;
1883 }
1884 break;
1885
1886 case JUMP_INSN:
1887 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1888 copy = emit_jump_insn (pattern);
1889 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1890
1891 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1892 && ! last_iteration)
1893 {
1894 /* This is a branch to the beginning of the loop; this is the
1895 last insn being copied; and this is not the last iteration.
1896 In this case, we want to change the original fall through
1897 case to be a branch past the end of the loop, and the
1898 original jump label case to fall_through. */
1899
1900 if (invert_exp (pattern, copy))
1901 {
1902 if (! redirect_exp (&pattern,
1903 map->label_map[CODE_LABEL_NUMBER
1904 (JUMP_LABEL (insn))],
1905 exit_label, copy))
1906 abort ();
1907 }
1908 else
1909 {
1910 rtx jmp;
1911 rtx lab = gen_label_rtx ();
1912 /* Can't do it by reversing the jump (probably because we
1913 couldn't reverse the conditions), so emit a new
1914 jump_insn after COPY, and redirect the jump around
1915 that. */
1916 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1917 jmp = emit_barrier_after (jmp);
1918 emit_label_after (lab, jmp);
1919 LABEL_NUSES (lab) = 0;
1920 if (! redirect_exp (&pattern,
1921 map->label_map[CODE_LABEL_NUMBER
1922 (JUMP_LABEL (insn))],
1923 lab, copy))
1924 abort ();
1925 }
1926 }
1927
1928 #ifdef HAVE_cc0
1929 if (cc0_insn)
1930 try_constants (cc0_insn, map);
1931 cc0_insn = 0;
1932 #endif
1933 try_constants (copy, map);
1934
1935 /* Set the jump label of COPY correctly to avoid problems with
1936 later passes of unroll_loop, if INSN had jump label set. */
1937 if (JUMP_LABEL (insn))
1938 {
1939 rtx label = 0;
1940
1941 /* Can't use the label_map for every insn, since this may be
1942 the backward branch, and hence the label was not mapped. */
1943 if (GET_CODE (pattern) == SET)
1944 {
1945 tem = SET_SRC (pattern);
1946 if (GET_CODE (tem) == LABEL_REF)
1947 label = XEXP (tem, 0);
1948 else if (GET_CODE (tem) == IF_THEN_ELSE)
1949 {
1950 if (XEXP (tem, 1) != pc_rtx)
1951 label = XEXP (XEXP (tem, 1), 0);
1952 else
1953 label = XEXP (XEXP (tem, 2), 0);
1954 }
1955 }
1956
1957 if (label && GET_CODE (label) == CODE_LABEL)
1958 JUMP_LABEL (copy) = label;
1959 else
1960 {
1961 /* An unrecognizable jump insn, probably the entry jump
1962 for a switch statement. This label must have been mapped,
1963 so just use the label_map to get the new jump label. */
1964 JUMP_LABEL (copy)
1965 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1966 }
1967
1968 /* If this is a non-local jump, then must increase the label
1969 use count so that the label will not be deleted when the
1970 original jump is deleted. */
1971 LABEL_NUSES (JUMP_LABEL (copy))++;
1972 }
1973 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1974 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1975 {
1976 rtx pat = PATTERN (copy);
1977 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1978 int len = XVECLEN (pat, diff_vec_p);
1979 int i;
1980
1981 for (i = 0; i < len; i++)
1982 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1983 }
1984
1985 /* If this used to be a conditional jump insn but whose branch
1986 direction is now known, we must do something special. */
1987 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1988 {
1989 #ifdef HAVE_cc0
1990 /* The previous insn set cc0 for us. So delete it. */
1991 delete_insn (PREV_INSN (copy));
1992 #endif
1993
1994 /* If this is now a no-op, delete it. */
1995 if (map->last_pc_value == pc_rtx)
1996 {
1997 /* Don't let delete_insn delete the label referenced here,
1998 because we might possibly need it later for some other
1999 instruction in the loop. */
2000 if (JUMP_LABEL (copy))
2001 LABEL_NUSES (JUMP_LABEL (copy))++;
2002 delete_insn (copy);
2003 if (JUMP_LABEL (copy))
2004 LABEL_NUSES (JUMP_LABEL (copy))--;
2005 copy = 0;
2006 }
2007 else
2008 /* Otherwise, this is unconditional jump so we must put a
2009 BARRIER after it. We could do some dead code elimination
2010 here, but jump.c will do it just as well. */
2011 emit_barrier ();
2012 }
2013 break;
2014
2015 case CALL_INSN:
2016 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2017 copy = emit_call_insn (pattern);
2018 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2019
2020 /* Because the USAGE information potentially contains objects other
2021 than hard registers, we need to copy it. */
2022 CALL_INSN_FUNCTION_USAGE (copy)
2023 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2024
2025 #ifdef HAVE_cc0
2026 if (cc0_insn)
2027 try_constants (cc0_insn, map);
2028 cc0_insn = 0;
2029 #endif
2030 try_constants (copy, map);
2031
2032 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2033 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2034 map->const_equiv_map[i] = 0;
2035 break;
2036
2037 case CODE_LABEL:
2038 /* If this is the loop start label, then we don't need to emit a
2039 copy of this label since no one will use it. */
2040
2041 if (insn != start_label)
2042 {
2043 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2044 map->const_age++;
2045 }
2046 break;
2047
2048 case BARRIER:
2049 copy = emit_barrier ();
2050 break;
2051
2052 case NOTE:
2053 /* VTOP notes are valid only before the loop exit test. If placed
2054 anywhere else, loop may generate bad code. */
2055
2056 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2057 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2058 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2059 copy = emit_note (NOTE_SOURCE_FILE (insn),
2060 NOTE_LINE_NUMBER (insn));
2061 else
2062 copy = 0;
2063 break;
2064
2065 default:
2066 abort ();
2067 break;
2068 }
2069
2070 map->insn_map[INSN_UID (insn)] = copy;
2071 }
2072 while (insn != copy_end);
2073
2074 /* Now finish coping the REG_NOTES. */
2075 insn = copy_start;
2076 do
2077 {
2078 insn = NEXT_INSN (insn);
2079 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2080 || GET_CODE (insn) == CALL_INSN)
2081 && map->insn_map[INSN_UID (insn)])
2082 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2083 }
2084 while (insn != copy_end);
2085
2086 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2087 each of these notes here, since there may be some important ones, such as
2088 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2089 iteration, because the original notes won't be deleted.
2090
2091 We can't use insert_before here, because when from preconditioning,
2092 insert_before points before the loop. We can't use copy_end, because
2093 there may be insns already inserted after it (which we don't want to
2094 copy) when not from preconditioning code. */
2095
2096 if (! last_iteration)
2097 {
2098 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2099 {
2100 if (GET_CODE (insn) == NOTE
2101 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2102 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2103 }
2104 }
2105
2106 if (final_label && LABEL_NUSES (final_label) > 0)
2107 emit_label (final_label);
2108
2109 tem = gen_sequence ();
2110 end_sequence ();
2111 emit_insn_before (tem, insert_before);
2112 }
2113 \f
2114 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2115 emitted. This will correctly handle the case where the increment value
2116 won't fit in the immediate field of a PLUS insns. */
2117
2118 void
2119 emit_unrolled_add (dest_reg, src_reg, increment)
2120 rtx dest_reg, src_reg, increment;
2121 {
2122 rtx result;
2123
2124 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2125 dest_reg, 0, OPTAB_LIB_WIDEN);
2126
2127 if (dest_reg != result)
2128 emit_move_insn (dest_reg, result);
2129 }
2130 \f
2131 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2132 is a backward branch in that range that branches to somewhere between
2133 LOOP_START and INSN. Returns 0 otherwise. */
2134
2135 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2136 In practice, this is not a problem, because this function is seldom called,
2137 and uses a negligible amount of CPU time on average. */
2138
2139 int
2140 back_branch_in_range_p (insn, loop_start, loop_end)
2141 rtx insn;
2142 rtx loop_start, loop_end;
2143 {
2144 rtx p, q, target_insn;
2145
2146 /* Stop before we get to the backward branch at the end of the loop. */
2147 loop_end = prev_nonnote_insn (loop_end);
2148 if (GET_CODE (loop_end) == BARRIER)
2149 loop_end = PREV_INSN (loop_end);
2150
2151 /* Check in case insn has been deleted, search forward for first non
2152 deleted insn following it. */
2153 while (INSN_DELETED_P (insn))
2154 insn = NEXT_INSN (insn);
2155
2156 /* Check for the case where insn is the last insn in the loop. */
2157 if (insn == loop_end)
2158 return 0;
2159
2160 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2161 {
2162 if (GET_CODE (p) == JUMP_INSN)
2163 {
2164 target_insn = JUMP_LABEL (p);
2165
2166 /* Search from loop_start to insn, to see if one of them is
2167 the target_insn. We can't use INSN_LUID comparisons here,
2168 since insn may not have an LUID entry. */
2169 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2170 if (q == target_insn)
2171 return 1;
2172 }
2173 }
2174
2175 return 0;
2176 }
2177
2178 /* Try to generate the simplest rtx for the expression
2179 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2180 value of giv's. */
2181
2182 static rtx
2183 fold_rtx_mult_add (mult1, mult2, add1, mode)
2184 rtx mult1, mult2, add1;
2185 enum machine_mode mode;
2186 {
2187 rtx temp, mult_res;
2188 rtx result;
2189
2190 /* The modes must all be the same. This should always be true. For now,
2191 check to make sure. */
2192 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2193 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2194 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2195 abort ();
2196
2197 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2198 will be a constant. */
2199 if (GET_CODE (mult1) == CONST_INT)
2200 {
2201 temp = mult2;
2202 mult2 = mult1;
2203 mult1 = temp;
2204 }
2205
2206 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2207 if (! mult_res)
2208 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2209
2210 /* Again, put the constant second. */
2211 if (GET_CODE (add1) == CONST_INT)
2212 {
2213 temp = add1;
2214 add1 = mult_res;
2215 mult_res = temp;
2216 }
2217
2218 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2219 if (! result)
2220 result = gen_rtx (PLUS, mode, add1, mult_res);
2221
2222 return result;
2223 }
2224
2225 /* Searches the list of induction struct's for the biv BL, to try to calculate
2226 the total increment value for one iteration of the loop as a constant.
2227
2228 Returns the increment value as an rtx, simplified as much as possible,
2229 if it can be calculated. Otherwise, returns 0. */
2230
2231 rtx
2232 biv_total_increment (bl, loop_start, loop_end)
2233 struct iv_class *bl;
2234 rtx loop_start, loop_end;
2235 {
2236 struct induction *v;
2237 rtx result;
2238
2239 /* For increment, must check every instruction that sets it. Each
2240 instruction must be executed only once each time through the loop.
2241 To verify this, we check that the the insn is always executed, and that
2242 there are no backward branches after the insn that branch to before it.
2243 Also, the insn must have a mult_val of one (to make sure it really is
2244 an increment). */
2245
2246 result = const0_rtx;
2247 for (v = bl->biv; v; v = v->next_iv)
2248 {
2249 if (v->always_computable && v->mult_val == const1_rtx
2250 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2251 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2252 else
2253 return 0;
2254 }
2255
2256 return result;
2257 }
2258
2259 /* Determine the initial value of the iteration variable, and the amount
2260 that it is incremented each loop. Use the tables constructed by
2261 the strength reduction pass to calculate these values.
2262
2263 Initial_value and/or increment are set to zero if their values could not
2264 be calculated. */
2265
2266 static void
2267 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2268 rtx iteration_var, *initial_value, *increment;
2269 rtx loop_start, loop_end;
2270 {
2271 struct iv_class *bl;
2272 struct induction *v, *b;
2273
2274 /* Clear the result values, in case no answer can be found. */
2275 *initial_value = 0;
2276 *increment = 0;
2277
2278 /* The iteration variable can be either a giv or a biv. Check to see
2279 which it is, and compute the variable's initial value, and increment
2280 value if possible. */
2281
2282 /* If this is a new register, can't handle it since we don't have any
2283 reg_iv_type entry for it. */
2284 if (REGNO (iteration_var) >= max_reg_before_loop)
2285 {
2286 if (loop_dump_stream)
2287 fprintf (loop_dump_stream,
2288 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2289 return;
2290 }
2291
2292 /* Reject iteration variables larger than the host wide int size, since they
2293 could result in a number of iterations greater than the range of our
2294 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2295 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2296 > HOST_BITS_PER_WIDE_INT))
2297 {
2298 if (loop_dump_stream)
2299 fprintf (loop_dump_stream,
2300 "Loop unrolling: Iteration var rejected because mode too large.\n");
2301 return;
2302 }
2303 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2304 {
2305 if (loop_dump_stream)
2306 fprintf (loop_dump_stream,
2307 "Loop unrolling: Iteration var not an integer.\n");
2308 return;
2309 }
2310 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2311 {
2312 /* Grab initial value, only useful if it is a constant. */
2313 bl = reg_biv_class[REGNO (iteration_var)];
2314 *initial_value = bl->initial_value;
2315
2316 *increment = biv_total_increment (bl, loop_start, loop_end);
2317 }
2318 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2319 {
2320 #if 1
2321 /* ??? The code below does not work because the incorrect number of
2322 iterations is calculated when the biv is incremented after the giv
2323 is set (which is the usual case). This can probably be accounted
2324 for by biasing the initial_value by subtracting the amount of the
2325 increment that occurs between the giv set and the giv test. However,
2326 a giv as an iterator is very rare, so it does not seem worthwhile
2327 to handle this. */
2328 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2329 if (loop_dump_stream)
2330 fprintf (loop_dump_stream,
2331 "Loop unrolling: Giv iterators are not handled.\n");
2332 return;
2333 #else
2334 /* Initial value is mult_val times the biv's initial value plus
2335 add_val. Only useful if it is a constant. */
2336 v = reg_iv_info[REGNO (iteration_var)];
2337 bl = reg_biv_class[REGNO (v->src_reg)];
2338 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2339 v->add_val, v->mode);
2340
2341 /* Increment value is mult_val times the increment value of the biv. */
2342
2343 *increment = biv_total_increment (bl, loop_start, loop_end);
2344 if (*increment)
2345 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2346 v->mode);
2347 #endif
2348 }
2349 else
2350 {
2351 if (loop_dump_stream)
2352 fprintf (loop_dump_stream,
2353 "Loop unrolling: Not basic or general induction var.\n");
2354 return;
2355 }
2356 }
2357
2358 /* Calculate the approximate final value of the iteration variable
2359 which has an loop exit test with code COMPARISON_CODE and comparison value
2360 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2361 was signed or unsigned, and the direction of the comparison. This info is
2362 needed to calculate the number of loop iterations. */
2363
2364 static rtx
2365 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2366 enum rtx_code comparison_code;
2367 rtx comparison_value;
2368 int *unsigned_p;
2369 int *compare_dir;
2370 {
2371 /* Calculate the final value of the induction variable.
2372 The exact final value depends on the branch operator, and increment sign.
2373 This is only an approximate value. It will be wrong if the iteration
2374 variable is not incremented by one each time through the loop, and
2375 approx final value - start value % increment != 0. */
2376
2377 *unsigned_p = 0;
2378 switch (comparison_code)
2379 {
2380 case LEU:
2381 *unsigned_p = 1;
2382 case LE:
2383 *compare_dir = 1;
2384 return plus_constant (comparison_value, 1);
2385 case GEU:
2386 *unsigned_p = 1;
2387 case GE:
2388 *compare_dir = -1;
2389 return plus_constant (comparison_value, -1);
2390 case EQ:
2391 /* Can not calculate a final value for this case. */
2392 *compare_dir = 0;
2393 return 0;
2394 case LTU:
2395 *unsigned_p = 1;
2396 case LT:
2397 *compare_dir = 1;
2398 return comparison_value;
2399 break;
2400 case GTU:
2401 *unsigned_p = 1;
2402 case GT:
2403 *compare_dir = -1;
2404 return comparison_value;
2405 case NE:
2406 *compare_dir = 0;
2407 return comparison_value;
2408 default:
2409 abort ();
2410 }
2411 }
2412
2413 /* For each biv and giv, determine whether it can be safely split into
2414 a different variable for each unrolled copy of the loop body. If it
2415 is safe to split, then indicate that by saving some useful info
2416 in the splittable_regs array.
2417
2418 If the loop is being completely unrolled, then splittable_regs will hold
2419 the current value of the induction variable while the loop is unrolled.
2420 It must be set to the initial value of the induction variable here.
2421 Otherwise, splittable_regs will hold the difference between the current
2422 value of the induction variable and the value the induction variable had
2423 at the top of the loop. It must be set to the value 0 here.
2424
2425 Returns the total number of instructions that set registers that are
2426 splittable. */
2427
2428 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2429 constant values are unnecessary, since we can easily calculate increment
2430 values in this case even if nothing is constant. The increment value
2431 should not involve a multiply however. */
2432
2433 /* ?? Even if the biv/giv increment values aren't constant, it may still
2434 be beneficial to split the variable if the loop is only unrolled a few
2435 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2436
2437 static int
2438 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2439 unroll_number)
2440 enum unroll_types unroll_type;
2441 rtx loop_start, loop_end;
2442 rtx end_insert_before;
2443 int unroll_number;
2444 {
2445 struct iv_class *bl;
2446 struct induction *v;
2447 rtx increment, tem;
2448 rtx biv_final_value;
2449 int biv_splittable;
2450 int result = 0;
2451
2452 for (bl = loop_iv_list; bl; bl = bl->next)
2453 {
2454 /* Biv_total_increment must return a constant value,
2455 otherwise we can not calculate the split values. */
2456
2457 increment = biv_total_increment (bl, loop_start, loop_end);
2458 if (! increment || GET_CODE (increment) != CONST_INT)
2459 continue;
2460
2461 /* The loop must be unrolled completely, or else have a known number
2462 of iterations and only one exit, or else the biv must be dead
2463 outside the loop, or else the final value must be known. Otherwise,
2464 it is unsafe to split the biv since it may not have the proper
2465 value on loop exit. */
2466
2467 /* loop_number_exit_count is non-zero if the loop has an exit other than
2468 a fall through at the end. */
2469
2470 biv_splittable = 1;
2471 biv_final_value = 0;
2472 if (unroll_type != UNROLL_COMPLETELY
2473 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2474 || unroll_type == UNROLL_NAIVE)
2475 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2476 || ! bl->init_insn
2477 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2478 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2479 < INSN_LUID (bl->init_insn))
2480 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2481 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2482 biv_splittable = 0;
2483
2484 /* If any of the insns setting the BIV don't do so with a simple
2485 PLUS, we don't know how to split it. */
2486 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2487 if ((tem = single_set (v->insn)) == 0
2488 || GET_CODE (SET_DEST (tem)) != REG
2489 || REGNO (SET_DEST (tem)) != bl->regno
2490 || GET_CODE (SET_SRC (tem)) != PLUS)
2491 biv_splittable = 0;
2492
2493 /* If final value is non-zero, then must emit an instruction which sets
2494 the value of the biv to the proper value. This is done after
2495 handling all of the givs, since some of them may need to use the
2496 biv's value in their initialization code. */
2497
2498 /* This biv is splittable. If completely unrolling the loop, save
2499 the biv's initial value. Otherwise, save the constant zero. */
2500
2501 if (biv_splittable == 1)
2502 {
2503 if (unroll_type == UNROLL_COMPLETELY)
2504 {
2505 /* If the initial value of the biv is itself (i.e. it is too
2506 complicated for strength_reduce to compute), or is a hard
2507 register, or it isn't invariant, then we must create a new
2508 pseudo reg to hold the initial value of the biv. */
2509
2510 if (GET_CODE (bl->initial_value) == REG
2511 && (REGNO (bl->initial_value) == bl->regno
2512 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2513 || ! invariant_p (bl->initial_value)))
2514 {
2515 rtx tem = gen_reg_rtx (bl->biv->mode);
2516
2517 record_base_value (REGNO (tem), bl->biv->add_val);
2518 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2519 loop_start);
2520
2521 if (loop_dump_stream)
2522 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2523 bl->regno, REGNO (tem));
2524
2525 splittable_regs[bl->regno] = tem;
2526 }
2527 else
2528 splittable_regs[bl->regno] = bl->initial_value;
2529 }
2530 else
2531 splittable_regs[bl->regno] = const0_rtx;
2532
2533 /* Save the number of instructions that modify the biv, so that
2534 we can treat the last one specially. */
2535
2536 splittable_regs_updates[bl->regno] = bl->biv_count;
2537 result += bl->biv_count;
2538
2539 if (loop_dump_stream)
2540 fprintf (loop_dump_stream,
2541 "Biv %d safe to split.\n", bl->regno);
2542 }
2543
2544 /* Check every giv that depends on this biv to see whether it is
2545 splittable also. Even if the biv isn't splittable, givs which
2546 depend on it may be splittable if the biv is live outside the
2547 loop, and the givs aren't. */
2548
2549 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2550 increment, unroll_number);
2551
2552 /* If final value is non-zero, then must emit an instruction which sets
2553 the value of the biv to the proper value. This is done after
2554 handling all of the givs, since some of them may need to use the
2555 biv's value in their initialization code. */
2556 if (biv_final_value)
2557 {
2558 /* If the loop has multiple exits, emit the insns before the
2559 loop to ensure that it will always be executed no matter
2560 how the loop exits. Otherwise emit the insn after the loop,
2561 since this is slightly more efficient. */
2562 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2563 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2564 biv_final_value),
2565 end_insert_before);
2566 else
2567 {
2568 /* Create a new register to hold the value of the biv, and then
2569 set the biv to its final value before the loop start. The biv
2570 is set to its final value before loop start to ensure that
2571 this insn will always be executed, no matter how the loop
2572 exits. */
2573 rtx tem = gen_reg_rtx (bl->biv->mode);
2574 record_base_value (REGNO (tem), bl->biv->add_val);
2575
2576 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2577 loop_start);
2578 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2579 biv_final_value),
2580 loop_start);
2581
2582 if (loop_dump_stream)
2583 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2584 REGNO (bl->biv->src_reg), REGNO (tem));
2585
2586 /* Set up the mapping from the original biv register to the new
2587 register. */
2588 bl->biv->src_reg = tem;
2589 }
2590 }
2591 }
2592 return result;
2593 }
2594
2595 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2596 for the instruction that is using it. Do not make any changes to that
2597 instruction. */
2598
2599 static int
2600 verify_addresses (v, giv_inc, unroll_number)
2601 struct induction *v;
2602 rtx giv_inc;
2603 int unroll_number;
2604 {
2605 int ret = 1;
2606 rtx orig_addr = *v->location;
2607 rtx last_addr = plus_constant (v->dest_reg,
2608 INTVAL (giv_inc) * (unroll_number - 1));
2609
2610 /* First check to see if either address would fail. */
2611 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2612 || ! validate_change (v->insn, v->location, last_addr, 0))
2613 ret = 0;
2614
2615 /* Now put things back the way they were before. This will always
2616 succeed. */
2617 validate_change (v->insn, v->location, orig_addr, 0);
2618
2619 return ret;
2620 }
2621
2622 /* For every giv based on the biv BL, check to determine whether it is
2623 splittable. This is a subroutine to find_splittable_regs ().
2624
2625 Return the number of instructions that set splittable registers. */
2626
2627 static int
2628 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2629 unroll_number)
2630 struct iv_class *bl;
2631 enum unroll_types unroll_type;
2632 rtx loop_start, loop_end;
2633 rtx increment;
2634 int unroll_number;
2635 {
2636 struct induction *v, *v2;
2637 rtx final_value;
2638 rtx tem;
2639 int result = 0;
2640
2641 /* Scan the list of givs, and set the same_insn field when there are
2642 multiple identical givs in the same insn. */
2643 for (v = bl->giv; v; v = v->next_iv)
2644 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2645 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2646 && ! v2->same_insn)
2647 v2->same_insn = v;
2648
2649 for (v = bl->giv; v; v = v->next_iv)
2650 {
2651 rtx giv_inc, value;
2652
2653 /* Only split the giv if it has already been reduced, or if the loop is
2654 being completely unrolled. */
2655 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2656 continue;
2657
2658 /* The giv can be split if the insn that sets the giv is executed once
2659 and only once on every iteration of the loop. */
2660 /* An address giv can always be split. v->insn is just a use not a set,
2661 and hence it does not matter whether it is always executed. All that
2662 matters is that all the biv increments are always executed, and we
2663 won't reach here if they aren't. */
2664 if (v->giv_type != DEST_ADDR
2665 && (! v->always_computable
2666 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2667 continue;
2668
2669 /* The giv increment value must be a constant. */
2670 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2671 v->mode);
2672 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2673 continue;
2674
2675 /* The loop must be unrolled completely, or else have a known number of
2676 iterations and only one exit, or else the giv must be dead outside
2677 the loop, or else the final value of the giv must be known.
2678 Otherwise, it is not safe to split the giv since it may not have the
2679 proper value on loop exit. */
2680
2681 /* The used outside loop test will fail for DEST_ADDR givs. They are
2682 never used outside the loop anyways, so it is always safe to split a
2683 DEST_ADDR giv. */
2684
2685 final_value = 0;
2686 if (unroll_type != UNROLL_COMPLETELY
2687 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2688 || unroll_type == UNROLL_NAIVE)
2689 && v->giv_type != DEST_ADDR
2690 && ((REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2691 /* Check for the case where the pseudo is set by a shift/add
2692 sequence, in which case the first insn setting the pseudo
2693 is the first insn of the shift/add sequence. */
2694 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2695 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2696 != INSN_UID (XEXP (tem, 0)))))
2697 /* Line above always fails if INSN was moved by loop opt. */
2698 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2699 >= INSN_LUID (loop_end)))
2700 && ! (final_value = v->final_value))
2701 continue;
2702
2703 #if 0
2704 /* Currently, non-reduced/final-value givs are never split. */
2705 /* Should emit insns after the loop if possible, as the biv final value
2706 code below does. */
2707
2708 /* If the final value is non-zero, and the giv has not been reduced,
2709 then must emit an instruction to set the final value. */
2710 if (final_value && !v->new_reg)
2711 {
2712 /* Create a new register to hold the value of the giv, and then set
2713 the giv to its final value before the loop start. The giv is set
2714 to its final value before loop start to ensure that this insn
2715 will always be executed, no matter how we exit. */
2716 tem = gen_reg_rtx (v->mode);
2717 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2718 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2719 loop_start);
2720
2721 if (loop_dump_stream)
2722 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2723 REGNO (v->dest_reg), REGNO (tem));
2724
2725 v->src_reg = tem;
2726 }
2727 #endif
2728
2729 /* This giv is splittable. If completely unrolling the loop, save the
2730 giv's initial value. Otherwise, save the constant zero for it. */
2731
2732 if (unroll_type == UNROLL_COMPLETELY)
2733 {
2734 /* It is not safe to use bl->initial_value here, because it may not
2735 be invariant. It is safe to use the initial value stored in
2736 the splittable_regs array if it is set. In rare cases, it won't
2737 be set, so then we do exactly the same thing as
2738 find_splittable_regs does to get a safe value. */
2739 rtx biv_initial_value;
2740
2741 if (splittable_regs[bl->regno])
2742 biv_initial_value = splittable_regs[bl->regno];
2743 else if (GET_CODE (bl->initial_value) != REG
2744 || (REGNO (bl->initial_value) != bl->regno
2745 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2746 biv_initial_value = bl->initial_value;
2747 else
2748 {
2749 rtx tem = gen_reg_rtx (bl->biv->mode);
2750
2751 record_base_value (REGNO (tem), bl->biv->add_val);
2752 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2753 loop_start);
2754 biv_initial_value = tem;
2755 }
2756 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2757 v->add_val, v->mode);
2758 }
2759 else
2760 value = const0_rtx;
2761
2762 if (v->new_reg)
2763 {
2764 /* If a giv was combined with another giv, then we can only split
2765 this giv if the giv it was combined with was reduced. This
2766 is because the value of v->new_reg is meaningless in this
2767 case. */
2768 if (v->same && ! v->same->new_reg)
2769 {
2770 if (loop_dump_stream)
2771 fprintf (loop_dump_stream,
2772 "giv combined with unreduced giv not split.\n");
2773 continue;
2774 }
2775 /* If the giv is an address destination, it could be something other
2776 than a simple register, these have to be treated differently. */
2777 else if (v->giv_type == DEST_REG)
2778 {
2779 /* If value is not a constant, register, or register plus
2780 constant, then compute its value into a register before
2781 loop start. This prevents invalid rtx sharing, and should
2782 generate better code. We can use bl->initial_value here
2783 instead of splittable_regs[bl->regno] because this code
2784 is going before the loop start. */
2785 if (unroll_type == UNROLL_COMPLETELY
2786 && GET_CODE (value) != CONST_INT
2787 && GET_CODE (value) != REG
2788 && (GET_CODE (value) != PLUS
2789 || GET_CODE (XEXP (value, 0)) != REG
2790 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2791 {
2792 rtx tem = gen_reg_rtx (v->mode);
2793 record_base_value (REGNO (tem), v->add_val);
2794 emit_iv_add_mult (bl->initial_value, v->mult_val,
2795 v->add_val, tem, loop_start);
2796 value = tem;
2797 }
2798
2799 splittable_regs[REGNO (v->new_reg)] = value;
2800 }
2801 else
2802 {
2803 /* Splitting address givs is useful since it will often allow us
2804 to eliminate some increment insns for the base giv as
2805 unnecessary. */
2806
2807 /* If the addr giv is combined with a dest_reg giv, then all
2808 references to that dest reg will be remapped, which is NOT
2809 what we want for split addr regs. We always create a new
2810 register for the split addr giv, just to be safe. */
2811
2812 /* If we have multiple identical address givs within a
2813 single instruction, then use a single pseudo reg for
2814 both. This is necessary in case one is a match_dup
2815 of the other. */
2816
2817 v->const_adjust = 0;
2818
2819 if (v->same_insn)
2820 {
2821 v->dest_reg = v->same_insn->dest_reg;
2822 if (loop_dump_stream)
2823 fprintf (loop_dump_stream,
2824 "Sharing address givs in insn %d\n",
2825 INSN_UID (v->insn));
2826 }
2827 /* If multiple address GIVs have been combined with the
2828 same dest_reg GIV, do not create a new register for
2829 each. */
2830 else if (unroll_type != UNROLL_COMPLETELY
2831 && v->giv_type == DEST_ADDR
2832 && v->same && v->same->giv_type == DEST_ADDR
2833 && v->same->unrolled)
2834 {
2835 v->dest_reg = v->same->dest_reg;
2836 v->shared = 1;
2837 }
2838 else if (unroll_type != UNROLL_COMPLETELY)
2839 {
2840 /* If not completely unrolling the loop, then create a new
2841 register to hold the split value of the DEST_ADDR giv.
2842 Emit insn to initialize its value before loop start. */
2843
2844 rtx tem = gen_reg_rtx (v->mode);
2845 record_base_value (REGNO (tem), v->add_val);
2846 v->unrolled = 1;
2847
2848 /* If the address giv has a constant in its new_reg value,
2849 then this constant can be pulled out and put in value,
2850 instead of being part of the initialization code. */
2851
2852 if (GET_CODE (v->new_reg) == PLUS
2853 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2854 {
2855 v->dest_reg
2856 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2857
2858 /* Only succeed if this will give valid addresses.
2859 Try to validate both the first and the last
2860 address resulting from loop unrolling, if
2861 one fails, then can't do const elim here. */
2862 if (verify_addresses (v, giv_inc, unroll_number))
2863 {
2864 /* Save the negative of the eliminated const, so
2865 that we can calculate the dest_reg's increment
2866 value later. */
2867 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2868
2869 v->new_reg = XEXP (v->new_reg, 0);
2870 if (loop_dump_stream)
2871 fprintf (loop_dump_stream,
2872 "Eliminating constant from giv %d\n",
2873 REGNO (tem));
2874 }
2875 else
2876 v->dest_reg = tem;
2877 }
2878 else
2879 v->dest_reg = tem;
2880
2881 /* If the address hasn't been checked for validity yet, do so
2882 now, and fail completely if either the first or the last
2883 unrolled copy of the address is not a valid address
2884 for the instruction that uses it. */
2885 if (v->dest_reg == tem
2886 && ! verify_addresses (v, giv_inc, unroll_number))
2887 {
2888 if (loop_dump_stream)
2889 fprintf (loop_dump_stream,
2890 "Invalid address for giv at insn %d\n",
2891 INSN_UID (v->insn));
2892 continue;
2893 }
2894
2895 /* To initialize the new register, just move the value of
2896 new_reg into it. This is not guaranteed to give a valid
2897 instruction on machines with complex addressing modes.
2898 If we can't recognize it, then delete it and emit insns
2899 to calculate the value from scratch. */
2900 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2901 copy_rtx (v->new_reg)),
2902 loop_start);
2903 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2904 {
2905 rtx sequence, ret;
2906
2907 /* We can't use bl->initial_value to compute the initial
2908 value, because the loop may have been preconditioned.
2909 We must calculate it from NEW_REG. Try using
2910 force_operand instead of emit_iv_add_mult. */
2911 delete_insn (PREV_INSN (loop_start));
2912
2913 start_sequence ();
2914 ret = force_operand (v->new_reg, tem);
2915 if (ret != tem)
2916 emit_move_insn (tem, ret);
2917 sequence = gen_sequence ();
2918 end_sequence ();
2919 emit_insn_before (sequence, loop_start);
2920
2921 if (loop_dump_stream)
2922 fprintf (loop_dump_stream,
2923 "Invalid init insn, rewritten.\n");
2924 }
2925 }
2926 else
2927 {
2928 v->dest_reg = value;
2929
2930 /* Check the resulting address for validity, and fail
2931 if the resulting address would be invalid. */
2932 if (! verify_addresses (v, giv_inc, unroll_number))
2933 {
2934 if (loop_dump_stream)
2935 fprintf (loop_dump_stream,
2936 "Invalid address for giv at insn %d\n",
2937 INSN_UID (v->insn));
2938 continue;
2939 }
2940 }
2941
2942 /* Store the value of dest_reg into the insn. This sharing
2943 will not be a problem as this insn will always be copied
2944 later. */
2945
2946 *v->location = v->dest_reg;
2947
2948 /* If this address giv is combined with a dest reg giv, then
2949 save the base giv's induction pointer so that we will be
2950 able to handle this address giv properly. The base giv
2951 itself does not have to be splittable. */
2952
2953 if (v->same && v->same->giv_type == DEST_REG)
2954 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2955
2956 if (GET_CODE (v->new_reg) == REG)
2957 {
2958 /* This giv maybe hasn't been combined with any others.
2959 Make sure that it's giv is marked as splittable here. */
2960
2961 splittable_regs[REGNO (v->new_reg)] = value;
2962
2963 /* Make it appear to depend upon itself, so that the
2964 giv will be properly split in the main loop above. */
2965 if (! v->same)
2966 {
2967 v->same = v;
2968 addr_combined_regs[REGNO (v->new_reg)] = v;
2969 }
2970 }
2971
2972 if (loop_dump_stream)
2973 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2974 }
2975 }
2976 else
2977 {
2978 #if 0
2979 /* Currently, unreduced giv's can't be split. This is not too much
2980 of a problem since unreduced giv's are not live across loop
2981 iterations anyways. When unrolling a loop completely though,
2982 it makes sense to reduce&split givs when possible, as this will
2983 result in simpler instructions, and will not require that a reg
2984 be live across loop iterations. */
2985
2986 splittable_regs[REGNO (v->dest_reg)] = value;
2987 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2988 REGNO (v->dest_reg), INSN_UID (v->insn));
2989 #else
2990 continue;
2991 #endif
2992 }
2993
2994 /* Unreduced givs are only updated once by definition. Reduced givs
2995 are updated as many times as their biv is. Mark it so if this is
2996 a splittable register. Don't need to do anything for address givs
2997 where this may not be a register. */
2998
2999 if (GET_CODE (v->new_reg) == REG)
3000 {
3001 int count = 1;
3002 if (! v->ignore)
3003 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3004
3005 splittable_regs_updates[REGNO (v->new_reg)] = count;
3006 }
3007
3008 result++;
3009
3010 if (loop_dump_stream)
3011 {
3012 int regnum;
3013
3014 if (GET_CODE (v->dest_reg) == CONST_INT)
3015 regnum = -1;
3016 else if (GET_CODE (v->dest_reg) != REG)
3017 regnum = REGNO (XEXP (v->dest_reg, 0));
3018 else
3019 regnum = REGNO (v->dest_reg);
3020 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3021 regnum, INSN_UID (v->insn));
3022 }
3023 }
3024
3025 return result;
3026 }
3027 \f
3028 /* Try to prove that the register is dead after the loop exits. Trace every
3029 loop exit looking for an insn that will always be executed, which sets
3030 the register to some value, and appears before the first use of the register
3031 is found. If successful, then return 1, otherwise return 0. */
3032
3033 /* ?? Could be made more intelligent in the handling of jumps, so that
3034 it can search past if statements and other similar structures. */
3035
3036 static int
3037 reg_dead_after_loop (reg, loop_start, loop_end)
3038 rtx reg, loop_start, loop_end;
3039 {
3040 rtx insn, label;
3041 enum rtx_code code;
3042 int jump_count = 0;
3043 int label_count = 0;
3044 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3045
3046 /* In addition to checking all exits of this loop, we must also check
3047 all exits of inner nested loops that would exit this loop. We don't
3048 have any way to identify those, so we just give up if there are any
3049 such inner loop exits. */
3050
3051 for (label = loop_number_exit_labels[this_loop_num]; label;
3052 label = LABEL_NEXTREF (label))
3053 label_count++;
3054
3055 if (label_count != loop_number_exit_count[this_loop_num])
3056 return 0;
3057
3058 /* HACK: Must also search the loop fall through exit, create a label_ref
3059 here which points to the loop_end, and append the loop_number_exit_labels
3060 list to it. */
3061 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3062 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3063
3064 for ( ; label; label = LABEL_NEXTREF (label))
3065 {
3066 /* Succeed if find an insn which sets the biv or if reach end of
3067 function. Fail if find an insn that uses the biv, or if come to
3068 a conditional jump. */
3069
3070 insn = NEXT_INSN (XEXP (label, 0));
3071 while (insn)
3072 {
3073 code = GET_CODE (insn);
3074 if (GET_RTX_CLASS (code) == 'i')
3075 {
3076 rtx set;
3077
3078 if (reg_referenced_p (reg, PATTERN (insn)))
3079 return 0;
3080
3081 set = single_set (insn);
3082 if (set && rtx_equal_p (SET_DEST (set), reg))
3083 break;
3084 }
3085
3086 if (code == JUMP_INSN)
3087 {
3088 if (GET_CODE (PATTERN (insn)) == RETURN)
3089 break;
3090 else if (! simplejump_p (insn)
3091 /* Prevent infinite loop following infinite loops. */
3092 || jump_count++ > 20)
3093 return 0;
3094 else
3095 insn = JUMP_LABEL (insn);
3096 }
3097
3098 insn = NEXT_INSN (insn);
3099 }
3100 }
3101
3102 /* Success, the register is dead on all loop exits. */
3103 return 1;
3104 }
3105
3106 /* Try to calculate the final value of the biv, the value it will have at
3107 the end of the loop. If we can do it, return that value. */
3108
3109 rtx
3110 final_biv_value (bl, loop_start, loop_end)
3111 struct iv_class *bl;
3112 rtx loop_start, loop_end;
3113 {
3114 rtx increment, tem;
3115
3116 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3117
3118 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3119 return 0;
3120
3121 /* The final value for reversed bivs must be calculated differently than
3122 for ordinary bivs. In this case, there is already an insn after the
3123 loop which sets this biv's final value (if necessary), and there are
3124 no other loop exits, so we can return any value. */
3125 if (bl->reversed)
3126 {
3127 if (loop_dump_stream)
3128 fprintf (loop_dump_stream,
3129 "Final biv value for %d, reversed biv.\n", bl->regno);
3130
3131 return const0_rtx;
3132 }
3133
3134 /* Try to calculate the final value as initial value + (number of iterations
3135 * increment). For this to work, increment must be invariant, the only
3136 exit from the loop must be the fall through at the bottom (otherwise
3137 it may not have its final value when the loop exits), and the initial
3138 value of the biv must be invariant. */
3139
3140 if (loop_n_iterations != 0
3141 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3142 && invariant_p (bl->initial_value))
3143 {
3144 increment = biv_total_increment (bl, loop_start, loop_end);
3145
3146 if (increment && invariant_p (increment))
3147 {
3148 /* Can calculate the loop exit value, emit insns after loop
3149 end to calculate this value into a temporary register in
3150 case it is needed later. */
3151
3152 tem = gen_reg_rtx (bl->biv->mode);
3153 record_base_value (REGNO (tem), bl->biv->add_val);
3154 /* Make sure loop_end is not the last insn. */
3155 if (NEXT_INSN (loop_end) == 0)
3156 emit_note_after (NOTE_INSN_DELETED, loop_end);
3157 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3158 bl->initial_value, tem, NEXT_INSN (loop_end));
3159
3160 if (loop_dump_stream)
3161 fprintf (loop_dump_stream,
3162 "Final biv value for %d, calculated.\n", bl->regno);
3163
3164 return tem;
3165 }
3166 }
3167
3168 /* Check to see if the biv is dead at all loop exits. */
3169 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3170 {
3171 if (loop_dump_stream)
3172 fprintf (loop_dump_stream,
3173 "Final biv value for %d, biv dead after loop exit.\n",
3174 bl->regno);
3175
3176 return const0_rtx;
3177 }
3178
3179 return 0;
3180 }
3181
3182 /* Try to calculate the final value of the giv, the value it will have at
3183 the end of the loop. If we can do it, return that value. */
3184
3185 rtx
3186 final_giv_value (v, loop_start, loop_end)
3187 struct induction *v;
3188 rtx loop_start, loop_end;
3189 {
3190 struct iv_class *bl;
3191 rtx insn;
3192 rtx increment, tem;
3193 rtx insert_before, seq;
3194
3195 bl = reg_biv_class[REGNO (v->src_reg)];
3196
3197 /* The final value for givs which depend on reversed bivs must be calculated
3198 differently than for ordinary givs. In this case, there is already an
3199 insn after the loop which sets this giv's final value (if necessary),
3200 and there are no other loop exits, so we can return any value. */
3201 if (bl->reversed)
3202 {
3203 if (loop_dump_stream)
3204 fprintf (loop_dump_stream,
3205 "Final giv value for %d, depends on reversed biv\n",
3206 REGNO (v->dest_reg));
3207 return const0_rtx;
3208 }
3209
3210 /* Try to calculate the final value as a function of the biv it depends
3211 upon. The only exit from the loop must be the fall through at the bottom
3212 (otherwise it may not have its final value when the loop exits). */
3213
3214 /* ??? Can calculate the final giv value by subtracting off the
3215 extra biv increments times the giv's mult_val. The loop must have
3216 only one exit for this to work, but the loop iterations does not need
3217 to be known. */
3218
3219 if (loop_n_iterations != 0
3220 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3221 {
3222 /* ?? It is tempting to use the biv's value here since these insns will
3223 be put after the loop, and hence the biv will have its final value
3224 then. However, this fails if the biv is subsequently eliminated.
3225 Perhaps determine whether biv's are eliminable before trying to
3226 determine whether giv's are replaceable so that we can use the
3227 biv value here if it is not eliminable. */
3228
3229 /* We are emitting code after the end of the loop, so we must make
3230 sure that bl->initial_value is still valid then. It will still
3231 be valid if it is invariant. */
3232
3233 increment = biv_total_increment (bl, loop_start, loop_end);
3234
3235 if (increment && invariant_p (increment)
3236 && invariant_p (bl->initial_value))
3237 {
3238 /* Can calculate the loop exit value of its biv as
3239 (loop_n_iterations * increment) + initial_value */
3240
3241 /* The loop exit value of the giv is then
3242 (final_biv_value - extra increments) * mult_val + add_val.
3243 The extra increments are any increments to the biv which
3244 occur in the loop after the giv's value is calculated.
3245 We must search from the insn that sets the giv to the end
3246 of the loop to calculate this value. */
3247
3248 insert_before = NEXT_INSN (loop_end);
3249
3250 /* Put the final biv value in tem. */
3251 tem = gen_reg_rtx (bl->biv->mode);
3252 record_base_value (REGNO (tem), bl->biv->add_val);
3253 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3254 bl->initial_value, tem, insert_before);
3255
3256 /* Subtract off extra increments as we find them. */
3257 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3258 insn = NEXT_INSN (insn))
3259 {
3260 struct induction *biv;
3261
3262 for (biv = bl->biv; biv; biv = biv->next_iv)
3263 if (biv->insn == insn)
3264 {
3265 start_sequence ();
3266 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3267 biv->add_val, NULL_RTX, 0,
3268 OPTAB_LIB_WIDEN);
3269 seq = gen_sequence ();
3270 end_sequence ();
3271 emit_insn_before (seq, insert_before);
3272 }
3273 }
3274
3275 /* Now calculate the giv's final value. */
3276 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3277 insert_before);
3278
3279 if (loop_dump_stream)
3280 fprintf (loop_dump_stream,
3281 "Final giv value for %d, calc from biv's value.\n",
3282 REGNO (v->dest_reg));
3283
3284 return tem;
3285 }
3286 }
3287
3288 /* Replaceable giv's should never reach here. */
3289 if (v->replaceable)
3290 abort ();
3291
3292 /* Check to see if the biv is dead at all loop exits. */
3293 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3294 {
3295 if (loop_dump_stream)
3296 fprintf (loop_dump_stream,
3297 "Final giv value for %d, giv dead after loop exit.\n",
3298 REGNO (v->dest_reg));
3299
3300 return const0_rtx;
3301 }
3302
3303 return 0;
3304 }
3305
3306
3307 /* Calculate the number of loop iterations. Returns the exact number of loop
3308 iterations if it can be calculated, otherwise returns zero. */
3309
3310 unsigned HOST_WIDE_INT
3311 loop_iterations (loop_start, loop_end)
3312 rtx loop_start, loop_end;
3313 {
3314 rtx comparison, comparison_value;
3315 rtx iteration_var, initial_value, increment, final_value;
3316 enum rtx_code comparison_code;
3317 HOST_WIDE_INT i;
3318 int increment_dir;
3319 int unsigned_compare, compare_dir, final_larger;
3320 unsigned long tempu;
3321 rtx last_loop_insn;
3322
3323 /* First find the iteration variable. If the last insn is a conditional
3324 branch, and the insn before tests a register value, make that the
3325 iteration variable. */
3326
3327 loop_initial_value = 0;
3328 loop_increment = 0;
3329 loop_final_value = 0;
3330 loop_iteration_var = 0;
3331
3332 /* We used to use pren_nonnote_insn here, but that fails because it might
3333 accidentally get the branch for a contained loop if the branch for this
3334 loop was deleted. We can only trust branches immediately before the
3335 loop_end. */
3336 last_loop_insn = PREV_INSN (loop_end);
3337
3338 comparison = get_condition_for_loop (last_loop_insn);
3339 if (comparison == 0)
3340 {
3341 if (loop_dump_stream)
3342 fprintf (loop_dump_stream,
3343 "Loop unrolling: No final conditional branch found.\n");
3344 return 0;
3345 }
3346
3347 /* ??? Get_condition may switch position of induction variable and
3348 invariant register when it canonicalizes the comparison. */
3349
3350 comparison_code = GET_CODE (comparison);
3351 iteration_var = XEXP (comparison, 0);
3352 comparison_value = XEXP (comparison, 1);
3353
3354 if (GET_CODE (iteration_var) != REG)
3355 {
3356 if (loop_dump_stream)
3357 fprintf (loop_dump_stream,
3358 "Loop unrolling: Comparison not against register.\n");
3359 return 0;
3360 }
3361
3362 /* Loop iterations is always called before any new registers are created
3363 now, so this should never occur. */
3364
3365 if (REGNO (iteration_var) >= max_reg_before_loop)
3366 abort ();
3367
3368 iteration_info (iteration_var, &initial_value, &increment,
3369 loop_start, loop_end);
3370 if (initial_value == 0)
3371 /* iteration_info already printed a message. */
3372 return 0;
3373
3374 /* If the comparison value is an invariant register, then try to find
3375 its value from the insns before the start of the loop. */
3376
3377 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3378 {
3379 rtx insn, set;
3380
3381 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3382 {
3383 if (GET_CODE (insn) == CODE_LABEL)
3384 break;
3385
3386 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3387 && reg_set_p (comparison_value, insn))
3388 {
3389 /* We found the last insn before the loop that sets the register.
3390 If it sets the entire register, and has a REG_EQUAL note,
3391 then use the value of the REG_EQUAL note. */
3392 if ((set = single_set (insn))
3393 && (SET_DEST (set) == comparison_value))
3394 {
3395 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3396
3397 /* Only use the REG_EQUAL note if it is a constant.
3398 Other things, divide in particular, will cause
3399 problems later if we use them. */
3400 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3401 && CONSTANT_P (XEXP (note, 0)))
3402 comparison_value = XEXP (note, 0);
3403 }
3404 break;
3405 }
3406 }
3407 }
3408
3409 final_value = approx_final_value (comparison_code, comparison_value,
3410 &unsigned_compare, &compare_dir);
3411
3412 /* Save the calculated values describing this loop's bounds, in case
3413 precondition_loop_p will need them later. These values can not be
3414 recalculated inside precondition_loop_p because strength reduction
3415 optimizations may obscure the loop's structure. */
3416
3417 loop_iteration_var = iteration_var;
3418 loop_initial_value = initial_value;
3419 loop_increment = increment;
3420 loop_final_value = final_value;
3421 loop_comparison_code = comparison_code;
3422
3423 if (increment == 0)
3424 {
3425 if (loop_dump_stream)
3426 fprintf (loop_dump_stream,
3427 "Loop unrolling: Increment value can't be calculated.\n");
3428 return 0;
3429 }
3430 else if (GET_CODE (increment) != CONST_INT)
3431 {
3432 if (loop_dump_stream)
3433 fprintf (loop_dump_stream,
3434 "Loop unrolling: Increment value not constant.\n");
3435 return 0;
3436 }
3437 else if (GET_CODE (initial_value) != CONST_INT)
3438 {
3439 if (loop_dump_stream)
3440 fprintf (loop_dump_stream,
3441 "Loop unrolling: Initial value not constant.\n");
3442 return 0;
3443 }
3444 else if (final_value == 0)
3445 {
3446 if (loop_dump_stream)
3447 fprintf (loop_dump_stream,
3448 "Loop unrolling: EQ comparison loop.\n");
3449 return 0;
3450 }
3451 else if (GET_CODE (final_value) != CONST_INT)
3452 {
3453 if (loop_dump_stream)
3454 fprintf (loop_dump_stream,
3455 "Loop unrolling: Final value not constant.\n");
3456 return 0;
3457 }
3458
3459 /* ?? Final value and initial value do not have to be constants.
3460 Only their difference has to be constant. When the iteration variable
3461 is an array address, the final value and initial value might both
3462 be addresses with the same base but different constant offsets.
3463 Final value must be invariant for this to work.
3464
3465 To do this, need some way to find the values of registers which are
3466 invariant. */
3467
3468 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3469 if (unsigned_compare)
3470 final_larger
3471 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3472 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3473 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3474 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3475 else
3476 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3477 - (INTVAL (final_value) < INTVAL (initial_value));
3478
3479 if (INTVAL (increment) > 0)
3480 increment_dir = 1;
3481 else if (INTVAL (increment) == 0)
3482 increment_dir = 0;
3483 else
3484 increment_dir = -1;
3485
3486 /* There are 27 different cases: compare_dir = -1, 0, 1;
3487 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3488 There are 4 normal cases, 4 reverse cases (where the iteration variable
3489 will overflow before the loop exits), 4 infinite loop cases, and 15
3490 immediate exit (0 or 1 iteration depending on loop type) cases.
3491 Only try to optimize the normal cases. */
3492
3493 /* (compare_dir/final_larger/increment_dir)
3494 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3495 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3496 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3497 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3498
3499 /* ?? If the meaning of reverse loops (where the iteration variable
3500 will overflow before the loop exits) is undefined, then could
3501 eliminate all of these special checks, and just always assume
3502 the loops are normal/immediate/infinite. Note that this means
3503 the sign of increment_dir does not have to be known. Also,
3504 since it does not really hurt if immediate exit loops or infinite loops
3505 are optimized, then that case could be ignored also, and hence all
3506 loops can be optimized.
3507
3508 According to ANSI Spec, the reverse loop case result is undefined,
3509 because the action on overflow is undefined.
3510
3511 See also the special test for NE loops below. */
3512
3513 if (final_larger == increment_dir && final_larger != 0
3514 && (final_larger == compare_dir || compare_dir == 0))
3515 /* Normal case. */
3516 ;
3517 else
3518 {
3519 if (loop_dump_stream)
3520 fprintf (loop_dump_stream,
3521 "Loop unrolling: Not normal loop.\n");
3522 return 0;
3523 }
3524
3525 /* Calculate the number of iterations, final_value is only an approximation,
3526 so correct for that. Note that tempu and loop_n_iterations are
3527 unsigned, because they can be as large as 2^n - 1. */
3528
3529 i = INTVAL (increment);
3530 if (i > 0)
3531 tempu = INTVAL (final_value) - INTVAL (initial_value);
3532 else if (i < 0)
3533 {
3534 tempu = INTVAL (initial_value) - INTVAL (final_value);
3535 i = -i;
3536 }
3537 else
3538 abort ();
3539
3540 /* For NE tests, make sure that the iteration variable won't miss the
3541 final value. If tempu mod i is not zero, then the iteration variable
3542 will overflow before the loop exits, and we can not calculate the
3543 number of iterations. */
3544 if (compare_dir == 0 && (tempu % i) != 0)
3545 return 0;
3546
3547 return tempu / i + ((tempu % i) != 0);
3548 }
3549
3550 /* Replace uses of split bivs with their split pseudo register. This is
3551 for original instructions which remain after loop unrolling without
3552 copying. */
3553
3554 static rtx
3555 remap_split_bivs (x)
3556 rtx x;
3557 {
3558 register enum rtx_code code;
3559 register int i;
3560 register char *fmt;
3561
3562 if (x == 0)
3563 return x;
3564
3565 code = GET_CODE (x);
3566 switch (code)
3567 {
3568 case SCRATCH:
3569 case PC:
3570 case CC0:
3571 case CONST_INT:
3572 case CONST_DOUBLE:
3573 case CONST:
3574 case SYMBOL_REF:
3575 case LABEL_REF:
3576 return x;
3577
3578 case REG:
3579 #if 0
3580 /* If non-reduced/final-value givs were split, then this would also
3581 have to remap those givs also. */
3582 #endif
3583 if (REGNO (x) < max_reg_before_loop
3584 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3585 return reg_biv_class[REGNO (x)]->biv->src_reg;
3586 }
3587
3588 fmt = GET_RTX_FORMAT (code);
3589 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3590 {
3591 if (fmt[i] == 'e')
3592 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3593 if (fmt[i] == 'E')
3594 {
3595 register int j;
3596 for (j = 0; j < XVECLEN (x, i); j++)
3597 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3598 }
3599 }
3600 return x;
3601 }
3602
3603 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3604 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3605 return 0. COPY_START is where we can start looking for the insns
3606 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3607 insns.
3608
3609 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3610 must dominate LAST_UID.
3611
3612 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3613 may not dominate LAST_UID.
3614
3615 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3616 must dominate LAST_UID. */
3617
3618 int
3619 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3620 int regno;
3621 int first_uid;
3622 int last_uid;
3623 rtx copy_start;
3624 rtx copy_end;
3625 {
3626 int passed_jump = 0;
3627 rtx p = NEXT_INSN (copy_start);
3628
3629 while (INSN_UID (p) != first_uid)
3630 {
3631 if (GET_CODE (p) == JUMP_INSN)
3632 passed_jump= 1;
3633 /* Could not find FIRST_UID. */
3634 if (p == copy_end)
3635 return 0;
3636 p = NEXT_INSN (p);
3637 }
3638
3639 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3640 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3641 || ! dead_or_set_regno_p (p, regno))
3642 return 0;
3643
3644 /* FIRST_UID is always executed. */
3645 if (passed_jump == 0)
3646 return 1;
3647
3648 while (INSN_UID (p) != last_uid)
3649 {
3650 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3651 can not be sure that FIRST_UID dominates LAST_UID. */
3652 if (GET_CODE (p) == CODE_LABEL)
3653 return 0;
3654 /* Could not find LAST_UID, but we reached the end of the loop, so
3655 it must be safe. */
3656 else if (p == copy_end)
3657 return 1;
3658 p = NEXT_INSN (p);
3659 }
3660
3661 /* FIRST_UID is always executed if LAST_UID is executed. */
3662 return 1;
3663 }