Use accessor macros to access arrays based on regno; move many of the arrays into...
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
158
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
161
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
165
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
171
172 static struct induction **addr_combined_regs;
173
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
177
178 static rtx *splittable_regs;
179
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
184
185 static int *splittable_regs_updates;
186
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
189
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
194 static enum rtx_code loop_comparison_code;
195
196 /* Forward declarations. */
197
198 static void init_reg_map PROTO((struct inline_remap *, int));
199 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
200 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
201 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
204 enum unroll_types, rtx, rtx, rtx, rtx));
205 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
206 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
207 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
208 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
209 rtx, rtx, rtx, int));
210 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
211 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
212 static rtx remap_split_bivs PROTO((rtx));
213
214 /* Try to unroll one loop and split induction variables in the loop.
215
216 The loop is described by the arguments LOOP_END, INSN_COUNT, and
217 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
218 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
219 indicates whether information generated in the strength reduction pass
220 is available.
221
222 This function is intended to be called from within `strength_reduce'
223 in loop.c. */
224
225 void
226 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
227 strength_reduce_p)
228 rtx loop_end;
229 int insn_count;
230 rtx loop_start;
231 rtx end_insert_before;
232 int strength_reduce_p;
233 {
234 int i, j, temp;
235 int unroll_number = 1;
236 rtx copy_start, copy_end;
237 rtx insn, copy, sequence, pattern, tem;
238 int max_labelno, max_insnno;
239 rtx insert_before;
240 struct inline_remap *map;
241 char *local_label;
242 char *local_regno;
243 int maxregnum;
244 int new_maxregnum;
245 rtx exit_label = 0;
246 rtx start_label;
247 struct iv_class *bl;
248 int splitting_not_safe = 0;
249 enum unroll_types unroll_type;
250 int loop_preconditioned = 0;
251 rtx safety_label;
252 /* This points to the last real insn in the loop, which should be either
253 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
254 jumps). */
255 rtx last_loop_insn;
256
257 /* Don't bother unrolling huge loops. Since the minimum factor is
258 two, loops greater than one half of MAX_UNROLLED_INSNS will never
259 be unrolled. */
260 if (insn_count > MAX_UNROLLED_INSNS / 2)
261 {
262 if (loop_dump_stream)
263 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
264 return;
265 }
266
267 /* When emitting debugger info, we can't unroll loops with unequal numbers
268 of block_beg and block_end notes, because that would unbalance the block
269 structure of the function. This can happen as a result of the
270 "if (foo) bar; else break;" optimization in jump.c. */
271 /* ??? Gcc has a general policy that -g is never supposed to change the code
272 that the compiler emits, so we must disable this optimization always,
273 even if debug info is not being output. This is rare, so this should
274 not be a significant performance problem. */
275
276 if (1 /* write_symbols != NO_DEBUG */)
277 {
278 int block_begins = 0;
279 int block_ends = 0;
280
281 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
282 {
283 if (GET_CODE (insn) == NOTE)
284 {
285 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
286 block_begins++;
287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
288 block_ends++;
289 }
290 }
291
292 if (block_begins != block_ends)
293 {
294 if (loop_dump_stream)
295 fprintf (loop_dump_stream,
296 "Unrolling failure: Unbalanced block notes.\n");
297 return;
298 }
299 }
300
301 /* Determine type of unroll to perform. Depends on the number of iterations
302 and the size of the loop. */
303
304 /* If there is no strength reduce info, then set loop_n_iterations to zero.
305 This can happen if strength_reduce can't find any bivs in the loop.
306 A value of zero indicates that the number of iterations could not be
307 calculated. */
308
309 if (! strength_reduce_p)
310 loop_n_iterations = 0;
311
312 if (loop_dump_stream && loop_n_iterations > 0)
313 fprintf (loop_dump_stream,
314 "Loop unrolling: %d iterations.\n", loop_n_iterations);
315
316 /* Find and save a pointer to the last nonnote insn in the loop. */
317
318 last_loop_insn = prev_nonnote_insn (loop_end);
319
320 /* Calculate how many times to unroll the loop. Indicate whether or
321 not the loop is being completely unrolled. */
322
323 if (loop_n_iterations == 1)
324 {
325 /* If number of iterations is exactly 1, then eliminate the compare and
326 branch at the end of the loop since they will never be taken.
327 Then return, since no other action is needed here. */
328
329 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
330 don't do anything. */
331
332 if (GET_CODE (last_loop_insn) == BARRIER)
333 {
334 /* Delete the jump insn. This will delete the barrier also. */
335 delete_insn (PREV_INSN (last_loop_insn));
336 }
337 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
338 {
339 #ifdef HAVE_cc0
340 /* The immediately preceding insn is a compare which must be
341 deleted. */
342 delete_insn (last_loop_insn);
343 delete_insn (PREV_INSN (last_loop_insn));
344 #else
345 /* The immediately preceding insn may not be the compare, so don't
346 delete it. */
347 delete_insn (last_loop_insn);
348 #endif
349 }
350 return;
351 }
352 else if (loop_n_iterations > 0
353 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
354 {
355 unroll_number = loop_n_iterations;
356 unroll_type = UNROLL_COMPLETELY;
357 }
358 else if (loop_n_iterations > 0)
359 {
360 /* Try to factor the number of iterations. Don't bother with the
361 general case, only using 2, 3, 5, and 7 will get 75% of all
362 numbers theoretically, and almost all in practice. */
363
364 for (i = 0; i < NUM_FACTORS; i++)
365 factors[i].count = 0;
366
367 temp = loop_n_iterations;
368 for (i = NUM_FACTORS - 1; i >= 0; i--)
369 while (temp % factors[i].factor == 0)
370 {
371 factors[i].count++;
372 temp = temp / factors[i].factor;
373 }
374
375 /* Start with the larger factors first so that we generally
376 get lots of unrolling. */
377
378 unroll_number = 1;
379 temp = insn_count;
380 for (i = 3; i >= 0; i--)
381 while (factors[i].count--)
382 {
383 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
384 {
385 unroll_number *= factors[i].factor;
386 temp *= factors[i].factor;
387 }
388 else
389 break;
390 }
391
392 /* If we couldn't find any factors, then unroll as in the normal
393 case. */
394 if (unroll_number == 1)
395 {
396 if (loop_dump_stream)
397 fprintf (loop_dump_stream,
398 "Loop unrolling: No factors found.\n");
399 }
400 else
401 unroll_type = UNROLL_MODULO;
402 }
403
404
405 /* Default case, calculate number of times to unroll loop based on its
406 size. */
407 if (unroll_number == 1)
408 {
409 if (8 * insn_count < MAX_UNROLLED_INSNS)
410 unroll_number = 8;
411 else if (4 * insn_count < MAX_UNROLLED_INSNS)
412 unroll_number = 4;
413 else
414 unroll_number = 2;
415
416 unroll_type = UNROLL_NAIVE;
417 }
418
419 /* Now we know how many times to unroll the loop. */
420
421 if (loop_dump_stream)
422 fprintf (loop_dump_stream,
423 "Unrolling loop %d times.\n", unroll_number);
424
425
426 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
427 {
428 /* Loops of these types should never start with a jump down to
429 the exit condition test. For now, check for this case just to
430 be sure. UNROLL_NAIVE loops can be of this form, this case is
431 handled below. */
432 insn = loop_start;
433 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
434 insn = NEXT_INSN (insn);
435 if (GET_CODE (insn) == JUMP_INSN)
436 abort ();
437 }
438
439 if (unroll_type == UNROLL_COMPLETELY)
440 {
441 /* Completely unrolling the loop: Delete the compare and branch at
442 the end (the last two instructions). This delete must done at the
443 very end of loop unrolling, to avoid problems with calls to
444 back_branch_in_range_p, which is called by find_splittable_regs.
445 All increments of splittable bivs/givs are changed to load constant
446 instructions. */
447
448 copy_start = loop_start;
449
450 /* Set insert_before to the instruction immediately after the JUMP_INSN
451 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
452 the loop will be correctly handled by copy_loop_body. */
453 insert_before = NEXT_INSN (last_loop_insn);
454
455 /* Set copy_end to the insn before the jump at the end of the loop. */
456 if (GET_CODE (last_loop_insn) == BARRIER)
457 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
458 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
459 {
460 #ifdef HAVE_cc0
461 /* The instruction immediately before the JUMP_INSN is a compare
462 instruction which we do not want to copy. */
463 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
464 #else
465 /* The instruction immediately before the JUMP_INSN may not be the
466 compare, so we must copy it. */
467 copy_end = PREV_INSN (last_loop_insn);
468 #endif
469 }
470 else
471 {
472 /* We currently can't unroll a loop if it doesn't end with a
473 JUMP_INSN. There would need to be a mechanism that recognizes
474 this case, and then inserts a jump after each loop body, which
475 jumps to after the last loop body. */
476 if (loop_dump_stream)
477 fprintf (loop_dump_stream,
478 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
479 return;
480 }
481 }
482 else if (unroll_type == UNROLL_MODULO)
483 {
484 /* Partially unrolling the loop: The compare and branch at the end
485 (the last two instructions) must remain. Don't copy the compare
486 and branch instructions at the end of the loop. Insert the unrolled
487 code immediately before the compare/branch at the end so that the
488 code will fall through to them as before. */
489
490 copy_start = loop_start;
491
492 /* Set insert_before to the jump insn at the end of the loop.
493 Set copy_end to before the jump insn at the end of the loop. */
494 if (GET_CODE (last_loop_insn) == BARRIER)
495 {
496 insert_before = PREV_INSN (last_loop_insn);
497 copy_end = PREV_INSN (insert_before);
498 }
499 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
500 {
501 #ifdef HAVE_cc0
502 /* The instruction immediately before the JUMP_INSN is a compare
503 instruction which we do not want to copy or delete. */
504 insert_before = PREV_INSN (last_loop_insn);
505 copy_end = PREV_INSN (insert_before);
506 #else
507 /* The instruction immediately before the JUMP_INSN may not be the
508 compare, so we must copy it. */
509 insert_before = last_loop_insn;
510 copy_end = PREV_INSN (last_loop_insn);
511 #endif
512 }
513 else
514 {
515 /* We currently can't unroll a loop if it doesn't end with a
516 JUMP_INSN. There would need to be a mechanism that recognizes
517 this case, and then inserts a jump after each loop body, which
518 jumps to after the last loop body. */
519 if (loop_dump_stream)
520 fprintf (loop_dump_stream,
521 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
522 return;
523 }
524 }
525 else
526 {
527 /* Normal case: Must copy the compare and branch instructions at the
528 end of the loop. */
529
530 if (GET_CODE (last_loop_insn) == BARRIER)
531 {
532 /* Loop ends with an unconditional jump and a barrier.
533 Handle this like above, don't copy jump and barrier.
534 This is not strictly necessary, but doing so prevents generating
535 unconditional jumps to an immediately following label.
536
537 This will be corrected below if the target of this jump is
538 not the start_label. */
539
540 insert_before = PREV_INSN (last_loop_insn);
541 copy_end = PREV_INSN (insert_before);
542 }
543 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
544 {
545 /* Set insert_before to immediately after the JUMP_INSN, so that
546 NOTEs at the end of the loop will be correctly handled by
547 copy_loop_body. */
548 insert_before = NEXT_INSN (last_loop_insn);
549 copy_end = last_loop_insn;
550 }
551 else
552 {
553 /* We currently can't unroll a loop if it doesn't end with a
554 JUMP_INSN. There would need to be a mechanism that recognizes
555 this case, and then inserts a jump after each loop body, which
556 jumps to after the last loop body. */
557 if (loop_dump_stream)
558 fprintf (loop_dump_stream,
559 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
560 return;
561 }
562
563 /* If copying exit test branches because they can not be eliminated,
564 then must convert the fall through case of the branch to a jump past
565 the end of the loop. Create a label to emit after the loop and save
566 it for later use. Do not use the label after the loop, if any, since
567 it might be used by insns outside the loop, or there might be insns
568 added before it later by final_[bg]iv_value which must be after
569 the real exit label. */
570 exit_label = gen_label_rtx ();
571
572 insn = loop_start;
573 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
574 insn = NEXT_INSN (insn);
575
576 if (GET_CODE (insn) == JUMP_INSN)
577 {
578 /* The loop starts with a jump down to the exit condition test.
579 Start copying the loop after the barrier following this
580 jump insn. */
581 copy_start = NEXT_INSN (insn);
582
583 /* Splitting induction variables doesn't work when the loop is
584 entered via a jump to the bottom, because then we end up doing
585 a comparison against a new register for a split variable, but
586 we did not execute the set insn for the new register because
587 it was skipped over. */
588 splitting_not_safe = 1;
589 if (loop_dump_stream)
590 fprintf (loop_dump_stream,
591 "Splitting not safe, because loop not entered at top.\n");
592 }
593 else
594 copy_start = loop_start;
595 }
596
597 /* This should always be the first label in the loop. */
598 start_label = NEXT_INSN (copy_start);
599 /* There may be a line number note and/or a loop continue note here. */
600 while (GET_CODE (start_label) == NOTE)
601 start_label = NEXT_INSN (start_label);
602 if (GET_CODE (start_label) != CODE_LABEL)
603 {
604 /* This can happen as a result of jump threading. If the first insns in
605 the loop test the same condition as the loop's backward jump, or the
606 opposite condition, then the backward jump will be modified to point
607 to elsewhere, and the loop's start label is deleted.
608
609 This case currently can not be handled by the loop unrolling code. */
610
611 if (loop_dump_stream)
612 fprintf (loop_dump_stream,
613 "Unrolling failure: unknown insns between BEG note and loop label.\n");
614 return;
615 }
616 if (LABEL_NAME (start_label))
617 {
618 /* The jump optimization pass must have combined the original start label
619 with a named label for a goto. We can't unroll this case because
620 jumps which go to the named label must be handled differently than
621 jumps to the loop start, and it is impossible to differentiate them
622 in this case. */
623 if (loop_dump_stream)
624 fprintf (loop_dump_stream,
625 "Unrolling failure: loop start label is gone\n");
626 return;
627 }
628
629 if (unroll_type == UNROLL_NAIVE
630 && GET_CODE (last_loop_insn) == BARRIER
631 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
632 {
633 /* In this case, we must copy the jump and barrier, because they will
634 not be converted to jumps to an immediately following label. */
635
636 insert_before = NEXT_INSN (last_loop_insn);
637 copy_end = last_loop_insn;
638 }
639
640 if (unroll_type == UNROLL_NAIVE
641 && GET_CODE (last_loop_insn) == JUMP_INSN
642 && start_label != JUMP_LABEL (last_loop_insn))
643 {
644 /* ??? The loop ends with a conditional branch that does not branch back
645 to the loop start label. In this case, we must emit an unconditional
646 branch to the loop exit after emitting the final branch.
647 copy_loop_body does not have support for this currently, so we
648 give up. It doesn't seem worthwhile to unroll anyways since
649 unrolling would increase the number of branch instructions
650 executed. */
651 if (loop_dump_stream)
652 fprintf (loop_dump_stream,
653 "Unrolling failure: final conditional branch not to loop start\n");
654 return;
655 }
656
657 /* Allocate a translation table for the labels and insn numbers.
658 They will be filled in as we copy the insns in the loop. */
659
660 max_labelno = max_label_num ();
661 max_insnno = get_max_uid ();
662
663 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
664
665 map->integrating = 0;
666
667 /* Allocate the label map. */
668
669 if (max_labelno > 0)
670 {
671 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
672
673 local_label = (char *) alloca (max_labelno);
674 bzero (local_label, max_labelno);
675 }
676 else
677 map->label_map = 0;
678
679 /* Search the loop and mark all local labels, i.e. the ones which have to
680 be distinct labels when copied. For all labels which might be
681 non-local, set their label_map entries to point to themselves.
682 If they happen to be local their label_map entries will be overwritten
683 before the loop body is copied. The label_map entries for local labels
684 will be set to a different value each time the loop body is copied. */
685
686 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
687 {
688 if (GET_CODE (insn) == CODE_LABEL)
689 local_label[CODE_LABEL_NUMBER (insn)] = 1;
690 else if (GET_CODE (insn) == JUMP_INSN)
691 {
692 if (JUMP_LABEL (insn))
693 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
694 = JUMP_LABEL (insn);
695 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
696 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
697 {
698 rtx pat = PATTERN (insn);
699 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
700 int len = XVECLEN (pat, diff_vec_p);
701 rtx label;
702
703 for (i = 0; i < len; i++)
704 {
705 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
706 map->label_map[CODE_LABEL_NUMBER (label)] = label;
707 }
708 }
709 }
710 }
711
712 /* Allocate space for the insn map. */
713
714 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
715
716 /* Set this to zero, to indicate that we are doing loop unrolling,
717 not function inlining. */
718 map->inline_target = 0;
719
720 /* The register and constant maps depend on the number of registers
721 present, so the final maps can't be created until after
722 find_splittable_regs is called. However, they are needed for
723 preconditioning, so we create temporary maps when preconditioning
724 is performed. */
725
726 /* The preconditioning code may allocate two new pseudo registers. */
727 maxregnum = max_reg_num ();
728
729 /* Allocate and zero out the splittable_regs and addr_combined_regs
730 arrays. These must be zeroed here because they will be used if
731 loop preconditioning is performed, and must be zero for that case.
732
733 It is safe to do this here, since the extra registers created by the
734 preconditioning code and find_splittable_regs will never be used
735 to access the splittable_regs[] and addr_combined_regs[] arrays. */
736
737 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
738 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
739 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
740 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
741 addr_combined_regs
742 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
743 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
744 /* We must limit it to max_reg_before_loop, because only these pseudo
745 registers have valid regno_first_uid info. Any register created after
746 that is unlikely to be local to the loop anyways. */
747 local_regno = (char *) alloca (max_reg_before_loop);
748 bzero (local_regno, max_reg_before_loop);
749
750 /* Mark all local registers, i.e. the ones which are referenced only
751 inside the loop. */
752 if (INSN_UID (copy_end) < max_uid_for_loop)
753 {
754 int copy_start_luid = INSN_LUID (copy_start);
755 int copy_end_luid = INSN_LUID (copy_end);
756
757 /* If a register is used in the jump insn, we must not duplicate it
758 since it will also be used outside the loop. */
759 if (GET_CODE (copy_end) == JUMP_INSN)
760 copy_end_luid--;
761 /* If copy_start points to the NOTE that starts the loop, then we must
762 use the next luid, because invariant pseudo-regs moved out of the loop
763 have their lifetimes modified to start here, but they are not safe
764 to duplicate. */
765 if (copy_start == loop_start)
766 copy_start_luid++;
767
768 /* If a pseudo's lifetime is entirely contained within this loop, then we
769 can use a different pseudo in each unrolled copy of the loop. This
770 results in better code. */
771 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
772 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
773 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
774 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
775 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
776 {
777 /* However, we must also check for loop-carried dependencies.
778 If the value the pseudo has at the end of iteration X is
779 used by iteration X+1, then we can not use a different pseudo
780 for each unrolled copy of the loop. */
781 /* A pseudo is safe if regno_first_uid is a set, and this
782 set dominates all instructions from regno_first_uid to
783 regno_last_uid. */
784 /* ??? This check is simplistic. We would get better code if
785 this check was more sophisticated. */
786 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
787 copy_start, copy_end))
788 local_regno[j] = 1;
789
790 if (loop_dump_stream)
791 {
792 if (local_regno[j])
793 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
794 else
795 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
796 j);
797 }
798 }
799 }
800
801 /* If this loop requires exit tests when unrolled, check to see if we
802 can precondition the loop so as to make the exit tests unnecessary.
803 Just like variable splitting, this is not safe if the loop is entered
804 via a jump to the bottom. Also, can not do this if no strength
805 reduce info, because precondition_loop_p uses this info. */
806
807 /* Must copy the loop body for preconditioning before the following
808 find_splittable_regs call since that will emit insns which need to
809 be after the preconditioned loop copies, but immediately before the
810 unrolled loop copies. */
811
812 /* Also, it is not safe to split induction variables for the preconditioned
813 copies of the loop body. If we split induction variables, then the code
814 assumes that each induction variable can be represented as a function
815 of its initial value and the loop iteration number. This is not true
816 in this case, because the last preconditioned copy of the loop body
817 could be any iteration from the first up to the `unroll_number-1'th,
818 depending on the initial value of the iteration variable. Therefore
819 we can not split induction variables here, because we can not calculate
820 their value. Hence, this code must occur before find_splittable_regs
821 is called. */
822
823 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
824 {
825 rtx initial_value, final_value, increment;
826
827 if (precondition_loop_p (&initial_value, &final_value, &increment,
828 loop_start, loop_end))
829 {
830 register rtx diff, temp;
831 enum machine_mode mode;
832 rtx *labels;
833 int abs_inc, neg_inc;
834
835 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
836
837 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
838 map->const_age_map = (unsigned *) alloca (maxregnum
839 * sizeof (unsigned));
840 map->const_equiv_map_size = maxregnum;
841 global_const_equiv_map = map->const_equiv_map;
842 global_const_equiv_map_size = maxregnum;
843
844 init_reg_map (map, maxregnum);
845
846 /* Limit loop unrolling to 4, since this will make 7 copies of
847 the loop body. */
848 if (unroll_number > 4)
849 unroll_number = 4;
850
851 /* Save the absolute value of the increment, and also whether or
852 not it is negative. */
853 neg_inc = 0;
854 abs_inc = INTVAL (increment);
855 if (abs_inc < 0)
856 {
857 abs_inc = - abs_inc;
858 neg_inc = 1;
859 }
860
861 start_sequence ();
862
863 /* Decide what mode to do these calculations in. Choose the larger
864 of final_value's mode and initial_value's mode, or a full-word if
865 both are constants. */
866 mode = GET_MODE (final_value);
867 if (mode == VOIDmode)
868 {
869 mode = GET_MODE (initial_value);
870 if (mode == VOIDmode)
871 mode = word_mode;
872 }
873 else if (mode != GET_MODE (initial_value)
874 && (GET_MODE_SIZE (mode)
875 < GET_MODE_SIZE (GET_MODE (initial_value))))
876 mode = GET_MODE (initial_value);
877
878 /* Calculate the difference between the final and initial values.
879 Final value may be a (plus (reg x) (const_int 1)) rtx.
880 Let the following cse pass simplify this if initial value is
881 a constant.
882
883 We must copy the final and initial values here to avoid
884 improperly shared rtl. */
885
886 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
887 copy_rtx (initial_value), NULL_RTX, 0,
888 OPTAB_LIB_WIDEN);
889
890 /* Now calculate (diff % (unroll * abs (increment))) by using an
891 and instruction. */
892 diff = expand_binop (GET_MODE (diff), and_optab, diff,
893 GEN_INT (unroll_number * abs_inc - 1),
894 NULL_RTX, 0, OPTAB_LIB_WIDEN);
895
896 /* Now emit a sequence of branches to jump to the proper precond
897 loop entry point. */
898
899 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
900 for (i = 0; i < unroll_number; i++)
901 labels[i] = gen_label_rtx ();
902
903 /* Check for the case where the initial value is greater than or
904 equal to the final value. In that case, we want to execute
905 exactly one loop iteration. The code below will fail for this
906 case. This check does not apply if the loop has a NE
907 comparison at the end. */
908
909 if (loop_comparison_code != NE)
910 {
911 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
912 NULL_RTX, mode, 0, 0);
913 if (neg_inc)
914 emit_jump_insn (gen_ble (labels[1]));
915 else
916 emit_jump_insn (gen_bge (labels[1]));
917 JUMP_LABEL (get_last_insn ()) = labels[1];
918 LABEL_NUSES (labels[1])++;
919 }
920
921 /* Assuming the unroll_number is 4, and the increment is 2, then
922 for a negative increment: for a positive increment:
923 diff = 0,1 precond 0 diff = 0,7 precond 0
924 diff = 2,3 precond 3 diff = 1,2 precond 1
925 diff = 4,5 precond 2 diff = 3,4 precond 2
926 diff = 6,7 precond 1 diff = 5,6 precond 3 */
927
928 /* We only need to emit (unroll_number - 1) branches here, the
929 last case just falls through to the following code. */
930
931 /* ??? This would give better code if we emitted a tree of branches
932 instead of the current linear list of branches. */
933
934 for (i = 0; i < unroll_number - 1; i++)
935 {
936 int cmp_const;
937 enum rtx_code cmp_code;
938
939 /* For negative increments, must invert the constant compared
940 against, except when comparing against zero. */
941 if (i == 0)
942 {
943 cmp_const = 0;
944 cmp_code = EQ;
945 }
946 else if (neg_inc)
947 {
948 cmp_const = unroll_number - i;
949 cmp_code = GE;
950 }
951 else
952 {
953 cmp_const = i;
954 cmp_code = LE;
955 }
956
957 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
958 cmp_code, NULL_RTX, mode, 0, 0);
959
960 if (i == 0)
961 emit_jump_insn (gen_beq (labels[i]));
962 else if (neg_inc)
963 emit_jump_insn (gen_bge (labels[i]));
964 else
965 emit_jump_insn (gen_ble (labels[i]));
966 JUMP_LABEL (get_last_insn ()) = labels[i];
967 LABEL_NUSES (labels[i])++;
968 }
969
970 /* If the increment is greater than one, then we need another branch,
971 to handle other cases equivalent to 0. */
972
973 /* ??? This should be merged into the code above somehow to help
974 simplify the code here, and reduce the number of branches emitted.
975 For the negative increment case, the branch here could easily
976 be merged with the `0' case branch above. For the positive
977 increment case, it is not clear how this can be simplified. */
978
979 if (abs_inc != 1)
980 {
981 int cmp_const;
982 enum rtx_code cmp_code;
983
984 if (neg_inc)
985 {
986 cmp_const = abs_inc - 1;
987 cmp_code = LE;
988 }
989 else
990 {
991 cmp_const = abs_inc * (unroll_number - 1) + 1;
992 cmp_code = GE;
993 }
994
995 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
996 mode, 0, 0);
997
998 if (neg_inc)
999 emit_jump_insn (gen_ble (labels[0]));
1000 else
1001 emit_jump_insn (gen_bge (labels[0]));
1002 JUMP_LABEL (get_last_insn ()) = labels[0];
1003 LABEL_NUSES (labels[0])++;
1004 }
1005
1006 sequence = gen_sequence ();
1007 end_sequence ();
1008 emit_insn_before (sequence, loop_start);
1009
1010 /* Only the last copy of the loop body here needs the exit
1011 test, so set copy_end to exclude the compare/branch here,
1012 and then reset it inside the loop when get to the last
1013 copy. */
1014
1015 if (GET_CODE (last_loop_insn) == BARRIER)
1016 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1017 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1018 {
1019 #ifdef HAVE_cc0
1020 /* The immediately preceding insn is a compare which we do not
1021 want to copy. */
1022 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1023 #else
1024 /* The immediately preceding insn may not be a compare, so we
1025 must copy it. */
1026 copy_end = PREV_INSN (last_loop_insn);
1027 #endif
1028 }
1029 else
1030 abort ();
1031
1032 for (i = 1; i < unroll_number; i++)
1033 {
1034 emit_label_after (labels[unroll_number - i],
1035 PREV_INSN (loop_start));
1036
1037 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1038 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1039 bzero ((char *) map->const_age_map,
1040 maxregnum * sizeof (unsigned));
1041 map->const_age = 0;
1042
1043 for (j = 0; j < max_labelno; j++)
1044 if (local_label[j])
1045 map->label_map[j] = gen_label_rtx ();
1046
1047 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1048 if (local_regno[j])
1049 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1050
1051 /* The last copy needs the compare/branch insns at the end,
1052 so reset copy_end here if the loop ends with a conditional
1053 branch. */
1054
1055 if (i == unroll_number - 1)
1056 {
1057 if (GET_CODE (last_loop_insn) == BARRIER)
1058 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1059 else
1060 copy_end = last_loop_insn;
1061 }
1062
1063 /* None of the copies are the `last_iteration', so just
1064 pass zero for that parameter. */
1065 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1066 unroll_type, start_label, loop_end,
1067 loop_start, copy_end);
1068 }
1069 emit_label_after (labels[0], PREV_INSN (loop_start));
1070
1071 if (GET_CODE (last_loop_insn) == BARRIER)
1072 {
1073 insert_before = PREV_INSN (last_loop_insn);
1074 copy_end = PREV_INSN (insert_before);
1075 }
1076 else
1077 {
1078 #ifdef HAVE_cc0
1079 /* The immediately preceding insn is a compare which we do not
1080 want to copy. */
1081 insert_before = PREV_INSN (last_loop_insn);
1082 copy_end = PREV_INSN (insert_before);
1083 #else
1084 /* The immediately preceding insn may not be a compare, so we
1085 must copy it. */
1086 insert_before = last_loop_insn;
1087 copy_end = PREV_INSN (last_loop_insn);
1088 #endif
1089 }
1090
1091 /* Set unroll type to MODULO now. */
1092 unroll_type = UNROLL_MODULO;
1093 loop_preconditioned = 1;
1094 }
1095 }
1096
1097 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1098 the loop unless all loops are being unrolled. */
1099 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1100 {
1101 if (loop_dump_stream)
1102 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1103 return;
1104 }
1105
1106 /* At this point, we are guaranteed to unroll the loop. */
1107
1108 /* For each biv and giv, determine whether it can be safely split into
1109 a different variable for each unrolled copy of the loop body.
1110 We precalculate and save this info here, since computing it is
1111 expensive.
1112
1113 Do this before deleting any instructions from the loop, so that
1114 back_branch_in_range_p will work correctly. */
1115
1116 if (splitting_not_safe)
1117 temp = 0;
1118 else
1119 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1120 end_insert_before, unroll_number);
1121
1122 /* find_splittable_regs may have created some new registers, so must
1123 reallocate the reg_map with the new larger size, and must realloc
1124 the constant maps also. */
1125
1126 maxregnum = max_reg_num ();
1127 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1128
1129 init_reg_map (map, maxregnum);
1130
1131 /* Space is needed in some of the map for new registers, so new_maxregnum
1132 is an (over)estimate of how many registers will exist at the end. */
1133 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1134
1135 /* Must realloc space for the constant maps, because the number of registers
1136 may have changed. */
1137
1138 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1139 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1140
1141 map->const_equiv_map_size = new_maxregnum;
1142 global_const_equiv_map = map->const_equiv_map;
1143 global_const_equiv_map_size = new_maxregnum;
1144
1145 /* Search the list of bivs and givs to find ones which need to be remapped
1146 when split, and set their reg_map entry appropriately. */
1147
1148 for (bl = loop_iv_list; bl; bl = bl->next)
1149 {
1150 if (REGNO (bl->biv->src_reg) != bl->regno)
1151 map->reg_map[bl->regno] = bl->biv->src_reg;
1152 #if 0
1153 /* Currently, non-reduced/final-value givs are never split. */
1154 for (v = bl->giv; v; v = v->next_iv)
1155 if (REGNO (v->src_reg) != bl->regno)
1156 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1157 #endif
1158 }
1159
1160 /* Use our current register alignment and pointer flags. */
1161 map->regno_pointer_flag = regno_pointer_flag;
1162 map->regno_pointer_align = regno_pointer_align;
1163
1164 /* If the loop is being partially unrolled, and the iteration variables
1165 are being split, and are being renamed for the split, then must fix up
1166 the compare/jump instruction at the end of the loop to refer to the new
1167 registers. This compare isn't copied, so the registers used in it
1168 will never be replaced if it isn't done here. */
1169
1170 if (unroll_type == UNROLL_MODULO)
1171 {
1172 insn = NEXT_INSN (copy_end);
1173 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1174 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1175 }
1176
1177 /* For unroll_number - 1 times, make a copy of each instruction
1178 between copy_start and copy_end, and insert these new instructions
1179 before the end of the loop. */
1180
1181 for (i = 0; i < unroll_number; i++)
1182 {
1183 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1184 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1185 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1186 map->const_age = 0;
1187
1188 for (j = 0; j < max_labelno; j++)
1189 if (local_label[j])
1190 map->label_map[j] = gen_label_rtx ();
1191
1192 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1193 if (local_regno[j])
1194 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1195
1196 /* If loop starts with a branch to the test, then fix it so that
1197 it points to the test of the first unrolled copy of the loop. */
1198 if (i == 0 && loop_start != copy_start)
1199 {
1200 insn = PREV_INSN (copy_start);
1201 pattern = PATTERN (insn);
1202
1203 tem = map->label_map[CODE_LABEL_NUMBER
1204 (XEXP (SET_SRC (pattern), 0))];
1205 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1206
1207 /* Set the jump label so that it can be used by later loop unrolling
1208 passes. */
1209 JUMP_LABEL (insn) = tem;
1210 LABEL_NUSES (tem)++;
1211 }
1212
1213 copy_loop_body (copy_start, copy_end, map, exit_label,
1214 i == unroll_number - 1, unroll_type, start_label,
1215 loop_end, insert_before, insert_before);
1216 }
1217
1218 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1219 insn to be deleted. This prevents any runaway delete_insn call from
1220 more insns that it should, as it always stops at a CODE_LABEL. */
1221
1222 /* Delete the compare and branch at the end of the loop if completely
1223 unrolling the loop. Deleting the backward branch at the end also
1224 deletes the code label at the start of the loop. This is done at
1225 the very end to avoid problems with back_branch_in_range_p. */
1226
1227 if (unroll_type == UNROLL_COMPLETELY)
1228 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1229 else
1230 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1231
1232 /* Delete all of the original loop instructions. Don't delete the
1233 LOOP_BEG note, or the first code label in the loop. */
1234
1235 insn = NEXT_INSN (copy_start);
1236 while (insn != safety_label)
1237 {
1238 if (insn != start_label)
1239 insn = delete_insn (insn);
1240 else
1241 insn = NEXT_INSN (insn);
1242 }
1243
1244 /* Can now delete the 'safety' label emitted to protect us from runaway
1245 delete_insn calls. */
1246 if (INSN_DELETED_P (safety_label))
1247 abort ();
1248 delete_insn (safety_label);
1249
1250 /* If exit_label exists, emit it after the loop. Doing the emit here
1251 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1252 This is needed so that mostly_true_jump in reorg.c will treat jumps
1253 to this loop end label correctly, i.e. predict that they are usually
1254 not taken. */
1255 if (exit_label)
1256 emit_label_after (exit_label, loop_end);
1257 }
1258 \f
1259 /* Return true if the loop can be safely, and profitably, preconditioned
1260 so that the unrolled copies of the loop body don't need exit tests.
1261
1262 This only works if final_value, initial_value and increment can be
1263 determined, and if increment is a constant power of 2.
1264 If increment is not a power of 2, then the preconditioning modulo
1265 operation would require a real modulo instead of a boolean AND, and this
1266 is not considered `profitable'. */
1267
1268 /* ??? If the loop is known to be executed very many times, or the machine
1269 has a very cheap divide instruction, then preconditioning is a win even
1270 when the increment is not a power of 2. Use RTX_COST to compute
1271 whether divide is cheap. */
1272
1273 static int
1274 precondition_loop_p (initial_value, final_value, increment, loop_start,
1275 loop_end)
1276 rtx *initial_value, *final_value, *increment;
1277 rtx loop_start, loop_end;
1278 {
1279
1280 if (loop_n_iterations > 0)
1281 {
1282 *initial_value = const0_rtx;
1283 *increment = const1_rtx;
1284 *final_value = GEN_INT (loop_n_iterations);
1285
1286 if (loop_dump_stream)
1287 fprintf (loop_dump_stream,
1288 "Preconditioning: Success, number of iterations known, %d.\n",
1289 loop_n_iterations);
1290 return 1;
1291 }
1292
1293 if (loop_initial_value == 0)
1294 {
1295 if (loop_dump_stream)
1296 fprintf (loop_dump_stream,
1297 "Preconditioning: Could not find initial value.\n");
1298 return 0;
1299 }
1300 else if (loop_increment == 0)
1301 {
1302 if (loop_dump_stream)
1303 fprintf (loop_dump_stream,
1304 "Preconditioning: Could not find increment value.\n");
1305 return 0;
1306 }
1307 else if (GET_CODE (loop_increment) != CONST_INT)
1308 {
1309 if (loop_dump_stream)
1310 fprintf (loop_dump_stream,
1311 "Preconditioning: Increment not a constant.\n");
1312 return 0;
1313 }
1314 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1315 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1316 {
1317 if (loop_dump_stream)
1318 fprintf (loop_dump_stream,
1319 "Preconditioning: Increment not a constant power of 2.\n");
1320 return 0;
1321 }
1322
1323 /* Unsigned_compare and compare_dir can be ignored here, since they do
1324 not matter for preconditioning. */
1325
1326 if (loop_final_value == 0)
1327 {
1328 if (loop_dump_stream)
1329 fprintf (loop_dump_stream,
1330 "Preconditioning: EQ comparison loop.\n");
1331 return 0;
1332 }
1333
1334 /* Must ensure that final_value is invariant, so call invariant_p to
1335 check. Before doing so, must check regno against max_reg_before_loop
1336 to make sure that the register is in the range covered by invariant_p.
1337 If it isn't, then it is most likely a biv/giv which by definition are
1338 not invariant. */
1339 if ((GET_CODE (loop_final_value) == REG
1340 && REGNO (loop_final_value) >= max_reg_before_loop)
1341 || (GET_CODE (loop_final_value) == PLUS
1342 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1343 || ! invariant_p (loop_final_value))
1344 {
1345 if (loop_dump_stream)
1346 fprintf (loop_dump_stream,
1347 "Preconditioning: Final value not invariant.\n");
1348 return 0;
1349 }
1350
1351 /* Fail for floating point values, since the caller of this function
1352 does not have code to deal with them. */
1353 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1354 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1355 {
1356 if (loop_dump_stream)
1357 fprintf (loop_dump_stream,
1358 "Preconditioning: Floating point final or initial value.\n");
1359 return 0;
1360 }
1361
1362 /* Now set initial_value to be the iteration_var, since that may be a
1363 simpler expression, and is guaranteed to be correct if all of the
1364 above tests succeed.
1365
1366 We can not use the initial_value as calculated, because it will be
1367 one too small for loops of the form "while (i-- > 0)". We can not
1368 emit code before the loop_skip_over insns to fix this problem as this
1369 will then give a number one too large for loops of the form
1370 "while (--i > 0)".
1371
1372 Note that all loops that reach here are entered at the top, because
1373 this function is not called if the loop starts with a jump. */
1374
1375 /* Fail if loop_iteration_var is not live before loop_start, since we need
1376 to test its value in the preconditioning code. */
1377
1378 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1379 > INSN_LUID (loop_start))
1380 {
1381 if (loop_dump_stream)
1382 fprintf (loop_dump_stream,
1383 "Preconditioning: Iteration var not live before loop start.\n");
1384 return 0;
1385 }
1386
1387 *initial_value = loop_iteration_var;
1388 *increment = loop_increment;
1389 *final_value = loop_final_value;
1390
1391 /* Success! */
1392 if (loop_dump_stream)
1393 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1394 return 1;
1395 }
1396
1397
1398 /* All pseudo-registers must be mapped to themselves. Two hard registers
1399 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1400 REGNUM, to avoid function-inlining specific conversions of these
1401 registers. All other hard regs can not be mapped because they may be
1402 used with different
1403 modes. */
1404
1405 static void
1406 init_reg_map (map, maxregnum)
1407 struct inline_remap *map;
1408 int maxregnum;
1409 {
1410 int i;
1411
1412 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1413 map->reg_map[i] = regno_reg_rtx[i];
1414 /* Just clear the rest of the entries. */
1415 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1416 map->reg_map[i] = 0;
1417
1418 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1419 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1420 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1421 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1422 }
1423 \f
1424 /* Strength-reduction will often emit code for optimized biv/givs which
1425 calculates their value in a temporary register, and then copies the result
1426 to the iv. This procedure reconstructs the pattern computing the iv;
1427 verifying that all operands are of the proper form.
1428
1429 The return value is the amount that the giv is incremented by. */
1430
1431 static rtx
1432 calculate_giv_inc (pattern, src_insn, regno)
1433 rtx pattern, src_insn;
1434 int regno;
1435 {
1436 rtx increment;
1437 rtx increment_total = 0;
1438 int tries = 0;
1439
1440 retry:
1441 /* Verify that we have an increment insn here. First check for a plus
1442 as the set source. */
1443 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1444 {
1445 /* SR sometimes computes the new giv value in a temp, then copies it
1446 to the new_reg. */
1447 src_insn = PREV_INSN (src_insn);
1448 pattern = PATTERN (src_insn);
1449 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1450 abort ();
1451
1452 /* The last insn emitted is not needed, so delete it to avoid confusing
1453 the second cse pass. This insn sets the giv unnecessarily. */
1454 delete_insn (get_last_insn ());
1455 }
1456
1457 /* Verify that we have a constant as the second operand of the plus. */
1458 increment = XEXP (SET_SRC (pattern), 1);
1459 if (GET_CODE (increment) != CONST_INT)
1460 {
1461 /* SR sometimes puts the constant in a register, especially if it is
1462 too big to be an add immed operand. */
1463 src_insn = PREV_INSN (src_insn);
1464 increment = SET_SRC (PATTERN (src_insn));
1465
1466 /* SR may have used LO_SUM to compute the constant if it is too large
1467 for a load immed operand. In this case, the constant is in operand
1468 one of the LO_SUM rtx. */
1469 if (GET_CODE (increment) == LO_SUM)
1470 increment = XEXP (increment, 1);
1471 else if (GET_CODE (increment) == IOR
1472 || GET_CODE (increment) == ASHIFT)
1473 {
1474 /* The rs6000 port loads some constants with IOR.
1475 The alpha port loads some constants with ASHIFT. */
1476 rtx second_part = XEXP (increment, 1);
1477 enum rtx_code code = GET_CODE (increment);
1478
1479 src_insn = PREV_INSN (src_insn);
1480 increment = SET_SRC (PATTERN (src_insn));
1481 /* Don't need the last insn anymore. */
1482 delete_insn (get_last_insn ());
1483
1484 if (GET_CODE (second_part) != CONST_INT
1485 || GET_CODE (increment) != CONST_INT)
1486 abort ();
1487
1488 if (code == IOR)
1489 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1490 else
1491 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1492 }
1493
1494 if (GET_CODE (increment) != CONST_INT)
1495 abort ();
1496
1497 /* The insn loading the constant into a register is no longer needed,
1498 so delete it. */
1499 delete_insn (get_last_insn ());
1500 }
1501
1502 if (increment_total)
1503 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1504 else
1505 increment_total = increment;
1506
1507 /* Check that the source register is the same as the register we expected
1508 to see as the source. If not, something is seriously wrong. */
1509 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1510 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1511 {
1512 /* Some machines (e.g. the romp), may emit two add instructions for
1513 certain constants, so lets try looking for another add immediately
1514 before this one if we have only seen one add insn so far. */
1515
1516 if (tries == 0)
1517 {
1518 tries++;
1519
1520 src_insn = PREV_INSN (src_insn);
1521 pattern = PATTERN (src_insn);
1522
1523 delete_insn (get_last_insn ());
1524
1525 goto retry;
1526 }
1527
1528 abort ();
1529 }
1530
1531 return increment_total;
1532 }
1533
1534 /* Copy REG_NOTES, except for insn references, because not all insn_map
1535 entries are valid yet. We do need to copy registers now though, because
1536 the reg_map entries can change during copying. */
1537
1538 static rtx
1539 initial_reg_note_copy (notes, map)
1540 rtx notes;
1541 struct inline_remap *map;
1542 {
1543 rtx copy;
1544
1545 if (notes == 0)
1546 return 0;
1547
1548 copy = rtx_alloc (GET_CODE (notes));
1549 PUT_MODE (copy, GET_MODE (notes));
1550
1551 if (GET_CODE (notes) == EXPR_LIST)
1552 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1553 else if (GET_CODE (notes) == INSN_LIST)
1554 /* Don't substitute for these yet. */
1555 XEXP (copy, 0) = XEXP (notes, 0);
1556 else
1557 abort ();
1558
1559 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1560
1561 return copy;
1562 }
1563
1564 /* Fixup insn references in copied REG_NOTES. */
1565
1566 static void
1567 final_reg_note_copy (notes, map)
1568 rtx notes;
1569 struct inline_remap *map;
1570 {
1571 rtx note;
1572
1573 for (note = notes; note; note = XEXP (note, 1))
1574 if (GET_CODE (note) == INSN_LIST)
1575 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1576 }
1577
1578 /* Copy each instruction in the loop, substituting from map as appropriate.
1579 This is very similar to a loop in expand_inline_function. */
1580
1581 static void
1582 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1583 unroll_type, start_label, loop_end, insert_before,
1584 copy_notes_from)
1585 rtx copy_start, copy_end;
1586 struct inline_remap *map;
1587 rtx exit_label;
1588 int last_iteration;
1589 enum unroll_types unroll_type;
1590 rtx start_label, loop_end, insert_before, copy_notes_from;
1591 {
1592 rtx insn, pattern;
1593 rtx tem, copy;
1594 int dest_reg_was_split, i;
1595 rtx cc0_insn = 0;
1596 rtx final_label = 0;
1597 rtx giv_inc, giv_dest_reg, giv_src_reg;
1598
1599 /* If this isn't the last iteration, then map any references to the
1600 start_label to final_label. Final label will then be emitted immediately
1601 after the end of this loop body if it was ever used.
1602
1603 If this is the last iteration, then map references to the start_label
1604 to itself. */
1605 if (! last_iteration)
1606 {
1607 final_label = gen_label_rtx ();
1608 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1609 }
1610 else
1611 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1612
1613 start_sequence ();
1614
1615 insn = copy_start;
1616 do
1617 {
1618 insn = NEXT_INSN (insn);
1619
1620 map->orig_asm_operands_vector = 0;
1621
1622 switch (GET_CODE (insn))
1623 {
1624 case INSN:
1625 pattern = PATTERN (insn);
1626 copy = 0;
1627 giv_inc = 0;
1628
1629 /* Check to see if this is a giv that has been combined with
1630 some split address givs. (Combined in the sense that
1631 `combine_givs' in loop.c has put two givs in the same register.)
1632 In this case, we must search all givs based on the same biv to
1633 find the address givs. Then split the address givs.
1634 Do this before splitting the giv, since that may map the
1635 SET_DEST to a new register. */
1636
1637 if (GET_CODE (pattern) == SET
1638 && GET_CODE (SET_DEST (pattern)) == REG
1639 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1640 {
1641 struct iv_class *bl;
1642 struct induction *v, *tv;
1643 int regno = REGNO (SET_DEST (pattern));
1644
1645 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1646 bl = reg_biv_class[REGNO (v->src_reg)];
1647
1648 /* Although the giv_inc amount is not needed here, we must call
1649 calculate_giv_inc here since it might try to delete the
1650 last insn emitted. If we wait until later to call it,
1651 we might accidentally delete insns generated immediately
1652 below by emit_unrolled_add. */
1653
1654 giv_inc = calculate_giv_inc (pattern, insn, regno);
1655
1656 /* Now find all address giv's that were combined with this
1657 giv 'v'. */
1658 for (tv = bl->giv; tv; tv = tv->next_iv)
1659 if (tv->giv_type == DEST_ADDR && tv->same == v)
1660 {
1661 int this_giv_inc;
1662
1663 /* If this DEST_ADDR giv was not split, then ignore it. */
1664 if (*tv->location != tv->dest_reg)
1665 continue;
1666
1667 /* Scale this_giv_inc if the multiplicative factors of
1668 the two givs are different. */
1669 this_giv_inc = INTVAL (giv_inc);
1670 if (tv->mult_val != v->mult_val)
1671 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1672 * INTVAL (tv->mult_val));
1673
1674 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1675 *tv->location = tv->dest_reg;
1676
1677 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1678 {
1679 /* Must emit an insn to increment the split address
1680 giv. Add in the const_adjust field in case there
1681 was a constant eliminated from the address. */
1682 rtx value, dest_reg;
1683
1684 /* tv->dest_reg will be either a bare register,
1685 or else a register plus a constant. */
1686 if (GET_CODE (tv->dest_reg) == REG)
1687 dest_reg = tv->dest_reg;
1688 else
1689 dest_reg = XEXP (tv->dest_reg, 0);
1690
1691 /* Check for shared address givs, and avoid
1692 incrementing the shared pseudo reg more than
1693 once. */
1694 if (! tv->same_insn)
1695 {
1696 /* tv->dest_reg may actually be a (PLUS (REG)
1697 (CONST)) here, so we must call plus_constant
1698 to add the const_adjust amount before calling
1699 emit_unrolled_add below. */
1700 value = plus_constant (tv->dest_reg,
1701 tv->const_adjust);
1702
1703 /* The constant could be too large for an add
1704 immediate, so can't directly emit an insn
1705 here. */
1706 emit_unrolled_add (dest_reg, XEXP (value, 0),
1707 XEXP (value, 1));
1708 }
1709
1710 /* Reset the giv to be just the register again, in case
1711 it is used after the set we have just emitted.
1712 We must subtract the const_adjust factor added in
1713 above. */
1714 tv->dest_reg = plus_constant (dest_reg,
1715 - tv->const_adjust);
1716 *tv->location = tv->dest_reg;
1717 }
1718 }
1719 }
1720
1721 /* If this is a setting of a splittable variable, then determine
1722 how to split the variable, create a new set based on this split,
1723 and set up the reg_map so that later uses of the variable will
1724 use the new split variable. */
1725
1726 dest_reg_was_split = 0;
1727
1728 if (GET_CODE (pattern) == SET
1729 && GET_CODE (SET_DEST (pattern)) == REG
1730 && splittable_regs[REGNO (SET_DEST (pattern))])
1731 {
1732 int regno = REGNO (SET_DEST (pattern));
1733
1734 dest_reg_was_split = 1;
1735
1736 /* Compute the increment value for the giv, if it wasn't
1737 already computed above. */
1738
1739 if (giv_inc == 0)
1740 giv_inc = calculate_giv_inc (pattern, insn, regno);
1741 giv_dest_reg = SET_DEST (pattern);
1742 giv_src_reg = SET_DEST (pattern);
1743
1744 if (unroll_type == UNROLL_COMPLETELY)
1745 {
1746 /* Completely unrolling the loop. Set the induction
1747 variable to a known constant value. */
1748
1749 /* The value in splittable_regs may be an invariant
1750 value, so we must use plus_constant here. */
1751 splittable_regs[regno]
1752 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1753
1754 if (GET_CODE (splittable_regs[regno]) == PLUS)
1755 {
1756 giv_src_reg = XEXP (splittable_regs[regno], 0);
1757 giv_inc = XEXP (splittable_regs[regno], 1);
1758 }
1759 else
1760 {
1761 /* The splittable_regs value must be a REG or a
1762 CONST_INT, so put the entire value in the giv_src_reg
1763 variable. */
1764 giv_src_reg = splittable_regs[regno];
1765 giv_inc = const0_rtx;
1766 }
1767 }
1768 else
1769 {
1770 /* Partially unrolling loop. Create a new pseudo
1771 register for the iteration variable, and set it to
1772 be a constant plus the original register. Except
1773 on the last iteration, when the result has to
1774 go back into the original iteration var register. */
1775
1776 /* Handle bivs which must be mapped to a new register
1777 when split. This happens for bivs which need their
1778 final value set before loop entry. The new register
1779 for the biv was stored in the biv's first struct
1780 induction entry by find_splittable_regs. */
1781
1782 if (regno < max_reg_before_loop
1783 && reg_iv_type[regno] == BASIC_INDUCT)
1784 {
1785 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1786 giv_dest_reg = giv_src_reg;
1787 }
1788
1789 #if 0
1790 /* If non-reduced/final-value givs were split, then
1791 this would have to remap those givs also. See
1792 find_splittable_regs. */
1793 #endif
1794
1795 splittable_regs[regno]
1796 = GEN_INT (INTVAL (giv_inc)
1797 + INTVAL (splittable_regs[regno]));
1798 giv_inc = splittable_regs[regno];
1799
1800 /* Now split the induction variable by changing the dest
1801 of this insn to a new register, and setting its
1802 reg_map entry to point to this new register.
1803
1804 If this is the last iteration, and this is the last insn
1805 that will update the iv, then reuse the original dest,
1806 to ensure that the iv will have the proper value when
1807 the loop exits or repeats.
1808
1809 Using splittable_regs_updates here like this is safe,
1810 because it can only be greater than one if all
1811 instructions modifying the iv are always executed in
1812 order. */
1813
1814 if (! last_iteration
1815 || (splittable_regs_updates[regno]-- != 1))
1816 {
1817 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1818 giv_dest_reg = tem;
1819 map->reg_map[regno] = tem;
1820 }
1821 else
1822 map->reg_map[regno] = giv_src_reg;
1823 }
1824
1825 /* The constant being added could be too large for an add
1826 immediate, so can't directly emit an insn here. */
1827 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1828 copy = get_last_insn ();
1829 pattern = PATTERN (copy);
1830 }
1831 else
1832 {
1833 pattern = copy_rtx_and_substitute (pattern, map);
1834 copy = emit_insn (pattern);
1835 }
1836 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1837
1838 #ifdef HAVE_cc0
1839 /* If this insn is setting CC0, it may need to look at
1840 the insn that uses CC0 to see what type of insn it is.
1841 In that case, the call to recog via validate_change will
1842 fail. So don't substitute constants here. Instead,
1843 do it when we emit the following insn.
1844
1845 For example, see the pyr.md file. That machine has signed and
1846 unsigned compares. The compare patterns must check the
1847 following branch insn to see which what kind of compare to
1848 emit.
1849
1850 If the previous insn set CC0, substitute constants on it as
1851 well. */
1852 if (sets_cc0_p (PATTERN (copy)) != 0)
1853 cc0_insn = copy;
1854 else
1855 {
1856 if (cc0_insn)
1857 try_constants (cc0_insn, map);
1858 cc0_insn = 0;
1859 try_constants (copy, map);
1860 }
1861 #else
1862 try_constants (copy, map);
1863 #endif
1864
1865 /* Make split induction variable constants `permanent' since we
1866 know there are no backward branches across iteration variable
1867 settings which would invalidate this. */
1868 if (dest_reg_was_split)
1869 {
1870 int regno = REGNO (SET_DEST (pattern));
1871
1872 if (regno < map->const_equiv_map_size
1873 && map->const_age_map[regno] == map->const_age)
1874 map->const_age_map[regno] = -1;
1875 }
1876 break;
1877
1878 case JUMP_INSN:
1879 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1880 copy = emit_jump_insn (pattern);
1881 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1882
1883 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1884 && ! last_iteration)
1885 {
1886 /* This is a branch to the beginning of the loop; this is the
1887 last insn being copied; and this is not the last iteration.
1888 In this case, we want to change the original fall through
1889 case to be a branch past the end of the loop, and the
1890 original jump label case to fall_through. */
1891
1892 if (invert_exp (pattern, copy))
1893 {
1894 if (! redirect_exp (&pattern,
1895 map->label_map[CODE_LABEL_NUMBER
1896 (JUMP_LABEL (insn))],
1897 exit_label, copy))
1898 abort ();
1899 }
1900 else
1901 {
1902 rtx jmp;
1903 rtx lab = gen_label_rtx ();
1904 /* Can't do it by reversing the jump (probably because we
1905 couldn't reverse the conditions), so emit a new
1906 jump_insn after COPY, and redirect the jump around
1907 that. */
1908 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1909 jmp = emit_barrier_after (jmp);
1910 emit_label_after (lab, jmp);
1911 LABEL_NUSES (lab) = 0;
1912 if (! redirect_exp (&pattern,
1913 map->label_map[CODE_LABEL_NUMBER
1914 (JUMP_LABEL (insn))],
1915 lab, copy))
1916 abort ();
1917 }
1918 }
1919
1920 #ifdef HAVE_cc0
1921 if (cc0_insn)
1922 try_constants (cc0_insn, map);
1923 cc0_insn = 0;
1924 #endif
1925 try_constants (copy, map);
1926
1927 /* Set the jump label of COPY correctly to avoid problems with
1928 later passes of unroll_loop, if INSN had jump label set. */
1929 if (JUMP_LABEL (insn))
1930 {
1931 rtx label = 0;
1932
1933 /* Can't use the label_map for every insn, since this may be
1934 the backward branch, and hence the label was not mapped. */
1935 if (GET_CODE (pattern) == SET)
1936 {
1937 tem = SET_SRC (pattern);
1938 if (GET_CODE (tem) == LABEL_REF)
1939 label = XEXP (tem, 0);
1940 else if (GET_CODE (tem) == IF_THEN_ELSE)
1941 {
1942 if (XEXP (tem, 1) != pc_rtx)
1943 label = XEXP (XEXP (tem, 1), 0);
1944 else
1945 label = XEXP (XEXP (tem, 2), 0);
1946 }
1947 }
1948
1949 if (label && GET_CODE (label) == CODE_LABEL)
1950 JUMP_LABEL (copy) = label;
1951 else
1952 {
1953 /* An unrecognizable jump insn, probably the entry jump
1954 for a switch statement. This label must have been mapped,
1955 so just use the label_map to get the new jump label. */
1956 JUMP_LABEL (copy)
1957 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1958 }
1959
1960 /* If this is a non-local jump, then must increase the label
1961 use count so that the label will not be deleted when the
1962 original jump is deleted. */
1963 LABEL_NUSES (JUMP_LABEL (copy))++;
1964 }
1965 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1966 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1967 {
1968 rtx pat = PATTERN (copy);
1969 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1970 int len = XVECLEN (pat, diff_vec_p);
1971 int i;
1972
1973 for (i = 0; i < len; i++)
1974 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1975 }
1976
1977 /* If this used to be a conditional jump insn but whose branch
1978 direction is now known, we must do something special. */
1979 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1980 {
1981 #ifdef HAVE_cc0
1982 /* The previous insn set cc0 for us. So delete it. */
1983 delete_insn (PREV_INSN (copy));
1984 #endif
1985
1986 /* If this is now a no-op, delete it. */
1987 if (map->last_pc_value == pc_rtx)
1988 {
1989 /* Don't let delete_insn delete the label referenced here,
1990 because we might possibly need it later for some other
1991 instruction in the loop. */
1992 if (JUMP_LABEL (copy))
1993 LABEL_NUSES (JUMP_LABEL (copy))++;
1994 delete_insn (copy);
1995 if (JUMP_LABEL (copy))
1996 LABEL_NUSES (JUMP_LABEL (copy))--;
1997 copy = 0;
1998 }
1999 else
2000 /* Otherwise, this is unconditional jump so we must put a
2001 BARRIER after it. We could do some dead code elimination
2002 here, but jump.c will do it just as well. */
2003 emit_barrier ();
2004 }
2005 break;
2006
2007 case CALL_INSN:
2008 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2009 copy = emit_call_insn (pattern);
2010 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2011
2012 /* Because the USAGE information potentially contains objects other
2013 than hard registers, we need to copy it. */
2014 CALL_INSN_FUNCTION_USAGE (copy)
2015 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2016
2017 #ifdef HAVE_cc0
2018 if (cc0_insn)
2019 try_constants (cc0_insn, map);
2020 cc0_insn = 0;
2021 #endif
2022 try_constants (copy, map);
2023
2024 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2025 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2026 map->const_equiv_map[i] = 0;
2027 break;
2028
2029 case CODE_LABEL:
2030 /* If this is the loop start label, then we don't need to emit a
2031 copy of this label since no one will use it. */
2032
2033 if (insn != start_label)
2034 {
2035 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2036 map->const_age++;
2037 }
2038 break;
2039
2040 case BARRIER:
2041 copy = emit_barrier ();
2042 break;
2043
2044 case NOTE:
2045 /* VTOP notes are valid only before the loop exit test. If placed
2046 anywhere else, loop may generate bad code. */
2047
2048 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2049 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2050 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2051 copy = emit_note (NOTE_SOURCE_FILE (insn),
2052 NOTE_LINE_NUMBER (insn));
2053 else
2054 copy = 0;
2055 break;
2056
2057 default:
2058 abort ();
2059 break;
2060 }
2061
2062 map->insn_map[INSN_UID (insn)] = copy;
2063 }
2064 while (insn != copy_end);
2065
2066 /* Now finish coping the REG_NOTES. */
2067 insn = copy_start;
2068 do
2069 {
2070 insn = NEXT_INSN (insn);
2071 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2072 || GET_CODE (insn) == CALL_INSN)
2073 && map->insn_map[INSN_UID (insn)])
2074 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2075 }
2076 while (insn != copy_end);
2077
2078 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2079 each of these notes here, since there may be some important ones, such as
2080 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2081 iteration, because the original notes won't be deleted.
2082
2083 We can't use insert_before here, because when from preconditioning,
2084 insert_before points before the loop. We can't use copy_end, because
2085 there may be insns already inserted after it (which we don't want to
2086 copy) when not from preconditioning code. */
2087
2088 if (! last_iteration)
2089 {
2090 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2091 {
2092 if (GET_CODE (insn) == NOTE
2093 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2094 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2095 }
2096 }
2097
2098 if (final_label && LABEL_NUSES (final_label) > 0)
2099 emit_label (final_label);
2100
2101 tem = gen_sequence ();
2102 end_sequence ();
2103 emit_insn_before (tem, insert_before);
2104 }
2105 \f
2106 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2107 emitted. This will correctly handle the case where the increment value
2108 won't fit in the immediate field of a PLUS insns. */
2109
2110 void
2111 emit_unrolled_add (dest_reg, src_reg, increment)
2112 rtx dest_reg, src_reg, increment;
2113 {
2114 rtx result;
2115
2116 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2117 dest_reg, 0, OPTAB_LIB_WIDEN);
2118
2119 if (dest_reg != result)
2120 emit_move_insn (dest_reg, result);
2121 }
2122 \f
2123 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2124 is a backward branch in that range that branches to somewhere between
2125 LOOP_START and INSN. Returns 0 otherwise. */
2126
2127 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2128 In practice, this is not a problem, because this function is seldom called,
2129 and uses a negligible amount of CPU time on average. */
2130
2131 int
2132 back_branch_in_range_p (insn, loop_start, loop_end)
2133 rtx insn;
2134 rtx loop_start, loop_end;
2135 {
2136 rtx p, q, target_insn;
2137
2138 /* Stop before we get to the backward branch at the end of the loop. */
2139 loop_end = prev_nonnote_insn (loop_end);
2140 if (GET_CODE (loop_end) == BARRIER)
2141 loop_end = PREV_INSN (loop_end);
2142
2143 /* Check in case insn has been deleted, search forward for first non
2144 deleted insn following it. */
2145 while (INSN_DELETED_P (insn))
2146 insn = NEXT_INSN (insn);
2147
2148 /* Check for the case where insn is the last insn in the loop. */
2149 if (insn == loop_end)
2150 return 0;
2151
2152 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2153 {
2154 if (GET_CODE (p) == JUMP_INSN)
2155 {
2156 target_insn = JUMP_LABEL (p);
2157
2158 /* Search from loop_start to insn, to see if one of them is
2159 the target_insn. We can't use INSN_LUID comparisons here,
2160 since insn may not have an LUID entry. */
2161 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2162 if (q == target_insn)
2163 return 1;
2164 }
2165 }
2166
2167 return 0;
2168 }
2169
2170 /* Try to generate the simplest rtx for the expression
2171 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2172 value of giv's. */
2173
2174 static rtx
2175 fold_rtx_mult_add (mult1, mult2, add1, mode)
2176 rtx mult1, mult2, add1;
2177 enum machine_mode mode;
2178 {
2179 rtx temp, mult_res;
2180 rtx result;
2181
2182 /* The modes must all be the same. This should always be true. For now,
2183 check to make sure. */
2184 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2185 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2186 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2187 abort ();
2188
2189 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2190 will be a constant. */
2191 if (GET_CODE (mult1) == CONST_INT)
2192 {
2193 temp = mult2;
2194 mult2 = mult1;
2195 mult1 = temp;
2196 }
2197
2198 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2199 if (! mult_res)
2200 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2201
2202 /* Again, put the constant second. */
2203 if (GET_CODE (add1) == CONST_INT)
2204 {
2205 temp = add1;
2206 add1 = mult_res;
2207 mult_res = temp;
2208 }
2209
2210 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2211 if (! result)
2212 result = gen_rtx (PLUS, mode, add1, mult_res);
2213
2214 return result;
2215 }
2216
2217 /* Searches the list of induction struct's for the biv BL, to try to calculate
2218 the total increment value for one iteration of the loop as a constant.
2219
2220 Returns the increment value as an rtx, simplified as much as possible,
2221 if it can be calculated. Otherwise, returns 0. */
2222
2223 rtx
2224 biv_total_increment (bl, loop_start, loop_end)
2225 struct iv_class *bl;
2226 rtx loop_start, loop_end;
2227 {
2228 struct induction *v;
2229 rtx result;
2230
2231 /* For increment, must check every instruction that sets it. Each
2232 instruction must be executed only once each time through the loop.
2233 To verify this, we check that the the insn is always executed, and that
2234 there are no backward branches after the insn that branch to before it.
2235 Also, the insn must have a mult_val of one (to make sure it really is
2236 an increment). */
2237
2238 result = const0_rtx;
2239 for (v = bl->biv; v; v = v->next_iv)
2240 {
2241 if (v->always_computable && v->mult_val == const1_rtx
2242 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2243 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2244 else
2245 return 0;
2246 }
2247
2248 return result;
2249 }
2250
2251 /* Determine the initial value of the iteration variable, and the amount
2252 that it is incremented each loop. Use the tables constructed by
2253 the strength reduction pass to calculate these values.
2254
2255 Initial_value and/or increment are set to zero if their values could not
2256 be calculated. */
2257
2258 static void
2259 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2260 rtx iteration_var, *initial_value, *increment;
2261 rtx loop_start, loop_end;
2262 {
2263 struct iv_class *bl;
2264 struct induction *v, *b;
2265
2266 /* Clear the result values, in case no answer can be found. */
2267 *initial_value = 0;
2268 *increment = 0;
2269
2270 /* The iteration variable can be either a giv or a biv. Check to see
2271 which it is, and compute the variable's initial value, and increment
2272 value if possible. */
2273
2274 /* If this is a new register, can't handle it since we don't have any
2275 reg_iv_type entry for it. */
2276 if (REGNO (iteration_var) >= max_reg_before_loop)
2277 {
2278 if (loop_dump_stream)
2279 fprintf (loop_dump_stream,
2280 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2281 return;
2282 }
2283
2284 /* Reject iteration variables larger than the host wide int size, since they
2285 could result in a number of iterations greater than the range of our
2286 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2287 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2288 > HOST_BITS_PER_WIDE_INT))
2289 {
2290 if (loop_dump_stream)
2291 fprintf (loop_dump_stream,
2292 "Loop unrolling: Iteration var rejected because mode too large.\n");
2293 return;
2294 }
2295 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2296 {
2297 if (loop_dump_stream)
2298 fprintf (loop_dump_stream,
2299 "Loop unrolling: Iteration var not an integer.\n");
2300 return;
2301 }
2302 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2303 {
2304 /* Grab initial value, only useful if it is a constant. */
2305 bl = reg_biv_class[REGNO (iteration_var)];
2306 *initial_value = bl->initial_value;
2307
2308 *increment = biv_total_increment (bl, loop_start, loop_end);
2309 }
2310 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2311 {
2312 #if 1
2313 /* ??? The code below does not work because the incorrect number of
2314 iterations is calculated when the biv is incremented after the giv
2315 is set (which is the usual case). This can probably be accounted
2316 for by biasing the initial_value by subtracting the amount of the
2317 increment that occurs between the giv set and the giv test. However,
2318 a giv as an iterator is very rare, so it does not seem worthwhile
2319 to handle this. */
2320 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2321 if (loop_dump_stream)
2322 fprintf (loop_dump_stream,
2323 "Loop unrolling: Giv iterators are not handled.\n");
2324 return;
2325 #else
2326 /* Initial value is mult_val times the biv's initial value plus
2327 add_val. Only useful if it is a constant. */
2328 v = reg_iv_info[REGNO (iteration_var)];
2329 bl = reg_biv_class[REGNO (v->src_reg)];
2330 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2331 v->add_val, v->mode);
2332
2333 /* Increment value is mult_val times the increment value of the biv. */
2334
2335 *increment = biv_total_increment (bl, loop_start, loop_end);
2336 if (*increment)
2337 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2338 v->mode);
2339 #endif
2340 }
2341 else
2342 {
2343 if (loop_dump_stream)
2344 fprintf (loop_dump_stream,
2345 "Loop unrolling: Not basic or general induction var.\n");
2346 return;
2347 }
2348 }
2349
2350 /* Calculate the approximate final value of the iteration variable
2351 which has an loop exit test with code COMPARISON_CODE and comparison value
2352 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2353 was signed or unsigned, and the direction of the comparison. This info is
2354 needed to calculate the number of loop iterations. */
2355
2356 static rtx
2357 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2358 enum rtx_code comparison_code;
2359 rtx comparison_value;
2360 int *unsigned_p;
2361 int *compare_dir;
2362 {
2363 /* Calculate the final value of the induction variable.
2364 The exact final value depends on the branch operator, and increment sign.
2365 This is only an approximate value. It will be wrong if the iteration
2366 variable is not incremented by one each time through the loop, and
2367 approx final value - start value % increment != 0. */
2368
2369 *unsigned_p = 0;
2370 switch (comparison_code)
2371 {
2372 case LEU:
2373 *unsigned_p = 1;
2374 case LE:
2375 *compare_dir = 1;
2376 return plus_constant (comparison_value, 1);
2377 case GEU:
2378 *unsigned_p = 1;
2379 case GE:
2380 *compare_dir = -1;
2381 return plus_constant (comparison_value, -1);
2382 case EQ:
2383 /* Can not calculate a final value for this case. */
2384 *compare_dir = 0;
2385 return 0;
2386 case LTU:
2387 *unsigned_p = 1;
2388 case LT:
2389 *compare_dir = 1;
2390 return comparison_value;
2391 break;
2392 case GTU:
2393 *unsigned_p = 1;
2394 case GT:
2395 *compare_dir = -1;
2396 return comparison_value;
2397 case NE:
2398 *compare_dir = 0;
2399 return comparison_value;
2400 default:
2401 abort ();
2402 }
2403 }
2404
2405 /* For each biv and giv, determine whether it can be safely split into
2406 a different variable for each unrolled copy of the loop body. If it
2407 is safe to split, then indicate that by saving some useful info
2408 in the splittable_regs array.
2409
2410 If the loop is being completely unrolled, then splittable_regs will hold
2411 the current value of the induction variable while the loop is unrolled.
2412 It must be set to the initial value of the induction variable here.
2413 Otherwise, splittable_regs will hold the difference between the current
2414 value of the induction variable and the value the induction variable had
2415 at the top of the loop. It must be set to the value 0 here.
2416
2417 Returns the total number of instructions that set registers that are
2418 splittable. */
2419
2420 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2421 constant values are unnecessary, since we can easily calculate increment
2422 values in this case even if nothing is constant. The increment value
2423 should not involve a multiply however. */
2424
2425 /* ?? Even if the biv/giv increment values aren't constant, it may still
2426 be beneficial to split the variable if the loop is only unrolled a few
2427 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2428
2429 static int
2430 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2431 unroll_number)
2432 enum unroll_types unroll_type;
2433 rtx loop_start, loop_end;
2434 rtx end_insert_before;
2435 int unroll_number;
2436 {
2437 struct iv_class *bl;
2438 struct induction *v;
2439 rtx increment, tem;
2440 rtx biv_final_value;
2441 int biv_splittable;
2442 int result = 0;
2443
2444 for (bl = loop_iv_list; bl; bl = bl->next)
2445 {
2446 /* Biv_total_increment must return a constant value,
2447 otherwise we can not calculate the split values. */
2448
2449 increment = biv_total_increment (bl, loop_start, loop_end);
2450 if (! increment || GET_CODE (increment) != CONST_INT)
2451 continue;
2452
2453 /* The loop must be unrolled completely, or else have a known number
2454 of iterations and only one exit, or else the biv must be dead
2455 outside the loop, or else the final value must be known. Otherwise,
2456 it is unsafe to split the biv since it may not have the proper
2457 value on loop exit. */
2458
2459 /* loop_number_exit_count is non-zero if the loop has an exit other than
2460 a fall through at the end. */
2461
2462 biv_splittable = 1;
2463 biv_final_value = 0;
2464 if (unroll_type != UNROLL_COMPLETELY
2465 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2466 || unroll_type == UNROLL_NAIVE)
2467 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2468 || ! bl->init_insn
2469 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2470 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2471 < INSN_LUID (bl->init_insn))
2472 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2473 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2474 biv_splittable = 0;
2475
2476 /* If any of the insns setting the BIV don't do so with a simple
2477 PLUS, we don't know how to split it. */
2478 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2479 if ((tem = single_set (v->insn)) == 0
2480 || GET_CODE (SET_DEST (tem)) != REG
2481 || REGNO (SET_DEST (tem)) != bl->regno
2482 || GET_CODE (SET_SRC (tem)) != PLUS)
2483 biv_splittable = 0;
2484
2485 /* If final value is non-zero, then must emit an instruction which sets
2486 the value of the biv to the proper value. This is done after
2487 handling all of the givs, since some of them may need to use the
2488 biv's value in their initialization code. */
2489
2490 /* This biv is splittable. If completely unrolling the loop, save
2491 the biv's initial value. Otherwise, save the constant zero. */
2492
2493 if (biv_splittable == 1)
2494 {
2495 if (unroll_type == UNROLL_COMPLETELY)
2496 {
2497 /* If the initial value of the biv is itself (i.e. it is too
2498 complicated for strength_reduce to compute), or is a hard
2499 register, or it isn't invariant, then we must create a new
2500 pseudo reg to hold the initial value of the biv. */
2501
2502 if (GET_CODE (bl->initial_value) == REG
2503 && (REGNO (bl->initial_value) == bl->regno
2504 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2505 || ! invariant_p (bl->initial_value)))
2506 {
2507 rtx tem = gen_reg_rtx (bl->biv->mode);
2508
2509 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2510 loop_start);
2511
2512 if (loop_dump_stream)
2513 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2514 bl->regno, REGNO (tem));
2515
2516 splittable_regs[bl->regno] = tem;
2517 }
2518 else
2519 splittable_regs[bl->regno] = bl->initial_value;
2520 }
2521 else
2522 splittable_regs[bl->regno] = const0_rtx;
2523
2524 /* Save the number of instructions that modify the biv, so that
2525 we can treat the last one specially. */
2526
2527 splittable_regs_updates[bl->regno] = bl->biv_count;
2528 result += bl->biv_count;
2529
2530 if (loop_dump_stream)
2531 fprintf (loop_dump_stream,
2532 "Biv %d safe to split.\n", bl->regno);
2533 }
2534
2535 /* Check every giv that depends on this biv to see whether it is
2536 splittable also. Even if the biv isn't splittable, givs which
2537 depend on it may be splittable if the biv is live outside the
2538 loop, and the givs aren't. */
2539
2540 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2541 increment, unroll_number);
2542
2543 /* If final value is non-zero, then must emit an instruction which sets
2544 the value of the biv to the proper value. This is done after
2545 handling all of the givs, since some of them may need to use the
2546 biv's value in their initialization code. */
2547 if (biv_final_value)
2548 {
2549 /* If the loop has multiple exits, emit the insns before the
2550 loop to ensure that it will always be executed no matter
2551 how the loop exits. Otherwise emit the insn after the loop,
2552 since this is slightly more efficient. */
2553 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2554 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2555 biv_final_value),
2556 end_insert_before);
2557 else
2558 {
2559 /* Create a new register to hold the value of the biv, and then
2560 set the biv to its final value before the loop start. The biv
2561 is set to its final value before loop start to ensure that
2562 this insn will always be executed, no matter how the loop
2563 exits. */
2564 rtx tem = gen_reg_rtx (bl->biv->mode);
2565 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2566 loop_start);
2567 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2568 biv_final_value),
2569 loop_start);
2570
2571 if (loop_dump_stream)
2572 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2573 REGNO (bl->biv->src_reg), REGNO (tem));
2574
2575 /* Set up the mapping from the original biv register to the new
2576 register. */
2577 bl->biv->src_reg = tem;
2578 }
2579 }
2580 }
2581 return result;
2582 }
2583
2584 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2585 for the instruction that is using it. Do not make any changes to that
2586 instruction. */
2587
2588 static int
2589 verify_addresses (v, giv_inc, unroll_number)
2590 struct induction *v;
2591 rtx giv_inc;
2592 int unroll_number;
2593 {
2594 int ret = 1;
2595 rtx orig_addr = *v->location;
2596 rtx last_addr = plus_constant (v->dest_reg,
2597 INTVAL (giv_inc) * (unroll_number - 1));
2598
2599 /* First check to see if either address would fail. */
2600 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2601 || ! validate_change (v->insn, v->location, last_addr, 0))
2602 ret = 0;
2603
2604 /* Now put things back the way they were before. This will always
2605 succeed. */
2606 validate_change (v->insn, v->location, orig_addr, 0);
2607
2608 return ret;
2609 }
2610
2611 /* For every giv based on the biv BL, check to determine whether it is
2612 splittable. This is a subroutine to find_splittable_regs ().
2613
2614 Return the number of instructions that set splittable registers. */
2615
2616 static int
2617 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2618 unroll_number)
2619 struct iv_class *bl;
2620 enum unroll_types unroll_type;
2621 rtx loop_start, loop_end;
2622 rtx increment;
2623 int unroll_number;
2624 {
2625 struct induction *v, *v2;
2626 rtx final_value;
2627 rtx tem;
2628 int result = 0;
2629
2630 /* Scan the list of givs, and set the same_insn field when there are
2631 multiple identical givs in the same insn. */
2632 for (v = bl->giv; v; v = v->next_iv)
2633 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2634 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2635 && ! v2->same_insn)
2636 v2->same_insn = v;
2637
2638 for (v = bl->giv; v; v = v->next_iv)
2639 {
2640 rtx giv_inc, value;
2641
2642 /* Only split the giv if it has already been reduced, or if the loop is
2643 being completely unrolled. */
2644 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2645 continue;
2646
2647 /* The giv can be split if the insn that sets the giv is executed once
2648 and only once on every iteration of the loop. */
2649 /* An address giv can always be split. v->insn is just a use not a set,
2650 and hence it does not matter whether it is always executed. All that
2651 matters is that all the biv increments are always executed, and we
2652 won't reach here if they aren't. */
2653 if (v->giv_type != DEST_ADDR
2654 && (! v->always_computable
2655 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2656 continue;
2657
2658 /* The giv increment value must be a constant. */
2659 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2660 v->mode);
2661 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2662 continue;
2663
2664 /* The loop must be unrolled completely, or else have a known number of
2665 iterations and only one exit, or else the giv must be dead outside
2666 the loop, or else the final value of the giv must be known.
2667 Otherwise, it is not safe to split the giv since it may not have the
2668 proper value on loop exit. */
2669
2670 /* The used outside loop test will fail for DEST_ADDR givs. They are
2671 never used outside the loop anyways, so it is always safe to split a
2672 DEST_ADDR giv. */
2673
2674 final_value = 0;
2675 if (unroll_type != UNROLL_COMPLETELY
2676 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2677 || unroll_type == UNROLL_NAIVE)
2678 && v->giv_type != DEST_ADDR
2679 && ((REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2680 /* Check for the case where the pseudo is set by a shift/add
2681 sequence, in which case the first insn setting the pseudo
2682 is the first insn of the shift/add sequence. */
2683 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2684 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2685 != INSN_UID (XEXP (tem, 0)))))
2686 /* Line above always fails if INSN was moved by loop opt. */
2687 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2688 >= INSN_LUID (loop_end)))
2689 && ! (final_value = v->final_value))
2690 continue;
2691
2692 #if 0
2693 /* Currently, non-reduced/final-value givs are never split. */
2694 /* Should emit insns after the loop if possible, as the biv final value
2695 code below does. */
2696
2697 /* If the final value is non-zero, and the giv has not been reduced,
2698 then must emit an instruction to set the final value. */
2699 if (final_value && !v->new_reg)
2700 {
2701 /* Create a new register to hold the value of the giv, and then set
2702 the giv to its final value before the loop start. The giv is set
2703 to its final value before loop start to ensure that this insn
2704 will always be executed, no matter how we exit. */
2705 tem = gen_reg_rtx (v->mode);
2706 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2707 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2708 loop_start);
2709
2710 if (loop_dump_stream)
2711 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2712 REGNO (v->dest_reg), REGNO (tem));
2713
2714 v->src_reg = tem;
2715 }
2716 #endif
2717
2718 /* This giv is splittable. If completely unrolling the loop, save the
2719 giv's initial value. Otherwise, save the constant zero for it. */
2720
2721 if (unroll_type == UNROLL_COMPLETELY)
2722 {
2723 /* It is not safe to use bl->initial_value here, because it may not
2724 be invariant. It is safe to use the initial value stored in
2725 the splittable_regs array if it is set. In rare cases, it won't
2726 be set, so then we do exactly the same thing as
2727 find_splittable_regs does to get a safe value. */
2728 rtx biv_initial_value;
2729
2730 if (splittable_regs[bl->regno])
2731 biv_initial_value = splittable_regs[bl->regno];
2732 else if (GET_CODE (bl->initial_value) != REG
2733 || (REGNO (bl->initial_value) != bl->regno
2734 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2735 biv_initial_value = bl->initial_value;
2736 else
2737 {
2738 rtx tem = gen_reg_rtx (bl->biv->mode);
2739
2740 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2741 loop_start);
2742 biv_initial_value = tem;
2743 }
2744 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2745 v->add_val, v->mode);
2746 }
2747 else
2748 value = const0_rtx;
2749
2750 if (v->new_reg)
2751 {
2752 /* If a giv was combined with another giv, then we can only split
2753 this giv if the giv it was combined with was reduced. This
2754 is because the value of v->new_reg is meaningless in this
2755 case. */
2756 if (v->same && ! v->same->new_reg)
2757 {
2758 if (loop_dump_stream)
2759 fprintf (loop_dump_stream,
2760 "giv combined with unreduced giv not split.\n");
2761 continue;
2762 }
2763 /* If the giv is an address destination, it could be something other
2764 than a simple register, these have to be treated differently. */
2765 else if (v->giv_type == DEST_REG)
2766 {
2767 /* If value is not a constant, register, or register plus
2768 constant, then compute its value into a register before
2769 loop start. This prevents invalid rtx sharing, and should
2770 generate better code. We can use bl->initial_value here
2771 instead of splittable_regs[bl->regno] because this code
2772 is going before the loop start. */
2773 if (unroll_type == UNROLL_COMPLETELY
2774 && GET_CODE (value) != CONST_INT
2775 && GET_CODE (value) != REG
2776 && (GET_CODE (value) != PLUS
2777 || GET_CODE (XEXP (value, 0)) != REG
2778 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2779 {
2780 rtx tem = gen_reg_rtx (v->mode);
2781 emit_iv_add_mult (bl->initial_value, v->mult_val,
2782 v->add_val, tem, loop_start);
2783 value = tem;
2784 }
2785
2786 splittable_regs[REGNO (v->new_reg)] = value;
2787 }
2788 else
2789 {
2790 /* Splitting address givs is useful since it will often allow us
2791 to eliminate some increment insns for the base giv as
2792 unnecessary. */
2793
2794 /* If the addr giv is combined with a dest_reg giv, then all
2795 references to that dest reg will be remapped, which is NOT
2796 what we want for split addr regs. We always create a new
2797 register for the split addr giv, just to be safe. */
2798
2799 /* ??? If there are multiple address givs which have been
2800 combined with the same dest_reg giv, then we may only need
2801 one new register for them. Pulling out constants below will
2802 catch some of the common cases of this. Currently, I leave
2803 the work of simplifying multiple address givs to the
2804 following cse pass. */
2805
2806 /* As a special case, if we have multiple identical address givs
2807 within a single instruction, then we do use a single pseudo
2808 reg for both. This is necessary in case one is a match_dup
2809 of the other. */
2810
2811 v->const_adjust = 0;
2812
2813 if (v->same_insn)
2814 {
2815 v->dest_reg = v->same_insn->dest_reg;
2816 if (loop_dump_stream)
2817 fprintf (loop_dump_stream,
2818 "Sharing address givs in insn %d\n",
2819 INSN_UID (v->insn));
2820 }
2821 else if (unroll_type != UNROLL_COMPLETELY)
2822 {
2823 /* If not completely unrolling the loop, then create a new
2824 register to hold the split value of the DEST_ADDR giv.
2825 Emit insn to initialize its value before loop start. */
2826 tem = gen_reg_rtx (v->mode);
2827
2828 /* If the address giv has a constant in its new_reg value,
2829 then this constant can be pulled out and put in value,
2830 instead of being part of the initialization code. */
2831
2832 if (GET_CODE (v->new_reg) == PLUS
2833 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2834 {
2835 v->dest_reg
2836 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2837
2838 /* Only succeed if this will give valid addresses.
2839 Try to validate both the first and the last
2840 address resulting from loop unrolling, if
2841 one fails, then can't do const elim here. */
2842 if (verify_addresses (v, giv_inc, unroll_number))
2843 {
2844 /* Save the negative of the eliminated const, so
2845 that we can calculate the dest_reg's increment
2846 value later. */
2847 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2848
2849 v->new_reg = XEXP (v->new_reg, 0);
2850 if (loop_dump_stream)
2851 fprintf (loop_dump_stream,
2852 "Eliminating constant from giv %d\n",
2853 REGNO (tem));
2854 }
2855 else
2856 v->dest_reg = tem;
2857 }
2858 else
2859 v->dest_reg = tem;
2860
2861 /* If the address hasn't been checked for validity yet, do so
2862 now, and fail completely if either the first or the last
2863 unrolled copy of the address is not a valid address
2864 for the instruction that uses it. */
2865 if (v->dest_reg == tem
2866 && ! verify_addresses (v, giv_inc, unroll_number))
2867 {
2868 if (loop_dump_stream)
2869 fprintf (loop_dump_stream,
2870 "Invalid address for giv at insn %d\n",
2871 INSN_UID (v->insn));
2872 continue;
2873 }
2874
2875 /* To initialize the new register, just move the value of
2876 new_reg into it. This is not guaranteed to give a valid
2877 instruction on machines with complex addressing modes.
2878 If we can't recognize it, then delete it and emit insns
2879 to calculate the value from scratch. */
2880 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2881 copy_rtx (v->new_reg)),
2882 loop_start);
2883 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2884 {
2885 rtx sequence, ret;
2886
2887 /* We can't use bl->initial_value to compute the initial
2888 value, because the loop may have been preconditioned.
2889 We must calculate it from NEW_REG. Try using
2890 force_operand instead of emit_iv_add_mult. */
2891 delete_insn (PREV_INSN (loop_start));
2892
2893 start_sequence ();
2894 ret = force_operand (v->new_reg, tem);
2895 if (ret != tem)
2896 emit_move_insn (tem, ret);
2897 sequence = gen_sequence ();
2898 end_sequence ();
2899 emit_insn_before (sequence, loop_start);
2900
2901 if (loop_dump_stream)
2902 fprintf (loop_dump_stream,
2903 "Invalid init insn, rewritten.\n");
2904 }
2905 }
2906 else
2907 {
2908 v->dest_reg = value;
2909
2910 /* Check the resulting address for validity, and fail
2911 if the resulting address would be invalid. */
2912 if (! verify_addresses (v, giv_inc, unroll_number))
2913 {
2914 if (loop_dump_stream)
2915 fprintf (loop_dump_stream,
2916 "Invalid address for giv at insn %d\n",
2917 INSN_UID (v->insn));
2918 continue;
2919 }
2920 }
2921
2922 /* Store the value of dest_reg into the insn. This sharing
2923 will not be a problem as this insn will always be copied
2924 later. */
2925
2926 *v->location = v->dest_reg;
2927
2928 /* If this address giv is combined with a dest reg giv, then
2929 save the base giv's induction pointer so that we will be
2930 able to handle this address giv properly. The base giv
2931 itself does not have to be splittable. */
2932
2933 if (v->same && v->same->giv_type == DEST_REG)
2934 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2935
2936 if (GET_CODE (v->new_reg) == REG)
2937 {
2938 /* This giv maybe hasn't been combined with any others.
2939 Make sure that it's giv is marked as splittable here. */
2940
2941 splittable_regs[REGNO (v->new_reg)] = value;
2942
2943 /* Make it appear to depend upon itself, so that the
2944 giv will be properly split in the main loop above. */
2945 if (! v->same)
2946 {
2947 v->same = v;
2948 addr_combined_regs[REGNO (v->new_reg)] = v;
2949 }
2950 }
2951
2952 if (loop_dump_stream)
2953 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2954 }
2955 }
2956 else
2957 {
2958 #if 0
2959 /* Currently, unreduced giv's can't be split. This is not too much
2960 of a problem since unreduced giv's are not live across loop
2961 iterations anyways. When unrolling a loop completely though,
2962 it makes sense to reduce&split givs when possible, as this will
2963 result in simpler instructions, and will not require that a reg
2964 be live across loop iterations. */
2965
2966 splittable_regs[REGNO (v->dest_reg)] = value;
2967 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2968 REGNO (v->dest_reg), INSN_UID (v->insn));
2969 #else
2970 continue;
2971 #endif
2972 }
2973
2974 /* Givs are only updated once by definition. Mark it so if this is
2975 a splittable register. Don't need to do anything for address givs
2976 where this may not be a register. */
2977
2978 if (GET_CODE (v->new_reg) == REG)
2979 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2980
2981 result++;
2982
2983 if (loop_dump_stream)
2984 {
2985 int regnum;
2986
2987 if (GET_CODE (v->dest_reg) == CONST_INT)
2988 regnum = -1;
2989 else if (GET_CODE (v->dest_reg) != REG)
2990 regnum = REGNO (XEXP (v->dest_reg, 0));
2991 else
2992 regnum = REGNO (v->dest_reg);
2993 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2994 regnum, INSN_UID (v->insn));
2995 }
2996 }
2997
2998 return result;
2999 }
3000 \f
3001 /* Try to prove that the register is dead after the loop exits. Trace every
3002 loop exit looking for an insn that will always be executed, which sets
3003 the register to some value, and appears before the first use of the register
3004 is found. If successful, then return 1, otherwise return 0. */
3005
3006 /* ?? Could be made more intelligent in the handling of jumps, so that
3007 it can search past if statements and other similar structures. */
3008
3009 static int
3010 reg_dead_after_loop (reg, loop_start, loop_end)
3011 rtx reg, loop_start, loop_end;
3012 {
3013 rtx insn, label;
3014 enum rtx_code code;
3015 int jump_count = 0;
3016 int label_count = 0;
3017 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3018
3019 /* In addition to checking all exits of this loop, we must also check
3020 all exits of inner nested loops that would exit this loop. We don't
3021 have any way to identify those, so we just give up if there are any
3022 such inner loop exits. */
3023
3024 for (label = loop_number_exit_labels[this_loop_num]; label;
3025 label = LABEL_NEXTREF (label))
3026 label_count++;
3027
3028 if (label_count != loop_number_exit_count[this_loop_num])
3029 return 0;
3030
3031 /* HACK: Must also search the loop fall through exit, create a label_ref
3032 here which points to the loop_end, and append the loop_number_exit_labels
3033 list to it. */
3034 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3035 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3036
3037 for ( ; label; label = LABEL_NEXTREF (label))
3038 {
3039 /* Succeed if find an insn which sets the biv or if reach end of
3040 function. Fail if find an insn that uses the biv, or if come to
3041 a conditional jump. */
3042
3043 insn = NEXT_INSN (XEXP (label, 0));
3044 while (insn)
3045 {
3046 code = GET_CODE (insn);
3047 if (GET_RTX_CLASS (code) == 'i')
3048 {
3049 rtx set;
3050
3051 if (reg_referenced_p (reg, PATTERN (insn)))
3052 return 0;
3053
3054 set = single_set (insn);
3055 if (set && rtx_equal_p (SET_DEST (set), reg))
3056 break;
3057 }
3058
3059 if (code == JUMP_INSN)
3060 {
3061 if (GET_CODE (PATTERN (insn)) == RETURN)
3062 break;
3063 else if (! simplejump_p (insn)
3064 /* Prevent infinite loop following infinite loops. */
3065 || jump_count++ > 20)
3066 return 0;
3067 else
3068 insn = JUMP_LABEL (insn);
3069 }
3070
3071 insn = NEXT_INSN (insn);
3072 }
3073 }
3074
3075 /* Success, the register is dead on all loop exits. */
3076 return 1;
3077 }
3078
3079 /* Try to calculate the final value of the biv, the value it will have at
3080 the end of the loop. If we can do it, return that value. */
3081
3082 rtx
3083 final_biv_value (bl, loop_start, loop_end)
3084 struct iv_class *bl;
3085 rtx loop_start, loop_end;
3086 {
3087 rtx increment, tem;
3088
3089 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3090
3091 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3092 return 0;
3093
3094 /* The final value for reversed bivs must be calculated differently than
3095 for ordinary bivs. In this case, there is already an insn after the
3096 loop which sets this biv's final value (if necessary), and there are
3097 no other loop exits, so we can return any value. */
3098 if (bl->reversed)
3099 {
3100 if (loop_dump_stream)
3101 fprintf (loop_dump_stream,
3102 "Final biv value for %d, reversed biv.\n", bl->regno);
3103
3104 return const0_rtx;
3105 }
3106
3107 /* Try to calculate the final value as initial value + (number of iterations
3108 * increment). For this to work, increment must be invariant, the only
3109 exit from the loop must be the fall through at the bottom (otherwise
3110 it may not have its final value when the loop exits), and the initial
3111 value of the biv must be invariant. */
3112
3113 if (loop_n_iterations != 0
3114 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3115 && invariant_p (bl->initial_value))
3116 {
3117 increment = biv_total_increment (bl, loop_start, loop_end);
3118
3119 if (increment && invariant_p (increment))
3120 {
3121 /* Can calculate the loop exit value, emit insns after loop
3122 end to calculate this value into a temporary register in
3123 case it is needed later. */
3124
3125 tem = gen_reg_rtx (bl->biv->mode);
3126 /* Make sure loop_end is not the last insn. */
3127 if (NEXT_INSN (loop_end) == 0)
3128 emit_note_after (NOTE_INSN_DELETED, loop_end);
3129 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3130 bl->initial_value, tem, NEXT_INSN (loop_end));
3131
3132 if (loop_dump_stream)
3133 fprintf (loop_dump_stream,
3134 "Final biv value for %d, calculated.\n", bl->regno);
3135
3136 return tem;
3137 }
3138 }
3139
3140 /* Check to see if the biv is dead at all loop exits. */
3141 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3142 {
3143 if (loop_dump_stream)
3144 fprintf (loop_dump_stream,
3145 "Final biv value for %d, biv dead after loop exit.\n",
3146 bl->regno);
3147
3148 return const0_rtx;
3149 }
3150
3151 return 0;
3152 }
3153
3154 /* Try to calculate the final value of the giv, the value it will have at
3155 the end of the loop. If we can do it, return that value. */
3156
3157 rtx
3158 final_giv_value (v, loop_start, loop_end)
3159 struct induction *v;
3160 rtx loop_start, loop_end;
3161 {
3162 struct iv_class *bl;
3163 rtx insn;
3164 rtx increment, tem;
3165 rtx insert_before, seq;
3166
3167 bl = reg_biv_class[REGNO (v->src_reg)];
3168
3169 /* The final value for givs which depend on reversed bivs must be calculated
3170 differently than for ordinary givs. In this case, there is already an
3171 insn after the loop which sets this giv's final value (if necessary),
3172 and there are no other loop exits, so we can return any value. */
3173 if (bl->reversed)
3174 {
3175 if (loop_dump_stream)
3176 fprintf (loop_dump_stream,
3177 "Final giv value for %d, depends on reversed biv\n",
3178 REGNO (v->dest_reg));
3179 return const0_rtx;
3180 }
3181
3182 /* Try to calculate the final value as a function of the biv it depends
3183 upon. The only exit from the loop must be the fall through at the bottom
3184 (otherwise it may not have its final value when the loop exits). */
3185
3186 /* ??? Can calculate the final giv value by subtracting off the
3187 extra biv increments times the giv's mult_val. The loop must have
3188 only one exit for this to work, but the loop iterations does not need
3189 to be known. */
3190
3191 if (loop_n_iterations != 0
3192 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3193 {
3194 /* ?? It is tempting to use the biv's value here since these insns will
3195 be put after the loop, and hence the biv will have its final value
3196 then. However, this fails if the biv is subsequently eliminated.
3197 Perhaps determine whether biv's are eliminable before trying to
3198 determine whether giv's are replaceable so that we can use the
3199 biv value here if it is not eliminable. */
3200
3201 increment = biv_total_increment (bl, loop_start, loop_end);
3202
3203 if (increment && invariant_p (increment))
3204 {
3205 /* Can calculate the loop exit value of its biv as
3206 (loop_n_iterations * increment) + initial_value */
3207
3208 /* The loop exit value of the giv is then
3209 (final_biv_value - extra increments) * mult_val + add_val.
3210 The extra increments are any increments to the biv which
3211 occur in the loop after the giv's value is calculated.
3212 We must search from the insn that sets the giv to the end
3213 of the loop to calculate this value. */
3214
3215 insert_before = NEXT_INSN (loop_end);
3216
3217 /* Put the final biv value in tem. */
3218 tem = gen_reg_rtx (bl->biv->mode);
3219 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3220 bl->initial_value, tem, insert_before);
3221
3222 /* Subtract off extra increments as we find them. */
3223 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3224 insn = NEXT_INSN (insn))
3225 {
3226 struct induction *biv;
3227
3228 for (biv = bl->biv; biv; biv = biv->next_iv)
3229 if (biv->insn == insn)
3230 {
3231 start_sequence ();
3232 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3233 biv->add_val, NULL_RTX, 0,
3234 OPTAB_LIB_WIDEN);
3235 seq = gen_sequence ();
3236 end_sequence ();
3237 emit_insn_before (seq, insert_before);
3238 }
3239 }
3240
3241 /* Now calculate the giv's final value. */
3242 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3243 insert_before);
3244
3245 if (loop_dump_stream)
3246 fprintf (loop_dump_stream,
3247 "Final giv value for %d, calc from biv's value.\n",
3248 REGNO (v->dest_reg));
3249
3250 return tem;
3251 }
3252 }
3253
3254 /* Replaceable giv's should never reach here. */
3255 if (v->replaceable)
3256 abort ();
3257
3258 /* Check to see if the biv is dead at all loop exits. */
3259 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3260 {
3261 if (loop_dump_stream)
3262 fprintf (loop_dump_stream,
3263 "Final giv value for %d, giv dead after loop exit.\n",
3264 REGNO (v->dest_reg));
3265
3266 return const0_rtx;
3267 }
3268
3269 return 0;
3270 }
3271
3272
3273 /* Calculate the number of loop iterations. Returns the exact number of loop
3274 iterations if it can be calculated, otherwise returns zero. */
3275
3276 unsigned HOST_WIDE_INT
3277 loop_iterations (loop_start, loop_end)
3278 rtx loop_start, loop_end;
3279 {
3280 rtx comparison, comparison_value;
3281 rtx iteration_var, initial_value, increment, final_value;
3282 enum rtx_code comparison_code;
3283 HOST_WIDE_INT i;
3284 int increment_dir;
3285 int unsigned_compare, compare_dir, final_larger;
3286 unsigned long tempu;
3287 rtx last_loop_insn;
3288
3289 /* First find the iteration variable. If the last insn is a conditional
3290 branch, and the insn before tests a register value, make that the
3291 iteration variable. */
3292
3293 loop_initial_value = 0;
3294 loop_increment = 0;
3295 loop_final_value = 0;
3296 loop_iteration_var = 0;
3297
3298 /* We used to use pren_nonnote_insn here, but that fails because it might
3299 accidentally get the branch for a contained loop if the branch for this
3300 loop was deleted. We can only trust branches immediately before the
3301 loop_end. */
3302 last_loop_insn = PREV_INSN (loop_end);
3303
3304 comparison = get_condition_for_loop (last_loop_insn);
3305 if (comparison == 0)
3306 {
3307 if (loop_dump_stream)
3308 fprintf (loop_dump_stream,
3309 "Loop unrolling: No final conditional branch found.\n");
3310 return 0;
3311 }
3312
3313 /* ??? Get_condition may switch position of induction variable and
3314 invariant register when it canonicalizes the comparison. */
3315
3316 comparison_code = GET_CODE (comparison);
3317 iteration_var = XEXP (comparison, 0);
3318 comparison_value = XEXP (comparison, 1);
3319
3320 if (GET_CODE (iteration_var) != REG)
3321 {
3322 if (loop_dump_stream)
3323 fprintf (loop_dump_stream,
3324 "Loop unrolling: Comparison not against register.\n");
3325 return 0;
3326 }
3327
3328 /* Loop iterations is always called before any new registers are created
3329 now, so this should never occur. */
3330
3331 if (REGNO (iteration_var) >= max_reg_before_loop)
3332 abort ();
3333
3334 iteration_info (iteration_var, &initial_value, &increment,
3335 loop_start, loop_end);
3336 if (initial_value == 0)
3337 /* iteration_info already printed a message. */
3338 return 0;
3339
3340 /* If the comparison value is an invariant register, then try to find
3341 its value from the insns before the start of the loop. */
3342
3343 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3344 {
3345 rtx insn, set;
3346
3347 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3348 {
3349 if (GET_CODE (insn) == CODE_LABEL)
3350 break;
3351
3352 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3353 && reg_set_p (comparison_value, insn))
3354 {
3355 /* We found the last insn before the loop that sets the register.
3356 If it sets the entire register, and has a REG_EQUAL note,
3357 then use the value of the REG_EQUAL note. */
3358 if ((set = single_set (insn))
3359 && (SET_DEST (set) == comparison_value))
3360 {
3361 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3362
3363 /* Only use the REG_EQUAL note if it is a constant.
3364 Other things, divide in particular, will cause
3365 problems later if we use them. */
3366 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3367 && CONSTANT_P (XEXP (note, 0)))
3368 comparison_value = XEXP (note, 0);
3369 }
3370 break;
3371 }
3372 }
3373 }
3374
3375 final_value = approx_final_value (comparison_code, comparison_value,
3376 &unsigned_compare, &compare_dir);
3377
3378 /* Save the calculated values describing this loop's bounds, in case
3379 precondition_loop_p will need them later. These values can not be
3380 recalculated inside precondition_loop_p because strength reduction
3381 optimizations may obscure the loop's structure. */
3382
3383 loop_iteration_var = iteration_var;
3384 loop_initial_value = initial_value;
3385 loop_increment = increment;
3386 loop_final_value = final_value;
3387 loop_comparison_code = comparison_code;
3388
3389 if (increment == 0)
3390 {
3391 if (loop_dump_stream)
3392 fprintf (loop_dump_stream,
3393 "Loop unrolling: Increment value can't be calculated.\n");
3394 return 0;
3395 }
3396 else if (GET_CODE (increment) != CONST_INT)
3397 {
3398 if (loop_dump_stream)
3399 fprintf (loop_dump_stream,
3400 "Loop unrolling: Increment value not constant.\n");
3401 return 0;
3402 }
3403 else if (GET_CODE (initial_value) != CONST_INT)
3404 {
3405 if (loop_dump_stream)
3406 fprintf (loop_dump_stream,
3407 "Loop unrolling: Initial value not constant.\n");
3408 return 0;
3409 }
3410 else if (final_value == 0)
3411 {
3412 if (loop_dump_stream)
3413 fprintf (loop_dump_stream,
3414 "Loop unrolling: EQ comparison loop.\n");
3415 return 0;
3416 }
3417 else if (GET_CODE (final_value) != CONST_INT)
3418 {
3419 if (loop_dump_stream)
3420 fprintf (loop_dump_stream,
3421 "Loop unrolling: Final value not constant.\n");
3422 return 0;
3423 }
3424
3425 /* ?? Final value and initial value do not have to be constants.
3426 Only their difference has to be constant. When the iteration variable
3427 is an array address, the final value and initial value might both
3428 be addresses with the same base but different constant offsets.
3429 Final value must be invariant for this to work.
3430
3431 To do this, need some way to find the values of registers which are
3432 invariant. */
3433
3434 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3435 if (unsigned_compare)
3436 final_larger
3437 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3438 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3439 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3440 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3441 else
3442 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3443 - (INTVAL (final_value) < INTVAL (initial_value));
3444
3445 if (INTVAL (increment) > 0)
3446 increment_dir = 1;
3447 else if (INTVAL (increment) == 0)
3448 increment_dir = 0;
3449 else
3450 increment_dir = -1;
3451
3452 /* There are 27 different cases: compare_dir = -1, 0, 1;
3453 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3454 There are 4 normal cases, 4 reverse cases (where the iteration variable
3455 will overflow before the loop exits), 4 infinite loop cases, and 15
3456 immediate exit (0 or 1 iteration depending on loop type) cases.
3457 Only try to optimize the normal cases. */
3458
3459 /* (compare_dir/final_larger/increment_dir)
3460 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3461 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3462 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3463 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3464
3465 /* ?? If the meaning of reverse loops (where the iteration variable
3466 will overflow before the loop exits) is undefined, then could
3467 eliminate all of these special checks, and just always assume
3468 the loops are normal/immediate/infinite. Note that this means
3469 the sign of increment_dir does not have to be known. Also,
3470 since it does not really hurt if immediate exit loops or infinite loops
3471 are optimized, then that case could be ignored also, and hence all
3472 loops can be optimized.
3473
3474 According to ANSI Spec, the reverse loop case result is undefined,
3475 because the action on overflow is undefined.
3476
3477 See also the special test for NE loops below. */
3478
3479 if (final_larger == increment_dir && final_larger != 0
3480 && (final_larger == compare_dir || compare_dir == 0))
3481 /* Normal case. */
3482 ;
3483 else
3484 {
3485 if (loop_dump_stream)
3486 fprintf (loop_dump_stream,
3487 "Loop unrolling: Not normal loop.\n");
3488 return 0;
3489 }
3490
3491 /* Calculate the number of iterations, final_value is only an approximation,
3492 so correct for that. Note that tempu and loop_n_iterations are
3493 unsigned, because they can be as large as 2^n - 1. */
3494
3495 i = INTVAL (increment);
3496 if (i > 0)
3497 tempu = INTVAL (final_value) - INTVAL (initial_value);
3498 else if (i < 0)
3499 {
3500 tempu = INTVAL (initial_value) - INTVAL (final_value);
3501 i = -i;
3502 }
3503 else
3504 abort ();
3505
3506 /* For NE tests, make sure that the iteration variable won't miss the
3507 final value. If tempu mod i is not zero, then the iteration variable
3508 will overflow before the loop exits, and we can not calculate the
3509 number of iterations. */
3510 if (compare_dir == 0 && (tempu % i) != 0)
3511 return 0;
3512
3513 return tempu / i + ((tempu % i) != 0);
3514 }
3515
3516 /* Replace uses of split bivs with their split pseudo register. This is
3517 for original instructions which remain after loop unrolling without
3518 copying. */
3519
3520 static rtx
3521 remap_split_bivs (x)
3522 rtx x;
3523 {
3524 register enum rtx_code code;
3525 register int i;
3526 register char *fmt;
3527
3528 if (x == 0)
3529 return x;
3530
3531 code = GET_CODE (x);
3532 switch (code)
3533 {
3534 case SCRATCH:
3535 case PC:
3536 case CC0:
3537 case CONST_INT:
3538 case CONST_DOUBLE:
3539 case CONST:
3540 case SYMBOL_REF:
3541 case LABEL_REF:
3542 return x;
3543
3544 case REG:
3545 #if 0
3546 /* If non-reduced/final-value givs were split, then this would also
3547 have to remap those givs also. */
3548 #endif
3549 if (REGNO (x) < max_reg_before_loop
3550 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3551 return reg_biv_class[REGNO (x)]->biv->src_reg;
3552 }
3553
3554 fmt = GET_RTX_FORMAT (code);
3555 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3556 {
3557 if (fmt[i] == 'e')
3558 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3559 if (fmt[i] == 'E')
3560 {
3561 register int j;
3562 for (j = 0; j < XVECLEN (x, i); j++)
3563 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3564 }
3565 }
3566 return x;
3567 }
3568
3569 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3570 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3571 return 0. COPY_START is where we can start looking for the insns
3572 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3573 insns.
3574
3575 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3576 must dominate LAST_UID.
3577
3578 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3579 may not dominate LAST_UID.
3580
3581 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3582 must dominate LAST_UID. */
3583
3584 int
3585 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3586 int regno;
3587 int first_uid;
3588 int last_uid;
3589 rtx copy_start;
3590 rtx copy_end;
3591 {
3592 int passed_jump = 0;
3593 rtx p = NEXT_INSN (copy_start);
3594
3595 while (INSN_UID (p) != first_uid)
3596 {
3597 if (GET_CODE (p) == JUMP_INSN)
3598 passed_jump= 1;
3599 /* Could not find FIRST_UID. */
3600 if (p == copy_end)
3601 return 0;
3602 p = NEXT_INSN (p);
3603 }
3604
3605 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3606 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3607 || ! dead_or_set_regno_p (p, regno))
3608 return 0;
3609
3610 /* FIRST_UID is always executed. */
3611 if (passed_jump == 0)
3612 return 1;
3613
3614 while (INSN_UID (p) != last_uid)
3615 {
3616 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3617 can not be sure that FIRST_UID dominates LAST_UID. */
3618 if (GET_CODE (p) == CODE_LABEL)
3619 return 0;
3620 /* Could not find LAST_UID, but we reached the end of the loop, so
3621 it must be safe. */
3622 else if (p == copy_end)
3623 return 1;
3624 p = NEXT_INSN (p);
3625 }
3626
3627 /* FIRST_UID is always executed if LAST_UID is executed. */
3628 return 1;
3629 }