(unroll_loop): Clear map->integrating.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204
205 /* Try to unroll one loop and split induction variables in the loop.
206
207 The loop is described by the arguments LOOP_END, INSN_COUNT, and
208 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
209 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
210 indicates whether information generated in the strength reduction pass
211 is available.
212
213 This function is intended to be called from within `strength_reduce'
214 in loop.c. */
215
216 void
217 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
218 strength_reduce_p)
219 rtx loop_end;
220 int insn_count;
221 rtx loop_start;
222 rtx end_insert_before;
223 int strength_reduce_p;
224 {
225 int i, j, temp;
226 int unroll_number = 1;
227 rtx copy_start, copy_end;
228 rtx insn, copy, sequence, pattern, tem;
229 int max_labelno, max_insnno;
230 rtx insert_before;
231 struct inline_remap *map;
232 char *local_label;
233 int maxregnum;
234 int new_maxregnum;
235 rtx exit_label = 0;
236 rtx start_label;
237 struct iv_class *bl;
238 struct induction *v;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603
604 if (unroll_type == UNROLL_NAIVE
605 && GET_CODE (last_loop_insn) == BARRIER
606 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
607 {
608 /* In this case, we must copy the jump and barrier, because they will
609 not be converted to jumps to an immediately following label. */
610
611 insert_before = NEXT_INSN (last_loop_insn);
612 copy_end = last_loop_insn;
613 }
614
615 /* Allocate a translation table for the labels and insn numbers.
616 They will be filled in as we copy the insns in the loop. */
617
618 max_labelno = max_label_num ();
619 max_insnno = get_max_uid ();
620
621 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
622
623 map->integrating = 0;
624
625 /* Allocate the label map. */
626
627 if (max_labelno > 0)
628 {
629 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
630
631 local_label = (char *) alloca (max_labelno);
632 bzero (local_label, max_labelno);
633 }
634 else
635 map->label_map = 0;
636
637 /* Search the loop and mark all local labels, i.e. the ones which have to
638 be distinct labels when copied. For all labels which might be
639 non-local, set their label_map entries to point to themselves.
640 If they happen to be local their label_map entries will be overwritten
641 before the loop body is copied. The label_map entries for local labels
642 will be set to a different value each time the loop body is copied. */
643
644 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
645 {
646 if (GET_CODE (insn) == CODE_LABEL)
647 local_label[CODE_LABEL_NUMBER (insn)] = 1;
648 else if (GET_CODE (insn) == JUMP_INSN)
649 {
650 if (JUMP_LABEL (insn))
651 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
652 = JUMP_LABEL (insn);
653 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
654 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
655 {
656 rtx pat = PATTERN (insn);
657 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
658 int len = XVECLEN (pat, diff_vec_p);
659 rtx label;
660
661 for (i = 0; i < len; i++)
662 {
663 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
664 map->label_map[CODE_LABEL_NUMBER (label)] = label;
665 }
666 }
667 }
668 }
669
670 /* Allocate space for the insn map. */
671
672 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
673
674 /* Set this to zero, to indicate that we are doing loop unrolling,
675 not function inlining. */
676 map->inline_target = 0;
677
678 /* The register and constant maps depend on the number of registers
679 present, so the final maps can't be created until after
680 find_splittable_regs is called. However, they are needed for
681 preconditioning, so we create temporary maps when preconditioning
682 is performed. */
683
684 /* The preconditioning code may allocate two new pseudo registers. */
685 maxregnum = max_reg_num ();
686
687 /* Allocate and zero out the splittable_regs and addr_combined_regs
688 arrays. These must be zeroed here because they will be used if
689 loop preconditioning is performed, and must be zero for that case.
690
691 It is safe to do this here, since the extra registers created by the
692 preconditioning code and find_splittable_regs will never be used
693 to access the splittable_regs[] and addr_combined_regs[] arrays. */
694
695 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
696 bzero (splittable_regs, maxregnum * sizeof (rtx));
697 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
698 bzero (splittable_regs_updates, maxregnum * sizeof (int));
699 addr_combined_regs
700 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
701 bzero (addr_combined_regs, maxregnum * sizeof (struct induction *));
702
703 /* If this loop requires exit tests when unrolled, check to see if we
704 can precondition the loop so as to make the exit tests unnecessary.
705 Just like variable splitting, this is not safe if the loop is entered
706 via a jump to the bottom. Also, can not do this if no strength
707 reduce info, because precondition_loop_p uses this info. */
708
709 /* Must copy the loop body for preconditioning before the following
710 find_splittable_regs call since that will emit insns which need to
711 be after the preconditioned loop copies, but immediately before the
712 unrolled loop copies. */
713
714 /* Also, it is not safe to split induction variables for the preconditioned
715 copies of the loop body. If we split induction variables, then the code
716 assumes that each induction variable can be represented as a function
717 of its initial value and the loop iteration number. This is not true
718 in this case, because the last preconditioned copy of the loop body
719 could be any iteration from the first up to the `unroll_number-1'th,
720 depending on the initial value of the iteration variable. Therefore
721 we can not split induction variables here, because we can not calculate
722 their value. Hence, this code must occur before find_splittable_regs
723 is called. */
724
725 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
726 {
727 rtx initial_value, final_value, increment;
728
729 if (precondition_loop_p (&initial_value, &final_value, &increment,
730 loop_start, loop_end))
731 {
732 register rtx diff, temp;
733 enum machine_mode mode;
734 rtx *labels;
735 int abs_inc, neg_inc;
736
737 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
738
739 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
740 map->const_age_map = (unsigned *) alloca (maxregnum
741 * sizeof (unsigned));
742 map->const_equiv_map_size = maxregnum;
743 global_const_equiv_map = map->const_equiv_map;
744
745 init_reg_map (map, maxregnum);
746
747 /* Limit loop unrolling to 4, since this will make 7 copies of
748 the loop body. */
749 if (unroll_number > 4)
750 unroll_number = 4;
751
752 /* Save the absolute value of the increment, and also whether or
753 not it is negative. */
754 neg_inc = 0;
755 abs_inc = INTVAL (increment);
756 if (abs_inc < 0)
757 {
758 abs_inc = - abs_inc;
759 neg_inc = 1;
760 }
761
762 start_sequence ();
763
764 /* Decide what mode to do these calculations in. Choose the larger
765 of final_value's mode and initial_value's mode, or a full-word if
766 both are constants. */
767 mode = GET_MODE (final_value);
768 if (mode == VOIDmode)
769 {
770 mode = GET_MODE (initial_value);
771 if (mode == VOIDmode)
772 mode = word_mode;
773 }
774 else if (mode != GET_MODE (initial_value)
775 && (GET_MODE_SIZE (mode)
776 < GET_MODE_SIZE (GET_MODE (initial_value))))
777 mode = GET_MODE (initial_value);
778
779 /* Calculate the difference between the final and initial values.
780 Final value may be a (plus (reg x) (const_int 1)) rtx.
781 Let the following cse pass simplify this if initial value is
782 a constant.
783
784 We must copy the final and initial values here to avoid
785 improperly shared rtl. */
786
787 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
788 copy_rtx (initial_value), NULL_RTX, 0,
789 OPTAB_LIB_WIDEN);
790
791 /* Now calculate (diff % (unroll * abs (increment))) by using an
792 and instruction. */
793 diff = expand_binop (GET_MODE (diff), and_optab, diff,
794 GEN_INT (unroll_number * abs_inc - 1),
795 NULL_RTX, 0, OPTAB_LIB_WIDEN);
796
797 /* Now emit a sequence of branches to jump to the proper precond
798 loop entry point. */
799
800 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
801 for (i = 0; i < unroll_number; i++)
802 labels[i] = gen_label_rtx ();
803
804 /* Assuming the unroll_number is 4, and the increment is 2, then
805 for a negative increment: for a positive increment:
806 diff = 0,1 precond 0 diff = 0,7 precond 0
807 diff = 2,3 precond 3 diff = 1,2 precond 1
808 diff = 4,5 precond 2 diff = 3,4 precond 2
809 diff = 6,7 precond 1 diff = 5,6 precond 3 */
810
811 /* We only need to emit (unroll_number - 1) branches here, the
812 last case just falls through to the following code. */
813
814 /* ??? This would give better code if we emitted a tree of branches
815 instead of the current linear list of branches. */
816
817 for (i = 0; i < unroll_number - 1; i++)
818 {
819 int cmp_const;
820
821 /* For negative increments, must invert the constant compared
822 against, except when comparing against zero. */
823 if (i == 0)
824 cmp_const = 0;
825 else if (neg_inc)
826 cmp_const = unroll_number - i;
827 else
828 cmp_const = i;
829
830 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
831 EQ, NULL_RTX, mode, 0, 0);
832
833 if (i == 0)
834 emit_jump_insn (gen_beq (labels[i]));
835 else if (neg_inc)
836 emit_jump_insn (gen_bge (labels[i]));
837 else
838 emit_jump_insn (gen_ble (labels[i]));
839 JUMP_LABEL (get_last_insn ()) = labels[i];
840 LABEL_NUSES (labels[i])++;
841 }
842
843 /* If the increment is greater than one, then we need another branch,
844 to handle other cases equivalent to 0. */
845
846 /* ??? This should be merged into the code above somehow to help
847 simplify the code here, and reduce the number of branches emitted.
848 For the negative increment case, the branch here could easily
849 be merged with the `0' case branch above. For the positive
850 increment case, it is not clear how this can be simplified. */
851
852 if (abs_inc != 1)
853 {
854 int cmp_const;
855
856 if (neg_inc)
857 cmp_const = abs_inc - 1;
858 else
859 cmp_const = abs_inc * (unroll_number - 1) + 1;
860
861 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
862 mode, 0, 0);
863
864 if (neg_inc)
865 emit_jump_insn (gen_ble (labels[0]));
866 else
867 emit_jump_insn (gen_bge (labels[0]));
868 JUMP_LABEL (get_last_insn ()) = labels[0];
869 LABEL_NUSES (labels[0])++;
870 }
871
872 sequence = gen_sequence ();
873 end_sequence ();
874 emit_insn_before (sequence, loop_start);
875
876 /* Only the last copy of the loop body here needs the exit
877 test, so set copy_end to exclude the compare/branch here,
878 and then reset it inside the loop when get to the last
879 copy. */
880
881 if (GET_CODE (last_loop_insn) == BARRIER)
882 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
883 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
884 {
885 #ifdef HAVE_cc0
886 /* The immediately preceding insn is a compare which we do not
887 want to copy. */
888 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
889 #else
890 /* The immediately preceding insn may not be a compare, so we
891 must copy it. */
892 copy_end = PREV_INSN (last_loop_insn);
893 #endif
894 }
895 else
896 abort ();
897
898 for (i = 1; i < unroll_number; i++)
899 {
900 emit_label_after (labels[unroll_number - i],
901 PREV_INSN (loop_start));
902
903 bzero (map->insn_map, max_insnno * sizeof (rtx));
904 bzero (map->const_equiv_map, maxregnum * sizeof (rtx));
905 bzero (map->const_age_map, maxregnum * sizeof (unsigned));
906 map->const_age = 0;
907
908 for (j = 0; j < max_labelno; j++)
909 if (local_label[j])
910 map->label_map[j] = gen_label_rtx ();
911
912 /* The last copy needs the compare/branch insns at the end,
913 so reset copy_end here if the loop ends with a conditional
914 branch. */
915
916 if (i == unroll_number - 1)
917 {
918 if (GET_CODE (last_loop_insn) == BARRIER)
919 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
920 else
921 copy_end = last_loop_insn;
922 }
923
924 /* None of the copies are the `last_iteration', so just
925 pass zero for that parameter. */
926 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
927 unroll_type, start_label, loop_end,
928 loop_start, copy_end);
929 }
930 emit_label_after (labels[0], PREV_INSN (loop_start));
931
932 if (GET_CODE (last_loop_insn) == BARRIER)
933 {
934 insert_before = PREV_INSN (last_loop_insn);
935 copy_end = PREV_INSN (insert_before);
936 }
937 else
938 {
939 #ifdef HAVE_cc0
940 /* The immediately preceding insn is a compare which we do not
941 want to copy. */
942 insert_before = PREV_INSN (last_loop_insn);
943 copy_end = PREV_INSN (insert_before);
944 #else
945 /* The immediately preceding insn may not be a compare, so we
946 must copy it. */
947 insert_before = last_loop_insn;
948 copy_end = PREV_INSN (last_loop_insn);
949 #endif
950 }
951
952 /* Set unroll type to MODULO now. */
953 unroll_type = UNROLL_MODULO;
954 loop_preconditioned = 1;
955 }
956 }
957
958 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
959 the loop unless all loops are being unrolled. */
960 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
961 {
962 if (loop_dump_stream)
963 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
964 return;
965 }
966
967 /* At this point, we are guaranteed to unroll the loop. */
968
969 /* For each biv and giv, determine whether it can be safely split into
970 a different variable for each unrolled copy of the loop body.
971 We precalculate and save this info here, since computing it is
972 expensive.
973
974 Do this before deleting any instructions from the loop, so that
975 back_branch_in_range_p will work correctly. */
976
977 if (splitting_not_safe)
978 temp = 0;
979 else
980 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
981 end_insert_before, unroll_number);
982
983 /* find_splittable_regs may have created some new registers, so must
984 reallocate the reg_map with the new larger size, and must realloc
985 the constant maps also. */
986
987 maxregnum = max_reg_num ();
988 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
989
990 init_reg_map (map, maxregnum);
991
992 /* Space is needed in some of the map for new registers, so new_maxregnum
993 is an (over)estimate of how many registers will exist at the end. */
994 new_maxregnum = maxregnum + (temp * unroll_number * 2);
995
996 /* Must realloc space for the constant maps, because the number of registers
997 may have changed. */
998
999 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1000 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1001
1002 global_const_equiv_map = map->const_equiv_map;
1003
1004 /* Search the list of bivs and givs to find ones which need to be remapped
1005 when split, and set their reg_map entry appropriately. */
1006
1007 for (bl = loop_iv_list; bl; bl = bl->next)
1008 {
1009 if (REGNO (bl->biv->src_reg) != bl->regno)
1010 map->reg_map[bl->regno] = bl->biv->src_reg;
1011 #if 0
1012 /* Currently, non-reduced/final-value givs are never split. */
1013 for (v = bl->giv; v; v = v->next_iv)
1014 if (REGNO (v->src_reg) != bl->regno)
1015 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1016 #endif
1017 }
1018
1019 /* If the loop is being partially unrolled, and the iteration variables
1020 are being split, and are being renamed for the split, then must fix up
1021 the compare instruction at the end of the loop to refer to the new
1022 registers. This compare isn't copied, so the registers used in it
1023 will never be replaced if it isn't done here. */
1024
1025 if (unroll_type == UNROLL_MODULO)
1026 {
1027 insn = NEXT_INSN (copy_end);
1028 if (GET_CODE (insn) == INSN && GET_CODE (PATTERN (insn)) == SET)
1029 {
1030 #if 0
1031 /* If non-reduced/final-value givs were split, then this would also
1032 have to remap those givs. */
1033 #endif
1034
1035 tem = SET_SRC (PATTERN (insn));
1036 /* The set source is a register. */
1037 if (GET_CODE (tem) == REG)
1038 {
1039 if (REGNO (tem) < max_reg_before_loop
1040 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1041 SET_SRC (PATTERN (insn))
1042 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1043 }
1044 else
1045 {
1046 /* The set source is a compare of some sort. */
1047 tem = XEXP (SET_SRC (PATTERN (insn)), 0);
1048 if (GET_CODE (tem) == REG
1049 && REGNO (tem) < max_reg_before_loop
1050 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1051 XEXP (SET_SRC (PATTERN (insn)), 0)
1052 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1053
1054 tem = XEXP (SET_SRC (PATTERN (insn)), 1);
1055 if (GET_CODE (tem) == REG
1056 && REGNO (tem) < max_reg_before_loop
1057 && reg_iv_type[REGNO (tem)] == BASIC_INDUCT)
1058 XEXP (SET_SRC (PATTERN (insn)), 1)
1059 = reg_biv_class[REGNO (tem)]->biv->src_reg;
1060 }
1061 }
1062 }
1063
1064 /* For unroll_number - 1 times, make a copy of each instruction
1065 between copy_start and copy_end, and insert these new instructions
1066 before the end of the loop. */
1067
1068 for (i = 0; i < unroll_number; i++)
1069 {
1070 bzero (map->insn_map, max_insnno * sizeof (rtx));
1071 bzero (map->const_equiv_map, new_maxregnum * sizeof (rtx));
1072 bzero (map->const_age_map, new_maxregnum * sizeof (unsigned));
1073 map->const_age = 0;
1074
1075 for (j = 0; j < max_labelno; j++)
1076 if (local_label[j])
1077 map->label_map[j] = gen_label_rtx ();
1078
1079 /* If loop starts with a branch to the test, then fix it so that
1080 it points to the test of the first unrolled copy of the loop. */
1081 if (i == 0 && loop_start != copy_start)
1082 {
1083 insn = PREV_INSN (copy_start);
1084 pattern = PATTERN (insn);
1085
1086 tem = map->label_map[CODE_LABEL_NUMBER
1087 (XEXP (SET_SRC (pattern), 0))];
1088 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1089
1090 /* Set the jump label so that it can be used by later loop unrolling
1091 passes. */
1092 JUMP_LABEL (insn) = tem;
1093 LABEL_NUSES (tem)++;
1094 }
1095
1096 copy_loop_body (copy_start, copy_end, map, exit_label,
1097 i == unroll_number - 1, unroll_type, start_label,
1098 loop_end, insert_before, insert_before);
1099 }
1100
1101 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1102 insn to be deleted. This prevents any runaway delete_insn call from
1103 more insns that it should, as it always stops at a CODE_LABEL. */
1104
1105 /* Delete the compare and branch at the end of the loop if completely
1106 unrolling the loop. Deleting the backward branch at the end also
1107 deletes the code label at the start of the loop. This is done at
1108 the very end to avoid problems with back_branch_in_range_p. */
1109
1110 if (unroll_type == UNROLL_COMPLETELY)
1111 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1112 else
1113 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1114
1115 /* Delete all of the original loop instructions. Don't delete the
1116 LOOP_BEG note, or the first code label in the loop. */
1117
1118 insn = NEXT_INSN (copy_start);
1119 while (insn != safety_label)
1120 {
1121 if (insn != start_label)
1122 insn = delete_insn (insn);
1123 else
1124 insn = NEXT_INSN (insn);
1125 }
1126
1127 /* Can now delete the 'safety' label emitted to protect us from runaway
1128 delete_insn calls. */
1129 if (INSN_DELETED_P (safety_label))
1130 abort ();
1131 delete_insn (safety_label);
1132
1133 /* If exit_label exists, emit it after the loop. Doing the emit here
1134 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1135 This is needed so that mostly_true_jump in reorg.c will treat jumps
1136 to this loop end label correctly, i.e. predict that they are usually
1137 not taken. */
1138 if (exit_label)
1139 emit_label_after (exit_label, loop_end);
1140 }
1141 \f
1142 /* Return true if the loop can be safely, and profitably, preconditioned
1143 so that the unrolled copies of the loop body don't need exit tests.
1144
1145 This only works if final_value, initial_value and increment can be
1146 determined, and if increment is a constant power of 2.
1147 If increment is not a power of 2, then the preconditioning modulo
1148 operation would require a real modulo instead of a boolean AND, and this
1149 is not considered `profitable'. */
1150
1151 /* ??? If the loop is known to be executed very many times, or the machine
1152 has a very cheap divide instruction, then preconditioning is a win even
1153 when the increment is not a power of 2. Use RTX_COST to compute
1154 whether divide is cheap. */
1155
1156 static int
1157 precondition_loop_p (initial_value, final_value, increment, loop_start,
1158 loop_end)
1159 rtx *initial_value, *final_value, *increment;
1160 rtx loop_start, loop_end;
1161 {
1162 int unsigned_compare, compare_dir;
1163
1164 if (loop_n_iterations > 0)
1165 {
1166 *initial_value = const0_rtx;
1167 *increment = const1_rtx;
1168 *final_value = GEN_INT (loop_n_iterations);
1169
1170 if (loop_dump_stream)
1171 fprintf (loop_dump_stream,
1172 "Preconditioning: Success, number of iterations known, %d.\n",
1173 loop_n_iterations);
1174 return 1;
1175 }
1176
1177 if (loop_initial_value == 0)
1178 {
1179 if (loop_dump_stream)
1180 fprintf (loop_dump_stream,
1181 "Preconditioning: Could not find initial value.\n");
1182 return 0;
1183 }
1184 else if (loop_increment == 0)
1185 {
1186 if (loop_dump_stream)
1187 fprintf (loop_dump_stream,
1188 "Preconditioning: Could not find increment value.\n");
1189 return 0;
1190 }
1191 else if (GET_CODE (loop_increment) != CONST_INT)
1192 {
1193 if (loop_dump_stream)
1194 fprintf (loop_dump_stream,
1195 "Preconditioning: Increment not a constant.\n");
1196 return 0;
1197 }
1198 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1199 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1200 {
1201 if (loop_dump_stream)
1202 fprintf (loop_dump_stream,
1203 "Preconditioning: Increment not a constant power of 2.\n");
1204 return 0;
1205 }
1206
1207 /* Unsigned_compare and compare_dir can be ignored here, since they do
1208 not matter for preconditioning. */
1209
1210 if (loop_final_value == 0)
1211 {
1212 if (loop_dump_stream)
1213 fprintf (loop_dump_stream,
1214 "Preconditioning: EQ comparison loop.\n");
1215 return 0;
1216 }
1217
1218 /* Must ensure that final_value is invariant, so call invariant_p to
1219 check. Before doing so, must check regno against max_reg_before_loop
1220 to make sure that the register is in the range covered by invariant_p.
1221 If it isn't, then it is most likely a biv/giv which by definition are
1222 not invariant. */
1223 if ((GET_CODE (loop_final_value) == REG
1224 && REGNO (loop_final_value) >= max_reg_before_loop)
1225 || (GET_CODE (loop_final_value) == PLUS
1226 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1227 || ! invariant_p (loop_final_value))
1228 {
1229 if (loop_dump_stream)
1230 fprintf (loop_dump_stream,
1231 "Preconditioning: Final value not invariant.\n");
1232 return 0;
1233 }
1234
1235 /* Fail for floating point values, since the caller of this function
1236 does not have code to deal with them. */
1237 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1238 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1239 {
1240 if (loop_dump_stream)
1241 fprintf (loop_dump_stream,
1242 "Preconditioning: Floating point final or initial value.\n");
1243 return 0;
1244 }
1245
1246 /* Now set initial_value to be the iteration_var, since that may be a
1247 simpler expression, and is guaranteed to be correct if all of the
1248 above tests succeed.
1249
1250 We can not use the initial_value as calculated, because it will be
1251 one too small for loops of the form "while (i-- > 0)". We can not
1252 emit code before the loop_skip_over insns to fix this problem as this
1253 will then give a number one too large for loops of the form
1254 "while (--i > 0)".
1255
1256 Note that all loops that reach here are entered at the top, because
1257 this function is not called if the loop starts with a jump. */
1258
1259 /* Fail if loop_iteration_var is not live before loop_start, since we need
1260 to test its value in the preconditioning code. */
1261
1262 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1263 > INSN_LUID (loop_start))
1264 {
1265 if (loop_dump_stream)
1266 fprintf (loop_dump_stream,
1267 "Preconditioning: Iteration var not live before loop start.\n");
1268 return 0;
1269 }
1270
1271 *initial_value = loop_iteration_var;
1272 *increment = loop_increment;
1273 *final_value = loop_final_value;
1274
1275 /* Success! */
1276 if (loop_dump_stream)
1277 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1278 return 1;
1279 }
1280
1281
1282 /* All pseudo-registers must be mapped to themselves. Two hard registers
1283 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1284 REGNUM, to avoid function-inlining specific conversions of these
1285 registers. All other hard regs can not be mapped because they may be
1286 used with different
1287 modes. */
1288
1289 static void
1290 init_reg_map (map, maxregnum)
1291 struct inline_remap *map;
1292 int maxregnum;
1293 {
1294 int i;
1295
1296 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1297 map->reg_map[i] = regno_reg_rtx[i];
1298 /* Just clear the rest of the entries. */
1299 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1300 map->reg_map[i] = 0;
1301
1302 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1303 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1304 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1305 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1306 }
1307 \f
1308 /* Strength-reduction will often emit code for optimized biv/givs which
1309 calculates their value in a temporary register, and then copies the result
1310 to the iv. This procedure reconstructs the pattern computing the iv;
1311 verifying that all operands are of the proper form.
1312
1313 The return value is the amount that the giv is incremented by. */
1314
1315 static rtx
1316 calculate_giv_inc (pattern, src_insn, regno)
1317 rtx pattern, src_insn;
1318 int regno;
1319 {
1320 rtx increment;
1321
1322 /* Verify that we have an increment insn here. First check for a plus
1323 as the set source. */
1324 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1325 {
1326 /* SR sometimes computes the new giv value in a temp, then copies it
1327 to the new_reg. */
1328 src_insn = PREV_INSN (src_insn);
1329 pattern = PATTERN (src_insn);
1330 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1331 abort ();
1332
1333 /* The last insn emitted is not needed, so delete it to avoid confusing
1334 the second cse pass. This insn sets the giv unnecessarily. */
1335 delete_insn (get_last_insn ());
1336 }
1337
1338 /* Verify that we have a constant as the second operand of the plus. */
1339 increment = XEXP (SET_SRC (pattern), 1);
1340 if (GET_CODE (increment) != CONST_INT)
1341 {
1342 /* SR sometimes puts the constant in a register, especially if it is
1343 too big to be an add immed operand. */
1344 increment = SET_SRC (PATTERN (PREV_INSN (src_insn)));
1345
1346 /* SR may have used LO_SUM to compute the constant if it is too large
1347 for a load immed operand. In this case, the constant is in operand
1348 one of the LO_SUM rtx. */
1349 if (GET_CODE (increment) == LO_SUM)
1350 increment = XEXP (increment, 1);
1351
1352 if (GET_CODE (increment) != CONST_INT)
1353 abort ();
1354
1355 /* The insn loading the constant into a register is not longer needed,
1356 so delete it. */
1357 delete_insn (get_last_insn ());
1358 }
1359
1360 /* Check that the source register is the same as the dest register. */
1361 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1362 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1363 abort ();
1364
1365 return increment;
1366 }
1367
1368
1369 /* Copy each instruction in the loop, substituting from map as appropriate.
1370 This is very similar to a loop in expand_inline_function. */
1371
1372 static void
1373 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1374 unroll_type, start_label, loop_end, insert_before,
1375 copy_notes_from)
1376 rtx copy_start, copy_end;
1377 struct inline_remap *map;
1378 rtx exit_label;
1379 int last_iteration;
1380 enum unroll_types unroll_type;
1381 rtx start_label, loop_end, insert_before, copy_notes_from;
1382 {
1383 rtx insn, pattern;
1384 rtx tem, copy;
1385 int dest_reg_was_split, i;
1386 rtx cc0_insn = 0;
1387 rtx final_label = 0;
1388 rtx giv_inc, giv_dest_reg, giv_src_reg;
1389
1390 /* If this isn't the last iteration, then map any references to the
1391 start_label to final_label. Final label will then be emitted immediately
1392 after the end of this loop body if it was ever used.
1393
1394 If this is the last iteration, then map references to the start_label
1395 to itself. */
1396 if (! last_iteration)
1397 {
1398 final_label = gen_label_rtx ();
1399 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1400 }
1401 else
1402 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1403
1404 start_sequence ();
1405
1406 insn = copy_start;
1407 do
1408 {
1409 insn = NEXT_INSN (insn);
1410
1411 map->orig_asm_operands_vector = 0;
1412
1413 switch (GET_CODE (insn))
1414 {
1415 case INSN:
1416 pattern = PATTERN (insn);
1417 copy = 0;
1418 giv_inc = 0;
1419
1420 /* Check to see if this is a giv that has been combined with
1421 some split address givs. (Combined in the sense that
1422 `combine_givs' in loop.c has put two givs in the same register.)
1423 In this case, we must search all givs based on the same biv to
1424 find the address givs. Then split the address givs.
1425 Do this before splitting the giv, since that may map the
1426 SET_DEST to a new register. */
1427
1428 if (GET_CODE (pattern) == SET
1429 && GET_CODE (SET_DEST (pattern)) == REG
1430 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1431 {
1432 struct iv_class *bl;
1433 struct induction *v, *tv;
1434 int regno = REGNO (SET_DEST (pattern));
1435
1436 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1437 bl = reg_biv_class[REGNO (v->src_reg)];
1438
1439 /* Although the giv_inc amount is not needed here, we must call
1440 calculate_giv_inc here since it might try to delete the
1441 last insn emitted. If we wait until later to call it,
1442 we might accidentally delete insns generated immediately
1443 below by emit_unrolled_add. */
1444
1445 giv_inc = calculate_giv_inc (pattern, insn, regno);
1446
1447 /* Now find all address giv's that were combined with this
1448 giv 'v'. */
1449 for (tv = bl->giv; tv; tv = tv->next_iv)
1450 if (tv->giv_type == DEST_ADDR && tv->same == v)
1451 {
1452 int this_giv_inc = INTVAL (giv_inc);
1453
1454 /* Scale this_giv_inc if the multiplicative factors of
1455 the two givs are different. */
1456 if (tv->mult_val != v->mult_val)
1457 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1458 * INTVAL (tv->mult_val));
1459
1460 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1461 *tv->location = tv->dest_reg;
1462
1463 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1464 {
1465 /* Must emit an insn to increment the split address
1466 giv. Add in the const_adjust field in case there
1467 was a constant eliminated from the address. */
1468 rtx value, dest_reg;
1469
1470 /* tv->dest_reg will be either a bare register,
1471 or else a register plus a constant. */
1472 if (GET_CODE (tv->dest_reg) == REG)
1473 dest_reg = tv->dest_reg;
1474 else
1475 dest_reg = XEXP (tv->dest_reg, 0);
1476
1477 /* tv->dest_reg may actually be a (PLUS (REG) (CONST))
1478 here, so we must call plus_constant to add
1479 the const_adjust amount before calling
1480 emit_unrolled_add below. */
1481 value = plus_constant (tv->dest_reg, tv->const_adjust);
1482
1483 /* The constant could be too large for an add
1484 immediate, so can't directly emit an insn here. */
1485 emit_unrolled_add (dest_reg, XEXP (value, 0),
1486 XEXP (value, 1));
1487
1488 /* Reset the giv to be just the register again, in case
1489 it is used after the set we have just emitted.
1490 We must subtract the const_adjust factor added in
1491 above. */
1492 tv->dest_reg = plus_constant (dest_reg,
1493 - tv->const_adjust);
1494 *tv->location = tv->dest_reg;
1495 }
1496 }
1497 }
1498
1499 /* If this is a setting of a splittable variable, then determine
1500 how to split the variable, create a new set based on this split,
1501 and set up the reg_map so that later uses of the variable will
1502 use the new split variable. */
1503
1504 dest_reg_was_split = 0;
1505
1506 if (GET_CODE (pattern) == SET
1507 && GET_CODE (SET_DEST (pattern)) == REG
1508 && splittable_regs[REGNO (SET_DEST (pattern))])
1509 {
1510 int regno = REGNO (SET_DEST (pattern));
1511
1512 dest_reg_was_split = 1;
1513
1514 /* Compute the increment value for the giv, if it wasn't
1515 already computed above. */
1516
1517 if (giv_inc == 0)
1518 giv_inc = calculate_giv_inc (pattern, insn, regno);
1519 giv_dest_reg = SET_DEST (pattern);
1520 giv_src_reg = SET_DEST (pattern);
1521
1522 if (unroll_type == UNROLL_COMPLETELY)
1523 {
1524 /* Completely unrolling the loop. Set the induction
1525 variable to a known constant value. */
1526
1527 /* The value in splittable_regs may be an invariant
1528 value, so we must use plus_constant here. */
1529 splittable_regs[regno]
1530 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1531
1532 if (GET_CODE (splittable_regs[regno]) == PLUS)
1533 {
1534 giv_src_reg = XEXP (splittable_regs[regno], 0);
1535 giv_inc = XEXP (splittable_regs[regno], 1);
1536 }
1537 else
1538 {
1539 /* The splittable_regs value must be a REG or a
1540 CONST_INT, so put the entire value in the giv_src_reg
1541 variable. */
1542 giv_src_reg = splittable_regs[regno];
1543 giv_inc = const0_rtx;
1544 }
1545 }
1546 else
1547 {
1548 /* Partially unrolling loop. Create a new pseudo
1549 register for the iteration variable, and set it to
1550 be a constant plus the original register. Except
1551 on the last iteration, when the result has to
1552 go back into the original iteration var register. */
1553
1554 /* Handle bivs which must be mapped to a new register
1555 when split. This happens for bivs which need their
1556 final value set before loop entry. The new register
1557 for the biv was stored in the biv's first struct
1558 induction entry by find_splittable_regs. */
1559
1560 if (regno < max_reg_before_loop
1561 && reg_iv_type[regno] == BASIC_INDUCT)
1562 {
1563 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1564 giv_dest_reg = giv_src_reg;
1565 }
1566
1567 #if 0
1568 /* If non-reduced/final-value givs were split, then
1569 this would have to remap those givs also. See
1570 find_splittable_regs. */
1571 #endif
1572
1573 splittable_regs[regno]
1574 = GEN_INT (INTVAL (giv_inc)
1575 + INTVAL (splittable_regs[regno]));
1576 giv_inc = splittable_regs[regno];
1577
1578 /* Now split the induction variable by changing the dest
1579 of this insn to a new register, and setting its
1580 reg_map entry to point to this new register.
1581
1582 If this is the last iteration, and this is the last insn
1583 that will update the iv, then reuse the original dest,
1584 to ensure that the iv will have the proper value when
1585 the loop exits or repeats.
1586
1587 Using splittable_regs_updates here like this is safe,
1588 because it can only be greater than one if all
1589 instructions modifying the iv are always executed in
1590 order. */
1591
1592 if (! last_iteration
1593 || (splittable_regs_updates[regno]-- != 1))
1594 {
1595 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1596 giv_dest_reg = tem;
1597 map->reg_map[regno] = tem;
1598 }
1599 else
1600 map->reg_map[regno] = giv_src_reg;
1601 }
1602
1603 /* The constant being added could be too large for an add
1604 immediate, so can't directly emit an insn here. */
1605 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1606 copy = get_last_insn ();
1607 pattern = PATTERN (copy);
1608 }
1609 else
1610 {
1611 pattern = copy_rtx_and_substitute (pattern, map);
1612 copy = emit_insn (pattern);
1613 }
1614 /* REG_NOTES will be copied later. */
1615
1616 #ifdef HAVE_cc0
1617 /* If this insn is setting CC0, it may need to look at
1618 the insn that uses CC0 to see what type of insn it is.
1619 In that case, the call to recog via validate_change will
1620 fail. So don't substitute constants here. Instead,
1621 do it when we emit the following insn.
1622
1623 For example, see the pyr.md file. That machine has signed and
1624 unsigned compares. The compare patterns must check the
1625 following branch insn to see which what kind of compare to
1626 emit.
1627
1628 If the previous insn set CC0, substitute constants on it as
1629 well. */
1630 if (sets_cc0_p (copy) != 0)
1631 cc0_insn = copy;
1632 else
1633 {
1634 if (cc0_insn)
1635 try_constants (cc0_insn, map);
1636 cc0_insn = 0;
1637 try_constants (copy, map);
1638 }
1639 #else
1640 try_constants (copy, map);
1641 #endif
1642
1643 /* Make split induction variable constants `permanent' since we
1644 know there are no backward branches across iteration variable
1645 settings which would invalidate this. */
1646 if (dest_reg_was_split)
1647 {
1648 int regno = REGNO (SET_DEST (pattern));
1649
1650 if (map->const_age_map[regno] == map->const_age)
1651 map->const_age_map[regno] = -1;
1652 }
1653 break;
1654
1655 case JUMP_INSN:
1656 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1657 copy = emit_jump_insn (pattern);
1658
1659 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1660 && ! last_iteration)
1661 {
1662 /* This is a branch to the beginning of the loop; this is the
1663 last insn being copied; and this is not the last iteration.
1664 In this case, we want to change the original fall through
1665 case to be a branch past the end of the loop, and the
1666 original jump label case to fall_through. */
1667
1668 if (! invert_exp (pattern, copy)
1669 || ! redirect_exp (&pattern,
1670 map->label_map[CODE_LABEL_NUMBER
1671 (JUMP_LABEL (insn))],
1672 exit_label, copy))
1673 abort ();
1674 }
1675
1676 #ifdef HAVE_cc0
1677 if (cc0_insn)
1678 try_constants (cc0_insn, map);
1679 cc0_insn = 0;
1680 #endif
1681 try_constants (copy, map);
1682
1683 /* Set the jump label of COPY correctly to avoid problems with
1684 later passes of unroll_loop, if INSN had jump label set. */
1685 if (JUMP_LABEL (insn))
1686 {
1687 rtx label = 0;
1688
1689 /* Can't use the label_map for every insn, since this may be
1690 the backward branch, and hence the label was not mapped. */
1691 if (GET_CODE (pattern) == SET)
1692 {
1693 tem = SET_SRC (pattern);
1694 if (GET_CODE (tem) == LABEL_REF)
1695 label = XEXP (tem, 0);
1696 else if (GET_CODE (tem) == IF_THEN_ELSE)
1697 {
1698 if (XEXP (tem, 1) != pc_rtx)
1699 label = XEXP (XEXP (tem, 1), 0);
1700 else
1701 label = XEXP (XEXP (tem, 2), 0);
1702 }
1703 }
1704
1705 if (label && GET_CODE (label) == CODE_LABEL)
1706 JUMP_LABEL (copy) = label;
1707 else
1708 {
1709 /* An unrecognizable jump insn, probably the entry jump
1710 for a switch statement. This label must have been mapped,
1711 so just use the label_map to get the new jump label. */
1712 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1713 (JUMP_LABEL (insn))];
1714 }
1715
1716 /* If this is a non-local jump, then must increase the label
1717 use count so that the label will not be deleted when the
1718 original jump is deleted. */
1719 LABEL_NUSES (JUMP_LABEL (copy))++;
1720 }
1721 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1722 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1723 {
1724 rtx pat = PATTERN (copy);
1725 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1726 int len = XVECLEN (pat, diff_vec_p);
1727 int i;
1728
1729 for (i = 0; i < len; i++)
1730 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1731 }
1732
1733 /* If this used to be a conditional jump insn but whose branch
1734 direction is now known, we must do something special. */
1735 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1736 {
1737 #ifdef HAVE_cc0
1738 /* The previous insn set cc0 for us. So delete it. */
1739 delete_insn (PREV_INSN (copy));
1740 #endif
1741
1742 /* If this is now a no-op, delete it. */
1743 if (map->last_pc_value == pc_rtx)
1744 {
1745 delete_insn (copy);
1746 copy = 0;
1747 }
1748 else
1749 /* Otherwise, this is unconditional jump so we must put a
1750 BARRIER after it. We could do some dead code elimination
1751 here, but jump.c will do it just as well. */
1752 emit_barrier ();
1753 }
1754 break;
1755
1756 case CALL_INSN:
1757 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1758 copy = emit_call_insn (pattern);
1759
1760 #ifdef HAVE_cc0
1761 if (cc0_insn)
1762 try_constants (cc0_insn, map);
1763 cc0_insn = 0;
1764 #endif
1765 try_constants (copy, map);
1766
1767 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1768 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1769 map->const_equiv_map[i] = 0;
1770 break;
1771
1772 case CODE_LABEL:
1773 /* If this is the loop start label, then we don't need to emit a
1774 copy of this label since no one will use it. */
1775
1776 if (insn != start_label)
1777 {
1778 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1779 map->const_age++;
1780 }
1781 break;
1782
1783 case BARRIER:
1784 copy = emit_barrier ();
1785 break;
1786
1787 case NOTE:
1788 /* VTOP notes are valid only before the loop exit test. If placed
1789 anywhere else, loop may generate bad code. */
1790
1791 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1792 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1793 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1794 copy = emit_note (NOTE_SOURCE_FILE (insn),
1795 NOTE_LINE_NUMBER (insn));
1796 else
1797 copy = 0;
1798 break;
1799
1800 default:
1801 abort ();
1802 break;
1803 }
1804
1805 map->insn_map[INSN_UID (insn)] = copy;
1806 }
1807 while (insn != copy_end);
1808
1809 /* Now copy the REG_NOTES. */
1810 insn = copy_start;
1811 do
1812 {
1813 insn = NEXT_INSN (insn);
1814 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1815 || GET_CODE (insn) == CALL_INSN)
1816 && map->insn_map[INSN_UID (insn)])
1817 REG_NOTES (map->insn_map[INSN_UID (insn)])
1818 = copy_rtx_and_substitute (REG_NOTES (insn), map);
1819 }
1820 while (insn != copy_end);
1821
1822 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1823 each of these notes here, since there may be some important ones, such as
1824 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1825 iteration, because the original notes won't be deleted.
1826
1827 We can't use insert_before here, because when from preconditioning,
1828 insert_before points before the loop. We can't use copy_end, because
1829 there may be insns already inserted after it (which we don't want to
1830 copy) when not from preconditioning code. */
1831
1832 if (! last_iteration)
1833 {
1834 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1835 {
1836 if (GET_CODE (insn) == NOTE
1837 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1838 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1839 }
1840 }
1841
1842 if (final_label && LABEL_NUSES (final_label) > 0)
1843 emit_label (final_label);
1844
1845 tem = gen_sequence ();
1846 end_sequence ();
1847 emit_insn_before (tem, insert_before);
1848 }
1849 \f
1850 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1851 emitted. This will correctly handle the case where the increment value
1852 won't fit in the immediate field of a PLUS insns. */
1853
1854 void
1855 emit_unrolled_add (dest_reg, src_reg, increment)
1856 rtx dest_reg, src_reg, increment;
1857 {
1858 rtx result;
1859
1860 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1861 dest_reg, 0, OPTAB_LIB_WIDEN);
1862
1863 if (dest_reg != result)
1864 emit_move_insn (dest_reg, result);
1865 }
1866 \f
1867 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1868 is a backward branch in that range that branches to somewhere between
1869 LOOP_START and INSN. Returns 0 otherwise. */
1870
1871 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1872 In practice, this is not a problem, because this function is seldom called,
1873 and uses a negligible amount of CPU time on average. */
1874
1875 static int
1876 back_branch_in_range_p (insn, loop_start, loop_end)
1877 rtx insn;
1878 rtx loop_start, loop_end;
1879 {
1880 rtx p, q, target_insn;
1881
1882 /* Stop before we get to the backward branch at the end of the loop. */
1883 loop_end = prev_nonnote_insn (loop_end);
1884 if (GET_CODE (loop_end) == BARRIER)
1885 loop_end = PREV_INSN (loop_end);
1886
1887 /* Check in case insn has been deleted, search forward for first non
1888 deleted insn following it. */
1889 while (INSN_DELETED_P (insn))
1890 insn = NEXT_INSN (insn);
1891
1892 /* Check for the case where insn is the last insn in the loop. */
1893 if (insn == loop_end)
1894 return 0;
1895
1896 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1897 {
1898 if (GET_CODE (p) == JUMP_INSN)
1899 {
1900 target_insn = JUMP_LABEL (p);
1901
1902 /* Search from loop_start to insn, to see if one of them is
1903 the target_insn. We can't use INSN_LUID comparisons here,
1904 since insn may not have an LUID entry. */
1905 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1906 if (q == target_insn)
1907 return 1;
1908 }
1909 }
1910
1911 return 0;
1912 }
1913
1914 /* Try to generate the simplest rtx for the expression
1915 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1916 value of giv's. */
1917
1918 static rtx
1919 fold_rtx_mult_add (mult1, mult2, add1, mode)
1920 rtx mult1, mult2, add1;
1921 enum machine_mode mode;
1922 {
1923 rtx temp, mult_res;
1924 rtx result;
1925
1926 /* The modes must all be the same. This should always be true. For now,
1927 check to make sure. */
1928 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
1929 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
1930 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
1931 abort ();
1932
1933 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
1934 will be a constant. */
1935 if (GET_CODE (mult1) == CONST_INT)
1936 {
1937 temp = mult2;
1938 mult2 = mult1;
1939 mult1 = temp;
1940 }
1941
1942 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
1943 if (! mult_res)
1944 mult_res = gen_rtx (MULT, mode, mult1, mult2);
1945
1946 /* Again, put the constant second. */
1947 if (GET_CODE (add1) == CONST_INT)
1948 {
1949 temp = add1;
1950 add1 = mult_res;
1951 mult_res = temp;
1952 }
1953
1954 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
1955 if (! result)
1956 result = gen_rtx (PLUS, mode, add1, mult_res);
1957
1958 return result;
1959 }
1960
1961 /* Searches the list of induction struct's for the biv BL, to try to calculate
1962 the total increment value for one iteration of the loop as a constant.
1963
1964 Returns the increment value as an rtx, simplified as much as possible,
1965 if it can be calculated. Otherwise, returns 0. */
1966
1967 rtx
1968 biv_total_increment (bl, loop_start, loop_end)
1969 struct iv_class *bl;
1970 rtx loop_start, loop_end;
1971 {
1972 struct induction *v;
1973 rtx result;
1974
1975 /* For increment, must check every instruction that sets it. Each
1976 instruction must be executed only once each time through the loop.
1977 To verify this, we check that the the insn is always executed, and that
1978 there are no backward branches after the insn that branch to before it.
1979 Also, the insn must have a mult_val of one (to make sure it really is
1980 an increment). */
1981
1982 result = const0_rtx;
1983 for (v = bl->biv; v; v = v->next_iv)
1984 {
1985 if (v->always_computable && v->mult_val == const1_rtx
1986 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
1987 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
1988 else
1989 return 0;
1990 }
1991
1992 return result;
1993 }
1994
1995 /* Determine the initial value of the iteration variable, and the amount
1996 that it is incremented each loop. Use the tables constructed by
1997 the strength reduction pass to calculate these values.
1998
1999 Initial_value and/or increment are set to zero if their values could not
2000 be calculated. */
2001
2002 static void
2003 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2004 rtx iteration_var, *initial_value, *increment;
2005 rtx loop_start, loop_end;
2006 {
2007 struct iv_class *bl;
2008 struct induction *v, *b;
2009
2010 /* Clear the result values, in case no answer can be found. */
2011 *initial_value = 0;
2012 *increment = 0;
2013
2014 /* The iteration variable can be either a giv or a biv. Check to see
2015 which it is, and compute the variable's initial value, and increment
2016 value if possible. */
2017
2018 /* If this is a new register, can't handle it since we don't have any
2019 reg_iv_type entry for it. */
2020 if (REGNO (iteration_var) >= max_reg_before_loop)
2021 {
2022 if (loop_dump_stream)
2023 fprintf (loop_dump_stream,
2024 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2025 return;
2026 }
2027 /* Reject iteration variables larger than the host long size, since they
2028 could result in a number of iterations greater than the range of our
2029 `unsigned long' variable loop_n_iterations. */
2030 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2031 {
2032 if (loop_dump_stream)
2033 fprintf (loop_dump_stream,
2034 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2035 return;
2036 }
2037 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2038 {
2039 if (loop_dump_stream)
2040 fprintf (loop_dump_stream,
2041 "Loop unrolling: Iteration var not an integer.\n");
2042 return;
2043 }
2044 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2045 {
2046 /* Grab initial value, only useful if it is a constant. */
2047 bl = reg_biv_class[REGNO (iteration_var)];
2048 *initial_value = bl->initial_value;
2049
2050 *increment = biv_total_increment (bl, loop_start, loop_end);
2051 }
2052 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2053 {
2054 #if 1
2055 /* ??? The code below does not work because the incorrect number of
2056 iterations is calculated when the biv is incremented after the giv
2057 is set (which is the usual case). This can probably be accounted
2058 for by biasing the initial_value by subtracting the amount of the
2059 increment that occurs between the giv set and the giv test. However,
2060 a giv as an iterator is very rare, so it does not seem worthwhile
2061 to handle this. */
2062 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2063 if (loop_dump_stream)
2064 fprintf (loop_dump_stream,
2065 "Loop unrolling: Giv iterators are not handled.\n");
2066 return;
2067 #else
2068 /* Initial value is mult_val times the biv's initial value plus
2069 add_val. Only useful if it is a constant. */
2070 v = reg_iv_info[REGNO (iteration_var)];
2071 bl = reg_biv_class[REGNO (v->src_reg)];
2072 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2073 v->add_val, v->mode);
2074
2075 /* Increment value is mult_val times the increment value of the biv. */
2076
2077 *increment = biv_total_increment (bl, loop_start, loop_end);
2078 if (*increment)
2079 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2080 v->mode);
2081 #endif
2082 }
2083 else
2084 {
2085 if (loop_dump_stream)
2086 fprintf (loop_dump_stream,
2087 "Loop unrolling: Not basic or general induction var.\n");
2088 return;
2089 }
2090 }
2091
2092 /* Calculate the approximate final value of the iteration variable
2093 which has an loop exit test with code COMPARISON_CODE and comparison value
2094 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2095 was signed or unsigned, and the direction of the comparison. This info is
2096 needed to calculate the number of loop iterations. */
2097
2098 static rtx
2099 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2100 enum rtx_code comparison_code;
2101 rtx comparison_value;
2102 int *unsigned_p;
2103 int *compare_dir;
2104 {
2105 /* Calculate the final value of the induction variable.
2106 The exact final value depends on the branch operator, and increment sign.
2107 This is only an approximate value. It will be wrong if the iteration
2108 variable is not incremented by one each time through the loop, and
2109 approx final value - start value % increment != 0. */
2110
2111 *unsigned_p = 0;
2112 switch (comparison_code)
2113 {
2114 case LEU:
2115 *unsigned_p = 1;
2116 case LE:
2117 *compare_dir = 1;
2118 return plus_constant (comparison_value, 1);
2119 case GEU:
2120 *unsigned_p = 1;
2121 case GE:
2122 *compare_dir = -1;
2123 return plus_constant (comparison_value, -1);
2124 case EQ:
2125 /* Can not calculate a final value for this case. */
2126 *compare_dir = 0;
2127 return 0;
2128 case LTU:
2129 *unsigned_p = 1;
2130 case LT:
2131 *compare_dir = 1;
2132 return comparison_value;
2133 break;
2134 case GTU:
2135 *unsigned_p = 1;
2136 case GT:
2137 *compare_dir = -1;
2138 return comparison_value;
2139 case NE:
2140 *compare_dir = 0;
2141 return comparison_value;
2142 default:
2143 abort ();
2144 }
2145 }
2146
2147 /* For each biv and giv, determine whether it can be safely split into
2148 a different variable for each unrolled copy of the loop body. If it
2149 is safe to split, then indicate that by saving some useful info
2150 in the splittable_regs array.
2151
2152 If the loop is being completely unrolled, then splittable_regs will hold
2153 the current value of the induction variable while the loop is unrolled.
2154 It must be set to the initial value of the induction variable here.
2155 Otherwise, splittable_regs will hold the difference between the current
2156 value of the induction variable and the value the induction variable had
2157 at the top of the loop. It must be set to the value 0 here. */
2158
2159 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2160 constant values are unnecessary, since we can easily calculate increment
2161 values in this case even if nothing is constant. The increment value
2162 should not involve a multiply however. */
2163
2164 /* ?? Even if the biv/giv increment values aren't constant, it may still
2165 be beneficial to split the variable if the loop is only unrolled a few
2166 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2167
2168 static int
2169 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2170 unroll_number)
2171 enum unroll_types unroll_type;
2172 rtx loop_start, loop_end;
2173 rtx end_insert_before;
2174 int unroll_number;
2175 {
2176 struct iv_class *bl;
2177 struct induction *v;
2178 rtx increment, tem;
2179 rtx biv_final_value;
2180 int biv_splittable;
2181 int result = 0;
2182
2183 for (bl = loop_iv_list; bl; bl = bl->next)
2184 {
2185 /* Biv_total_increment must return a constant value,
2186 otherwise we can not calculate the split values. */
2187
2188 increment = biv_total_increment (bl, loop_start, loop_end);
2189 if (! increment || GET_CODE (increment) != CONST_INT)
2190 continue;
2191
2192 /* The loop must be unrolled completely, or else have a known number
2193 of iterations and only one exit, or else the biv must be dead
2194 outside the loop, or else the final value must be known. Otherwise,
2195 it is unsafe to split the biv since it may not have the proper
2196 value on loop exit. */
2197
2198 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2199 a fall through at the end. */
2200
2201 biv_splittable = 1;
2202 biv_final_value = 0;
2203 if (unroll_type != UNROLL_COMPLETELY
2204 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2205 || unroll_type == UNROLL_NAIVE)
2206 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2207 || ! bl->init_insn
2208 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2209 || (uid_luid[regno_first_uid[bl->regno]]
2210 < INSN_LUID (bl->init_insn))
2211 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2212 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2213 biv_splittable = 0;
2214
2215 /* If any of the insns setting the BIV don't do so with a simple
2216 PLUS, we don't know how to split it. */
2217 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2218 if ((tem = single_set (v->insn)) == 0
2219 || GET_CODE (SET_DEST (tem)) != REG
2220 || REGNO (SET_DEST (tem)) != bl->regno
2221 || GET_CODE (SET_SRC (tem)) != PLUS)
2222 biv_splittable = 0;
2223
2224 /* If final value is non-zero, then must emit an instruction which sets
2225 the value of the biv to the proper value. This is done after
2226 handling all of the givs, since some of them may need to use the
2227 biv's value in their initialization code. */
2228
2229 /* This biv is splittable. If completely unrolling the loop, save
2230 the biv's initial value. Otherwise, save the constant zero. */
2231
2232 if (biv_splittable == 1)
2233 {
2234 if (unroll_type == UNROLL_COMPLETELY)
2235 {
2236 /* If the initial value of the biv is itself (i.e. it is too
2237 complicated for strength_reduce to compute), or is a hard
2238 register, then we must create a new pseudo reg to hold the
2239 initial value of the biv. */
2240
2241 if (GET_CODE (bl->initial_value) == REG
2242 && (REGNO (bl->initial_value) == bl->regno
2243 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2244 {
2245 rtx tem = gen_reg_rtx (bl->biv->mode);
2246
2247 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2248 loop_start);
2249
2250 if (loop_dump_stream)
2251 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2252 bl->regno, REGNO (tem));
2253
2254 splittable_regs[bl->regno] = tem;
2255 }
2256 else
2257 splittable_regs[bl->regno] = bl->initial_value;
2258 }
2259 else
2260 splittable_regs[bl->regno] = const0_rtx;
2261
2262 /* Save the number of instructions that modify the biv, so that
2263 we can treat the last one specially. */
2264
2265 splittable_regs_updates[bl->regno] = bl->biv_count;
2266
2267 result++;
2268
2269 if (loop_dump_stream)
2270 fprintf (loop_dump_stream,
2271 "Biv %d safe to split.\n", bl->regno);
2272 }
2273
2274 /* Check every giv that depends on this biv to see whether it is
2275 splittable also. Even if the biv isn't splittable, givs which
2276 depend on it may be splittable if the biv is live outside the
2277 loop, and the givs aren't. */
2278
2279 result = find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2280 increment, unroll_number, result);
2281
2282 /* If final value is non-zero, then must emit an instruction which sets
2283 the value of the biv to the proper value. This is done after
2284 handling all of the givs, since some of them may need to use the
2285 biv's value in their initialization code. */
2286 if (biv_final_value)
2287 {
2288 /* If the loop has multiple exits, emit the insns before the
2289 loop to ensure that it will always be executed no matter
2290 how the loop exits. Otherwise emit the insn after the loop,
2291 since this is slightly more efficient. */
2292 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2293 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2294 biv_final_value),
2295 end_insert_before);
2296 else
2297 {
2298 /* Create a new register to hold the value of the biv, and then
2299 set the biv to its final value before the loop start. The biv
2300 is set to its final value before loop start to ensure that
2301 this insn will always be executed, no matter how the loop
2302 exits. */
2303 rtx tem = gen_reg_rtx (bl->biv->mode);
2304 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2305 loop_start);
2306 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2307 biv_final_value),
2308 loop_start);
2309
2310 if (loop_dump_stream)
2311 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2312 REGNO (bl->biv->src_reg), REGNO (tem));
2313
2314 /* Set up the mapping from the original biv register to the new
2315 register. */
2316 bl->biv->src_reg = tem;
2317 }
2318 }
2319 }
2320 return result;
2321 }
2322
2323 /* For every giv based on the biv BL, check to determine whether it is
2324 splittable. This is a subroutine to find_splittable_regs (). */
2325
2326 static int
2327 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2328 unroll_number, result)
2329 struct iv_class *bl;
2330 enum unroll_types unroll_type;
2331 rtx loop_start, loop_end;
2332 rtx increment;
2333 int unroll_number, result;
2334 {
2335 struct induction *v;
2336 rtx final_value;
2337 rtx tem;
2338
2339 for (v = bl->giv; v; v = v->next_iv)
2340 {
2341 rtx giv_inc, value;
2342
2343 /* Only split the giv if it has already been reduced, or if the loop is
2344 being completely unrolled. */
2345 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2346 continue;
2347
2348 /* The giv can be split if the insn that sets the giv is executed once
2349 and only once on every iteration of the loop. */
2350 /* An address giv can always be split. v->insn is just a use not a set,
2351 and hence it does not matter whether it is always executed. All that
2352 matters is that all the biv increments are always executed, and we
2353 won't reach here if they aren't. */
2354 if (v->giv_type != DEST_ADDR
2355 && (! v->always_computable
2356 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2357 continue;
2358
2359 /* The giv increment value must be a constant. */
2360 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2361 v->mode);
2362 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2363 continue;
2364
2365 /* The loop must be unrolled completely, or else have a known number of
2366 iterations and only one exit, or else the giv must be dead outside
2367 the loop, or else the final value of the giv must be known.
2368 Otherwise, it is not safe to split the giv since it may not have the
2369 proper value on loop exit. */
2370
2371 /* The used outside loop test will fail for DEST_ADDR givs. They are
2372 never used outside the loop anyways, so it is always safe to split a
2373 DEST_ADDR giv. */
2374
2375 final_value = 0;
2376 if (unroll_type != UNROLL_COMPLETELY
2377 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2378 || unroll_type == UNROLL_NAIVE)
2379 && v->giv_type != DEST_ADDR
2380 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2381 /* Check for the case where the pseudo is set by a shift/add
2382 sequence, in which case the first insn setting the pseudo
2383 is the first insn of the shift/add sequence. */
2384 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2385 || (regno_first_uid[REGNO (v->dest_reg)]
2386 != INSN_UID (XEXP (tem, 0)))))
2387 /* Line above always fails if INSN was moved by loop opt. */
2388 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2389 >= INSN_LUID (loop_end)))
2390 && ! (final_value = v->final_value))
2391 continue;
2392
2393 #if 0
2394 /* Currently, non-reduced/final-value givs are never split. */
2395 /* Should emit insns after the loop if possible, as the biv final value
2396 code below does. */
2397
2398 /* If the final value is non-zero, and the giv has not been reduced,
2399 then must emit an instruction to set the final value. */
2400 if (final_value && !v->new_reg)
2401 {
2402 /* Create a new register to hold the value of the giv, and then set
2403 the giv to its final value before the loop start. The giv is set
2404 to its final value before loop start to ensure that this insn
2405 will always be executed, no matter how we exit. */
2406 tem = gen_reg_rtx (v->mode);
2407 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2408 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2409 loop_start);
2410
2411 if (loop_dump_stream)
2412 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2413 REGNO (v->dest_reg), REGNO (tem));
2414
2415 v->src_reg = tem;
2416 }
2417 #endif
2418
2419 /* This giv is splittable. If completely unrolling the loop, save the
2420 giv's initial value. Otherwise, save the constant zero for it. */
2421
2422 if (unroll_type == UNROLL_COMPLETELY)
2423 {
2424 /* It is not safe to use bl->initial_value here, because it may not
2425 be invariant. It is safe to use the initial value stored in
2426 the splittable_regs array if it is set. In rare cases, it won't
2427 be set, so then we do exactly the same thing as
2428 find_splittable_regs does to get a safe value. */
2429 rtx biv_initial_value;
2430
2431 if (splittable_regs[bl->regno])
2432 biv_initial_value = splittable_regs[bl->regno];
2433 else if (GET_CODE (bl->initial_value) != REG
2434 || (REGNO (bl->initial_value) != bl->regno
2435 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2436 biv_initial_value = bl->initial_value;
2437 else
2438 {
2439 rtx tem = gen_reg_rtx (bl->biv->mode);
2440
2441 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2442 loop_start);
2443 biv_initial_value = tem;
2444 }
2445 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2446 v->add_val, v->mode);
2447 }
2448 else
2449 value = const0_rtx;
2450
2451 if (v->new_reg)
2452 {
2453 /* If a giv was combined with another giv, then we can only split
2454 this giv if the giv it was combined with was reduced. This
2455 is because the value of v->new_reg is meaningless in this
2456 case. */
2457 if (v->same && ! v->same->new_reg)
2458 {
2459 if (loop_dump_stream)
2460 fprintf (loop_dump_stream,
2461 "giv combined with unreduced giv not split.\n");
2462 continue;
2463 }
2464 /* If the giv is an address destination, it could be something other
2465 than a simple register, these have to be treated differently. */
2466 else if (v->giv_type == DEST_REG)
2467 {
2468 /* If value is not a constant, register, or register plus
2469 constant, then compute its value into a register before
2470 loop start. This prevents illegal rtx sharing, and should
2471 generate better code. We can use bl->initial_value here
2472 instead of splittable_regs[bl->regno] because this code
2473 is going before the loop start. */
2474 if (unroll_type == UNROLL_COMPLETELY
2475 && GET_CODE (value) != CONST_INT
2476 && GET_CODE (value) != REG
2477 && (GET_CODE (value) != PLUS
2478 || GET_CODE (XEXP (value, 0)) != REG
2479 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2480 {
2481 rtx tem = gen_reg_rtx (v->mode);
2482 emit_iv_add_mult (bl->initial_value, v->mult_val,
2483 v->add_val, tem, loop_start);
2484 value = tem;
2485 }
2486
2487 splittable_regs[REGNO (v->new_reg)] = value;
2488 }
2489 else
2490 {
2491 /* Splitting address givs is useful since it will often allow us
2492 to eliminate some increment insns for the base giv as
2493 unnecessary. */
2494
2495 /* If the addr giv is combined with a dest_reg giv, then all
2496 references to that dest reg will be remapped, which is NOT
2497 what we want for split addr regs. We always create a new
2498 register for the split addr giv, just to be safe. */
2499
2500 /* ??? If there are multiple address givs which have been
2501 combined with the same dest_reg giv, then we may only need
2502 one new register for them. Pulling out constants below will
2503 catch some of the common cases of this. Currently, I leave
2504 the work of simplifying multiple address givs to the
2505 following cse pass. */
2506
2507 v->const_adjust = 0;
2508 if (unroll_type != UNROLL_COMPLETELY)
2509 {
2510 /* If not completely unrolling the loop, then create a new
2511 register to hold the split value of the DEST_ADDR giv.
2512 Emit insn to initialize its value before loop start. */
2513 tem = gen_reg_rtx (v->mode);
2514
2515 /* If the address giv has a constant in its new_reg value,
2516 then this constant can be pulled out and put in value,
2517 instead of being part of the initialization code. */
2518
2519 if (GET_CODE (v->new_reg) == PLUS
2520 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2521 {
2522 v->dest_reg
2523 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2524
2525 /* Only succeed if this will give valid addresses.
2526 Try to validate both the first and the last
2527 address resulting from loop unrolling, if
2528 one fails, then can't do const elim here. */
2529 if (memory_address_p (v->mem_mode, v->dest_reg)
2530 && memory_address_p (v->mem_mode,
2531 plus_constant (v->dest_reg,
2532 INTVAL (giv_inc)
2533 * (unroll_number - 1))))
2534 {
2535 /* Save the negative of the eliminated const, so
2536 that we can calculate the dest_reg's increment
2537 value later. */
2538 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2539
2540 v->new_reg = XEXP (v->new_reg, 0);
2541 if (loop_dump_stream)
2542 fprintf (loop_dump_stream,
2543 "Eliminating constant from giv %d\n",
2544 REGNO (tem));
2545 }
2546 else
2547 v->dest_reg = tem;
2548 }
2549 else
2550 v->dest_reg = tem;
2551
2552 /* If the address hasn't been checked for validity yet, do so
2553 now, and fail completely if either the first or the last
2554 unrolled copy of the address is not a valid address. */
2555 if (v->dest_reg == tem
2556 && (! memory_address_p (v->mem_mode, v->dest_reg)
2557 || ! memory_address_p (v->mem_mode,
2558 plus_constant (v->dest_reg,
2559 INTVAL (giv_inc)
2560 * (unroll_number -1)))))
2561 {
2562 if (loop_dump_stream)
2563 fprintf (loop_dump_stream,
2564 "Illegal address for giv at insn %d\n",
2565 INSN_UID (v->insn));
2566 continue;
2567 }
2568
2569 /* To initialize the new register, just move the value of
2570 new_reg into it. This is not guaranteed to give a valid
2571 instruction on machines with complex addressing modes.
2572 If we can't recognize it, then delete it and emit insns
2573 to calculate the value from scratch. */
2574 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2575 copy_rtx (v->new_reg)),
2576 loop_start);
2577 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2578 {
2579 delete_insn (PREV_INSN (loop_start));
2580 emit_iv_add_mult (bl->initial_value, v->mult_val,
2581 v->add_val, tem, loop_start);
2582 if (loop_dump_stream)
2583 fprintf (loop_dump_stream,
2584 "Illegal init insn, rewritten.\n");
2585 }
2586 }
2587 else
2588 {
2589 v->dest_reg = value;
2590
2591 /* Check the resulting address for validity, and fail
2592 if the resulting address would be illegal. */
2593 if (! memory_address_p (v->mem_mode, v->dest_reg)
2594 || ! memory_address_p (v->mem_mode,
2595 plus_constant (v->dest_reg,
2596 INTVAL (giv_inc) *
2597 (unroll_number -1))))
2598 {
2599 if (loop_dump_stream)
2600 fprintf (loop_dump_stream,
2601 "Illegal address for giv at insn %d\n",
2602 INSN_UID (v->insn));
2603 continue;
2604 }
2605 }
2606
2607 /* Store the value of dest_reg into the insn. This sharing
2608 will not be a problem as this insn will always be copied
2609 later. */
2610
2611 *v->location = v->dest_reg;
2612
2613 /* If this address giv is combined with a dest reg giv, then
2614 save the base giv's induction pointer so that we will be
2615 able to handle this address giv properly. The base giv
2616 itself does not have to be splittable. */
2617
2618 if (v->same && v->same->giv_type == DEST_REG)
2619 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2620
2621 if (GET_CODE (v->new_reg) == REG)
2622 {
2623 /* This giv maybe hasn't been combined with any others.
2624 Make sure that it's giv is marked as splittable here. */
2625
2626 splittable_regs[REGNO (v->new_reg)] = value;
2627
2628 /* Make it appear to depend upon itself, so that the
2629 giv will be properly split in the main loop above. */
2630 if (! v->same)
2631 {
2632 v->same = v;
2633 addr_combined_regs[REGNO (v->new_reg)] = v;
2634 }
2635 }
2636
2637 if (loop_dump_stream)
2638 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2639 }
2640 }
2641 else
2642 {
2643 #if 0
2644 /* Currently, unreduced giv's can't be split. This is not too much
2645 of a problem since unreduced giv's are not live across loop
2646 iterations anyways. When unrolling a loop completely though,
2647 it makes sense to reduce&split givs when possible, as this will
2648 result in simpler instructions, and will not require that a reg
2649 be live across loop iterations. */
2650
2651 splittable_regs[REGNO (v->dest_reg)] = value;
2652 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2653 REGNO (v->dest_reg), INSN_UID (v->insn));
2654 #else
2655 continue;
2656 #endif
2657 }
2658
2659 /* Givs are only updated once by definition. Mark it so if this is
2660 a splittable register. Don't need to do anything for address givs
2661 where this may not be a register. */
2662
2663 if (GET_CODE (v->new_reg) == REG)
2664 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2665
2666 result++;
2667
2668 if (loop_dump_stream)
2669 {
2670 int regnum;
2671
2672 if (GET_CODE (v->dest_reg) == CONST_INT)
2673 regnum = -1;
2674 else if (GET_CODE (v->dest_reg) != REG)
2675 regnum = REGNO (XEXP (v->dest_reg, 0));
2676 else
2677 regnum = REGNO (v->dest_reg);
2678 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2679 regnum, INSN_UID (v->insn));
2680 }
2681 }
2682
2683 return result;
2684 }
2685 \f
2686 /* Try to prove that the register is dead after the loop exits. Trace every
2687 loop exit looking for an insn that will always be executed, which sets
2688 the register to some value, and appears before the first use of the register
2689 is found. If successful, then return 1, otherwise return 0. */
2690
2691 /* ?? Could be made more intelligent in the handling of jumps, so that
2692 it can search past if statements and other similar structures. */
2693
2694 static int
2695 reg_dead_after_loop (reg, loop_start, loop_end)
2696 rtx reg, loop_start, loop_end;
2697 {
2698 rtx insn, label;
2699 enum rtx_code code;
2700 int jump_count = 0;
2701
2702 /* HACK: Must also search the loop fall through exit, create a label_ref
2703 here which points to the loop_end, and append the loop_number_exit_labels
2704 list to it. */
2705 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2706 LABEL_NEXTREF (label)
2707 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2708
2709 for ( ; label; label = LABEL_NEXTREF (label))
2710 {
2711 /* Succeed if find an insn which sets the biv or if reach end of
2712 function. Fail if find an insn that uses the biv, or if come to
2713 a conditional jump. */
2714
2715 insn = NEXT_INSN (XEXP (label, 0));
2716 while (insn)
2717 {
2718 code = GET_CODE (insn);
2719 if (GET_RTX_CLASS (code) == 'i')
2720 {
2721 rtx set;
2722
2723 if (reg_referenced_p (reg, PATTERN (insn)))
2724 return 0;
2725
2726 set = single_set (insn);
2727 if (set && rtx_equal_p (SET_DEST (set), reg))
2728 break;
2729 }
2730
2731 if (code == JUMP_INSN)
2732 {
2733 if (GET_CODE (PATTERN (insn)) == RETURN)
2734 break;
2735 else if (! simplejump_p (insn)
2736 /* Prevent infinite loop following infinite loops. */
2737 || jump_count++ > 20)
2738 return 0;
2739 else
2740 insn = JUMP_LABEL (insn);
2741 }
2742
2743 insn = NEXT_INSN (insn);
2744 }
2745 }
2746
2747 /* Success, the register is dead on all loop exits. */
2748 return 1;
2749 }
2750
2751 /* Try to calculate the final value of the biv, the value it will have at
2752 the end of the loop. If we can do it, return that value. */
2753
2754 rtx
2755 final_biv_value (bl, loop_start, loop_end)
2756 struct iv_class *bl;
2757 rtx loop_start, loop_end;
2758 {
2759 rtx increment, tem;
2760
2761 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2762
2763 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2764 return 0;
2765
2766 /* The final value for reversed bivs must be calculated differently than
2767 for ordinary bivs. In this case, there is already an insn after the
2768 loop which sets this biv's final value (if necessary), and there are
2769 no other loop exits, so we can return any value. */
2770 if (bl->reversed)
2771 {
2772 if (loop_dump_stream)
2773 fprintf (loop_dump_stream,
2774 "Final biv value for %d, reversed biv.\n", bl->regno);
2775
2776 return const0_rtx;
2777 }
2778
2779 /* Try to calculate the final value as initial value + (number of iterations
2780 * increment). For this to work, increment must be invariant, the only
2781 exit from the loop must be the fall through at the bottom (otherwise
2782 it may not have its final value when the loop exits), and the initial
2783 value of the biv must be invariant. */
2784
2785 if (loop_n_iterations != 0
2786 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2787 && invariant_p (bl->initial_value))
2788 {
2789 increment = biv_total_increment (bl, loop_start, loop_end);
2790
2791 if (increment && invariant_p (increment))
2792 {
2793 /* Can calculate the loop exit value, emit insns after loop
2794 end to calculate this value into a temporary register in
2795 case it is needed later. */
2796
2797 tem = gen_reg_rtx (bl->biv->mode);
2798 /* Make sure loop_end is not the last insn. */
2799 if (NEXT_INSN (loop_end) == 0)
2800 emit_note_after (NOTE_INSN_DELETED, loop_end);
2801 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2802 bl->initial_value, tem, NEXT_INSN (loop_end));
2803
2804 if (loop_dump_stream)
2805 fprintf (loop_dump_stream,
2806 "Final biv value for %d, calculated.\n", bl->regno);
2807
2808 return tem;
2809 }
2810 }
2811
2812 /* Check to see if the biv is dead at all loop exits. */
2813 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2814 {
2815 if (loop_dump_stream)
2816 fprintf (loop_dump_stream,
2817 "Final biv value for %d, biv dead after loop exit.\n",
2818 bl->regno);
2819
2820 return const0_rtx;
2821 }
2822
2823 return 0;
2824 }
2825
2826 /* Try to calculate the final value of the giv, the value it will have at
2827 the end of the loop. If we can do it, return that value. */
2828
2829 rtx
2830 final_giv_value (v, loop_start, loop_end)
2831 struct induction *v;
2832 rtx loop_start, loop_end;
2833 {
2834 struct iv_class *bl;
2835 rtx insn;
2836 rtx increment, tem;
2837 enum rtx_code code;
2838 rtx insert_before, seq;
2839
2840 bl = reg_biv_class[REGNO (v->src_reg)];
2841
2842 /* The final value for givs which depend on reversed bivs must be calculated
2843 differently than for ordinary givs. In this case, there is already an
2844 insn after the loop which sets this giv's final value (if necessary),
2845 and there are no other loop exits, so we can return any value. */
2846 if (bl->reversed)
2847 {
2848 if (loop_dump_stream)
2849 fprintf (loop_dump_stream,
2850 "Final giv value for %d, depends on reversed biv\n",
2851 REGNO (v->dest_reg));
2852 return const0_rtx;
2853 }
2854
2855 /* Try to calculate the final value as a function of the biv it depends
2856 upon. The only exit from the loop must be the fall through at the bottom
2857 (otherwise it may not have its final value when the loop exits). */
2858
2859 /* ??? Can calculate the final giv value by subtracting off the
2860 extra biv increments times the giv's mult_val. The loop must have
2861 only one exit for this to work, but the loop iterations does not need
2862 to be known. */
2863
2864 if (loop_n_iterations != 0
2865 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2866 {
2867 /* ?? It is tempting to use the biv's value here since these insns will
2868 be put after the loop, and hence the biv will have its final value
2869 then. However, this fails if the biv is subsequently eliminated.
2870 Perhaps determine whether biv's are eliminable before trying to
2871 determine whether giv's are replaceable so that we can use the
2872 biv value here if it is not eliminable. */
2873
2874 increment = biv_total_increment (bl, loop_start, loop_end);
2875
2876 if (increment && invariant_p (increment))
2877 {
2878 /* Can calculate the loop exit value of its biv as
2879 (loop_n_iterations * increment) + initial_value */
2880
2881 /* The loop exit value of the giv is then
2882 (final_biv_value - extra increments) * mult_val + add_val.
2883 The extra increments are any increments to the biv which
2884 occur in the loop after the giv's value is calculated.
2885 We must search from the insn that sets the giv to the end
2886 of the loop to calculate this value. */
2887
2888 insert_before = NEXT_INSN (loop_end);
2889
2890 /* Put the final biv value in tem. */
2891 tem = gen_reg_rtx (bl->biv->mode);
2892 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2893 bl->initial_value, tem, insert_before);
2894
2895 /* Subtract off extra increments as we find them. */
2896 for (insn = NEXT_INSN (v->insn); insn != loop_end;
2897 insn = NEXT_INSN (insn))
2898 {
2899 struct induction *biv;
2900
2901 for (biv = bl->biv; biv; biv = biv->next_iv)
2902 if (biv->insn == insn)
2903 {
2904 start_sequence ();
2905 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
2906 biv->add_val, NULL_RTX, 0,
2907 OPTAB_LIB_WIDEN);
2908 seq = gen_sequence ();
2909 end_sequence ();
2910 emit_insn_before (seq, insert_before);
2911 }
2912 }
2913
2914 /* Now calculate the giv's final value. */
2915 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
2916 insert_before);
2917
2918 if (loop_dump_stream)
2919 fprintf (loop_dump_stream,
2920 "Final giv value for %d, calc from biv's value.\n",
2921 REGNO (v->dest_reg));
2922
2923 return tem;
2924 }
2925 }
2926
2927 /* Replaceable giv's should never reach here. */
2928 if (v->replaceable)
2929 abort ();
2930
2931 /* Check to see if the biv is dead at all loop exits. */
2932 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
2933 {
2934 if (loop_dump_stream)
2935 fprintf (loop_dump_stream,
2936 "Final giv value for %d, giv dead after loop exit.\n",
2937 REGNO (v->dest_reg));
2938
2939 return const0_rtx;
2940 }
2941
2942 return 0;
2943 }
2944
2945
2946 /* Calculate the number of loop iterations. Returns the exact number of loop
2947 iterations if it can be calculated, otherwise returns zero. */
2948
2949 unsigned HOST_WIDE_INT
2950 loop_iterations (loop_start, loop_end)
2951 rtx loop_start, loop_end;
2952 {
2953 rtx comparison, comparison_value;
2954 rtx iteration_var, initial_value, increment, final_value;
2955 enum rtx_code comparison_code;
2956 HOST_WIDE_INT i;
2957 int increment_dir;
2958 int unsigned_compare, compare_dir, final_larger;
2959 unsigned long tempu;
2960 rtx last_loop_insn;
2961
2962 /* First find the iteration variable. If the last insn is a conditional
2963 branch, and the insn before tests a register value, make that the
2964 iteration variable. */
2965
2966 loop_initial_value = 0;
2967 loop_increment = 0;
2968 loop_final_value = 0;
2969 loop_iteration_var = 0;
2970
2971 last_loop_insn = prev_nonnote_insn (loop_end);
2972
2973 comparison = get_condition_for_loop (last_loop_insn);
2974 if (comparison == 0)
2975 {
2976 if (loop_dump_stream)
2977 fprintf (loop_dump_stream,
2978 "Loop unrolling: No final conditional branch found.\n");
2979 return 0;
2980 }
2981
2982 /* ??? Get_condition may switch position of induction variable and
2983 invariant register when it canonicalizes the comparison. */
2984
2985 comparison_code = GET_CODE (comparison);
2986 iteration_var = XEXP (comparison, 0);
2987 comparison_value = XEXP (comparison, 1);
2988
2989 if (GET_CODE (iteration_var) != REG)
2990 {
2991 if (loop_dump_stream)
2992 fprintf (loop_dump_stream,
2993 "Loop unrolling: Comparison not against register.\n");
2994 return 0;
2995 }
2996
2997 /* Loop iterations is always called before any new registers are created
2998 now, so this should never occur. */
2999
3000 if (REGNO (iteration_var) >= max_reg_before_loop)
3001 abort ();
3002
3003 iteration_info (iteration_var, &initial_value, &increment,
3004 loop_start, loop_end);
3005 if (initial_value == 0)
3006 /* iteration_info already printed a message. */
3007 return 0;
3008
3009 if (increment == 0)
3010 {
3011 if (loop_dump_stream)
3012 fprintf (loop_dump_stream,
3013 "Loop unrolling: Increment value can't be calculated.\n");
3014 return 0;
3015 }
3016 if (GET_CODE (increment) != CONST_INT)
3017 {
3018 if (loop_dump_stream)
3019 fprintf (loop_dump_stream,
3020 "Loop unrolling: Increment value not constant.\n");
3021 return 0;
3022 }
3023 if (GET_CODE (initial_value) != CONST_INT)
3024 {
3025 if (loop_dump_stream)
3026 fprintf (loop_dump_stream,
3027 "Loop unrolling: Initial value not constant.\n");
3028 return 0;
3029 }
3030
3031 /* If the comparison value is an invariant register, then try to find
3032 its value from the insns before the start of the loop. */
3033
3034 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3035 {
3036 rtx insn, set;
3037
3038 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3039 {
3040 if (GET_CODE (insn) == CODE_LABEL)
3041 break;
3042
3043 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3044 && reg_set_p (comparison_value, insn))
3045 {
3046 /* We found the last insn before the loop that sets the register.
3047 If it sets the entire register, and has a REG_EQUAL note,
3048 then use the value of the REG_EQUAL note. */
3049 if ((set = single_set (insn))
3050 && (SET_DEST (set) == comparison_value))
3051 {
3052 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3053
3054 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST)
3055 comparison_value = XEXP (note, 0);
3056 }
3057 break;
3058 }
3059 }
3060 }
3061
3062 final_value = approx_final_value (comparison_code, comparison_value,
3063 &unsigned_compare, &compare_dir);
3064
3065 /* Save the calculated values describing this loop's bounds, in case
3066 precondition_loop_p will need them later. These values can not be
3067 recalculated inside precondition_loop_p because strength reduction
3068 optimizations may obscure the loop's structure. */
3069
3070 loop_iteration_var = iteration_var;
3071 loop_initial_value = initial_value;
3072 loop_increment = increment;
3073 loop_final_value = final_value;
3074
3075 if (final_value == 0)
3076 {
3077 if (loop_dump_stream)
3078 fprintf (loop_dump_stream,
3079 "Loop unrolling: EQ comparison loop.\n");
3080 return 0;
3081 }
3082 else if (GET_CODE (final_value) != CONST_INT)
3083 {
3084 if (loop_dump_stream)
3085 fprintf (loop_dump_stream,
3086 "Loop unrolling: Final value not constant.\n");
3087 return 0;
3088 }
3089
3090 /* ?? Final value and initial value do not have to be constants.
3091 Only their difference has to be constant. When the iteration variable
3092 is an array address, the final value and initial value might both
3093 be addresses with the same base but different constant offsets.
3094 Final value must be invariant for this to work.
3095
3096 To do this, need some way to find the values of registers which are
3097 invariant. */
3098
3099 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3100 if (unsigned_compare)
3101 final_larger
3102 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3103 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3104 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3105 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3106 else
3107 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3108 - (INTVAL (final_value) < INTVAL (initial_value));
3109
3110 if (INTVAL (increment) > 0)
3111 increment_dir = 1;
3112 else if (INTVAL (increment) == 0)
3113 increment_dir = 0;
3114 else
3115 increment_dir = -1;
3116
3117 /* There are 27 different cases: compare_dir = -1, 0, 1;
3118 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3119 There are 4 normal cases, 4 reverse cases (where the iteration variable
3120 will overflow before the loop exits), 4 infinite loop cases, and 15
3121 immediate exit (0 or 1 iteration depending on loop type) cases.
3122 Only try to optimize the normal cases. */
3123
3124 /* (compare_dir/final_larger/increment_dir)
3125 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3126 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3127 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3128 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3129
3130 /* ?? If the meaning of reverse loops (where the iteration variable
3131 will overflow before the loop exits) is undefined, then could
3132 eliminate all of these special checks, and just always assume
3133 the loops are normal/immediate/infinite. Note that this means
3134 the sign of increment_dir does not have to be known. Also,
3135 since it does not really hurt if immediate exit loops or infinite loops
3136 are optimized, then that case could be ignored also, and hence all
3137 loops can be optimized.
3138
3139 According to ANSI Spec, the reverse loop case result is undefined,
3140 because the action on overflow is undefined.
3141
3142 See also the special test for NE loops below. */
3143
3144 if (final_larger == increment_dir && final_larger != 0
3145 && (final_larger == compare_dir || compare_dir == 0))
3146 /* Normal case. */
3147 ;
3148 else
3149 {
3150 if (loop_dump_stream)
3151 fprintf (loop_dump_stream,
3152 "Loop unrolling: Not normal loop.\n");
3153 return 0;
3154 }
3155
3156 /* Calculate the number of iterations, final_value is only an approximation,
3157 so correct for that. Note that tempu and loop_n_iterations are
3158 unsigned, because they can be as large as 2^n - 1. */
3159
3160 i = INTVAL (increment);
3161 if (i > 0)
3162 tempu = INTVAL (final_value) - INTVAL (initial_value);
3163 else if (i < 0)
3164 {
3165 tempu = INTVAL (initial_value) - INTVAL (final_value);
3166 i = -i;
3167 }
3168 else
3169 abort ();
3170
3171 /* For NE tests, make sure that the iteration variable won't miss the
3172 final value. If tempu mod i is not zero, then the iteration variable
3173 will overflow before the loop exits, and we can not calculate the
3174 number of iterations. */
3175 if (compare_dir == 0 && (tempu % i) != 0)
3176 return 0;
3177
3178 return tempu / i + ((tempu % i) != 0);
3179 }