(unroll_loop): Always reject loops with unbalanced blocks.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
158
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
161
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
165
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
171
172 static struct induction **addr_combined_regs;
173
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
177
178 static rtx *splittable_regs;
179
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
184
185 static int *splittable_regs_updates;
186
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
189
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
194 static enum rtx_code loop_comparison_code;
195
196 /* Forward declarations. */
197
198 static void init_reg_map PROTO((struct inline_remap *, int));
199 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
200 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
201 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
204 enum unroll_types, rtx, rtx, rtx, rtx));
205 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
206 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
207 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
208 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
209 rtx, rtx, rtx, int));
210 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
211 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
212 static rtx remap_split_bivs PROTO((rtx));
213
214 /* Try to unroll one loop and split induction variables in the loop.
215
216 The loop is described by the arguments LOOP_END, INSN_COUNT, and
217 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
218 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
219 indicates whether information generated in the strength reduction pass
220 is available.
221
222 This function is intended to be called from within `strength_reduce'
223 in loop.c. */
224
225 void
226 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
227 strength_reduce_p)
228 rtx loop_end;
229 int insn_count;
230 rtx loop_start;
231 rtx end_insert_before;
232 int strength_reduce_p;
233 {
234 int i, j, temp;
235 int unroll_number = 1;
236 rtx copy_start, copy_end;
237 rtx insn, copy, sequence, pattern, tem;
238 int max_labelno, max_insnno;
239 rtx insert_before;
240 struct inline_remap *map;
241 char *local_label;
242 char *local_regno;
243 int maxregnum;
244 int new_maxregnum;
245 rtx exit_label = 0;
246 rtx start_label;
247 struct iv_class *bl;
248 int splitting_not_safe = 0;
249 enum unroll_types unroll_type;
250 int loop_preconditioned = 0;
251 rtx safety_label;
252 /* This points to the last real insn in the loop, which should be either
253 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
254 jumps). */
255 rtx last_loop_insn;
256
257 /* Don't bother unrolling huge loops. Since the minimum factor is
258 two, loops greater than one half of MAX_UNROLLED_INSNS will never
259 be unrolled. */
260 if (insn_count > MAX_UNROLLED_INSNS / 2)
261 {
262 if (loop_dump_stream)
263 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
264 return;
265 }
266
267 /* When emitting debugger info, we can't unroll loops with unequal numbers
268 of block_beg and block_end notes, because that would unbalance the block
269 structure of the function. This can happen as a result of the
270 "if (foo) bar; else break;" optimization in jump.c. */
271 /* ??? Gcc has a general policy that -g is never supposed to change the code
272 that the compiler emits, so we must disable this optimization always,
273 even if debug info is not being output. This is rare, so this should
274 not be a significant performance problem. */
275
276 if (1 /* write_symbols != NO_DEBUG */)
277 {
278 int block_begins = 0;
279 int block_ends = 0;
280
281 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
282 {
283 if (GET_CODE (insn) == NOTE)
284 {
285 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
286 block_begins++;
287 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
288 block_ends++;
289 }
290 }
291
292 if (block_begins != block_ends)
293 {
294 if (loop_dump_stream)
295 fprintf (loop_dump_stream,
296 "Unrolling failure: Unbalanced block notes.\n");
297 return;
298 }
299 }
300
301 /* Determine type of unroll to perform. Depends on the number of iterations
302 and the size of the loop. */
303
304 /* If there is no strength reduce info, then set loop_n_iterations to zero.
305 This can happen if strength_reduce can't find any bivs in the loop.
306 A value of zero indicates that the number of iterations could not be
307 calculated. */
308
309 if (! strength_reduce_p)
310 loop_n_iterations = 0;
311
312 if (loop_dump_stream && loop_n_iterations > 0)
313 fprintf (loop_dump_stream,
314 "Loop unrolling: %d iterations.\n", loop_n_iterations);
315
316 /* Find and save a pointer to the last nonnote insn in the loop. */
317
318 last_loop_insn = prev_nonnote_insn (loop_end);
319
320 /* Calculate how many times to unroll the loop. Indicate whether or
321 not the loop is being completely unrolled. */
322
323 if (loop_n_iterations == 1)
324 {
325 /* If number of iterations is exactly 1, then eliminate the compare and
326 branch at the end of the loop since they will never be taken.
327 Then return, since no other action is needed here. */
328
329 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
330 don't do anything. */
331
332 if (GET_CODE (last_loop_insn) == BARRIER)
333 {
334 /* Delete the jump insn. This will delete the barrier also. */
335 delete_insn (PREV_INSN (last_loop_insn));
336 }
337 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
338 {
339 #ifdef HAVE_cc0
340 /* The immediately preceding insn is a compare which must be
341 deleted. */
342 delete_insn (last_loop_insn);
343 delete_insn (PREV_INSN (last_loop_insn));
344 #else
345 /* The immediately preceding insn may not be the compare, so don't
346 delete it. */
347 delete_insn (last_loop_insn);
348 #endif
349 }
350 return;
351 }
352 else if (loop_n_iterations > 0
353 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
354 {
355 unroll_number = loop_n_iterations;
356 unroll_type = UNROLL_COMPLETELY;
357 }
358 else if (loop_n_iterations > 0)
359 {
360 /* Try to factor the number of iterations. Don't bother with the
361 general case, only using 2, 3, 5, and 7 will get 75% of all
362 numbers theoretically, and almost all in practice. */
363
364 for (i = 0; i < NUM_FACTORS; i++)
365 factors[i].count = 0;
366
367 temp = loop_n_iterations;
368 for (i = NUM_FACTORS - 1; i >= 0; i--)
369 while (temp % factors[i].factor == 0)
370 {
371 factors[i].count++;
372 temp = temp / factors[i].factor;
373 }
374
375 /* Start with the larger factors first so that we generally
376 get lots of unrolling. */
377
378 unroll_number = 1;
379 temp = insn_count;
380 for (i = 3; i >= 0; i--)
381 while (factors[i].count--)
382 {
383 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
384 {
385 unroll_number *= factors[i].factor;
386 temp *= factors[i].factor;
387 }
388 else
389 break;
390 }
391
392 /* If we couldn't find any factors, then unroll as in the normal
393 case. */
394 if (unroll_number == 1)
395 {
396 if (loop_dump_stream)
397 fprintf (loop_dump_stream,
398 "Loop unrolling: No factors found.\n");
399 }
400 else
401 unroll_type = UNROLL_MODULO;
402 }
403
404
405 /* Default case, calculate number of times to unroll loop based on its
406 size. */
407 if (unroll_number == 1)
408 {
409 if (8 * insn_count < MAX_UNROLLED_INSNS)
410 unroll_number = 8;
411 else if (4 * insn_count < MAX_UNROLLED_INSNS)
412 unroll_number = 4;
413 else
414 unroll_number = 2;
415
416 unroll_type = UNROLL_NAIVE;
417 }
418
419 /* Now we know how many times to unroll the loop. */
420
421 if (loop_dump_stream)
422 fprintf (loop_dump_stream,
423 "Unrolling loop %d times.\n", unroll_number);
424
425
426 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
427 {
428 /* Loops of these types should never start with a jump down to
429 the exit condition test. For now, check for this case just to
430 be sure. UNROLL_NAIVE loops can be of this form, this case is
431 handled below. */
432 insn = loop_start;
433 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
434 insn = NEXT_INSN (insn);
435 if (GET_CODE (insn) == JUMP_INSN)
436 abort ();
437 }
438
439 if (unroll_type == UNROLL_COMPLETELY)
440 {
441 /* Completely unrolling the loop: Delete the compare and branch at
442 the end (the last two instructions). This delete must done at the
443 very end of loop unrolling, to avoid problems with calls to
444 back_branch_in_range_p, which is called by find_splittable_regs.
445 All increments of splittable bivs/givs are changed to load constant
446 instructions. */
447
448 copy_start = loop_start;
449
450 /* Set insert_before to the instruction immediately after the JUMP_INSN
451 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
452 the loop will be correctly handled by copy_loop_body. */
453 insert_before = NEXT_INSN (last_loop_insn);
454
455 /* Set copy_end to the insn before the jump at the end of the loop. */
456 if (GET_CODE (last_loop_insn) == BARRIER)
457 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
458 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
459 {
460 #ifdef HAVE_cc0
461 /* The instruction immediately before the JUMP_INSN is a compare
462 instruction which we do not want to copy. */
463 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
464 #else
465 /* The instruction immediately before the JUMP_INSN may not be the
466 compare, so we must copy it. */
467 copy_end = PREV_INSN (last_loop_insn);
468 #endif
469 }
470 else
471 {
472 /* We currently can't unroll a loop if it doesn't end with a
473 JUMP_INSN. There would need to be a mechanism that recognizes
474 this case, and then inserts a jump after each loop body, which
475 jumps to after the last loop body. */
476 if (loop_dump_stream)
477 fprintf (loop_dump_stream,
478 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
479 return;
480 }
481 }
482 else if (unroll_type == UNROLL_MODULO)
483 {
484 /* Partially unrolling the loop: The compare and branch at the end
485 (the last two instructions) must remain. Don't copy the compare
486 and branch instructions at the end of the loop. Insert the unrolled
487 code immediately before the compare/branch at the end so that the
488 code will fall through to them as before. */
489
490 copy_start = loop_start;
491
492 /* Set insert_before to the jump insn at the end of the loop.
493 Set copy_end to before the jump insn at the end of the loop. */
494 if (GET_CODE (last_loop_insn) == BARRIER)
495 {
496 insert_before = PREV_INSN (last_loop_insn);
497 copy_end = PREV_INSN (insert_before);
498 }
499 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
500 {
501 #ifdef HAVE_cc0
502 /* The instruction immediately before the JUMP_INSN is a compare
503 instruction which we do not want to copy or delete. */
504 insert_before = PREV_INSN (last_loop_insn);
505 copy_end = PREV_INSN (insert_before);
506 #else
507 /* The instruction immediately before the JUMP_INSN may not be the
508 compare, so we must copy it. */
509 insert_before = last_loop_insn;
510 copy_end = PREV_INSN (last_loop_insn);
511 #endif
512 }
513 else
514 {
515 /* We currently can't unroll a loop if it doesn't end with a
516 JUMP_INSN. There would need to be a mechanism that recognizes
517 this case, and then inserts a jump after each loop body, which
518 jumps to after the last loop body. */
519 if (loop_dump_stream)
520 fprintf (loop_dump_stream,
521 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
522 return;
523 }
524 }
525 else
526 {
527 /* Normal case: Must copy the compare and branch instructions at the
528 end of the loop. */
529
530 if (GET_CODE (last_loop_insn) == BARRIER)
531 {
532 /* Loop ends with an unconditional jump and a barrier.
533 Handle this like above, don't copy jump and barrier.
534 This is not strictly necessary, but doing so prevents generating
535 unconditional jumps to an immediately following label.
536
537 This will be corrected below if the target of this jump is
538 not the start_label. */
539
540 insert_before = PREV_INSN (last_loop_insn);
541 copy_end = PREV_INSN (insert_before);
542 }
543 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
544 {
545 /* Set insert_before to immediately after the JUMP_INSN, so that
546 NOTEs at the end of the loop will be correctly handled by
547 copy_loop_body. */
548 insert_before = NEXT_INSN (last_loop_insn);
549 copy_end = last_loop_insn;
550 }
551 else
552 {
553 /* We currently can't unroll a loop if it doesn't end with a
554 JUMP_INSN. There would need to be a mechanism that recognizes
555 this case, and then inserts a jump after each loop body, which
556 jumps to after the last loop body. */
557 if (loop_dump_stream)
558 fprintf (loop_dump_stream,
559 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
560 return;
561 }
562
563 /* If copying exit test branches because they can not be eliminated,
564 then must convert the fall through case of the branch to a jump past
565 the end of the loop. Create a label to emit after the loop and save
566 it for later use. Do not use the label after the loop, if any, since
567 it might be used by insns outside the loop, or there might be insns
568 added before it later by final_[bg]iv_value which must be after
569 the real exit label. */
570 exit_label = gen_label_rtx ();
571
572 insn = loop_start;
573 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
574 insn = NEXT_INSN (insn);
575
576 if (GET_CODE (insn) == JUMP_INSN)
577 {
578 /* The loop starts with a jump down to the exit condition test.
579 Start copying the loop after the barrier following this
580 jump insn. */
581 copy_start = NEXT_INSN (insn);
582
583 /* Splitting induction variables doesn't work when the loop is
584 entered via a jump to the bottom, because then we end up doing
585 a comparison against a new register for a split variable, but
586 we did not execute the set insn for the new register because
587 it was skipped over. */
588 splitting_not_safe = 1;
589 if (loop_dump_stream)
590 fprintf (loop_dump_stream,
591 "Splitting not safe, because loop not entered at top.\n");
592 }
593 else
594 copy_start = loop_start;
595 }
596
597 /* This should always be the first label in the loop. */
598 start_label = NEXT_INSN (copy_start);
599 /* There may be a line number note and/or a loop continue note here. */
600 while (GET_CODE (start_label) == NOTE)
601 start_label = NEXT_INSN (start_label);
602 if (GET_CODE (start_label) != CODE_LABEL)
603 {
604 /* This can happen as a result of jump threading. If the first insns in
605 the loop test the same condition as the loop's backward jump, or the
606 opposite condition, then the backward jump will be modified to point
607 to elsewhere, and the loop's start label is deleted.
608
609 This case currently can not be handled by the loop unrolling code. */
610
611 if (loop_dump_stream)
612 fprintf (loop_dump_stream,
613 "Unrolling failure: unknown insns between BEG note and loop label.\n");
614 return;
615 }
616 if (LABEL_NAME (start_label))
617 {
618 /* The jump optimization pass must have combined the original start label
619 with a named label for a goto. We can't unroll this case because
620 jumps which go to the named label must be handled differently than
621 jumps to the loop start, and it is impossible to differentiate them
622 in this case. */
623 if (loop_dump_stream)
624 fprintf (loop_dump_stream,
625 "Unrolling failure: loop start label is gone\n");
626 return;
627 }
628
629 if (unroll_type == UNROLL_NAIVE
630 && GET_CODE (last_loop_insn) == BARRIER
631 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
632 {
633 /* In this case, we must copy the jump and barrier, because they will
634 not be converted to jumps to an immediately following label. */
635
636 insert_before = NEXT_INSN (last_loop_insn);
637 copy_end = last_loop_insn;
638 }
639
640 /* Allocate a translation table for the labels and insn numbers.
641 They will be filled in as we copy the insns in the loop. */
642
643 max_labelno = max_label_num ();
644 max_insnno = get_max_uid ();
645
646 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
647
648 map->integrating = 0;
649
650 /* Allocate the label map. */
651
652 if (max_labelno > 0)
653 {
654 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
655
656 local_label = (char *) alloca (max_labelno);
657 bzero (local_label, max_labelno);
658 }
659 else
660 map->label_map = 0;
661
662 /* Search the loop and mark all local labels, i.e. the ones which have to
663 be distinct labels when copied. For all labels which might be
664 non-local, set their label_map entries to point to themselves.
665 If they happen to be local their label_map entries will be overwritten
666 before the loop body is copied. The label_map entries for local labels
667 will be set to a different value each time the loop body is copied. */
668
669 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
670 {
671 if (GET_CODE (insn) == CODE_LABEL)
672 local_label[CODE_LABEL_NUMBER (insn)] = 1;
673 else if (GET_CODE (insn) == JUMP_INSN)
674 {
675 if (JUMP_LABEL (insn))
676 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
677 = JUMP_LABEL (insn);
678 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
679 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
680 {
681 rtx pat = PATTERN (insn);
682 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
683 int len = XVECLEN (pat, diff_vec_p);
684 rtx label;
685
686 for (i = 0; i < len; i++)
687 {
688 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
689 map->label_map[CODE_LABEL_NUMBER (label)] = label;
690 }
691 }
692 }
693 }
694
695 /* Allocate space for the insn map. */
696
697 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
698
699 /* Set this to zero, to indicate that we are doing loop unrolling,
700 not function inlining. */
701 map->inline_target = 0;
702
703 /* The register and constant maps depend on the number of registers
704 present, so the final maps can't be created until after
705 find_splittable_regs is called. However, they are needed for
706 preconditioning, so we create temporary maps when preconditioning
707 is performed. */
708
709 /* The preconditioning code may allocate two new pseudo registers. */
710 maxregnum = max_reg_num ();
711
712 /* Allocate and zero out the splittable_regs and addr_combined_regs
713 arrays. These must be zeroed here because they will be used if
714 loop preconditioning is performed, and must be zero for that case.
715
716 It is safe to do this here, since the extra registers created by the
717 preconditioning code and find_splittable_regs will never be used
718 to access the splittable_regs[] and addr_combined_regs[] arrays. */
719
720 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
721 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
722 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
723 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
724 addr_combined_regs
725 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
726 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
727 /* We must limit it to max_reg_before_loop, because only these pseudo
728 registers have valid regno_first_uid info. Any register created after
729 that is unlikely to be local to the loop anyways. */
730 local_regno = (char *) alloca (max_reg_before_loop);
731 bzero (local_regno, max_reg_before_loop);
732
733 /* Mark all local registers, i.e. the ones which are referenced only
734 inside the loop. */
735 if (INSN_UID (copy_end) < max_uid_for_loop)
736 {
737 int copy_start_luid = INSN_LUID (copy_start);
738 int copy_end_luid = INSN_LUID (copy_end);
739
740 /* If a register is used in the jump insn, we must not duplicate it
741 since it will also be used outside the loop. */
742 if (GET_CODE (copy_end) == JUMP_INSN)
743 copy_end_luid--;
744 /* If copy_start points to the NOTE that starts the loop, then we must
745 use the next luid, because invariant pseudo-regs moved out of the loop
746 have their lifetimes modified to start here, but they are not safe
747 to duplicate. */
748 if (copy_start == loop_start)
749 copy_start_luid++;
750
751 /* If a pseudo's lifetime is entirely contained within this loop, then we
752 can use a different pseudo in each unrolled copy of the loop. This
753 results in better code. */
754 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
755 if (regno_first_uid[j] > 0 && regno_first_uid[j] <= max_uid_for_loop
756 && uid_luid[regno_first_uid[j]] >= copy_start_luid
757 && regno_last_uid[j] > 0 && regno_last_uid[j] <= max_uid_for_loop
758 && uid_luid[regno_last_uid[j]] <= copy_end_luid)
759 {
760 /* However, we must also check for loop-carried dependencies.
761 If the value the pseudo has at the end of iteration X is
762 used by iteration X+1, then we can not use a different pseudo
763 for each unrolled copy of the loop. */
764 /* A pseudo is safe if regno_first_uid is a set, and this
765 set dominates all instructions from regno_first_uid to
766 regno_last_uid. */
767 /* ??? This check is simplistic. We would get better code if
768 this check was more sophisticated. */
769 if (set_dominates_use (j, regno_first_uid[j], regno_last_uid[j],
770 copy_start, copy_end))
771 local_regno[j] = 1;
772
773 if (loop_dump_stream)
774 {
775 if (local_regno[j])
776 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
777 else
778 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
779 j);
780 }
781 }
782 }
783
784 /* If this loop requires exit tests when unrolled, check to see if we
785 can precondition the loop so as to make the exit tests unnecessary.
786 Just like variable splitting, this is not safe if the loop is entered
787 via a jump to the bottom. Also, can not do this if no strength
788 reduce info, because precondition_loop_p uses this info. */
789
790 /* Must copy the loop body for preconditioning before the following
791 find_splittable_regs call since that will emit insns which need to
792 be after the preconditioned loop copies, but immediately before the
793 unrolled loop copies. */
794
795 /* Also, it is not safe to split induction variables for the preconditioned
796 copies of the loop body. If we split induction variables, then the code
797 assumes that each induction variable can be represented as a function
798 of its initial value and the loop iteration number. This is not true
799 in this case, because the last preconditioned copy of the loop body
800 could be any iteration from the first up to the `unroll_number-1'th,
801 depending on the initial value of the iteration variable. Therefore
802 we can not split induction variables here, because we can not calculate
803 their value. Hence, this code must occur before find_splittable_regs
804 is called. */
805
806 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
807 {
808 rtx initial_value, final_value, increment;
809
810 if (precondition_loop_p (&initial_value, &final_value, &increment,
811 loop_start, loop_end))
812 {
813 register rtx diff, temp;
814 enum machine_mode mode;
815 rtx *labels;
816 int abs_inc, neg_inc;
817
818 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
819
820 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
821 map->const_age_map = (unsigned *) alloca (maxregnum
822 * sizeof (unsigned));
823 map->const_equiv_map_size = maxregnum;
824 global_const_equiv_map = map->const_equiv_map;
825 global_const_equiv_map_size = maxregnum;
826
827 init_reg_map (map, maxregnum);
828
829 /* Limit loop unrolling to 4, since this will make 7 copies of
830 the loop body. */
831 if (unroll_number > 4)
832 unroll_number = 4;
833
834 /* Save the absolute value of the increment, and also whether or
835 not it is negative. */
836 neg_inc = 0;
837 abs_inc = INTVAL (increment);
838 if (abs_inc < 0)
839 {
840 abs_inc = - abs_inc;
841 neg_inc = 1;
842 }
843
844 start_sequence ();
845
846 /* Decide what mode to do these calculations in. Choose the larger
847 of final_value's mode and initial_value's mode, or a full-word if
848 both are constants. */
849 mode = GET_MODE (final_value);
850 if (mode == VOIDmode)
851 {
852 mode = GET_MODE (initial_value);
853 if (mode == VOIDmode)
854 mode = word_mode;
855 }
856 else if (mode != GET_MODE (initial_value)
857 && (GET_MODE_SIZE (mode)
858 < GET_MODE_SIZE (GET_MODE (initial_value))))
859 mode = GET_MODE (initial_value);
860
861 /* Calculate the difference between the final and initial values.
862 Final value may be a (plus (reg x) (const_int 1)) rtx.
863 Let the following cse pass simplify this if initial value is
864 a constant.
865
866 We must copy the final and initial values here to avoid
867 improperly shared rtl. */
868
869 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
870 copy_rtx (initial_value), NULL_RTX, 0,
871 OPTAB_LIB_WIDEN);
872
873 /* Now calculate (diff % (unroll * abs (increment))) by using an
874 and instruction. */
875 diff = expand_binop (GET_MODE (diff), and_optab, diff,
876 GEN_INT (unroll_number * abs_inc - 1),
877 NULL_RTX, 0, OPTAB_LIB_WIDEN);
878
879 /* Now emit a sequence of branches to jump to the proper precond
880 loop entry point. */
881
882 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
883 for (i = 0; i < unroll_number; i++)
884 labels[i] = gen_label_rtx ();
885
886 /* Check for the case where the initial value is greater than or
887 equal to the final value. In that case, we want to execute
888 exactly one loop iteration. The code below will fail for this
889 case. This check does not apply if the loop has a NE
890 comparison at the end. */
891
892 if (loop_comparison_code != NE)
893 {
894 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
895 NULL_RTX, mode, 0, 0);
896 if (neg_inc)
897 emit_jump_insn (gen_ble (labels[1]));
898 else
899 emit_jump_insn (gen_bge (labels[1]));
900 JUMP_LABEL (get_last_insn ()) = labels[1];
901 LABEL_NUSES (labels[1])++;
902 }
903
904 /* Assuming the unroll_number is 4, and the increment is 2, then
905 for a negative increment: for a positive increment:
906 diff = 0,1 precond 0 diff = 0,7 precond 0
907 diff = 2,3 precond 3 diff = 1,2 precond 1
908 diff = 4,5 precond 2 diff = 3,4 precond 2
909 diff = 6,7 precond 1 diff = 5,6 precond 3 */
910
911 /* We only need to emit (unroll_number - 1) branches here, the
912 last case just falls through to the following code. */
913
914 /* ??? This would give better code if we emitted a tree of branches
915 instead of the current linear list of branches. */
916
917 for (i = 0; i < unroll_number - 1; i++)
918 {
919 int cmp_const;
920 enum rtx_code cmp_code;
921
922 /* For negative increments, must invert the constant compared
923 against, except when comparing against zero. */
924 if (i == 0)
925 {
926 cmp_const = 0;
927 cmp_code = EQ;
928 }
929 else if (neg_inc)
930 {
931 cmp_const = unroll_number - i;
932 cmp_code = GE;
933 }
934 else
935 {
936 cmp_const = i;
937 cmp_code = LE;
938 }
939
940 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
941 cmp_code, NULL_RTX, mode, 0, 0);
942
943 if (i == 0)
944 emit_jump_insn (gen_beq (labels[i]));
945 else if (neg_inc)
946 emit_jump_insn (gen_bge (labels[i]));
947 else
948 emit_jump_insn (gen_ble (labels[i]));
949 JUMP_LABEL (get_last_insn ()) = labels[i];
950 LABEL_NUSES (labels[i])++;
951 }
952
953 /* If the increment is greater than one, then we need another branch,
954 to handle other cases equivalent to 0. */
955
956 /* ??? This should be merged into the code above somehow to help
957 simplify the code here, and reduce the number of branches emitted.
958 For the negative increment case, the branch here could easily
959 be merged with the `0' case branch above. For the positive
960 increment case, it is not clear how this can be simplified. */
961
962 if (abs_inc != 1)
963 {
964 int cmp_const;
965 enum rtx_code cmp_code;
966
967 if (neg_inc)
968 {
969 cmp_const = abs_inc - 1;
970 cmp_code = LE;
971 }
972 else
973 {
974 cmp_const = abs_inc * (unroll_number - 1) + 1;
975 cmp_code = GE;
976 }
977
978 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
979 mode, 0, 0);
980
981 if (neg_inc)
982 emit_jump_insn (gen_ble (labels[0]));
983 else
984 emit_jump_insn (gen_bge (labels[0]));
985 JUMP_LABEL (get_last_insn ()) = labels[0];
986 LABEL_NUSES (labels[0])++;
987 }
988
989 sequence = gen_sequence ();
990 end_sequence ();
991 emit_insn_before (sequence, loop_start);
992
993 /* Only the last copy of the loop body here needs the exit
994 test, so set copy_end to exclude the compare/branch here,
995 and then reset it inside the loop when get to the last
996 copy. */
997
998 if (GET_CODE (last_loop_insn) == BARRIER)
999 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1000 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1001 {
1002 #ifdef HAVE_cc0
1003 /* The immediately preceding insn is a compare which we do not
1004 want to copy. */
1005 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1006 #else
1007 /* The immediately preceding insn may not be a compare, so we
1008 must copy it. */
1009 copy_end = PREV_INSN (last_loop_insn);
1010 #endif
1011 }
1012 else
1013 abort ();
1014
1015 for (i = 1; i < unroll_number; i++)
1016 {
1017 emit_label_after (labels[unroll_number - i],
1018 PREV_INSN (loop_start));
1019
1020 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1021 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1022 bzero ((char *) map->const_age_map,
1023 maxregnum * sizeof (unsigned));
1024 map->const_age = 0;
1025
1026 for (j = 0; j < max_labelno; j++)
1027 if (local_label[j])
1028 map->label_map[j] = gen_label_rtx ();
1029
1030 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1031 if (local_regno[j])
1032 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1033
1034 /* The last copy needs the compare/branch insns at the end,
1035 so reset copy_end here if the loop ends with a conditional
1036 branch. */
1037
1038 if (i == unroll_number - 1)
1039 {
1040 if (GET_CODE (last_loop_insn) == BARRIER)
1041 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1042 else
1043 copy_end = last_loop_insn;
1044 }
1045
1046 /* None of the copies are the `last_iteration', so just
1047 pass zero for that parameter. */
1048 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1049 unroll_type, start_label, loop_end,
1050 loop_start, copy_end);
1051 }
1052 emit_label_after (labels[0], PREV_INSN (loop_start));
1053
1054 if (GET_CODE (last_loop_insn) == BARRIER)
1055 {
1056 insert_before = PREV_INSN (last_loop_insn);
1057 copy_end = PREV_INSN (insert_before);
1058 }
1059 else
1060 {
1061 #ifdef HAVE_cc0
1062 /* The immediately preceding insn is a compare which we do not
1063 want to copy. */
1064 insert_before = PREV_INSN (last_loop_insn);
1065 copy_end = PREV_INSN (insert_before);
1066 #else
1067 /* The immediately preceding insn may not be a compare, so we
1068 must copy it. */
1069 insert_before = last_loop_insn;
1070 copy_end = PREV_INSN (last_loop_insn);
1071 #endif
1072 }
1073
1074 /* Set unroll type to MODULO now. */
1075 unroll_type = UNROLL_MODULO;
1076 loop_preconditioned = 1;
1077 }
1078 }
1079
1080 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1081 the loop unless all loops are being unrolled. */
1082 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1083 {
1084 if (loop_dump_stream)
1085 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1086 return;
1087 }
1088
1089 /* At this point, we are guaranteed to unroll the loop. */
1090
1091 /* For each biv and giv, determine whether it can be safely split into
1092 a different variable for each unrolled copy of the loop body.
1093 We precalculate and save this info here, since computing it is
1094 expensive.
1095
1096 Do this before deleting any instructions from the loop, so that
1097 back_branch_in_range_p will work correctly. */
1098
1099 if (splitting_not_safe)
1100 temp = 0;
1101 else
1102 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1103 end_insert_before, unroll_number);
1104
1105 /* find_splittable_regs may have created some new registers, so must
1106 reallocate the reg_map with the new larger size, and must realloc
1107 the constant maps also. */
1108
1109 maxregnum = max_reg_num ();
1110 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1111
1112 init_reg_map (map, maxregnum);
1113
1114 /* Space is needed in some of the map for new registers, so new_maxregnum
1115 is an (over)estimate of how many registers will exist at the end. */
1116 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1117
1118 /* Must realloc space for the constant maps, because the number of registers
1119 may have changed. */
1120
1121 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1122 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1123
1124 map->const_equiv_map_size = new_maxregnum;
1125 global_const_equiv_map = map->const_equiv_map;
1126 global_const_equiv_map_size = new_maxregnum;
1127
1128 /* Search the list of bivs and givs to find ones which need to be remapped
1129 when split, and set their reg_map entry appropriately. */
1130
1131 for (bl = loop_iv_list; bl; bl = bl->next)
1132 {
1133 if (REGNO (bl->biv->src_reg) != bl->regno)
1134 map->reg_map[bl->regno] = bl->biv->src_reg;
1135 #if 0
1136 /* Currently, non-reduced/final-value givs are never split. */
1137 for (v = bl->giv; v; v = v->next_iv)
1138 if (REGNO (v->src_reg) != bl->regno)
1139 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1140 #endif
1141 }
1142
1143 /* Use our current register alignment and pointer flags. */
1144 map->regno_pointer_flag = regno_pointer_flag;
1145 map->regno_pointer_align = regno_pointer_align;
1146
1147 /* If the loop is being partially unrolled, and the iteration variables
1148 are being split, and are being renamed for the split, then must fix up
1149 the compare/jump instruction at the end of the loop to refer to the new
1150 registers. This compare isn't copied, so the registers used in it
1151 will never be replaced if it isn't done here. */
1152
1153 if (unroll_type == UNROLL_MODULO)
1154 {
1155 insn = NEXT_INSN (copy_end);
1156 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1157 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1158 }
1159
1160 /* For unroll_number - 1 times, make a copy of each instruction
1161 between copy_start and copy_end, and insert these new instructions
1162 before the end of the loop. */
1163
1164 for (i = 0; i < unroll_number; i++)
1165 {
1166 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1167 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1168 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1169 map->const_age = 0;
1170
1171 for (j = 0; j < max_labelno; j++)
1172 if (local_label[j])
1173 map->label_map[j] = gen_label_rtx ();
1174
1175 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1176 if (local_regno[j])
1177 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1178
1179 /* If loop starts with a branch to the test, then fix it so that
1180 it points to the test of the first unrolled copy of the loop. */
1181 if (i == 0 && loop_start != copy_start)
1182 {
1183 insn = PREV_INSN (copy_start);
1184 pattern = PATTERN (insn);
1185
1186 tem = map->label_map[CODE_LABEL_NUMBER
1187 (XEXP (SET_SRC (pattern), 0))];
1188 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1189
1190 /* Set the jump label so that it can be used by later loop unrolling
1191 passes. */
1192 JUMP_LABEL (insn) = tem;
1193 LABEL_NUSES (tem)++;
1194 }
1195
1196 copy_loop_body (copy_start, copy_end, map, exit_label,
1197 i == unroll_number - 1, unroll_type, start_label,
1198 loop_end, insert_before, insert_before);
1199 }
1200
1201 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1202 insn to be deleted. This prevents any runaway delete_insn call from
1203 more insns that it should, as it always stops at a CODE_LABEL. */
1204
1205 /* Delete the compare and branch at the end of the loop if completely
1206 unrolling the loop. Deleting the backward branch at the end also
1207 deletes the code label at the start of the loop. This is done at
1208 the very end to avoid problems with back_branch_in_range_p. */
1209
1210 if (unroll_type == UNROLL_COMPLETELY)
1211 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1212 else
1213 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1214
1215 /* Delete all of the original loop instructions. Don't delete the
1216 LOOP_BEG note, or the first code label in the loop. */
1217
1218 insn = NEXT_INSN (copy_start);
1219 while (insn != safety_label)
1220 {
1221 if (insn != start_label)
1222 insn = delete_insn (insn);
1223 else
1224 insn = NEXT_INSN (insn);
1225 }
1226
1227 /* Can now delete the 'safety' label emitted to protect us from runaway
1228 delete_insn calls. */
1229 if (INSN_DELETED_P (safety_label))
1230 abort ();
1231 delete_insn (safety_label);
1232
1233 /* If exit_label exists, emit it after the loop. Doing the emit here
1234 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1235 This is needed so that mostly_true_jump in reorg.c will treat jumps
1236 to this loop end label correctly, i.e. predict that they are usually
1237 not taken. */
1238 if (exit_label)
1239 emit_label_after (exit_label, loop_end);
1240 }
1241 \f
1242 /* Return true if the loop can be safely, and profitably, preconditioned
1243 so that the unrolled copies of the loop body don't need exit tests.
1244
1245 This only works if final_value, initial_value and increment can be
1246 determined, and if increment is a constant power of 2.
1247 If increment is not a power of 2, then the preconditioning modulo
1248 operation would require a real modulo instead of a boolean AND, and this
1249 is not considered `profitable'. */
1250
1251 /* ??? If the loop is known to be executed very many times, or the machine
1252 has a very cheap divide instruction, then preconditioning is a win even
1253 when the increment is not a power of 2. Use RTX_COST to compute
1254 whether divide is cheap. */
1255
1256 static int
1257 precondition_loop_p (initial_value, final_value, increment, loop_start,
1258 loop_end)
1259 rtx *initial_value, *final_value, *increment;
1260 rtx loop_start, loop_end;
1261 {
1262
1263 if (loop_n_iterations > 0)
1264 {
1265 *initial_value = const0_rtx;
1266 *increment = const1_rtx;
1267 *final_value = GEN_INT (loop_n_iterations);
1268
1269 if (loop_dump_stream)
1270 fprintf (loop_dump_stream,
1271 "Preconditioning: Success, number of iterations known, %d.\n",
1272 loop_n_iterations);
1273 return 1;
1274 }
1275
1276 if (loop_initial_value == 0)
1277 {
1278 if (loop_dump_stream)
1279 fprintf (loop_dump_stream,
1280 "Preconditioning: Could not find initial value.\n");
1281 return 0;
1282 }
1283 else if (loop_increment == 0)
1284 {
1285 if (loop_dump_stream)
1286 fprintf (loop_dump_stream,
1287 "Preconditioning: Could not find increment value.\n");
1288 return 0;
1289 }
1290 else if (GET_CODE (loop_increment) != CONST_INT)
1291 {
1292 if (loop_dump_stream)
1293 fprintf (loop_dump_stream,
1294 "Preconditioning: Increment not a constant.\n");
1295 return 0;
1296 }
1297 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1298 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1299 {
1300 if (loop_dump_stream)
1301 fprintf (loop_dump_stream,
1302 "Preconditioning: Increment not a constant power of 2.\n");
1303 return 0;
1304 }
1305
1306 /* Unsigned_compare and compare_dir can be ignored here, since they do
1307 not matter for preconditioning. */
1308
1309 if (loop_final_value == 0)
1310 {
1311 if (loop_dump_stream)
1312 fprintf (loop_dump_stream,
1313 "Preconditioning: EQ comparison loop.\n");
1314 return 0;
1315 }
1316
1317 /* Must ensure that final_value is invariant, so call invariant_p to
1318 check. Before doing so, must check regno against max_reg_before_loop
1319 to make sure that the register is in the range covered by invariant_p.
1320 If it isn't, then it is most likely a biv/giv which by definition are
1321 not invariant. */
1322 if ((GET_CODE (loop_final_value) == REG
1323 && REGNO (loop_final_value) >= max_reg_before_loop)
1324 || (GET_CODE (loop_final_value) == PLUS
1325 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1326 || ! invariant_p (loop_final_value))
1327 {
1328 if (loop_dump_stream)
1329 fprintf (loop_dump_stream,
1330 "Preconditioning: Final value not invariant.\n");
1331 return 0;
1332 }
1333
1334 /* Fail for floating point values, since the caller of this function
1335 does not have code to deal with them. */
1336 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1337 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1338 {
1339 if (loop_dump_stream)
1340 fprintf (loop_dump_stream,
1341 "Preconditioning: Floating point final or initial value.\n");
1342 return 0;
1343 }
1344
1345 /* Now set initial_value to be the iteration_var, since that may be a
1346 simpler expression, and is guaranteed to be correct if all of the
1347 above tests succeed.
1348
1349 We can not use the initial_value as calculated, because it will be
1350 one too small for loops of the form "while (i-- > 0)". We can not
1351 emit code before the loop_skip_over insns to fix this problem as this
1352 will then give a number one too large for loops of the form
1353 "while (--i > 0)".
1354
1355 Note that all loops that reach here are entered at the top, because
1356 this function is not called if the loop starts with a jump. */
1357
1358 /* Fail if loop_iteration_var is not live before loop_start, since we need
1359 to test its value in the preconditioning code. */
1360
1361 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1362 > INSN_LUID (loop_start))
1363 {
1364 if (loop_dump_stream)
1365 fprintf (loop_dump_stream,
1366 "Preconditioning: Iteration var not live before loop start.\n");
1367 return 0;
1368 }
1369
1370 *initial_value = loop_iteration_var;
1371 *increment = loop_increment;
1372 *final_value = loop_final_value;
1373
1374 /* Success! */
1375 if (loop_dump_stream)
1376 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1377 return 1;
1378 }
1379
1380
1381 /* All pseudo-registers must be mapped to themselves. Two hard registers
1382 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1383 REGNUM, to avoid function-inlining specific conversions of these
1384 registers. All other hard regs can not be mapped because they may be
1385 used with different
1386 modes. */
1387
1388 static void
1389 init_reg_map (map, maxregnum)
1390 struct inline_remap *map;
1391 int maxregnum;
1392 {
1393 int i;
1394
1395 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1396 map->reg_map[i] = regno_reg_rtx[i];
1397 /* Just clear the rest of the entries. */
1398 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1399 map->reg_map[i] = 0;
1400
1401 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1402 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1403 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1404 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1405 }
1406 \f
1407 /* Strength-reduction will often emit code for optimized biv/givs which
1408 calculates their value in a temporary register, and then copies the result
1409 to the iv. This procedure reconstructs the pattern computing the iv;
1410 verifying that all operands are of the proper form.
1411
1412 The return value is the amount that the giv is incremented by. */
1413
1414 static rtx
1415 calculate_giv_inc (pattern, src_insn, regno)
1416 rtx pattern, src_insn;
1417 int regno;
1418 {
1419 rtx increment;
1420 rtx increment_total = 0;
1421 int tries = 0;
1422
1423 retry:
1424 /* Verify that we have an increment insn here. First check for a plus
1425 as the set source. */
1426 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1427 {
1428 /* SR sometimes computes the new giv value in a temp, then copies it
1429 to the new_reg. */
1430 src_insn = PREV_INSN (src_insn);
1431 pattern = PATTERN (src_insn);
1432 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1433 abort ();
1434
1435 /* The last insn emitted is not needed, so delete it to avoid confusing
1436 the second cse pass. This insn sets the giv unnecessarily. */
1437 delete_insn (get_last_insn ());
1438 }
1439
1440 /* Verify that we have a constant as the second operand of the plus. */
1441 increment = XEXP (SET_SRC (pattern), 1);
1442 if (GET_CODE (increment) != CONST_INT)
1443 {
1444 /* SR sometimes puts the constant in a register, especially if it is
1445 too big to be an add immed operand. */
1446 src_insn = PREV_INSN (src_insn);
1447 increment = SET_SRC (PATTERN (src_insn));
1448
1449 /* SR may have used LO_SUM to compute the constant if it is too large
1450 for a load immed operand. In this case, the constant is in operand
1451 one of the LO_SUM rtx. */
1452 if (GET_CODE (increment) == LO_SUM)
1453 increment = XEXP (increment, 1);
1454 else if (GET_CODE (increment) == IOR
1455 || GET_CODE (increment) == ASHIFT)
1456 {
1457 /* The rs6000 port loads some constants with IOR.
1458 The alpha port loads some constants with ASHIFT. */
1459 rtx second_part = XEXP (increment, 1);
1460 enum rtx_code code = GET_CODE (increment);
1461
1462 src_insn = PREV_INSN (src_insn);
1463 increment = SET_SRC (PATTERN (src_insn));
1464 /* Don't need the last insn anymore. */
1465 delete_insn (get_last_insn ());
1466
1467 if (GET_CODE (second_part) != CONST_INT
1468 || GET_CODE (increment) != CONST_INT)
1469 abort ();
1470
1471 if (code == IOR)
1472 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1473 else
1474 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1475 }
1476
1477 if (GET_CODE (increment) != CONST_INT)
1478 abort ();
1479
1480 /* The insn loading the constant into a register is no longer needed,
1481 so delete it. */
1482 delete_insn (get_last_insn ());
1483 }
1484
1485 if (increment_total)
1486 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1487 else
1488 increment_total = increment;
1489
1490 /* Check that the source register is the same as the register we expected
1491 to see as the source. If not, something is seriously wrong. */
1492 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1493 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1494 {
1495 /* Some machines (e.g. the romp), may emit two add instructions for
1496 certain constants, so lets try looking for another add immediately
1497 before this one if we have only seen one add insn so far. */
1498
1499 if (tries == 0)
1500 {
1501 tries++;
1502
1503 src_insn = PREV_INSN (src_insn);
1504 pattern = PATTERN (src_insn);
1505
1506 delete_insn (get_last_insn ());
1507
1508 goto retry;
1509 }
1510
1511 abort ();
1512 }
1513
1514 return increment_total;
1515 }
1516
1517 /* Copy REG_NOTES, except for insn references, because not all insn_map
1518 entries are valid yet. We do need to copy registers now though, because
1519 the reg_map entries can change during copying. */
1520
1521 static rtx
1522 initial_reg_note_copy (notes, map)
1523 rtx notes;
1524 struct inline_remap *map;
1525 {
1526 rtx copy;
1527
1528 if (notes == 0)
1529 return 0;
1530
1531 copy = rtx_alloc (GET_CODE (notes));
1532 PUT_MODE (copy, GET_MODE (notes));
1533
1534 if (GET_CODE (notes) == EXPR_LIST)
1535 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1536 else if (GET_CODE (notes) == INSN_LIST)
1537 /* Don't substitute for these yet. */
1538 XEXP (copy, 0) = XEXP (notes, 0);
1539 else
1540 abort ();
1541
1542 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1543
1544 return copy;
1545 }
1546
1547 /* Fixup insn references in copied REG_NOTES. */
1548
1549 static void
1550 final_reg_note_copy (notes, map)
1551 rtx notes;
1552 struct inline_remap *map;
1553 {
1554 rtx note;
1555
1556 for (note = notes; note; note = XEXP (note, 1))
1557 if (GET_CODE (note) == INSN_LIST)
1558 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1559 }
1560
1561 /* Copy each instruction in the loop, substituting from map as appropriate.
1562 This is very similar to a loop in expand_inline_function. */
1563
1564 static void
1565 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1566 unroll_type, start_label, loop_end, insert_before,
1567 copy_notes_from)
1568 rtx copy_start, copy_end;
1569 struct inline_remap *map;
1570 rtx exit_label;
1571 int last_iteration;
1572 enum unroll_types unroll_type;
1573 rtx start_label, loop_end, insert_before, copy_notes_from;
1574 {
1575 rtx insn, pattern;
1576 rtx tem, copy;
1577 int dest_reg_was_split, i;
1578 rtx cc0_insn = 0;
1579 rtx final_label = 0;
1580 rtx giv_inc, giv_dest_reg, giv_src_reg;
1581
1582 /* If this isn't the last iteration, then map any references to the
1583 start_label to final_label. Final label will then be emitted immediately
1584 after the end of this loop body if it was ever used.
1585
1586 If this is the last iteration, then map references to the start_label
1587 to itself. */
1588 if (! last_iteration)
1589 {
1590 final_label = gen_label_rtx ();
1591 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1592 }
1593 else
1594 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1595
1596 start_sequence ();
1597
1598 insn = copy_start;
1599 do
1600 {
1601 insn = NEXT_INSN (insn);
1602
1603 map->orig_asm_operands_vector = 0;
1604
1605 switch (GET_CODE (insn))
1606 {
1607 case INSN:
1608 pattern = PATTERN (insn);
1609 copy = 0;
1610 giv_inc = 0;
1611
1612 /* Check to see if this is a giv that has been combined with
1613 some split address givs. (Combined in the sense that
1614 `combine_givs' in loop.c has put two givs in the same register.)
1615 In this case, we must search all givs based on the same biv to
1616 find the address givs. Then split the address givs.
1617 Do this before splitting the giv, since that may map the
1618 SET_DEST to a new register. */
1619
1620 if (GET_CODE (pattern) == SET
1621 && GET_CODE (SET_DEST (pattern)) == REG
1622 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1623 {
1624 struct iv_class *bl;
1625 struct induction *v, *tv;
1626 int regno = REGNO (SET_DEST (pattern));
1627
1628 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1629 bl = reg_biv_class[REGNO (v->src_reg)];
1630
1631 /* Although the giv_inc amount is not needed here, we must call
1632 calculate_giv_inc here since it might try to delete the
1633 last insn emitted. If we wait until later to call it,
1634 we might accidentally delete insns generated immediately
1635 below by emit_unrolled_add. */
1636
1637 giv_inc = calculate_giv_inc (pattern, insn, regno);
1638
1639 /* Now find all address giv's that were combined with this
1640 giv 'v'. */
1641 for (tv = bl->giv; tv; tv = tv->next_iv)
1642 if (tv->giv_type == DEST_ADDR && tv->same == v)
1643 {
1644 int this_giv_inc;
1645
1646 /* If this DEST_ADDR giv was not split, then ignore it. */
1647 if (*tv->location != tv->dest_reg)
1648 continue;
1649
1650 /* Scale this_giv_inc if the multiplicative factors of
1651 the two givs are different. */
1652 this_giv_inc = INTVAL (giv_inc);
1653 if (tv->mult_val != v->mult_val)
1654 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1655 * INTVAL (tv->mult_val));
1656
1657 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1658 *tv->location = tv->dest_reg;
1659
1660 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1661 {
1662 /* Must emit an insn to increment the split address
1663 giv. Add in the const_adjust field in case there
1664 was a constant eliminated from the address. */
1665 rtx value, dest_reg;
1666
1667 /* tv->dest_reg will be either a bare register,
1668 or else a register plus a constant. */
1669 if (GET_CODE (tv->dest_reg) == REG)
1670 dest_reg = tv->dest_reg;
1671 else
1672 dest_reg = XEXP (tv->dest_reg, 0);
1673
1674 /* Check for shared address givs, and avoid
1675 incrementing the shared pseudo reg more than
1676 once. */
1677 if (! tv->same_insn)
1678 {
1679 /* tv->dest_reg may actually be a (PLUS (REG)
1680 (CONST)) here, so we must call plus_constant
1681 to add the const_adjust amount before calling
1682 emit_unrolled_add below. */
1683 value = plus_constant (tv->dest_reg,
1684 tv->const_adjust);
1685
1686 /* The constant could be too large for an add
1687 immediate, so can't directly emit an insn
1688 here. */
1689 emit_unrolled_add (dest_reg, XEXP (value, 0),
1690 XEXP (value, 1));
1691 }
1692
1693 /* Reset the giv to be just the register again, in case
1694 it is used after the set we have just emitted.
1695 We must subtract the const_adjust factor added in
1696 above. */
1697 tv->dest_reg = plus_constant (dest_reg,
1698 - tv->const_adjust);
1699 *tv->location = tv->dest_reg;
1700 }
1701 }
1702 }
1703
1704 /* If this is a setting of a splittable variable, then determine
1705 how to split the variable, create a new set based on this split,
1706 and set up the reg_map so that later uses of the variable will
1707 use the new split variable. */
1708
1709 dest_reg_was_split = 0;
1710
1711 if (GET_CODE (pattern) == SET
1712 && GET_CODE (SET_DEST (pattern)) == REG
1713 && splittable_regs[REGNO (SET_DEST (pattern))])
1714 {
1715 int regno = REGNO (SET_DEST (pattern));
1716
1717 dest_reg_was_split = 1;
1718
1719 /* Compute the increment value for the giv, if it wasn't
1720 already computed above. */
1721
1722 if (giv_inc == 0)
1723 giv_inc = calculate_giv_inc (pattern, insn, regno);
1724 giv_dest_reg = SET_DEST (pattern);
1725 giv_src_reg = SET_DEST (pattern);
1726
1727 if (unroll_type == UNROLL_COMPLETELY)
1728 {
1729 /* Completely unrolling the loop. Set the induction
1730 variable to a known constant value. */
1731
1732 /* The value in splittable_regs may be an invariant
1733 value, so we must use plus_constant here. */
1734 splittable_regs[regno]
1735 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1736
1737 if (GET_CODE (splittable_regs[regno]) == PLUS)
1738 {
1739 giv_src_reg = XEXP (splittable_regs[regno], 0);
1740 giv_inc = XEXP (splittable_regs[regno], 1);
1741 }
1742 else
1743 {
1744 /* The splittable_regs value must be a REG or a
1745 CONST_INT, so put the entire value in the giv_src_reg
1746 variable. */
1747 giv_src_reg = splittable_regs[regno];
1748 giv_inc = const0_rtx;
1749 }
1750 }
1751 else
1752 {
1753 /* Partially unrolling loop. Create a new pseudo
1754 register for the iteration variable, and set it to
1755 be a constant plus the original register. Except
1756 on the last iteration, when the result has to
1757 go back into the original iteration var register. */
1758
1759 /* Handle bivs which must be mapped to a new register
1760 when split. This happens for bivs which need their
1761 final value set before loop entry. The new register
1762 for the biv was stored in the biv's first struct
1763 induction entry by find_splittable_regs. */
1764
1765 if (regno < max_reg_before_loop
1766 && reg_iv_type[regno] == BASIC_INDUCT)
1767 {
1768 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1769 giv_dest_reg = giv_src_reg;
1770 }
1771
1772 #if 0
1773 /* If non-reduced/final-value givs were split, then
1774 this would have to remap those givs also. See
1775 find_splittable_regs. */
1776 #endif
1777
1778 splittable_regs[regno]
1779 = GEN_INT (INTVAL (giv_inc)
1780 + INTVAL (splittable_regs[regno]));
1781 giv_inc = splittable_regs[regno];
1782
1783 /* Now split the induction variable by changing the dest
1784 of this insn to a new register, and setting its
1785 reg_map entry to point to this new register.
1786
1787 If this is the last iteration, and this is the last insn
1788 that will update the iv, then reuse the original dest,
1789 to ensure that the iv will have the proper value when
1790 the loop exits or repeats.
1791
1792 Using splittable_regs_updates here like this is safe,
1793 because it can only be greater than one if all
1794 instructions modifying the iv are always executed in
1795 order. */
1796
1797 if (! last_iteration
1798 || (splittable_regs_updates[regno]-- != 1))
1799 {
1800 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1801 giv_dest_reg = tem;
1802 map->reg_map[regno] = tem;
1803 }
1804 else
1805 map->reg_map[regno] = giv_src_reg;
1806 }
1807
1808 /* The constant being added could be too large for an add
1809 immediate, so can't directly emit an insn here. */
1810 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1811 copy = get_last_insn ();
1812 pattern = PATTERN (copy);
1813 }
1814 else
1815 {
1816 pattern = copy_rtx_and_substitute (pattern, map);
1817 copy = emit_insn (pattern);
1818 }
1819 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1820
1821 #ifdef HAVE_cc0
1822 /* If this insn is setting CC0, it may need to look at
1823 the insn that uses CC0 to see what type of insn it is.
1824 In that case, the call to recog via validate_change will
1825 fail. So don't substitute constants here. Instead,
1826 do it when we emit the following insn.
1827
1828 For example, see the pyr.md file. That machine has signed and
1829 unsigned compares. The compare patterns must check the
1830 following branch insn to see which what kind of compare to
1831 emit.
1832
1833 If the previous insn set CC0, substitute constants on it as
1834 well. */
1835 if (sets_cc0_p (PATTERN (copy)) != 0)
1836 cc0_insn = copy;
1837 else
1838 {
1839 if (cc0_insn)
1840 try_constants (cc0_insn, map);
1841 cc0_insn = 0;
1842 try_constants (copy, map);
1843 }
1844 #else
1845 try_constants (copy, map);
1846 #endif
1847
1848 /* Make split induction variable constants `permanent' since we
1849 know there are no backward branches across iteration variable
1850 settings which would invalidate this. */
1851 if (dest_reg_was_split)
1852 {
1853 int regno = REGNO (SET_DEST (pattern));
1854
1855 if (regno < map->const_equiv_map_size
1856 && map->const_age_map[regno] == map->const_age)
1857 map->const_age_map[regno] = -1;
1858 }
1859 break;
1860
1861 case JUMP_INSN:
1862 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1863 copy = emit_jump_insn (pattern);
1864 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1865
1866 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1867 && ! last_iteration)
1868 {
1869 /* This is a branch to the beginning of the loop; this is the
1870 last insn being copied; and this is not the last iteration.
1871 In this case, we want to change the original fall through
1872 case to be a branch past the end of the loop, and the
1873 original jump label case to fall_through. */
1874
1875 if (invert_exp (pattern, copy))
1876 {
1877 if (! redirect_exp (&pattern,
1878 map->label_map[CODE_LABEL_NUMBER
1879 (JUMP_LABEL (insn))],
1880 exit_label, copy))
1881 abort ();
1882 }
1883 else
1884 {
1885 rtx jmp;
1886 rtx lab = gen_label_rtx ();
1887 /* Can't do it by reversing the jump (probably because we
1888 couldn't reverse the conditions), so emit a new
1889 jump_insn after COPY, and redirect the jump around
1890 that. */
1891 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1892 jmp = emit_barrier_after (jmp);
1893 emit_label_after (lab, jmp);
1894 LABEL_NUSES (lab) = 0;
1895 if (! redirect_exp (&pattern,
1896 map->label_map[CODE_LABEL_NUMBER
1897 (JUMP_LABEL (insn))],
1898 lab, copy))
1899 abort ();
1900 }
1901 }
1902
1903 #ifdef HAVE_cc0
1904 if (cc0_insn)
1905 try_constants (cc0_insn, map);
1906 cc0_insn = 0;
1907 #endif
1908 try_constants (copy, map);
1909
1910 /* Set the jump label of COPY correctly to avoid problems with
1911 later passes of unroll_loop, if INSN had jump label set. */
1912 if (JUMP_LABEL (insn))
1913 {
1914 rtx label = 0;
1915
1916 /* Can't use the label_map for every insn, since this may be
1917 the backward branch, and hence the label was not mapped. */
1918 if (GET_CODE (pattern) == SET)
1919 {
1920 tem = SET_SRC (pattern);
1921 if (GET_CODE (tem) == LABEL_REF)
1922 label = XEXP (tem, 0);
1923 else if (GET_CODE (tem) == IF_THEN_ELSE)
1924 {
1925 if (XEXP (tem, 1) != pc_rtx)
1926 label = XEXP (XEXP (tem, 1), 0);
1927 else
1928 label = XEXP (XEXP (tem, 2), 0);
1929 }
1930 }
1931
1932 if (label && GET_CODE (label) == CODE_LABEL)
1933 JUMP_LABEL (copy) = label;
1934 else
1935 {
1936 /* An unrecognizable jump insn, probably the entry jump
1937 for a switch statement. This label must have been mapped,
1938 so just use the label_map to get the new jump label. */
1939 JUMP_LABEL (copy)
1940 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1941 }
1942
1943 /* If this is a non-local jump, then must increase the label
1944 use count so that the label will not be deleted when the
1945 original jump is deleted. */
1946 LABEL_NUSES (JUMP_LABEL (copy))++;
1947 }
1948 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1949 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1950 {
1951 rtx pat = PATTERN (copy);
1952 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1953 int len = XVECLEN (pat, diff_vec_p);
1954 int i;
1955
1956 for (i = 0; i < len; i++)
1957 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1958 }
1959
1960 /* If this used to be a conditional jump insn but whose branch
1961 direction is now known, we must do something special. */
1962 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1963 {
1964 #ifdef HAVE_cc0
1965 /* The previous insn set cc0 for us. So delete it. */
1966 delete_insn (PREV_INSN (copy));
1967 #endif
1968
1969 /* If this is now a no-op, delete it. */
1970 if (map->last_pc_value == pc_rtx)
1971 {
1972 /* Don't let delete_insn delete the label referenced here,
1973 because we might possibly need it later for some other
1974 instruction in the loop. */
1975 if (JUMP_LABEL (copy))
1976 LABEL_NUSES (JUMP_LABEL (copy))++;
1977 delete_insn (copy);
1978 if (JUMP_LABEL (copy))
1979 LABEL_NUSES (JUMP_LABEL (copy))--;
1980 copy = 0;
1981 }
1982 else
1983 /* Otherwise, this is unconditional jump so we must put a
1984 BARRIER after it. We could do some dead code elimination
1985 here, but jump.c will do it just as well. */
1986 emit_barrier ();
1987 }
1988 break;
1989
1990 case CALL_INSN:
1991 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1992 copy = emit_call_insn (pattern);
1993 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1994
1995 /* Because the USAGE information potentially contains objects other
1996 than hard registers, we need to copy it. */
1997 CALL_INSN_FUNCTION_USAGE (copy) =
1998 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1999
2000 #ifdef HAVE_cc0
2001 if (cc0_insn)
2002 try_constants (cc0_insn, map);
2003 cc0_insn = 0;
2004 #endif
2005 try_constants (copy, map);
2006
2007 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2008 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2009 map->const_equiv_map[i] = 0;
2010 break;
2011
2012 case CODE_LABEL:
2013 /* If this is the loop start label, then we don't need to emit a
2014 copy of this label since no one will use it. */
2015
2016 if (insn != start_label)
2017 {
2018 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2019 map->const_age++;
2020 }
2021 break;
2022
2023 case BARRIER:
2024 copy = emit_barrier ();
2025 break;
2026
2027 case NOTE:
2028 /* VTOP notes are valid only before the loop exit test. If placed
2029 anywhere else, loop may generate bad code. */
2030
2031 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2032 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2033 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2034 copy = emit_note (NOTE_SOURCE_FILE (insn),
2035 NOTE_LINE_NUMBER (insn));
2036 else
2037 copy = 0;
2038 break;
2039
2040 default:
2041 abort ();
2042 break;
2043 }
2044
2045 map->insn_map[INSN_UID (insn)] = copy;
2046 }
2047 while (insn != copy_end);
2048
2049 /* Now finish coping the REG_NOTES. */
2050 insn = copy_start;
2051 do
2052 {
2053 insn = NEXT_INSN (insn);
2054 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2055 || GET_CODE (insn) == CALL_INSN)
2056 && map->insn_map[INSN_UID (insn)])
2057 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2058 }
2059 while (insn != copy_end);
2060
2061 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2062 each of these notes here, since there may be some important ones, such as
2063 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2064 iteration, because the original notes won't be deleted.
2065
2066 We can't use insert_before here, because when from preconditioning,
2067 insert_before points before the loop. We can't use copy_end, because
2068 there may be insns already inserted after it (which we don't want to
2069 copy) when not from preconditioning code. */
2070
2071 if (! last_iteration)
2072 {
2073 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2074 {
2075 if (GET_CODE (insn) == NOTE
2076 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2077 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2078 }
2079 }
2080
2081 if (final_label && LABEL_NUSES (final_label) > 0)
2082 emit_label (final_label);
2083
2084 tem = gen_sequence ();
2085 end_sequence ();
2086 emit_insn_before (tem, insert_before);
2087 }
2088 \f
2089 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2090 emitted. This will correctly handle the case where the increment value
2091 won't fit in the immediate field of a PLUS insns. */
2092
2093 void
2094 emit_unrolled_add (dest_reg, src_reg, increment)
2095 rtx dest_reg, src_reg, increment;
2096 {
2097 rtx result;
2098
2099 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2100 dest_reg, 0, OPTAB_LIB_WIDEN);
2101
2102 if (dest_reg != result)
2103 emit_move_insn (dest_reg, result);
2104 }
2105 \f
2106 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2107 is a backward branch in that range that branches to somewhere between
2108 LOOP_START and INSN. Returns 0 otherwise. */
2109
2110 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2111 In practice, this is not a problem, because this function is seldom called,
2112 and uses a negligible amount of CPU time on average. */
2113
2114 int
2115 back_branch_in_range_p (insn, loop_start, loop_end)
2116 rtx insn;
2117 rtx loop_start, loop_end;
2118 {
2119 rtx p, q, target_insn;
2120
2121 /* Stop before we get to the backward branch at the end of the loop. */
2122 loop_end = prev_nonnote_insn (loop_end);
2123 if (GET_CODE (loop_end) == BARRIER)
2124 loop_end = PREV_INSN (loop_end);
2125
2126 /* Check in case insn has been deleted, search forward for first non
2127 deleted insn following it. */
2128 while (INSN_DELETED_P (insn))
2129 insn = NEXT_INSN (insn);
2130
2131 /* Check for the case where insn is the last insn in the loop. */
2132 if (insn == loop_end)
2133 return 0;
2134
2135 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2136 {
2137 if (GET_CODE (p) == JUMP_INSN)
2138 {
2139 target_insn = JUMP_LABEL (p);
2140
2141 /* Search from loop_start to insn, to see if one of them is
2142 the target_insn. We can't use INSN_LUID comparisons here,
2143 since insn may not have an LUID entry. */
2144 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2145 if (q == target_insn)
2146 return 1;
2147 }
2148 }
2149
2150 return 0;
2151 }
2152
2153 /* Try to generate the simplest rtx for the expression
2154 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2155 value of giv's. */
2156
2157 static rtx
2158 fold_rtx_mult_add (mult1, mult2, add1, mode)
2159 rtx mult1, mult2, add1;
2160 enum machine_mode mode;
2161 {
2162 rtx temp, mult_res;
2163 rtx result;
2164
2165 /* The modes must all be the same. This should always be true. For now,
2166 check to make sure. */
2167 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2168 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2169 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2170 abort ();
2171
2172 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2173 will be a constant. */
2174 if (GET_CODE (mult1) == CONST_INT)
2175 {
2176 temp = mult2;
2177 mult2 = mult1;
2178 mult1 = temp;
2179 }
2180
2181 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2182 if (! mult_res)
2183 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2184
2185 /* Again, put the constant second. */
2186 if (GET_CODE (add1) == CONST_INT)
2187 {
2188 temp = add1;
2189 add1 = mult_res;
2190 mult_res = temp;
2191 }
2192
2193 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2194 if (! result)
2195 result = gen_rtx (PLUS, mode, add1, mult_res);
2196
2197 return result;
2198 }
2199
2200 /* Searches the list of induction struct's for the biv BL, to try to calculate
2201 the total increment value for one iteration of the loop as a constant.
2202
2203 Returns the increment value as an rtx, simplified as much as possible,
2204 if it can be calculated. Otherwise, returns 0. */
2205
2206 rtx
2207 biv_total_increment (bl, loop_start, loop_end)
2208 struct iv_class *bl;
2209 rtx loop_start, loop_end;
2210 {
2211 struct induction *v;
2212 rtx result;
2213
2214 /* For increment, must check every instruction that sets it. Each
2215 instruction must be executed only once each time through the loop.
2216 To verify this, we check that the the insn is always executed, and that
2217 there are no backward branches after the insn that branch to before it.
2218 Also, the insn must have a mult_val of one (to make sure it really is
2219 an increment). */
2220
2221 result = const0_rtx;
2222 for (v = bl->biv; v; v = v->next_iv)
2223 {
2224 if (v->always_computable && v->mult_val == const1_rtx
2225 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2226 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2227 else
2228 return 0;
2229 }
2230
2231 return result;
2232 }
2233
2234 /* Determine the initial value of the iteration variable, and the amount
2235 that it is incremented each loop. Use the tables constructed by
2236 the strength reduction pass to calculate these values.
2237
2238 Initial_value and/or increment are set to zero if their values could not
2239 be calculated. */
2240
2241 static void
2242 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2243 rtx iteration_var, *initial_value, *increment;
2244 rtx loop_start, loop_end;
2245 {
2246 struct iv_class *bl;
2247 struct induction *v, *b;
2248
2249 /* Clear the result values, in case no answer can be found. */
2250 *initial_value = 0;
2251 *increment = 0;
2252
2253 /* The iteration variable can be either a giv or a biv. Check to see
2254 which it is, and compute the variable's initial value, and increment
2255 value if possible. */
2256
2257 /* If this is a new register, can't handle it since we don't have any
2258 reg_iv_type entry for it. */
2259 if (REGNO (iteration_var) >= max_reg_before_loop)
2260 {
2261 if (loop_dump_stream)
2262 fprintf (loop_dump_stream,
2263 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2264 return;
2265 }
2266 /* Reject iteration variables larger than the host long size, since they
2267 could result in a number of iterations greater than the range of our
2268 `unsigned long' variable loop_n_iterations. */
2269 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2270 {
2271 if (loop_dump_stream)
2272 fprintf (loop_dump_stream,
2273 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2274 return;
2275 }
2276 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2277 {
2278 if (loop_dump_stream)
2279 fprintf (loop_dump_stream,
2280 "Loop unrolling: Iteration var not an integer.\n");
2281 return;
2282 }
2283 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2284 {
2285 /* Grab initial value, only useful if it is a constant. */
2286 bl = reg_biv_class[REGNO (iteration_var)];
2287 *initial_value = bl->initial_value;
2288
2289 *increment = biv_total_increment (bl, loop_start, loop_end);
2290 }
2291 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2292 {
2293 #if 1
2294 /* ??? The code below does not work because the incorrect number of
2295 iterations is calculated when the biv is incremented after the giv
2296 is set (which is the usual case). This can probably be accounted
2297 for by biasing the initial_value by subtracting the amount of the
2298 increment that occurs between the giv set and the giv test. However,
2299 a giv as an iterator is very rare, so it does not seem worthwhile
2300 to handle this. */
2301 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2302 if (loop_dump_stream)
2303 fprintf (loop_dump_stream,
2304 "Loop unrolling: Giv iterators are not handled.\n");
2305 return;
2306 #else
2307 /* Initial value is mult_val times the biv's initial value plus
2308 add_val. Only useful if it is a constant. */
2309 v = reg_iv_info[REGNO (iteration_var)];
2310 bl = reg_biv_class[REGNO (v->src_reg)];
2311 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2312 v->add_val, v->mode);
2313
2314 /* Increment value is mult_val times the increment value of the biv. */
2315
2316 *increment = biv_total_increment (bl, loop_start, loop_end);
2317 if (*increment)
2318 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2319 v->mode);
2320 #endif
2321 }
2322 else
2323 {
2324 if (loop_dump_stream)
2325 fprintf (loop_dump_stream,
2326 "Loop unrolling: Not basic or general induction var.\n");
2327 return;
2328 }
2329 }
2330
2331 /* Calculate the approximate final value of the iteration variable
2332 which has an loop exit test with code COMPARISON_CODE and comparison value
2333 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2334 was signed or unsigned, and the direction of the comparison. This info is
2335 needed to calculate the number of loop iterations. */
2336
2337 static rtx
2338 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2339 enum rtx_code comparison_code;
2340 rtx comparison_value;
2341 int *unsigned_p;
2342 int *compare_dir;
2343 {
2344 /* Calculate the final value of the induction variable.
2345 The exact final value depends on the branch operator, and increment sign.
2346 This is only an approximate value. It will be wrong if the iteration
2347 variable is not incremented by one each time through the loop, and
2348 approx final value - start value % increment != 0. */
2349
2350 *unsigned_p = 0;
2351 switch (comparison_code)
2352 {
2353 case LEU:
2354 *unsigned_p = 1;
2355 case LE:
2356 *compare_dir = 1;
2357 return plus_constant (comparison_value, 1);
2358 case GEU:
2359 *unsigned_p = 1;
2360 case GE:
2361 *compare_dir = -1;
2362 return plus_constant (comparison_value, -1);
2363 case EQ:
2364 /* Can not calculate a final value for this case. */
2365 *compare_dir = 0;
2366 return 0;
2367 case LTU:
2368 *unsigned_p = 1;
2369 case LT:
2370 *compare_dir = 1;
2371 return comparison_value;
2372 break;
2373 case GTU:
2374 *unsigned_p = 1;
2375 case GT:
2376 *compare_dir = -1;
2377 return comparison_value;
2378 case NE:
2379 *compare_dir = 0;
2380 return comparison_value;
2381 default:
2382 abort ();
2383 }
2384 }
2385
2386 /* For each biv and giv, determine whether it can be safely split into
2387 a different variable for each unrolled copy of the loop body. If it
2388 is safe to split, then indicate that by saving some useful info
2389 in the splittable_regs array.
2390
2391 If the loop is being completely unrolled, then splittable_regs will hold
2392 the current value of the induction variable while the loop is unrolled.
2393 It must be set to the initial value of the induction variable here.
2394 Otherwise, splittable_regs will hold the difference between the current
2395 value of the induction variable and the value the induction variable had
2396 at the top of the loop. It must be set to the value 0 here.
2397
2398 Returns the total number of instructions that set registers that are
2399 splittable. */
2400
2401 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2402 constant values are unnecessary, since we can easily calculate increment
2403 values in this case even if nothing is constant. The increment value
2404 should not involve a multiply however. */
2405
2406 /* ?? Even if the biv/giv increment values aren't constant, it may still
2407 be beneficial to split the variable if the loop is only unrolled a few
2408 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2409
2410 static int
2411 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2412 unroll_number)
2413 enum unroll_types unroll_type;
2414 rtx loop_start, loop_end;
2415 rtx end_insert_before;
2416 int unroll_number;
2417 {
2418 struct iv_class *bl;
2419 struct induction *v;
2420 rtx increment, tem;
2421 rtx biv_final_value;
2422 int biv_splittable;
2423 int result = 0;
2424
2425 for (bl = loop_iv_list; bl; bl = bl->next)
2426 {
2427 /* Biv_total_increment must return a constant value,
2428 otherwise we can not calculate the split values. */
2429
2430 increment = biv_total_increment (bl, loop_start, loop_end);
2431 if (! increment || GET_CODE (increment) != CONST_INT)
2432 continue;
2433
2434 /* The loop must be unrolled completely, or else have a known number
2435 of iterations and only one exit, or else the biv must be dead
2436 outside the loop, or else the final value must be known. Otherwise,
2437 it is unsafe to split the biv since it may not have the proper
2438 value on loop exit. */
2439
2440 /* loop_number_exit_count is non-zero if the loop has an exit other than
2441 a fall through at the end. */
2442
2443 biv_splittable = 1;
2444 biv_final_value = 0;
2445 if (unroll_type != UNROLL_COMPLETELY
2446 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2447 || unroll_type == UNROLL_NAIVE)
2448 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2449 || ! bl->init_insn
2450 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2451 || (uid_luid[regno_first_uid[bl->regno]]
2452 < INSN_LUID (bl->init_insn))
2453 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2454 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2455 biv_splittable = 0;
2456
2457 /* If any of the insns setting the BIV don't do so with a simple
2458 PLUS, we don't know how to split it. */
2459 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2460 if ((tem = single_set (v->insn)) == 0
2461 || GET_CODE (SET_DEST (tem)) != REG
2462 || REGNO (SET_DEST (tem)) != bl->regno
2463 || GET_CODE (SET_SRC (tem)) != PLUS)
2464 biv_splittable = 0;
2465
2466 /* If final value is non-zero, then must emit an instruction which sets
2467 the value of the biv to the proper value. This is done after
2468 handling all of the givs, since some of them may need to use the
2469 biv's value in their initialization code. */
2470
2471 /* This biv is splittable. If completely unrolling the loop, save
2472 the biv's initial value. Otherwise, save the constant zero. */
2473
2474 if (biv_splittable == 1)
2475 {
2476 if (unroll_type == UNROLL_COMPLETELY)
2477 {
2478 /* If the initial value of the biv is itself (i.e. it is too
2479 complicated for strength_reduce to compute), or is a hard
2480 register, or it isn't invariant, then we must create a new
2481 pseudo reg to hold the initial value of the biv. */
2482
2483 if (GET_CODE (bl->initial_value) == REG
2484 && (REGNO (bl->initial_value) == bl->regno
2485 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2486 || ! invariant_p (bl->initial_value)))
2487 {
2488 rtx tem = gen_reg_rtx (bl->biv->mode);
2489
2490 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2491 loop_start);
2492
2493 if (loop_dump_stream)
2494 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2495 bl->regno, REGNO (tem));
2496
2497 splittable_regs[bl->regno] = tem;
2498 }
2499 else
2500 splittable_regs[bl->regno] = bl->initial_value;
2501 }
2502 else
2503 splittable_regs[bl->regno] = const0_rtx;
2504
2505 /* Save the number of instructions that modify the biv, so that
2506 we can treat the last one specially. */
2507
2508 splittable_regs_updates[bl->regno] = bl->biv_count;
2509 result += bl->biv_count;
2510
2511 if (loop_dump_stream)
2512 fprintf (loop_dump_stream,
2513 "Biv %d safe to split.\n", bl->regno);
2514 }
2515
2516 /* Check every giv that depends on this biv to see whether it is
2517 splittable also. Even if the biv isn't splittable, givs which
2518 depend on it may be splittable if the biv is live outside the
2519 loop, and the givs aren't. */
2520
2521 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2522 increment, unroll_number);
2523
2524 /* If final value is non-zero, then must emit an instruction which sets
2525 the value of the biv to the proper value. This is done after
2526 handling all of the givs, since some of them may need to use the
2527 biv's value in their initialization code. */
2528 if (biv_final_value)
2529 {
2530 /* If the loop has multiple exits, emit the insns before the
2531 loop to ensure that it will always be executed no matter
2532 how the loop exits. Otherwise emit the insn after the loop,
2533 since this is slightly more efficient. */
2534 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2535 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2536 biv_final_value),
2537 end_insert_before);
2538 else
2539 {
2540 /* Create a new register to hold the value of the biv, and then
2541 set the biv to its final value before the loop start. The biv
2542 is set to its final value before loop start to ensure that
2543 this insn will always be executed, no matter how the loop
2544 exits. */
2545 rtx tem = gen_reg_rtx (bl->biv->mode);
2546 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2547 loop_start);
2548 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2549 biv_final_value),
2550 loop_start);
2551
2552 if (loop_dump_stream)
2553 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2554 REGNO (bl->biv->src_reg), REGNO (tem));
2555
2556 /* Set up the mapping from the original biv register to the new
2557 register. */
2558 bl->biv->src_reg = tem;
2559 }
2560 }
2561 }
2562 return result;
2563 }
2564
2565 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2566 for the instruction that is using it. Do not make any changes to that
2567 instruction. */
2568
2569 static int
2570 verify_addresses (v, giv_inc, unroll_number)
2571 struct induction *v;
2572 rtx giv_inc;
2573 int unroll_number;
2574 {
2575 int ret = 1;
2576 rtx orig_addr = *v->location;
2577 rtx last_addr = plus_constant (v->dest_reg,
2578 INTVAL (giv_inc) * (unroll_number - 1));
2579
2580 /* First check to see if either address would fail. */
2581 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2582 || ! validate_change (v->insn, v->location, last_addr, 0))
2583 ret = 0;
2584
2585 /* Now put things back the way they were before. This will always
2586 succeed. */
2587 validate_change (v->insn, v->location, orig_addr, 0);
2588
2589 return ret;
2590 }
2591
2592 /* For every giv based on the biv BL, check to determine whether it is
2593 splittable. This is a subroutine to find_splittable_regs ().
2594
2595 Return the number of instructions that set splittable registers. */
2596
2597 static int
2598 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2599 unroll_number)
2600 struct iv_class *bl;
2601 enum unroll_types unroll_type;
2602 rtx loop_start, loop_end;
2603 rtx increment;
2604 int unroll_number;
2605 {
2606 struct induction *v, *v2;
2607 rtx final_value;
2608 rtx tem;
2609 int result = 0;
2610
2611 /* Scan the list of givs, and set the same_insn field when there are
2612 multiple identical givs in the same insn. */
2613 for (v = bl->giv; v; v = v->next_iv)
2614 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2615 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2616 && ! v2->same_insn)
2617 v2->same_insn = v;
2618
2619 for (v = bl->giv; v; v = v->next_iv)
2620 {
2621 rtx giv_inc, value;
2622
2623 /* Only split the giv if it has already been reduced, or if the loop is
2624 being completely unrolled. */
2625 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2626 continue;
2627
2628 /* The giv can be split if the insn that sets the giv is executed once
2629 and only once on every iteration of the loop. */
2630 /* An address giv can always be split. v->insn is just a use not a set,
2631 and hence it does not matter whether it is always executed. All that
2632 matters is that all the biv increments are always executed, and we
2633 won't reach here if they aren't. */
2634 if (v->giv_type != DEST_ADDR
2635 && (! v->always_computable
2636 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2637 continue;
2638
2639 /* The giv increment value must be a constant. */
2640 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2641 v->mode);
2642 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2643 continue;
2644
2645 /* The loop must be unrolled completely, or else have a known number of
2646 iterations and only one exit, or else the giv must be dead outside
2647 the loop, or else the final value of the giv must be known.
2648 Otherwise, it is not safe to split the giv since it may not have the
2649 proper value on loop exit. */
2650
2651 /* The used outside loop test will fail for DEST_ADDR givs. They are
2652 never used outside the loop anyways, so it is always safe to split a
2653 DEST_ADDR giv. */
2654
2655 final_value = 0;
2656 if (unroll_type != UNROLL_COMPLETELY
2657 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2658 || unroll_type == UNROLL_NAIVE)
2659 && v->giv_type != DEST_ADDR
2660 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2661 /* Check for the case where the pseudo is set by a shift/add
2662 sequence, in which case the first insn setting the pseudo
2663 is the first insn of the shift/add sequence. */
2664 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2665 || (regno_first_uid[REGNO (v->dest_reg)]
2666 != INSN_UID (XEXP (tem, 0)))))
2667 /* Line above always fails if INSN was moved by loop opt. */
2668 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2669 >= INSN_LUID (loop_end)))
2670 && ! (final_value = v->final_value))
2671 continue;
2672
2673 #if 0
2674 /* Currently, non-reduced/final-value givs are never split. */
2675 /* Should emit insns after the loop if possible, as the biv final value
2676 code below does. */
2677
2678 /* If the final value is non-zero, and the giv has not been reduced,
2679 then must emit an instruction to set the final value. */
2680 if (final_value && !v->new_reg)
2681 {
2682 /* Create a new register to hold the value of the giv, and then set
2683 the giv to its final value before the loop start. The giv is set
2684 to its final value before loop start to ensure that this insn
2685 will always be executed, no matter how we exit. */
2686 tem = gen_reg_rtx (v->mode);
2687 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2688 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2689 loop_start);
2690
2691 if (loop_dump_stream)
2692 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2693 REGNO (v->dest_reg), REGNO (tem));
2694
2695 v->src_reg = tem;
2696 }
2697 #endif
2698
2699 /* This giv is splittable. If completely unrolling the loop, save the
2700 giv's initial value. Otherwise, save the constant zero for it. */
2701
2702 if (unroll_type == UNROLL_COMPLETELY)
2703 {
2704 /* It is not safe to use bl->initial_value here, because it may not
2705 be invariant. It is safe to use the initial value stored in
2706 the splittable_regs array if it is set. In rare cases, it won't
2707 be set, so then we do exactly the same thing as
2708 find_splittable_regs does to get a safe value. */
2709 rtx biv_initial_value;
2710
2711 if (splittable_regs[bl->regno])
2712 biv_initial_value = splittable_regs[bl->regno];
2713 else if (GET_CODE (bl->initial_value) != REG
2714 || (REGNO (bl->initial_value) != bl->regno
2715 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2716 biv_initial_value = bl->initial_value;
2717 else
2718 {
2719 rtx tem = gen_reg_rtx (bl->biv->mode);
2720
2721 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2722 loop_start);
2723 biv_initial_value = tem;
2724 }
2725 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2726 v->add_val, v->mode);
2727 }
2728 else
2729 value = const0_rtx;
2730
2731 if (v->new_reg)
2732 {
2733 /* If a giv was combined with another giv, then we can only split
2734 this giv if the giv it was combined with was reduced. This
2735 is because the value of v->new_reg is meaningless in this
2736 case. */
2737 if (v->same && ! v->same->new_reg)
2738 {
2739 if (loop_dump_stream)
2740 fprintf (loop_dump_stream,
2741 "giv combined with unreduced giv not split.\n");
2742 continue;
2743 }
2744 /* If the giv is an address destination, it could be something other
2745 than a simple register, these have to be treated differently. */
2746 else if (v->giv_type == DEST_REG)
2747 {
2748 /* If value is not a constant, register, or register plus
2749 constant, then compute its value into a register before
2750 loop start. This prevents invalid rtx sharing, and should
2751 generate better code. We can use bl->initial_value here
2752 instead of splittable_regs[bl->regno] because this code
2753 is going before the loop start. */
2754 if (unroll_type == UNROLL_COMPLETELY
2755 && GET_CODE (value) != CONST_INT
2756 && GET_CODE (value) != REG
2757 && (GET_CODE (value) != PLUS
2758 || GET_CODE (XEXP (value, 0)) != REG
2759 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2760 {
2761 rtx tem = gen_reg_rtx (v->mode);
2762 emit_iv_add_mult (bl->initial_value, v->mult_val,
2763 v->add_val, tem, loop_start);
2764 value = tem;
2765 }
2766
2767 splittable_regs[REGNO (v->new_reg)] = value;
2768 }
2769 else
2770 {
2771 /* Splitting address givs is useful since it will often allow us
2772 to eliminate some increment insns for the base giv as
2773 unnecessary. */
2774
2775 /* If the addr giv is combined with a dest_reg giv, then all
2776 references to that dest reg will be remapped, which is NOT
2777 what we want for split addr regs. We always create a new
2778 register for the split addr giv, just to be safe. */
2779
2780 /* ??? If there are multiple address givs which have been
2781 combined with the same dest_reg giv, then we may only need
2782 one new register for them. Pulling out constants below will
2783 catch some of the common cases of this. Currently, I leave
2784 the work of simplifying multiple address givs to the
2785 following cse pass. */
2786
2787 /* As a special case, if we have multiple identical address givs
2788 within a single instruction, then we do use a single pseudo
2789 reg for both. This is necessary in case one is a match_dup
2790 of the other. */
2791
2792 v->const_adjust = 0;
2793
2794 if (v->same_insn)
2795 {
2796 v->dest_reg = v->same_insn->dest_reg;
2797 if (loop_dump_stream)
2798 fprintf (loop_dump_stream,
2799 "Sharing address givs in insn %d\n",
2800 INSN_UID (v->insn));
2801 }
2802 else if (unroll_type != UNROLL_COMPLETELY)
2803 {
2804 /* If not completely unrolling the loop, then create a new
2805 register to hold the split value of the DEST_ADDR giv.
2806 Emit insn to initialize its value before loop start. */
2807 tem = gen_reg_rtx (v->mode);
2808
2809 /* If the address giv has a constant in its new_reg value,
2810 then this constant can be pulled out and put in value,
2811 instead of being part of the initialization code. */
2812
2813 if (GET_CODE (v->new_reg) == PLUS
2814 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2815 {
2816 v->dest_reg
2817 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2818
2819 /* Only succeed if this will give valid addresses.
2820 Try to validate both the first and the last
2821 address resulting from loop unrolling, if
2822 one fails, then can't do const elim here. */
2823 if (verify_addresses (v, giv_inc, unroll_number))
2824 {
2825 /* Save the negative of the eliminated const, so
2826 that we can calculate the dest_reg's increment
2827 value later. */
2828 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2829
2830 v->new_reg = XEXP (v->new_reg, 0);
2831 if (loop_dump_stream)
2832 fprintf (loop_dump_stream,
2833 "Eliminating constant from giv %d\n",
2834 REGNO (tem));
2835 }
2836 else
2837 v->dest_reg = tem;
2838 }
2839 else
2840 v->dest_reg = tem;
2841
2842 /* If the address hasn't been checked for validity yet, do so
2843 now, and fail completely if either the first or the last
2844 unrolled copy of the address is not a valid address
2845 for the instruction that uses it. */
2846 if (v->dest_reg == tem
2847 && ! verify_addresses (v, giv_inc, unroll_number))
2848 {
2849 if (loop_dump_stream)
2850 fprintf (loop_dump_stream,
2851 "Invalid address for giv at insn %d\n",
2852 INSN_UID (v->insn));
2853 continue;
2854 }
2855
2856 /* To initialize the new register, just move the value of
2857 new_reg into it. This is not guaranteed to give a valid
2858 instruction on machines with complex addressing modes.
2859 If we can't recognize it, then delete it and emit insns
2860 to calculate the value from scratch. */
2861 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2862 copy_rtx (v->new_reg)),
2863 loop_start);
2864 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2865 {
2866 rtx sequence, ret;
2867
2868 /* We can't use bl->initial_value to compute the initial
2869 value, because the loop may have been preconditioned.
2870 We must calculate it from NEW_REG. Try using
2871 force_operand instead of emit_iv_add_mult. */
2872 delete_insn (PREV_INSN (loop_start));
2873
2874 start_sequence ();
2875 ret = force_operand (v->new_reg, tem);
2876 if (ret != tem)
2877 emit_move_insn (tem, ret);
2878 sequence = gen_sequence ();
2879 end_sequence ();
2880 emit_insn_before (sequence, loop_start);
2881
2882 if (loop_dump_stream)
2883 fprintf (loop_dump_stream,
2884 "Invalid init insn, rewritten.\n");
2885 }
2886 }
2887 else
2888 {
2889 v->dest_reg = value;
2890
2891 /* Check the resulting address for validity, and fail
2892 if the resulting address would be invalid. */
2893 if (! verify_addresses (v, giv_inc, unroll_number))
2894 {
2895 if (loop_dump_stream)
2896 fprintf (loop_dump_stream,
2897 "Invalid address for giv at insn %d\n",
2898 INSN_UID (v->insn));
2899 continue;
2900 }
2901 }
2902
2903 /* Store the value of dest_reg into the insn. This sharing
2904 will not be a problem as this insn will always be copied
2905 later. */
2906
2907 *v->location = v->dest_reg;
2908
2909 /* If this address giv is combined with a dest reg giv, then
2910 save the base giv's induction pointer so that we will be
2911 able to handle this address giv properly. The base giv
2912 itself does not have to be splittable. */
2913
2914 if (v->same && v->same->giv_type == DEST_REG)
2915 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2916
2917 if (GET_CODE (v->new_reg) == REG)
2918 {
2919 /* This giv maybe hasn't been combined with any others.
2920 Make sure that it's giv is marked as splittable here. */
2921
2922 splittable_regs[REGNO (v->new_reg)] = value;
2923
2924 /* Make it appear to depend upon itself, so that the
2925 giv will be properly split in the main loop above. */
2926 if (! v->same)
2927 {
2928 v->same = v;
2929 addr_combined_regs[REGNO (v->new_reg)] = v;
2930 }
2931 }
2932
2933 if (loop_dump_stream)
2934 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2935 }
2936 }
2937 else
2938 {
2939 #if 0
2940 /* Currently, unreduced giv's can't be split. This is not too much
2941 of a problem since unreduced giv's are not live across loop
2942 iterations anyways. When unrolling a loop completely though,
2943 it makes sense to reduce&split givs when possible, as this will
2944 result in simpler instructions, and will not require that a reg
2945 be live across loop iterations. */
2946
2947 splittable_regs[REGNO (v->dest_reg)] = value;
2948 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2949 REGNO (v->dest_reg), INSN_UID (v->insn));
2950 #else
2951 continue;
2952 #endif
2953 }
2954
2955 /* Givs are only updated once by definition. Mark it so if this is
2956 a splittable register. Don't need to do anything for address givs
2957 where this may not be a register. */
2958
2959 if (GET_CODE (v->new_reg) == REG)
2960 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2961
2962 result++;
2963
2964 if (loop_dump_stream)
2965 {
2966 int regnum;
2967
2968 if (GET_CODE (v->dest_reg) == CONST_INT)
2969 regnum = -1;
2970 else if (GET_CODE (v->dest_reg) != REG)
2971 regnum = REGNO (XEXP (v->dest_reg, 0));
2972 else
2973 regnum = REGNO (v->dest_reg);
2974 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2975 regnum, INSN_UID (v->insn));
2976 }
2977 }
2978
2979 return result;
2980 }
2981 \f
2982 /* Try to prove that the register is dead after the loop exits. Trace every
2983 loop exit looking for an insn that will always be executed, which sets
2984 the register to some value, and appears before the first use of the register
2985 is found. If successful, then return 1, otherwise return 0. */
2986
2987 /* ?? Could be made more intelligent in the handling of jumps, so that
2988 it can search past if statements and other similar structures. */
2989
2990 static int
2991 reg_dead_after_loop (reg, loop_start, loop_end)
2992 rtx reg, loop_start, loop_end;
2993 {
2994 rtx insn, label;
2995 enum rtx_code code;
2996 int jump_count = 0;
2997 int label_count = 0;
2998 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
2999
3000 /* In addition to checking all exits of this loop, we must also check
3001 all exits of inner nested loops that would exit this loop. We don't
3002 have any way to identify those, so we just give up if there are any
3003 such inner loop exits. */
3004
3005 for (label = loop_number_exit_labels[this_loop_num]; label;
3006 label = LABEL_NEXTREF (label))
3007 label_count++;
3008
3009 if (label_count != loop_number_exit_count[this_loop_num])
3010 return 0;
3011
3012 /* HACK: Must also search the loop fall through exit, create a label_ref
3013 here which points to the loop_end, and append the loop_number_exit_labels
3014 list to it. */
3015 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3016 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3017
3018 for ( ; label; label = LABEL_NEXTREF (label))
3019 {
3020 /* Succeed if find an insn which sets the biv or if reach end of
3021 function. Fail if find an insn that uses the biv, or if come to
3022 a conditional jump. */
3023
3024 insn = NEXT_INSN (XEXP (label, 0));
3025 while (insn)
3026 {
3027 code = GET_CODE (insn);
3028 if (GET_RTX_CLASS (code) == 'i')
3029 {
3030 rtx set;
3031
3032 if (reg_referenced_p (reg, PATTERN (insn)))
3033 return 0;
3034
3035 set = single_set (insn);
3036 if (set && rtx_equal_p (SET_DEST (set), reg))
3037 break;
3038 }
3039
3040 if (code == JUMP_INSN)
3041 {
3042 if (GET_CODE (PATTERN (insn)) == RETURN)
3043 break;
3044 else if (! simplejump_p (insn)
3045 /* Prevent infinite loop following infinite loops. */
3046 || jump_count++ > 20)
3047 return 0;
3048 else
3049 insn = JUMP_LABEL (insn);
3050 }
3051
3052 insn = NEXT_INSN (insn);
3053 }
3054 }
3055
3056 /* Success, the register is dead on all loop exits. */
3057 return 1;
3058 }
3059
3060 /* Try to calculate the final value of the biv, the value it will have at
3061 the end of the loop. If we can do it, return that value. */
3062
3063 rtx
3064 final_biv_value (bl, loop_start, loop_end)
3065 struct iv_class *bl;
3066 rtx loop_start, loop_end;
3067 {
3068 rtx increment, tem;
3069
3070 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3071
3072 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3073 return 0;
3074
3075 /* The final value for reversed bivs must be calculated differently than
3076 for ordinary bivs. In this case, there is already an insn after the
3077 loop which sets this biv's final value (if necessary), and there are
3078 no other loop exits, so we can return any value. */
3079 if (bl->reversed)
3080 {
3081 if (loop_dump_stream)
3082 fprintf (loop_dump_stream,
3083 "Final biv value for %d, reversed biv.\n", bl->regno);
3084
3085 return const0_rtx;
3086 }
3087
3088 /* Try to calculate the final value as initial value + (number of iterations
3089 * increment). For this to work, increment must be invariant, the only
3090 exit from the loop must be the fall through at the bottom (otherwise
3091 it may not have its final value when the loop exits), and the initial
3092 value of the biv must be invariant. */
3093
3094 if (loop_n_iterations != 0
3095 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3096 && invariant_p (bl->initial_value))
3097 {
3098 increment = biv_total_increment (bl, loop_start, loop_end);
3099
3100 if (increment && invariant_p (increment))
3101 {
3102 /* Can calculate the loop exit value, emit insns after loop
3103 end to calculate this value into a temporary register in
3104 case it is needed later. */
3105
3106 tem = gen_reg_rtx (bl->biv->mode);
3107 /* Make sure loop_end is not the last insn. */
3108 if (NEXT_INSN (loop_end) == 0)
3109 emit_note_after (NOTE_INSN_DELETED, loop_end);
3110 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3111 bl->initial_value, tem, NEXT_INSN (loop_end));
3112
3113 if (loop_dump_stream)
3114 fprintf (loop_dump_stream,
3115 "Final biv value for %d, calculated.\n", bl->regno);
3116
3117 return tem;
3118 }
3119 }
3120
3121 /* Check to see if the biv is dead at all loop exits. */
3122 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3123 {
3124 if (loop_dump_stream)
3125 fprintf (loop_dump_stream,
3126 "Final biv value for %d, biv dead after loop exit.\n",
3127 bl->regno);
3128
3129 return const0_rtx;
3130 }
3131
3132 return 0;
3133 }
3134
3135 /* Try to calculate the final value of the giv, the value it will have at
3136 the end of the loop. If we can do it, return that value. */
3137
3138 rtx
3139 final_giv_value (v, loop_start, loop_end)
3140 struct induction *v;
3141 rtx loop_start, loop_end;
3142 {
3143 struct iv_class *bl;
3144 rtx insn;
3145 rtx increment, tem;
3146 rtx insert_before, seq;
3147
3148 bl = reg_biv_class[REGNO (v->src_reg)];
3149
3150 /* The final value for givs which depend on reversed bivs must be calculated
3151 differently than for ordinary givs. In this case, there is already an
3152 insn after the loop which sets this giv's final value (if necessary),
3153 and there are no other loop exits, so we can return any value. */
3154 if (bl->reversed)
3155 {
3156 if (loop_dump_stream)
3157 fprintf (loop_dump_stream,
3158 "Final giv value for %d, depends on reversed biv\n",
3159 REGNO (v->dest_reg));
3160 return const0_rtx;
3161 }
3162
3163 /* Try to calculate the final value as a function of the biv it depends
3164 upon. The only exit from the loop must be the fall through at the bottom
3165 (otherwise it may not have its final value when the loop exits). */
3166
3167 /* ??? Can calculate the final giv value by subtracting off the
3168 extra biv increments times the giv's mult_val. The loop must have
3169 only one exit for this to work, but the loop iterations does not need
3170 to be known. */
3171
3172 if (loop_n_iterations != 0
3173 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3174 {
3175 /* ?? It is tempting to use the biv's value here since these insns will
3176 be put after the loop, and hence the biv will have its final value
3177 then. However, this fails if the biv is subsequently eliminated.
3178 Perhaps determine whether biv's are eliminable before trying to
3179 determine whether giv's are replaceable so that we can use the
3180 biv value here if it is not eliminable. */
3181
3182 increment = biv_total_increment (bl, loop_start, loop_end);
3183
3184 if (increment && invariant_p (increment))
3185 {
3186 /* Can calculate the loop exit value of its biv as
3187 (loop_n_iterations * increment) + initial_value */
3188
3189 /* The loop exit value of the giv is then
3190 (final_biv_value - extra increments) * mult_val + add_val.
3191 The extra increments are any increments to the biv which
3192 occur in the loop after the giv's value is calculated.
3193 We must search from the insn that sets the giv to the end
3194 of the loop to calculate this value. */
3195
3196 insert_before = NEXT_INSN (loop_end);
3197
3198 /* Put the final biv value in tem. */
3199 tem = gen_reg_rtx (bl->biv->mode);
3200 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3201 bl->initial_value, tem, insert_before);
3202
3203 /* Subtract off extra increments as we find them. */
3204 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3205 insn = NEXT_INSN (insn))
3206 {
3207 struct induction *biv;
3208
3209 for (biv = bl->biv; biv; biv = biv->next_iv)
3210 if (biv->insn == insn)
3211 {
3212 start_sequence ();
3213 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3214 biv->add_val, NULL_RTX, 0,
3215 OPTAB_LIB_WIDEN);
3216 seq = gen_sequence ();
3217 end_sequence ();
3218 emit_insn_before (seq, insert_before);
3219 }
3220 }
3221
3222 /* Now calculate the giv's final value. */
3223 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3224 insert_before);
3225
3226 if (loop_dump_stream)
3227 fprintf (loop_dump_stream,
3228 "Final giv value for %d, calc from biv's value.\n",
3229 REGNO (v->dest_reg));
3230
3231 return tem;
3232 }
3233 }
3234
3235 /* Replaceable giv's should never reach here. */
3236 if (v->replaceable)
3237 abort ();
3238
3239 /* Check to see if the biv is dead at all loop exits. */
3240 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3241 {
3242 if (loop_dump_stream)
3243 fprintf (loop_dump_stream,
3244 "Final giv value for %d, giv dead after loop exit.\n",
3245 REGNO (v->dest_reg));
3246
3247 return const0_rtx;
3248 }
3249
3250 return 0;
3251 }
3252
3253
3254 /* Calculate the number of loop iterations. Returns the exact number of loop
3255 iterations if it can be calculated, otherwise returns zero. */
3256
3257 unsigned HOST_WIDE_INT
3258 loop_iterations (loop_start, loop_end)
3259 rtx loop_start, loop_end;
3260 {
3261 rtx comparison, comparison_value;
3262 rtx iteration_var, initial_value, increment, final_value;
3263 enum rtx_code comparison_code;
3264 HOST_WIDE_INT i;
3265 int increment_dir;
3266 int unsigned_compare, compare_dir, final_larger;
3267 unsigned long tempu;
3268 rtx last_loop_insn;
3269
3270 /* First find the iteration variable. If the last insn is a conditional
3271 branch, and the insn before tests a register value, make that the
3272 iteration variable. */
3273
3274 loop_initial_value = 0;
3275 loop_increment = 0;
3276 loop_final_value = 0;
3277 loop_iteration_var = 0;
3278
3279 /* We used to use pren_nonnote_insn here, but that fails because it might
3280 accidentally get the branch for a contained loop if the branch for this
3281 loop was deleted. We can only trust branches immediately before the
3282 loop_end. */
3283 last_loop_insn = PREV_INSN (loop_end);
3284
3285 comparison = get_condition_for_loop (last_loop_insn);
3286 if (comparison == 0)
3287 {
3288 if (loop_dump_stream)
3289 fprintf (loop_dump_stream,
3290 "Loop unrolling: No final conditional branch found.\n");
3291 return 0;
3292 }
3293
3294 /* ??? Get_condition may switch position of induction variable and
3295 invariant register when it canonicalizes the comparison. */
3296
3297 comparison_code = GET_CODE (comparison);
3298 iteration_var = XEXP (comparison, 0);
3299 comparison_value = XEXP (comparison, 1);
3300
3301 if (GET_CODE (iteration_var) != REG)
3302 {
3303 if (loop_dump_stream)
3304 fprintf (loop_dump_stream,
3305 "Loop unrolling: Comparison not against register.\n");
3306 return 0;
3307 }
3308
3309 /* Loop iterations is always called before any new registers are created
3310 now, so this should never occur. */
3311
3312 if (REGNO (iteration_var) >= max_reg_before_loop)
3313 abort ();
3314
3315 iteration_info (iteration_var, &initial_value, &increment,
3316 loop_start, loop_end);
3317 if (initial_value == 0)
3318 /* iteration_info already printed a message. */
3319 return 0;
3320
3321 /* If the comparison value is an invariant register, then try to find
3322 its value from the insns before the start of the loop. */
3323
3324 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3325 {
3326 rtx insn, set;
3327
3328 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3329 {
3330 if (GET_CODE (insn) == CODE_LABEL)
3331 break;
3332
3333 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3334 && reg_set_p (comparison_value, insn))
3335 {
3336 /* We found the last insn before the loop that sets the register.
3337 If it sets the entire register, and has a REG_EQUAL note,
3338 then use the value of the REG_EQUAL note. */
3339 if ((set = single_set (insn))
3340 && (SET_DEST (set) == comparison_value))
3341 {
3342 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3343
3344 /* Only use the REG_EQUAL note if it is a constant.
3345 Other things, divide in particular, will cause
3346 problems later if we use them. */
3347 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3348 && CONSTANT_P (XEXP (note, 0)))
3349 comparison_value = XEXP (note, 0);
3350 }
3351 break;
3352 }
3353 }
3354 }
3355
3356 final_value = approx_final_value (comparison_code, comparison_value,
3357 &unsigned_compare, &compare_dir);
3358
3359 /* Save the calculated values describing this loop's bounds, in case
3360 precondition_loop_p will need them later. These values can not be
3361 recalculated inside precondition_loop_p because strength reduction
3362 optimizations may obscure the loop's structure. */
3363
3364 loop_iteration_var = iteration_var;
3365 loop_initial_value = initial_value;
3366 loop_increment = increment;
3367 loop_final_value = final_value;
3368 loop_comparison_code = comparison_code;
3369
3370 if (increment == 0)
3371 {
3372 if (loop_dump_stream)
3373 fprintf (loop_dump_stream,
3374 "Loop unrolling: Increment value can't be calculated.\n");
3375 return 0;
3376 }
3377 else if (GET_CODE (increment) != CONST_INT)
3378 {
3379 if (loop_dump_stream)
3380 fprintf (loop_dump_stream,
3381 "Loop unrolling: Increment value not constant.\n");
3382 return 0;
3383 }
3384 else if (GET_CODE (initial_value) != CONST_INT)
3385 {
3386 if (loop_dump_stream)
3387 fprintf (loop_dump_stream,
3388 "Loop unrolling: Initial value not constant.\n");
3389 return 0;
3390 }
3391 else if (final_value == 0)
3392 {
3393 if (loop_dump_stream)
3394 fprintf (loop_dump_stream,
3395 "Loop unrolling: EQ comparison loop.\n");
3396 return 0;
3397 }
3398 else if (GET_CODE (final_value) != CONST_INT)
3399 {
3400 if (loop_dump_stream)
3401 fprintf (loop_dump_stream,
3402 "Loop unrolling: Final value not constant.\n");
3403 return 0;
3404 }
3405
3406 /* ?? Final value and initial value do not have to be constants.
3407 Only their difference has to be constant. When the iteration variable
3408 is an array address, the final value and initial value might both
3409 be addresses with the same base but different constant offsets.
3410 Final value must be invariant for this to work.
3411
3412 To do this, need some way to find the values of registers which are
3413 invariant. */
3414
3415 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3416 if (unsigned_compare)
3417 final_larger
3418 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3419 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3420 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3421 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3422 else
3423 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3424 - (INTVAL (final_value) < INTVAL (initial_value));
3425
3426 if (INTVAL (increment) > 0)
3427 increment_dir = 1;
3428 else if (INTVAL (increment) == 0)
3429 increment_dir = 0;
3430 else
3431 increment_dir = -1;
3432
3433 /* There are 27 different cases: compare_dir = -1, 0, 1;
3434 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3435 There are 4 normal cases, 4 reverse cases (where the iteration variable
3436 will overflow before the loop exits), 4 infinite loop cases, and 15
3437 immediate exit (0 or 1 iteration depending on loop type) cases.
3438 Only try to optimize the normal cases. */
3439
3440 /* (compare_dir/final_larger/increment_dir)
3441 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3442 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3443 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3444 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3445
3446 /* ?? If the meaning of reverse loops (where the iteration variable
3447 will overflow before the loop exits) is undefined, then could
3448 eliminate all of these special checks, and just always assume
3449 the loops are normal/immediate/infinite. Note that this means
3450 the sign of increment_dir does not have to be known. Also,
3451 since it does not really hurt if immediate exit loops or infinite loops
3452 are optimized, then that case could be ignored also, and hence all
3453 loops can be optimized.
3454
3455 According to ANSI Spec, the reverse loop case result is undefined,
3456 because the action on overflow is undefined.
3457
3458 See also the special test for NE loops below. */
3459
3460 if (final_larger == increment_dir && final_larger != 0
3461 && (final_larger == compare_dir || compare_dir == 0))
3462 /* Normal case. */
3463 ;
3464 else
3465 {
3466 if (loop_dump_stream)
3467 fprintf (loop_dump_stream,
3468 "Loop unrolling: Not normal loop.\n");
3469 return 0;
3470 }
3471
3472 /* Calculate the number of iterations, final_value is only an approximation,
3473 so correct for that. Note that tempu and loop_n_iterations are
3474 unsigned, because they can be as large as 2^n - 1. */
3475
3476 i = INTVAL (increment);
3477 if (i > 0)
3478 tempu = INTVAL (final_value) - INTVAL (initial_value);
3479 else if (i < 0)
3480 {
3481 tempu = INTVAL (initial_value) - INTVAL (final_value);
3482 i = -i;
3483 }
3484 else
3485 abort ();
3486
3487 /* For NE tests, make sure that the iteration variable won't miss the
3488 final value. If tempu mod i is not zero, then the iteration variable
3489 will overflow before the loop exits, and we can not calculate the
3490 number of iterations. */
3491 if (compare_dir == 0 && (tempu % i) != 0)
3492 return 0;
3493
3494 return tempu / i + ((tempu % i) != 0);
3495 }
3496
3497 /* Replace uses of split bivs with their split pseudo register. This is
3498 for original instructions which remain after loop unrolling without
3499 copying. */
3500
3501 static rtx
3502 remap_split_bivs (x)
3503 rtx x;
3504 {
3505 register enum rtx_code code;
3506 register int i;
3507 register char *fmt;
3508
3509 if (x == 0)
3510 return x;
3511
3512 code = GET_CODE (x);
3513 switch (code)
3514 {
3515 case SCRATCH:
3516 case PC:
3517 case CC0:
3518 case CONST_INT:
3519 case CONST_DOUBLE:
3520 case CONST:
3521 case SYMBOL_REF:
3522 case LABEL_REF:
3523 return x;
3524
3525 case REG:
3526 #if 0
3527 /* If non-reduced/final-value givs were split, then this would also
3528 have to remap those givs also. */
3529 #endif
3530 if (REGNO (x) < max_reg_before_loop
3531 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3532 return reg_biv_class[REGNO (x)]->biv->src_reg;
3533 }
3534
3535 fmt = GET_RTX_FORMAT (code);
3536 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3537 {
3538 if (fmt[i] == 'e')
3539 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3540 if (fmt[i] == 'E')
3541 {
3542 register int j;
3543 for (j = 0; j < XVECLEN (x, i); j++)
3544 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3545 }
3546 }
3547 return x;
3548 }
3549
3550 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3551 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3552 return 0. COPY_START is where we can start looking for the insns
3553 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3554 insns.
3555
3556 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3557 must dominate LAST_UID.
3558
3559 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3560 may not dominate LAST_UID.
3561
3562 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3563 must dominate LAST_UID. */
3564
3565 int
3566 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3567 int regno;
3568 int first_uid;
3569 int last_uid;
3570 rtx copy_start;
3571 rtx copy_end;
3572 {
3573 int passed_jump = 0;
3574 rtx p = NEXT_INSN (copy_start);
3575
3576 while (INSN_UID (p) != first_uid)
3577 {
3578 if (GET_CODE (p) == JUMP_INSN)
3579 passed_jump= 1;
3580 /* Could not find FIRST_UID. */
3581 if (p == copy_end)
3582 return 0;
3583 p = NEXT_INSN (p);
3584 }
3585
3586 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3587 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3588 || ! dead_or_set_regno_p (p, regno))
3589 return 0;
3590
3591 /* FIRST_UID is always executed. */
3592 if (passed_jump == 0)
3593 return 1;
3594
3595 while (INSN_UID (p) != last_uid)
3596 {
3597 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3598 can not be sure that FIRST_UID dominates LAST_UID. */
3599 if (GET_CODE (p) == CODE_LABEL)
3600 return 0;
3601 p = NEXT_INSN (p);
3602 }
3603
3604 /* FIRST_UID is always executed if LAST_UID is executed. */
3605 return 1;
3606 }