alias.c (alias_invariant): New variable.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "system.h"
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159
160 /* This controls which loops are unrolled, and by how much we unroll
161 them. */
162
163 #ifndef MAX_UNROLLED_INSNS
164 #define MAX_UNROLLED_INSNS 100
165 #endif
166
167 /* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
172
173 static struct induction **addr_combined_regs;
174
175 /* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
178
179 static rtx *splittable_regs;
180
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
185
186 static int *splittable_regs_updates;
187
188 /* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
190
191 static rtx loop_iteration_var;
192 static rtx loop_initial_value;
193 static rtx loop_increment;
194 static rtx loop_final_value;
195 static enum rtx_code loop_comparison_code;
196
197 /* Forward declarations. */
198
199 static void init_reg_map PROTO((struct inline_remap *, int));
200 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213 static int verify_addresses PROTO((struct induction *, rtx, int));
214 static rtx remap_split_bivs PROTO((rtx));
215
216 /* Try to unroll one loop and split induction variables in the loop.
217
218 The loop is described by the arguments LOOP_END, INSN_COUNT, and
219 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
220 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
221 indicates whether information generated in the strength reduction pass
222 is available.
223
224 This function is intended to be called from within `strength_reduce'
225 in loop.c. */
226
227 void
228 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
229 strength_reduce_p)
230 rtx loop_end;
231 int insn_count;
232 rtx loop_start;
233 rtx end_insert_before;
234 int strength_reduce_p;
235 {
236 int i, j, temp;
237 int unroll_number = 1;
238 rtx copy_start, copy_end;
239 rtx insn, sequence, pattern, tem;
240 int max_labelno, max_insnno;
241 rtx insert_before;
242 struct inline_remap *map;
243 char *local_label;
244 char *local_regno;
245 int maxregnum;
246 int new_maxregnum;
247 rtx exit_label = 0;
248 rtx start_label;
249 struct iv_class *bl;
250 int splitting_not_safe = 0;
251 enum unroll_types unroll_type;
252 int loop_preconditioned = 0;
253 rtx safety_label;
254 /* This points to the last real insn in the loop, which should be either
255 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
256 jumps). */
257 rtx last_loop_insn;
258
259 /* Don't bother unrolling huge loops. Since the minimum factor is
260 two, loops greater than one half of MAX_UNROLLED_INSNS will never
261 be unrolled. */
262 if (insn_count > MAX_UNROLLED_INSNS / 2)
263 {
264 if (loop_dump_stream)
265 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
266 return;
267 }
268
269 /* When emitting debugger info, we can't unroll loops with unequal numbers
270 of block_beg and block_end notes, because that would unbalance the block
271 structure of the function. This can happen as a result of the
272 "if (foo) bar; else break;" optimization in jump.c. */
273 /* ??? Gcc has a general policy that -g is never supposed to change the code
274 that the compiler emits, so we must disable this optimization always,
275 even if debug info is not being output. This is rare, so this should
276 not be a significant performance problem. */
277
278 if (1 /* write_symbols != NO_DEBUG */)
279 {
280 int block_begins = 0;
281 int block_ends = 0;
282
283 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
284 {
285 if (GET_CODE (insn) == NOTE)
286 {
287 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
288 block_begins++;
289 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
290 block_ends++;
291 }
292 }
293
294 if (block_begins != block_ends)
295 {
296 if (loop_dump_stream)
297 fprintf (loop_dump_stream,
298 "Unrolling failure: Unbalanced block notes.\n");
299 return;
300 }
301 }
302
303 /* Determine type of unroll to perform. Depends on the number of iterations
304 and the size of the loop. */
305
306 /* If there is no strength reduce info, then set loop_n_iterations to zero.
307 This can happen if strength_reduce can't find any bivs in the loop.
308 A value of zero indicates that the number of iterations could not be
309 calculated. */
310
311 if (! strength_reduce_p)
312 loop_n_iterations = 0;
313
314 if (loop_dump_stream && loop_n_iterations > 0)
315 fprintf (loop_dump_stream,
316 "Loop unrolling: %d iterations.\n", loop_n_iterations);
317
318 /* Find and save a pointer to the last nonnote insn in the loop. */
319
320 last_loop_insn = prev_nonnote_insn (loop_end);
321
322 /* Calculate how many times to unroll the loop. Indicate whether or
323 not the loop is being completely unrolled. */
324
325 if (loop_n_iterations == 1)
326 {
327 /* If number of iterations is exactly 1, then eliminate the compare and
328 branch at the end of the loop since they will never be taken.
329 Then return, since no other action is needed here. */
330
331 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
332 don't do anything. */
333
334 if (GET_CODE (last_loop_insn) == BARRIER)
335 {
336 /* Delete the jump insn. This will delete the barrier also. */
337 delete_insn (PREV_INSN (last_loop_insn));
338 }
339 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
340 {
341 #ifdef HAVE_cc0
342 /* The immediately preceding insn is a compare which must be
343 deleted. */
344 delete_insn (last_loop_insn);
345 delete_insn (PREV_INSN (last_loop_insn));
346 #else
347 /* The immediately preceding insn may not be the compare, so don't
348 delete it. */
349 delete_insn (last_loop_insn);
350 #endif
351 }
352 return;
353 }
354 else if (loop_n_iterations > 0
355 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
356 {
357 unroll_number = loop_n_iterations;
358 unroll_type = UNROLL_COMPLETELY;
359 }
360 else if (loop_n_iterations > 0)
361 {
362 /* Try to factor the number of iterations. Don't bother with the
363 general case, only using 2, 3, 5, and 7 will get 75% of all
364 numbers theoretically, and almost all in practice. */
365
366 for (i = 0; i < NUM_FACTORS; i++)
367 factors[i].count = 0;
368
369 temp = loop_n_iterations;
370 for (i = NUM_FACTORS - 1; i >= 0; i--)
371 while (temp % factors[i].factor == 0)
372 {
373 factors[i].count++;
374 temp = temp / factors[i].factor;
375 }
376
377 /* Start with the larger factors first so that we generally
378 get lots of unrolling. */
379
380 unroll_number = 1;
381 temp = insn_count;
382 for (i = 3; i >= 0; i--)
383 while (factors[i].count--)
384 {
385 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
386 {
387 unroll_number *= factors[i].factor;
388 temp *= factors[i].factor;
389 }
390 else
391 break;
392 }
393
394 /* If we couldn't find any factors, then unroll as in the normal
395 case. */
396 if (unroll_number == 1)
397 {
398 if (loop_dump_stream)
399 fprintf (loop_dump_stream,
400 "Loop unrolling: No factors found.\n");
401 }
402 else
403 unroll_type = UNROLL_MODULO;
404 }
405
406
407 /* Default case, calculate number of times to unroll loop based on its
408 size. */
409 if (unroll_number == 1)
410 {
411 if (8 * insn_count < MAX_UNROLLED_INSNS)
412 unroll_number = 8;
413 else if (4 * insn_count < MAX_UNROLLED_INSNS)
414 unroll_number = 4;
415 else
416 unroll_number = 2;
417
418 unroll_type = UNROLL_NAIVE;
419 }
420
421 /* Now we know how many times to unroll the loop. */
422
423 if (loop_dump_stream)
424 fprintf (loop_dump_stream,
425 "Unrolling loop %d times.\n", unroll_number);
426
427
428 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
429 {
430 /* Loops of these types should never start with a jump down to
431 the exit condition test. For now, check for this case just to
432 be sure. UNROLL_NAIVE loops can be of this form, this case is
433 handled below. */
434 insn = loop_start;
435 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
436 insn = NEXT_INSN (insn);
437 if (GET_CODE (insn) == JUMP_INSN)
438 abort ();
439 }
440
441 if (unroll_type == UNROLL_COMPLETELY)
442 {
443 /* Completely unrolling the loop: Delete the compare and branch at
444 the end (the last two instructions). This delete must done at the
445 very end of loop unrolling, to avoid problems with calls to
446 back_branch_in_range_p, which is called by find_splittable_regs.
447 All increments of splittable bivs/givs are changed to load constant
448 instructions. */
449
450 copy_start = loop_start;
451
452 /* Set insert_before to the instruction immediately after the JUMP_INSN
453 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
454 the loop will be correctly handled by copy_loop_body. */
455 insert_before = NEXT_INSN (last_loop_insn);
456
457 /* Set copy_end to the insn before the jump at the end of the loop. */
458 if (GET_CODE (last_loop_insn) == BARRIER)
459 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
460 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
461 {
462 #ifdef HAVE_cc0
463 /* The instruction immediately before the JUMP_INSN is a compare
464 instruction which we do not want to copy. */
465 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
466 #else
467 /* The instruction immediately before the JUMP_INSN may not be the
468 compare, so we must copy it. */
469 copy_end = PREV_INSN (last_loop_insn);
470 #endif
471 }
472 else
473 {
474 /* We currently can't unroll a loop if it doesn't end with a
475 JUMP_INSN. There would need to be a mechanism that recognizes
476 this case, and then inserts a jump after each loop body, which
477 jumps to after the last loop body. */
478 if (loop_dump_stream)
479 fprintf (loop_dump_stream,
480 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
481 return;
482 }
483 }
484 else if (unroll_type == UNROLL_MODULO)
485 {
486 /* Partially unrolling the loop: The compare and branch at the end
487 (the last two instructions) must remain. Don't copy the compare
488 and branch instructions at the end of the loop. Insert the unrolled
489 code immediately before the compare/branch at the end so that the
490 code will fall through to them as before. */
491
492 copy_start = loop_start;
493
494 /* Set insert_before to the jump insn at the end of the loop.
495 Set copy_end to before the jump insn at the end of the loop. */
496 if (GET_CODE (last_loop_insn) == BARRIER)
497 {
498 insert_before = PREV_INSN (last_loop_insn);
499 copy_end = PREV_INSN (insert_before);
500 }
501 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
502 {
503 #ifdef HAVE_cc0
504 /* The instruction immediately before the JUMP_INSN is a compare
505 instruction which we do not want to copy or delete. */
506 insert_before = PREV_INSN (last_loop_insn);
507 copy_end = PREV_INSN (insert_before);
508 #else
509 /* The instruction immediately before the JUMP_INSN may not be the
510 compare, so we must copy it. */
511 insert_before = last_loop_insn;
512 copy_end = PREV_INSN (last_loop_insn);
513 #endif
514 }
515 else
516 {
517 /* We currently can't unroll a loop if it doesn't end with a
518 JUMP_INSN. There would need to be a mechanism that recognizes
519 this case, and then inserts a jump after each loop body, which
520 jumps to after the last loop body. */
521 if (loop_dump_stream)
522 fprintf (loop_dump_stream,
523 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
524 return;
525 }
526 }
527 else
528 {
529 /* Normal case: Must copy the compare and branch instructions at the
530 end of the loop. */
531
532 if (GET_CODE (last_loop_insn) == BARRIER)
533 {
534 /* Loop ends with an unconditional jump and a barrier.
535 Handle this like above, don't copy jump and barrier.
536 This is not strictly necessary, but doing so prevents generating
537 unconditional jumps to an immediately following label.
538
539 This will be corrected below if the target of this jump is
540 not the start_label. */
541
542 insert_before = PREV_INSN (last_loop_insn);
543 copy_end = PREV_INSN (insert_before);
544 }
545 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
546 {
547 /* Set insert_before to immediately after the JUMP_INSN, so that
548 NOTEs at the end of the loop will be correctly handled by
549 copy_loop_body. */
550 insert_before = NEXT_INSN (last_loop_insn);
551 copy_end = last_loop_insn;
552 }
553 else
554 {
555 /* We currently can't unroll a loop if it doesn't end with a
556 JUMP_INSN. There would need to be a mechanism that recognizes
557 this case, and then inserts a jump after each loop body, which
558 jumps to after the last loop body. */
559 if (loop_dump_stream)
560 fprintf (loop_dump_stream,
561 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
562 return;
563 }
564
565 /* If copying exit test branches because they can not be eliminated,
566 then must convert the fall through case of the branch to a jump past
567 the end of the loop. Create a label to emit after the loop and save
568 it for later use. Do not use the label after the loop, if any, since
569 it might be used by insns outside the loop, or there might be insns
570 added before it later by final_[bg]iv_value which must be after
571 the real exit label. */
572 exit_label = gen_label_rtx ();
573
574 insn = loop_start;
575 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
576 insn = NEXT_INSN (insn);
577
578 if (GET_CODE (insn) == JUMP_INSN)
579 {
580 /* The loop starts with a jump down to the exit condition test.
581 Start copying the loop after the barrier following this
582 jump insn. */
583 copy_start = NEXT_INSN (insn);
584
585 /* Splitting induction variables doesn't work when the loop is
586 entered via a jump to the bottom, because then we end up doing
587 a comparison against a new register for a split variable, but
588 we did not execute the set insn for the new register because
589 it was skipped over. */
590 splitting_not_safe = 1;
591 if (loop_dump_stream)
592 fprintf (loop_dump_stream,
593 "Splitting not safe, because loop not entered at top.\n");
594 }
595 else
596 copy_start = loop_start;
597 }
598
599 /* This should always be the first label in the loop. */
600 start_label = NEXT_INSN (copy_start);
601 /* There may be a line number note and/or a loop continue note here. */
602 while (GET_CODE (start_label) == NOTE)
603 start_label = NEXT_INSN (start_label);
604 if (GET_CODE (start_label) != CODE_LABEL)
605 {
606 /* This can happen as a result of jump threading. If the first insns in
607 the loop test the same condition as the loop's backward jump, or the
608 opposite condition, then the backward jump will be modified to point
609 to elsewhere, and the loop's start label is deleted.
610
611 This case currently can not be handled by the loop unrolling code. */
612
613 if (loop_dump_stream)
614 fprintf (loop_dump_stream,
615 "Unrolling failure: unknown insns between BEG note and loop label.\n");
616 return;
617 }
618 if (LABEL_NAME (start_label))
619 {
620 /* The jump optimization pass must have combined the original start label
621 with a named label for a goto. We can't unroll this case because
622 jumps which go to the named label must be handled differently than
623 jumps to the loop start, and it is impossible to differentiate them
624 in this case. */
625 if (loop_dump_stream)
626 fprintf (loop_dump_stream,
627 "Unrolling failure: loop start label is gone\n");
628 return;
629 }
630
631 if (unroll_type == UNROLL_NAIVE
632 && GET_CODE (last_loop_insn) == BARRIER
633 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
634 {
635 /* In this case, we must copy the jump and barrier, because they will
636 not be converted to jumps to an immediately following label. */
637
638 insert_before = NEXT_INSN (last_loop_insn);
639 copy_end = last_loop_insn;
640 }
641
642 if (unroll_type == UNROLL_NAIVE
643 && GET_CODE (last_loop_insn) == JUMP_INSN
644 && start_label != JUMP_LABEL (last_loop_insn))
645 {
646 /* ??? The loop ends with a conditional branch that does not branch back
647 to the loop start label. In this case, we must emit an unconditional
648 branch to the loop exit after emitting the final branch.
649 copy_loop_body does not have support for this currently, so we
650 give up. It doesn't seem worthwhile to unroll anyways since
651 unrolling would increase the number of branch instructions
652 executed. */
653 if (loop_dump_stream)
654 fprintf (loop_dump_stream,
655 "Unrolling failure: final conditional branch not to loop start\n");
656 return;
657 }
658
659 /* Allocate a translation table for the labels and insn numbers.
660 They will be filled in as we copy the insns in the loop. */
661
662 max_labelno = max_label_num ();
663 max_insnno = get_max_uid ();
664
665 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
666
667 map->integrating = 0;
668
669 /* Allocate the label map. */
670
671 if (max_labelno > 0)
672 {
673 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
674
675 local_label = (char *) alloca (max_labelno);
676 bzero (local_label, max_labelno);
677 }
678 else
679 map->label_map = 0;
680
681 /* Search the loop and mark all local labels, i.e. the ones which have to
682 be distinct labels when copied. For all labels which might be
683 non-local, set their label_map entries to point to themselves.
684 If they happen to be local their label_map entries will be overwritten
685 before the loop body is copied. The label_map entries for local labels
686 will be set to a different value each time the loop body is copied. */
687
688 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
689 {
690 if (GET_CODE (insn) == CODE_LABEL)
691 local_label[CODE_LABEL_NUMBER (insn)] = 1;
692 else if (GET_CODE (insn) == JUMP_INSN)
693 {
694 if (JUMP_LABEL (insn))
695 set_label_in_map (map,
696 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
697 JUMP_LABEL (insn));
698 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
699 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
700 {
701 rtx pat = PATTERN (insn);
702 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
703 int len = XVECLEN (pat, diff_vec_p);
704 rtx label;
705
706 for (i = 0; i < len; i++)
707 {
708 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
709 set_label_in_map (map,
710 CODE_LABEL_NUMBER (label),
711 label);
712 }
713 }
714 }
715 }
716
717 /* Allocate space for the insn map. */
718
719 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
720
721 /* Set this to zero, to indicate that we are doing loop unrolling,
722 not function inlining. */
723 map->inline_target = 0;
724
725 /* The register and constant maps depend on the number of registers
726 present, so the final maps can't be created until after
727 find_splittable_regs is called. However, they are needed for
728 preconditioning, so we create temporary maps when preconditioning
729 is performed. */
730
731 /* The preconditioning code may allocate two new pseudo registers. */
732 maxregnum = max_reg_num ();
733
734 /* Allocate and zero out the splittable_regs and addr_combined_regs
735 arrays. These must be zeroed here because they will be used if
736 loop preconditioning is performed, and must be zero for that case.
737
738 It is safe to do this here, since the extra registers created by the
739 preconditioning code and find_splittable_regs will never be used
740 to access the splittable_regs[] and addr_combined_regs[] arrays. */
741
742 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
743 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
744 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
745 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
746 addr_combined_regs
747 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
748 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
749 /* We must limit it to max_reg_before_loop, because only these pseudo
750 registers have valid regno_first_uid info. Any register created after
751 that is unlikely to be local to the loop anyways. */
752 local_regno = (char *) alloca (max_reg_before_loop);
753 bzero (local_regno, max_reg_before_loop);
754
755 /* Mark all local registers, i.e. the ones which are referenced only
756 inside the loop. */
757 if (INSN_UID (copy_end) < max_uid_for_loop)
758 {
759 int copy_start_luid = INSN_LUID (copy_start);
760 int copy_end_luid = INSN_LUID (copy_end);
761
762 /* If a register is used in the jump insn, we must not duplicate it
763 since it will also be used outside the loop. */
764 if (GET_CODE (copy_end) == JUMP_INSN)
765 copy_end_luid--;
766 /* If copy_start points to the NOTE that starts the loop, then we must
767 use the next luid, because invariant pseudo-regs moved out of the loop
768 have their lifetimes modified to start here, but they are not safe
769 to duplicate. */
770 if (copy_start == loop_start)
771 copy_start_luid++;
772
773 /* If a pseudo's lifetime is entirely contained within this loop, then we
774 can use a different pseudo in each unrolled copy of the loop. This
775 results in better code. */
776 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
777 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
778 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
779 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
780 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
781 {
782 /* However, we must also check for loop-carried dependencies.
783 If the value the pseudo has at the end of iteration X is
784 used by iteration X+1, then we can not use a different pseudo
785 for each unrolled copy of the loop. */
786 /* A pseudo is safe if regno_first_uid is a set, and this
787 set dominates all instructions from regno_first_uid to
788 regno_last_uid. */
789 /* ??? This check is simplistic. We would get better code if
790 this check was more sophisticated. */
791 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
792 copy_start, copy_end))
793 local_regno[j] = 1;
794
795 if (loop_dump_stream)
796 {
797 if (local_regno[j])
798 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
799 else
800 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
801 j);
802 }
803 }
804 }
805
806 /* If this loop requires exit tests when unrolled, check to see if we
807 can precondition the loop so as to make the exit tests unnecessary.
808 Just like variable splitting, this is not safe if the loop is entered
809 via a jump to the bottom. Also, can not do this if no strength
810 reduce info, because precondition_loop_p uses this info. */
811
812 /* Must copy the loop body for preconditioning before the following
813 find_splittable_regs call since that will emit insns which need to
814 be after the preconditioned loop copies, but immediately before the
815 unrolled loop copies. */
816
817 /* Also, it is not safe to split induction variables for the preconditioned
818 copies of the loop body. If we split induction variables, then the code
819 assumes that each induction variable can be represented as a function
820 of its initial value and the loop iteration number. This is not true
821 in this case, because the last preconditioned copy of the loop body
822 could be any iteration from the first up to the `unroll_number-1'th,
823 depending on the initial value of the iteration variable. Therefore
824 we can not split induction variables here, because we can not calculate
825 their value. Hence, this code must occur before find_splittable_regs
826 is called. */
827
828 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
829 {
830 rtx initial_value, final_value, increment;
831
832 if (precondition_loop_p (&initial_value, &final_value, &increment,
833 loop_start, loop_end))
834 {
835 register rtx diff ;
836 enum machine_mode mode;
837 rtx *labels;
838 int abs_inc, neg_inc;
839
840 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
841
842 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
843 map->const_age_map = (unsigned *) alloca (maxregnum
844 * sizeof (unsigned));
845 map->const_equiv_map_size = maxregnum;
846 global_const_equiv_map = map->const_equiv_map;
847 global_const_equiv_map_size = maxregnum;
848
849 init_reg_map (map, maxregnum);
850
851 /* Limit loop unrolling to 4, since this will make 7 copies of
852 the loop body. */
853 if (unroll_number > 4)
854 unroll_number = 4;
855
856 /* Save the absolute value of the increment, and also whether or
857 not it is negative. */
858 neg_inc = 0;
859 abs_inc = INTVAL (increment);
860 if (abs_inc < 0)
861 {
862 abs_inc = - abs_inc;
863 neg_inc = 1;
864 }
865
866 start_sequence ();
867
868 /* Decide what mode to do these calculations in. Choose the larger
869 of final_value's mode and initial_value's mode, or a full-word if
870 both are constants. */
871 mode = GET_MODE (final_value);
872 if (mode == VOIDmode)
873 {
874 mode = GET_MODE (initial_value);
875 if (mode == VOIDmode)
876 mode = word_mode;
877 }
878 else if (mode != GET_MODE (initial_value)
879 && (GET_MODE_SIZE (mode)
880 < GET_MODE_SIZE (GET_MODE (initial_value))))
881 mode = GET_MODE (initial_value);
882
883 /* Calculate the difference between the final and initial values.
884 Final value may be a (plus (reg x) (const_int 1)) rtx.
885 Let the following cse pass simplify this if initial value is
886 a constant.
887
888 We must copy the final and initial values here to avoid
889 improperly shared rtl. */
890
891 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
892 copy_rtx (initial_value), NULL_RTX, 0,
893 OPTAB_LIB_WIDEN);
894
895 /* Now calculate (diff % (unroll * abs (increment))) by using an
896 and instruction. */
897 diff = expand_binop (GET_MODE (diff), and_optab, diff,
898 GEN_INT (unroll_number * abs_inc - 1),
899 NULL_RTX, 0, OPTAB_LIB_WIDEN);
900
901 /* Now emit a sequence of branches to jump to the proper precond
902 loop entry point. */
903
904 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
905 for (i = 0; i < unroll_number; i++)
906 labels[i] = gen_label_rtx ();
907
908 /* Check for the case where the initial value is greater than or
909 equal to the final value. In that case, we want to execute
910 exactly one loop iteration. The code below will fail for this
911 case. This check does not apply if the loop has a NE
912 comparison at the end. */
913
914 if (loop_comparison_code != NE)
915 {
916 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
917 NULL_RTX, mode, 0, 0);
918 if (neg_inc)
919 emit_jump_insn (gen_ble (labels[1]));
920 else
921 emit_jump_insn (gen_bge (labels[1]));
922 JUMP_LABEL (get_last_insn ()) = labels[1];
923 LABEL_NUSES (labels[1])++;
924 }
925
926 /* Assuming the unroll_number is 4, and the increment is 2, then
927 for a negative increment: for a positive increment:
928 diff = 0,1 precond 0 diff = 0,7 precond 0
929 diff = 2,3 precond 3 diff = 1,2 precond 1
930 diff = 4,5 precond 2 diff = 3,4 precond 2
931 diff = 6,7 precond 1 diff = 5,6 precond 3 */
932
933 /* We only need to emit (unroll_number - 1) branches here, the
934 last case just falls through to the following code. */
935
936 /* ??? This would give better code if we emitted a tree of branches
937 instead of the current linear list of branches. */
938
939 for (i = 0; i < unroll_number - 1; i++)
940 {
941 int cmp_const;
942 enum rtx_code cmp_code;
943
944 /* For negative increments, must invert the constant compared
945 against, except when comparing against zero. */
946 if (i == 0)
947 {
948 cmp_const = 0;
949 cmp_code = EQ;
950 }
951 else if (neg_inc)
952 {
953 cmp_const = unroll_number - i;
954 cmp_code = GE;
955 }
956 else
957 {
958 cmp_const = i;
959 cmp_code = LE;
960 }
961
962 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
963 cmp_code, NULL_RTX, mode, 0, 0);
964
965 if (i == 0)
966 emit_jump_insn (gen_beq (labels[i]));
967 else if (neg_inc)
968 emit_jump_insn (gen_bge (labels[i]));
969 else
970 emit_jump_insn (gen_ble (labels[i]));
971 JUMP_LABEL (get_last_insn ()) = labels[i];
972 LABEL_NUSES (labels[i])++;
973 }
974
975 /* If the increment is greater than one, then we need another branch,
976 to handle other cases equivalent to 0. */
977
978 /* ??? This should be merged into the code above somehow to help
979 simplify the code here, and reduce the number of branches emitted.
980 For the negative increment case, the branch here could easily
981 be merged with the `0' case branch above. For the positive
982 increment case, it is not clear how this can be simplified. */
983
984 if (abs_inc != 1)
985 {
986 int cmp_const;
987 enum rtx_code cmp_code;
988
989 if (neg_inc)
990 {
991 cmp_const = abs_inc - 1;
992 cmp_code = LE;
993 }
994 else
995 {
996 cmp_const = abs_inc * (unroll_number - 1) + 1;
997 cmp_code = GE;
998 }
999
1000 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1001 mode, 0, 0);
1002
1003 if (neg_inc)
1004 emit_jump_insn (gen_ble (labels[0]));
1005 else
1006 emit_jump_insn (gen_bge (labels[0]));
1007 JUMP_LABEL (get_last_insn ()) = labels[0];
1008 LABEL_NUSES (labels[0])++;
1009 }
1010
1011 sequence = gen_sequence ();
1012 end_sequence ();
1013 emit_insn_before (sequence, loop_start);
1014
1015 /* Only the last copy of the loop body here needs the exit
1016 test, so set copy_end to exclude the compare/branch here,
1017 and then reset it inside the loop when get to the last
1018 copy. */
1019
1020 if (GET_CODE (last_loop_insn) == BARRIER)
1021 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1022 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1023 {
1024 #ifdef HAVE_cc0
1025 /* The immediately preceding insn is a compare which we do not
1026 want to copy. */
1027 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1028 #else
1029 /* The immediately preceding insn may not be a compare, so we
1030 must copy it. */
1031 copy_end = PREV_INSN (last_loop_insn);
1032 #endif
1033 }
1034 else
1035 abort ();
1036
1037 for (i = 1; i < unroll_number; i++)
1038 {
1039 emit_label_after (labels[unroll_number - i],
1040 PREV_INSN (loop_start));
1041
1042 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1043 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1044 bzero ((char *) map->const_age_map,
1045 maxregnum * sizeof (unsigned));
1046 map->const_age = 0;
1047
1048 for (j = 0; j < max_labelno; j++)
1049 if (local_label[j])
1050 set_label_in_map (map, j, gen_label_rtx ());
1051
1052 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1053 if (local_regno[j])
1054 {
1055 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1056 record_base_value (REGNO (map->reg_map[j]),
1057 regno_reg_rtx[j], 0);
1058 }
1059 /* The last copy needs the compare/branch insns at the end,
1060 so reset copy_end here if the loop ends with a conditional
1061 branch. */
1062
1063 if (i == unroll_number - 1)
1064 {
1065 if (GET_CODE (last_loop_insn) == BARRIER)
1066 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1067 else
1068 copy_end = last_loop_insn;
1069 }
1070
1071 /* None of the copies are the `last_iteration', so just
1072 pass zero for that parameter. */
1073 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1074 unroll_type, start_label, loop_end,
1075 loop_start, copy_end);
1076 }
1077 emit_label_after (labels[0], PREV_INSN (loop_start));
1078
1079 if (GET_CODE (last_loop_insn) == BARRIER)
1080 {
1081 insert_before = PREV_INSN (last_loop_insn);
1082 copy_end = PREV_INSN (insert_before);
1083 }
1084 else
1085 {
1086 #ifdef HAVE_cc0
1087 /* The immediately preceding insn is a compare which we do not
1088 want to copy. */
1089 insert_before = PREV_INSN (last_loop_insn);
1090 copy_end = PREV_INSN (insert_before);
1091 #else
1092 /* The immediately preceding insn may not be a compare, so we
1093 must copy it. */
1094 insert_before = last_loop_insn;
1095 copy_end = PREV_INSN (last_loop_insn);
1096 #endif
1097 }
1098
1099 /* Set unroll type to MODULO now. */
1100 unroll_type = UNROLL_MODULO;
1101 loop_preconditioned = 1;
1102
1103 #ifdef HAIFA
1104 /* Fix the initial value for the loop as needed. */
1105 if (loop_n_iterations <= 0)
1106 loop_start_value [uid_loop_num [INSN_UID (loop_start)]]
1107 = initial_value;
1108 #endif
1109 }
1110 }
1111
1112 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1113 the loop unless all loops are being unrolled. */
1114 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1115 {
1116 if (loop_dump_stream)
1117 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1118 return;
1119 }
1120
1121 /* At this point, we are guaranteed to unroll the loop. */
1122
1123 /* Keep track of the unroll factor for each loop. */
1124 if (unroll_type == UNROLL_COMPLETELY)
1125 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = -1;
1126 else
1127 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = unroll_number;
1128
1129
1130 /* For each biv and giv, determine whether it can be safely split into
1131 a different variable for each unrolled copy of the loop body.
1132 We precalculate and save this info here, since computing it is
1133 expensive.
1134
1135 Do this before deleting any instructions from the loop, so that
1136 back_branch_in_range_p will work correctly. */
1137
1138 if (splitting_not_safe)
1139 temp = 0;
1140 else
1141 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1142 end_insert_before, unroll_number);
1143
1144 /* find_splittable_regs may have created some new registers, so must
1145 reallocate the reg_map with the new larger size, and must realloc
1146 the constant maps also. */
1147
1148 maxregnum = max_reg_num ();
1149 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1150
1151 init_reg_map (map, maxregnum);
1152
1153 /* Space is needed in some of the map for new registers, so new_maxregnum
1154 is an (over)estimate of how many registers will exist at the end. */
1155 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1156
1157 /* Must realloc space for the constant maps, because the number of registers
1158 may have changed. */
1159
1160 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1161 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1162
1163 map->const_equiv_map_size = new_maxregnum;
1164 global_const_equiv_map = map->const_equiv_map;
1165 global_const_equiv_map_size = new_maxregnum;
1166
1167 /* Search the list of bivs and givs to find ones which need to be remapped
1168 when split, and set their reg_map entry appropriately. */
1169
1170 for (bl = loop_iv_list; bl; bl = bl->next)
1171 {
1172 if (REGNO (bl->biv->src_reg) != bl->regno)
1173 map->reg_map[bl->regno] = bl->biv->src_reg;
1174 #if 0
1175 /* Currently, non-reduced/final-value givs are never split. */
1176 for (v = bl->giv; v; v = v->next_iv)
1177 if (REGNO (v->src_reg) != bl->regno)
1178 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1179 #endif
1180 }
1181
1182 /* Use our current register alignment and pointer flags. */
1183 map->regno_pointer_flag = regno_pointer_flag;
1184 map->regno_pointer_align = regno_pointer_align;
1185
1186 /* If the loop is being partially unrolled, and the iteration variables
1187 are being split, and are being renamed for the split, then must fix up
1188 the compare/jump instruction at the end of the loop to refer to the new
1189 registers. This compare isn't copied, so the registers used in it
1190 will never be replaced if it isn't done here. */
1191
1192 if (unroll_type == UNROLL_MODULO)
1193 {
1194 insn = NEXT_INSN (copy_end);
1195 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1196 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1197 }
1198
1199 /* For unroll_number - 1 times, make a copy of each instruction
1200 between copy_start and copy_end, and insert these new instructions
1201 before the end of the loop. */
1202
1203 for (i = 0; i < unroll_number; i++)
1204 {
1205 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1206 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1207 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1208 map->const_age = 0;
1209
1210 for (j = 0; j < max_labelno; j++)
1211 if (local_label[j])
1212 set_label_in_map (map, j, gen_label_rtx ());
1213
1214 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1215 if (local_regno[j])
1216 {
1217 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1218 record_base_value (REGNO (map->reg_map[j]),
1219 regno_reg_rtx[j], 0);
1220 }
1221
1222 /* If loop starts with a branch to the test, then fix it so that
1223 it points to the test of the first unrolled copy of the loop. */
1224 if (i == 0 && loop_start != copy_start)
1225 {
1226 insn = PREV_INSN (copy_start);
1227 pattern = PATTERN (insn);
1228
1229 tem = get_label_from_map (map,
1230 CODE_LABEL_NUMBER
1231 (XEXP (SET_SRC (pattern), 0)));
1232 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1233
1234 /* Set the jump label so that it can be used by later loop unrolling
1235 passes. */
1236 JUMP_LABEL (insn) = tem;
1237 LABEL_NUSES (tem)++;
1238 }
1239
1240 copy_loop_body (copy_start, copy_end, map, exit_label,
1241 i == unroll_number - 1, unroll_type, start_label,
1242 loop_end, insert_before, insert_before);
1243 }
1244
1245 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1246 insn to be deleted. This prevents any runaway delete_insn call from
1247 more insns that it should, as it always stops at a CODE_LABEL. */
1248
1249 /* Delete the compare and branch at the end of the loop if completely
1250 unrolling the loop. Deleting the backward branch at the end also
1251 deletes the code label at the start of the loop. This is done at
1252 the very end to avoid problems with back_branch_in_range_p. */
1253
1254 if (unroll_type == UNROLL_COMPLETELY)
1255 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1256 else
1257 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1258
1259 /* Delete all of the original loop instructions. Don't delete the
1260 LOOP_BEG note, or the first code label in the loop. */
1261
1262 insn = NEXT_INSN (copy_start);
1263 while (insn != safety_label)
1264 {
1265 if (insn != start_label)
1266 insn = delete_insn (insn);
1267 else
1268 insn = NEXT_INSN (insn);
1269 }
1270
1271 /* Can now delete the 'safety' label emitted to protect us from runaway
1272 delete_insn calls. */
1273 if (INSN_DELETED_P (safety_label))
1274 abort ();
1275 delete_insn (safety_label);
1276
1277 /* If exit_label exists, emit it after the loop. Doing the emit here
1278 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1279 This is needed so that mostly_true_jump in reorg.c will treat jumps
1280 to this loop end label correctly, i.e. predict that they are usually
1281 not taken. */
1282 if (exit_label)
1283 emit_label_after (exit_label, loop_end);
1284 }
1285 \f
1286 /* Return true if the loop can be safely, and profitably, preconditioned
1287 so that the unrolled copies of the loop body don't need exit tests.
1288
1289 This only works if final_value, initial_value and increment can be
1290 determined, and if increment is a constant power of 2.
1291 If increment is not a power of 2, then the preconditioning modulo
1292 operation would require a real modulo instead of a boolean AND, and this
1293 is not considered `profitable'. */
1294
1295 /* ??? If the loop is known to be executed very many times, or the machine
1296 has a very cheap divide instruction, then preconditioning is a win even
1297 when the increment is not a power of 2. Use RTX_COST to compute
1298 whether divide is cheap. */
1299
1300 static int
1301 precondition_loop_p (initial_value, final_value, increment, loop_start,
1302 loop_end)
1303 rtx *initial_value, *final_value, *increment;
1304 rtx loop_start, loop_end;
1305 {
1306
1307 if (loop_n_iterations > 0)
1308 {
1309 *initial_value = const0_rtx;
1310 *increment = const1_rtx;
1311 *final_value = GEN_INT (loop_n_iterations);
1312
1313 if (loop_dump_stream)
1314 fprintf (loop_dump_stream,
1315 "Preconditioning: Success, number of iterations known, %d.\n",
1316 loop_n_iterations);
1317 return 1;
1318 }
1319
1320 if (loop_initial_value == 0)
1321 {
1322 if (loop_dump_stream)
1323 fprintf (loop_dump_stream,
1324 "Preconditioning: Could not find initial value.\n");
1325 return 0;
1326 }
1327 else if (loop_increment == 0)
1328 {
1329 if (loop_dump_stream)
1330 fprintf (loop_dump_stream,
1331 "Preconditioning: Could not find increment value.\n");
1332 return 0;
1333 }
1334 else if (GET_CODE (loop_increment) != CONST_INT)
1335 {
1336 if (loop_dump_stream)
1337 fprintf (loop_dump_stream,
1338 "Preconditioning: Increment not a constant.\n");
1339 return 0;
1340 }
1341 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1342 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1343 {
1344 if (loop_dump_stream)
1345 fprintf (loop_dump_stream,
1346 "Preconditioning: Increment not a constant power of 2.\n");
1347 return 0;
1348 }
1349
1350 /* Unsigned_compare and compare_dir can be ignored here, since they do
1351 not matter for preconditioning. */
1352
1353 if (loop_final_value == 0)
1354 {
1355 if (loop_dump_stream)
1356 fprintf (loop_dump_stream,
1357 "Preconditioning: EQ comparison loop.\n");
1358 return 0;
1359 }
1360
1361 /* Must ensure that final_value is invariant, so call invariant_p to
1362 check. Before doing so, must check regno against max_reg_before_loop
1363 to make sure that the register is in the range covered by invariant_p.
1364 If it isn't, then it is most likely a biv/giv which by definition are
1365 not invariant. */
1366 if ((GET_CODE (loop_final_value) == REG
1367 && REGNO (loop_final_value) >= max_reg_before_loop)
1368 || (GET_CODE (loop_final_value) == PLUS
1369 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1370 || ! invariant_p (loop_final_value))
1371 {
1372 if (loop_dump_stream)
1373 fprintf (loop_dump_stream,
1374 "Preconditioning: Final value not invariant.\n");
1375 return 0;
1376 }
1377
1378 /* Fail for floating point values, since the caller of this function
1379 does not have code to deal with them. */
1380 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1381 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1382 {
1383 if (loop_dump_stream)
1384 fprintf (loop_dump_stream,
1385 "Preconditioning: Floating point final or initial value.\n");
1386 return 0;
1387 }
1388
1389 /* Now set initial_value to be the iteration_var, since that may be a
1390 simpler expression, and is guaranteed to be correct if all of the
1391 above tests succeed.
1392
1393 We can not use the initial_value as calculated, because it will be
1394 one too small for loops of the form "while (i-- > 0)". We can not
1395 emit code before the loop_skip_over insns to fix this problem as this
1396 will then give a number one too large for loops of the form
1397 "while (--i > 0)".
1398
1399 Note that all loops that reach here are entered at the top, because
1400 this function is not called if the loop starts with a jump. */
1401
1402 /* Fail if loop_iteration_var is not live before loop_start, since we need
1403 to test its value in the preconditioning code. */
1404
1405 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1406 > INSN_LUID (loop_start))
1407 {
1408 if (loop_dump_stream)
1409 fprintf (loop_dump_stream,
1410 "Preconditioning: Iteration var not live before loop start.\n");
1411 return 0;
1412 }
1413
1414 *initial_value = loop_iteration_var;
1415 *increment = loop_increment;
1416 *final_value = loop_final_value;
1417
1418 /* Success! */
1419 if (loop_dump_stream)
1420 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1421 return 1;
1422 }
1423
1424
1425 /* All pseudo-registers must be mapped to themselves. Two hard registers
1426 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1427 REGNUM, to avoid function-inlining specific conversions of these
1428 registers. All other hard regs can not be mapped because they may be
1429 used with different
1430 modes. */
1431
1432 static void
1433 init_reg_map (map, maxregnum)
1434 struct inline_remap *map;
1435 int maxregnum;
1436 {
1437 int i;
1438
1439 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1440 map->reg_map[i] = regno_reg_rtx[i];
1441 /* Just clear the rest of the entries. */
1442 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1443 map->reg_map[i] = 0;
1444
1445 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1446 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1447 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1448 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1449 }
1450 \f
1451 /* Strength-reduction will often emit code for optimized biv/givs which
1452 calculates their value in a temporary register, and then copies the result
1453 to the iv. This procedure reconstructs the pattern computing the iv;
1454 verifying that all operands are of the proper form.
1455
1456 PATTERN must be the result of single_set.
1457 The return value is the amount that the giv is incremented by. */
1458
1459 static rtx
1460 calculate_giv_inc (pattern, src_insn, regno)
1461 rtx pattern, src_insn;
1462 int regno;
1463 {
1464 rtx increment;
1465 rtx increment_total = 0;
1466 int tries = 0;
1467
1468 retry:
1469 /* Verify that we have an increment insn here. First check for a plus
1470 as the set source. */
1471 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1472 {
1473 /* SR sometimes computes the new giv value in a temp, then copies it
1474 to the new_reg. */
1475 src_insn = PREV_INSN (src_insn);
1476 pattern = PATTERN (src_insn);
1477 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1478 abort ();
1479
1480 /* The last insn emitted is not needed, so delete it to avoid confusing
1481 the second cse pass. This insn sets the giv unnecessarily. */
1482 delete_insn (get_last_insn ());
1483 }
1484
1485 /* Verify that we have a constant as the second operand of the plus. */
1486 increment = XEXP (SET_SRC (pattern), 1);
1487 if (GET_CODE (increment) != CONST_INT)
1488 {
1489 /* SR sometimes puts the constant in a register, especially if it is
1490 too big to be an add immed operand. */
1491 src_insn = PREV_INSN (src_insn);
1492 increment = SET_SRC (PATTERN (src_insn));
1493
1494 /* SR may have used LO_SUM to compute the constant if it is too large
1495 for a load immed operand. In this case, the constant is in operand
1496 one of the LO_SUM rtx. */
1497 if (GET_CODE (increment) == LO_SUM)
1498 increment = XEXP (increment, 1);
1499
1500 /* Some ports store large constants in memory and add a REG_EQUAL
1501 note to the store insn. */
1502 else if (GET_CODE (increment) == MEM)
1503 {
1504 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1505 if (note)
1506 increment = XEXP (note, 0);
1507 }
1508
1509 else if (GET_CODE (increment) == IOR
1510 || GET_CODE (increment) == ASHIFT
1511 || GET_CODE (increment) == PLUS)
1512 {
1513 /* The rs6000 port loads some constants with IOR.
1514 The alpha port loads some constants with ASHIFT and PLUS. */
1515 rtx second_part = XEXP (increment, 1);
1516 enum rtx_code code = GET_CODE (increment);
1517
1518 src_insn = PREV_INSN (src_insn);
1519 increment = SET_SRC (PATTERN (src_insn));
1520 /* Don't need the last insn anymore. */
1521 delete_insn (get_last_insn ());
1522
1523 if (GET_CODE (second_part) != CONST_INT
1524 || GET_CODE (increment) != CONST_INT)
1525 abort ();
1526
1527 if (code == IOR)
1528 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1529 else if (code == PLUS)
1530 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1531 else
1532 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1533 }
1534
1535 if (GET_CODE (increment) != CONST_INT)
1536 abort ();
1537
1538 /* The insn loading the constant into a register is no longer needed,
1539 so delete it. */
1540 delete_insn (get_last_insn ());
1541 }
1542
1543 if (increment_total)
1544 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1545 else
1546 increment_total = increment;
1547
1548 /* Check that the source register is the same as the register we expected
1549 to see as the source. If not, something is seriously wrong. */
1550 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1551 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1552 {
1553 /* Some machines (e.g. the romp), may emit two add instructions for
1554 certain constants, so lets try looking for another add immediately
1555 before this one if we have only seen one add insn so far. */
1556
1557 if (tries == 0)
1558 {
1559 tries++;
1560
1561 src_insn = PREV_INSN (src_insn);
1562 pattern = PATTERN (src_insn);
1563
1564 delete_insn (get_last_insn ());
1565
1566 goto retry;
1567 }
1568
1569 abort ();
1570 }
1571
1572 return increment_total;
1573 }
1574
1575 /* Copy REG_NOTES, except for insn references, because not all insn_map
1576 entries are valid yet. We do need to copy registers now though, because
1577 the reg_map entries can change during copying. */
1578
1579 static rtx
1580 initial_reg_note_copy (notes, map)
1581 rtx notes;
1582 struct inline_remap *map;
1583 {
1584 rtx copy;
1585
1586 if (notes == 0)
1587 return 0;
1588
1589 copy = rtx_alloc (GET_CODE (notes));
1590 PUT_MODE (copy, GET_MODE (notes));
1591
1592 if (GET_CODE (notes) == EXPR_LIST)
1593 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1594 else if (GET_CODE (notes) == INSN_LIST)
1595 /* Don't substitute for these yet. */
1596 XEXP (copy, 0) = XEXP (notes, 0);
1597 else
1598 abort ();
1599
1600 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1601
1602 return copy;
1603 }
1604
1605 /* Fixup insn references in copied REG_NOTES. */
1606
1607 static void
1608 final_reg_note_copy (notes, map)
1609 rtx notes;
1610 struct inline_remap *map;
1611 {
1612 rtx note;
1613
1614 for (note = notes; note; note = XEXP (note, 1))
1615 if (GET_CODE (note) == INSN_LIST)
1616 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1617 }
1618
1619 /* Copy each instruction in the loop, substituting from map as appropriate.
1620 This is very similar to a loop in expand_inline_function. */
1621
1622 static void
1623 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1624 unroll_type, start_label, loop_end, insert_before,
1625 copy_notes_from)
1626 rtx copy_start, copy_end;
1627 struct inline_remap *map;
1628 rtx exit_label;
1629 int last_iteration;
1630 enum unroll_types unroll_type;
1631 rtx start_label, loop_end, insert_before, copy_notes_from;
1632 {
1633 rtx insn, pattern;
1634 rtx set, tem, copy;
1635 int dest_reg_was_split, i;
1636 #ifdef HAVE_cc0
1637 rtx cc0_insn = 0;
1638 #endif
1639 rtx final_label = 0;
1640 rtx giv_inc, giv_dest_reg, giv_src_reg;
1641
1642 /* If this isn't the last iteration, then map any references to the
1643 start_label to final_label. Final label will then be emitted immediately
1644 after the end of this loop body if it was ever used.
1645
1646 If this is the last iteration, then map references to the start_label
1647 to itself. */
1648 if (! last_iteration)
1649 {
1650 final_label = gen_label_rtx ();
1651 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1652 final_label);
1653 }
1654 else
1655 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1656
1657 start_sequence ();
1658
1659 insn = copy_start;
1660 do
1661 {
1662 insn = NEXT_INSN (insn);
1663
1664 map->orig_asm_operands_vector = 0;
1665
1666 switch (GET_CODE (insn))
1667 {
1668 case INSN:
1669 pattern = PATTERN (insn);
1670 copy = 0;
1671 giv_inc = 0;
1672
1673 /* Check to see if this is a giv that has been combined with
1674 some split address givs. (Combined in the sense that
1675 `combine_givs' in loop.c has put two givs in the same register.)
1676 In this case, we must search all givs based on the same biv to
1677 find the address givs. Then split the address givs.
1678 Do this before splitting the giv, since that may map the
1679 SET_DEST to a new register. */
1680
1681 if ((set = single_set (insn))
1682 && GET_CODE (SET_DEST (set)) == REG
1683 && addr_combined_regs[REGNO (SET_DEST (set))])
1684 {
1685 struct iv_class *bl;
1686 struct induction *v, *tv;
1687 int regno = REGNO (SET_DEST (set));
1688
1689 v = addr_combined_regs[REGNO (SET_DEST (set))];
1690 bl = reg_biv_class[REGNO (v->src_reg)];
1691
1692 /* Although the giv_inc amount is not needed here, we must call
1693 calculate_giv_inc here since it might try to delete the
1694 last insn emitted. If we wait until later to call it,
1695 we might accidentally delete insns generated immediately
1696 below by emit_unrolled_add. */
1697
1698 giv_inc = calculate_giv_inc (set, insn, regno);
1699
1700 /* Now find all address giv's that were combined with this
1701 giv 'v'. */
1702 for (tv = bl->giv; tv; tv = tv->next_iv)
1703 if (tv->giv_type == DEST_ADDR && tv->same == v)
1704 {
1705 int this_giv_inc;
1706
1707 /* If this DEST_ADDR giv was not split, then ignore it. */
1708 if (*tv->location != tv->dest_reg)
1709 continue;
1710
1711 /* Scale this_giv_inc if the multiplicative factors of
1712 the two givs are different. */
1713 this_giv_inc = INTVAL (giv_inc);
1714 if (tv->mult_val != v->mult_val)
1715 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1716 * INTVAL (tv->mult_val));
1717
1718 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1719 *tv->location = tv->dest_reg;
1720
1721 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1722 {
1723 /* Must emit an insn to increment the split address
1724 giv. Add in the const_adjust field in case there
1725 was a constant eliminated from the address. */
1726 rtx value, dest_reg;
1727
1728 /* tv->dest_reg will be either a bare register,
1729 or else a register plus a constant. */
1730 if (GET_CODE (tv->dest_reg) == REG)
1731 dest_reg = tv->dest_reg;
1732 else
1733 dest_reg = XEXP (tv->dest_reg, 0);
1734
1735 /* Check for shared address givs, and avoid
1736 incrementing the shared pseudo reg more than
1737 once. */
1738 if (! tv->same_insn && ! tv->shared)
1739 {
1740 /* tv->dest_reg may actually be a (PLUS (REG)
1741 (CONST)) here, so we must call plus_constant
1742 to add the const_adjust amount before calling
1743 emit_unrolled_add below. */
1744 value = plus_constant (tv->dest_reg,
1745 tv->const_adjust);
1746
1747 /* The constant could be too large for an add
1748 immediate, so can't directly emit an insn
1749 here. */
1750 emit_unrolled_add (dest_reg, XEXP (value, 0),
1751 XEXP (value, 1));
1752 }
1753
1754 /* Reset the giv to be just the register again, in case
1755 it is used after the set we have just emitted.
1756 We must subtract the const_adjust factor added in
1757 above. */
1758 tv->dest_reg = plus_constant (dest_reg,
1759 - tv->const_adjust);
1760 *tv->location = tv->dest_reg;
1761 }
1762 }
1763 }
1764
1765 /* If this is a setting of a splittable variable, then determine
1766 how to split the variable, create a new set based on this split,
1767 and set up the reg_map so that later uses of the variable will
1768 use the new split variable. */
1769
1770 dest_reg_was_split = 0;
1771
1772 if ((set = single_set (insn))
1773 && GET_CODE (SET_DEST (set)) == REG
1774 && splittable_regs[REGNO (SET_DEST (set))])
1775 {
1776 int regno = REGNO (SET_DEST (set));
1777
1778 dest_reg_was_split = 1;
1779
1780 /* Compute the increment value for the giv, if it wasn't
1781 already computed above. */
1782
1783 if (giv_inc == 0)
1784 giv_inc = calculate_giv_inc (set, insn, regno);
1785 giv_dest_reg = SET_DEST (set);
1786 giv_src_reg = SET_DEST (set);
1787
1788 if (unroll_type == UNROLL_COMPLETELY)
1789 {
1790 /* Completely unrolling the loop. Set the induction
1791 variable to a known constant value. */
1792
1793 /* The value in splittable_regs may be an invariant
1794 value, so we must use plus_constant here. */
1795 splittable_regs[regno]
1796 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1797
1798 if (GET_CODE (splittable_regs[regno]) == PLUS)
1799 {
1800 giv_src_reg = XEXP (splittable_regs[regno], 0);
1801 giv_inc = XEXP (splittable_regs[regno], 1);
1802 }
1803 else
1804 {
1805 /* The splittable_regs value must be a REG or a
1806 CONST_INT, so put the entire value in the giv_src_reg
1807 variable. */
1808 giv_src_reg = splittable_regs[regno];
1809 giv_inc = const0_rtx;
1810 }
1811 }
1812 else
1813 {
1814 /* Partially unrolling loop. Create a new pseudo
1815 register for the iteration variable, and set it to
1816 be a constant plus the original register. Except
1817 on the last iteration, when the result has to
1818 go back into the original iteration var register. */
1819
1820 /* Handle bivs which must be mapped to a new register
1821 when split. This happens for bivs which need their
1822 final value set before loop entry. The new register
1823 for the biv was stored in the biv's first struct
1824 induction entry by find_splittable_regs. */
1825
1826 if (regno < max_reg_before_loop
1827 && reg_iv_type[regno] == BASIC_INDUCT)
1828 {
1829 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1830 giv_dest_reg = giv_src_reg;
1831 }
1832
1833 #if 0
1834 /* If non-reduced/final-value givs were split, then
1835 this would have to remap those givs also. See
1836 find_splittable_regs. */
1837 #endif
1838
1839 splittable_regs[regno]
1840 = GEN_INT (INTVAL (giv_inc)
1841 + INTVAL (splittable_regs[regno]));
1842 giv_inc = splittable_regs[regno];
1843
1844 /* Now split the induction variable by changing the dest
1845 of this insn to a new register, and setting its
1846 reg_map entry to point to this new register.
1847
1848 If this is the last iteration, and this is the last insn
1849 that will update the iv, then reuse the original dest,
1850 to ensure that the iv will have the proper value when
1851 the loop exits or repeats.
1852
1853 Using splittable_regs_updates here like this is safe,
1854 because it can only be greater than one if all
1855 instructions modifying the iv are always executed in
1856 order. */
1857
1858 if (! last_iteration
1859 || (splittable_regs_updates[regno]-- != 1))
1860 {
1861 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1862 giv_dest_reg = tem;
1863 map->reg_map[regno] = tem;
1864 record_base_value (REGNO (tem),
1865 giv_inc == const0_rtx
1866 ? giv_src_reg
1867 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1868 giv_src_reg, giv_inc),
1869 1);
1870 }
1871 else
1872 map->reg_map[regno] = giv_src_reg;
1873 }
1874
1875 /* The constant being added could be too large for an add
1876 immediate, so can't directly emit an insn here. */
1877 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1878 copy = get_last_insn ();
1879 pattern = PATTERN (copy);
1880 }
1881 else
1882 {
1883 pattern = copy_rtx_and_substitute (pattern, map);
1884 copy = emit_insn (pattern);
1885 }
1886 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1887
1888 #ifdef HAVE_cc0
1889 /* If this insn is setting CC0, it may need to look at
1890 the insn that uses CC0 to see what type of insn it is.
1891 In that case, the call to recog via validate_change will
1892 fail. So don't substitute constants here. Instead,
1893 do it when we emit the following insn.
1894
1895 For example, see the pyr.md file. That machine has signed and
1896 unsigned compares. The compare patterns must check the
1897 following branch insn to see which what kind of compare to
1898 emit.
1899
1900 If the previous insn set CC0, substitute constants on it as
1901 well. */
1902 if (sets_cc0_p (PATTERN (copy)) != 0)
1903 cc0_insn = copy;
1904 else
1905 {
1906 if (cc0_insn)
1907 try_constants (cc0_insn, map);
1908 cc0_insn = 0;
1909 try_constants (copy, map);
1910 }
1911 #else
1912 try_constants (copy, map);
1913 #endif
1914
1915 /* Make split induction variable constants `permanent' since we
1916 know there are no backward branches across iteration variable
1917 settings which would invalidate this. */
1918 if (dest_reg_was_split)
1919 {
1920 int regno = REGNO (SET_DEST (pattern));
1921
1922 if (regno < map->const_equiv_map_size
1923 && map->const_age_map[regno] == map->const_age)
1924 map->const_age_map[regno] = -1;
1925 }
1926 break;
1927
1928 case JUMP_INSN:
1929 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1930 copy = emit_jump_insn (pattern);
1931 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1932
1933 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1934 && ! last_iteration)
1935 {
1936 /* This is a branch to the beginning of the loop; this is the
1937 last insn being copied; and this is not the last iteration.
1938 In this case, we want to change the original fall through
1939 case to be a branch past the end of the loop, and the
1940 original jump label case to fall_through. */
1941
1942 if (invert_exp (pattern, copy))
1943 {
1944 if (! redirect_exp (&pattern,
1945 get_label_from_map (map,
1946 CODE_LABEL_NUMBER
1947 (JUMP_LABEL (insn))),
1948 exit_label, copy))
1949 abort ();
1950 }
1951 else
1952 {
1953 rtx jmp;
1954 rtx lab = gen_label_rtx ();
1955 /* Can't do it by reversing the jump (probably because we
1956 couldn't reverse the conditions), so emit a new
1957 jump_insn after COPY, and redirect the jump around
1958 that. */
1959 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1960 jmp = emit_barrier_after (jmp);
1961 emit_label_after (lab, jmp);
1962 LABEL_NUSES (lab) = 0;
1963 if (! redirect_exp (&pattern,
1964 get_label_from_map (map,
1965 CODE_LABEL_NUMBER
1966 (JUMP_LABEL (insn))),
1967 lab, copy))
1968 abort ();
1969 }
1970 }
1971
1972 #ifdef HAVE_cc0
1973 if (cc0_insn)
1974 try_constants (cc0_insn, map);
1975 cc0_insn = 0;
1976 #endif
1977 try_constants (copy, map);
1978
1979 /* Set the jump label of COPY correctly to avoid problems with
1980 later passes of unroll_loop, if INSN had jump label set. */
1981 if (JUMP_LABEL (insn))
1982 {
1983 rtx label = 0;
1984
1985 /* Can't use the label_map for every insn, since this may be
1986 the backward branch, and hence the label was not mapped. */
1987 if ((set = single_set (copy)))
1988 {
1989 tem = SET_SRC (set);
1990 if (GET_CODE (tem) == LABEL_REF)
1991 label = XEXP (tem, 0);
1992 else if (GET_CODE (tem) == IF_THEN_ELSE)
1993 {
1994 if (XEXP (tem, 1) != pc_rtx)
1995 label = XEXP (XEXP (tem, 1), 0);
1996 else
1997 label = XEXP (XEXP (tem, 2), 0);
1998 }
1999 }
2000
2001 if (label && GET_CODE (label) == CODE_LABEL)
2002 JUMP_LABEL (copy) = label;
2003 else
2004 {
2005 /* An unrecognizable jump insn, probably the entry jump
2006 for a switch statement. This label must have been mapped,
2007 so just use the label_map to get the new jump label. */
2008 JUMP_LABEL (copy)
2009 = get_label_from_map (map,
2010 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2011 }
2012
2013 /* If this is a non-local jump, then must increase the label
2014 use count so that the label will not be deleted when the
2015 original jump is deleted. */
2016 LABEL_NUSES (JUMP_LABEL (copy))++;
2017 }
2018 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2019 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2020 {
2021 rtx pat = PATTERN (copy);
2022 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2023 int len = XVECLEN (pat, diff_vec_p);
2024 int i;
2025
2026 for (i = 0; i < len; i++)
2027 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2028 }
2029
2030 /* If this used to be a conditional jump insn but whose branch
2031 direction is now known, we must do something special. */
2032 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2033 {
2034 #ifdef HAVE_cc0
2035 /* The previous insn set cc0 for us. So delete it. */
2036 delete_insn (PREV_INSN (copy));
2037 #endif
2038
2039 /* If this is now a no-op, delete it. */
2040 if (map->last_pc_value == pc_rtx)
2041 {
2042 /* Don't let delete_insn delete the label referenced here,
2043 because we might possibly need it later for some other
2044 instruction in the loop. */
2045 if (JUMP_LABEL (copy))
2046 LABEL_NUSES (JUMP_LABEL (copy))++;
2047 delete_insn (copy);
2048 if (JUMP_LABEL (copy))
2049 LABEL_NUSES (JUMP_LABEL (copy))--;
2050 copy = 0;
2051 }
2052 else
2053 /* Otherwise, this is unconditional jump so we must put a
2054 BARRIER after it. We could do some dead code elimination
2055 here, but jump.c will do it just as well. */
2056 emit_barrier ();
2057 }
2058 break;
2059
2060 case CALL_INSN:
2061 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2062 copy = emit_call_insn (pattern);
2063 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2064
2065 /* Because the USAGE information potentially contains objects other
2066 than hard registers, we need to copy it. */
2067 CALL_INSN_FUNCTION_USAGE (copy)
2068 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2069
2070 #ifdef HAVE_cc0
2071 if (cc0_insn)
2072 try_constants (cc0_insn, map);
2073 cc0_insn = 0;
2074 #endif
2075 try_constants (copy, map);
2076
2077 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2078 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2079 map->const_equiv_map[i] = 0;
2080 break;
2081
2082 case CODE_LABEL:
2083 /* If this is the loop start label, then we don't need to emit a
2084 copy of this label since no one will use it. */
2085
2086 if (insn != start_label)
2087 {
2088 copy = emit_label (get_label_from_map (map,
2089 CODE_LABEL_NUMBER (insn)));
2090 map->const_age++;
2091 }
2092 break;
2093
2094 case BARRIER:
2095 copy = emit_barrier ();
2096 break;
2097
2098 case NOTE:
2099 /* VTOP notes are valid only before the loop exit test. If placed
2100 anywhere else, loop may generate bad code. */
2101
2102 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2103 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2104 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2105 copy = emit_note (NOTE_SOURCE_FILE (insn),
2106 NOTE_LINE_NUMBER (insn));
2107 else
2108 copy = 0;
2109 break;
2110
2111 default:
2112 abort ();
2113 break;
2114 }
2115
2116 map->insn_map[INSN_UID (insn)] = copy;
2117 }
2118 while (insn != copy_end);
2119
2120 /* Now finish coping the REG_NOTES. */
2121 insn = copy_start;
2122 do
2123 {
2124 insn = NEXT_INSN (insn);
2125 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2126 || GET_CODE (insn) == CALL_INSN)
2127 && map->insn_map[INSN_UID (insn)])
2128 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2129 }
2130 while (insn != copy_end);
2131
2132 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2133 each of these notes here, since there may be some important ones, such as
2134 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2135 iteration, because the original notes won't be deleted.
2136
2137 We can't use insert_before here, because when from preconditioning,
2138 insert_before points before the loop. We can't use copy_end, because
2139 there may be insns already inserted after it (which we don't want to
2140 copy) when not from preconditioning code. */
2141
2142 if (! last_iteration)
2143 {
2144 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2145 {
2146 if (GET_CODE (insn) == NOTE
2147 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2148 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2149 }
2150 }
2151
2152 if (final_label && LABEL_NUSES (final_label) > 0)
2153 emit_label (final_label);
2154
2155 tem = gen_sequence ();
2156 end_sequence ();
2157 emit_insn_before (tem, insert_before);
2158 }
2159 \f
2160 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2161 emitted. This will correctly handle the case where the increment value
2162 won't fit in the immediate field of a PLUS insns. */
2163
2164 void
2165 emit_unrolled_add (dest_reg, src_reg, increment)
2166 rtx dest_reg, src_reg, increment;
2167 {
2168 rtx result;
2169
2170 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2171 dest_reg, 0, OPTAB_LIB_WIDEN);
2172
2173 if (dest_reg != result)
2174 emit_move_insn (dest_reg, result);
2175 }
2176 \f
2177 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2178 is a backward branch in that range that branches to somewhere between
2179 LOOP_START and INSN. Returns 0 otherwise. */
2180
2181 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2182 In practice, this is not a problem, because this function is seldom called,
2183 and uses a negligible amount of CPU time on average. */
2184
2185 int
2186 back_branch_in_range_p (insn, loop_start, loop_end)
2187 rtx insn;
2188 rtx loop_start, loop_end;
2189 {
2190 rtx p, q, target_insn;
2191 rtx orig_loop_end = loop_end;
2192
2193 /* Stop before we get to the backward branch at the end of the loop. */
2194 loop_end = prev_nonnote_insn (loop_end);
2195 if (GET_CODE (loop_end) == BARRIER)
2196 loop_end = PREV_INSN (loop_end);
2197
2198 /* Check in case insn has been deleted, search forward for first non
2199 deleted insn following it. */
2200 while (INSN_DELETED_P (insn))
2201 insn = NEXT_INSN (insn);
2202
2203 /* Check for the case where insn is the last insn in the loop. Deal
2204 with the case where INSN was a deleted loop test insn, in which case
2205 it will now be the NOTE_LOOP_END. */
2206 if (insn == loop_end || insn == orig_loop_end)
2207 return 0;
2208
2209 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2210 {
2211 if (GET_CODE (p) == JUMP_INSN)
2212 {
2213 target_insn = JUMP_LABEL (p);
2214
2215 /* Search from loop_start to insn, to see if one of them is
2216 the target_insn. We can't use INSN_LUID comparisons here,
2217 since insn may not have an LUID entry. */
2218 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2219 if (q == target_insn)
2220 return 1;
2221 }
2222 }
2223
2224 return 0;
2225 }
2226
2227 /* Try to generate the simplest rtx for the expression
2228 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2229 value of giv's. */
2230
2231 static rtx
2232 fold_rtx_mult_add (mult1, mult2, add1, mode)
2233 rtx mult1, mult2, add1;
2234 enum machine_mode mode;
2235 {
2236 rtx temp, mult_res;
2237 rtx result;
2238
2239 /* The modes must all be the same. This should always be true. For now,
2240 check to make sure. */
2241 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2242 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2243 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2244 abort ();
2245
2246 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2247 will be a constant. */
2248 if (GET_CODE (mult1) == CONST_INT)
2249 {
2250 temp = mult2;
2251 mult2 = mult1;
2252 mult1 = temp;
2253 }
2254
2255 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2256 if (! mult_res)
2257 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2258
2259 /* Again, put the constant second. */
2260 if (GET_CODE (add1) == CONST_INT)
2261 {
2262 temp = add1;
2263 add1 = mult_res;
2264 mult_res = temp;
2265 }
2266
2267 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2268 if (! result)
2269 result = gen_rtx_PLUS (mode, add1, mult_res);
2270
2271 return result;
2272 }
2273
2274 /* Searches the list of induction struct's for the biv BL, to try to calculate
2275 the total increment value for one iteration of the loop as a constant.
2276
2277 Returns the increment value as an rtx, simplified as much as possible,
2278 if it can be calculated. Otherwise, returns 0. */
2279
2280 rtx
2281 biv_total_increment (bl, loop_start, loop_end)
2282 struct iv_class *bl;
2283 rtx loop_start, loop_end;
2284 {
2285 struct induction *v;
2286 rtx result;
2287
2288 /* For increment, must check every instruction that sets it. Each
2289 instruction must be executed only once each time through the loop.
2290 To verify this, we check that the the insn is always executed, and that
2291 there are no backward branches after the insn that branch to before it.
2292 Also, the insn must have a mult_val of one (to make sure it really is
2293 an increment). */
2294
2295 result = const0_rtx;
2296 for (v = bl->biv; v; v = v->next_iv)
2297 {
2298 if (v->always_computable && v->mult_val == const1_rtx
2299 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2300 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2301 else
2302 return 0;
2303 }
2304
2305 return result;
2306 }
2307
2308 /* Determine the initial value of the iteration variable, and the amount
2309 that it is incremented each loop. Use the tables constructed by
2310 the strength reduction pass to calculate these values.
2311
2312 Initial_value and/or increment are set to zero if their values could not
2313 be calculated. */
2314
2315 void
2316 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2317 rtx iteration_var, *initial_value, *increment;
2318 rtx loop_start, loop_end;
2319 {
2320 struct iv_class *bl;
2321 #if 0
2322 struct induction *v;
2323 #endif
2324
2325 /* Clear the result values, in case no answer can be found. */
2326 *initial_value = 0;
2327 *increment = 0;
2328
2329 /* The iteration variable can be either a giv or a biv. Check to see
2330 which it is, and compute the variable's initial value, and increment
2331 value if possible. */
2332
2333 /* If this is a new register, can't handle it since we don't have any
2334 reg_iv_type entry for it. */
2335 if (REGNO (iteration_var) >= max_reg_before_loop)
2336 {
2337 if (loop_dump_stream)
2338 fprintf (loop_dump_stream,
2339 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2340 return;
2341 }
2342
2343 /* Reject iteration variables larger than the host wide int size, since they
2344 could result in a number of iterations greater than the range of our
2345 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2346 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2347 > HOST_BITS_PER_WIDE_INT))
2348 {
2349 if (loop_dump_stream)
2350 fprintf (loop_dump_stream,
2351 "Loop unrolling: Iteration var rejected because mode too large.\n");
2352 return;
2353 }
2354 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2355 {
2356 if (loop_dump_stream)
2357 fprintf (loop_dump_stream,
2358 "Loop unrolling: Iteration var not an integer.\n");
2359 return;
2360 }
2361 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2362 {
2363 /* Grab initial value, only useful if it is a constant. */
2364 bl = reg_biv_class[REGNO (iteration_var)];
2365 *initial_value = bl->initial_value;
2366
2367 *increment = biv_total_increment (bl, loop_start, loop_end);
2368 }
2369 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2370 {
2371 #if 1
2372 /* ??? The code below does not work because the incorrect number of
2373 iterations is calculated when the biv is incremented after the giv
2374 is set (which is the usual case). This can probably be accounted
2375 for by biasing the initial_value by subtracting the amount of the
2376 increment that occurs between the giv set and the giv test. However,
2377 a giv as an iterator is very rare, so it does not seem worthwhile
2378 to handle this. */
2379 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2380 if (loop_dump_stream)
2381 fprintf (loop_dump_stream,
2382 "Loop unrolling: Giv iterators are not handled.\n");
2383 return;
2384 #else
2385 /* Initial value is mult_val times the biv's initial value plus
2386 add_val. Only useful if it is a constant. */
2387 v = reg_iv_info[REGNO (iteration_var)];
2388 bl = reg_biv_class[REGNO (v->src_reg)];
2389 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2390 v->add_val, v->mode);
2391
2392 /* Increment value is mult_val times the increment value of the biv. */
2393
2394 *increment = biv_total_increment (bl, loop_start, loop_end);
2395 if (*increment)
2396 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2397 v->mode);
2398 #endif
2399 }
2400 else
2401 {
2402 if (loop_dump_stream)
2403 fprintf (loop_dump_stream,
2404 "Loop unrolling: Not basic or general induction var.\n");
2405 return;
2406 }
2407 }
2408
2409 /* Calculate the approximate final value of the iteration variable
2410 which has an loop exit test with code COMPARISON_CODE and comparison value
2411 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2412 was signed or unsigned, and the direction of the comparison. This info is
2413 needed to calculate the number of loop iterations. */
2414
2415 static rtx
2416 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2417 enum rtx_code comparison_code;
2418 rtx comparison_value;
2419 int *unsigned_p;
2420 int *compare_dir;
2421 {
2422 /* Calculate the final value of the induction variable.
2423 The exact final value depends on the branch operator, and increment sign.
2424 This is only an approximate value. It will be wrong if the iteration
2425 variable is not incremented by one each time through the loop, and
2426 approx final value - start value % increment != 0. */
2427
2428 *unsigned_p = 0;
2429 switch (comparison_code)
2430 {
2431 case LEU:
2432 *unsigned_p = 1;
2433 case LE:
2434 *compare_dir = 1;
2435 return plus_constant (comparison_value, 1);
2436 case GEU:
2437 *unsigned_p = 1;
2438 case GE:
2439 *compare_dir = -1;
2440 return plus_constant (comparison_value, -1);
2441 case EQ:
2442 /* Can not calculate a final value for this case. */
2443 *compare_dir = 0;
2444 return 0;
2445 case LTU:
2446 *unsigned_p = 1;
2447 case LT:
2448 *compare_dir = 1;
2449 return comparison_value;
2450 break;
2451 case GTU:
2452 *unsigned_p = 1;
2453 case GT:
2454 *compare_dir = -1;
2455 return comparison_value;
2456 case NE:
2457 *compare_dir = 0;
2458 return comparison_value;
2459 default:
2460 abort ();
2461 }
2462 }
2463
2464 /* For each biv and giv, determine whether it can be safely split into
2465 a different variable for each unrolled copy of the loop body. If it
2466 is safe to split, then indicate that by saving some useful info
2467 in the splittable_regs array.
2468
2469 If the loop is being completely unrolled, then splittable_regs will hold
2470 the current value of the induction variable while the loop is unrolled.
2471 It must be set to the initial value of the induction variable here.
2472 Otherwise, splittable_regs will hold the difference between the current
2473 value of the induction variable and the value the induction variable had
2474 at the top of the loop. It must be set to the value 0 here.
2475
2476 Returns the total number of instructions that set registers that are
2477 splittable. */
2478
2479 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2480 constant values are unnecessary, since we can easily calculate increment
2481 values in this case even if nothing is constant. The increment value
2482 should not involve a multiply however. */
2483
2484 /* ?? Even if the biv/giv increment values aren't constant, it may still
2485 be beneficial to split the variable if the loop is only unrolled a few
2486 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2487
2488 static int
2489 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2490 unroll_number)
2491 enum unroll_types unroll_type;
2492 rtx loop_start, loop_end;
2493 rtx end_insert_before;
2494 int unroll_number;
2495 {
2496 struct iv_class *bl;
2497 struct induction *v;
2498 rtx increment, tem;
2499 rtx biv_final_value;
2500 int biv_splittable;
2501 int result = 0;
2502
2503 for (bl = loop_iv_list; bl; bl = bl->next)
2504 {
2505 /* Biv_total_increment must return a constant value,
2506 otherwise we can not calculate the split values. */
2507
2508 increment = biv_total_increment (bl, loop_start, loop_end);
2509 if (! increment || GET_CODE (increment) != CONST_INT)
2510 continue;
2511
2512 /* The loop must be unrolled completely, or else have a known number
2513 of iterations and only one exit, or else the biv must be dead
2514 outside the loop, or else the final value must be known. Otherwise,
2515 it is unsafe to split the biv since it may not have the proper
2516 value on loop exit. */
2517
2518 /* loop_number_exit_count is non-zero if the loop has an exit other than
2519 a fall through at the end. */
2520
2521 biv_splittable = 1;
2522 biv_final_value = 0;
2523 if (unroll_type != UNROLL_COMPLETELY
2524 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2525 || unroll_type == UNROLL_NAIVE)
2526 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2527 || ! bl->init_insn
2528 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2529 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2530 < INSN_LUID (bl->init_insn))
2531 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2532 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2533 biv_splittable = 0;
2534
2535 /* If any of the insns setting the BIV don't do so with a simple
2536 PLUS, we don't know how to split it. */
2537 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2538 if ((tem = single_set (v->insn)) == 0
2539 || GET_CODE (SET_DEST (tem)) != REG
2540 || REGNO (SET_DEST (tem)) != bl->regno
2541 || GET_CODE (SET_SRC (tem)) != PLUS)
2542 biv_splittable = 0;
2543
2544 /* If final value is non-zero, then must emit an instruction which sets
2545 the value of the biv to the proper value. This is done after
2546 handling all of the givs, since some of them may need to use the
2547 biv's value in their initialization code. */
2548
2549 /* This biv is splittable. If completely unrolling the loop, save
2550 the biv's initial value. Otherwise, save the constant zero. */
2551
2552 if (biv_splittable == 1)
2553 {
2554 if (unroll_type == UNROLL_COMPLETELY)
2555 {
2556 /* If the initial value of the biv is itself (i.e. it is too
2557 complicated for strength_reduce to compute), or is a hard
2558 register, or it isn't invariant, then we must create a new
2559 pseudo reg to hold the initial value of the biv. */
2560
2561 if (GET_CODE (bl->initial_value) == REG
2562 && (REGNO (bl->initial_value) == bl->regno
2563 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2564 || ! invariant_p (bl->initial_value)))
2565 {
2566 rtx tem = gen_reg_rtx (bl->biv->mode);
2567
2568 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2569 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2570 loop_start);
2571
2572 if (loop_dump_stream)
2573 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2574 bl->regno, REGNO (tem));
2575
2576 splittable_regs[bl->regno] = tem;
2577 }
2578 else
2579 splittable_regs[bl->regno] = bl->initial_value;
2580 }
2581 else
2582 splittable_regs[bl->regno] = const0_rtx;
2583
2584 /* Save the number of instructions that modify the biv, so that
2585 we can treat the last one specially. */
2586
2587 splittable_regs_updates[bl->regno] = bl->biv_count;
2588 result += bl->biv_count;
2589
2590 if (loop_dump_stream)
2591 fprintf (loop_dump_stream,
2592 "Biv %d safe to split.\n", bl->regno);
2593 }
2594
2595 /* Check every giv that depends on this biv to see whether it is
2596 splittable also. Even if the biv isn't splittable, givs which
2597 depend on it may be splittable if the biv is live outside the
2598 loop, and the givs aren't. */
2599
2600 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2601 increment, unroll_number);
2602
2603 /* If final value is non-zero, then must emit an instruction which sets
2604 the value of the biv to the proper value. This is done after
2605 handling all of the givs, since some of them may need to use the
2606 biv's value in their initialization code. */
2607 if (biv_final_value)
2608 {
2609 /* If the loop has multiple exits, emit the insns before the
2610 loop to ensure that it will always be executed no matter
2611 how the loop exits. Otherwise emit the insn after the loop,
2612 since this is slightly more efficient. */
2613 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2614 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2615 biv_final_value),
2616 end_insert_before);
2617 else
2618 {
2619 /* Create a new register to hold the value of the biv, and then
2620 set the biv to its final value before the loop start. The biv
2621 is set to its final value before loop start to ensure that
2622 this insn will always be executed, no matter how the loop
2623 exits. */
2624 rtx tem = gen_reg_rtx (bl->biv->mode);
2625 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2626
2627 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2628 loop_start);
2629 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2630 biv_final_value),
2631 loop_start);
2632
2633 if (loop_dump_stream)
2634 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2635 REGNO (bl->biv->src_reg), REGNO (tem));
2636
2637 /* Set up the mapping from the original biv register to the new
2638 register. */
2639 bl->biv->src_reg = tem;
2640 }
2641 }
2642 }
2643 return result;
2644 }
2645
2646 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2647 for the instruction that is using it. Do not make any changes to that
2648 instruction. */
2649
2650 static int
2651 verify_addresses (v, giv_inc, unroll_number)
2652 struct induction *v;
2653 rtx giv_inc;
2654 int unroll_number;
2655 {
2656 int ret = 1;
2657 rtx orig_addr = *v->location;
2658 rtx last_addr = plus_constant (v->dest_reg,
2659 INTVAL (giv_inc) * (unroll_number - 1));
2660
2661 /* First check to see if either address would fail. Handle the fact
2662 that we have may have a match_dup. */
2663 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2664 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2665 ret = 0;
2666
2667 /* Now put things back the way they were before. This will always
2668 succeed. */
2669 validate_change (v->insn, v->location, orig_addr, 0);
2670
2671 return ret;
2672 }
2673
2674 /* For every giv based on the biv BL, check to determine whether it is
2675 splittable. This is a subroutine to find_splittable_regs ().
2676
2677 Return the number of instructions that set splittable registers. */
2678
2679 static int
2680 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2681 unroll_number)
2682 struct iv_class *bl;
2683 enum unroll_types unroll_type;
2684 rtx loop_start, loop_end;
2685 rtx increment;
2686 int unroll_number;
2687 {
2688 struct induction *v, *v2;
2689 rtx final_value;
2690 rtx tem;
2691 int result = 0;
2692
2693 /* Scan the list of givs, and set the same_insn field when there are
2694 multiple identical givs in the same insn. */
2695 for (v = bl->giv; v; v = v->next_iv)
2696 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2697 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2698 && ! v2->same_insn)
2699 v2->same_insn = v;
2700
2701 for (v = bl->giv; v; v = v->next_iv)
2702 {
2703 rtx giv_inc, value;
2704
2705 /* Only split the giv if it has already been reduced, or if the loop is
2706 being completely unrolled. */
2707 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2708 continue;
2709
2710 /* The giv can be split if the insn that sets the giv is executed once
2711 and only once on every iteration of the loop. */
2712 /* An address giv can always be split. v->insn is just a use not a set,
2713 and hence it does not matter whether it is always executed. All that
2714 matters is that all the biv increments are always executed, and we
2715 won't reach here if they aren't. */
2716 if (v->giv_type != DEST_ADDR
2717 && (! v->always_computable
2718 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2719 continue;
2720
2721 /* The giv increment value must be a constant. */
2722 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2723 v->mode);
2724 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2725 continue;
2726
2727 /* The loop must be unrolled completely, or else have a known number of
2728 iterations and only one exit, or else the giv must be dead outside
2729 the loop, or else the final value of the giv must be known.
2730 Otherwise, it is not safe to split the giv since it may not have the
2731 proper value on loop exit. */
2732
2733 /* The used outside loop test will fail for DEST_ADDR givs. They are
2734 never used outside the loop anyways, so it is always safe to split a
2735 DEST_ADDR giv. */
2736
2737 final_value = 0;
2738 if (unroll_type != UNROLL_COMPLETELY
2739 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2740 || unroll_type == UNROLL_NAIVE)
2741 && v->giv_type != DEST_ADDR
2742 /* The next part is true if the pseudo is used outside the loop.
2743 We assume that this is true for any pseudo created after loop
2744 starts, because we don't have a reg_n_info entry for them. */
2745 && (REGNO (v->dest_reg) >= max_reg_before_loop
2746 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2747 /* Check for the case where the pseudo is set by a shift/add
2748 sequence, in which case the first insn setting the pseudo
2749 is the first insn of the shift/add sequence. */
2750 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2751 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2752 != INSN_UID (XEXP (tem, 0)))))
2753 /* Line above always fails if INSN was moved by loop opt. */
2754 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2755 >= INSN_LUID (loop_end)))
2756 && ! (final_value = v->final_value))
2757 continue;
2758
2759 #if 0
2760 /* Currently, non-reduced/final-value givs are never split. */
2761 /* Should emit insns after the loop if possible, as the biv final value
2762 code below does. */
2763
2764 /* If the final value is non-zero, and the giv has not been reduced,
2765 then must emit an instruction to set the final value. */
2766 if (final_value && !v->new_reg)
2767 {
2768 /* Create a new register to hold the value of the giv, and then set
2769 the giv to its final value before the loop start. The giv is set
2770 to its final value before loop start to ensure that this insn
2771 will always be executed, no matter how we exit. */
2772 tem = gen_reg_rtx (v->mode);
2773 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2774 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2775 loop_start);
2776
2777 if (loop_dump_stream)
2778 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2779 REGNO (v->dest_reg), REGNO (tem));
2780
2781 v->src_reg = tem;
2782 }
2783 #endif
2784
2785 /* This giv is splittable. If completely unrolling the loop, save the
2786 giv's initial value. Otherwise, save the constant zero for it. */
2787
2788 if (unroll_type == UNROLL_COMPLETELY)
2789 {
2790 /* It is not safe to use bl->initial_value here, because it may not
2791 be invariant. It is safe to use the initial value stored in
2792 the splittable_regs array if it is set. In rare cases, it won't
2793 be set, so then we do exactly the same thing as
2794 find_splittable_regs does to get a safe value. */
2795 rtx biv_initial_value;
2796
2797 if (splittable_regs[bl->regno])
2798 biv_initial_value = splittable_regs[bl->regno];
2799 else if (GET_CODE (bl->initial_value) != REG
2800 || (REGNO (bl->initial_value) != bl->regno
2801 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2802 biv_initial_value = bl->initial_value;
2803 else
2804 {
2805 rtx tem = gen_reg_rtx (bl->biv->mode);
2806
2807 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2808 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2809 loop_start);
2810 biv_initial_value = tem;
2811 }
2812 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2813 v->add_val, v->mode);
2814 }
2815 else
2816 value = const0_rtx;
2817
2818 if (v->new_reg)
2819 {
2820 /* If a giv was combined with another giv, then we can only split
2821 this giv if the giv it was combined with was reduced. This
2822 is because the value of v->new_reg is meaningless in this
2823 case. */
2824 if (v->same && ! v->same->new_reg)
2825 {
2826 if (loop_dump_stream)
2827 fprintf (loop_dump_stream,
2828 "giv combined with unreduced giv not split.\n");
2829 continue;
2830 }
2831 /* If the giv is an address destination, it could be something other
2832 than a simple register, these have to be treated differently. */
2833 else if (v->giv_type == DEST_REG)
2834 {
2835 /* If value is not a constant, register, or register plus
2836 constant, then compute its value into a register before
2837 loop start. This prevents invalid rtx sharing, and should
2838 generate better code. We can use bl->initial_value here
2839 instead of splittable_regs[bl->regno] because this code
2840 is going before the loop start. */
2841 if (unroll_type == UNROLL_COMPLETELY
2842 && GET_CODE (value) != CONST_INT
2843 && GET_CODE (value) != REG
2844 && (GET_CODE (value) != PLUS
2845 || GET_CODE (XEXP (value, 0)) != REG
2846 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2847 {
2848 rtx tem = gen_reg_rtx (v->mode);
2849 record_base_value (REGNO (tem), v->add_val, 0);
2850 emit_iv_add_mult (bl->initial_value, v->mult_val,
2851 v->add_val, tem, loop_start);
2852 value = tem;
2853 }
2854
2855 splittable_regs[REGNO (v->new_reg)] = value;
2856 }
2857 else
2858 {
2859 /* Splitting address givs is useful since it will often allow us
2860 to eliminate some increment insns for the base giv as
2861 unnecessary. */
2862
2863 /* If the addr giv is combined with a dest_reg giv, then all
2864 references to that dest reg will be remapped, which is NOT
2865 what we want for split addr regs. We always create a new
2866 register for the split addr giv, just to be safe. */
2867
2868 /* If we have multiple identical address givs within a
2869 single instruction, then use a single pseudo reg for
2870 both. This is necessary in case one is a match_dup
2871 of the other. */
2872
2873 v->const_adjust = 0;
2874
2875 if (v->same_insn)
2876 {
2877 v->dest_reg = v->same_insn->dest_reg;
2878 if (loop_dump_stream)
2879 fprintf (loop_dump_stream,
2880 "Sharing address givs in insn %d\n",
2881 INSN_UID (v->insn));
2882 }
2883 /* If multiple address GIVs have been combined with the
2884 same dest_reg GIV, do not create a new register for
2885 each. */
2886 else if (unroll_type != UNROLL_COMPLETELY
2887 && v->giv_type == DEST_ADDR
2888 && v->same && v->same->giv_type == DEST_ADDR
2889 && v->same->unrolled
2890 /* combine_givs_p may return true for some cases
2891 where the add and mult values are not equal.
2892 To share a register here, the values must be
2893 equal. */
2894 && rtx_equal_p (v->same->mult_val, v->mult_val)
2895 && rtx_equal_p (v->same->add_val, v->add_val))
2896
2897 {
2898 v->dest_reg = v->same->dest_reg;
2899 v->shared = 1;
2900 }
2901 else if (unroll_type != UNROLL_COMPLETELY)
2902 {
2903 /* If not completely unrolling the loop, then create a new
2904 register to hold the split value of the DEST_ADDR giv.
2905 Emit insn to initialize its value before loop start. */
2906
2907 rtx tem = gen_reg_rtx (v->mode);
2908 record_base_value (REGNO (tem), v->add_val, 0);
2909 v->unrolled = 1;
2910
2911 /* If the address giv has a constant in its new_reg value,
2912 then this constant can be pulled out and put in value,
2913 instead of being part of the initialization code. */
2914
2915 if (GET_CODE (v->new_reg) == PLUS
2916 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2917 {
2918 v->dest_reg
2919 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2920
2921 /* Only succeed if this will give valid addresses.
2922 Try to validate both the first and the last
2923 address resulting from loop unrolling, if
2924 one fails, then can't do const elim here. */
2925 if (verify_addresses (v, giv_inc, unroll_number))
2926 {
2927 /* Save the negative of the eliminated const, so
2928 that we can calculate the dest_reg's increment
2929 value later. */
2930 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2931
2932 v->new_reg = XEXP (v->new_reg, 0);
2933 if (loop_dump_stream)
2934 fprintf (loop_dump_stream,
2935 "Eliminating constant from giv %d\n",
2936 REGNO (tem));
2937 }
2938 else
2939 v->dest_reg = tem;
2940 }
2941 else
2942 v->dest_reg = tem;
2943
2944 /* If the address hasn't been checked for validity yet, do so
2945 now, and fail completely if either the first or the last
2946 unrolled copy of the address is not a valid address
2947 for the instruction that uses it. */
2948 if (v->dest_reg == tem
2949 && ! verify_addresses (v, giv_inc, unroll_number))
2950 {
2951 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2952 if (v2->same_insn == v)
2953 v2->same_insn = 0;
2954
2955 if (loop_dump_stream)
2956 fprintf (loop_dump_stream,
2957 "Invalid address for giv at insn %d\n",
2958 INSN_UID (v->insn));
2959 continue;
2960 }
2961
2962 /* To initialize the new register, just move the value of
2963 new_reg into it. This is not guaranteed to give a valid
2964 instruction on machines with complex addressing modes.
2965 If we can't recognize it, then delete it and emit insns
2966 to calculate the value from scratch. */
2967 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
2968 copy_rtx (v->new_reg)),
2969 loop_start);
2970 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2971 {
2972 rtx sequence, ret;
2973
2974 /* We can't use bl->initial_value to compute the initial
2975 value, because the loop may have been preconditioned.
2976 We must calculate it from NEW_REG. Try using
2977 force_operand instead of emit_iv_add_mult. */
2978 delete_insn (PREV_INSN (loop_start));
2979
2980 start_sequence ();
2981 ret = force_operand (v->new_reg, tem);
2982 if (ret != tem)
2983 emit_move_insn (tem, ret);
2984 sequence = gen_sequence ();
2985 end_sequence ();
2986 emit_insn_before (sequence, loop_start);
2987
2988 if (loop_dump_stream)
2989 fprintf (loop_dump_stream,
2990 "Invalid init insn, rewritten.\n");
2991 }
2992 }
2993 else
2994 {
2995 v->dest_reg = value;
2996
2997 /* Check the resulting address for validity, and fail
2998 if the resulting address would be invalid. */
2999 if (! verify_addresses (v, giv_inc, unroll_number))
3000 {
3001 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3002 if (v2->same_insn == v)
3003 v2->same_insn = 0;
3004
3005 if (loop_dump_stream)
3006 fprintf (loop_dump_stream,
3007 "Invalid address for giv at insn %d\n",
3008 INSN_UID (v->insn));
3009 continue;
3010 }
3011 }
3012
3013 /* Store the value of dest_reg into the insn. This sharing
3014 will not be a problem as this insn will always be copied
3015 later. */
3016
3017 *v->location = v->dest_reg;
3018
3019 /* If this address giv is combined with a dest reg giv, then
3020 save the base giv's induction pointer so that we will be
3021 able to handle this address giv properly. The base giv
3022 itself does not have to be splittable. */
3023
3024 if (v->same && v->same->giv_type == DEST_REG)
3025 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3026
3027 if (GET_CODE (v->new_reg) == REG)
3028 {
3029 /* This giv maybe hasn't been combined with any others.
3030 Make sure that it's giv is marked as splittable here. */
3031
3032 splittable_regs[REGNO (v->new_reg)] = value;
3033
3034 /* Make it appear to depend upon itself, so that the
3035 giv will be properly split in the main loop above. */
3036 if (! v->same)
3037 {
3038 v->same = v;
3039 addr_combined_regs[REGNO (v->new_reg)] = v;
3040 }
3041 }
3042
3043 if (loop_dump_stream)
3044 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3045 }
3046 }
3047 else
3048 {
3049 #if 0
3050 /* Currently, unreduced giv's can't be split. This is not too much
3051 of a problem since unreduced giv's are not live across loop
3052 iterations anyways. When unrolling a loop completely though,
3053 it makes sense to reduce&split givs when possible, as this will
3054 result in simpler instructions, and will not require that a reg
3055 be live across loop iterations. */
3056
3057 splittable_regs[REGNO (v->dest_reg)] = value;
3058 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3059 REGNO (v->dest_reg), INSN_UID (v->insn));
3060 #else
3061 continue;
3062 #endif
3063 }
3064
3065 /* Unreduced givs are only updated once by definition. Reduced givs
3066 are updated as many times as their biv is. Mark it so if this is
3067 a splittable register. Don't need to do anything for address givs
3068 where this may not be a register. */
3069
3070 if (GET_CODE (v->new_reg) == REG)
3071 {
3072 int count = 1;
3073 if (! v->ignore)
3074 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3075
3076 splittable_regs_updates[REGNO (v->new_reg)] = count;
3077 }
3078
3079 result++;
3080
3081 if (loop_dump_stream)
3082 {
3083 int regnum;
3084
3085 if (GET_CODE (v->dest_reg) == CONST_INT)
3086 regnum = -1;
3087 else if (GET_CODE (v->dest_reg) != REG)
3088 regnum = REGNO (XEXP (v->dest_reg, 0));
3089 else
3090 regnum = REGNO (v->dest_reg);
3091 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3092 regnum, INSN_UID (v->insn));
3093 }
3094 }
3095
3096 return result;
3097 }
3098 \f
3099 /* Try to prove that the register is dead after the loop exits. Trace every
3100 loop exit looking for an insn that will always be executed, which sets
3101 the register to some value, and appears before the first use of the register
3102 is found. If successful, then return 1, otherwise return 0. */
3103
3104 /* ?? Could be made more intelligent in the handling of jumps, so that
3105 it can search past if statements and other similar structures. */
3106
3107 static int
3108 reg_dead_after_loop (reg, loop_start, loop_end)
3109 rtx reg, loop_start, loop_end;
3110 {
3111 rtx insn, label;
3112 enum rtx_code code;
3113 int jump_count = 0;
3114 int label_count = 0;
3115 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3116
3117 /* In addition to checking all exits of this loop, we must also check
3118 all exits of inner nested loops that would exit this loop. We don't
3119 have any way to identify those, so we just give up if there are any
3120 such inner loop exits. */
3121
3122 for (label = loop_number_exit_labels[this_loop_num]; label;
3123 label = LABEL_NEXTREF (label))
3124 label_count++;
3125
3126 if (label_count != loop_number_exit_count[this_loop_num])
3127 return 0;
3128
3129 /* HACK: Must also search the loop fall through exit, create a label_ref
3130 here which points to the loop_end, and append the loop_number_exit_labels
3131 list to it. */
3132 label = gen_rtx_LABEL_REF (VOIDmode, loop_end);
3133 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3134
3135 for ( ; label; label = LABEL_NEXTREF (label))
3136 {
3137 /* Succeed if find an insn which sets the biv or if reach end of
3138 function. Fail if find an insn that uses the biv, or if come to
3139 a conditional jump. */
3140
3141 insn = NEXT_INSN (XEXP (label, 0));
3142 while (insn)
3143 {
3144 code = GET_CODE (insn);
3145 if (GET_RTX_CLASS (code) == 'i')
3146 {
3147 rtx set;
3148
3149 if (reg_referenced_p (reg, PATTERN (insn)))
3150 return 0;
3151
3152 set = single_set (insn);
3153 if (set && rtx_equal_p (SET_DEST (set), reg))
3154 break;
3155 }
3156
3157 if (code == JUMP_INSN)
3158 {
3159 if (GET_CODE (PATTERN (insn)) == RETURN)
3160 break;
3161 else if (! simplejump_p (insn)
3162 /* Prevent infinite loop following infinite loops. */
3163 || jump_count++ > 20)
3164 return 0;
3165 else
3166 insn = JUMP_LABEL (insn);
3167 }
3168
3169 insn = NEXT_INSN (insn);
3170 }
3171 }
3172
3173 /* Success, the register is dead on all loop exits. */
3174 return 1;
3175 }
3176
3177 /* Try to calculate the final value of the biv, the value it will have at
3178 the end of the loop. If we can do it, return that value. */
3179
3180 rtx
3181 final_biv_value (bl, loop_start, loop_end)
3182 struct iv_class *bl;
3183 rtx loop_start, loop_end;
3184 {
3185 rtx increment, tem;
3186
3187 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3188
3189 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3190 return 0;
3191
3192 /* The final value for reversed bivs must be calculated differently than
3193 for ordinary bivs. In this case, there is already an insn after the
3194 loop which sets this biv's final value (if necessary), and there are
3195 no other loop exits, so we can return any value. */
3196 if (bl->reversed)
3197 {
3198 if (loop_dump_stream)
3199 fprintf (loop_dump_stream,
3200 "Final biv value for %d, reversed biv.\n", bl->regno);
3201
3202 return const0_rtx;
3203 }
3204
3205 /* Try to calculate the final value as initial value + (number of iterations
3206 * increment). For this to work, increment must be invariant, the only
3207 exit from the loop must be the fall through at the bottom (otherwise
3208 it may not have its final value when the loop exits), and the initial
3209 value of the biv must be invariant. */
3210
3211 if (loop_n_iterations != 0
3212 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3213 && invariant_p (bl->initial_value))
3214 {
3215 increment = biv_total_increment (bl, loop_start, loop_end);
3216
3217 if (increment && invariant_p (increment))
3218 {
3219 /* Can calculate the loop exit value, emit insns after loop
3220 end to calculate this value into a temporary register in
3221 case it is needed later. */
3222
3223 tem = gen_reg_rtx (bl->biv->mode);
3224 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3225 /* Make sure loop_end is not the last insn. */
3226 if (NEXT_INSN (loop_end) == 0)
3227 emit_note_after (NOTE_INSN_DELETED, loop_end);
3228 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3229 bl->initial_value, tem, NEXT_INSN (loop_end));
3230
3231 if (loop_dump_stream)
3232 fprintf (loop_dump_stream,
3233 "Final biv value for %d, calculated.\n", bl->regno);
3234
3235 return tem;
3236 }
3237 }
3238
3239 /* Check to see if the biv is dead at all loop exits. */
3240 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3241 {
3242 if (loop_dump_stream)
3243 fprintf (loop_dump_stream,
3244 "Final biv value for %d, biv dead after loop exit.\n",
3245 bl->regno);
3246
3247 return const0_rtx;
3248 }
3249
3250 return 0;
3251 }
3252
3253 /* Try to calculate the final value of the giv, the value it will have at
3254 the end of the loop. If we can do it, return that value. */
3255
3256 rtx
3257 final_giv_value (v, loop_start, loop_end)
3258 struct induction *v;
3259 rtx loop_start, loop_end;
3260 {
3261 struct iv_class *bl;
3262 rtx insn;
3263 rtx increment, tem;
3264 rtx insert_before, seq;
3265
3266 bl = reg_biv_class[REGNO (v->src_reg)];
3267
3268 /* The final value for givs which depend on reversed bivs must be calculated
3269 differently than for ordinary givs. In this case, there is already an
3270 insn after the loop which sets this giv's final value (if necessary),
3271 and there are no other loop exits, so we can return any value. */
3272 if (bl->reversed)
3273 {
3274 if (loop_dump_stream)
3275 fprintf (loop_dump_stream,
3276 "Final giv value for %d, depends on reversed biv\n",
3277 REGNO (v->dest_reg));
3278 return const0_rtx;
3279 }
3280
3281 /* Try to calculate the final value as a function of the biv it depends
3282 upon. The only exit from the loop must be the fall through at the bottom
3283 (otherwise it may not have its final value when the loop exits). */
3284
3285 /* ??? Can calculate the final giv value by subtracting off the
3286 extra biv increments times the giv's mult_val. The loop must have
3287 only one exit for this to work, but the loop iterations does not need
3288 to be known. */
3289
3290 if (loop_n_iterations != 0
3291 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3292 {
3293 /* ?? It is tempting to use the biv's value here since these insns will
3294 be put after the loop, and hence the biv will have its final value
3295 then. However, this fails if the biv is subsequently eliminated.
3296 Perhaps determine whether biv's are eliminable before trying to
3297 determine whether giv's are replaceable so that we can use the
3298 biv value here if it is not eliminable. */
3299
3300 /* We are emitting code after the end of the loop, so we must make
3301 sure that bl->initial_value is still valid then. It will still
3302 be valid if it is invariant. */
3303
3304 increment = biv_total_increment (bl, loop_start, loop_end);
3305
3306 if (increment && invariant_p (increment)
3307 && invariant_p (bl->initial_value))
3308 {
3309 /* Can calculate the loop exit value of its biv as
3310 (loop_n_iterations * increment) + initial_value */
3311
3312 /* The loop exit value of the giv is then
3313 (final_biv_value - extra increments) * mult_val + add_val.
3314 The extra increments are any increments to the biv which
3315 occur in the loop after the giv's value is calculated.
3316 We must search from the insn that sets the giv to the end
3317 of the loop to calculate this value. */
3318
3319 insert_before = NEXT_INSN (loop_end);
3320
3321 /* Put the final biv value in tem. */
3322 tem = gen_reg_rtx (bl->biv->mode);
3323 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3324 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3325 bl->initial_value, tem, insert_before);
3326
3327 /* Subtract off extra increments as we find them. */
3328 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3329 insn = NEXT_INSN (insn))
3330 {
3331 struct induction *biv;
3332
3333 for (biv = bl->biv; biv; biv = biv->next_iv)
3334 if (biv->insn == insn)
3335 {
3336 start_sequence ();
3337 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3338 biv->add_val, NULL_RTX, 0,
3339 OPTAB_LIB_WIDEN);
3340 seq = gen_sequence ();
3341 end_sequence ();
3342 emit_insn_before (seq, insert_before);
3343 }
3344 }
3345
3346 /* Now calculate the giv's final value. */
3347 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3348 insert_before);
3349
3350 if (loop_dump_stream)
3351 fprintf (loop_dump_stream,
3352 "Final giv value for %d, calc from biv's value.\n",
3353 REGNO (v->dest_reg));
3354
3355 return tem;
3356 }
3357 }
3358
3359 /* Replaceable giv's should never reach here. */
3360 if (v->replaceable)
3361 abort ();
3362
3363 /* Check to see if the biv is dead at all loop exits. */
3364 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3365 {
3366 if (loop_dump_stream)
3367 fprintf (loop_dump_stream,
3368 "Final giv value for %d, giv dead after loop exit.\n",
3369 REGNO (v->dest_reg));
3370
3371 return const0_rtx;
3372 }
3373
3374 return 0;
3375 }
3376
3377
3378 /* Calculate the number of loop iterations. Returns the exact number of loop
3379 iterations if it can be calculated, otherwise returns zero. */
3380
3381 unsigned HOST_WIDE_INT
3382 loop_iterations (loop_start, loop_end)
3383 rtx loop_start, loop_end;
3384 {
3385 rtx comparison, comparison_value;
3386 rtx iteration_var, initial_value, increment, final_value;
3387 enum rtx_code comparison_code;
3388 HOST_WIDE_INT i;
3389 int increment_dir;
3390 int unsigned_compare, compare_dir, final_larger;
3391 unsigned long tempu;
3392 rtx last_loop_insn;
3393
3394 /* First find the iteration variable. If the last insn is a conditional
3395 branch, and the insn before tests a register value, make that the
3396 iteration variable. */
3397
3398 loop_initial_value = 0;
3399 loop_increment = 0;
3400 loop_final_value = 0;
3401 loop_iteration_var = 0;
3402
3403 /* We used to use pren_nonnote_insn here, but that fails because it might
3404 accidentally get the branch for a contained loop if the branch for this
3405 loop was deleted. We can only trust branches immediately before the
3406 loop_end. */
3407 last_loop_insn = PREV_INSN (loop_end);
3408
3409 comparison = get_condition_for_loop (last_loop_insn);
3410 if (comparison == 0)
3411 {
3412 if (loop_dump_stream)
3413 fprintf (loop_dump_stream,
3414 "Loop unrolling: No final conditional branch found.\n");
3415 return 0;
3416 }
3417
3418 /* ??? Get_condition may switch position of induction variable and
3419 invariant register when it canonicalizes the comparison. */
3420
3421 comparison_code = GET_CODE (comparison);
3422 iteration_var = XEXP (comparison, 0);
3423 comparison_value = XEXP (comparison, 1);
3424
3425 if (GET_CODE (iteration_var) != REG)
3426 {
3427 if (loop_dump_stream)
3428 fprintf (loop_dump_stream,
3429 "Loop unrolling: Comparison not against register.\n");
3430 return 0;
3431 }
3432
3433 /* Loop iterations is always called before any new registers are created
3434 now, so this should never occur. */
3435
3436 if (REGNO (iteration_var) >= max_reg_before_loop)
3437 abort ();
3438
3439 iteration_info (iteration_var, &initial_value, &increment,
3440 loop_start, loop_end);
3441 if (initial_value == 0)
3442 /* iteration_info already printed a message. */
3443 return 0;
3444
3445 /* If the comparison value is an invariant register, then try to find
3446 its value from the insns before the start of the loop. */
3447
3448 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3449 {
3450 rtx insn, set;
3451
3452 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3453 {
3454 if (GET_CODE (insn) == CODE_LABEL)
3455 break;
3456
3457 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3458 && reg_set_p (comparison_value, insn))
3459 {
3460 /* We found the last insn before the loop that sets the register.
3461 If it sets the entire register, and has a REG_EQUAL note,
3462 then use the value of the REG_EQUAL note. */
3463 if ((set = single_set (insn))
3464 && (SET_DEST (set) == comparison_value))
3465 {
3466 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3467
3468 /* Only use the REG_EQUAL note if it is a constant.
3469 Other things, divide in particular, will cause
3470 problems later if we use them. */
3471 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3472 && CONSTANT_P (XEXP (note, 0)))
3473 comparison_value = XEXP (note, 0);
3474 }
3475 break;
3476 }
3477 }
3478 }
3479
3480 final_value = approx_final_value (comparison_code, comparison_value,
3481 &unsigned_compare, &compare_dir);
3482
3483 /* Save the calculated values describing this loop's bounds, in case
3484 precondition_loop_p will need them later. These values can not be
3485 recalculated inside precondition_loop_p because strength reduction
3486 optimizations may obscure the loop's structure. */
3487
3488 loop_iteration_var = iteration_var;
3489 loop_initial_value = initial_value;
3490 loop_increment = increment;
3491 loop_final_value = final_value;
3492 loop_comparison_code = comparison_code;
3493
3494 if (increment == 0)
3495 {
3496 if (loop_dump_stream)
3497 fprintf (loop_dump_stream,
3498 "Loop unrolling: Increment value can't be calculated.\n");
3499 return 0;
3500 }
3501 else if (GET_CODE (increment) != CONST_INT)
3502 {
3503 if (loop_dump_stream)
3504 fprintf (loop_dump_stream,
3505 "Loop unrolling: Increment value not constant.\n");
3506 return 0;
3507 }
3508 else if (GET_CODE (initial_value) != CONST_INT)
3509 {
3510 if (loop_dump_stream)
3511 fprintf (loop_dump_stream,
3512 "Loop unrolling: Initial value not constant.\n");
3513 return 0;
3514 }
3515 else if (final_value == 0)
3516 {
3517 if (loop_dump_stream)
3518 fprintf (loop_dump_stream,
3519 "Loop unrolling: EQ comparison loop.\n");
3520 return 0;
3521 }
3522 else if (GET_CODE (final_value) != CONST_INT)
3523 {
3524 if (loop_dump_stream)
3525 fprintf (loop_dump_stream,
3526 "Loop unrolling: Final value not constant.\n");
3527 return 0;
3528 }
3529
3530 /* ?? Final value and initial value do not have to be constants.
3531 Only their difference has to be constant. When the iteration variable
3532 is an array address, the final value and initial value might both
3533 be addresses with the same base but different constant offsets.
3534 Final value must be invariant for this to work.
3535
3536 To do this, need some way to find the values of registers which are
3537 invariant. */
3538
3539 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3540 if (unsigned_compare)
3541 final_larger
3542 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3543 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3544 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3545 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3546 else
3547 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3548 - (INTVAL (final_value) < INTVAL (initial_value));
3549
3550 if (INTVAL (increment) > 0)
3551 increment_dir = 1;
3552 else if (INTVAL (increment) == 0)
3553 increment_dir = 0;
3554 else
3555 increment_dir = -1;
3556
3557 /* There are 27 different cases: compare_dir = -1, 0, 1;
3558 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3559 There are 4 normal cases, 4 reverse cases (where the iteration variable
3560 will overflow before the loop exits), 4 infinite loop cases, and 15
3561 immediate exit (0 or 1 iteration depending on loop type) cases.
3562 Only try to optimize the normal cases. */
3563
3564 /* (compare_dir/final_larger/increment_dir)
3565 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3566 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3567 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3568 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3569
3570 /* ?? If the meaning of reverse loops (where the iteration variable
3571 will overflow before the loop exits) is undefined, then could
3572 eliminate all of these special checks, and just always assume
3573 the loops are normal/immediate/infinite. Note that this means
3574 the sign of increment_dir does not have to be known. Also,
3575 since it does not really hurt if immediate exit loops or infinite loops
3576 are optimized, then that case could be ignored also, and hence all
3577 loops can be optimized.
3578
3579 According to ANSI Spec, the reverse loop case result is undefined,
3580 because the action on overflow is undefined.
3581
3582 See also the special test for NE loops below. */
3583
3584 if (final_larger == increment_dir && final_larger != 0
3585 && (final_larger == compare_dir || compare_dir == 0))
3586 /* Normal case. */
3587 ;
3588 else
3589 {
3590 if (loop_dump_stream)
3591 fprintf (loop_dump_stream,
3592 "Loop unrolling: Not normal loop.\n");
3593 return 0;
3594 }
3595
3596 /* Calculate the number of iterations, final_value is only an approximation,
3597 so correct for that. Note that tempu and loop_n_iterations are
3598 unsigned, because they can be as large as 2^n - 1. */
3599
3600 i = INTVAL (increment);
3601 if (i > 0)
3602 tempu = INTVAL (final_value) - INTVAL (initial_value);
3603 else if (i < 0)
3604 {
3605 tempu = INTVAL (initial_value) - INTVAL (final_value);
3606 i = -i;
3607 }
3608 else
3609 abort ();
3610
3611 /* For NE tests, make sure that the iteration variable won't miss the
3612 final value. If tempu mod i is not zero, then the iteration variable
3613 will overflow before the loop exits, and we can not calculate the
3614 number of iterations. */
3615 if (compare_dir == 0 && (tempu % i) != 0)
3616 return 0;
3617
3618 return tempu / i + ((tempu % i) != 0);
3619 }
3620
3621 /* Replace uses of split bivs with their split pseudo register. This is
3622 for original instructions which remain after loop unrolling without
3623 copying. */
3624
3625 static rtx
3626 remap_split_bivs (x)
3627 rtx x;
3628 {
3629 register enum rtx_code code;
3630 register int i;
3631 register char *fmt;
3632
3633 if (x == 0)
3634 return x;
3635
3636 code = GET_CODE (x);
3637 switch (code)
3638 {
3639 case SCRATCH:
3640 case PC:
3641 case CC0:
3642 case CONST_INT:
3643 case CONST_DOUBLE:
3644 case CONST:
3645 case SYMBOL_REF:
3646 case LABEL_REF:
3647 return x;
3648
3649 case REG:
3650 #if 0
3651 /* If non-reduced/final-value givs were split, then this would also
3652 have to remap those givs also. */
3653 #endif
3654 if (REGNO (x) < max_reg_before_loop
3655 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3656 return reg_biv_class[REGNO (x)]->biv->src_reg;
3657 break;
3658
3659 default:
3660 break;
3661 }
3662
3663 fmt = GET_RTX_FORMAT (code);
3664 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3665 {
3666 if (fmt[i] == 'e')
3667 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3668 if (fmt[i] == 'E')
3669 {
3670 register int j;
3671 for (j = 0; j < XVECLEN (x, i); j++)
3672 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3673 }
3674 }
3675 return x;
3676 }
3677
3678 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3679 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3680 return 0. COPY_START is where we can start looking for the insns
3681 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3682 insns.
3683
3684 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3685 must dominate LAST_UID.
3686
3687 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3688 may not dominate LAST_UID.
3689
3690 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3691 must dominate LAST_UID. */
3692
3693 int
3694 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3695 int regno;
3696 int first_uid;
3697 int last_uid;
3698 rtx copy_start;
3699 rtx copy_end;
3700 {
3701 int passed_jump = 0;
3702 rtx p = NEXT_INSN (copy_start);
3703
3704 while (INSN_UID (p) != first_uid)
3705 {
3706 if (GET_CODE (p) == JUMP_INSN)
3707 passed_jump= 1;
3708 /* Could not find FIRST_UID. */
3709 if (p == copy_end)
3710 return 0;
3711 p = NEXT_INSN (p);
3712 }
3713
3714 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3715 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3716 || ! dead_or_set_regno_p (p, regno))
3717 return 0;
3718
3719 /* FIRST_UID is always executed. */
3720 if (passed_jump == 0)
3721 return 1;
3722
3723 while (INSN_UID (p) != last_uid)
3724 {
3725 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3726 can not be sure that FIRST_UID dominates LAST_UID. */
3727 if (GET_CODE (p) == CODE_LABEL)
3728 return 0;
3729 /* Could not find LAST_UID, but we reached the end of the loop, so
3730 it must be safe. */
3731 else if (p == copy_end)
3732 return 1;
3733 p = NEXT_INSN (p);
3734 }
3735
3736 /* FIRST_UID is always executed if LAST_UID is executed. */
3737 return 1;
3738 }