Warning fixes:
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 93, 94, 95, 97, 1998 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "system.h"
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159 #include "toplev.h"
160
161 /* This controls which loops are unrolled, and by how much we unroll
162 them. */
163
164 #ifndef MAX_UNROLLED_INSNS
165 #define MAX_UNROLLED_INSNS 100
166 #endif
167
168 /* Indexed by register number, if non-zero, then it contains a pointer
169 to a struct induction for a DEST_REG giv which has been combined with
170 one of more address givs. This is needed because whenever such a DEST_REG
171 giv is modified, we must modify the value of all split address givs
172 that were combined with this DEST_REG giv. */
173
174 static struct induction **addr_combined_regs;
175
176 /* Indexed by register number, if this is a splittable induction variable,
177 then this will hold the current value of the register, which depends on the
178 iteration number. */
179
180 static rtx *splittable_regs;
181
182 /* Indexed by register number, if this is a splittable induction variable,
183 then this will hold the number of instructions in the loop that modify
184 the induction variable. Used to ensure that only the last insn modifying
185 a split iv will update the original iv of the dest. */
186
187 static int *splittable_regs_updates;
188
189 /* Values describing the current loop's iteration variable. These are set up
190 by loop_iterations, and used by precondition_loop_p. */
191
192 rtx loop_iteration_var;
193 rtx loop_initial_value;
194 rtx loop_increment;
195 rtx loop_final_value;
196 enum rtx_code loop_comparison_code;
197
198 /* Forward declarations. */
199
200 static void init_reg_map PROTO((struct inline_remap *, int));
201 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx));
202 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
203 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
205 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
206 enum unroll_types, rtx, rtx, rtx, rtx));
207 void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
208 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
209 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
210 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
211 rtx, rtx, rtx, int));
212 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
213 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
214 static int verify_addresses PROTO((struct induction *, rtx, int));
215 static rtx remap_split_bivs PROTO((rtx));
216
217 /* Try to unroll one loop and split induction variables in the loop.
218
219 The loop is described by the arguments LOOP_END, INSN_COUNT, and
220 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
221 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
222 indicates whether information generated in the strength reduction pass
223 is available.
224
225 This function is intended to be called from within `strength_reduce'
226 in loop.c. */
227
228 void
229 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
230 strength_reduce_p)
231 rtx loop_end;
232 int insn_count;
233 rtx loop_start;
234 rtx end_insert_before;
235 int strength_reduce_p;
236 {
237 int i, j, temp;
238 int unroll_number = 1;
239 rtx copy_start, copy_end;
240 rtx insn, sequence, pattern, tem;
241 int max_labelno, max_insnno;
242 rtx insert_before;
243 struct inline_remap *map;
244 char *local_label;
245 char *local_regno;
246 int maxregnum;
247 int new_maxregnum;
248 rtx exit_label = 0;
249 rtx start_label;
250 struct iv_class *bl;
251 int splitting_not_safe = 0;
252 enum unroll_types unroll_type;
253 int loop_preconditioned = 0;
254 rtx safety_label;
255 /* This points to the last real insn in the loop, which should be either
256 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
257 jumps). */
258 rtx last_loop_insn;
259
260 /* Don't bother unrolling huge loops. Since the minimum factor is
261 two, loops greater than one half of MAX_UNROLLED_INSNS will never
262 be unrolled. */
263 if (insn_count > MAX_UNROLLED_INSNS / 2)
264 {
265 if (loop_dump_stream)
266 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
267 return;
268 }
269
270 /* When emitting debugger info, we can't unroll loops with unequal numbers
271 of block_beg and block_end notes, because that would unbalance the block
272 structure of the function. This can happen as a result of the
273 "if (foo) bar; else break;" optimization in jump.c. */
274 /* ??? Gcc has a general policy that -g is never supposed to change the code
275 that the compiler emits, so we must disable this optimization always,
276 even if debug info is not being output. This is rare, so this should
277 not be a significant performance problem. */
278
279 if (1 /* write_symbols != NO_DEBUG */)
280 {
281 int block_begins = 0;
282 int block_ends = 0;
283
284 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
285 {
286 if (GET_CODE (insn) == NOTE)
287 {
288 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
289 block_begins++;
290 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
291 block_ends++;
292 }
293 }
294
295 if (block_begins != block_ends)
296 {
297 if (loop_dump_stream)
298 fprintf (loop_dump_stream,
299 "Unrolling failure: Unbalanced block notes.\n");
300 return;
301 }
302 }
303
304 /* Determine type of unroll to perform. Depends on the number of iterations
305 and the size of the loop. */
306
307 /* If there is no strength reduce info, then set loop_n_iterations to zero.
308 This can happen if strength_reduce can't find any bivs in the loop.
309 A value of zero indicates that the number of iterations could not be
310 calculated. */
311
312 if (! strength_reduce_p)
313 loop_n_iterations = 0;
314
315 if (loop_dump_stream && loop_n_iterations > 0)
316 {
317 fputs ("Loop unrolling: ", loop_dump_stream);
318 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC, loop_n_iterations);
319 fputs (" iterations.\n", loop_dump_stream);
320 }
321
322 /* Find and save a pointer to the last nonnote insn in the loop. */
323
324 last_loop_insn = prev_nonnote_insn (loop_end);
325
326 /* Calculate how many times to unroll the loop. Indicate whether or
327 not the loop is being completely unrolled. */
328
329 if (loop_n_iterations == 1)
330 {
331 /* If number of iterations is exactly 1, then eliminate the compare and
332 branch at the end of the loop since they will never be taken.
333 Then return, since no other action is needed here. */
334
335 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
336 don't do anything. */
337
338 if (GET_CODE (last_loop_insn) == BARRIER)
339 {
340 /* Delete the jump insn. This will delete the barrier also. */
341 delete_insn (PREV_INSN (last_loop_insn));
342 }
343 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
344 {
345 #ifdef HAVE_cc0
346 /* The immediately preceding insn is a compare which must be
347 deleted. */
348 delete_insn (last_loop_insn);
349 delete_insn (PREV_INSN (last_loop_insn));
350 #else
351 /* The immediately preceding insn may not be the compare, so don't
352 delete it. */
353 delete_insn (last_loop_insn);
354 #endif
355 }
356 return;
357 }
358 else if (loop_n_iterations > 0
359 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
360 {
361 unroll_number = loop_n_iterations;
362 unroll_type = UNROLL_COMPLETELY;
363 }
364 else if (loop_n_iterations > 0)
365 {
366 /* Try to factor the number of iterations. Don't bother with the
367 general case, only using 2, 3, 5, and 7 will get 75% of all
368 numbers theoretically, and almost all in practice. */
369
370 for (i = 0; i < NUM_FACTORS; i++)
371 factors[i].count = 0;
372
373 temp = loop_n_iterations;
374 for (i = NUM_FACTORS - 1; i >= 0; i--)
375 while (temp % factors[i].factor == 0)
376 {
377 factors[i].count++;
378 temp = temp / factors[i].factor;
379 }
380
381 /* Start with the larger factors first so that we generally
382 get lots of unrolling. */
383
384 unroll_number = 1;
385 temp = insn_count;
386 for (i = 3; i >= 0; i--)
387 while (factors[i].count--)
388 {
389 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
390 {
391 unroll_number *= factors[i].factor;
392 temp *= factors[i].factor;
393 }
394 else
395 break;
396 }
397
398 /* If we couldn't find any factors, then unroll as in the normal
399 case. */
400 if (unroll_number == 1)
401 {
402 if (loop_dump_stream)
403 fprintf (loop_dump_stream,
404 "Loop unrolling: No factors found.\n");
405 }
406 else
407 unroll_type = UNROLL_MODULO;
408 }
409
410
411 /* Default case, calculate number of times to unroll loop based on its
412 size. */
413 if (unroll_number == 1)
414 {
415 if (8 * insn_count < MAX_UNROLLED_INSNS)
416 unroll_number = 8;
417 else if (4 * insn_count < MAX_UNROLLED_INSNS)
418 unroll_number = 4;
419 else
420 unroll_number = 2;
421
422 unroll_type = UNROLL_NAIVE;
423 }
424
425 /* Now we know how many times to unroll the loop. */
426
427 if (loop_dump_stream)
428 fprintf (loop_dump_stream,
429 "Unrolling loop %d times.\n", unroll_number);
430
431
432 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
433 {
434 /* Loops of these types can start with jump down to the exit condition
435 in rare circumstances.
436
437 Consider a pair of nested loops where the inner loop is part
438 of the exit code for the outer loop.
439
440 In this case jump.c will not duplicate the exit test for the outer
441 loop, so it will start with a jump to the exit code.
442
443 Then consider if the inner loop turns out to iterate once and
444 only once. We will end up deleting the jumps associated with
445 the inner loop. However, the loop notes are not removed from
446 the instruction stream.
447
448 And finally assume that we can compute the number of iterations
449 for the outer loop.
450
451 In this case unroll may want to unroll the outer loop even though
452 it starts with a jump to the outer loop's exit code.
453
454 We could try to optimize this case, but it hardly seems worth it.
455 Just return without unrolling the loop in such cases. */
456
457 insn = loop_start;
458 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
459 insn = NEXT_INSN (insn);
460 if (GET_CODE (insn) == JUMP_INSN)
461 return;
462 }
463
464 if (unroll_type == UNROLL_COMPLETELY)
465 {
466 /* Completely unrolling the loop: Delete the compare and branch at
467 the end (the last two instructions). This delete must done at the
468 very end of loop unrolling, to avoid problems with calls to
469 back_branch_in_range_p, which is called by find_splittable_regs.
470 All increments of splittable bivs/givs are changed to load constant
471 instructions. */
472
473 copy_start = loop_start;
474
475 /* Set insert_before to the instruction immediately after the JUMP_INSN
476 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
477 the loop will be correctly handled by copy_loop_body. */
478 insert_before = NEXT_INSN (last_loop_insn);
479
480 /* Set copy_end to the insn before the jump at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
483 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
484 {
485 #ifdef HAVE_cc0
486 /* The instruction immediately before the JUMP_INSN is a compare
487 instruction which we do not want to copy. */
488 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
489 #else
490 /* The instruction immediately before the JUMP_INSN may not be the
491 compare, so we must copy it. */
492 copy_end = PREV_INSN (last_loop_insn);
493 #endif
494 }
495 else
496 {
497 /* We currently can't unroll a loop if it doesn't end with a
498 JUMP_INSN. There would need to be a mechanism that recognizes
499 this case, and then inserts a jump after each loop body, which
500 jumps to after the last loop body. */
501 if (loop_dump_stream)
502 fprintf (loop_dump_stream,
503 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
504 return;
505 }
506 }
507 else if (unroll_type == UNROLL_MODULO)
508 {
509 /* Partially unrolling the loop: The compare and branch at the end
510 (the last two instructions) must remain. Don't copy the compare
511 and branch instructions at the end of the loop. Insert the unrolled
512 code immediately before the compare/branch at the end so that the
513 code will fall through to them as before. */
514
515 copy_start = loop_start;
516
517 /* Set insert_before to the jump insn at the end of the loop.
518 Set copy_end to before the jump insn at the end of the loop. */
519 if (GET_CODE (last_loop_insn) == BARRIER)
520 {
521 insert_before = PREV_INSN (last_loop_insn);
522 copy_end = PREV_INSN (insert_before);
523 }
524 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
525 {
526 #ifdef HAVE_cc0
527 /* The instruction immediately before the JUMP_INSN is a compare
528 instruction which we do not want to copy or delete. */
529 insert_before = PREV_INSN (last_loop_insn);
530 copy_end = PREV_INSN (insert_before);
531 #else
532 /* The instruction immediately before the JUMP_INSN may not be the
533 compare, so we must copy it. */
534 insert_before = last_loop_insn;
535 copy_end = PREV_INSN (last_loop_insn);
536 #endif
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549 }
550 else
551 {
552 /* Normal case: Must copy the compare and branch instructions at the
553 end of the loop. */
554
555 if (GET_CODE (last_loop_insn) == BARRIER)
556 {
557 /* Loop ends with an unconditional jump and a barrier.
558 Handle this like above, don't copy jump and barrier.
559 This is not strictly necessary, but doing so prevents generating
560 unconditional jumps to an immediately following label.
561
562 This will be corrected below if the target of this jump is
563 not the start_label. */
564
565 insert_before = PREV_INSN (last_loop_insn);
566 copy_end = PREV_INSN (insert_before);
567 }
568 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
569 {
570 /* Set insert_before to immediately after the JUMP_INSN, so that
571 NOTEs at the end of the loop will be correctly handled by
572 copy_loop_body. */
573 insert_before = NEXT_INSN (last_loop_insn);
574 copy_end = last_loop_insn;
575 }
576 else
577 {
578 /* We currently can't unroll a loop if it doesn't end with a
579 JUMP_INSN. There would need to be a mechanism that recognizes
580 this case, and then inserts a jump after each loop body, which
581 jumps to after the last loop body. */
582 if (loop_dump_stream)
583 fprintf (loop_dump_stream,
584 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
585 return;
586 }
587
588 /* If copying exit test branches because they can not be eliminated,
589 then must convert the fall through case of the branch to a jump past
590 the end of the loop. Create a label to emit after the loop and save
591 it for later use. Do not use the label after the loop, if any, since
592 it might be used by insns outside the loop, or there might be insns
593 added before it later by final_[bg]iv_value which must be after
594 the real exit label. */
595 exit_label = gen_label_rtx ();
596
597 insn = loop_start;
598 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
599 insn = NEXT_INSN (insn);
600
601 if (GET_CODE (insn) == JUMP_INSN)
602 {
603 /* The loop starts with a jump down to the exit condition test.
604 Start copying the loop after the barrier following this
605 jump insn. */
606 copy_start = NEXT_INSN (insn);
607
608 /* Splitting induction variables doesn't work when the loop is
609 entered via a jump to the bottom, because then we end up doing
610 a comparison against a new register for a split variable, but
611 we did not execute the set insn for the new register because
612 it was skipped over. */
613 splitting_not_safe = 1;
614 if (loop_dump_stream)
615 fprintf (loop_dump_stream,
616 "Splitting not safe, because loop not entered at top.\n");
617 }
618 else
619 copy_start = loop_start;
620 }
621
622 /* This should always be the first label in the loop. */
623 start_label = NEXT_INSN (copy_start);
624 /* There may be a line number note and/or a loop continue note here. */
625 while (GET_CODE (start_label) == NOTE)
626 start_label = NEXT_INSN (start_label);
627 if (GET_CODE (start_label) != CODE_LABEL)
628 {
629 /* This can happen as a result of jump threading. If the first insns in
630 the loop test the same condition as the loop's backward jump, or the
631 opposite condition, then the backward jump will be modified to point
632 to elsewhere, and the loop's start label is deleted.
633
634 This case currently can not be handled by the loop unrolling code. */
635
636 if (loop_dump_stream)
637 fprintf (loop_dump_stream,
638 "Unrolling failure: unknown insns between BEG note and loop label.\n");
639 return;
640 }
641 if (LABEL_NAME (start_label))
642 {
643 /* The jump optimization pass must have combined the original start label
644 with a named label for a goto. We can't unroll this case because
645 jumps which go to the named label must be handled differently than
646 jumps to the loop start, and it is impossible to differentiate them
647 in this case. */
648 if (loop_dump_stream)
649 fprintf (loop_dump_stream,
650 "Unrolling failure: loop start label is gone\n");
651 return;
652 }
653
654 if (unroll_type == UNROLL_NAIVE
655 && GET_CODE (last_loop_insn) == BARRIER
656 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
657 {
658 /* In this case, we must copy the jump and barrier, because they will
659 not be converted to jumps to an immediately following label. */
660
661 insert_before = NEXT_INSN (last_loop_insn);
662 copy_end = last_loop_insn;
663 }
664
665 if (unroll_type == UNROLL_NAIVE
666 && GET_CODE (last_loop_insn) == JUMP_INSN
667 && start_label != JUMP_LABEL (last_loop_insn))
668 {
669 /* ??? The loop ends with a conditional branch that does not branch back
670 to the loop start label. In this case, we must emit an unconditional
671 branch to the loop exit after emitting the final branch.
672 copy_loop_body does not have support for this currently, so we
673 give up. It doesn't seem worthwhile to unroll anyways since
674 unrolling would increase the number of branch instructions
675 executed. */
676 if (loop_dump_stream)
677 fprintf (loop_dump_stream,
678 "Unrolling failure: final conditional branch not to loop start\n");
679 return;
680 }
681
682 /* Allocate a translation table for the labels and insn numbers.
683 They will be filled in as we copy the insns in the loop. */
684
685 max_labelno = max_label_num ();
686 max_insnno = get_max_uid ();
687
688 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
689
690 map->integrating = 0;
691
692 /* Allocate the label map. */
693
694 if (max_labelno > 0)
695 {
696 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
697
698 local_label = (char *) alloca (max_labelno);
699 bzero (local_label, max_labelno);
700 }
701 else
702 map->label_map = 0;
703
704 /* Search the loop and mark all local labels, i.e. the ones which have to
705 be distinct labels when copied. For all labels which might be
706 non-local, set their label_map entries to point to themselves.
707 If they happen to be local their label_map entries will be overwritten
708 before the loop body is copied. The label_map entries for local labels
709 will be set to a different value each time the loop body is copied. */
710
711 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
712 {
713 rtx note;
714
715 if (GET_CODE (insn) == CODE_LABEL)
716 local_label[CODE_LABEL_NUMBER (insn)] = 1;
717 else if (GET_CODE (insn) == JUMP_INSN)
718 {
719 if (JUMP_LABEL (insn))
720 set_label_in_map (map,
721 CODE_LABEL_NUMBER (JUMP_LABEL (insn)),
722 JUMP_LABEL (insn));
723 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
724 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
725 {
726 rtx pat = PATTERN (insn);
727 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
728 int len = XVECLEN (pat, diff_vec_p);
729 rtx label;
730
731 for (i = 0; i < len; i++)
732 {
733 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
734 set_label_in_map (map,
735 CODE_LABEL_NUMBER (label),
736 label);
737 }
738 }
739 }
740 else if ((note = find_reg_note (insn, REG_LABEL, NULL_RTX)))
741 set_label_in_map (map, CODE_LABEL_NUMBER (XEXP (note, 0)),
742 XEXP (note, 0));
743 }
744
745 /* Allocate space for the insn map. */
746
747 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
748
749 /* Set this to zero, to indicate that we are doing loop unrolling,
750 not function inlining. */
751 map->inline_target = 0;
752
753 /* The register and constant maps depend on the number of registers
754 present, so the final maps can't be created until after
755 find_splittable_regs is called. However, they are needed for
756 preconditioning, so we create temporary maps when preconditioning
757 is performed. */
758
759 /* The preconditioning code may allocate two new pseudo registers. */
760 maxregnum = max_reg_num ();
761
762 /* Allocate and zero out the splittable_regs and addr_combined_regs
763 arrays. These must be zeroed here because they will be used if
764 loop preconditioning is performed, and must be zero for that case.
765
766 It is safe to do this here, since the extra registers created by the
767 preconditioning code and find_splittable_regs will never be used
768 to access the splittable_regs[] and addr_combined_regs[] arrays. */
769
770 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
771 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
772 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
773 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
774 addr_combined_regs
775 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
776 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
777 /* We must limit it to max_reg_before_loop, because only these pseudo
778 registers have valid regno_first_uid info. Any register created after
779 that is unlikely to be local to the loop anyways. */
780 local_regno = (char *) alloca (max_reg_before_loop);
781 bzero (local_regno, max_reg_before_loop);
782
783 /* Mark all local registers, i.e. the ones which are referenced only
784 inside the loop. */
785 if (INSN_UID (copy_end) < max_uid_for_loop)
786 {
787 int copy_start_luid = INSN_LUID (copy_start);
788 int copy_end_luid = INSN_LUID (copy_end);
789
790 /* If a register is used in the jump insn, we must not duplicate it
791 since it will also be used outside the loop. */
792 if (GET_CODE (copy_end) == JUMP_INSN)
793 copy_end_luid--;
794 /* If copy_start points to the NOTE that starts the loop, then we must
795 use the next luid, because invariant pseudo-regs moved out of the loop
796 have their lifetimes modified to start here, but they are not safe
797 to duplicate. */
798 if (copy_start == loop_start)
799 copy_start_luid++;
800
801 /* If a pseudo's lifetime is entirely contained within this loop, then we
802 can use a different pseudo in each unrolled copy of the loop. This
803 results in better code. */
804 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
805 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
806 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
807 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
808 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
809 {
810 /* However, we must also check for loop-carried dependencies.
811 If the value the pseudo has at the end of iteration X is
812 used by iteration X+1, then we can not use a different pseudo
813 for each unrolled copy of the loop. */
814 /* A pseudo is safe if regno_first_uid is a set, and this
815 set dominates all instructions from regno_first_uid to
816 regno_last_uid. */
817 /* ??? This check is simplistic. We would get better code if
818 this check was more sophisticated. */
819 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
820 copy_start, copy_end))
821 local_regno[j] = 1;
822
823 if (loop_dump_stream)
824 {
825 if (local_regno[j])
826 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
827 else
828 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
829 j);
830 }
831 }
832 }
833
834 /* If this loop requires exit tests when unrolled, check to see if we
835 can precondition the loop so as to make the exit tests unnecessary.
836 Just like variable splitting, this is not safe if the loop is entered
837 via a jump to the bottom. Also, can not do this if no strength
838 reduce info, because precondition_loop_p uses this info. */
839
840 /* Must copy the loop body for preconditioning before the following
841 find_splittable_regs call since that will emit insns which need to
842 be after the preconditioned loop copies, but immediately before the
843 unrolled loop copies. */
844
845 /* Also, it is not safe to split induction variables for the preconditioned
846 copies of the loop body. If we split induction variables, then the code
847 assumes that each induction variable can be represented as a function
848 of its initial value and the loop iteration number. This is not true
849 in this case, because the last preconditioned copy of the loop body
850 could be any iteration from the first up to the `unroll_number-1'th,
851 depending on the initial value of the iteration variable. Therefore
852 we can not split induction variables here, because we can not calculate
853 their value. Hence, this code must occur before find_splittable_regs
854 is called. */
855
856 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
857 {
858 rtx initial_value, final_value, increment;
859
860 if (precondition_loop_p (&initial_value, &final_value, &increment,
861 loop_start))
862 {
863 register rtx diff ;
864 enum machine_mode mode;
865 rtx *labels;
866 int abs_inc, neg_inc;
867
868 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
869
870 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
871 map->const_age_map = (unsigned *) alloca (maxregnum
872 * sizeof (unsigned));
873 map->const_equiv_map_size = maxregnum;
874 global_const_equiv_map = map->const_equiv_map;
875 global_const_equiv_map_size = maxregnum;
876
877 init_reg_map (map, maxregnum);
878
879 /* Limit loop unrolling to 4, since this will make 7 copies of
880 the loop body. */
881 if (unroll_number > 4)
882 unroll_number = 4;
883
884 /* Save the absolute value of the increment, and also whether or
885 not it is negative. */
886 neg_inc = 0;
887 abs_inc = INTVAL (increment);
888 if (abs_inc < 0)
889 {
890 abs_inc = - abs_inc;
891 neg_inc = 1;
892 }
893
894 start_sequence ();
895
896 /* Decide what mode to do these calculations in. Choose the larger
897 of final_value's mode and initial_value's mode, or a full-word if
898 both are constants. */
899 mode = GET_MODE (final_value);
900 if (mode == VOIDmode)
901 {
902 mode = GET_MODE (initial_value);
903 if (mode == VOIDmode)
904 mode = word_mode;
905 }
906 else if (mode != GET_MODE (initial_value)
907 && (GET_MODE_SIZE (mode)
908 < GET_MODE_SIZE (GET_MODE (initial_value))))
909 mode = GET_MODE (initial_value);
910
911 /* Calculate the difference between the final and initial values.
912 Final value may be a (plus (reg x) (const_int 1)) rtx.
913 Let the following cse pass simplify this if initial value is
914 a constant.
915
916 We must copy the final and initial values here to avoid
917 improperly shared rtl. */
918
919 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
920 copy_rtx (initial_value), NULL_RTX, 0,
921 OPTAB_LIB_WIDEN);
922
923 /* Now calculate (diff % (unroll * abs (increment))) by using an
924 and instruction. */
925 diff = expand_binop (GET_MODE (diff), and_optab, diff,
926 GEN_INT (unroll_number * abs_inc - 1),
927 NULL_RTX, 0, OPTAB_LIB_WIDEN);
928
929 /* Now emit a sequence of branches to jump to the proper precond
930 loop entry point. */
931
932 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
933 for (i = 0; i < unroll_number; i++)
934 labels[i] = gen_label_rtx ();
935
936 /* Check for the case where the initial value is greater than or
937 equal to the final value. In that case, we want to execute
938 exactly one loop iteration. The code below will fail for this
939 case. This check does not apply if the loop has a NE
940 comparison at the end. */
941
942 if (loop_comparison_code != NE)
943 {
944 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
945 NULL_RTX, mode, 0, 0);
946 if (neg_inc)
947 emit_jump_insn (gen_ble (labels[1]));
948 else
949 emit_jump_insn (gen_bge (labels[1]));
950 JUMP_LABEL (get_last_insn ()) = labels[1];
951 LABEL_NUSES (labels[1])++;
952 }
953
954 /* Assuming the unroll_number is 4, and the increment is 2, then
955 for a negative increment: for a positive increment:
956 diff = 0,1 precond 0 diff = 0,7 precond 0
957 diff = 2,3 precond 3 diff = 1,2 precond 1
958 diff = 4,5 precond 2 diff = 3,4 precond 2
959 diff = 6,7 precond 1 diff = 5,6 precond 3 */
960
961 /* We only need to emit (unroll_number - 1) branches here, the
962 last case just falls through to the following code. */
963
964 /* ??? This would give better code if we emitted a tree of branches
965 instead of the current linear list of branches. */
966
967 for (i = 0; i < unroll_number - 1; i++)
968 {
969 int cmp_const;
970 enum rtx_code cmp_code;
971
972 /* For negative increments, must invert the constant compared
973 against, except when comparing against zero. */
974 if (i == 0)
975 {
976 cmp_const = 0;
977 cmp_code = EQ;
978 }
979 else if (neg_inc)
980 {
981 cmp_const = unroll_number - i;
982 cmp_code = GE;
983 }
984 else
985 {
986 cmp_const = i;
987 cmp_code = LE;
988 }
989
990 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
991 cmp_code, NULL_RTX, mode, 0, 0);
992
993 if (i == 0)
994 emit_jump_insn (gen_beq (labels[i]));
995 else if (neg_inc)
996 emit_jump_insn (gen_bge (labels[i]));
997 else
998 emit_jump_insn (gen_ble (labels[i]));
999 JUMP_LABEL (get_last_insn ()) = labels[i];
1000 LABEL_NUSES (labels[i])++;
1001 }
1002
1003 /* If the increment is greater than one, then we need another branch,
1004 to handle other cases equivalent to 0. */
1005
1006 /* ??? This should be merged into the code above somehow to help
1007 simplify the code here, and reduce the number of branches emitted.
1008 For the negative increment case, the branch here could easily
1009 be merged with the `0' case branch above. For the positive
1010 increment case, it is not clear how this can be simplified. */
1011
1012 if (abs_inc != 1)
1013 {
1014 int cmp_const;
1015 enum rtx_code cmp_code;
1016
1017 if (neg_inc)
1018 {
1019 cmp_const = abs_inc - 1;
1020 cmp_code = LE;
1021 }
1022 else
1023 {
1024 cmp_const = abs_inc * (unroll_number - 1) + 1;
1025 cmp_code = GE;
1026 }
1027
1028 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
1029 mode, 0, 0);
1030
1031 if (neg_inc)
1032 emit_jump_insn (gen_ble (labels[0]));
1033 else
1034 emit_jump_insn (gen_bge (labels[0]));
1035 JUMP_LABEL (get_last_insn ()) = labels[0];
1036 LABEL_NUSES (labels[0])++;
1037 }
1038
1039 sequence = gen_sequence ();
1040 end_sequence ();
1041 emit_insn_before (sequence, loop_start);
1042
1043 /* Only the last copy of the loop body here needs the exit
1044 test, so set copy_end to exclude the compare/branch here,
1045 and then reset it inside the loop when get to the last
1046 copy. */
1047
1048 if (GET_CODE (last_loop_insn) == BARRIER)
1049 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1050 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1051 {
1052 #ifdef HAVE_cc0
1053 /* The immediately preceding insn is a compare which we do not
1054 want to copy. */
1055 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1056 #else
1057 /* The immediately preceding insn may not be a compare, so we
1058 must copy it. */
1059 copy_end = PREV_INSN (last_loop_insn);
1060 #endif
1061 }
1062 else
1063 abort ();
1064
1065 for (i = 1; i < unroll_number; i++)
1066 {
1067 emit_label_after (labels[unroll_number - i],
1068 PREV_INSN (loop_start));
1069
1070 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1071 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1072 bzero ((char *) map->const_age_map,
1073 maxregnum * sizeof (unsigned));
1074 map->const_age = 0;
1075
1076 for (j = 0; j < max_labelno; j++)
1077 if (local_label[j])
1078 set_label_in_map (map, j, gen_label_rtx ());
1079
1080 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1081 if (local_regno[j])
1082 {
1083 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1084 record_base_value (REGNO (map->reg_map[j]),
1085 regno_reg_rtx[j], 0);
1086 }
1087 /* The last copy needs the compare/branch insns at the end,
1088 so reset copy_end here if the loop ends with a conditional
1089 branch. */
1090
1091 if (i == unroll_number - 1)
1092 {
1093 if (GET_CODE (last_loop_insn) == BARRIER)
1094 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1095 else
1096 copy_end = last_loop_insn;
1097 }
1098
1099 /* None of the copies are the `last_iteration', so just
1100 pass zero for that parameter. */
1101 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1102 unroll_type, start_label, loop_end,
1103 loop_start, copy_end);
1104 }
1105 emit_label_after (labels[0], PREV_INSN (loop_start));
1106
1107 if (GET_CODE (last_loop_insn) == BARRIER)
1108 {
1109 insert_before = PREV_INSN (last_loop_insn);
1110 copy_end = PREV_INSN (insert_before);
1111 }
1112 else
1113 {
1114 #ifdef HAVE_cc0
1115 /* The immediately preceding insn is a compare which we do not
1116 want to copy. */
1117 insert_before = PREV_INSN (last_loop_insn);
1118 copy_end = PREV_INSN (insert_before);
1119 #else
1120 /* The immediately preceding insn may not be a compare, so we
1121 must copy it. */
1122 insert_before = last_loop_insn;
1123 copy_end = PREV_INSN (last_loop_insn);
1124 #endif
1125 }
1126
1127 /* Set unroll type to MODULO now. */
1128 unroll_type = UNROLL_MODULO;
1129 loop_preconditioned = 1;
1130 }
1131 }
1132
1133 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1134 the loop unless all loops are being unrolled. */
1135 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1136 {
1137 if (loop_dump_stream)
1138 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1139 return;
1140 }
1141
1142 /* At this point, we are guaranteed to unroll the loop. */
1143
1144 /* Keep track of the unroll factor for each loop. */
1145 if (unroll_type == UNROLL_COMPLETELY)
1146 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = -1;
1147 else
1148 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = unroll_number;
1149
1150
1151 /* For each biv and giv, determine whether it can be safely split into
1152 a different variable for each unrolled copy of the loop body.
1153 We precalculate and save this info here, since computing it is
1154 expensive.
1155
1156 Do this before deleting any instructions from the loop, so that
1157 back_branch_in_range_p will work correctly. */
1158
1159 if (splitting_not_safe)
1160 temp = 0;
1161 else
1162 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1163 end_insert_before, unroll_number);
1164
1165 /* find_splittable_regs may have created some new registers, so must
1166 reallocate the reg_map with the new larger size, and must realloc
1167 the constant maps also. */
1168
1169 maxregnum = max_reg_num ();
1170 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1171
1172 init_reg_map (map, maxregnum);
1173
1174 /* Space is needed in some of the map for new registers, so new_maxregnum
1175 is an (over)estimate of how many registers will exist at the end. */
1176 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1177
1178 /* Must realloc space for the constant maps, because the number of registers
1179 may have changed. */
1180
1181 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1182 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1183
1184 map->const_equiv_map_size = new_maxregnum;
1185 global_const_equiv_map = map->const_equiv_map;
1186 global_const_equiv_map_size = new_maxregnum;
1187
1188 /* Search the list of bivs and givs to find ones which need to be remapped
1189 when split, and set their reg_map entry appropriately. */
1190
1191 for (bl = loop_iv_list; bl; bl = bl->next)
1192 {
1193 if (REGNO (bl->biv->src_reg) != bl->regno)
1194 map->reg_map[bl->regno] = bl->biv->src_reg;
1195 #if 0
1196 /* Currently, non-reduced/final-value givs are never split. */
1197 for (v = bl->giv; v; v = v->next_iv)
1198 if (REGNO (v->src_reg) != bl->regno)
1199 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1200 #endif
1201 }
1202
1203 /* Use our current register alignment and pointer flags. */
1204 map->regno_pointer_flag = regno_pointer_flag;
1205 map->regno_pointer_align = regno_pointer_align;
1206
1207 /* If the loop is being partially unrolled, and the iteration variables
1208 are being split, and are being renamed for the split, then must fix up
1209 the compare/jump instruction at the end of the loop to refer to the new
1210 registers. This compare isn't copied, so the registers used in it
1211 will never be replaced if it isn't done here. */
1212
1213 if (unroll_type == UNROLL_MODULO)
1214 {
1215 insn = NEXT_INSN (copy_end);
1216 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1217 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1218 }
1219
1220 /* For unroll_number - 1 times, make a copy of each instruction
1221 between copy_start and copy_end, and insert these new instructions
1222 before the end of the loop. */
1223
1224 for (i = 0; i < unroll_number; i++)
1225 {
1226 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1227 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1228 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1229 map->const_age = 0;
1230
1231 for (j = 0; j < max_labelno; j++)
1232 if (local_label[j])
1233 set_label_in_map (map, j, gen_label_rtx ());
1234
1235 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1236 if (local_regno[j])
1237 {
1238 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1239 record_base_value (REGNO (map->reg_map[j]),
1240 regno_reg_rtx[j], 0);
1241 }
1242
1243 /* If loop starts with a branch to the test, then fix it so that
1244 it points to the test of the first unrolled copy of the loop. */
1245 if (i == 0 && loop_start != copy_start)
1246 {
1247 insn = PREV_INSN (copy_start);
1248 pattern = PATTERN (insn);
1249
1250 tem = get_label_from_map (map,
1251 CODE_LABEL_NUMBER
1252 (XEXP (SET_SRC (pattern), 0)));
1253 SET_SRC (pattern) = gen_rtx_LABEL_REF (VOIDmode, tem);
1254
1255 /* Set the jump label so that it can be used by later loop unrolling
1256 passes. */
1257 JUMP_LABEL (insn) = tem;
1258 LABEL_NUSES (tem)++;
1259 }
1260
1261 copy_loop_body (copy_start, copy_end, map, exit_label,
1262 i == unroll_number - 1, unroll_type, start_label,
1263 loop_end, insert_before, insert_before);
1264 }
1265
1266 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1267 insn to be deleted. This prevents any runaway delete_insn call from
1268 more insns that it should, as it always stops at a CODE_LABEL. */
1269
1270 /* Delete the compare and branch at the end of the loop if completely
1271 unrolling the loop. Deleting the backward branch at the end also
1272 deletes the code label at the start of the loop. This is done at
1273 the very end to avoid problems with back_branch_in_range_p. */
1274
1275 if (unroll_type == UNROLL_COMPLETELY)
1276 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1277 else
1278 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1279
1280 /* Delete all of the original loop instructions. Don't delete the
1281 LOOP_BEG note, or the first code label in the loop. */
1282
1283 insn = NEXT_INSN (copy_start);
1284 while (insn != safety_label)
1285 {
1286 if (insn != start_label)
1287 insn = delete_insn (insn);
1288 else
1289 insn = NEXT_INSN (insn);
1290 }
1291
1292 /* Can now delete the 'safety' label emitted to protect us from runaway
1293 delete_insn calls. */
1294 if (INSN_DELETED_P (safety_label))
1295 abort ();
1296 delete_insn (safety_label);
1297
1298 /* If exit_label exists, emit it after the loop. Doing the emit here
1299 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1300 This is needed so that mostly_true_jump in reorg.c will treat jumps
1301 to this loop end label correctly, i.e. predict that they are usually
1302 not taken. */
1303 if (exit_label)
1304 emit_label_after (exit_label, loop_end);
1305 }
1306 \f
1307 /* Return true if the loop can be safely, and profitably, preconditioned
1308 so that the unrolled copies of the loop body don't need exit tests.
1309
1310 This only works if final_value, initial_value and increment can be
1311 determined, and if increment is a constant power of 2.
1312 If increment is not a power of 2, then the preconditioning modulo
1313 operation would require a real modulo instead of a boolean AND, and this
1314 is not considered `profitable'. */
1315
1316 /* ??? If the loop is known to be executed very many times, or the machine
1317 has a very cheap divide instruction, then preconditioning is a win even
1318 when the increment is not a power of 2. Use RTX_COST to compute
1319 whether divide is cheap. */
1320
1321 static int
1322 precondition_loop_p (initial_value, final_value, increment, loop_start)
1323 rtx *initial_value, *final_value, *increment;
1324 rtx loop_start;
1325 {
1326
1327 if (loop_n_iterations > 0)
1328 {
1329 *initial_value = const0_rtx;
1330 *increment = const1_rtx;
1331 *final_value = GEN_INT (loop_n_iterations);
1332
1333 if (loop_dump_stream)
1334 {
1335 fputs ("Preconditioning: Success, number of iterations known, ",
1336 loop_dump_stream);
1337 fprintf (loop_dump_stream, HOST_WIDE_INT_PRINT_DEC,
1338 loop_n_iterations);
1339 fputs (".\n", loop_dump_stream);
1340 }
1341 return 1;
1342 }
1343
1344 if (loop_initial_value == 0)
1345 {
1346 if (loop_dump_stream)
1347 fprintf (loop_dump_stream,
1348 "Preconditioning: Could not find initial value.\n");
1349 return 0;
1350 }
1351 else if (loop_increment == 0)
1352 {
1353 if (loop_dump_stream)
1354 fprintf (loop_dump_stream,
1355 "Preconditioning: Could not find increment value.\n");
1356 return 0;
1357 }
1358 else if (GET_CODE (loop_increment) != CONST_INT)
1359 {
1360 if (loop_dump_stream)
1361 fprintf (loop_dump_stream,
1362 "Preconditioning: Increment not a constant.\n");
1363 return 0;
1364 }
1365 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1366 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1367 {
1368 if (loop_dump_stream)
1369 fprintf (loop_dump_stream,
1370 "Preconditioning: Increment not a constant power of 2.\n");
1371 return 0;
1372 }
1373
1374 /* Unsigned_compare and compare_dir can be ignored here, since they do
1375 not matter for preconditioning. */
1376
1377 if (loop_final_value == 0)
1378 {
1379 if (loop_dump_stream)
1380 fprintf (loop_dump_stream,
1381 "Preconditioning: EQ comparison loop.\n");
1382 return 0;
1383 }
1384
1385 /* Must ensure that final_value is invariant, so call invariant_p to
1386 check. Before doing so, must check regno against max_reg_before_loop
1387 to make sure that the register is in the range covered by invariant_p.
1388 If it isn't, then it is most likely a biv/giv which by definition are
1389 not invariant. */
1390 if ((GET_CODE (loop_final_value) == REG
1391 && REGNO (loop_final_value) >= max_reg_before_loop)
1392 || (GET_CODE (loop_final_value) == PLUS
1393 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1394 || ! invariant_p (loop_final_value))
1395 {
1396 if (loop_dump_stream)
1397 fprintf (loop_dump_stream,
1398 "Preconditioning: Final value not invariant.\n");
1399 return 0;
1400 }
1401
1402 /* Fail for floating point values, since the caller of this function
1403 does not have code to deal with them. */
1404 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1405 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1406 {
1407 if (loop_dump_stream)
1408 fprintf (loop_dump_stream,
1409 "Preconditioning: Floating point final or initial value.\n");
1410 return 0;
1411 }
1412
1413 /* Now set initial_value to be the iteration_var, since that may be a
1414 simpler expression, and is guaranteed to be correct if all of the
1415 above tests succeed.
1416
1417 We can not use the initial_value as calculated, because it will be
1418 one too small for loops of the form "while (i-- > 0)". We can not
1419 emit code before the loop_skip_over insns to fix this problem as this
1420 will then give a number one too large for loops of the form
1421 "while (--i > 0)".
1422
1423 Note that all loops that reach here are entered at the top, because
1424 this function is not called if the loop starts with a jump. */
1425
1426 /* Fail if loop_iteration_var is not live before loop_start, since we need
1427 to test its value in the preconditioning code. */
1428
1429 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1430 > INSN_LUID (loop_start))
1431 {
1432 if (loop_dump_stream)
1433 fprintf (loop_dump_stream,
1434 "Preconditioning: Iteration var not live before loop start.\n");
1435 return 0;
1436 }
1437
1438 *initial_value = loop_iteration_var;
1439 *increment = loop_increment;
1440 *final_value = loop_final_value;
1441
1442 /* Success! */
1443 if (loop_dump_stream)
1444 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1445 return 1;
1446 }
1447
1448
1449 /* All pseudo-registers must be mapped to themselves. Two hard registers
1450 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1451 REGNUM, to avoid function-inlining specific conversions of these
1452 registers. All other hard regs can not be mapped because they may be
1453 used with different
1454 modes. */
1455
1456 static void
1457 init_reg_map (map, maxregnum)
1458 struct inline_remap *map;
1459 int maxregnum;
1460 {
1461 int i;
1462
1463 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1464 map->reg_map[i] = regno_reg_rtx[i];
1465 /* Just clear the rest of the entries. */
1466 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1467 map->reg_map[i] = 0;
1468
1469 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1470 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1471 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1472 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1473 }
1474 \f
1475 /* Strength-reduction will often emit code for optimized biv/givs which
1476 calculates their value in a temporary register, and then copies the result
1477 to the iv. This procedure reconstructs the pattern computing the iv;
1478 verifying that all operands are of the proper form.
1479
1480 PATTERN must be the result of single_set.
1481 The return value is the amount that the giv is incremented by. */
1482
1483 static rtx
1484 calculate_giv_inc (pattern, src_insn, regno)
1485 rtx pattern, src_insn;
1486 int regno;
1487 {
1488 rtx increment;
1489 rtx increment_total = 0;
1490 int tries = 0;
1491
1492 retry:
1493 /* Verify that we have an increment insn here. First check for a plus
1494 as the set source. */
1495 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1496 {
1497 /* SR sometimes computes the new giv value in a temp, then copies it
1498 to the new_reg. */
1499 src_insn = PREV_INSN (src_insn);
1500 pattern = PATTERN (src_insn);
1501 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1502 abort ();
1503
1504 /* The last insn emitted is not needed, so delete it to avoid confusing
1505 the second cse pass. This insn sets the giv unnecessarily. */
1506 delete_insn (get_last_insn ());
1507 }
1508
1509 /* Verify that we have a constant as the second operand of the plus. */
1510 increment = XEXP (SET_SRC (pattern), 1);
1511 if (GET_CODE (increment) != CONST_INT)
1512 {
1513 /* SR sometimes puts the constant in a register, especially if it is
1514 too big to be an add immed operand. */
1515 src_insn = PREV_INSN (src_insn);
1516 increment = SET_SRC (PATTERN (src_insn));
1517
1518 /* SR may have used LO_SUM to compute the constant if it is too large
1519 for a load immed operand. In this case, the constant is in operand
1520 one of the LO_SUM rtx. */
1521 if (GET_CODE (increment) == LO_SUM)
1522 increment = XEXP (increment, 1);
1523
1524 /* Some ports store large constants in memory and add a REG_EQUAL
1525 note to the store insn. */
1526 else if (GET_CODE (increment) == MEM)
1527 {
1528 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1529 if (note)
1530 increment = XEXP (note, 0);
1531 }
1532
1533 else if (GET_CODE (increment) == IOR
1534 || GET_CODE (increment) == ASHIFT
1535 || GET_CODE (increment) == PLUS)
1536 {
1537 /* The rs6000 port loads some constants with IOR.
1538 The alpha port loads some constants with ASHIFT and PLUS. */
1539 rtx second_part = XEXP (increment, 1);
1540 enum rtx_code code = GET_CODE (increment);
1541
1542 src_insn = PREV_INSN (src_insn);
1543 increment = SET_SRC (PATTERN (src_insn));
1544 /* Don't need the last insn anymore. */
1545 delete_insn (get_last_insn ());
1546
1547 if (GET_CODE (second_part) != CONST_INT
1548 || GET_CODE (increment) != CONST_INT)
1549 abort ();
1550
1551 if (code == IOR)
1552 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1553 else if (code == PLUS)
1554 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1555 else
1556 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1557 }
1558
1559 if (GET_CODE (increment) != CONST_INT)
1560 abort ();
1561
1562 /* The insn loading the constant into a register is no longer needed,
1563 so delete it. */
1564 delete_insn (get_last_insn ());
1565 }
1566
1567 if (increment_total)
1568 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1569 else
1570 increment_total = increment;
1571
1572 /* Check that the source register is the same as the register we expected
1573 to see as the source. If not, something is seriously wrong. */
1574 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1575 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1576 {
1577 /* Some machines (e.g. the romp), may emit two add instructions for
1578 certain constants, so lets try looking for another add immediately
1579 before this one if we have only seen one add insn so far. */
1580
1581 if (tries == 0)
1582 {
1583 tries++;
1584
1585 src_insn = PREV_INSN (src_insn);
1586 pattern = PATTERN (src_insn);
1587
1588 delete_insn (get_last_insn ());
1589
1590 goto retry;
1591 }
1592
1593 abort ();
1594 }
1595
1596 return increment_total;
1597 }
1598
1599 /* Copy REG_NOTES, except for insn references, because not all insn_map
1600 entries are valid yet. We do need to copy registers now though, because
1601 the reg_map entries can change during copying. */
1602
1603 static rtx
1604 initial_reg_note_copy (notes, map)
1605 rtx notes;
1606 struct inline_remap *map;
1607 {
1608 rtx copy;
1609
1610 if (notes == 0)
1611 return 0;
1612
1613 copy = rtx_alloc (GET_CODE (notes));
1614 PUT_MODE (copy, GET_MODE (notes));
1615
1616 if (GET_CODE (notes) == EXPR_LIST)
1617 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1618 else if (GET_CODE (notes) == INSN_LIST)
1619 /* Don't substitute for these yet. */
1620 XEXP (copy, 0) = XEXP (notes, 0);
1621 else
1622 abort ();
1623
1624 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1625
1626 return copy;
1627 }
1628
1629 /* Fixup insn references in copied REG_NOTES. */
1630
1631 static void
1632 final_reg_note_copy (notes, map)
1633 rtx notes;
1634 struct inline_remap *map;
1635 {
1636 rtx note;
1637
1638 for (note = notes; note; note = XEXP (note, 1))
1639 if (GET_CODE (note) == INSN_LIST)
1640 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1641 }
1642
1643 /* Copy each instruction in the loop, substituting from map as appropriate.
1644 This is very similar to a loop in expand_inline_function. */
1645
1646 static void
1647 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1648 unroll_type, start_label, loop_end, insert_before,
1649 copy_notes_from)
1650 rtx copy_start, copy_end;
1651 struct inline_remap *map;
1652 rtx exit_label;
1653 int last_iteration;
1654 enum unroll_types unroll_type;
1655 rtx start_label, loop_end, insert_before, copy_notes_from;
1656 {
1657 rtx insn, pattern;
1658 rtx set, tem, copy;
1659 int dest_reg_was_split, i;
1660 #ifdef HAVE_cc0
1661 rtx cc0_insn = 0;
1662 #endif
1663 rtx final_label = 0;
1664 rtx giv_inc, giv_dest_reg, giv_src_reg;
1665
1666 /* If this isn't the last iteration, then map any references to the
1667 start_label to final_label. Final label will then be emitted immediately
1668 after the end of this loop body if it was ever used.
1669
1670 If this is the last iteration, then map references to the start_label
1671 to itself. */
1672 if (! last_iteration)
1673 {
1674 final_label = gen_label_rtx ();
1675 set_label_in_map (map, CODE_LABEL_NUMBER (start_label),
1676 final_label);
1677 }
1678 else
1679 set_label_in_map (map, CODE_LABEL_NUMBER (start_label), start_label);
1680
1681 start_sequence ();
1682
1683 insn = copy_start;
1684 do
1685 {
1686 insn = NEXT_INSN (insn);
1687
1688 map->orig_asm_operands_vector = 0;
1689
1690 switch (GET_CODE (insn))
1691 {
1692 case INSN:
1693 pattern = PATTERN (insn);
1694 copy = 0;
1695 giv_inc = 0;
1696
1697 /* Check to see if this is a giv that has been combined with
1698 some split address givs. (Combined in the sense that
1699 `combine_givs' in loop.c has put two givs in the same register.)
1700 In this case, we must search all givs based on the same biv to
1701 find the address givs. Then split the address givs.
1702 Do this before splitting the giv, since that may map the
1703 SET_DEST to a new register. */
1704
1705 if ((set = single_set (insn))
1706 && GET_CODE (SET_DEST (set)) == REG
1707 && addr_combined_regs[REGNO (SET_DEST (set))])
1708 {
1709 struct iv_class *bl;
1710 struct induction *v, *tv;
1711 int regno = REGNO (SET_DEST (set));
1712
1713 v = addr_combined_regs[REGNO (SET_DEST (set))];
1714 bl = reg_biv_class[REGNO (v->src_reg)];
1715
1716 /* Although the giv_inc amount is not needed here, we must call
1717 calculate_giv_inc here since it might try to delete the
1718 last insn emitted. If we wait until later to call it,
1719 we might accidentally delete insns generated immediately
1720 below by emit_unrolled_add. */
1721
1722 giv_inc = calculate_giv_inc (set, insn, regno);
1723
1724 /* Now find all address giv's that were combined with this
1725 giv 'v'. */
1726 for (tv = bl->giv; tv; tv = tv->next_iv)
1727 if (tv->giv_type == DEST_ADDR && tv->same == v)
1728 {
1729 int this_giv_inc;
1730
1731 /* If this DEST_ADDR giv was not split, then ignore it. */
1732 if (*tv->location != tv->dest_reg)
1733 continue;
1734
1735 /* Scale this_giv_inc if the multiplicative factors of
1736 the two givs are different. */
1737 this_giv_inc = INTVAL (giv_inc);
1738 if (tv->mult_val != v->mult_val)
1739 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1740 * INTVAL (tv->mult_val));
1741
1742 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1743 *tv->location = tv->dest_reg;
1744
1745 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1746 {
1747 /* Must emit an insn to increment the split address
1748 giv. Add in the const_adjust field in case there
1749 was a constant eliminated from the address. */
1750 rtx value, dest_reg;
1751
1752 /* tv->dest_reg will be either a bare register,
1753 or else a register plus a constant. */
1754 if (GET_CODE (tv->dest_reg) == REG)
1755 dest_reg = tv->dest_reg;
1756 else
1757 dest_reg = XEXP (tv->dest_reg, 0);
1758
1759 /* Check for shared address givs, and avoid
1760 incrementing the shared pseudo reg more than
1761 once. */
1762 if (! tv->same_insn && ! tv->shared)
1763 {
1764 /* tv->dest_reg may actually be a (PLUS (REG)
1765 (CONST)) here, so we must call plus_constant
1766 to add the const_adjust amount before calling
1767 emit_unrolled_add below. */
1768 value = plus_constant (tv->dest_reg,
1769 tv->const_adjust);
1770
1771 /* The constant could be too large for an add
1772 immediate, so can't directly emit an insn
1773 here. */
1774 emit_unrolled_add (dest_reg, XEXP (value, 0),
1775 XEXP (value, 1));
1776 }
1777
1778 /* Reset the giv to be just the register again, in case
1779 it is used after the set we have just emitted.
1780 We must subtract the const_adjust factor added in
1781 above. */
1782 tv->dest_reg = plus_constant (dest_reg,
1783 - tv->const_adjust);
1784 *tv->location = tv->dest_reg;
1785 }
1786 }
1787 }
1788
1789 /* If this is a setting of a splittable variable, then determine
1790 how to split the variable, create a new set based on this split,
1791 and set up the reg_map so that later uses of the variable will
1792 use the new split variable. */
1793
1794 dest_reg_was_split = 0;
1795
1796 if ((set = single_set (insn))
1797 && GET_CODE (SET_DEST (set)) == REG
1798 && splittable_regs[REGNO (SET_DEST (set))])
1799 {
1800 int regno = REGNO (SET_DEST (set));
1801
1802 dest_reg_was_split = 1;
1803
1804 /* Compute the increment value for the giv, if it wasn't
1805 already computed above. */
1806
1807 if (giv_inc == 0)
1808 giv_inc = calculate_giv_inc (set, insn, regno);
1809 giv_dest_reg = SET_DEST (set);
1810 giv_src_reg = SET_DEST (set);
1811
1812 if (unroll_type == UNROLL_COMPLETELY)
1813 {
1814 /* Completely unrolling the loop. Set the induction
1815 variable to a known constant value. */
1816
1817 /* The value in splittable_regs may be an invariant
1818 value, so we must use plus_constant here. */
1819 splittable_regs[regno]
1820 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1821
1822 if (GET_CODE (splittable_regs[regno]) == PLUS)
1823 {
1824 giv_src_reg = XEXP (splittable_regs[regno], 0);
1825 giv_inc = XEXP (splittable_regs[regno], 1);
1826 }
1827 else
1828 {
1829 /* The splittable_regs value must be a REG or a
1830 CONST_INT, so put the entire value in the giv_src_reg
1831 variable. */
1832 giv_src_reg = splittable_regs[regno];
1833 giv_inc = const0_rtx;
1834 }
1835 }
1836 else
1837 {
1838 /* Partially unrolling loop. Create a new pseudo
1839 register for the iteration variable, and set it to
1840 be a constant plus the original register. Except
1841 on the last iteration, when the result has to
1842 go back into the original iteration var register. */
1843
1844 /* Handle bivs which must be mapped to a new register
1845 when split. This happens for bivs which need their
1846 final value set before loop entry. The new register
1847 for the biv was stored in the biv's first struct
1848 induction entry by find_splittable_regs. */
1849
1850 if (regno < max_reg_before_loop
1851 && reg_iv_type[regno] == BASIC_INDUCT)
1852 {
1853 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1854 giv_dest_reg = giv_src_reg;
1855 }
1856
1857 #if 0
1858 /* If non-reduced/final-value givs were split, then
1859 this would have to remap those givs also. See
1860 find_splittable_regs. */
1861 #endif
1862
1863 splittable_regs[regno]
1864 = GEN_INT (INTVAL (giv_inc)
1865 + INTVAL (splittable_regs[regno]));
1866 giv_inc = splittable_regs[regno];
1867
1868 /* Now split the induction variable by changing the dest
1869 of this insn to a new register, and setting its
1870 reg_map entry to point to this new register.
1871
1872 If this is the last iteration, and this is the last insn
1873 that will update the iv, then reuse the original dest,
1874 to ensure that the iv will have the proper value when
1875 the loop exits or repeats.
1876
1877 Using splittable_regs_updates here like this is safe,
1878 because it can only be greater than one if all
1879 instructions modifying the iv are always executed in
1880 order. */
1881
1882 if (! last_iteration
1883 || (splittable_regs_updates[regno]-- != 1))
1884 {
1885 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1886 giv_dest_reg = tem;
1887 map->reg_map[regno] = tem;
1888 record_base_value (REGNO (tem),
1889 giv_inc == const0_rtx
1890 ? giv_src_reg
1891 : gen_rtx_PLUS (GET_MODE (giv_src_reg),
1892 giv_src_reg, giv_inc),
1893 1);
1894 }
1895 else
1896 map->reg_map[regno] = giv_src_reg;
1897 }
1898
1899 /* The constant being added could be too large for an add
1900 immediate, so can't directly emit an insn here. */
1901 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1902 copy = get_last_insn ();
1903 pattern = PATTERN (copy);
1904 }
1905 else
1906 {
1907 pattern = copy_rtx_and_substitute (pattern, map);
1908 copy = emit_insn (pattern);
1909 }
1910 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1911
1912 #ifdef HAVE_cc0
1913 /* If this insn is setting CC0, it may need to look at
1914 the insn that uses CC0 to see what type of insn it is.
1915 In that case, the call to recog via validate_change will
1916 fail. So don't substitute constants here. Instead,
1917 do it when we emit the following insn.
1918
1919 For example, see the pyr.md file. That machine has signed and
1920 unsigned compares. The compare patterns must check the
1921 following branch insn to see which what kind of compare to
1922 emit.
1923
1924 If the previous insn set CC0, substitute constants on it as
1925 well. */
1926 if (sets_cc0_p (PATTERN (copy)) != 0)
1927 cc0_insn = copy;
1928 else
1929 {
1930 if (cc0_insn)
1931 try_constants (cc0_insn, map);
1932 cc0_insn = 0;
1933 try_constants (copy, map);
1934 }
1935 #else
1936 try_constants (copy, map);
1937 #endif
1938
1939 /* Make split induction variable constants `permanent' since we
1940 know there are no backward branches across iteration variable
1941 settings which would invalidate this. */
1942 if (dest_reg_was_split)
1943 {
1944 int regno = REGNO (SET_DEST (pattern));
1945
1946 if (regno < map->const_equiv_map_size
1947 && map->const_age_map[regno] == map->const_age)
1948 map->const_age_map[regno] = -1;
1949 }
1950 break;
1951
1952 case JUMP_INSN:
1953 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1954 copy = emit_jump_insn (pattern);
1955 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1956
1957 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1958 && ! last_iteration)
1959 {
1960 /* This is a branch to the beginning of the loop; this is the
1961 last insn being copied; and this is not the last iteration.
1962 In this case, we want to change the original fall through
1963 case to be a branch past the end of the loop, and the
1964 original jump label case to fall_through. */
1965
1966 if (invert_exp (pattern, copy))
1967 {
1968 if (! redirect_exp (&pattern,
1969 get_label_from_map (map,
1970 CODE_LABEL_NUMBER
1971 (JUMP_LABEL (insn))),
1972 exit_label, copy))
1973 abort ();
1974 }
1975 else
1976 {
1977 rtx jmp;
1978 rtx lab = gen_label_rtx ();
1979 /* Can't do it by reversing the jump (probably because we
1980 couldn't reverse the conditions), so emit a new
1981 jump_insn after COPY, and redirect the jump around
1982 that. */
1983 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1984 jmp = emit_barrier_after (jmp);
1985 emit_label_after (lab, jmp);
1986 LABEL_NUSES (lab) = 0;
1987 if (! redirect_exp (&pattern,
1988 get_label_from_map (map,
1989 CODE_LABEL_NUMBER
1990 (JUMP_LABEL (insn))),
1991 lab, copy))
1992 abort ();
1993 }
1994 }
1995
1996 #ifdef HAVE_cc0
1997 if (cc0_insn)
1998 try_constants (cc0_insn, map);
1999 cc0_insn = 0;
2000 #endif
2001 try_constants (copy, map);
2002
2003 /* Set the jump label of COPY correctly to avoid problems with
2004 later passes of unroll_loop, if INSN had jump label set. */
2005 if (JUMP_LABEL (insn))
2006 {
2007 rtx label = 0;
2008
2009 /* Can't use the label_map for every insn, since this may be
2010 the backward branch, and hence the label was not mapped. */
2011 if ((set = single_set (copy)))
2012 {
2013 tem = SET_SRC (set);
2014 if (GET_CODE (tem) == LABEL_REF)
2015 label = XEXP (tem, 0);
2016 else if (GET_CODE (tem) == IF_THEN_ELSE)
2017 {
2018 if (XEXP (tem, 1) != pc_rtx)
2019 label = XEXP (XEXP (tem, 1), 0);
2020 else
2021 label = XEXP (XEXP (tem, 2), 0);
2022 }
2023 }
2024
2025 if (label && GET_CODE (label) == CODE_LABEL)
2026 JUMP_LABEL (copy) = label;
2027 else
2028 {
2029 /* An unrecognizable jump insn, probably the entry jump
2030 for a switch statement. This label must have been mapped,
2031 so just use the label_map to get the new jump label. */
2032 JUMP_LABEL (copy)
2033 = get_label_from_map (map,
2034 CODE_LABEL_NUMBER (JUMP_LABEL (insn)));
2035 }
2036
2037 /* If this is a non-local jump, then must increase the label
2038 use count so that the label will not be deleted when the
2039 original jump is deleted. */
2040 LABEL_NUSES (JUMP_LABEL (copy))++;
2041 }
2042 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2043 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2044 {
2045 rtx pat = PATTERN (copy);
2046 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2047 int len = XVECLEN (pat, diff_vec_p);
2048 int i;
2049
2050 for (i = 0; i < len; i++)
2051 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2052 }
2053
2054 /* If this used to be a conditional jump insn but whose branch
2055 direction is now known, we must do something special. */
2056 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2057 {
2058 #ifdef HAVE_cc0
2059 /* The previous insn set cc0 for us. So delete it. */
2060 delete_insn (PREV_INSN (copy));
2061 #endif
2062
2063 /* If this is now a no-op, delete it. */
2064 if (map->last_pc_value == pc_rtx)
2065 {
2066 /* Don't let delete_insn delete the label referenced here,
2067 because we might possibly need it later for some other
2068 instruction in the loop. */
2069 if (JUMP_LABEL (copy))
2070 LABEL_NUSES (JUMP_LABEL (copy))++;
2071 delete_insn (copy);
2072 if (JUMP_LABEL (copy))
2073 LABEL_NUSES (JUMP_LABEL (copy))--;
2074 copy = 0;
2075 }
2076 else
2077 /* Otherwise, this is unconditional jump so we must put a
2078 BARRIER after it. We could do some dead code elimination
2079 here, but jump.c will do it just as well. */
2080 emit_barrier ();
2081 }
2082 break;
2083
2084 case CALL_INSN:
2085 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2086 copy = emit_call_insn (pattern);
2087 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2088
2089 /* Because the USAGE information potentially contains objects other
2090 than hard registers, we need to copy it. */
2091 CALL_INSN_FUNCTION_USAGE (copy)
2092 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2093
2094 #ifdef HAVE_cc0
2095 if (cc0_insn)
2096 try_constants (cc0_insn, map);
2097 cc0_insn = 0;
2098 #endif
2099 try_constants (copy, map);
2100
2101 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2103 map->const_equiv_map[i] = 0;
2104 break;
2105
2106 case CODE_LABEL:
2107 /* If this is the loop start label, then we don't need to emit a
2108 copy of this label since no one will use it. */
2109
2110 if (insn != start_label)
2111 {
2112 copy = emit_label (get_label_from_map (map,
2113 CODE_LABEL_NUMBER (insn)));
2114 map->const_age++;
2115 }
2116 break;
2117
2118 case BARRIER:
2119 copy = emit_barrier ();
2120 break;
2121
2122 case NOTE:
2123 /* VTOP notes are valid only before the loop exit test. If placed
2124 anywhere else, loop may generate bad code. */
2125
2126 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2127 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2128 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2129 copy = emit_note (NOTE_SOURCE_FILE (insn),
2130 NOTE_LINE_NUMBER (insn));
2131 else
2132 copy = 0;
2133 break;
2134
2135 default:
2136 abort ();
2137 break;
2138 }
2139
2140 map->insn_map[INSN_UID (insn)] = copy;
2141 }
2142 while (insn != copy_end);
2143
2144 /* Now finish coping the REG_NOTES. */
2145 insn = copy_start;
2146 do
2147 {
2148 insn = NEXT_INSN (insn);
2149 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2150 || GET_CODE (insn) == CALL_INSN)
2151 && map->insn_map[INSN_UID (insn)])
2152 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2153 }
2154 while (insn != copy_end);
2155
2156 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2157 each of these notes here, since there may be some important ones, such as
2158 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2159 iteration, because the original notes won't be deleted.
2160
2161 We can't use insert_before here, because when from preconditioning,
2162 insert_before points before the loop. We can't use copy_end, because
2163 there may be insns already inserted after it (which we don't want to
2164 copy) when not from preconditioning code. */
2165
2166 if (! last_iteration)
2167 {
2168 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2169 {
2170 if (GET_CODE (insn) == NOTE
2171 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2172 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2173 }
2174 }
2175
2176 if (final_label && LABEL_NUSES (final_label) > 0)
2177 emit_label (final_label);
2178
2179 tem = gen_sequence ();
2180 end_sequence ();
2181 emit_insn_before (tem, insert_before);
2182 }
2183 \f
2184 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2185 emitted. This will correctly handle the case where the increment value
2186 won't fit in the immediate field of a PLUS insns. */
2187
2188 void
2189 emit_unrolled_add (dest_reg, src_reg, increment)
2190 rtx dest_reg, src_reg, increment;
2191 {
2192 rtx result;
2193
2194 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2195 dest_reg, 0, OPTAB_LIB_WIDEN);
2196
2197 if (dest_reg != result)
2198 emit_move_insn (dest_reg, result);
2199 }
2200 \f
2201 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2202 is a backward branch in that range that branches to somewhere between
2203 LOOP_START and INSN. Returns 0 otherwise. */
2204
2205 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2206 In practice, this is not a problem, because this function is seldom called,
2207 and uses a negligible amount of CPU time on average. */
2208
2209 int
2210 back_branch_in_range_p (insn, loop_start, loop_end)
2211 rtx insn;
2212 rtx loop_start, loop_end;
2213 {
2214 rtx p, q, target_insn;
2215 rtx orig_loop_end = loop_end;
2216
2217 /* Stop before we get to the backward branch at the end of the loop. */
2218 loop_end = prev_nonnote_insn (loop_end);
2219 if (GET_CODE (loop_end) == BARRIER)
2220 loop_end = PREV_INSN (loop_end);
2221
2222 /* Check in case insn has been deleted, search forward for first non
2223 deleted insn following it. */
2224 while (INSN_DELETED_P (insn))
2225 insn = NEXT_INSN (insn);
2226
2227 /* Check for the case where insn is the last insn in the loop. Deal
2228 with the case where INSN was a deleted loop test insn, in which case
2229 it will now be the NOTE_LOOP_END. */
2230 if (insn == loop_end || insn == orig_loop_end)
2231 return 0;
2232
2233 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2234 {
2235 if (GET_CODE (p) == JUMP_INSN)
2236 {
2237 target_insn = JUMP_LABEL (p);
2238
2239 /* Search from loop_start to insn, to see if one of them is
2240 the target_insn. We can't use INSN_LUID comparisons here,
2241 since insn may not have an LUID entry. */
2242 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2243 if (q == target_insn)
2244 return 1;
2245 }
2246 }
2247
2248 return 0;
2249 }
2250
2251 /* Try to generate the simplest rtx for the expression
2252 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2253 value of giv's. */
2254
2255 static rtx
2256 fold_rtx_mult_add (mult1, mult2, add1, mode)
2257 rtx mult1, mult2, add1;
2258 enum machine_mode mode;
2259 {
2260 rtx temp, mult_res;
2261 rtx result;
2262
2263 /* The modes must all be the same. This should always be true. For now,
2264 check to make sure. */
2265 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2266 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2267 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2268 abort ();
2269
2270 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2271 will be a constant. */
2272 if (GET_CODE (mult1) == CONST_INT)
2273 {
2274 temp = mult2;
2275 mult2 = mult1;
2276 mult1 = temp;
2277 }
2278
2279 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2280 if (! mult_res)
2281 mult_res = gen_rtx_MULT (mode, mult1, mult2);
2282
2283 /* Again, put the constant second. */
2284 if (GET_CODE (add1) == CONST_INT)
2285 {
2286 temp = add1;
2287 add1 = mult_res;
2288 mult_res = temp;
2289 }
2290
2291 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2292 if (! result)
2293 result = gen_rtx_PLUS (mode, add1, mult_res);
2294
2295 return result;
2296 }
2297
2298 /* Searches the list of induction struct's for the biv BL, to try to calculate
2299 the total increment value for one iteration of the loop as a constant.
2300
2301 Returns the increment value as an rtx, simplified as much as possible,
2302 if it can be calculated. Otherwise, returns 0. */
2303
2304 rtx
2305 biv_total_increment (bl, loop_start, loop_end)
2306 struct iv_class *bl;
2307 rtx loop_start, loop_end;
2308 {
2309 struct induction *v;
2310 rtx result;
2311
2312 /* For increment, must check every instruction that sets it. Each
2313 instruction must be executed only once each time through the loop.
2314 To verify this, we check that the insn is always executed, and that
2315 there are no backward branches after the insn that branch to before it.
2316 Also, the insn must have a mult_val of one (to make sure it really is
2317 an increment). */
2318
2319 result = const0_rtx;
2320 for (v = bl->biv; v; v = v->next_iv)
2321 {
2322 if (v->always_computable && v->mult_val == const1_rtx
2323 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2324 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2325 else
2326 return 0;
2327 }
2328
2329 return result;
2330 }
2331
2332 /* Determine the initial value of the iteration variable, and the amount
2333 that it is incremented each loop. Use the tables constructed by
2334 the strength reduction pass to calculate these values.
2335
2336 Initial_value and/or increment are set to zero if their values could not
2337 be calculated. */
2338
2339 void
2340 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2341 rtx iteration_var, *initial_value, *increment;
2342 rtx loop_start, loop_end;
2343 {
2344 struct iv_class *bl;
2345 #if 0
2346 struct induction *v;
2347 #endif
2348
2349 /* Clear the result values, in case no answer can be found. */
2350 *initial_value = 0;
2351 *increment = 0;
2352
2353 /* The iteration variable can be either a giv or a biv. Check to see
2354 which it is, and compute the variable's initial value, and increment
2355 value if possible. */
2356
2357 /* If this is a new register, can't handle it since we don't have any
2358 reg_iv_type entry for it. */
2359 if (REGNO (iteration_var) >= max_reg_before_loop)
2360 {
2361 if (loop_dump_stream)
2362 fprintf (loop_dump_stream,
2363 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2364 return;
2365 }
2366
2367 /* Reject iteration variables larger than the host wide int size, since they
2368 could result in a number of iterations greater than the range of our
2369 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2370 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2371 > HOST_BITS_PER_WIDE_INT))
2372 {
2373 if (loop_dump_stream)
2374 fprintf (loop_dump_stream,
2375 "Loop unrolling: Iteration var rejected because mode too large.\n");
2376 return;
2377 }
2378 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2379 {
2380 if (loop_dump_stream)
2381 fprintf (loop_dump_stream,
2382 "Loop unrolling: Iteration var not an integer.\n");
2383 return;
2384 }
2385 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2386 {
2387 /* Grab initial value, only useful if it is a constant. */
2388 bl = reg_biv_class[REGNO (iteration_var)];
2389 *initial_value = bl->initial_value;
2390
2391 *increment = biv_total_increment (bl, loop_start, loop_end);
2392 }
2393 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2394 {
2395 #if 1
2396 /* ??? The code below does not work because the incorrect number of
2397 iterations is calculated when the biv is incremented after the giv
2398 is set (which is the usual case). This can probably be accounted
2399 for by biasing the initial_value by subtracting the amount of the
2400 increment that occurs between the giv set and the giv test. However,
2401 a giv as an iterator is very rare, so it does not seem worthwhile
2402 to handle this. */
2403 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2404 if (loop_dump_stream)
2405 fprintf (loop_dump_stream,
2406 "Loop unrolling: Giv iterators are not handled.\n");
2407 return;
2408 #else
2409 /* Initial value is mult_val times the biv's initial value plus
2410 add_val. Only useful if it is a constant. */
2411 v = reg_iv_info[REGNO (iteration_var)];
2412 bl = reg_biv_class[REGNO (v->src_reg)];
2413 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2414 v->add_val, v->mode);
2415
2416 /* Increment value is mult_val times the increment value of the biv. */
2417
2418 *increment = biv_total_increment (bl, loop_start, loop_end);
2419 if (*increment)
2420 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2421 v->mode);
2422 #endif
2423 }
2424 else
2425 {
2426 if (loop_dump_stream)
2427 fprintf (loop_dump_stream,
2428 "Loop unrolling: Not basic or general induction var.\n");
2429 return;
2430 }
2431 }
2432
2433 /* Calculate the approximate final value of the iteration variable
2434 which has an loop exit test with code COMPARISON_CODE and comparison value
2435 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2436 was signed or unsigned, and the direction of the comparison. This info is
2437 needed to calculate the number of loop iterations. */
2438
2439 static rtx
2440 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2441 enum rtx_code comparison_code;
2442 rtx comparison_value;
2443 int *unsigned_p;
2444 int *compare_dir;
2445 {
2446 /* Calculate the final value of the induction variable.
2447 The exact final value depends on the branch operator, and increment sign.
2448 This is only an approximate value. It will be wrong if the iteration
2449 variable is not incremented by one each time through the loop, and
2450 approx final value - start value % increment != 0. */
2451
2452 *unsigned_p = 0;
2453 switch (comparison_code)
2454 {
2455 case LEU:
2456 *unsigned_p = 1;
2457 case LE:
2458 *compare_dir = 1;
2459 return plus_constant (comparison_value, 1);
2460 case GEU:
2461 *unsigned_p = 1;
2462 case GE:
2463 *compare_dir = -1;
2464 return plus_constant (comparison_value, -1);
2465 case EQ:
2466 /* Can not calculate a final value for this case. */
2467 *compare_dir = 0;
2468 return 0;
2469 case LTU:
2470 *unsigned_p = 1;
2471 case LT:
2472 *compare_dir = 1;
2473 return comparison_value;
2474 break;
2475 case GTU:
2476 *unsigned_p = 1;
2477 case GT:
2478 *compare_dir = -1;
2479 return comparison_value;
2480 case NE:
2481 *compare_dir = 0;
2482 return comparison_value;
2483 default:
2484 abort ();
2485 }
2486 }
2487
2488 /* For each biv and giv, determine whether it can be safely split into
2489 a different variable for each unrolled copy of the loop body. If it
2490 is safe to split, then indicate that by saving some useful info
2491 in the splittable_regs array.
2492
2493 If the loop is being completely unrolled, then splittable_regs will hold
2494 the current value of the induction variable while the loop is unrolled.
2495 It must be set to the initial value of the induction variable here.
2496 Otherwise, splittable_regs will hold the difference between the current
2497 value of the induction variable and the value the induction variable had
2498 at the top of the loop. It must be set to the value 0 here.
2499
2500 Returns the total number of instructions that set registers that are
2501 splittable. */
2502
2503 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2504 constant values are unnecessary, since we can easily calculate increment
2505 values in this case even if nothing is constant. The increment value
2506 should not involve a multiply however. */
2507
2508 /* ?? Even if the biv/giv increment values aren't constant, it may still
2509 be beneficial to split the variable if the loop is only unrolled a few
2510 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2511
2512 static int
2513 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2514 unroll_number)
2515 enum unroll_types unroll_type;
2516 rtx loop_start, loop_end;
2517 rtx end_insert_before;
2518 int unroll_number;
2519 {
2520 struct iv_class *bl;
2521 struct induction *v;
2522 rtx increment, tem;
2523 rtx biv_final_value;
2524 int biv_splittable;
2525 int result = 0;
2526
2527 for (bl = loop_iv_list; bl; bl = bl->next)
2528 {
2529 /* Biv_total_increment must return a constant value,
2530 otherwise we can not calculate the split values. */
2531
2532 increment = biv_total_increment (bl, loop_start, loop_end);
2533 if (! increment || GET_CODE (increment) != CONST_INT)
2534 continue;
2535
2536 /* The loop must be unrolled completely, or else have a known number
2537 of iterations and only one exit, or else the biv must be dead
2538 outside the loop, or else the final value must be known. Otherwise,
2539 it is unsafe to split the biv since it may not have the proper
2540 value on loop exit. */
2541
2542 /* loop_number_exit_count is non-zero if the loop has an exit other than
2543 a fall through at the end. */
2544
2545 biv_splittable = 1;
2546 biv_final_value = 0;
2547 if (unroll_type != UNROLL_COMPLETELY
2548 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2549 || unroll_type == UNROLL_NAIVE)
2550 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2551 || ! bl->init_insn
2552 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2553 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2554 < INSN_LUID (bl->init_insn))
2555 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2556 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2557 biv_splittable = 0;
2558
2559 /* If any of the insns setting the BIV don't do so with a simple
2560 PLUS, we don't know how to split it. */
2561 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2562 if ((tem = single_set (v->insn)) == 0
2563 || GET_CODE (SET_DEST (tem)) != REG
2564 || REGNO (SET_DEST (tem)) != bl->regno
2565 || GET_CODE (SET_SRC (tem)) != PLUS)
2566 biv_splittable = 0;
2567
2568 /* If final value is non-zero, then must emit an instruction which sets
2569 the value of the biv to the proper value. This is done after
2570 handling all of the givs, since some of them may need to use the
2571 biv's value in their initialization code. */
2572
2573 /* This biv is splittable. If completely unrolling the loop, save
2574 the biv's initial value. Otherwise, save the constant zero. */
2575
2576 if (biv_splittable == 1)
2577 {
2578 if (unroll_type == UNROLL_COMPLETELY)
2579 {
2580 /* If the initial value of the biv is itself (i.e. it is too
2581 complicated for strength_reduce to compute), or is a hard
2582 register, or it isn't invariant, then we must create a new
2583 pseudo reg to hold the initial value of the biv. */
2584
2585 if (GET_CODE (bl->initial_value) == REG
2586 && (REGNO (bl->initial_value) == bl->regno
2587 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2588 || ! invariant_p (bl->initial_value)))
2589 {
2590 rtx tem = gen_reg_rtx (bl->biv->mode);
2591
2592 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2593 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2594 loop_start);
2595
2596 if (loop_dump_stream)
2597 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2598 bl->regno, REGNO (tem));
2599
2600 splittable_regs[bl->regno] = tem;
2601 }
2602 else
2603 splittable_regs[bl->regno] = bl->initial_value;
2604 }
2605 else
2606 splittable_regs[bl->regno] = const0_rtx;
2607
2608 /* Save the number of instructions that modify the biv, so that
2609 we can treat the last one specially. */
2610
2611 splittable_regs_updates[bl->regno] = bl->biv_count;
2612 result += bl->biv_count;
2613
2614 if (loop_dump_stream)
2615 fprintf (loop_dump_stream,
2616 "Biv %d safe to split.\n", bl->regno);
2617 }
2618
2619 /* Check every giv that depends on this biv to see whether it is
2620 splittable also. Even if the biv isn't splittable, givs which
2621 depend on it may be splittable if the biv is live outside the
2622 loop, and the givs aren't. */
2623
2624 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2625 increment, unroll_number);
2626
2627 /* If final value is non-zero, then must emit an instruction which sets
2628 the value of the biv to the proper value. This is done after
2629 handling all of the givs, since some of them may need to use the
2630 biv's value in their initialization code. */
2631 if (biv_final_value)
2632 {
2633 /* If the loop has multiple exits, emit the insns before the
2634 loop to ensure that it will always be executed no matter
2635 how the loop exits. Otherwise emit the insn after the loop,
2636 since this is slightly more efficient. */
2637 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2638 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2639 biv_final_value),
2640 end_insert_before);
2641 else
2642 {
2643 /* Create a new register to hold the value of the biv, and then
2644 set the biv to its final value before the loop start. The biv
2645 is set to its final value before loop start to ensure that
2646 this insn will always be executed, no matter how the loop
2647 exits. */
2648 rtx tem = gen_reg_rtx (bl->biv->mode);
2649 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2650
2651 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2652 loop_start);
2653 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2654 biv_final_value),
2655 loop_start);
2656
2657 if (loop_dump_stream)
2658 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2659 REGNO (bl->biv->src_reg), REGNO (tem));
2660
2661 /* Set up the mapping from the original biv register to the new
2662 register. */
2663 bl->biv->src_reg = tem;
2664 }
2665 }
2666 }
2667 return result;
2668 }
2669
2670 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2671 for the instruction that is using it. Do not make any changes to that
2672 instruction. */
2673
2674 static int
2675 verify_addresses (v, giv_inc, unroll_number)
2676 struct induction *v;
2677 rtx giv_inc;
2678 int unroll_number;
2679 {
2680 int ret = 1;
2681 rtx orig_addr = *v->location;
2682 rtx last_addr = plus_constant (v->dest_reg,
2683 INTVAL (giv_inc) * (unroll_number - 1));
2684
2685 /* First check to see if either address would fail. Handle the fact
2686 that we have may have a match_dup. */
2687 if (! validate_replace_rtx (*v->location, v->dest_reg, v->insn)
2688 || ! validate_replace_rtx (*v->location, last_addr, v->insn))
2689 ret = 0;
2690
2691 /* Now put things back the way they were before. This should always
2692 succeed. */
2693 if (! validate_replace_rtx (*v->location, orig_addr, v->insn))
2694 abort ();
2695
2696 return ret;
2697 }
2698
2699 /* For every giv based on the biv BL, check to determine whether it is
2700 splittable. This is a subroutine to find_splittable_regs ().
2701
2702 Return the number of instructions that set splittable registers. */
2703
2704 static int
2705 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2706 unroll_number)
2707 struct iv_class *bl;
2708 enum unroll_types unroll_type;
2709 rtx loop_start, loop_end;
2710 rtx increment;
2711 int unroll_number;
2712 {
2713 struct induction *v, *v2;
2714 rtx final_value;
2715 rtx tem;
2716 int result = 0;
2717
2718 /* Scan the list of givs, and set the same_insn field when there are
2719 multiple identical givs in the same insn. */
2720 for (v = bl->giv; v; v = v->next_iv)
2721 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2722 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2723 && ! v2->same_insn)
2724 v2->same_insn = v;
2725
2726 for (v = bl->giv; v; v = v->next_iv)
2727 {
2728 rtx giv_inc, value;
2729
2730 /* Only split the giv if it has already been reduced, or if the loop is
2731 being completely unrolled. */
2732 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2733 continue;
2734
2735 /* The giv can be split if the insn that sets the giv is executed once
2736 and only once on every iteration of the loop. */
2737 /* An address giv can always be split. v->insn is just a use not a set,
2738 and hence it does not matter whether it is always executed. All that
2739 matters is that all the biv increments are always executed, and we
2740 won't reach here if they aren't. */
2741 if (v->giv_type != DEST_ADDR
2742 && (! v->always_computable
2743 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2744 continue;
2745
2746 /* The giv increment value must be a constant. */
2747 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2748 v->mode);
2749 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2750 continue;
2751
2752 /* The loop must be unrolled completely, or else have a known number of
2753 iterations and only one exit, or else the giv must be dead outside
2754 the loop, or else the final value of the giv must be known.
2755 Otherwise, it is not safe to split the giv since it may not have the
2756 proper value on loop exit. */
2757
2758 /* The used outside loop test will fail for DEST_ADDR givs. They are
2759 never used outside the loop anyways, so it is always safe to split a
2760 DEST_ADDR giv. */
2761
2762 final_value = 0;
2763 if (unroll_type != UNROLL_COMPLETELY
2764 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2765 || unroll_type == UNROLL_NAIVE)
2766 && v->giv_type != DEST_ADDR
2767 /* The next part is true if the pseudo is used outside the loop.
2768 We assume that this is true for any pseudo created after loop
2769 starts, because we don't have a reg_n_info entry for them. */
2770 && (REGNO (v->dest_reg) >= max_reg_before_loop
2771 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2772 /* Check for the case where the pseudo is set by a shift/add
2773 sequence, in which case the first insn setting the pseudo
2774 is the first insn of the shift/add sequence. */
2775 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2776 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2777 != INSN_UID (XEXP (tem, 0)))))
2778 /* Line above always fails if INSN was moved by loop opt. */
2779 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2780 >= INSN_LUID (loop_end)))
2781 && ! (final_value = v->final_value))
2782 continue;
2783
2784 #if 0
2785 /* Currently, non-reduced/final-value givs are never split. */
2786 /* Should emit insns after the loop if possible, as the biv final value
2787 code below does. */
2788
2789 /* If the final value is non-zero, and the giv has not been reduced,
2790 then must emit an instruction to set the final value. */
2791 if (final_value && !v->new_reg)
2792 {
2793 /* Create a new register to hold the value of the giv, and then set
2794 the giv to its final value before the loop start. The giv is set
2795 to its final value before loop start to ensure that this insn
2796 will always be executed, no matter how we exit. */
2797 tem = gen_reg_rtx (v->mode);
2798 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2799 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2800 loop_start);
2801
2802 if (loop_dump_stream)
2803 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2804 REGNO (v->dest_reg), REGNO (tem));
2805
2806 v->src_reg = tem;
2807 }
2808 #endif
2809
2810 /* This giv is splittable. If completely unrolling the loop, save the
2811 giv's initial value. Otherwise, save the constant zero for it. */
2812
2813 if (unroll_type == UNROLL_COMPLETELY)
2814 {
2815 /* It is not safe to use bl->initial_value here, because it may not
2816 be invariant. It is safe to use the initial value stored in
2817 the splittable_regs array if it is set. In rare cases, it won't
2818 be set, so then we do exactly the same thing as
2819 find_splittable_regs does to get a safe value. */
2820 rtx biv_initial_value;
2821
2822 if (splittable_regs[bl->regno])
2823 biv_initial_value = splittable_regs[bl->regno];
2824 else if (GET_CODE (bl->initial_value) != REG
2825 || (REGNO (bl->initial_value) != bl->regno
2826 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2827 biv_initial_value = bl->initial_value;
2828 else
2829 {
2830 rtx tem = gen_reg_rtx (bl->biv->mode);
2831
2832 record_base_value (REGNO (tem), bl->biv->add_val, 0);
2833 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2834 loop_start);
2835 biv_initial_value = tem;
2836 }
2837 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2838 v->add_val, v->mode);
2839 }
2840 else
2841 value = const0_rtx;
2842
2843 if (v->new_reg)
2844 {
2845 /* If a giv was combined with another giv, then we can only split
2846 this giv if the giv it was combined with was reduced. This
2847 is because the value of v->new_reg is meaningless in this
2848 case. */
2849 if (v->same && ! v->same->new_reg)
2850 {
2851 if (loop_dump_stream)
2852 fprintf (loop_dump_stream,
2853 "giv combined with unreduced giv not split.\n");
2854 continue;
2855 }
2856 /* If the giv is an address destination, it could be something other
2857 than a simple register, these have to be treated differently. */
2858 else if (v->giv_type == DEST_REG)
2859 {
2860 /* If value is not a constant, register, or register plus
2861 constant, then compute its value into a register before
2862 loop start. This prevents invalid rtx sharing, and should
2863 generate better code. We can use bl->initial_value here
2864 instead of splittable_regs[bl->regno] because this code
2865 is going before the loop start. */
2866 if (unroll_type == UNROLL_COMPLETELY
2867 && GET_CODE (value) != CONST_INT
2868 && GET_CODE (value) != REG
2869 && (GET_CODE (value) != PLUS
2870 || GET_CODE (XEXP (value, 0)) != REG
2871 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2872 {
2873 rtx tem = gen_reg_rtx (v->mode);
2874 record_base_value (REGNO (tem), v->add_val, 0);
2875 emit_iv_add_mult (bl->initial_value, v->mult_val,
2876 v->add_val, tem, loop_start);
2877 value = tem;
2878 }
2879
2880 splittable_regs[REGNO (v->new_reg)] = value;
2881 }
2882 else
2883 {
2884 /* Splitting address givs is useful since it will often allow us
2885 to eliminate some increment insns for the base giv as
2886 unnecessary. */
2887
2888 /* If the addr giv is combined with a dest_reg giv, then all
2889 references to that dest reg will be remapped, which is NOT
2890 what we want for split addr regs. We always create a new
2891 register for the split addr giv, just to be safe. */
2892
2893 /* If we have multiple identical address givs within a
2894 single instruction, then use a single pseudo reg for
2895 both. This is necessary in case one is a match_dup
2896 of the other. */
2897
2898 v->const_adjust = 0;
2899
2900 if (v->same_insn)
2901 {
2902 v->dest_reg = v->same_insn->dest_reg;
2903 if (loop_dump_stream)
2904 fprintf (loop_dump_stream,
2905 "Sharing address givs in insn %d\n",
2906 INSN_UID (v->insn));
2907 }
2908 /* If multiple address GIVs have been combined with the
2909 same dest_reg GIV, do not create a new register for
2910 each. */
2911 else if (unroll_type != UNROLL_COMPLETELY
2912 && v->giv_type == DEST_ADDR
2913 && v->same && v->same->giv_type == DEST_ADDR
2914 && v->same->unrolled
2915 /* combine_givs_p may return true for some cases
2916 where the add and mult values are not equal.
2917 To share a register here, the values must be
2918 equal. */
2919 && rtx_equal_p (v->same->mult_val, v->mult_val)
2920 && rtx_equal_p (v->same->add_val, v->add_val))
2921
2922 {
2923 v->dest_reg = v->same->dest_reg;
2924 v->shared = 1;
2925 }
2926 else if (unroll_type != UNROLL_COMPLETELY)
2927 {
2928 /* If not completely unrolling the loop, then create a new
2929 register to hold the split value of the DEST_ADDR giv.
2930 Emit insn to initialize its value before loop start. */
2931
2932 rtx tem = gen_reg_rtx (v->mode);
2933 record_base_value (REGNO (tem), v->add_val, 0);
2934
2935 /* If the address giv has a constant in its new_reg value,
2936 then this constant can be pulled out and put in value,
2937 instead of being part of the initialization code. */
2938
2939 if (GET_CODE (v->new_reg) == PLUS
2940 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2941 {
2942 v->dest_reg
2943 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2944
2945 /* Only succeed if this will give valid addresses.
2946 Try to validate both the first and the last
2947 address resulting from loop unrolling, if
2948 one fails, then can't do const elim here. */
2949 if (verify_addresses (v, giv_inc, unroll_number))
2950 {
2951 /* Save the negative of the eliminated const, so
2952 that we can calculate the dest_reg's increment
2953 value later. */
2954 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2955
2956 v->new_reg = XEXP (v->new_reg, 0);
2957 if (loop_dump_stream)
2958 fprintf (loop_dump_stream,
2959 "Eliminating constant from giv %d\n",
2960 REGNO (tem));
2961 }
2962 else
2963 v->dest_reg = tem;
2964 }
2965 else
2966 v->dest_reg = tem;
2967
2968 /* If the address hasn't been checked for validity yet, do so
2969 now, and fail completely if either the first or the last
2970 unrolled copy of the address is not a valid address
2971 for the instruction that uses it. */
2972 if (v->dest_reg == tem
2973 && ! verify_addresses (v, giv_inc, unroll_number))
2974 {
2975 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2976 if (v2->same_insn == v)
2977 v2->same_insn = 0;
2978
2979 if (loop_dump_stream)
2980 fprintf (loop_dump_stream,
2981 "Invalid address for giv at insn %d\n",
2982 INSN_UID (v->insn));
2983 continue;
2984 }
2985
2986 /* We set this after the address check, to guarantee that
2987 the register will be initialized. */
2988 v->unrolled = 1;
2989
2990 /* To initialize the new register, just move the value of
2991 new_reg into it. This is not guaranteed to give a valid
2992 instruction on machines with complex addressing modes.
2993 If we can't recognize it, then delete it and emit insns
2994 to calculate the value from scratch. */
2995 emit_insn_before (gen_rtx_SET (VOIDmode, tem,
2996 copy_rtx (v->new_reg)),
2997 loop_start);
2998 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2999 {
3000 rtx sequence, ret;
3001
3002 /* We can't use bl->initial_value to compute the initial
3003 value, because the loop may have been preconditioned.
3004 We must calculate it from NEW_REG. Try using
3005 force_operand instead of emit_iv_add_mult. */
3006 delete_insn (PREV_INSN (loop_start));
3007
3008 start_sequence ();
3009 ret = force_operand (v->new_reg, tem);
3010 if (ret != tem)
3011 emit_move_insn (tem, ret);
3012 sequence = gen_sequence ();
3013 end_sequence ();
3014 emit_insn_before (sequence, loop_start);
3015
3016 if (loop_dump_stream)
3017 fprintf (loop_dump_stream,
3018 "Invalid init insn, rewritten.\n");
3019 }
3020 }
3021 else
3022 {
3023 v->dest_reg = value;
3024
3025 /* Check the resulting address for validity, and fail
3026 if the resulting address would be invalid. */
3027 if (! verify_addresses (v, giv_inc, unroll_number))
3028 {
3029 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
3030 if (v2->same_insn == v)
3031 v2->same_insn = 0;
3032
3033 if (loop_dump_stream)
3034 fprintf (loop_dump_stream,
3035 "Invalid address for giv at insn %d\n",
3036 INSN_UID (v->insn));
3037 continue;
3038 }
3039 }
3040
3041 /* Store the value of dest_reg into the insn. This sharing
3042 will not be a problem as this insn will always be copied
3043 later. */
3044
3045 *v->location = v->dest_reg;
3046
3047 /* If this address giv is combined with a dest reg giv, then
3048 save the base giv's induction pointer so that we will be
3049 able to handle this address giv properly. The base giv
3050 itself does not have to be splittable. */
3051
3052 if (v->same && v->same->giv_type == DEST_REG)
3053 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
3054
3055 if (GET_CODE (v->new_reg) == REG)
3056 {
3057 /* This giv maybe hasn't been combined with any others.
3058 Make sure that it's giv is marked as splittable here. */
3059
3060 splittable_regs[REGNO (v->new_reg)] = value;
3061
3062 /* Make it appear to depend upon itself, so that the
3063 giv will be properly split in the main loop above. */
3064 if (! v->same)
3065 {
3066 v->same = v;
3067 addr_combined_regs[REGNO (v->new_reg)] = v;
3068 }
3069 }
3070
3071 if (loop_dump_stream)
3072 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3073 }
3074 }
3075 else
3076 {
3077 #if 0
3078 /* Currently, unreduced giv's can't be split. This is not too much
3079 of a problem since unreduced giv's are not live across loop
3080 iterations anyways. When unrolling a loop completely though,
3081 it makes sense to reduce&split givs when possible, as this will
3082 result in simpler instructions, and will not require that a reg
3083 be live across loop iterations. */
3084
3085 splittable_regs[REGNO (v->dest_reg)] = value;
3086 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3087 REGNO (v->dest_reg), INSN_UID (v->insn));
3088 #else
3089 continue;
3090 #endif
3091 }
3092
3093 /* Unreduced givs are only updated once by definition. Reduced givs
3094 are updated as many times as their biv is. Mark it so if this is
3095 a splittable register. Don't need to do anything for address givs
3096 where this may not be a register. */
3097
3098 if (GET_CODE (v->new_reg) == REG)
3099 {
3100 int count = 1;
3101 if (! v->ignore)
3102 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3103
3104 splittable_regs_updates[REGNO (v->new_reg)] = count;
3105 }
3106
3107 result++;
3108
3109 if (loop_dump_stream)
3110 {
3111 int regnum;
3112
3113 if (GET_CODE (v->dest_reg) == CONST_INT)
3114 regnum = -1;
3115 else if (GET_CODE (v->dest_reg) != REG)
3116 regnum = REGNO (XEXP (v->dest_reg, 0));
3117 else
3118 regnum = REGNO (v->dest_reg);
3119 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3120 regnum, INSN_UID (v->insn));
3121 }
3122 }
3123
3124 return result;
3125 }
3126 \f
3127 /* Try to prove that the register is dead after the loop exits. Trace every
3128 loop exit looking for an insn that will always be executed, which sets
3129 the register to some value, and appears before the first use of the register
3130 is found. If successful, then return 1, otherwise return 0. */
3131
3132 /* ?? Could be made more intelligent in the handling of jumps, so that
3133 it can search past if statements and other similar structures. */
3134
3135 static int
3136 reg_dead_after_loop (reg, loop_start, loop_end)
3137 rtx reg, loop_start, loop_end;
3138 {
3139 rtx insn, label;
3140 enum rtx_code code;
3141 int jump_count = 0;
3142 int label_count = 0;
3143 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3144
3145 /* In addition to checking all exits of this loop, we must also check
3146 all exits of inner nested loops that would exit this loop. We don't
3147 have any way to identify those, so we just give up if there are any
3148 such inner loop exits. */
3149
3150 for (label = loop_number_exit_labels[this_loop_num]; label;
3151 label = LABEL_NEXTREF (label))
3152 label_count++;
3153
3154 if (label_count != loop_number_exit_count[this_loop_num])
3155 return 0;
3156
3157 /* HACK: Must also search the loop fall through exit, create a label_ref
3158 here which points to the loop_end, and append the loop_number_exit_labels
3159 list to it. */
3160 label = gen_rtx_LABEL_REF (VOIDmode, loop_end);
3161 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3162
3163 for ( ; label; label = LABEL_NEXTREF (label))
3164 {
3165 /* Succeed if find an insn which sets the biv or if reach end of
3166 function. Fail if find an insn that uses the biv, or if come to
3167 a conditional jump. */
3168
3169 insn = NEXT_INSN (XEXP (label, 0));
3170 while (insn)
3171 {
3172 code = GET_CODE (insn);
3173 if (GET_RTX_CLASS (code) == 'i')
3174 {
3175 rtx set;
3176
3177 if (reg_referenced_p (reg, PATTERN (insn)))
3178 return 0;
3179
3180 set = single_set (insn);
3181 if (set && rtx_equal_p (SET_DEST (set), reg))
3182 break;
3183 }
3184
3185 if (code == JUMP_INSN)
3186 {
3187 if (GET_CODE (PATTERN (insn)) == RETURN)
3188 break;
3189 else if (! simplejump_p (insn)
3190 /* Prevent infinite loop following infinite loops. */
3191 || jump_count++ > 20)
3192 return 0;
3193 else
3194 insn = JUMP_LABEL (insn);
3195 }
3196
3197 insn = NEXT_INSN (insn);
3198 }
3199 }
3200
3201 /* Success, the register is dead on all loop exits. */
3202 return 1;
3203 }
3204
3205 /* Try to calculate the final value of the biv, the value it will have at
3206 the end of the loop. If we can do it, return that value. */
3207
3208 rtx
3209 final_biv_value (bl, loop_start, loop_end)
3210 struct iv_class *bl;
3211 rtx loop_start, loop_end;
3212 {
3213 rtx increment, tem;
3214
3215 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3216
3217 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3218 return 0;
3219
3220 /* The final value for reversed bivs must be calculated differently than
3221 for ordinary bivs. In this case, there is already an insn after the
3222 loop which sets this biv's final value (if necessary), and there are
3223 no other loop exits, so we can return any value. */
3224 if (bl->reversed)
3225 {
3226 if (loop_dump_stream)
3227 fprintf (loop_dump_stream,
3228 "Final biv value for %d, reversed biv.\n", bl->regno);
3229
3230 return const0_rtx;
3231 }
3232
3233 /* Try to calculate the final value as initial value + (number of iterations
3234 * increment). For this to work, increment must be invariant, the only
3235 exit from the loop must be the fall through at the bottom (otherwise
3236 it may not have its final value when the loop exits), and the initial
3237 value of the biv must be invariant. */
3238
3239 if (loop_n_iterations != 0
3240 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3241 && invariant_p (bl->initial_value))
3242 {
3243 increment = biv_total_increment (bl, loop_start, loop_end);
3244
3245 if (increment && invariant_p (increment))
3246 {
3247 /* Can calculate the loop exit value, emit insns after loop
3248 end to calculate this value into a temporary register in
3249 case it is needed later. */
3250
3251 tem = gen_reg_rtx (bl->biv->mode);
3252 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3253 /* Make sure loop_end is not the last insn. */
3254 if (NEXT_INSN (loop_end) == 0)
3255 emit_note_after (NOTE_INSN_DELETED, loop_end);
3256 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3257 bl->initial_value, tem, NEXT_INSN (loop_end));
3258
3259 if (loop_dump_stream)
3260 fprintf (loop_dump_stream,
3261 "Final biv value for %d, calculated.\n", bl->regno);
3262
3263 return tem;
3264 }
3265 }
3266
3267 /* Check to see if the biv is dead at all loop exits. */
3268 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3269 {
3270 if (loop_dump_stream)
3271 fprintf (loop_dump_stream,
3272 "Final biv value for %d, biv dead after loop exit.\n",
3273 bl->regno);
3274
3275 return const0_rtx;
3276 }
3277
3278 return 0;
3279 }
3280
3281 /* Try to calculate the final value of the giv, the value it will have at
3282 the end of the loop. If we can do it, return that value. */
3283
3284 rtx
3285 final_giv_value (v, loop_start, loop_end)
3286 struct induction *v;
3287 rtx loop_start, loop_end;
3288 {
3289 struct iv_class *bl;
3290 rtx insn;
3291 rtx increment, tem;
3292 rtx insert_before, seq;
3293
3294 bl = reg_biv_class[REGNO (v->src_reg)];
3295
3296 /* The final value for givs which depend on reversed bivs must be calculated
3297 differently than for ordinary givs. In this case, there is already an
3298 insn after the loop which sets this giv's final value (if necessary),
3299 and there are no other loop exits, so we can return any value. */
3300 if (bl->reversed)
3301 {
3302 if (loop_dump_stream)
3303 fprintf (loop_dump_stream,
3304 "Final giv value for %d, depends on reversed biv\n",
3305 REGNO (v->dest_reg));
3306 return const0_rtx;
3307 }
3308
3309 /* Try to calculate the final value as a function of the biv it depends
3310 upon. The only exit from the loop must be the fall through at the bottom
3311 (otherwise it may not have its final value when the loop exits). */
3312
3313 /* ??? Can calculate the final giv value by subtracting off the
3314 extra biv increments times the giv's mult_val. The loop must have
3315 only one exit for this to work, but the loop iterations does not need
3316 to be known. */
3317
3318 if (loop_n_iterations != 0
3319 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3320 {
3321 /* ?? It is tempting to use the biv's value here since these insns will
3322 be put after the loop, and hence the biv will have its final value
3323 then. However, this fails if the biv is subsequently eliminated.
3324 Perhaps determine whether biv's are eliminable before trying to
3325 determine whether giv's are replaceable so that we can use the
3326 biv value here if it is not eliminable. */
3327
3328 /* We are emitting code after the end of the loop, so we must make
3329 sure that bl->initial_value is still valid then. It will still
3330 be valid if it is invariant. */
3331
3332 increment = biv_total_increment (bl, loop_start, loop_end);
3333
3334 if (increment && invariant_p (increment)
3335 && invariant_p (bl->initial_value))
3336 {
3337 /* Can calculate the loop exit value of its biv as
3338 (loop_n_iterations * increment) + initial_value */
3339
3340 /* The loop exit value of the giv is then
3341 (final_biv_value - extra increments) * mult_val + add_val.
3342 The extra increments are any increments to the biv which
3343 occur in the loop after the giv's value is calculated.
3344 We must search from the insn that sets the giv to the end
3345 of the loop to calculate this value. */
3346
3347 insert_before = NEXT_INSN (loop_end);
3348
3349 /* Put the final biv value in tem. */
3350 tem = gen_reg_rtx (bl->biv->mode);
3351 record_base_value (REGNO (tem), bl->biv->add_val, 0);
3352 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3353 bl->initial_value, tem, insert_before);
3354
3355 /* Subtract off extra increments as we find them. */
3356 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3357 insn = NEXT_INSN (insn))
3358 {
3359 struct induction *biv;
3360
3361 for (biv = bl->biv; biv; biv = biv->next_iv)
3362 if (biv->insn == insn)
3363 {
3364 start_sequence ();
3365 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3366 biv->add_val, NULL_RTX, 0,
3367 OPTAB_LIB_WIDEN);
3368 seq = gen_sequence ();
3369 end_sequence ();
3370 emit_insn_before (seq, insert_before);
3371 }
3372 }
3373
3374 /* Now calculate the giv's final value. */
3375 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3376 insert_before);
3377
3378 if (loop_dump_stream)
3379 fprintf (loop_dump_stream,
3380 "Final giv value for %d, calc from biv's value.\n",
3381 REGNO (v->dest_reg));
3382
3383 return tem;
3384 }
3385 }
3386
3387 /* Replaceable giv's should never reach here. */
3388 if (v->replaceable)
3389 abort ();
3390
3391 /* Check to see if the biv is dead at all loop exits. */
3392 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3393 {
3394 if (loop_dump_stream)
3395 fprintf (loop_dump_stream,
3396 "Final giv value for %d, giv dead after loop exit.\n",
3397 REGNO (v->dest_reg));
3398
3399 return const0_rtx;
3400 }
3401
3402 return 0;
3403 }
3404
3405
3406 /* Calculate the number of loop iterations. Returns the exact number of loop
3407 iterations if it can be calculated, otherwise returns zero. */
3408
3409 unsigned HOST_WIDE_INT
3410 loop_iterations (loop_start, loop_end)
3411 rtx loop_start, loop_end;
3412 {
3413 rtx comparison, comparison_value;
3414 rtx iteration_var, initial_value, increment, final_value;
3415 enum rtx_code comparison_code;
3416 HOST_WIDE_INT i;
3417 int increment_dir;
3418 int unsigned_compare, compare_dir, final_larger;
3419 unsigned long tempu;
3420 rtx last_loop_insn;
3421
3422 /* First find the iteration variable. If the last insn is a conditional
3423 branch, and the insn before tests a register value, make that the
3424 iteration variable. */
3425
3426 loop_initial_value = 0;
3427 loop_increment = 0;
3428 loop_final_value = 0;
3429 loop_iteration_var = 0;
3430
3431 /* We used to use pren_nonnote_insn here, but that fails because it might
3432 accidentally get the branch for a contained loop if the branch for this
3433 loop was deleted. We can only trust branches immediately before the
3434 loop_end. */
3435 last_loop_insn = PREV_INSN (loop_end);
3436
3437 comparison = get_condition_for_loop (last_loop_insn);
3438 if (comparison == 0)
3439 {
3440 if (loop_dump_stream)
3441 fprintf (loop_dump_stream,
3442 "Loop unrolling: No final conditional branch found.\n");
3443 return 0;
3444 }
3445
3446 /* ??? Get_condition may switch position of induction variable and
3447 invariant register when it canonicalizes the comparison. */
3448
3449 comparison_code = GET_CODE (comparison);
3450 iteration_var = XEXP (comparison, 0);
3451 comparison_value = XEXP (comparison, 1);
3452
3453 if (GET_CODE (iteration_var) != REG)
3454 {
3455 if (loop_dump_stream)
3456 fprintf (loop_dump_stream,
3457 "Loop unrolling: Comparison not against register.\n");
3458 return 0;
3459 }
3460
3461 /* Loop iterations is always called before any new registers are created
3462 now, so this should never occur. */
3463
3464 if (REGNO (iteration_var) >= max_reg_before_loop)
3465 abort ();
3466
3467 iteration_info (iteration_var, &initial_value, &increment,
3468 loop_start, loop_end);
3469 if (initial_value == 0)
3470 /* iteration_info already printed a message. */
3471 return 0;
3472
3473 /* If the comparison value is an invariant register, then try to find
3474 its value from the insns before the start of the loop. */
3475
3476 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3477 {
3478 rtx insn, set;
3479
3480 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3481 {
3482 if (GET_CODE (insn) == CODE_LABEL)
3483 break;
3484
3485 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3486 && reg_set_p (comparison_value, insn))
3487 {
3488 /* We found the last insn before the loop that sets the register.
3489 If it sets the entire register, and has a REG_EQUAL note,
3490 then use the value of the REG_EQUAL note. */
3491 if ((set = single_set (insn))
3492 && (SET_DEST (set) == comparison_value))
3493 {
3494 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3495
3496 /* Only use the REG_EQUAL note if it is a constant.
3497 Other things, divide in particular, will cause
3498 problems later if we use them. */
3499 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3500 && CONSTANT_P (XEXP (note, 0)))
3501 comparison_value = XEXP (note, 0);
3502 }
3503 break;
3504 }
3505 }
3506 }
3507
3508 final_value = approx_final_value (comparison_code, comparison_value,
3509 &unsigned_compare, &compare_dir);
3510
3511 /* Save the calculated values describing this loop's bounds, in case
3512 precondition_loop_p will need them later. These values can not be
3513 recalculated inside precondition_loop_p because strength reduction
3514 optimizations may obscure the loop's structure. */
3515
3516 loop_iteration_var = iteration_var;
3517 loop_initial_value = initial_value;
3518 loop_increment = increment;
3519 loop_final_value = final_value;
3520 loop_comparison_code = comparison_code;
3521
3522 if (increment == 0)
3523 {
3524 if (loop_dump_stream)
3525 fprintf (loop_dump_stream,
3526 "Loop unrolling: Increment value can't be calculated.\n");
3527 return 0;
3528 }
3529 else if (GET_CODE (increment) != CONST_INT)
3530 {
3531 if (loop_dump_stream)
3532 fprintf (loop_dump_stream,
3533 "Loop unrolling: Increment value not constant.\n");
3534 return 0;
3535 }
3536 else if (GET_CODE (initial_value) != CONST_INT)
3537 {
3538 if (loop_dump_stream)
3539 fprintf (loop_dump_stream,
3540 "Loop unrolling: Initial value not constant.\n");
3541 return 0;
3542 }
3543 else if (final_value == 0)
3544 {
3545 if (loop_dump_stream)
3546 fprintf (loop_dump_stream,
3547 "Loop unrolling: EQ comparison loop.\n");
3548 return 0;
3549 }
3550 else if (GET_CODE (final_value) != CONST_INT)
3551 {
3552 if (loop_dump_stream)
3553 fprintf (loop_dump_stream,
3554 "Loop unrolling: Final value not constant.\n");
3555 return 0;
3556 }
3557
3558 /* ?? Final value and initial value do not have to be constants.
3559 Only their difference has to be constant. When the iteration variable
3560 is an array address, the final value and initial value might both
3561 be addresses with the same base but different constant offsets.
3562 Final value must be invariant for this to work.
3563
3564 To do this, need some way to find the values of registers which are
3565 invariant. */
3566
3567 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3568 if (unsigned_compare)
3569 final_larger
3570 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3571 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3572 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3573 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3574 else
3575 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3576 - (INTVAL (final_value) < INTVAL (initial_value));
3577
3578 if (INTVAL (increment) > 0)
3579 increment_dir = 1;
3580 else if (INTVAL (increment) == 0)
3581 increment_dir = 0;
3582 else
3583 increment_dir = -1;
3584
3585 /* There are 27 different cases: compare_dir = -1, 0, 1;
3586 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3587 There are 4 normal cases, 4 reverse cases (where the iteration variable
3588 will overflow before the loop exits), 4 infinite loop cases, and 15
3589 immediate exit (0 or 1 iteration depending on loop type) cases.
3590 Only try to optimize the normal cases. */
3591
3592 /* (compare_dir/final_larger/increment_dir)
3593 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3594 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3595 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3596 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3597
3598 /* ?? If the meaning of reverse loops (where the iteration variable
3599 will overflow before the loop exits) is undefined, then could
3600 eliminate all of these special checks, and just always assume
3601 the loops are normal/immediate/infinite. Note that this means
3602 the sign of increment_dir does not have to be known. Also,
3603 since it does not really hurt if immediate exit loops or infinite loops
3604 are optimized, then that case could be ignored also, and hence all
3605 loops can be optimized.
3606
3607 According to ANSI Spec, the reverse loop case result is undefined,
3608 because the action on overflow is undefined.
3609
3610 See also the special test for NE loops below. */
3611
3612 if (final_larger == increment_dir && final_larger != 0
3613 && (final_larger == compare_dir || compare_dir == 0))
3614 /* Normal case. */
3615 ;
3616 else
3617 {
3618 if (loop_dump_stream)
3619 fprintf (loop_dump_stream,
3620 "Loop unrolling: Not normal loop.\n");
3621 return 0;
3622 }
3623
3624 /* Calculate the number of iterations, final_value is only an approximation,
3625 so correct for that. Note that tempu and loop_n_iterations are
3626 unsigned, because they can be as large as 2^n - 1. */
3627
3628 i = INTVAL (increment);
3629 if (i > 0)
3630 tempu = INTVAL (final_value) - INTVAL (initial_value);
3631 else if (i < 0)
3632 {
3633 tempu = INTVAL (initial_value) - INTVAL (final_value);
3634 i = -i;
3635 }
3636 else
3637 abort ();
3638
3639 /* For NE tests, make sure that the iteration variable won't miss the
3640 final value. If tempu mod i is not zero, then the iteration variable
3641 will overflow before the loop exits, and we can not calculate the
3642 number of iterations. */
3643 if (compare_dir == 0 && (tempu % i) != 0)
3644 return 0;
3645
3646 return tempu / i + ((tempu % i) != 0);
3647 }
3648
3649 /* Replace uses of split bivs with their split pseudo register. This is
3650 for original instructions which remain after loop unrolling without
3651 copying. */
3652
3653 static rtx
3654 remap_split_bivs (x)
3655 rtx x;
3656 {
3657 register enum rtx_code code;
3658 register int i;
3659 register char *fmt;
3660
3661 if (x == 0)
3662 return x;
3663
3664 code = GET_CODE (x);
3665 switch (code)
3666 {
3667 case SCRATCH:
3668 case PC:
3669 case CC0:
3670 case CONST_INT:
3671 case CONST_DOUBLE:
3672 case CONST:
3673 case SYMBOL_REF:
3674 case LABEL_REF:
3675 return x;
3676
3677 case REG:
3678 #if 0
3679 /* If non-reduced/final-value givs were split, then this would also
3680 have to remap those givs also. */
3681 #endif
3682 if (REGNO (x) < max_reg_before_loop
3683 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3684 return reg_biv_class[REGNO (x)]->biv->src_reg;
3685 break;
3686
3687 default:
3688 break;
3689 }
3690
3691 fmt = GET_RTX_FORMAT (code);
3692 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3693 {
3694 if (fmt[i] == 'e')
3695 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3696 if (fmt[i] == 'E')
3697 {
3698 register int j;
3699 for (j = 0; j < XVECLEN (x, i); j++)
3700 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3701 }
3702 }
3703 return x;
3704 }
3705
3706 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3707 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3708 return 0. COPY_START is where we can start looking for the insns
3709 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3710 insns.
3711
3712 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3713 must dominate LAST_UID.
3714
3715 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3716 may not dominate LAST_UID.
3717
3718 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3719 must dominate LAST_UID. */
3720
3721 int
3722 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3723 int regno;
3724 int first_uid;
3725 int last_uid;
3726 rtx copy_start;
3727 rtx copy_end;
3728 {
3729 int passed_jump = 0;
3730 rtx p = NEXT_INSN (copy_start);
3731
3732 while (INSN_UID (p) != first_uid)
3733 {
3734 if (GET_CODE (p) == JUMP_INSN)
3735 passed_jump= 1;
3736 /* Could not find FIRST_UID. */
3737 if (p == copy_end)
3738 return 0;
3739 p = NEXT_INSN (p);
3740 }
3741
3742 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3743 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3744 || ! dead_or_set_regno_p (p, regno))
3745 return 0;
3746
3747 /* FIRST_UID is always executed. */
3748 if (passed_jump == 0)
3749 return 1;
3750
3751 while (INSN_UID (p) != last_uid)
3752 {
3753 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3754 can not be sure that FIRST_UID dominates LAST_UID. */
3755 if (GET_CODE (p) == CODE_LABEL)
3756 return 0;
3757 /* Could not find LAST_UID, but we reached the end of the loop, so
3758 it must be safe. */
3759 else if (p == copy_end)
3760 return 1;
3761 p = NEXT_INSN (p);
3762 }
3763
3764 /* FIRST_UID is always executed if LAST_UID is executed. */
3765 return 1;
3766 }