Update FSF address.
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include "rtl.h"
151 #include "insn-config.h"
152 #include "integrate.h"
153 #include "regs.h"
154 #include "flags.h"
155 #include "expr.h"
156 #include <stdio.h>
157 #include "loop.h"
158
159 /* This controls which loops are unrolled, and by how much we unroll
160 them. */
161
162 #ifndef MAX_UNROLLED_INSNS
163 #define MAX_UNROLLED_INSNS 100
164 #endif
165
166 /* Indexed by register number, if non-zero, then it contains a pointer
167 to a struct induction for a DEST_REG giv which has been combined with
168 one of more address givs. This is needed because whenever such a DEST_REG
169 giv is modified, we must modify the value of all split address givs
170 that were combined with this DEST_REG giv. */
171
172 static struct induction **addr_combined_regs;
173
174 /* Indexed by register number, if this is a splittable induction variable,
175 then this will hold the current value of the register, which depends on the
176 iteration number. */
177
178 static rtx *splittable_regs;
179
180 /* Indexed by register number, if this is a splittable induction variable,
181 then this will hold the number of instructions in the loop that modify
182 the induction variable. Used to ensure that only the last insn modifying
183 a split iv will update the original iv of the dest. */
184
185 static int *splittable_regs_updates;
186
187 /* Values describing the current loop's iteration variable. These are set up
188 by loop_iterations, and used by precondition_loop_p. */
189
190 static rtx loop_iteration_var;
191 static rtx loop_initial_value;
192 static rtx loop_increment;
193 static rtx loop_final_value;
194
195 /* Forward declarations. */
196
197 static void init_reg_map PROTO((struct inline_remap *, int));
198 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
199 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
200 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
201 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
202 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
203 enum unroll_types, rtx, rtx, rtx, rtx));
204 static void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
205 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
206 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
207 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
208 rtx, rtx, rtx, int));
209 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
210 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
211 static rtx remap_split_bivs PROTO((rtx));
212
213 /* Try to unroll one loop and split induction variables in the loop.
214
215 The loop is described by the arguments LOOP_END, INSN_COUNT, and
216 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
217 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
218 indicates whether information generated in the strength reduction pass
219 is available.
220
221 This function is intended to be called from within `strength_reduce'
222 in loop.c. */
223
224 void
225 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
226 strength_reduce_p)
227 rtx loop_end;
228 int insn_count;
229 rtx loop_start;
230 rtx end_insert_before;
231 int strength_reduce_p;
232 {
233 int i, j, temp;
234 int unroll_number = 1;
235 rtx copy_start, copy_end;
236 rtx insn, copy, sequence, pattern, tem;
237 int max_labelno, max_insnno;
238 rtx insert_before;
239 struct inline_remap *map;
240 char *local_label;
241 char *local_regno;
242 int maxregnum;
243 int new_maxregnum;
244 rtx exit_label = 0;
245 rtx start_label;
246 struct iv_class *bl;
247 int splitting_not_safe = 0;
248 enum unroll_types unroll_type;
249 int loop_preconditioned = 0;
250 rtx safety_label;
251 /* This points to the last real insn in the loop, which should be either
252 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
253 jumps). */
254 rtx last_loop_insn;
255
256 /* Don't bother unrolling huge loops. Since the minimum factor is
257 two, loops greater than one half of MAX_UNROLLED_INSNS will never
258 be unrolled. */
259 if (insn_count > MAX_UNROLLED_INSNS / 2)
260 {
261 if (loop_dump_stream)
262 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
263 return;
264 }
265
266 /* When emitting debugger info, we can't unroll loops with unequal numbers
267 of block_beg and block_end notes, because that would unbalance the block
268 structure of the function. This can happen as a result of the
269 "if (foo) bar; else break;" optimization in jump.c. */
270
271 if (write_symbols != NO_DEBUG)
272 {
273 int block_begins = 0;
274 int block_ends = 0;
275
276 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
277 {
278 if (GET_CODE (insn) == NOTE)
279 {
280 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
281 block_begins++;
282 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
283 block_ends++;
284 }
285 }
286
287 if (block_begins != block_ends)
288 {
289 if (loop_dump_stream)
290 fprintf (loop_dump_stream,
291 "Unrolling failure: Unbalanced block notes.\n");
292 return;
293 }
294 }
295
296 /* Determine type of unroll to perform. Depends on the number of iterations
297 and the size of the loop. */
298
299 /* If there is no strength reduce info, then set loop_n_iterations to zero.
300 This can happen if strength_reduce can't find any bivs in the loop.
301 A value of zero indicates that the number of iterations could not be
302 calculated. */
303
304 if (! strength_reduce_p)
305 loop_n_iterations = 0;
306
307 if (loop_dump_stream && loop_n_iterations > 0)
308 fprintf (loop_dump_stream,
309 "Loop unrolling: %d iterations.\n", loop_n_iterations);
310
311 /* Find and save a pointer to the last nonnote insn in the loop. */
312
313 last_loop_insn = prev_nonnote_insn (loop_end);
314
315 /* Calculate how many times to unroll the loop. Indicate whether or
316 not the loop is being completely unrolled. */
317
318 if (loop_n_iterations == 1)
319 {
320 /* If number of iterations is exactly 1, then eliminate the compare and
321 branch at the end of the loop since they will never be taken.
322 Then return, since no other action is needed here. */
323
324 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
325 don't do anything. */
326
327 if (GET_CODE (last_loop_insn) == BARRIER)
328 {
329 /* Delete the jump insn. This will delete the barrier also. */
330 delete_insn (PREV_INSN (last_loop_insn));
331 }
332 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
333 {
334 #ifdef HAVE_cc0
335 /* The immediately preceding insn is a compare which must be
336 deleted. */
337 delete_insn (last_loop_insn);
338 delete_insn (PREV_INSN (last_loop_insn));
339 #else
340 /* The immediately preceding insn may not be the compare, so don't
341 delete it. */
342 delete_insn (last_loop_insn);
343 #endif
344 }
345 return;
346 }
347 else if (loop_n_iterations > 0
348 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
349 {
350 unroll_number = loop_n_iterations;
351 unroll_type = UNROLL_COMPLETELY;
352 }
353 else if (loop_n_iterations > 0)
354 {
355 /* Try to factor the number of iterations. Don't bother with the
356 general case, only using 2, 3, 5, and 7 will get 75% of all
357 numbers theoretically, and almost all in practice. */
358
359 for (i = 0; i < NUM_FACTORS; i++)
360 factors[i].count = 0;
361
362 temp = loop_n_iterations;
363 for (i = NUM_FACTORS - 1; i >= 0; i--)
364 while (temp % factors[i].factor == 0)
365 {
366 factors[i].count++;
367 temp = temp / factors[i].factor;
368 }
369
370 /* Start with the larger factors first so that we generally
371 get lots of unrolling. */
372
373 unroll_number = 1;
374 temp = insn_count;
375 for (i = 3; i >= 0; i--)
376 while (factors[i].count--)
377 {
378 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
379 {
380 unroll_number *= factors[i].factor;
381 temp *= factors[i].factor;
382 }
383 else
384 break;
385 }
386
387 /* If we couldn't find any factors, then unroll as in the normal
388 case. */
389 if (unroll_number == 1)
390 {
391 if (loop_dump_stream)
392 fprintf (loop_dump_stream,
393 "Loop unrolling: No factors found.\n");
394 }
395 else
396 unroll_type = UNROLL_MODULO;
397 }
398
399
400 /* Default case, calculate number of times to unroll loop based on its
401 size. */
402 if (unroll_number == 1)
403 {
404 if (8 * insn_count < MAX_UNROLLED_INSNS)
405 unroll_number = 8;
406 else if (4 * insn_count < MAX_UNROLLED_INSNS)
407 unroll_number = 4;
408 else
409 unroll_number = 2;
410
411 unroll_type = UNROLL_NAIVE;
412 }
413
414 /* Now we know how many times to unroll the loop. */
415
416 if (loop_dump_stream)
417 fprintf (loop_dump_stream,
418 "Unrolling loop %d times.\n", unroll_number);
419
420
421 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
422 {
423 /* Loops of these types should never start with a jump down to
424 the exit condition test. For now, check for this case just to
425 be sure. UNROLL_NAIVE loops can be of this form, this case is
426 handled below. */
427 insn = loop_start;
428 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
429 insn = NEXT_INSN (insn);
430 if (GET_CODE (insn) == JUMP_INSN)
431 abort ();
432 }
433
434 if (unroll_type == UNROLL_COMPLETELY)
435 {
436 /* Completely unrolling the loop: Delete the compare and branch at
437 the end (the last two instructions). This delete must done at the
438 very end of loop unrolling, to avoid problems with calls to
439 back_branch_in_range_p, which is called by find_splittable_regs.
440 All increments of splittable bivs/givs are changed to load constant
441 instructions. */
442
443 copy_start = loop_start;
444
445 /* Set insert_before to the instruction immediately after the JUMP_INSN
446 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
447 the loop will be correctly handled by copy_loop_body. */
448 insert_before = NEXT_INSN (last_loop_insn);
449
450 /* Set copy_end to the insn before the jump at the end of the loop. */
451 if (GET_CODE (last_loop_insn) == BARRIER)
452 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
453 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
454 {
455 #ifdef HAVE_cc0
456 /* The instruction immediately before the JUMP_INSN is a compare
457 instruction which we do not want to copy. */
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 #else
460 /* The instruction immediately before the JUMP_INSN may not be the
461 compare, so we must copy it. */
462 copy_end = PREV_INSN (last_loop_insn);
463 #endif
464 }
465 else
466 {
467 /* We currently can't unroll a loop if it doesn't end with a
468 JUMP_INSN. There would need to be a mechanism that recognizes
469 this case, and then inserts a jump after each loop body, which
470 jumps to after the last loop body. */
471 if (loop_dump_stream)
472 fprintf (loop_dump_stream,
473 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
474 return;
475 }
476 }
477 else if (unroll_type == UNROLL_MODULO)
478 {
479 /* Partially unrolling the loop: The compare and branch at the end
480 (the last two instructions) must remain. Don't copy the compare
481 and branch instructions at the end of the loop. Insert the unrolled
482 code immediately before the compare/branch at the end so that the
483 code will fall through to them as before. */
484
485 copy_start = loop_start;
486
487 /* Set insert_before to the jump insn at the end of the loop.
488 Set copy_end to before the jump insn at the end of the loop. */
489 if (GET_CODE (last_loop_insn) == BARRIER)
490 {
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 }
494 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
495 {
496 #ifdef HAVE_cc0
497 /* The instruction immediately before the JUMP_INSN is a compare
498 instruction which we do not want to copy or delete. */
499 insert_before = PREV_INSN (last_loop_insn);
500 copy_end = PREV_INSN (insert_before);
501 #else
502 /* The instruction immediately before the JUMP_INSN may not be the
503 compare, so we must copy it. */
504 insert_before = last_loop_insn;
505 copy_end = PREV_INSN (last_loop_insn);
506 #endif
507 }
508 else
509 {
510 /* We currently can't unroll a loop if it doesn't end with a
511 JUMP_INSN. There would need to be a mechanism that recognizes
512 this case, and then inserts a jump after each loop body, which
513 jumps to after the last loop body. */
514 if (loop_dump_stream)
515 fprintf (loop_dump_stream,
516 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
517 return;
518 }
519 }
520 else
521 {
522 /* Normal case: Must copy the compare and branch instructions at the
523 end of the loop. */
524
525 if (GET_CODE (last_loop_insn) == BARRIER)
526 {
527 /* Loop ends with an unconditional jump and a barrier.
528 Handle this like above, don't copy jump and barrier.
529 This is not strictly necessary, but doing so prevents generating
530 unconditional jumps to an immediately following label.
531
532 This will be corrected below if the target of this jump is
533 not the start_label. */
534
535 insert_before = PREV_INSN (last_loop_insn);
536 copy_end = PREV_INSN (insert_before);
537 }
538 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
539 {
540 /* Set insert_before to immediately after the JUMP_INSN, so that
541 NOTEs at the end of the loop will be correctly handled by
542 copy_loop_body. */
543 insert_before = NEXT_INSN (last_loop_insn);
544 copy_end = last_loop_insn;
545 }
546 else
547 {
548 /* We currently can't unroll a loop if it doesn't end with a
549 JUMP_INSN. There would need to be a mechanism that recognizes
550 this case, and then inserts a jump after each loop body, which
551 jumps to after the last loop body. */
552 if (loop_dump_stream)
553 fprintf (loop_dump_stream,
554 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
555 return;
556 }
557
558 /* If copying exit test branches because they can not be eliminated,
559 then must convert the fall through case of the branch to a jump past
560 the end of the loop. Create a label to emit after the loop and save
561 it for later use. Do not use the label after the loop, if any, since
562 it might be used by insns outside the loop, or there might be insns
563 added before it later by final_[bg]iv_value which must be after
564 the real exit label. */
565 exit_label = gen_label_rtx ();
566
567 insn = loop_start;
568 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
569 insn = NEXT_INSN (insn);
570
571 if (GET_CODE (insn) == JUMP_INSN)
572 {
573 /* The loop starts with a jump down to the exit condition test.
574 Start copying the loop after the barrier following this
575 jump insn. */
576 copy_start = NEXT_INSN (insn);
577
578 /* Splitting induction variables doesn't work when the loop is
579 entered via a jump to the bottom, because then we end up doing
580 a comparison against a new register for a split variable, but
581 we did not execute the set insn for the new register because
582 it was skipped over. */
583 splitting_not_safe = 1;
584 if (loop_dump_stream)
585 fprintf (loop_dump_stream,
586 "Splitting not safe, because loop not entered at top.\n");
587 }
588 else
589 copy_start = loop_start;
590 }
591
592 /* This should always be the first label in the loop. */
593 start_label = NEXT_INSN (copy_start);
594 /* There may be a line number note and/or a loop continue note here. */
595 while (GET_CODE (start_label) == NOTE)
596 start_label = NEXT_INSN (start_label);
597 if (GET_CODE (start_label) != CODE_LABEL)
598 {
599 /* This can happen as a result of jump threading. If the first insns in
600 the loop test the same condition as the loop's backward jump, or the
601 opposite condition, then the backward jump will be modified to point
602 to elsewhere, and the loop's start label is deleted.
603
604 This case currently can not be handled by the loop unrolling code. */
605
606 if (loop_dump_stream)
607 fprintf (loop_dump_stream,
608 "Unrolling failure: unknown insns between BEG note and loop label.\n");
609 return;
610 }
611 if (LABEL_NAME (start_label))
612 {
613 /* The jump optimization pass must have combined the original start label
614 with a named label for a goto. We can't unroll this case because
615 jumps which go to the named label must be handled differently than
616 jumps to the loop start, and it is impossible to differentiate them
617 in this case. */
618 if (loop_dump_stream)
619 fprintf (loop_dump_stream,
620 "Unrolling failure: loop start label is gone\n");
621 return;
622 }
623
624 if (unroll_type == UNROLL_NAIVE
625 && GET_CODE (last_loop_insn) == BARRIER
626 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
627 {
628 /* In this case, we must copy the jump and barrier, because they will
629 not be converted to jumps to an immediately following label. */
630
631 insert_before = NEXT_INSN (last_loop_insn);
632 copy_end = last_loop_insn;
633 }
634
635 /* Allocate a translation table for the labels and insn numbers.
636 They will be filled in as we copy the insns in the loop. */
637
638 max_labelno = max_label_num ();
639 max_insnno = get_max_uid ();
640
641 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
642
643 map->integrating = 0;
644
645 /* Allocate the label map. */
646
647 if (max_labelno > 0)
648 {
649 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
650
651 local_label = (char *) alloca (max_labelno);
652 bzero (local_label, max_labelno);
653 }
654 else
655 map->label_map = 0;
656
657 /* Search the loop and mark all local labels, i.e. the ones which have to
658 be distinct labels when copied. For all labels which might be
659 non-local, set their label_map entries to point to themselves.
660 If they happen to be local their label_map entries will be overwritten
661 before the loop body is copied. The label_map entries for local labels
662 will be set to a different value each time the loop body is copied. */
663
664 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
665 {
666 if (GET_CODE (insn) == CODE_LABEL)
667 local_label[CODE_LABEL_NUMBER (insn)] = 1;
668 else if (GET_CODE (insn) == JUMP_INSN)
669 {
670 if (JUMP_LABEL (insn))
671 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
672 = JUMP_LABEL (insn);
673 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
674 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
675 {
676 rtx pat = PATTERN (insn);
677 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
678 int len = XVECLEN (pat, diff_vec_p);
679 rtx label;
680
681 for (i = 0; i < len; i++)
682 {
683 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
684 map->label_map[CODE_LABEL_NUMBER (label)] = label;
685 }
686 }
687 }
688 }
689
690 /* Allocate space for the insn map. */
691
692 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
693
694 /* Set this to zero, to indicate that we are doing loop unrolling,
695 not function inlining. */
696 map->inline_target = 0;
697
698 /* The register and constant maps depend on the number of registers
699 present, so the final maps can't be created until after
700 find_splittable_regs is called. However, they are needed for
701 preconditioning, so we create temporary maps when preconditioning
702 is performed. */
703
704 /* The preconditioning code may allocate two new pseudo registers. */
705 maxregnum = max_reg_num ();
706
707 /* Allocate and zero out the splittable_regs and addr_combined_regs
708 arrays. These must be zeroed here because they will be used if
709 loop preconditioning is performed, and must be zero for that case.
710
711 It is safe to do this here, since the extra registers created by the
712 preconditioning code and find_splittable_regs will never be used
713 to access the splittable_regs[] and addr_combined_regs[] arrays. */
714
715 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
716 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
717 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
718 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
719 addr_combined_regs
720 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
721 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
722 /* We must limit it to max_reg_before_loop, because only these pseudo
723 registers have valid regno_first_uid info. Any register created after
724 that is unlikely to be local to the loop anyways. */
725 local_regno = (char *) alloca (max_reg_before_loop);
726 bzero (local_regno, max_reg_before_loop);
727
728 /* Mark all local registers, i.e. the ones which are referenced only
729 inside the loop. */
730 if (INSN_UID (copy_end) < max_uid_for_loop)
731 {
732 int copy_start_luid = INSN_LUID (copy_start);
733 int copy_end_luid = INSN_LUID (copy_end);
734
735 /* If a register is used in the jump insn, we must not duplicate it
736 since it will also be used outside the loop. */
737 if (GET_CODE (copy_end) == JUMP_INSN)
738 copy_end_luid--;
739 /* If copy_start points to the NOTE that starts the loop, then we must
740 use the next luid, because invariant pseudo-regs moved out of the loop
741 have their lifetimes modified to start here, but they are not safe
742 to duplicate. */
743 if (copy_start == loop_start)
744 copy_start_luid++;
745
746 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
747 if (regno_first_uid[j] > 0 && regno_first_uid[j] <= max_uid_for_loop
748 && uid_luid[regno_first_uid[j]] >= copy_start_luid
749 && regno_last_uid[j] > 0 && regno_last_uid[j] <= max_uid_for_loop
750 && uid_luid[regno_last_uid[j]] <= copy_end_luid)
751 local_regno[j] = 1;
752 }
753
754 /* If this loop requires exit tests when unrolled, check to see if we
755 can precondition the loop so as to make the exit tests unnecessary.
756 Just like variable splitting, this is not safe if the loop is entered
757 via a jump to the bottom. Also, can not do this if no strength
758 reduce info, because precondition_loop_p uses this info. */
759
760 /* Must copy the loop body for preconditioning before the following
761 find_splittable_regs call since that will emit insns which need to
762 be after the preconditioned loop copies, but immediately before the
763 unrolled loop copies. */
764
765 /* Also, it is not safe to split induction variables for the preconditioned
766 copies of the loop body. If we split induction variables, then the code
767 assumes that each induction variable can be represented as a function
768 of its initial value and the loop iteration number. This is not true
769 in this case, because the last preconditioned copy of the loop body
770 could be any iteration from the first up to the `unroll_number-1'th,
771 depending on the initial value of the iteration variable. Therefore
772 we can not split induction variables here, because we can not calculate
773 their value. Hence, this code must occur before find_splittable_regs
774 is called. */
775
776 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
777 {
778 rtx initial_value, final_value, increment;
779
780 if (precondition_loop_p (&initial_value, &final_value, &increment,
781 loop_start, loop_end))
782 {
783 register rtx diff, temp;
784 enum machine_mode mode;
785 rtx *labels;
786 int abs_inc, neg_inc;
787
788 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
789
790 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
791 map->const_age_map = (unsigned *) alloca (maxregnum
792 * sizeof (unsigned));
793 map->const_equiv_map_size = maxregnum;
794 global_const_equiv_map = map->const_equiv_map;
795 global_const_equiv_map_size = maxregnum;
796
797 init_reg_map (map, maxregnum);
798
799 /* Limit loop unrolling to 4, since this will make 7 copies of
800 the loop body. */
801 if (unroll_number > 4)
802 unroll_number = 4;
803
804 /* Save the absolute value of the increment, and also whether or
805 not it is negative. */
806 neg_inc = 0;
807 abs_inc = INTVAL (increment);
808 if (abs_inc < 0)
809 {
810 abs_inc = - abs_inc;
811 neg_inc = 1;
812 }
813
814 start_sequence ();
815
816 /* Decide what mode to do these calculations in. Choose the larger
817 of final_value's mode and initial_value's mode, or a full-word if
818 both are constants. */
819 mode = GET_MODE (final_value);
820 if (mode == VOIDmode)
821 {
822 mode = GET_MODE (initial_value);
823 if (mode == VOIDmode)
824 mode = word_mode;
825 }
826 else if (mode != GET_MODE (initial_value)
827 && (GET_MODE_SIZE (mode)
828 < GET_MODE_SIZE (GET_MODE (initial_value))))
829 mode = GET_MODE (initial_value);
830
831 /* Calculate the difference between the final and initial values.
832 Final value may be a (plus (reg x) (const_int 1)) rtx.
833 Let the following cse pass simplify this if initial value is
834 a constant.
835
836 We must copy the final and initial values here to avoid
837 improperly shared rtl. */
838
839 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
840 copy_rtx (initial_value), NULL_RTX, 0,
841 OPTAB_LIB_WIDEN);
842
843 /* Now calculate (diff % (unroll * abs (increment))) by using an
844 and instruction. */
845 diff = expand_binop (GET_MODE (diff), and_optab, diff,
846 GEN_INT (unroll_number * abs_inc - 1),
847 NULL_RTX, 0, OPTAB_LIB_WIDEN);
848
849 /* Now emit a sequence of branches to jump to the proper precond
850 loop entry point. */
851
852 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
853 for (i = 0; i < unroll_number; i++)
854 labels[i] = gen_label_rtx ();
855
856 /* Assuming the unroll_number is 4, and the increment is 2, then
857 for a negative increment: for a positive increment:
858 diff = 0,1 precond 0 diff = 0,7 precond 0
859 diff = 2,3 precond 3 diff = 1,2 precond 1
860 diff = 4,5 precond 2 diff = 3,4 precond 2
861 diff = 6,7 precond 1 diff = 5,6 precond 3 */
862
863 /* We only need to emit (unroll_number - 1) branches here, the
864 last case just falls through to the following code. */
865
866 /* ??? This would give better code if we emitted a tree of branches
867 instead of the current linear list of branches. */
868
869 for (i = 0; i < unroll_number - 1; i++)
870 {
871 int cmp_const;
872
873 /* For negative increments, must invert the constant compared
874 against, except when comparing against zero. */
875 if (i == 0)
876 cmp_const = 0;
877 else if (neg_inc)
878 cmp_const = unroll_number - i;
879 else
880 cmp_const = i;
881
882 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
883 EQ, NULL_RTX, mode, 0, 0);
884
885 if (i == 0)
886 emit_jump_insn (gen_beq (labels[i]));
887 else if (neg_inc)
888 emit_jump_insn (gen_bge (labels[i]));
889 else
890 emit_jump_insn (gen_ble (labels[i]));
891 JUMP_LABEL (get_last_insn ()) = labels[i];
892 LABEL_NUSES (labels[i])++;
893 }
894
895 /* If the increment is greater than one, then we need another branch,
896 to handle other cases equivalent to 0. */
897
898 /* ??? This should be merged into the code above somehow to help
899 simplify the code here, and reduce the number of branches emitted.
900 For the negative increment case, the branch here could easily
901 be merged with the `0' case branch above. For the positive
902 increment case, it is not clear how this can be simplified. */
903
904 if (abs_inc != 1)
905 {
906 int cmp_const;
907
908 if (neg_inc)
909 cmp_const = abs_inc - 1;
910 else
911 cmp_const = abs_inc * (unroll_number - 1) + 1;
912
913 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
914 mode, 0, 0);
915
916 if (neg_inc)
917 emit_jump_insn (gen_ble (labels[0]));
918 else
919 emit_jump_insn (gen_bge (labels[0]));
920 JUMP_LABEL (get_last_insn ()) = labels[0];
921 LABEL_NUSES (labels[0])++;
922 }
923
924 sequence = gen_sequence ();
925 end_sequence ();
926 emit_insn_before (sequence, loop_start);
927
928 /* Only the last copy of the loop body here needs the exit
929 test, so set copy_end to exclude the compare/branch here,
930 and then reset it inside the loop when get to the last
931 copy. */
932
933 if (GET_CODE (last_loop_insn) == BARRIER)
934 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
935 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
936 {
937 #ifdef HAVE_cc0
938 /* The immediately preceding insn is a compare which we do not
939 want to copy. */
940 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
941 #else
942 /* The immediately preceding insn may not be a compare, so we
943 must copy it. */
944 copy_end = PREV_INSN (last_loop_insn);
945 #endif
946 }
947 else
948 abort ();
949
950 for (i = 1; i < unroll_number; i++)
951 {
952 emit_label_after (labels[unroll_number - i],
953 PREV_INSN (loop_start));
954
955 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
956 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
957 bzero ((char *) map->const_age_map,
958 maxregnum * sizeof (unsigned));
959 map->const_age = 0;
960
961 for (j = 0; j < max_labelno; j++)
962 if (local_label[j])
963 map->label_map[j] = gen_label_rtx ();
964
965 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
966 if (local_regno[j])
967 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
968
969 /* The last copy needs the compare/branch insns at the end,
970 so reset copy_end here if the loop ends with a conditional
971 branch. */
972
973 if (i == unroll_number - 1)
974 {
975 if (GET_CODE (last_loop_insn) == BARRIER)
976 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
977 else
978 copy_end = last_loop_insn;
979 }
980
981 /* None of the copies are the `last_iteration', so just
982 pass zero for that parameter. */
983 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
984 unroll_type, start_label, loop_end,
985 loop_start, copy_end);
986 }
987 emit_label_after (labels[0], PREV_INSN (loop_start));
988
989 if (GET_CODE (last_loop_insn) == BARRIER)
990 {
991 insert_before = PREV_INSN (last_loop_insn);
992 copy_end = PREV_INSN (insert_before);
993 }
994 else
995 {
996 #ifdef HAVE_cc0
997 /* The immediately preceding insn is a compare which we do not
998 want to copy. */
999 insert_before = PREV_INSN (last_loop_insn);
1000 copy_end = PREV_INSN (insert_before);
1001 #else
1002 /* The immediately preceding insn may not be a compare, so we
1003 must copy it. */
1004 insert_before = last_loop_insn;
1005 copy_end = PREV_INSN (last_loop_insn);
1006 #endif
1007 }
1008
1009 /* Set unroll type to MODULO now. */
1010 unroll_type = UNROLL_MODULO;
1011 loop_preconditioned = 1;
1012 }
1013 }
1014
1015 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1016 the loop unless all loops are being unrolled. */
1017 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1018 {
1019 if (loop_dump_stream)
1020 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1021 return;
1022 }
1023
1024 /* At this point, we are guaranteed to unroll the loop. */
1025
1026 /* For each biv and giv, determine whether it can be safely split into
1027 a different variable for each unrolled copy of the loop body.
1028 We precalculate and save this info here, since computing it is
1029 expensive.
1030
1031 Do this before deleting any instructions from the loop, so that
1032 back_branch_in_range_p will work correctly. */
1033
1034 if (splitting_not_safe)
1035 temp = 0;
1036 else
1037 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1038 end_insert_before, unroll_number);
1039
1040 /* find_splittable_regs may have created some new registers, so must
1041 reallocate the reg_map with the new larger size, and must realloc
1042 the constant maps also. */
1043
1044 maxregnum = max_reg_num ();
1045 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1046
1047 init_reg_map (map, maxregnum);
1048
1049 /* Space is needed in some of the map for new registers, so new_maxregnum
1050 is an (over)estimate of how many registers will exist at the end. */
1051 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1052
1053 /* Must realloc space for the constant maps, because the number of registers
1054 may have changed. */
1055
1056 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1057 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1058
1059 map->const_equiv_map_size = new_maxregnum;
1060 global_const_equiv_map = map->const_equiv_map;
1061 global_const_equiv_map_size = new_maxregnum;
1062
1063 /* Search the list of bivs and givs to find ones which need to be remapped
1064 when split, and set their reg_map entry appropriately. */
1065
1066 for (bl = loop_iv_list; bl; bl = bl->next)
1067 {
1068 if (REGNO (bl->biv->src_reg) != bl->regno)
1069 map->reg_map[bl->regno] = bl->biv->src_reg;
1070 #if 0
1071 /* Currently, non-reduced/final-value givs are never split. */
1072 for (v = bl->giv; v; v = v->next_iv)
1073 if (REGNO (v->src_reg) != bl->regno)
1074 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1075 #endif
1076 }
1077
1078 /* If the loop is being partially unrolled, and the iteration variables
1079 are being split, and are being renamed for the split, then must fix up
1080 the compare/jump instruction at the end of the loop to refer to the new
1081 registers. This compare isn't copied, so the registers used in it
1082 will never be replaced if it isn't done here. */
1083
1084 if (unroll_type == UNROLL_MODULO)
1085 {
1086 insn = NEXT_INSN (copy_end);
1087 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1088 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1089 }
1090
1091 /* For unroll_number - 1 times, make a copy of each instruction
1092 between copy_start and copy_end, and insert these new instructions
1093 before the end of the loop. */
1094
1095 for (i = 0; i < unroll_number; i++)
1096 {
1097 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1098 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1099 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1100 map->const_age = 0;
1101
1102 for (j = 0; j < max_labelno; j++)
1103 if (local_label[j])
1104 map->label_map[j] = gen_label_rtx ();
1105
1106 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1107 if (local_regno[j])
1108 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1109
1110 /* If loop starts with a branch to the test, then fix it so that
1111 it points to the test of the first unrolled copy of the loop. */
1112 if (i == 0 && loop_start != copy_start)
1113 {
1114 insn = PREV_INSN (copy_start);
1115 pattern = PATTERN (insn);
1116
1117 tem = map->label_map[CODE_LABEL_NUMBER
1118 (XEXP (SET_SRC (pattern), 0))];
1119 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1120
1121 /* Set the jump label so that it can be used by later loop unrolling
1122 passes. */
1123 JUMP_LABEL (insn) = tem;
1124 LABEL_NUSES (tem)++;
1125 }
1126
1127 copy_loop_body (copy_start, copy_end, map, exit_label,
1128 i == unroll_number - 1, unroll_type, start_label,
1129 loop_end, insert_before, insert_before);
1130 }
1131
1132 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1133 insn to be deleted. This prevents any runaway delete_insn call from
1134 more insns that it should, as it always stops at a CODE_LABEL. */
1135
1136 /* Delete the compare and branch at the end of the loop if completely
1137 unrolling the loop. Deleting the backward branch at the end also
1138 deletes the code label at the start of the loop. This is done at
1139 the very end to avoid problems with back_branch_in_range_p. */
1140
1141 if (unroll_type == UNROLL_COMPLETELY)
1142 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1143 else
1144 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1145
1146 /* Delete all of the original loop instructions. Don't delete the
1147 LOOP_BEG note, or the first code label in the loop. */
1148
1149 insn = NEXT_INSN (copy_start);
1150 while (insn != safety_label)
1151 {
1152 if (insn != start_label)
1153 insn = delete_insn (insn);
1154 else
1155 insn = NEXT_INSN (insn);
1156 }
1157
1158 /* Can now delete the 'safety' label emitted to protect us from runaway
1159 delete_insn calls. */
1160 if (INSN_DELETED_P (safety_label))
1161 abort ();
1162 delete_insn (safety_label);
1163
1164 /* If exit_label exists, emit it after the loop. Doing the emit here
1165 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1166 This is needed so that mostly_true_jump in reorg.c will treat jumps
1167 to this loop end label correctly, i.e. predict that they are usually
1168 not taken. */
1169 if (exit_label)
1170 emit_label_after (exit_label, loop_end);
1171 }
1172 \f
1173 /* Return true if the loop can be safely, and profitably, preconditioned
1174 so that the unrolled copies of the loop body don't need exit tests.
1175
1176 This only works if final_value, initial_value and increment can be
1177 determined, and if increment is a constant power of 2.
1178 If increment is not a power of 2, then the preconditioning modulo
1179 operation would require a real modulo instead of a boolean AND, and this
1180 is not considered `profitable'. */
1181
1182 /* ??? If the loop is known to be executed very many times, or the machine
1183 has a very cheap divide instruction, then preconditioning is a win even
1184 when the increment is not a power of 2. Use RTX_COST to compute
1185 whether divide is cheap. */
1186
1187 static int
1188 precondition_loop_p (initial_value, final_value, increment, loop_start,
1189 loop_end)
1190 rtx *initial_value, *final_value, *increment;
1191 rtx loop_start, loop_end;
1192 {
1193
1194 if (loop_n_iterations > 0)
1195 {
1196 *initial_value = const0_rtx;
1197 *increment = const1_rtx;
1198 *final_value = GEN_INT (loop_n_iterations);
1199
1200 if (loop_dump_stream)
1201 fprintf (loop_dump_stream,
1202 "Preconditioning: Success, number of iterations known, %d.\n",
1203 loop_n_iterations);
1204 return 1;
1205 }
1206
1207 if (loop_initial_value == 0)
1208 {
1209 if (loop_dump_stream)
1210 fprintf (loop_dump_stream,
1211 "Preconditioning: Could not find initial value.\n");
1212 return 0;
1213 }
1214 else if (loop_increment == 0)
1215 {
1216 if (loop_dump_stream)
1217 fprintf (loop_dump_stream,
1218 "Preconditioning: Could not find increment value.\n");
1219 return 0;
1220 }
1221 else if (GET_CODE (loop_increment) != CONST_INT)
1222 {
1223 if (loop_dump_stream)
1224 fprintf (loop_dump_stream,
1225 "Preconditioning: Increment not a constant.\n");
1226 return 0;
1227 }
1228 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1229 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1230 {
1231 if (loop_dump_stream)
1232 fprintf (loop_dump_stream,
1233 "Preconditioning: Increment not a constant power of 2.\n");
1234 return 0;
1235 }
1236
1237 /* Unsigned_compare and compare_dir can be ignored here, since they do
1238 not matter for preconditioning. */
1239
1240 if (loop_final_value == 0)
1241 {
1242 if (loop_dump_stream)
1243 fprintf (loop_dump_stream,
1244 "Preconditioning: EQ comparison loop.\n");
1245 return 0;
1246 }
1247
1248 /* Must ensure that final_value is invariant, so call invariant_p to
1249 check. Before doing so, must check regno against max_reg_before_loop
1250 to make sure that the register is in the range covered by invariant_p.
1251 If it isn't, then it is most likely a biv/giv which by definition are
1252 not invariant. */
1253 if ((GET_CODE (loop_final_value) == REG
1254 && REGNO (loop_final_value) >= max_reg_before_loop)
1255 || (GET_CODE (loop_final_value) == PLUS
1256 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1257 || ! invariant_p (loop_final_value))
1258 {
1259 if (loop_dump_stream)
1260 fprintf (loop_dump_stream,
1261 "Preconditioning: Final value not invariant.\n");
1262 return 0;
1263 }
1264
1265 /* Fail for floating point values, since the caller of this function
1266 does not have code to deal with them. */
1267 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1268 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1269 {
1270 if (loop_dump_stream)
1271 fprintf (loop_dump_stream,
1272 "Preconditioning: Floating point final or initial value.\n");
1273 return 0;
1274 }
1275
1276 /* Now set initial_value to be the iteration_var, since that may be a
1277 simpler expression, and is guaranteed to be correct if all of the
1278 above tests succeed.
1279
1280 We can not use the initial_value as calculated, because it will be
1281 one too small for loops of the form "while (i-- > 0)". We can not
1282 emit code before the loop_skip_over insns to fix this problem as this
1283 will then give a number one too large for loops of the form
1284 "while (--i > 0)".
1285
1286 Note that all loops that reach here are entered at the top, because
1287 this function is not called if the loop starts with a jump. */
1288
1289 /* Fail if loop_iteration_var is not live before loop_start, since we need
1290 to test its value in the preconditioning code. */
1291
1292 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1293 > INSN_LUID (loop_start))
1294 {
1295 if (loop_dump_stream)
1296 fprintf (loop_dump_stream,
1297 "Preconditioning: Iteration var not live before loop start.\n");
1298 return 0;
1299 }
1300
1301 *initial_value = loop_iteration_var;
1302 *increment = loop_increment;
1303 *final_value = loop_final_value;
1304
1305 /* Success! */
1306 if (loop_dump_stream)
1307 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1308 return 1;
1309 }
1310
1311
1312 /* All pseudo-registers must be mapped to themselves. Two hard registers
1313 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1314 REGNUM, to avoid function-inlining specific conversions of these
1315 registers. All other hard regs can not be mapped because they may be
1316 used with different
1317 modes. */
1318
1319 static void
1320 init_reg_map (map, maxregnum)
1321 struct inline_remap *map;
1322 int maxregnum;
1323 {
1324 int i;
1325
1326 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1327 map->reg_map[i] = regno_reg_rtx[i];
1328 /* Just clear the rest of the entries. */
1329 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1330 map->reg_map[i] = 0;
1331
1332 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1333 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1334 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1335 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1336 }
1337 \f
1338 /* Strength-reduction will often emit code for optimized biv/givs which
1339 calculates their value in a temporary register, and then copies the result
1340 to the iv. This procedure reconstructs the pattern computing the iv;
1341 verifying that all operands are of the proper form.
1342
1343 The return value is the amount that the giv is incremented by. */
1344
1345 static rtx
1346 calculate_giv_inc (pattern, src_insn, regno)
1347 rtx pattern, src_insn;
1348 int regno;
1349 {
1350 rtx increment;
1351 rtx increment_total = 0;
1352 int tries = 0;
1353
1354 retry:
1355 /* Verify that we have an increment insn here. First check for a plus
1356 as the set source. */
1357 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1358 {
1359 /* SR sometimes computes the new giv value in a temp, then copies it
1360 to the new_reg. */
1361 src_insn = PREV_INSN (src_insn);
1362 pattern = PATTERN (src_insn);
1363 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1364 abort ();
1365
1366 /* The last insn emitted is not needed, so delete it to avoid confusing
1367 the second cse pass. This insn sets the giv unnecessarily. */
1368 delete_insn (get_last_insn ());
1369 }
1370
1371 /* Verify that we have a constant as the second operand of the plus. */
1372 increment = XEXP (SET_SRC (pattern), 1);
1373 if (GET_CODE (increment) != CONST_INT)
1374 {
1375 /* SR sometimes puts the constant in a register, especially if it is
1376 too big to be an add immed operand. */
1377 src_insn = PREV_INSN (src_insn);
1378 increment = SET_SRC (PATTERN (src_insn));
1379
1380 /* SR may have used LO_SUM to compute the constant if it is too large
1381 for a load immed operand. In this case, the constant is in operand
1382 one of the LO_SUM rtx. */
1383 if (GET_CODE (increment) == LO_SUM)
1384 increment = XEXP (increment, 1);
1385 else if (GET_CODE (increment) == IOR)
1386 {
1387 /* The rs6000 port loads some constants with IOR. */
1388 rtx second_part = XEXP (increment, 1);
1389
1390 src_insn = PREV_INSN (src_insn);
1391 increment = SET_SRC (PATTERN (src_insn));
1392 /* Don't need the last insn anymore. */
1393 delete_insn (get_last_insn ());
1394
1395 if (GET_CODE (second_part) != CONST_INT
1396 || GET_CODE (increment) != CONST_INT)
1397 abort ();
1398
1399 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1400 }
1401
1402 if (GET_CODE (increment) != CONST_INT)
1403 abort ();
1404
1405 /* The insn loading the constant into a register is no longer needed,
1406 so delete it. */
1407 delete_insn (get_last_insn ());
1408 }
1409
1410 if (increment_total)
1411 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1412 else
1413 increment_total = increment;
1414
1415 /* Check that the source register is the same as the register we expected
1416 to see as the source. If not, something is seriously wrong. */
1417 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1418 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1419 {
1420 /* Some machines (e.g. the romp), may emit two add instructions for
1421 certain constants, so lets try looking for another add immediately
1422 before this one if we have only seen one add insn so far. */
1423
1424 if (tries == 0)
1425 {
1426 tries++;
1427
1428 src_insn = PREV_INSN (src_insn);
1429 pattern = PATTERN (src_insn);
1430
1431 delete_insn (get_last_insn ());
1432
1433 goto retry;
1434 }
1435
1436 abort ();
1437 }
1438
1439 return increment_total;
1440 }
1441
1442 /* Copy REG_NOTES, except for insn references, because not all insn_map
1443 entries are valid yet. We do need to copy registers now though, because
1444 the reg_map entries can change during copying. */
1445
1446 static rtx
1447 initial_reg_note_copy (notes, map)
1448 rtx notes;
1449 struct inline_remap *map;
1450 {
1451 rtx copy;
1452
1453 if (notes == 0)
1454 return 0;
1455
1456 copy = rtx_alloc (GET_CODE (notes));
1457 PUT_MODE (copy, GET_MODE (notes));
1458
1459 if (GET_CODE (notes) == EXPR_LIST)
1460 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1461 else if (GET_CODE (notes) == INSN_LIST)
1462 /* Don't substitute for these yet. */
1463 XEXP (copy, 0) = XEXP (notes, 0);
1464 else
1465 abort ();
1466
1467 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1468
1469 return copy;
1470 }
1471
1472 /* Fixup insn references in copied REG_NOTES. */
1473
1474 static void
1475 final_reg_note_copy (notes, map)
1476 rtx notes;
1477 struct inline_remap *map;
1478 {
1479 rtx note;
1480
1481 for (note = notes; note; note = XEXP (note, 1))
1482 if (GET_CODE (note) == INSN_LIST)
1483 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1484 }
1485
1486 /* Copy each instruction in the loop, substituting from map as appropriate.
1487 This is very similar to a loop in expand_inline_function. */
1488
1489 static void
1490 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1491 unroll_type, start_label, loop_end, insert_before,
1492 copy_notes_from)
1493 rtx copy_start, copy_end;
1494 struct inline_remap *map;
1495 rtx exit_label;
1496 int last_iteration;
1497 enum unroll_types unroll_type;
1498 rtx start_label, loop_end, insert_before, copy_notes_from;
1499 {
1500 rtx insn, pattern;
1501 rtx tem, copy;
1502 int dest_reg_was_split, i;
1503 rtx cc0_insn = 0;
1504 rtx final_label = 0;
1505 rtx giv_inc, giv_dest_reg, giv_src_reg;
1506
1507 /* If this isn't the last iteration, then map any references to the
1508 start_label to final_label. Final label will then be emitted immediately
1509 after the end of this loop body if it was ever used.
1510
1511 If this is the last iteration, then map references to the start_label
1512 to itself. */
1513 if (! last_iteration)
1514 {
1515 final_label = gen_label_rtx ();
1516 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1517 }
1518 else
1519 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1520
1521 start_sequence ();
1522
1523 insn = copy_start;
1524 do
1525 {
1526 insn = NEXT_INSN (insn);
1527
1528 map->orig_asm_operands_vector = 0;
1529
1530 switch (GET_CODE (insn))
1531 {
1532 case INSN:
1533 pattern = PATTERN (insn);
1534 copy = 0;
1535 giv_inc = 0;
1536
1537 /* Check to see if this is a giv that has been combined with
1538 some split address givs. (Combined in the sense that
1539 `combine_givs' in loop.c has put two givs in the same register.)
1540 In this case, we must search all givs based on the same biv to
1541 find the address givs. Then split the address givs.
1542 Do this before splitting the giv, since that may map the
1543 SET_DEST to a new register. */
1544
1545 if (GET_CODE (pattern) == SET
1546 && GET_CODE (SET_DEST (pattern)) == REG
1547 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1548 {
1549 struct iv_class *bl;
1550 struct induction *v, *tv;
1551 int regno = REGNO (SET_DEST (pattern));
1552
1553 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1554 bl = reg_biv_class[REGNO (v->src_reg)];
1555
1556 /* Although the giv_inc amount is not needed here, we must call
1557 calculate_giv_inc here since it might try to delete the
1558 last insn emitted. If we wait until later to call it,
1559 we might accidentally delete insns generated immediately
1560 below by emit_unrolled_add. */
1561
1562 giv_inc = calculate_giv_inc (pattern, insn, regno);
1563
1564 /* Now find all address giv's that were combined with this
1565 giv 'v'. */
1566 for (tv = bl->giv; tv; tv = tv->next_iv)
1567 if (tv->giv_type == DEST_ADDR && tv->same == v)
1568 {
1569 int this_giv_inc = INTVAL (giv_inc);
1570
1571 /* Scale this_giv_inc if the multiplicative factors of
1572 the two givs are different. */
1573 if (tv->mult_val != v->mult_val)
1574 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1575 * INTVAL (tv->mult_val));
1576
1577 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1578 *tv->location = tv->dest_reg;
1579
1580 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1581 {
1582 /* Must emit an insn to increment the split address
1583 giv. Add in the const_adjust field in case there
1584 was a constant eliminated from the address. */
1585 rtx value, dest_reg;
1586
1587 /* tv->dest_reg will be either a bare register,
1588 or else a register plus a constant. */
1589 if (GET_CODE (tv->dest_reg) == REG)
1590 dest_reg = tv->dest_reg;
1591 else
1592 dest_reg = XEXP (tv->dest_reg, 0);
1593
1594 /* Check for shared address givs, and avoid
1595 incrementing the shared pseudo reg more than
1596 once. */
1597 if (! tv->same_insn)
1598 {
1599 /* tv->dest_reg may actually be a (PLUS (REG)
1600 (CONST)) here, so we must call plus_constant
1601 to add the const_adjust amount before calling
1602 emit_unrolled_add below. */
1603 value = plus_constant (tv->dest_reg,
1604 tv->const_adjust);
1605
1606 /* The constant could be too large for an add
1607 immediate, so can't directly emit an insn
1608 here. */
1609 emit_unrolled_add (dest_reg, XEXP (value, 0),
1610 XEXP (value, 1));
1611 }
1612
1613 /* Reset the giv to be just the register again, in case
1614 it is used after the set we have just emitted.
1615 We must subtract the const_adjust factor added in
1616 above. */
1617 tv->dest_reg = plus_constant (dest_reg,
1618 - tv->const_adjust);
1619 *tv->location = tv->dest_reg;
1620 }
1621 }
1622 }
1623
1624 /* If this is a setting of a splittable variable, then determine
1625 how to split the variable, create a new set based on this split,
1626 and set up the reg_map so that later uses of the variable will
1627 use the new split variable. */
1628
1629 dest_reg_was_split = 0;
1630
1631 if (GET_CODE (pattern) == SET
1632 && GET_CODE (SET_DEST (pattern)) == REG
1633 && splittable_regs[REGNO (SET_DEST (pattern))])
1634 {
1635 int regno = REGNO (SET_DEST (pattern));
1636
1637 dest_reg_was_split = 1;
1638
1639 /* Compute the increment value for the giv, if it wasn't
1640 already computed above. */
1641
1642 if (giv_inc == 0)
1643 giv_inc = calculate_giv_inc (pattern, insn, regno);
1644 giv_dest_reg = SET_DEST (pattern);
1645 giv_src_reg = SET_DEST (pattern);
1646
1647 if (unroll_type == UNROLL_COMPLETELY)
1648 {
1649 /* Completely unrolling the loop. Set the induction
1650 variable to a known constant value. */
1651
1652 /* The value in splittable_regs may be an invariant
1653 value, so we must use plus_constant here. */
1654 splittable_regs[regno]
1655 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1656
1657 if (GET_CODE (splittable_regs[regno]) == PLUS)
1658 {
1659 giv_src_reg = XEXP (splittable_regs[regno], 0);
1660 giv_inc = XEXP (splittable_regs[regno], 1);
1661 }
1662 else
1663 {
1664 /* The splittable_regs value must be a REG or a
1665 CONST_INT, so put the entire value in the giv_src_reg
1666 variable. */
1667 giv_src_reg = splittable_regs[regno];
1668 giv_inc = const0_rtx;
1669 }
1670 }
1671 else
1672 {
1673 /* Partially unrolling loop. Create a new pseudo
1674 register for the iteration variable, and set it to
1675 be a constant plus the original register. Except
1676 on the last iteration, when the result has to
1677 go back into the original iteration var register. */
1678
1679 /* Handle bivs which must be mapped to a new register
1680 when split. This happens for bivs which need their
1681 final value set before loop entry. The new register
1682 for the biv was stored in the biv's first struct
1683 induction entry by find_splittable_regs. */
1684
1685 if (regno < max_reg_before_loop
1686 && reg_iv_type[regno] == BASIC_INDUCT)
1687 {
1688 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1689 giv_dest_reg = giv_src_reg;
1690 }
1691
1692 #if 0
1693 /* If non-reduced/final-value givs were split, then
1694 this would have to remap those givs also. See
1695 find_splittable_regs. */
1696 #endif
1697
1698 splittable_regs[regno]
1699 = GEN_INT (INTVAL (giv_inc)
1700 + INTVAL (splittable_regs[regno]));
1701 giv_inc = splittable_regs[regno];
1702
1703 /* Now split the induction variable by changing the dest
1704 of this insn to a new register, and setting its
1705 reg_map entry to point to this new register.
1706
1707 If this is the last iteration, and this is the last insn
1708 that will update the iv, then reuse the original dest,
1709 to ensure that the iv will have the proper value when
1710 the loop exits or repeats.
1711
1712 Using splittable_regs_updates here like this is safe,
1713 because it can only be greater than one if all
1714 instructions modifying the iv are always executed in
1715 order. */
1716
1717 if (! last_iteration
1718 || (splittable_regs_updates[regno]-- != 1))
1719 {
1720 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1721 giv_dest_reg = tem;
1722 map->reg_map[regno] = tem;
1723 }
1724 else
1725 map->reg_map[regno] = giv_src_reg;
1726 }
1727
1728 /* The constant being added could be too large for an add
1729 immediate, so can't directly emit an insn here. */
1730 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1731 copy = get_last_insn ();
1732 pattern = PATTERN (copy);
1733 }
1734 else
1735 {
1736 pattern = copy_rtx_and_substitute (pattern, map);
1737 copy = emit_insn (pattern);
1738 }
1739 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1740
1741 #ifdef HAVE_cc0
1742 /* If this insn is setting CC0, it may need to look at
1743 the insn that uses CC0 to see what type of insn it is.
1744 In that case, the call to recog via validate_change will
1745 fail. So don't substitute constants here. Instead,
1746 do it when we emit the following insn.
1747
1748 For example, see the pyr.md file. That machine has signed and
1749 unsigned compares. The compare patterns must check the
1750 following branch insn to see which what kind of compare to
1751 emit.
1752
1753 If the previous insn set CC0, substitute constants on it as
1754 well. */
1755 if (sets_cc0_p (PATTERN (copy)) != 0)
1756 cc0_insn = copy;
1757 else
1758 {
1759 if (cc0_insn)
1760 try_constants (cc0_insn, map);
1761 cc0_insn = 0;
1762 try_constants (copy, map);
1763 }
1764 #else
1765 try_constants (copy, map);
1766 #endif
1767
1768 /* Make split induction variable constants `permanent' since we
1769 know there are no backward branches across iteration variable
1770 settings which would invalidate this. */
1771 if (dest_reg_was_split)
1772 {
1773 int regno = REGNO (SET_DEST (pattern));
1774
1775 if (regno < map->const_equiv_map_size
1776 && map->const_age_map[regno] == map->const_age)
1777 map->const_age_map[regno] = -1;
1778 }
1779 break;
1780
1781 case JUMP_INSN:
1782 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1783 copy = emit_jump_insn (pattern);
1784 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1785
1786 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1787 && ! last_iteration)
1788 {
1789 /* This is a branch to the beginning of the loop; this is the
1790 last insn being copied; and this is not the last iteration.
1791 In this case, we want to change the original fall through
1792 case to be a branch past the end of the loop, and the
1793 original jump label case to fall_through. */
1794
1795 if (invert_exp (pattern, copy))
1796 {
1797 if (! redirect_exp (&pattern,
1798 map->label_map[CODE_LABEL_NUMBER
1799 (JUMP_LABEL (insn))],
1800 exit_label, copy))
1801 abort ();
1802 }
1803 else
1804 {
1805 rtx jmp;
1806 rtx lab = gen_label_rtx ();
1807 /* Can't do it by reversing the jump (probably because we
1808 couldn't reverse the conditions), so emit a new
1809 jump_insn after COPY, and redirect the jump around
1810 that. */
1811 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1812 jmp = emit_barrier_after (jmp);
1813 emit_label_after (lab, jmp);
1814 LABEL_NUSES (lab) = 0;
1815 if (! redirect_exp (&pattern,
1816 map->label_map[CODE_LABEL_NUMBER
1817 (JUMP_LABEL (insn))],
1818 lab, copy))
1819 abort ();
1820 }
1821 }
1822
1823 #ifdef HAVE_cc0
1824 if (cc0_insn)
1825 try_constants (cc0_insn, map);
1826 cc0_insn = 0;
1827 #endif
1828 try_constants (copy, map);
1829
1830 /* Set the jump label of COPY correctly to avoid problems with
1831 later passes of unroll_loop, if INSN had jump label set. */
1832 if (JUMP_LABEL (insn))
1833 {
1834 rtx label = 0;
1835
1836 /* Can't use the label_map for every insn, since this may be
1837 the backward branch, and hence the label was not mapped. */
1838 if (GET_CODE (pattern) == SET)
1839 {
1840 tem = SET_SRC (pattern);
1841 if (GET_CODE (tem) == LABEL_REF)
1842 label = XEXP (tem, 0);
1843 else if (GET_CODE (tem) == IF_THEN_ELSE)
1844 {
1845 if (XEXP (tem, 1) != pc_rtx)
1846 label = XEXP (XEXP (tem, 1), 0);
1847 else
1848 label = XEXP (XEXP (tem, 2), 0);
1849 }
1850 }
1851
1852 if (label && GET_CODE (label) == CODE_LABEL)
1853 JUMP_LABEL (copy) = label;
1854 else
1855 {
1856 /* An unrecognizable jump insn, probably the entry jump
1857 for a switch statement. This label must have been mapped,
1858 so just use the label_map to get the new jump label. */
1859 JUMP_LABEL (copy)
1860 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1861 }
1862
1863 /* If this is a non-local jump, then must increase the label
1864 use count so that the label will not be deleted when the
1865 original jump is deleted. */
1866 LABEL_NUSES (JUMP_LABEL (copy))++;
1867 }
1868 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1869 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1870 {
1871 rtx pat = PATTERN (copy);
1872 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1873 int len = XVECLEN (pat, diff_vec_p);
1874 int i;
1875
1876 for (i = 0; i < len; i++)
1877 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1878 }
1879
1880 /* If this used to be a conditional jump insn but whose branch
1881 direction is now known, we must do something special. */
1882 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1883 {
1884 #ifdef HAVE_cc0
1885 /* The previous insn set cc0 for us. So delete it. */
1886 delete_insn (PREV_INSN (copy));
1887 #endif
1888
1889 /* If this is now a no-op, delete it. */
1890 if (map->last_pc_value == pc_rtx)
1891 {
1892 /* Don't let delete_insn delete the label referenced here,
1893 because we might possibly need it later for some other
1894 instruction in the loop. */
1895 if (JUMP_LABEL (copy))
1896 LABEL_NUSES (JUMP_LABEL (copy))++;
1897 delete_insn (copy);
1898 if (JUMP_LABEL (copy))
1899 LABEL_NUSES (JUMP_LABEL (copy))--;
1900 copy = 0;
1901 }
1902 else
1903 /* Otherwise, this is unconditional jump so we must put a
1904 BARRIER after it. We could do some dead code elimination
1905 here, but jump.c will do it just as well. */
1906 emit_barrier ();
1907 }
1908 break;
1909
1910 case CALL_INSN:
1911 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1912 copy = emit_call_insn (pattern);
1913 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1914
1915 /* Because the USAGE information potentially contains objects other
1916 than hard registers, we need to copy it. */
1917 CALL_INSN_FUNCTION_USAGE (copy) =
1918 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1919
1920 #ifdef HAVE_cc0
1921 if (cc0_insn)
1922 try_constants (cc0_insn, map);
1923 cc0_insn = 0;
1924 #endif
1925 try_constants (copy, map);
1926
1927 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1928 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1929 map->const_equiv_map[i] = 0;
1930 break;
1931
1932 case CODE_LABEL:
1933 /* If this is the loop start label, then we don't need to emit a
1934 copy of this label since no one will use it. */
1935
1936 if (insn != start_label)
1937 {
1938 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1939 map->const_age++;
1940 }
1941 break;
1942
1943 case BARRIER:
1944 copy = emit_barrier ();
1945 break;
1946
1947 case NOTE:
1948 /* VTOP notes are valid only before the loop exit test. If placed
1949 anywhere else, loop may generate bad code. */
1950
1951 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1952 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1953 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1954 copy = emit_note (NOTE_SOURCE_FILE (insn),
1955 NOTE_LINE_NUMBER (insn));
1956 else
1957 copy = 0;
1958 break;
1959
1960 default:
1961 abort ();
1962 break;
1963 }
1964
1965 map->insn_map[INSN_UID (insn)] = copy;
1966 }
1967 while (insn != copy_end);
1968
1969 /* Now finish coping the REG_NOTES. */
1970 insn = copy_start;
1971 do
1972 {
1973 insn = NEXT_INSN (insn);
1974 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1975 || GET_CODE (insn) == CALL_INSN)
1976 && map->insn_map[INSN_UID (insn)])
1977 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
1978 }
1979 while (insn != copy_end);
1980
1981 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1982 each of these notes here, since there may be some important ones, such as
1983 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1984 iteration, because the original notes won't be deleted.
1985
1986 We can't use insert_before here, because when from preconditioning,
1987 insert_before points before the loop. We can't use copy_end, because
1988 there may be insns already inserted after it (which we don't want to
1989 copy) when not from preconditioning code. */
1990
1991 if (! last_iteration)
1992 {
1993 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1994 {
1995 if (GET_CODE (insn) == NOTE
1996 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1997 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1998 }
1999 }
2000
2001 if (final_label && LABEL_NUSES (final_label) > 0)
2002 emit_label (final_label);
2003
2004 tem = gen_sequence ();
2005 end_sequence ();
2006 emit_insn_before (tem, insert_before);
2007 }
2008 \f
2009 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2010 emitted. This will correctly handle the case where the increment value
2011 won't fit in the immediate field of a PLUS insns. */
2012
2013 void
2014 emit_unrolled_add (dest_reg, src_reg, increment)
2015 rtx dest_reg, src_reg, increment;
2016 {
2017 rtx result;
2018
2019 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2020 dest_reg, 0, OPTAB_LIB_WIDEN);
2021
2022 if (dest_reg != result)
2023 emit_move_insn (dest_reg, result);
2024 }
2025 \f
2026 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2027 is a backward branch in that range that branches to somewhere between
2028 LOOP_START and INSN. Returns 0 otherwise. */
2029
2030 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2031 In practice, this is not a problem, because this function is seldom called,
2032 and uses a negligible amount of CPU time on average. */
2033
2034 int
2035 back_branch_in_range_p (insn, loop_start, loop_end)
2036 rtx insn;
2037 rtx loop_start, loop_end;
2038 {
2039 rtx p, q, target_insn;
2040
2041 /* Stop before we get to the backward branch at the end of the loop. */
2042 loop_end = prev_nonnote_insn (loop_end);
2043 if (GET_CODE (loop_end) == BARRIER)
2044 loop_end = PREV_INSN (loop_end);
2045
2046 /* Check in case insn has been deleted, search forward for first non
2047 deleted insn following it. */
2048 while (INSN_DELETED_P (insn))
2049 insn = NEXT_INSN (insn);
2050
2051 /* Check for the case where insn is the last insn in the loop. */
2052 if (insn == loop_end)
2053 return 0;
2054
2055 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2056 {
2057 if (GET_CODE (p) == JUMP_INSN)
2058 {
2059 target_insn = JUMP_LABEL (p);
2060
2061 /* Search from loop_start to insn, to see if one of them is
2062 the target_insn. We can't use INSN_LUID comparisons here,
2063 since insn may not have an LUID entry. */
2064 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2065 if (q == target_insn)
2066 return 1;
2067 }
2068 }
2069
2070 return 0;
2071 }
2072
2073 /* Try to generate the simplest rtx for the expression
2074 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2075 value of giv's. */
2076
2077 static rtx
2078 fold_rtx_mult_add (mult1, mult2, add1, mode)
2079 rtx mult1, mult2, add1;
2080 enum machine_mode mode;
2081 {
2082 rtx temp, mult_res;
2083 rtx result;
2084
2085 /* The modes must all be the same. This should always be true. For now,
2086 check to make sure. */
2087 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2088 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2089 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2090 abort ();
2091
2092 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2093 will be a constant. */
2094 if (GET_CODE (mult1) == CONST_INT)
2095 {
2096 temp = mult2;
2097 mult2 = mult1;
2098 mult1 = temp;
2099 }
2100
2101 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2102 if (! mult_res)
2103 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2104
2105 /* Again, put the constant second. */
2106 if (GET_CODE (add1) == CONST_INT)
2107 {
2108 temp = add1;
2109 add1 = mult_res;
2110 mult_res = temp;
2111 }
2112
2113 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2114 if (! result)
2115 result = gen_rtx (PLUS, mode, add1, mult_res);
2116
2117 return result;
2118 }
2119
2120 /* Searches the list of induction struct's for the biv BL, to try to calculate
2121 the total increment value for one iteration of the loop as a constant.
2122
2123 Returns the increment value as an rtx, simplified as much as possible,
2124 if it can be calculated. Otherwise, returns 0. */
2125
2126 rtx
2127 biv_total_increment (bl, loop_start, loop_end)
2128 struct iv_class *bl;
2129 rtx loop_start, loop_end;
2130 {
2131 struct induction *v;
2132 rtx result;
2133
2134 /* For increment, must check every instruction that sets it. Each
2135 instruction must be executed only once each time through the loop.
2136 To verify this, we check that the the insn is always executed, and that
2137 there are no backward branches after the insn that branch to before it.
2138 Also, the insn must have a mult_val of one (to make sure it really is
2139 an increment). */
2140
2141 result = const0_rtx;
2142 for (v = bl->biv; v; v = v->next_iv)
2143 {
2144 if (v->always_computable && v->mult_val == const1_rtx
2145 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2146 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2147 else
2148 return 0;
2149 }
2150
2151 return result;
2152 }
2153
2154 /* Determine the initial value of the iteration variable, and the amount
2155 that it is incremented each loop. Use the tables constructed by
2156 the strength reduction pass to calculate these values.
2157
2158 Initial_value and/or increment are set to zero if their values could not
2159 be calculated. */
2160
2161 static void
2162 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2163 rtx iteration_var, *initial_value, *increment;
2164 rtx loop_start, loop_end;
2165 {
2166 struct iv_class *bl;
2167 struct induction *v, *b;
2168
2169 /* Clear the result values, in case no answer can be found. */
2170 *initial_value = 0;
2171 *increment = 0;
2172
2173 /* The iteration variable can be either a giv or a biv. Check to see
2174 which it is, and compute the variable's initial value, and increment
2175 value if possible. */
2176
2177 /* If this is a new register, can't handle it since we don't have any
2178 reg_iv_type entry for it. */
2179 if (REGNO (iteration_var) >= max_reg_before_loop)
2180 {
2181 if (loop_dump_stream)
2182 fprintf (loop_dump_stream,
2183 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2184 return;
2185 }
2186 /* Reject iteration variables larger than the host long size, since they
2187 could result in a number of iterations greater than the range of our
2188 `unsigned long' variable loop_n_iterations. */
2189 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2190 {
2191 if (loop_dump_stream)
2192 fprintf (loop_dump_stream,
2193 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2194 return;
2195 }
2196 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2197 {
2198 if (loop_dump_stream)
2199 fprintf (loop_dump_stream,
2200 "Loop unrolling: Iteration var not an integer.\n");
2201 return;
2202 }
2203 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2204 {
2205 /* Grab initial value, only useful if it is a constant. */
2206 bl = reg_biv_class[REGNO (iteration_var)];
2207 *initial_value = bl->initial_value;
2208
2209 *increment = biv_total_increment (bl, loop_start, loop_end);
2210 }
2211 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2212 {
2213 #if 1
2214 /* ??? The code below does not work because the incorrect number of
2215 iterations is calculated when the biv is incremented after the giv
2216 is set (which is the usual case). This can probably be accounted
2217 for by biasing the initial_value by subtracting the amount of the
2218 increment that occurs between the giv set and the giv test. However,
2219 a giv as an iterator is very rare, so it does not seem worthwhile
2220 to handle this. */
2221 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2222 if (loop_dump_stream)
2223 fprintf (loop_dump_stream,
2224 "Loop unrolling: Giv iterators are not handled.\n");
2225 return;
2226 #else
2227 /* Initial value is mult_val times the biv's initial value plus
2228 add_val. Only useful if it is a constant. */
2229 v = reg_iv_info[REGNO (iteration_var)];
2230 bl = reg_biv_class[REGNO (v->src_reg)];
2231 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2232 v->add_val, v->mode);
2233
2234 /* Increment value is mult_val times the increment value of the biv. */
2235
2236 *increment = biv_total_increment (bl, loop_start, loop_end);
2237 if (*increment)
2238 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2239 v->mode);
2240 #endif
2241 }
2242 else
2243 {
2244 if (loop_dump_stream)
2245 fprintf (loop_dump_stream,
2246 "Loop unrolling: Not basic or general induction var.\n");
2247 return;
2248 }
2249 }
2250
2251 /* Calculate the approximate final value of the iteration variable
2252 which has an loop exit test with code COMPARISON_CODE and comparison value
2253 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2254 was signed or unsigned, and the direction of the comparison. This info is
2255 needed to calculate the number of loop iterations. */
2256
2257 static rtx
2258 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2259 enum rtx_code comparison_code;
2260 rtx comparison_value;
2261 int *unsigned_p;
2262 int *compare_dir;
2263 {
2264 /* Calculate the final value of the induction variable.
2265 The exact final value depends on the branch operator, and increment sign.
2266 This is only an approximate value. It will be wrong if the iteration
2267 variable is not incremented by one each time through the loop, and
2268 approx final value - start value % increment != 0. */
2269
2270 *unsigned_p = 0;
2271 switch (comparison_code)
2272 {
2273 case LEU:
2274 *unsigned_p = 1;
2275 case LE:
2276 *compare_dir = 1;
2277 return plus_constant (comparison_value, 1);
2278 case GEU:
2279 *unsigned_p = 1;
2280 case GE:
2281 *compare_dir = -1;
2282 return plus_constant (comparison_value, -1);
2283 case EQ:
2284 /* Can not calculate a final value for this case. */
2285 *compare_dir = 0;
2286 return 0;
2287 case LTU:
2288 *unsigned_p = 1;
2289 case LT:
2290 *compare_dir = 1;
2291 return comparison_value;
2292 break;
2293 case GTU:
2294 *unsigned_p = 1;
2295 case GT:
2296 *compare_dir = -1;
2297 return comparison_value;
2298 case NE:
2299 *compare_dir = 0;
2300 return comparison_value;
2301 default:
2302 abort ();
2303 }
2304 }
2305
2306 /* For each biv and giv, determine whether it can be safely split into
2307 a different variable for each unrolled copy of the loop body. If it
2308 is safe to split, then indicate that by saving some useful info
2309 in the splittable_regs array.
2310
2311 If the loop is being completely unrolled, then splittable_regs will hold
2312 the current value of the induction variable while the loop is unrolled.
2313 It must be set to the initial value of the induction variable here.
2314 Otherwise, splittable_regs will hold the difference between the current
2315 value of the induction variable and the value the induction variable had
2316 at the top of the loop. It must be set to the value 0 here.
2317
2318 Returns the total number of instructions that set registers that are
2319 splittable. */
2320
2321 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2322 constant values are unnecessary, since we can easily calculate increment
2323 values in this case even if nothing is constant. The increment value
2324 should not involve a multiply however. */
2325
2326 /* ?? Even if the biv/giv increment values aren't constant, it may still
2327 be beneficial to split the variable if the loop is only unrolled a few
2328 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2329
2330 static int
2331 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2332 unroll_number)
2333 enum unroll_types unroll_type;
2334 rtx loop_start, loop_end;
2335 rtx end_insert_before;
2336 int unroll_number;
2337 {
2338 struct iv_class *bl;
2339 struct induction *v;
2340 rtx increment, tem;
2341 rtx biv_final_value;
2342 int biv_splittable;
2343 int result = 0;
2344
2345 for (bl = loop_iv_list; bl; bl = bl->next)
2346 {
2347 /* Biv_total_increment must return a constant value,
2348 otherwise we can not calculate the split values. */
2349
2350 increment = biv_total_increment (bl, loop_start, loop_end);
2351 if (! increment || GET_CODE (increment) != CONST_INT)
2352 continue;
2353
2354 /* The loop must be unrolled completely, or else have a known number
2355 of iterations and only one exit, or else the biv must be dead
2356 outside the loop, or else the final value must be known. Otherwise,
2357 it is unsafe to split the biv since it may not have the proper
2358 value on loop exit. */
2359
2360 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2361 a fall through at the end. */
2362
2363 biv_splittable = 1;
2364 biv_final_value = 0;
2365 if (unroll_type != UNROLL_COMPLETELY
2366 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2367 || unroll_type == UNROLL_NAIVE)
2368 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2369 || ! bl->init_insn
2370 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2371 || (uid_luid[regno_first_uid[bl->regno]]
2372 < INSN_LUID (bl->init_insn))
2373 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2374 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2375 biv_splittable = 0;
2376
2377 /* If any of the insns setting the BIV don't do so with a simple
2378 PLUS, we don't know how to split it. */
2379 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2380 if ((tem = single_set (v->insn)) == 0
2381 || GET_CODE (SET_DEST (tem)) != REG
2382 || REGNO (SET_DEST (tem)) != bl->regno
2383 || GET_CODE (SET_SRC (tem)) != PLUS)
2384 biv_splittable = 0;
2385
2386 /* If final value is non-zero, then must emit an instruction which sets
2387 the value of the biv to the proper value. This is done after
2388 handling all of the givs, since some of them may need to use the
2389 biv's value in their initialization code. */
2390
2391 /* This biv is splittable. If completely unrolling the loop, save
2392 the biv's initial value. Otherwise, save the constant zero. */
2393
2394 if (biv_splittable == 1)
2395 {
2396 if (unroll_type == UNROLL_COMPLETELY)
2397 {
2398 /* If the initial value of the biv is itself (i.e. it is too
2399 complicated for strength_reduce to compute), or is a hard
2400 register, then we must create a new pseudo reg to hold the
2401 initial value of the biv. */
2402
2403 if (GET_CODE (bl->initial_value) == REG
2404 && (REGNO (bl->initial_value) == bl->regno
2405 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2406 {
2407 rtx tem = gen_reg_rtx (bl->biv->mode);
2408
2409 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2410 loop_start);
2411
2412 if (loop_dump_stream)
2413 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2414 bl->regno, REGNO (tem));
2415
2416 splittable_regs[bl->regno] = tem;
2417 }
2418 else
2419 splittable_regs[bl->regno] = bl->initial_value;
2420 }
2421 else
2422 splittable_regs[bl->regno] = const0_rtx;
2423
2424 /* Save the number of instructions that modify the biv, so that
2425 we can treat the last one specially. */
2426
2427 splittable_regs_updates[bl->regno] = bl->biv_count;
2428 result += bl->biv_count;
2429
2430 if (loop_dump_stream)
2431 fprintf (loop_dump_stream,
2432 "Biv %d safe to split.\n", bl->regno);
2433 }
2434
2435 /* Check every giv that depends on this biv to see whether it is
2436 splittable also. Even if the biv isn't splittable, givs which
2437 depend on it may be splittable if the biv is live outside the
2438 loop, and the givs aren't. */
2439
2440 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2441 increment, unroll_number);
2442
2443 /* If final value is non-zero, then must emit an instruction which sets
2444 the value of the biv to the proper value. This is done after
2445 handling all of the givs, since some of them may need to use the
2446 biv's value in their initialization code. */
2447 if (biv_final_value)
2448 {
2449 /* If the loop has multiple exits, emit the insns before the
2450 loop to ensure that it will always be executed no matter
2451 how the loop exits. Otherwise emit the insn after the loop,
2452 since this is slightly more efficient. */
2453 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2454 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2455 biv_final_value),
2456 end_insert_before);
2457 else
2458 {
2459 /* Create a new register to hold the value of the biv, and then
2460 set the biv to its final value before the loop start. The biv
2461 is set to its final value before loop start to ensure that
2462 this insn will always be executed, no matter how the loop
2463 exits. */
2464 rtx tem = gen_reg_rtx (bl->biv->mode);
2465 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2466 loop_start);
2467 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2468 biv_final_value),
2469 loop_start);
2470
2471 if (loop_dump_stream)
2472 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2473 REGNO (bl->biv->src_reg), REGNO (tem));
2474
2475 /* Set up the mapping from the original biv register to the new
2476 register. */
2477 bl->biv->src_reg = tem;
2478 }
2479 }
2480 }
2481 return result;
2482 }
2483
2484 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2485 for the instruction that is using it. Do not make any changes to that
2486 instruction. */
2487
2488 static int
2489 verify_addresses (v, giv_inc, unroll_number)
2490 struct induction *v;
2491 rtx giv_inc;
2492 int unroll_number;
2493 {
2494 int ret = 1;
2495 rtx orig_addr = *v->location;
2496 rtx last_addr = plus_constant (v->dest_reg,
2497 INTVAL (giv_inc) * (unroll_number - 1));
2498
2499 /* First check to see if either address would fail. */
2500 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2501 || ! validate_change (v->insn, v->location, last_addr, 0))
2502 ret = 0;
2503
2504 /* Now put things back the way they were before. This will always
2505 succeed. */
2506 validate_change (v->insn, v->location, orig_addr, 0);
2507
2508 return ret;
2509 }
2510
2511 /* For every giv based on the biv BL, check to determine whether it is
2512 splittable. This is a subroutine to find_splittable_regs ().
2513
2514 Return the number of instructions that set splittable registers. */
2515
2516 static int
2517 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2518 unroll_number)
2519 struct iv_class *bl;
2520 enum unroll_types unroll_type;
2521 rtx loop_start, loop_end;
2522 rtx increment;
2523 int unroll_number;
2524 {
2525 struct induction *v, *v2;
2526 rtx final_value;
2527 rtx tem;
2528 int result = 0;
2529
2530 /* Scan the list of givs, and set the same_insn field when there are
2531 multiple identical givs in the same insn. */
2532 for (v = bl->giv; v; v = v->next_iv)
2533 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2534 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2535 && ! v2->same_insn)
2536 v2->same_insn = v;
2537
2538 for (v = bl->giv; v; v = v->next_iv)
2539 {
2540 rtx giv_inc, value;
2541
2542 /* Only split the giv if it has already been reduced, or if the loop is
2543 being completely unrolled. */
2544 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2545 continue;
2546
2547 /* The giv can be split if the insn that sets the giv is executed once
2548 and only once on every iteration of the loop. */
2549 /* An address giv can always be split. v->insn is just a use not a set,
2550 and hence it does not matter whether it is always executed. All that
2551 matters is that all the biv increments are always executed, and we
2552 won't reach here if they aren't. */
2553 if (v->giv_type != DEST_ADDR
2554 && (! v->always_computable
2555 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2556 continue;
2557
2558 /* The giv increment value must be a constant. */
2559 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2560 v->mode);
2561 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2562 continue;
2563
2564 /* The loop must be unrolled completely, or else have a known number of
2565 iterations and only one exit, or else the giv must be dead outside
2566 the loop, or else the final value of the giv must be known.
2567 Otherwise, it is not safe to split the giv since it may not have the
2568 proper value on loop exit. */
2569
2570 /* The used outside loop test will fail for DEST_ADDR givs. They are
2571 never used outside the loop anyways, so it is always safe to split a
2572 DEST_ADDR giv. */
2573
2574 final_value = 0;
2575 if (unroll_type != UNROLL_COMPLETELY
2576 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2577 || unroll_type == UNROLL_NAIVE)
2578 && v->giv_type != DEST_ADDR
2579 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2580 /* Check for the case where the pseudo is set by a shift/add
2581 sequence, in which case the first insn setting the pseudo
2582 is the first insn of the shift/add sequence. */
2583 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2584 || (regno_first_uid[REGNO (v->dest_reg)]
2585 != INSN_UID (XEXP (tem, 0)))))
2586 /* Line above always fails if INSN was moved by loop opt. */
2587 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2588 >= INSN_LUID (loop_end)))
2589 && ! (final_value = v->final_value))
2590 continue;
2591
2592 #if 0
2593 /* Currently, non-reduced/final-value givs are never split. */
2594 /* Should emit insns after the loop if possible, as the biv final value
2595 code below does. */
2596
2597 /* If the final value is non-zero, and the giv has not been reduced,
2598 then must emit an instruction to set the final value. */
2599 if (final_value && !v->new_reg)
2600 {
2601 /* Create a new register to hold the value of the giv, and then set
2602 the giv to its final value before the loop start. The giv is set
2603 to its final value before loop start to ensure that this insn
2604 will always be executed, no matter how we exit. */
2605 tem = gen_reg_rtx (v->mode);
2606 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2607 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2608 loop_start);
2609
2610 if (loop_dump_stream)
2611 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2612 REGNO (v->dest_reg), REGNO (tem));
2613
2614 v->src_reg = tem;
2615 }
2616 #endif
2617
2618 /* This giv is splittable. If completely unrolling the loop, save the
2619 giv's initial value. Otherwise, save the constant zero for it. */
2620
2621 if (unroll_type == UNROLL_COMPLETELY)
2622 {
2623 /* It is not safe to use bl->initial_value here, because it may not
2624 be invariant. It is safe to use the initial value stored in
2625 the splittable_regs array if it is set. In rare cases, it won't
2626 be set, so then we do exactly the same thing as
2627 find_splittable_regs does to get a safe value. */
2628 rtx biv_initial_value;
2629
2630 if (splittable_regs[bl->regno])
2631 biv_initial_value = splittable_regs[bl->regno];
2632 else if (GET_CODE (bl->initial_value) != REG
2633 || (REGNO (bl->initial_value) != bl->regno
2634 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2635 biv_initial_value = bl->initial_value;
2636 else
2637 {
2638 rtx tem = gen_reg_rtx (bl->biv->mode);
2639
2640 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2641 loop_start);
2642 biv_initial_value = tem;
2643 }
2644 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2645 v->add_val, v->mode);
2646 }
2647 else
2648 value = const0_rtx;
2649
2650 if (v->new_reg)
2651 {
2652 /* If a giv was combined with another giv, then we can only split
2653 this giv if the giv it was combined with was reduced. This
2654 is because the value of v->new_reg is meaningless in this
2655 case. */
2656 if (v->same && ! v->same->new_reg)
2657 {
2658 if (loop_dump_stream)
2659 fprintf (loop_dump_stream,
2660 "giv combined with unreduced giv not split.\n");
2661 continue;
2662 }
2663 /* If the giv is an address destination, it could be something other
2664 than a simple register, these have to be treated differently. */
2665 else if (v->giv_type == DEST_REG)
2666 {
2667 /* If value is not a constant, register, or register plus
2668 constant, then compute its value into a register before
2669 loop start. This prevents invalid rtx sharing, and should
2670 generate better code. We can use bl->initial_value here
2671 instead of splittable_regs[bl->regno] because this code
2672 is going before the loop start. */
2673 if (unroll_type == UNROLL_COMPLETELY
2674 && GET_CODE (value) != CONST_INT
2675 && GET_CODE (value) != REG
2676 && (GET_CODE (value) != PLUS
2677 || GET_CODE (XEXP (value, 0)) != REG
2678 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2679 {
2680 rtx tem = gen_reg_rtx (v->mode);
2681 emit_iv_add_mult (bl->initial_value, v->mult_val,
2682 v->add_val, tem, loop_start);
2683 value = tem;
2684 }
2685
2686 splittable_regs[REGNO (v->new_reg)] = value;
2687 }
2688 else
2689 {
2690 /* Splitting address givs is useful since it will often allow us
2691 to eliminate some increment insns for the base giv as
2692 unnecessary. */
2693
2694 /* If the addr giv is combined with a dest_reg giv, then all
2695 references to that dest reg will be remapped, which is NOT
2696 what we want for split addr regs. We always create a new
2697 register for the split addr giv, just to be safe. */
2698
2699 /* ??? If there are multiple address givs which have been
2700 combined with the same dest_reg giv, then we may only need
2701 one new register for them. Pulling out constants below will
2702 catch some of the common cases of this. Currently, I leave
2703 the work of simplifying multiple address givs to the
2704 following cse pass. */
2705
2706 /* As a special case, if we have multiple identical address givs
2707 within a single instruction, then we do use a single pseudo
2708 reg for both. This is necessary in case one is a match_dup
2709 of the other. */
2710
2711 v->const_adjust = 0;
2712
2713 if (v->same_insn)
2714 {
2715 v->dest_reg = v->same_insn->dest_reg;
2716 if (loop_dump_stream)
2717 fprintf (loop_dump_stream,
2718 "Sharing address givs in insn %d\n",
2719 INSN_UID (v->insn));
2720 }
2721 else if (unroll_type != UNROLL_COMPLETELY)
2722 {
2723 /* If not completely unrolling the loop, then create a new
2724 register to hold the split value of the DEST_ADDR giv.
2725 Emit insn to initialize its value before loop start. */
2726 tem = gen_reg_rtx (v->mode);
2727
2728 /* If the address giv has a constant in its new_reg value,
2729 then this constant can be pulled out and put in value,
2730 instead of being part of the initialization code. */
2731
2732 if (GET_CODE (v->new_reg) == PLUS
2733 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2734 {
2735 v->dest_reg
2736 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2737
2738 /* Only succeed if this will give valid addresses.
2739 Try to validate both the first and the last
2740 address resulting from loop unrolling, if
2741 one fails, then can't do const elim here. */
2742 if (! verify_addresses (v, giv_inc, unroll_number))
2743 {
2744 /* Save the negative of the eliminated const, so
2745 that we can calculate the dest_reg's increment
2746 value later. */
2747 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2748
2749 v->new_reg = XEXP (v->new_reg, 0);
2750 if (loop_dump_stream)
2751 fprintf (loop_dump_stream,
2752 "Eliminating constant from giv %d\n",
2753 REGNO (tem));
2754 }
2755 else
2756 v->dest_reg = tem;
2757 }
2758 else
2759 v->dest_reg = tem;
2760
2761 /* If the address hasn't been checked for validity yet, do so
2762 now, and fail completely if either the first or the last
2763 unrolled copy of the address is not a valid address
2764 for the instruction that uses it. */
2765 if (v->dest_reg == tem
2766 && ! verify_addresses (v, giv_inc, unroll_number))
2767 {
2768 if (loop_dump_stream)
2769 fprintf (loop_dump_stream,
2770 "Invalid address for giv at insn %d\n",
2771 INSN_UID (v->insn));
2772 continue;
2773 }
2774
2775 /* To initialize the new register, just move the value of
2776 new_reg into it. This is not guaranteed to give a valid
2777 instruction on machines with complex addressing modes.
2778 If we can't recognize it, then delete it and emit insns
2779 to calculate the value from scratch. */
2780 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2781 copy_rtx (v->new_reg)),
2782 loop_start);
2783 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2784 {
2785 rtx sequence, ret;
2786
2787 /* We can't use bl->initial_value to compute the initial
2788 value, because the loop may have been preconditioned.
2789 We must calculate it from NEW_REG. Try using
2790 force_operand instead of emit_iv_add_mult. */
2791 delete_insn (PREV_INSN (loop_start));
2792
2793 start_sequence ();
2794 ret = force_operand (v->new_reg, tem);
2795 if (ret != tem)
2796 emit_move_insn (tem, ret);
2797 sequence = gen_sequence ();
2798 end_sequence ();
2799 emit_insn_before (sequence, loop_start);
2800
2801 if (loop_dump_stream)
2802 fprintf (loop_dump_stream,
2803 "Invalid init insn, rewritten.\n");
2804 }
2805 }
2806 else
2807 {
2808 v->dest_reg = value;
2809
2810 /* Check the resulting address for validity, and fail
2811 if the resulting address would be invalid. */
2812 if (! verify_addresses (v, giv_inc, unroll_number))
2813 {
2814 if (loop_dump_stream)
2815 fprintf (loop_dump_stream,
2816 "Invalid address for giv at insn %d\n",
2817 INSN_UID (v->insn));
2818 continue;
2819 }
2820 }
2821
2822 /* Store the value of dest_reg into the insn. This sharing
2823 will not be a problem as this insn will always be copied
2824 later. */
2825
2826 *v->location = v->dest_reg;
2827
2828 /* If this address giv is combined with a dest reg giv, then
2829 save the base giv's induction pointer so that we will be
2830 able to handle this address giv properly. The base giv
2831 itself does not have to be splittable. */
2832
2833 if (v->same && v->same->giv_type == DEST_REG)
2834 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2835
2836 if (GET_CODE (v->new_reg) == REG)
2837 {
2838 /* This giv maybe hasn't been combined with any others.
2839 Make sure that it's giv is marked as splittable here. */
2840
2841 splittable_regs[REGNO (v->new_reg)] = value;
2842
2843 /* Make it appear to depend upon itself, so that the
2844 giv will be properly split in the main loop above. */
2845 if (! v->same)
2846 {
2847 v->same = v;
2848 addr_combined_regs[REGNO (v->new_reg)] = v;
2849 }
2850 }
2851
2852 if (loop_dump_stream)
2853 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2854 }
2855 }
2856 else
2857 {
2858 #if 0
2859 /* Currently, unreduced giv's can't be split. This is not too much
2860 of a problem since unreduced giv's are not live across loop
2861 iterations anyways. When unrolling a loop completely though,
2862 it makes sense to reduce&split givs when possible, as this will
2863 result in simpler instructions, and will not require that a reg
2864 be live across loop iterations. */
2865
2866 splittable_regs[REGNO (v->dest_reg)] = value;
2867 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2868 REGNO (v->dest_reg), INSN_UID (v->insn));
2869 #else
2870 continue;
2871 #endif
2872 }
2873
2874 /* Givs are only updated once by definition. Mark it so if this is
2875 a splittable register. Don't need to do anything for address givs
2876 where this may not be a register. */
2877
2878 if (GET_CODE (v->new_reg) == REG)
2879 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2880
2881 result++;
2882
2883 if (loop_dump_stream)
2884 {
2885 int regnum;
2886
2887 if (GET_CODE (v->dest_reg) == CONST_INT)
2888 regnum = -1;
2889 else if (GET_CODE (v->dest_reg) != REG)
2890 regnum = REGNO (XEXP (v->dest_reg, 0));
2891 else
2892 regnum = REGNO (v->dest_reg);
2893 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2894 regnum, INSN_UID (v->insn));
2895 }
2896 }
2897
2898 return result;
2899 }
2900 \f
2901 /* Try to prove that the register is dead after the loop exits. Trace every
2902 loop exit looking for an insn that will always be executed, which sets
2903 the register to some value, and appears before the first use of the register
2904 is found. If successful, then return 1, otherwise return 0. */
2905
2906 /* ?? Could be made more intelligent in the handling of jumps, so that
2907 it can search past if statements and other similar structures. */
2908
2909 static int
2910 reg_dead_after_loop (reg, loop_start, loop_end)
2911 rtx reg, loop_start, loop_end;
2912 {
2913 rtx insn, label;
2914 enum rtx_code code;
2915 int jump_count = 0;
2916
2917 /* HACK: Must also search the loop fall through exit, create a label_ref
2918 here which points to the loop_end, and append the loop_number_exit_labels
2919 list to it. */
2920 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2921 LABEL_NEXTREF (label)
2922 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2923
2924 for ( ; label; label = LABEL_NEXTREF (label))
2925 {
2926 /* Succeed if find an insn which sets the biv or if reach end of
2927 function. Fail if find an insn that uses the biv, or if come to
2928 a conditional jump. */
2929
2930 insn = NEXT_INSN (XEXP (label, 0));
2931 while (insn)
2932 {
2933 code = GET_CODE (insn);
2934 if (GET_RTX_CLASS (code) == 'i')
2935 {
2936 rtx set;
2937
2938 if (reg_referenced_p (reg, PATTERN (insn)))
2939 return 0;
2940
2941 set = single_set (insn);
2942 if (set && rtx_equal_p (SET_DEST (set), reg))
2943 break;
2944 }
2945
2946 if (code == JUMP_INSN)
2947 {
2948 if (GET_CODE (PATTERN (insn)) == RETURN)
2949 break;
2950 else if (! simplejump_p (insn)
2951 /* Prevent infinite loop following infinite loops. */
2952 || jump_count++ > 20)
2953 return 0;
2954 else
2955 insn = JUMP_LABEL (insn);
2956 }
2957
2958 insn = NEXT_INSN (insn);
2959 }
2960 }
2961
2962 /* Success, the register is dead on all loop exits. */
2963 return 1;
2964 }
2965
2966 /* Try to calculate the final value of the biv, the value it will have at
2967 the end of the loop. If we can do it, return that value. */
2968
2969 rtx
2970 final_biv_value (bl, loop_start, loop_end)
2971 struct iv_class *bl;
2972 rtx loop_start, loop_end;
2973 {
2974 rtx increment, tem;
2975
2976 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2977
2978 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2979 return 0;
2980
2981 /* The final value for reversed bivs must be calculated differently than
2982 for ordinary bivs. In this case, there is already an insn after the
2983 loop which sets this biv's final value (if necessary), and there are
2984 no other loop exits, so we can return any value. */
2985 if (bl->reversed)
2986 {
2987 if (loop_dump_stream)
2988 fprintf (loop_dump_stream,
2989 "Final biv value for %d, reversed biv.\n", bl->regno);
2990
2991 return const0_rtx;
2992 }
2993
2994 /* Try to calculate the final value as initial value + (number of iterations
2995 * increment). For this to work, increment must be invariant, the only
2996 exit from the loop must be the fall through at the bottom (otherwise
2997 it may not have its final value when the loop exits), and the initial
2998 value of the biv must be invariant. */
2999
3000 if (loop_n_iterations != 0
3001 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
3002 && invariant_p (bl->initial_value))
3003 {
3004 increment = biv_total_increment (bl, loop_start, loop_end);
3005
3006 if (increment && invariant_p (increment))
3007 {
3008 /* Can calculate the loop exit value, emit insns after loop
3009 end to calculate this value into a temporary register in
3010 case it is needed later. */
3011
3012 tem = gen_reg_rtx (bl->biv->mode);
3013 /* Make sure loop_end is not the last insn. */
3014 if (NEXT_INSN (loop_end) == 0)
3015 emit_note_after (NOTE_INSN_DELETED, loop_end);
3016 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3017 bl->initial_value, tem, NEXT_INSN (loop_end));
3018
3019 if (loop_dump_stream)
3020 fprintf (loop_dump_stream,
3021 "Final biv value for %d, calculated.\n", bl->regno);
3022
3023 return tem;
3024 }
3025 }
3026
3027 /* Check to see if the biv is dead at all loop exits. */
3028 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3029 {
3030 if (loop_dump_stream)
3031 fprintf (loop_dump_stream,
3032 "Final biv value for %d, biv dead after loop exit.\n",
3033 bl->regno);
3034
3035 return const0_rtx;
3036 }
3037
3038 return 0;
3039 }
3040
3041 /* Try to calculate the final value of the giv, the value it will have at
3042 the end of the loop. If we can do it, return that value. */
3043
3044 rtx
3045 final_giv_value (v, loop_start, loop_end)
3046 struct induction *v;
3047 rtx loop_start, loop_end;
3048 {
3049 struct iv_class *bl;
3050 rtx insn;
3051 rtx increment, tem;
3052 rtx insert_before, seq;
3053
3054 bl = reg_biv_class[REGNO (v->src_reg)];
3055
3056 /* The final value for givs which depend on reversed bivs must be calculated
3057 differently than for ordinary givs. In this case, there is already an
3058 insn after the loop which sets this giv's final value (if necessary),
3059 and there are no other loop exits, so we can return any value. */
3060 if (bl->reversed)
3061 {
3062 if (loop_dump_stream)
3063 fprintf (loop_dump_stream,
3064 "Final giv value for %d, depends on reversed biv\n",
3065 REGNO (v->dest_reg));
3066 return const0_rtx;
3067 }
3068
3069 /* Try to calculate the final value as a function of the biv it depends
3070 upon. The only exit from the loop must be the fall through at the bottom
3071 (otherwise it may not have its final value when the loop exits). */
3072
3073 /* ??? Can calculate the final giv value by subtracting off the
3074 extra biv increments times the giv's mult_val. The loop must have
3075 only one exit for this to work, but the loop iterations does not need
3076 to be known. */
3077
3078 if (loop_n_iterations != 0
3079 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
3080 {
3081 /* ?? It is tempting to use the biv's value here since these insns will
3082 be put after the loop, and hence the biv will have its final value
3083 then. However, this fails if the biv is subsequently eliminated.
3084 Perhaps determine whether biv's are eliminable before trying to
3085 determine whether giv's are replaceable so that we can use the
3086 biv value here if it is not eliminable. */
3087
3088 increment = biv_total_increment (bl, loop_start, loop_end);
3089
3090 if (increment && invariant_p (increment))
3091 {
3092 /* Can calculate the loop exit value of its biv as
3093 (loop_n_iterations * increment) + initial_value */
3094
3095 /* The loop exit value of the giv is then
3096 (final_biv_value - extra increments) * mult_val + add_val.
3097 The extra increments are any increments to the biv which
3098 occur in the loop after the giv's value is calculated.
3099 We must search from the insn that sets the giv to the end
3100 of the loop to calculate this value. */
3101
3102 insert_before = NEXT_INSN (loop_end);
3103
3104 /* Put the final biv value in tem. */
3105 tem = gen_reg_rtx (bl->biv->mode);
3106 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3107 bl->initial_value, tem, insert_before);
3108
3109 /* Subtract off extra increments as we find them. */
3110 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3111 insn = NEXT_INSN (insn))
3112 {
3113 struct induction *biv;
3114
3115 for (biv = bl->biv; biv; biv = biv->next_iv)
3116 if (biv->insn == insn)
3117 {
3118 start_sequence ();
3119 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3120 biv->add_val, NULL_RTX, 0,
3121 OPTAB_LIB_WIDEN);
3122 seq = gen_sequence ();
3123 end_sequence ();
3124 emit_insn_before (seq, insert_before);
3125 }
3126 }
3127
3128 /* Now calculate the giv's final value. */
3129 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3130 insert_before);
3131
3132 if (loop_dump_stream)
3133 fprintf (loop_dump_stream,
3134 "Final giv value for %d, calc from biv's value.\n",
3135 REGNO (v->dest_reg));
3136
3137 return tem;
3138 }
3139 }
3140
3141 /* Replaceable giv's should never reach here. */
3142 if (v->replaceable)
3143 abort ();
3144
3145 /* Check to see if the biv is dead at all loop exits. */
3146 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3147 {
3148 if (loop_dump_stream)
3149 fprintf (loop_dump_stream,
3150 "Final giv value for %d, giv dead after loop exit.\n",
3151 REGNO (v->dest_reg));
3152
3153 return const0_rtx;
3154 }
3155
3156 return 0;
3157 }
3158
3159
3160 /* Calculate the number of loop iterations. Returns the exact number of loop
3161 iterations if it can be calculated, otherwise returns zero. */
3162
3163 unsigned HOST_WIDE_INT
3164 loop_iterations (loop_start, loop_end)
3165 rtx loop_start, loop_end;
3166 {
3167 rtx comparison, comparison_value;
3168 rtx iteration_var, initial_value, increment, final_value;
3169 enum rtx_code comparison_code;
3170 HOST_WIDE_INT i;
3171 int increment_dir;
3172 int unsigned_compare, compare_dir, final_larger;
3173 unsigned long tempu;
3174 rtx last_loop_insn;
3175
3176 /* First find the iteration variable. If the last insn is a conditional
3177 branch, and the insn before tests a register value, make that the
3178 iteration variable. */
3179
3180 loop_initial_value = 0;
3181 loop_increment = 0;
3182 loop_final_value = 0;
3183 loop_iteration_var = 0;
3184
3185 /* We used to use pren_nonnote_insn here, but that fails because it might
3186 accidentally get the branch for a contained loop if the branch for this
3187 loop was deleted. We can only trust branches immediately before the
3188 loop_end. */
3189 last_loop_insn = PREV_INSN (loop_end);
3190
3191 comparison = get_condition_for_loop (last_loop_insn);
3192 if (comparison == 0)
3193 {
3194 if (loop_dump_stream)
3195 fprintf (loop_dump_stream,
3196 "Loop unrolling: No final conditional branch found.\n");
3197 return 0;
3198 }
3199
3200 /* ??? Get_condition may switch position of induction variable and
3201 invariant register when it canonicalizes the comparison. */
3202
3203 comparison_code = GET_CODE (comparison);
3204 iteration_var = XEXP (comparison, 0);
3205 comparison_value = XEXP (comparison, 1);
3206
3207 if (GET_CODE (iteration_var) != REG)
3208 {
3209 if (loop_dump_stream)
3210 fprintf (loop_dump_stream,
3211 "Loop unrolling: Comparison not against register.\n");
3212 return 0;
3213 }
3214
3215 /* Loop iterations is always called before any new registers are created
3216 now, so this should never occur. */
3217
3218 if (REGNO (iteration_var) >= max_reg_before_loop)
3219 abort ();
3220
3221 iteration_info (iteration_var, &initial_value, &increment,
3222 loop_start, loop_end);
3223 if (initial_value == 0)
3224 /* iteration_info already printed a message. */
3225 return 0;
3226
3227 /* If the comparison value is an invariant register, then try to find
3228 its value from the insns before the start of the loop. */
3229
3230 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3231 {
3232 rtx insn, set;
3233
3234 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3235 {
3236 if (GET_CODE (insn) == CODE_LABEL)
3237 break;
3238
3239 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3240 && reg_set_p (comparison_value, insn))
3241 {
3242 /* We found the last insn before the loop that sets the register.
3243 If it sets the entire register, and has a REG_EQUAL note,
3244 then use the value of the REG_EQUAL note. */
3245 if ((set = single_set (insn))
3246 && (SET_DEST (set) == comparison_value))
3247 {
3248 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3249
3250 /* Only use the REG_EQUAL note if it is a constant.
3251 Other things, divide in particular, will cause
3252 problems later if we use them. */
3253 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3254 && CONSTANT_P (XEXP (note, 0)))
3255 comparison_value = XEXP (note, 0);
3256 }
3257 break;
3258 }
3259 }
3260 }
3261
3262 final_value = approx_final_value (comparison_code, comparison_value,
3263 &unsigned_compare, &compare_dir);
3264
3265 /* Save the calculated values describing this loop's bounds, in case
3266 precondition_loop_p will need them later. These values can not be
3267 recalculated inside precondition_loop_p because strength reduction
3268 optimizations may obscure the loop's structure. */
3269
3270 loop_iteration_var = iteration_var;
3271 loop_initial_value = initial_value;
3272 loop_increment = increment;
3273 loop_final_value = final_value;
3274
3275 if (increment == 0)
3276 {
3277 if (loop_dump_stream)
3278 fprintf (loop_dump_stream,
3279 "Loop unrolling: Increment value can't be calculated.\n");
3280 return 0;
3281 }
3282 else if (GET_CODE (increment) != CONST_INT)
3283 {
3284 if (loop_dump_stream)
3285 fprintf (loop_dump_stream,
3286 "Loop unrolling: Increment value not constant.\n");
3287 return 0;
3288 }
3289 else if (GET_CODE (initial_value) != CONST_INT)
3290 {
3291 if (loop_dump_stream)
3292 fprintf (loop_dump_stream,
3293 "Loop unrolling: Initial value not constant.\n");
3294 return 0;
3295 }
3296 else if (final_value == 0)
3297 {
3298 if (loop_dump_stream)
3299 fprintf (loop_dump_stream,
3300 "Loop unrolling: EQ comparison loop.\n");
3301 return 0;
3302 }
3303 else if (GET_CODE (final_value) != CONST_INT)
3304 {
3305 if (loop_dump_stream)
3306 fprintf (loop_dump_stream,
3307 "Loop unrolling: Final value not constant.\n");
3308 return 0;
3309 }
3310
3311 /* ?? Final value and initial value do not have to be constants.
3312 Only their difference has to be constant. When the iteration variable
3313 is an array address, the final value and initial value might both
3314 be addresses with the same base but different constant offsets.
3315 Final value must be invariant for this to work.
3316
3317 To do this, need some way to find the values of registers which are
3318 invariant. */
3319
3320 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3321 if (unsigned_compare)
3322 final_larger
3323 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3324 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3325 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3326 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3327 else
3328 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3329 - (INTVAL (final_value) < INTVAL (initial_value));
3330
3331 if (INTVAL (increment) > 0)
3332 increment_dir = 1;
3333 else if (INTVAL (increment) == 0)
3334 increment_dir = 0;
3335 else
3336 increment_dir = -1;
3337
3338 /* There are 27 different cases: compare_dir = -1, 0, 1;
3339 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3340 There are 4 normal cases, 4 reverse cases (where the iteration variable
3341 will overflow before the loop exits), 4 infinite loop cases, and 15
3342 immediate exit (0 or 1 iteration depending on loop type) cases.
3343 Only try to optimize the normal cases. */
3344
3345 /* (compare_dir/final_larger/increment_dir)
3346 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3347 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3348 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3349 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3350
3351 /* ?? If the meaning of reverse loops (where the iteration variable
3352 will overflow before the loop exits) is undefined, then could
3353 eliminate all of these special checks, and just always assume
3354 the loops are normal/immediate/infinite. Note that this means
3355 the sign of increment_dir does not have to be known. Also,
3356 since it does not really hurt if immediate exit loops or infinite loops
3357 are optimized, then that case could be ignored also, and hence all
3358 loops can be optimized.
3359
3360 According to ANSI Spec, the reverse loop case result is undefined,
3361 because the action on overflow is undefined.
3362
3363 See also the special test for NE loops below. */
3364
3365 if (final_larger == increment_dir && final_larger != 0
3366 && (final_larger == compare_dir || compare_dir == 0))
3367 /* Normal case. */
3368 ;
3369 else
3370 {
3371 if (loop_dump_stream)
3372 fprintf (loop_dump_stream,
3373 "Loop unrolling: Not normal loop.\n");
3374 return 0;
3375 }
3376
3377 /* Calculate the number of iterations, final_value is only an approximation,
3378 so correct for that. Note that tempu and loop_n_iterations are
3379 unsigned, because they can be as large as 2^n - 1. */
3380
3381 i = INTVAL (increment);
3382 if (i > 0)
3383 tempu = INTVAL (final_value) - INTVAL (initial_value);
3384 else if (i < 0)
3385 {
3386 tempu = INTVAL (initial_value) - INTVAL (final_value);
3387 i = -i;
3388 }
3389 else
3390 abort ();
3391
3392 /* For NE tests, make sure that the iteration variable won't miss the
3393 final value. If tempu mod i is not zero, then the iteration variable
3394 will overflow before the loop exits, and we can not calculate the
3395 number of iterations. */
3396 if (compare_dir == 0 && (tempu % i) != 0)
3397 return 0;
3398
3399 return tempu / i + ((tempu % i) != 0);
3400 }
3401
3402 /* Replace uses of split bivs with their split pseudo register. This is
3403 for original instructions which remain after loop unrolling without
3404 copying. */
3405
3406 static rtx
3407 remap_split_bivs (x)
3408 rtx x;
3409 {
3410 register enum rtx_code code;
3411 register int i;
3412 register char *fmt;
3413
3414 if (x == 0)
3415 return x;
3416
3417 code = GET_CODE (x);
3418 switch (code)
3419 {
3420 case SCRATCH:
3421 case PC:
3422 case CC0:
3423 case CONST_INT:
3424 case CONST_DOUBLE:
3425 case CONST:
3426 case SYMBOL_REF:
3427 case LABEL_REF:
3428 return x;
3429
3430 case REG:
3431 #if 0
3432 /* If non-reduced/final-value givs were split, then this would also
3433 have to remap those givs also. */
3434 #endif
3435 if (REGNO (x) < max_reg_before_loop
3436 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3437 return reg_biv_class[REGNO (x)]->biv->src_reg;
3438 }
3439
3440 fmt = GET_RTX_FORMAT (code);
3441 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3442 {
3443 if (fmt[i] == 'e')
3444 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3445 if (fmt[i] == 'E')
3446 {
3447 register int j;
3448 for (j = 0; j < XVECLEN (x, i); j++)
3449 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3450 }
3451 }
3452 return x;
3453 }