unroll.c (calculate_giv_inc): Handle constant increment found in a MEM with an approp...
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994, 1995, 1997 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 59 Temple Place - Suite 330,
20 Boston, MA 02111-1307, USA. */
21
22 /* Try to unroll a loop, and split induction variables.
23
24 Loops for which the number of iterations can be calculated exactly are
25 handled specially. If the number of iterations times the insn_count is
26 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
27 Otherwise, we try to unroll the loop a number of times modulo the number
28 of iterations, so that only one exit test will be needed. It is unrolled
29 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
30 the insn count.
31
32 Otherwise, if the number of iterations can be calculated exactly at
33 run time, and the loop is always entered at the top, then we try to
34 precondition the loop. That is, at run time, calculate how many times
35 the loop will execute, and then execute the loop body a few times so
36 that the remaining iterations will be some multiple of 4 (or 2 if the
37 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
38 with only one exit test needed at the end of the loop.
39
40 Otherwise, if the number of iterations can not be calculated exactly,
41 not even at run time, then we still unroll the loop a number of times
42 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
43 but there must be an exit test after each copy of the loop body.
44
45 For each induction variable, which is dead outside the loop (replaceable)
46 or for which we can easily calculate the final value, if we can easily
47 calculate its value at each place where it is set as a function of the
48 current loop unroll count and the variable's value at loop entry, then
49 the induction variable is split into `N' different variables, one for
50 each copy of the loop body. One variable is live across the backward
51 branch, and the others are all calculated as a function of this variable.
52 This helps eliminate data dependencies, and leads to further opportunities
53 for cse. */
54
55 /* Possible improvements follow: */
56
57 /* ??? Add an extra pass somewhere to determine whether unrolling will
58 give any benefit. E.g. after generating all unrolled insns, compute the
59 cost of all insns and compare against cost of insns in rolled loop.
60
61 - On traditional architectures, unrolling a non-constant bound loop
62 is a win if there is a giv whose only use is in memory addresses, the
63 memory addresses can be split, and hence giv increments can be
64 eliminated.
65 - It is also a win if the loop is executed many times, and preconditioning
66 can be performed for the loop.
67 Add code to check for these and similar cases. */
68
69 /* ??? Improve control of which loops get unrolled. Could use profiling
70 info to only unroll the most commonly executed loops. Perhaps have
71 a user specifyable option to control the amount of code expansion,
72 or the percent of loops to consider for unrolling. Etc. */
73
74 /* ??? Look at the register copies inside the loop to see if they form a
75 simple permutation. If so, iterate the permutation until it gets back to
76 the start state. This is how many times we should unroll the loop, for
77 best results, because then all register copies can be eliminated.
78 For example, the lisp nreverse function should be unrolled 3 times
79 while (this)
80 {
81 next = this->cdr;
82 this->cdr = prev;
83 prev = this;
84 this = next;
85 }
86
87 ??? The number of times to unroll the loop may also be based on data
88 references in the loop. For example, if we have a loop that references
89 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
90
91 /* ??? Add some simple linear equation solving capability so that we can
92 determine the number of loop iterations for more complex loops.
93 For example, consider this loop from gdb
94 #define SWAP_TARGET_AND_HOST(buffer,len)
95 {
96 char tmp;
97 char *p = (char *) buffer;
98 char *q = ((char *) buffer) + len - 1;
99 int iterations = (len + 1) >> 1;
100 int i;
101 for (p; p < q; p++, q--;)
102 {
103 tmp = *q;
104 *q = *p;
105 *p = tmp;
106 }
107 }
108 Note that:
109 start value = p = &buffer + current_iteration
110 end value = q = &buffer + len - 1 - current_iteration
111 Given the loop exit test of "p < q", then there must be "q - p" iterations,
112 set equal to zero and solve for number of iterations:
113 q - p = len - 1 - 2*current_iteration = 0
114 current_iteration = (len - 1) / 2
115 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
116 iterations of this loop. */
117
118 /* ??? Currently, no labels are marked as loop invariant when doing loop
119 unrolling. This is because an insn inside the loop, that loads the address
120 of a label inside the loop into a register, could be moved outside the loop
121 by the invariant code motion pass if labels were invariant. If the loop
122 is subsequently unrolled, the code will be wrong because each unrolled
123 body of the loop will use the same address, whereas each actually needs a
124 different address. A case where this happens is when a loop containing
125 a switch statement is unrolled.
126
127 It would be better to let labels be considered invariant. When we
128 unroll loops here, check to see if any insns using a label local to the
129 loop were moved before the loop. If so, then correct the problem, by
130 moving the insn back into the loop, or perhaps replicate the insn before
131 the loop, one copy for each time the loop is unrolled. */
132
133 /* The prime factors looked for when trying to unroll a loop by some
134 number which is modulo the total number of iterations. Just checking
135 for these 4 prime factors will find at least one factor for 75% of
136 all numbers theoretically. Practically speaking, this will succeed
137 almost all of the time since loops are generally a multiple of 2
138 and/or 5. */
139
140 #define NUM_FACTORS 4
141
142 struct _factor { int factor, count; } factors[NUM_FACTORS]
143 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
144
145 /* Describes the different types of loop unrolling performed. */
146
147 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
148
149 #include "config.h"
150 #include <stdio.h>
151 #include "rtl.h"
152 #include "insn-config.h"
153 #include "integrate.h"
154 #include "regs.h"
155 #include "recog.h"
156 #include "flags.h"
157 #include "expr.h"
158 #include "loop.h"
159
160 /* This controls which loops are unrolled, and by how much we unroll
161 them. */
162
163 #ifndef MAX_UNROLLED_INSNS
164 #define MAX_UNROLLED_INSNS 100
165 #endif
166
167 /* Indexed by register number, if non-zero, then it contains a pointer
168 to a struct induction for a DEST_REG giv which has been combined with
169 one of more address givs. This is needed because whenever such a DEST_REG
170 giv is modified, we must modify the value of all split address givs
171 that were combined with this DEST_REG giv. */
172
173 static struct induction **addr_combined_regs;
174
175 /* Indexed by register number, if this is a splittable induction variable,
176 then this will hold the current value of the register, which depends on the
177 iteration number. */
178
179 static rtx *splittable_regs;
180
181 /* Indexed by register number, if this is a splittable induction variable,
182 then this will hold the number of instructions in the loop that modify
183 the induction variable. Used to ensure that only the last insn modifying
184 a split iv will update the original iv of the dest. */
185
186 static int *splittable_regs_updates;
187
188 /* Values describing the current loop's iteration variable. These are set up
189 by loop_iterations, and used by precondition_loop_p. */
190
191 static rtx loop_iteration_var;
192 static rtx loop_initial_value;
193 static rtx loop_increment;
194 static rtx loop_final_value;
195 static enum rtx_code loop_comparison_code;
196
197 /* Forward declarations. */
198
199 static void init_reg_map PROTO((struct inline_remap *, int));
200 static int precondition_loop_p PROTO((rtx *, rtx *, rtx *, rtx, rtx));
201 static rtx calculate_giv_inc PROTO((rtx, rtx, int));
202 static rtx initial_reg_note_copy PROTO((rtx, struct inline_remap *));
203 static void final_reg_note_copy PROTO((rtx, struct inline_remap *));
204 static void copy_loop_body PROTO((rtx, rtx, struct inline_remap *, rtx, int,
205 enum unroll_types, rtx, rtx, rtx, rtx));
206 void iteration_info PROTO((rtx, rtx *, rtx *, rtx, rtx));
207 static rtx approx_final_value PROTO((enum rtx_code, rtx, int *, int *));
208 static int find_splittable_regs PROTO((enum unroll_types, rtx, rtx, rtx, int));
209 static int find_splittable_givs PROTO((struct iv_class *,enum unroll_types,
210 rtx, rtx, rtx, int));
211 static int reg_dead_after_loop PROTO((rtx, rtx, rtx));
212 static rtx fold_rtx_mult_add PROTO((rtx, rtx, rtx, enum machine_mode));
213 static rtx remap_split_bivs PROTO((rtx));
214
215 /* Try to unroll one loop and split induction variables in the loop.
216
217 The loop is described by the arguments LOOP_END, INSN_COUNT, and
218 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
219 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
220 indicates whether information generated in the strength reduction pass
221 is available.
222
223 This function is intended to be called from within `strength_reduce'
224 in loop.c. */
225
226 void
227 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
228 strength_reduce_p)
229 rtx loop_end;
230 int insn_count;
231 rtx loop_start;
232 rtx end_insert_before;
233 int strength_reduce_p;
234 {
235 int i, j, temp;
236 int unroll_number = 1;
237 rtx copy_start, copy_end;
238 rtx insn, copy, sequence, pattern, tem;
239 int max_labelno, max_insnno;
240 rtx insert_before;
241 struct inline_remap *map;
242 char *local_label;
243 char *local_regno;
244 int maxregnum;
245 int new_maxregnum;
246 rtx exit_label = 0;
247 rtx start_label;
248 struct iv_class *bl;
249 int splitting_not_safe = 0;
250 enum unroll_types unroll_type;
251 int loop_preconditioned = 0;
252 rtx safety_label;
253 /* This points to the last real insn in the loop, which should be either
254 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
255 jumps). */
256 rtx last_loop_insn;
257
258 /* Don't bother unrolling huge loops. Since the minimum factor is
259 two, loops greater than one half of MAX_UNROLLED_INSNS will never
260 be unrolled. */
261 if (insn_count > MAX_UNROLLED_INSNS / 2)
262 {
263 if (loop_dump_stream)
264 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
265 return;
266 }
267
268 /* When emitting debugger info, we can't unroll loops with unequal numbers
269 of block_beg and block_end notes, because that would unbalance the block
270 structure of the function. This can happen as a result of the
271 "if (foo) bar; else break;" optimization in jump.c. */
272 /* ??? Gcc has a general policy that -g is never supposed to change the code
273 that the compiler emits, so we must disable this optimization always,
274 even if debug info is not being output. This is rare, so this should
275 not be a significant performance problem. */
276
277 if (1 /* write_symbols != NO_DEBUG */)
278 {
279 int block_begins = 0;
280 int block_ends = 0;
281
282 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
283 {
284 if (GET_CODE (insn) == NOTE)
285 {
286 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
287 block_begins++;
288 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
289 block_ends++;
290 }
291 }
292
293 if (block_begins != block_ends)
294 {
295 if (loop_dump_stream)
296 fprintf (loop_dump_stream,
297 "Unrolling failure: Unbalanced block notes.\n");
298 return;
299 }
300 }
301
302 /* Determine type of unroll to perform. Depends on the number of iterations
303 and the size of the loop. */
304
305 /* If there is no strength reduce info, then set loop_n_iterations to zero.
306 This can happen if strength_reduce can't find any bivs in the loop.
307 A value of zero indicates that the number of iterations could not be
308 calculated. */
309
310 if (! strength_reduce_p)
311 loop_n_iterations = 0;
312
313 if (loop_dump_stream && loop_n_iterations > 0)
314 fprintf (loop_dump_stream,
315 "Loop unrolling: %d iterations.\n", loop_n_iterations);
316
317 /* Find and save a pointer to the last nonnote insn in the loop. */
318
319 last_loop_insn = prev_nonnote_insn (loop_end);
320
321 /* Calculate how many times to unroll the loop. Indicate whether or
322 not the loop is being completely unrolled. */
323
324 if (loop_n_iterations == 1)
325 {
326 /* If number of iterations is exactly 1, then eliminate the compare and
327 branch at the end of the loop since they will never be taken.
328 Then return, since no other action is needed here. */
329
330 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
331 don't do anything. */
332
333 if (GET_CODE (last_loop_insn) == BARRIER)
334 {
335 /* Delete the jump insn. This will delete the barrier also. */
336 delete_insn (PREV_INSN (last_loop_insn));
337 }
338 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
339 {
340 #ifdef HAVE_cc0
341 /* The immediately preceding insn is a compare which must be
342 deleted. */
343 delete_insn (last_loop_insn);
344 delete_insn (PREV_INSN (last_loop_insn));
345 #else
346 /* The immediately preceding insn may not be the compare, so don't
347 delete it. */
348 delete_insn (last_loop_insn);
349 #endif
350 }
351 return;
352 }
353 else if (loop_n_iterations > 0
354 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
355 {
356 unroll_number = loop_n_iterations;
357 unroll_type = UNROLL_COMPLETELY;
358 }
359 else if (loop_n_iterations > 0)
360 {
361 /* Try to factor the number of iterations. Don't bother with the
362 general case, only using 2, 3, 5, and 7 will get 75% of all
363 numbers theoretically, and almost all in practice. */
364
365 for (i = 0; i < NUM_FACTORS; i++)
366 factors[i].count = 0;
367
368 temp = loop_n_iterations;
369 for (i = NUM_FACTORS - 1; i >= 0; i--)
370 while (temp % factors[i].factor == 0)
371 {
372 factors[i].count++;
373 temp = temp / factors[i].factor;
374 }
375
376 /* Start with the larger factors first so that we generally
377 get lots of unrolling. */
378
379 unroll_number = 1;
380 temp = insn_count;
381 for (i = 3; i >= 0; i--)
382 while (factors[i].count--)
383 {
384 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
385 {
386 unroll_number *= factors[i].factor;
387 temp *= factors[i].factor;
388 }
389 else
390 break;
391 }
392
393 /* If we couldn't find any factors, then unroll as in the normal
394 case. */
395 if (unroll_number == 1)
396 {
397 if (loop_dump_stream)
398 fprintf (loop_dump_stream,
399 "Loop unrolling: No factors found.\n");
400 }
401 else
402 unroll_type = UNROLL_MODULO;
403 }
404
405
406 /* Default case, calculate number of times to unroll loop based on its
407 size. */
408 if (unroll_number == 1)
409 {
410 if (8 * insn_count < MAX_UNROLLED_INSNS)
411 unroll_number = 8;
412 else if (4 * insn_count < MAX_UNROLLED_INSNS)
413 unroll_number = 4;
414 else
415 unroll_number = 2;
416
417 unroll_type = UNROLL_NAIVE;
418 }
419
420 /* Now we know how many times to unroll the loop. */
421
422 if (loop_dump_stream)
423 fprintf (loop_dump_stream,
424 "Unrolling loop %d times.\n", unroll_number);
425
426
427 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
428 {
429 /* Loops of these types should never start with a jump down to
430 the exit condition test. For now, check for this case just to
431 be sure. UNROLL_NAIVE loops can be of this form, this case is
432 handled below. */
433 insn = loop_start;
434 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
435 insn = NEXT_INSN (insn);
436 if (GET_CODE (insn) == JUMP_INSN)
437 abort ();
438 }
439
440 if (unroll_type == UNROLL_COMPLETELY)
441 {
442 /* Completely unrolling the loop: Delete the compare and branch at
443 the end (the last two instructions). This delete must done at the
444 very end of loop unrolling, to avoid problems with calls to
445 back_branch_in_range_p, which is called by find_splittable_regs.
446 All increments of splittable bivs/givs are changed to load constant
447 instructions. */
448
449 copy_start = loop_start;
450
451 /* Set insert_before to the instruction immediately after the JUMP_INSN
452 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
453 the loop will be correctly handled by copy_loop_body. */
454 insert_before = NEXT_INSN (last_loop_insn);
455
456 /* Set copy_end to the insn before the jump at the end of the loop. */
457 if (GET_CODE (last_loop_insn) == BARRIER)
458 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
459 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
460 {
461 #ifdef HAVE_cc0
462 /* The instruction immediately before the JUMP_INSN is a compare
463 instruction which we do not want to copy. */
464 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
465 #else
466 /* The instruction immediately before the JUMP_INSN may not be the
467 compare, so we must copy it. */
468 copy_end = PREV_INSN (last_loop_insn);
469 #endif
470 }
471 else
472 {
473 /* We currently can't unroll a loop if it doesn't end with a
474 JUMP_INSN. There would need to be a mechanism that recognizes
475 this case, and then inserts a jump after each loop body, which
476 jumps to after the last loop body. */
477 if (loop_dump_stream)
478 fprintf (loop_dump_stream,
479 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
480 return;
481 }
482 }
483 else if (unroll_type == UNROLL_MODULO)
484 {
485 /* Partially unrolling the loop: The compare and branch at the end
486 (the last two instructions) must remain. Don't copy the compare
487 and branch instructions at the end of the loop. Insert the unrolled
488 code immediately before the compare/branch at the end so that the
489 code will fall through to them as before. */
490
491 copy_start = loop_start;
492
493 /* Set insert_before to the jump insn at the end of the loop.
494 Set copy_end to before the jump insn at the end of the loop. */
495 if (GET_CODE (last_loop_insn) == BARRIER)
496 {
497 insert_before = PREV_INSN (last_loop_insn);
498 copy_end = PREV_INSN (insert_before);
499 }
500 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
501 {
502 #ifdef HAVE_cc0
503 /* The instruction immediately before the JUMP_INSN is a compare
504 instruction which we do not want to copy or delete. */
505 insert_before = PREV_INSN (last_loop_insn);
506 copy_end = PREV_INSN (insert_before);
507 #else
508 /* The instruction immediately before the JUMP_INSN may not be the
509 compare, so we must copy it. */
510 insert_before = last_loop_insn;
511 copy_end = PREV_INSN (last_loop_insn);
512 #endif
513 }
514 else
515 {
516 /* We currently can't unroll a loop if it doesn't end with a
517 JUMP_INSN. There would need to be a mechanism that recognizes
518 this case, and then inserts a jump after each loop body, which
519 jumps to after the last loop body. */
520 if (loop_dump_stream)
521 fprintf (loop_dump_stream,
522 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
523 return;
524 }
525 }
526 else
527 {
528 /* Normal case: Must copy the compare and branch instructions at the
529 end of the loop. */
530
531 if (GET_CODE (last_loop_insn) == BARRIER)
532 {
533 /* Loop ends with an unconditional jump and a barrier.
534 Handle this like above, don't copy jump and barrier.
535 This is not strictly necessary, but doing so prevents generating
536 unconditional jumps to an immediately following label.
537
538 This will be corrected below if the target of this jump is
539 not the start_label. */
540
541 insert_before = PREV_INSN (last_loop_insn);
542 copy_end = PREV_INSN (insert_before);
543 }
544 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
545 {
546 /* Set insert_before to immediately after the JUMP_INSN, so that
547 NOTEs at the end of the loop will be correctly handled by
548 copy_loop_body. */
549 insert_before = NEXT_INSN (last_loop_insn);
550 copy_end = last_loop_insn;
551 }
552 else
553 {
554 /* We currently can't unroll a loop if it doesn't end with a
555 JUMP_INSN. There would need to be a mechanism that recognizes
556 this case, and then inserts a jump after each loop body, which
557 jumps to after the last loop body. */
558 if (loop_dump_stream)
559 fprintf (loop_dump_stream,
560 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
561 return;
562 }
563
564 /* If copying exit test branches because they can not be eliminated,
565 then must convert the fall through case of the branch to a jump past
566 the end of the loop. Create a label to emit after the loop and save
567 it for later use. Do not use the label after the loop, if any, since
568 it might be used by insns outside the loop, or there might be insns
569 added before it later by final_[bg]iv_value which must be after
570 the real exit label. */
571 exit_label = gen_label_rtx ();
572
573 insn = loop_start;
574 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
575 insn = NEXT_INSN (insn);
576
577 if (GET_CODE (insn) == JUMP_INSN)
578 {
579 /* The loop starts with a jump down to the exit condition test.
580 Start copying the loop after the barrier following this
581 jump insn. */
582 copy_start = NEXT_INSN (insn);
583
584 /* Splitting induction variables doesn't work when the loop is
585 entered via a jump to the bottom, because then we end up doing
586 a comparison against a new register for a split variable, but
587 we did not execute the set insn for the new register because
588 it was skipped over. */
589 splitting_not_safe = 1;
590 if (loop_dump_stream)
591 fprintf (loop_dump_stream,
592 "Splitting not safe, because loop not entered at top.\n");
593 }
594 else
595 copy_start = loop_start;
596 }
597
598 /* This should always be the first label in the loop. */
599 start_label = NEXT_INSN (copy_start);
600 /* There may be a line number note and/or a loop continue note here. */
601 while (GET_CODE (start_label) == NOTE)
602 start_label = NEXT_INSN (start_label);
603 if (GET_CODE (start_label) != CODE_LABEL)
604 {
605 /* This can happen as a result of jump threading. If the first insns in
606 the loop test the same condition as the loop's backward jump, or the
607 opposite condition, then the backward jump will be modified to point
608 to elsewhere, and the loop's start label is deleted.
609
610 This case currently can not be handled by the loop unrolling code. */
611
612 if (loop_dump_stream)
613 fprintf (loop_dump_stream,
614 "Unrolling failure: unknown insns between BEG note and loop label.\n");
615 return;
616 }
617 if (LABEL_NAME (start_label))
618 {
619 /* The jump optimization pass must have combined the original start label
620 with a named label for a goto. We can't unroll this case because
621 jumps which go to the named label must be handled differently than
622 jumps to the loop start, and it is impossible to differentiate them
623 in this case. */
624 if (loop_dump_stream)
625 fprintf (loop_dump_stream,
626 "Unrolling failure: loop start label is gone\n");
627 return;
628 }
629
630 if (unroll_type == UNROLL_NAIVE
631 && GET_CODE (last_loop_insn) == BARRIER
632 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
633 {
634 /* In this case, we must copy the jump and barrier, because they will
635 not be converted to jumps to an immediately following label. */
636
637 insert_before = NEXT_INSN (last_loop_insn);
638 copy_end = last_loop_insn;
639 }
640
641 if (unroll_type == UNROLL_NAIVE
642 && GET_CODE (last_loop_insn) == JUMP_INSN
643 && start_label != JUMP_LABEL (last_loop_insn))
644 {
645 /* ??? The loop ends with a conditional branch that does not branch back
646 to the loop start label. In this case, we must emit an unconditional
647 branch to the loop exit after emitting the final branch.
648 copy_loop_body does not have support for this currently, so we
649 give up. It doesn't seem worthwhile to unroll anyways since
650 unrolling would increase the number of branch instructions
651 executed. */
652 if (loop_dump_stream)
653 fprintf (loop_dump_stream,
654 "Unrolling failure: final conditional branch not to loop start\n");
655 return;
656 }
657
658 /* Allocate a translation table for the labels and insn numbers.
659 They will be filled in as we copy the insns in the loop. */
660
661 max_labelno = max_label_num ();
662 max_insnno = get_max_uid ();
663
664 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
665
666 map->integrating = 0;
667
668 /* Allocate the label map. */
669
670 if (max_labelno > 0)
671 {
672 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
673
674 local_label = (char *) alloca (max_labelno);
675 bzero (local_label, max_labelno);
676 }
677 else
678 map->label_map = 0;
679
680 /* Search the loop and mark all local labels, i.e. the ones which have to
681 be distinct labels when copied. For all labels which might be
682 non-local, set their label_map entries to point to themselves.
683 If they happen to be local their label_map entries will be overwritten
684 before the loop body is copied. The label_map entries for local labels
685 will be set to a different value each time the loop body is copied. */
686
687 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
688 {
689 if (GET_CODE (insn) == CODE_LABEL)
690 local_label[CODE_LABEL_NUMBER (insn)] = 1;
691 else if (GET_CODE (insn) == JUMP_INSN)
692 {
693 if (JUMP_LABEL (insn))
694 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
695 = JUMP_LABEL (insn);
696 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
697 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
698 {
699 rtx pat = PATTERN (insn);
700 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
701 int len = XVECLEN (pat, diff_vec_p);
702 rtx label;
703
704 for (i = 0; i < len; i++)
705 {
706 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
707 map->label_map[CODE_LABEL_NUMBER (label)] = label;
708 }
709 }
710 }
711 }
712
713 /* Allocate space for the insn map. */
714
715 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
716
717 /* Set this to zero, to indicate that we are doing loop unrolling,
718 not function inlining. */
719 map->inline_target = 0;
720
721 /* The register and constant maps depend on the number of registers
722 present, so the final maps can't be created until after
723 find_splittable_regs is called. However, they are needed for
724 preconditioning, so we create temporary maps when preconditioning
725 is performed. */
726
727 /* The preconditioning code may allocate two new pseudo registers. */
728 maxregnum = max_reg_num ();
729
730 /* Allocate and zero out the splittable_regs and addr_combined_regs
731 arrays. These must be zeroed here because they will be used if
732 loop preconditioning is performed, and must be zero for that case.
733
734 It is safe to do this here, since the extra registers created by the
735 preconditioning code and find_splittable_regs will never be used
736 to access the splittable_regs[] and addr_combined_regs[] arrays. */
737
738 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
739 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
740 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
741 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
742 addr_combined_regs
743 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
744 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
745 /* We must limit it to max_reg_before_loop, because only these pseudo
746 registers have valid regno_first_uid info. Any register created after
747 that is unlikely to be local to the loop anyways. */
748 local_regno = (char *) alloca (max_reg_before_loop);
749 bzero (local_regno, max_reg_before_loop);
750
751 /* Mark all local registers, i.e. the ones which are referenced only
752 inside the loop. */
753 if (INSN_UID (copy_end) < max_uid_for_loop)
754 {
755 int copy_start_luid = INSN_LUID (copy_start);
756 int copy_end_luid = INSN_LUID (copy_end);
757
758 /* If a register is used in the jump insn, we must not duplicate it
759 since it will also be used outside the loop. */
760 if (GET_CODE (copy_end) == JUMP_INSN)
761 copy_end_luid--;
762 /* If copy_start points to the NOTE that starts the loop, then we must
763 use the next luid, because invariant pseudo-regs moved out of the loop
764 have their lifetimes modified to start here, but they are not safe
765 to duplicate. */
766 if (copy_start == loop_start)
767 copy_start_luid++;
768
769 /* If a pseudo's lifetime is entirely contained within this loop, then we
770 can use a different pseudo in each unrolled copy of the loop. This
771 results in better code. */
772 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; ++j)
773 if (REGNO_FIRST_UID (j) > 0 && REGNO_FIRST_UID (j) <= max_uid_for_loop
774 && uid_luid[REGNO_FIRST_UID (j)] >= copy_start_luid
775 && REGNO_LAST_UID (j) > 0 && REGNO_LAST_UID (j) <= max_uid_for_loop
776 && uid_luid[REGNO_LAST_UID (j)] <= copy_end_luid)
777 {
778 /* However, we must also check for loop-carried dependencies.
779 If the value the pseudo has at the end of iteration X is
780 used by iteration X+1, then we can not use a different pseudo
781 for each unrolled copy of the loop. */
782 /* A pseudo is safe if regno_first_uid is a set, and this
783 set dominates all instructions from regno_first_uid to
784 regno_last_uid. */
785 /* ??? This check is simplistic. We would get better code if
786 this check was more sophisticated. */
787 if (set_dominates_use (j, REGNO_FIRST_UID (j), REGNO_LAST_UID (j),
788 copy_start, copy_end))
789 local_regno[j] = 1;
790
791 if (loop_dump_stream)
792 {
793 if (local_regno[j])
794 fprintf (loop_dump_stream, "Marked reg %d as local\n", j);
795 else
796 fprintf (loop_dump_stream, "Did not mark reg %d as local\n",
797 j);
798 }
799 }
800 }
801
802 /* If this loop requires exit tests when unrolled, check to see if we
803 can precondition the loop so as to make the exit tests unnecessary.
804 Just like variable splitting, this is not safe if the loop is entered
805 via a jump to the bottom. Also, can not do this if no strength
806 reduce info, because precondition_loop_p uses this info. */
807
808 /* Must copy the loop body for preconditioning before the following
809 find_splittable_regs call since that will emit insns which need to
810 be after the preconditioned loop copies, but immediately before the
811 unrolled loop copies. */
812
813 /* Also, it is not safe to split induction variables for the preconditioned
814 copies of the loop body. If we split induction variables, then the code
815 assumes that each induction variable can be represented as a function
816 of its initial value and the loop iteration number. This is not true
817 in this case, because the last preconditioned copy of the loop body
818 could be any iteration from the first up to the `unroll_number-1'th,
819 depending on the initial value of the iteration variable. Therefore
820 we can not split induction variables here, because we can not calculate
821 their value. Hence, this code must occur before find_splittable_regs
822 is called. */
823
824 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
825 {
826 rtx initial_value, final_value, increment;
827
828 if (precondition_loop_p (&initial_value, &final_value, &increment,
829 loop_start, loop_end))
830 {
831 register rtx diff, temp;
832 enum machine_mode mode;
833 rtx *labels;
834 int abs_inc, neg_inc;
835
836 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
837
838 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
839 map->const_age_map = (unsigned *) alloca (maxregnum
840 * sizeof (unsigned));
841 map->const_equiv_map_size = maxregnum;
842 global_const_equiv_map = map->const_equiv_map;
843 global_const_equiv_map_size = maxregnum;
844
845 init_reg_map (map, maxregnum);
846
847 /* Limit loop unrolling to 4, since this will make 7 copies of
848 the loop body. */
849 if (unroll_number > 4)
850 unroll_number = 4;
851
852 /* Save the absolute value of the increment, and also whether or
853 not it is negative. */
854 neg_inc = 0;
855 abs_inc = INTVAL (increment);
856 if (abs_inc < 0)
857 {
858 abs_inc = - abs_inc;
859 neg_inc = 1;
860 }
861
862 start_sequence ();
863
864 /* Decide what mode to do these calculations in. Choose the larger
865 of final_value's mode and initial_value's mode, or a full-word if
866 both are constants. */
867 mode = GET_MODE (final_value);
868 if (mode == VOIDmode)
869 {
870 mode = GET_MODE (initial_value);
871 if (mode == VOIDmode)
872 mode = word_mode;
873 }
874 else if (mode != GET_MODE (initial_value)
875 && (GET_MODE_SIZE (mode)
876 < GET_MODE_SIZE (GET_MODE (initial_value))))
877 mode = GET_MODE (initial_value);
878
879 /* Calculate the difference between the final and initial values.
880 Final value may be a (plus (reg x) (const_int 1)) rtx.
881 Let the following cse pass simplify this if initial value is
882 a constant.
883
884 We must copy the final and initial values here to avoid
885 improperly shared rtl. */
886
887 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
888 copy_rtx (initial_value), NULL_RTX, 0,
889 OPTAB_LIB_WIDEN);
890
891 /* Now calculate (diff % (unroll * abs (increment))) by using an
892 and instruction. */
893 diff = expand_binop (GET_MODE (diff), and_optab, diff,
894 GEN_INT (unroll_number * abs_inc - 1),
895 NULL_RTX, 0, OPTAB_LIB_WIDEN);
896
897 /* Now emit a sequence of branches to jump to the proper precond
898 loop entry point. */
899
900 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
901 for (i = 0; i < unroll_number; i++)
902 labels[i] = gen_label_rtx ();
903
904 /* Check for the case where the initial value is greater than or
905 equal to the final value. In that case, we want to execute
906 exactly one loop iteration. The code below will fail for this
907 case. This check does not apply if the loop has a NE
908 comparison at the end. */
909
910 if (loop_comparison_code != NE)
911 {
912 emit_cmp_insn (initial_value, final_value, neg_inc ? LE : GE,
913 NULL_RTX, mode, 0, 0);
914 if (neg_inc)
915 emit_jump_insn (gen_ble (labels[1]));
916 else
917 emit_jump_insn (gen_bge (labels[1]));
918 JUMP_LABEL (get_last_insn ()) = labels[1];
919 LABEL_NUSES (labels[1])++;
920 }
921
922 /* Assuming the unroll_number is 4, and the increment is 2, then
923 for a negative increment: for a positive increment:
924 diff = 0,1 precond 0 diff = 0,7 precond 0
925 diff = 2,3 precond 3 diff = 1,2 precond 1
926 diff = 4,5 precond 2 diff = 3,4 precond 2
927 diff = 6,7 precond 1 diff = 5,6 precond 3 */
928
929 /* We only need to emit (unroll_number - 1) branches here, the
930 last case just falls through to the following code. */
931
932 /* ??? This would give better code if we emitted a tree of branches
933 instead of the current linear list of branches. */
934
935 for (i = 0; i < unroll_number - 1; i++)
936 {
937 int cmp_const;
938 enum rtx_code cmp_code;
939
940 /* For negative increments, must invert the constant compared
941 against, except when comparing against zero. */
942 if (i == 0)
943 {
944 cmp_const = 0;
945 cmp_code = EQ;
946 }
947 else if (neg_inc)
948 {
949 cmp_const = unroll_number - i;
950 cmp_code = GE;
951 }
952 else
953 {
954 cmp_const = i;
955 cmp_code = LE;
956 }
957
958 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
959 cmp_code, NULL_RTX, mode, 0, 0);
960
961 if (i == 0)
962 emit_jump_insn (gen_beq (labels[i]));
963 else if (neg_inc)
964 emit_jump_insn (gen_bge (labels[i]));
965 else
966 emit_jump_insn (gen_ble (labels[i]));
967 JUMP_LABEL (get_last_insn ()) = labels[i];
968 LABEL_NUSES (labels[i])++;
969 }
970
971 /* If the increment is greater than one, then we need another branch,
972 to handle other cases equivalent to 0. */
973
974 /* ??? This should be merged into the code above somehow to help
975 simplify the code here, and reduce the number of branches emitted.
976 For the negative increment case, the branch here could easily
977 be merged with the `0' case branch above. For the positive
978 increment case, it is not clear how this can be simplified. */
979
980 if (abs_inc != 1)
981 {
982 int cmp_const;
983 enum rtx_code cmp_code;
984
985 if (neg_inc)
986 {
987 cmp_const = abs_inc - 1;
988 cmp_code = LE;
989 }
990 else
991 {
992 cmp_const = abs_inc * (unroll_number - 1) + 1;
993 cmp_code = GE;
994 }
995
996 emit_cmp_insn (diff, GEN_INT (cmp_const), cmp_code, NULL_RTX,
997 mode, 0, 0);
998
999 if (neg_inc)
1000 emit_jump_insn (gen_ble (labels[0]));
1001 else
1002 emit_jump_insn (gen_bge (labels[0]));
1003 JUMP_LABEL (get_last_insn ()) = labels[0];
1004 LABEL_NUSES (labels[0])++;
1005 }
1006
1007 sequence = gen_sequence ();
1008 end_sequence ();
1009 emit_insn_before (sequence, loop_start);
1010
1011 /* Only the last copy of the loop body here needs the exit
1012 test, so set copy_end to exclude the compare/branch here,
1013 and then reset it inside the loop when get to the last
1014 copy. */
1015
1016 if (GET_CODE (last_loop_insn) == BARRIER)
1017 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1018 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
1019 {
1020 #ifdef HAVE_cc0
1021 /* The immediately preceding insn is a compare which we do not
1022 want to copy. */
1023 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1024 #else
1025 /* The immediately preceding insn may not be a compare, so we
1026 must copy it. */
1027 copy_end = PREV_INSN (last_loop_insn);
1028 #endif
1029 }
1030 else
1031 abort ();
1032
1033 for (i = 1; i < unroll_number; i++)
1034 {
1035 emit_label_after (labels[unroll_number - i],
1036 PREV_INSN (loop_start));
1037
1038 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1039 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
1040 bzero ((char *) map->const_age_map,
1041 maxregnum * sizeof (unsigned));
1042 map->const_age = 0;
1043
1044 for (j = 0; j < max_labelno; j++)
1045 if (local_label[j])
1046 map->label_map[j] = gen_label_rtx ();
1047
1048 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1049 if (local_regno[j])
1050 {
1051 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1052 record_base_value (REGNO (map->reg_map[j]),
1053 regno_reg_rtx[j]);
1054 }
1055 /* The last copy needs the compare/branch insns at the end,
1056 so reset copy_end here if the loop ends with a conditional
1057 branch. */
1058
1059 if (i == unroll_number - 1)
1060 {
1061 if (GET_CODE (last_loop_insn) == BARRIER)
1062 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
1063 else
1064 copy_end = last_loop_insn;
1065 }
1066
1067 /* None of the copies are the `last_iteration', so just
1068 pass zero for that parameter. */
1069 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
1070 unroll_type, start_label, loop_end,
1071 loop_start, copy_end);
1072 }
1073 emit_label_after (labels[0], PREV_INSN (loop_start));
1074
1075 if (GET_CODE (last_loop_insn) == BARRIER)
1076 {
1077 insert_before = PREV_INSN (last_loop_insn);
1078 copy_end = PREV_INSN (insert_before);
1079 }
1080 else
1081 {
1082 #ifdef HAVE_cc0
1083 /* The immediately preceding insn is a compare which we do not
1084 want to copy. */
1085 insert_before = PREV_INSN (last_loop_insn);
1086 copy_end = PREV_INSN (insert_before);
1087 #else
1088 /* The immediately preceding insn may not be a compare, so we
1089 must copy it. */
1090 insert_before = last_loop_insn;
1091 copy_end = PREV_INSN (last_loop_insn);
1092 #endif
1093 }
1094
1095 /* Set unroll type to MODULO now. */
1096 unroll_type = UNROLL_MODULO;
1097 loop_preconditioned = 1;
1098
1099 #ifdef HAIFA
1100 /* Fix the initial value for the loop as needed. */
1101 if (loop_n_iterations <= 0)
1102 loop_start_value [uid_loop_num [INSN_UID (loop_start)]]
1103 = initial_value;
1104 #endif
1105 }
1106 }
1107
1108 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
1109 the loop unless all loops are being unrolled. */
1110 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
1111 {
1112 if (loop_dump_stream)
1113 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
1114 return;
1115 }
1116
1117 /* At this point, we are guaranteed to unroll the loop. */
1118
1119 /* Keep track of the unroll factor for each loop. */
1120 if (unroll_type == UNROLL_COMPLETELY)
1121 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = -1;
1122 else
1123 loop_unroll_factor [uid_loop_num [INSN_UID (loop_start)]] = unroll_number;
1124
1125
1126 /* For each biv and giv, determine whether it can be safely split into
1127 a different variable for each unrolled copy of the loop body.
1128 We precalculate and save this info here, since computing it is
1129 expensive.
1130
1131 Do this before deleting any instructions from the loop, so that
1132 back_branch_in_range_p will work correctly. */
1133
1134 if (splitting_not_safe)
1135 temp = 0;
1136 else
1137 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
1138 end_insert_before, unroll_number);
1139
1140 /* find_splittable_regs may have created some new registers, so must
1141 reallocate the reg_map with the new larger size, and must realloc
1142 the constant maps also. */
1143
1144 maxregnum = max_reg_num ();
1145 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1146
1147 init_reg_map (map, maxregnum);
1148
1149 /* Space is needed in some of the map for new registers, so new_maxregnum
1150 is an (over)estimate of how many registers will exist at the end. */
1151 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1152
1153 /* Must realloc space for the constant maps, because the number of registers
1154 may have changed. */
1155
1156 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1157 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1158
1159 map->const_equiv_map_size = new_maxregnum;
1160 global_const_equiv_map = map->const_equiv_map;
1161 global_const_equiv_map_size = new_maxregnum;
1162
1163 /* Search the list of bivs and givs to find ones which need to be remapped
1164 when split, and set their reg_map entry appropriately. */
1165
1166 for (bl = loop_iv_list; bl; bl = bl->next)
1167 {
1168 if (REGNO (bl->biv->src_reg) != bl->regno)
1169 map->reg_map[bl->regno] = bl->biv->src_reg;
1170 #if 0
1171 /* Currently, non-reduced/final-value givs are never split. */
1172 for (v = bl->giv; v; v = v->next_iv)
1173 if (REGNO (v->src_reg) != bl->regno)
1174 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1175 #endif
1176 }
1177
1178 /* Use our current register alignment and pointer flags. */
1179 map->regno_pointer_flag = regno_pointer_flag;
1180 map->regno_pointer_align = regno_pointer_align;
1181
1182 /* If the loop is being partially unrolled, and the iteration variables
1183 are being split, and are being renamed for the split, then must fix up
1184 the compare/jump instruction at the end of the loop to refer to the new
1185 registers. This compare isn't copied, so the registers used in it
1186 will never be replaced if it isn't done here. */
1187
1188 if (unroll_type == UNROLL_MODULO)
1189 {
1190 insn = NEXT_INSN (copy_end);
1191 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1192 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1193 }
1194
1195 /* For unroll_number - 1 times, make a copy of each instruction
1196 between copy_start and copy_end, and insert these new instructions
1197 before the end of the loop. */
1198
1199 for (i = 0; i < unroll_number; i++)
1200 {
1201 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1202 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1203 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1204 map->const_age = 0;
1205
1206 for (j = 0; j < max_labelno; j++)
1207 if (local_label[j])
1208 map->label_map[j] = gen_label_rtx ();
1209
1210 for (j = FIRST_PSEUDO_REGISTER; j < max_reg_before_loop; j++)
1211 if (local_regno[j])
1212 {
1213 map->reg_map[j] = gen_reg_rtx (GET_MODE (regno_reg_rtx[j]));
1214 record_base_value (REGNO (map->reg_map[j]),
1215 regno_reg_rtx[j]);
1216 }
1217
1218 /* If loop starts with a branch to the test, then fix it so that
1219 it points to the test of the first unrolled copy of the loop. */
1220 if (i == 0 && loop_start != copy_start)
1221 {
1222 insn = PREV_INSN (copy_start);
1223 pattern = PATTERN (insn);
1224
1225 tem = map->label_map[CODE_LABEL_NUMBER
1226 (XEXP (SET_SRC (pattern), 0))];
1227 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1228
1229 /* Set the jump label so that it can be used by later loop unrolling
1230 passes. */
1231 JUMP_LABEL (insn) = tem;
1232 LABEL_NUSES (tem)++;
1233 }
1234
1235 copy_loop_body (copy_start, copy_end, map, exit_label,
1236 i == unroll_number - 1, unroll_type, start_label,
1237 loop_end, insert_before, insert_before);
1238 }
1239
1240 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1241 insn to be deleted. This prevents any runaway delete_insn call from
1242 more insns that it should, as it always stops at a CODE_LABEL. */
1243
1244 /* Delete the compare and branch at the end of the loop if completely
1245 unrolling the loop. Deleting the backward branch at the end also
1246 deletes the code label at the start of the loop. This is done at
1247 the very end to avoid problems with back_branch_in_range_p. */
1248
1249 if (unroll_type == UNROLL_COMPLETELY)
1250 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1251 else
1252 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1253
1254 /* Delete all of the original loop instructions. Don't delete the
1255 LOOP_BEG note, or the first code label in the loop. */
1256
1257 insn = NEXT_INSN (copy_start);
1258 while (insn != safety_label)
1259 {
1260 if (insn != start_label)
1261 insn = delete_insn (insn);
1262 else
1263 insn = NEXT_INSN (insn);
1264 }
1265
1266 /* Can now delete the 'safety' label emitted to protect us from runaway
1267 delete_insn calls. */
1268 if (INSN_DELETED_P (safety_label))
1269 abort ();
1270 delete_insn (safety_label);
1271
1272 /* If exit_label exists, emit it after the loop. Doing the emit here
1273 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1274 This is needed so that mostly_true_jump in reorg.c will treat jumps
1275 to this loop end label correctly, i.e. predict that they are usually
1276 not taken. */
1277 if (exit_label)
1278 emit_label_after (exit_label, loop_end);
1279 }
1280 \f
1281 /* Return true if the loop can be safely, and profitably, preconditioned
1282 so that the unrolled copies of the loop body don't need exit tests.
1283
1284 This only works if final_value, initial_value and increment can be
1285 determined, and if increment is a constant power of 2.
1286 If increment is not a power of 2, then the preconditioning modulo
1287 operation would require a real modulo instead of a boolean AND, and this
1288 is not considered `profitable'. */
1289
1290 /* ??? If the loop is known to be executed very many times, or the machine
1291 has a very cheap divide instruction, then preconditioning is a win even
1292 when the increment is not a power of 2. Use RTX_COST to compute
1293 whether divide is cheap. */
1294
1295 static int
1296 precondition_loop_p (initial_value, final_value, increment, loop_start,
1297 loop_end)
1298 rtx *initial_value, *final_value, *increment;
1299 rtx loop_start, loop_end;
1300 {
1301
1302 if (loop_n_iterations > 0)
1303 {
1304 *initial_value = const0_rtx;
1305 *increment = const1_rtx;
1306 *final_value = GEN_INT (loop_n_iterations);
1307
1308 if (loop_dump_stream)
1309 fprintf (loop_dump_stream,
1310 "Preconditioning: Success, number of iterations known, %d.\n",
1311 loop_n_iterations);
1312 return 1;
1313 }
1314
1315 if (loop_initial_value == 0)
1316 {
1317 if (loop_dump_stream)
1318 fprintf (loop_dump_stream,
1319 "Preconditioning: Could not find initial value.\n");
1320 return 0;
1321 }
1322 else if (loop_increment == 0)
1323 {
1324 if (loop_dump_stream)
1325 fprintf (loop_dump_stream,
1326 "Preconditioning: Could not find increment value.\n");
1327 return 0;
1328 }
1329 else if (GET_CODE (loop_increment) != CONST_INT)
1330 {
1331 if (loop_dump_stream)
1332 fprintf (loop_dump_stream,
1333 "Preconditioning: Increment not a constant.\n");
1334 return 0;
1335 }
1336 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1337 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1338 {
1339 if (loop_dump_stream)
1340 fprintf (loop_dump_stream,
1341 "Preconditioning: Increment not a constant power of 2.\n");
1342 return 0;
1343 }
1344
1345 /* Unsigned_compare and compare_dir can be ignored here, since they do
1346 not matter for preconditioning. */
1347
1348 if (loop_final_value == 0)
1349 {
1350 if (loop_dump_stream)
1351 fprintf (loop_dump_stream,
1352 "Preconditioning: EQ comparison loop.\n");
1353 return 0;
1354 }
1355
1356 /* Must ensure that final_value is invariant, so call invariant_p to
1357 check. Before doing so, must check regno against max_reg_before_loop
1358 to make sure that the register is in the range covered by invariant_p.
1359 If it isn't, then it is most likely a biv/giv which by definition are
1360 not invariant. */
1361 if ((GET_CODE (loop_final_value) == REG
1362 && REGNO (loop_final_value) >= max_reg_before_loop)
1363 || (GET_CODE (loop_final_value) == PLUS
1364 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1365 || ! invariant_p (loop_final_value))
1366 {
1367 if (loop_dump_stream)
1368 fprintf (loop_dump_stream,
1369 "Preconditioning: Final value not invariant.\n");
1370 return 0;
1371 }
1372
1373 /* Fail for floating point values, since the caller of this function
1374 does not have code to deal with them. */
1375 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1376 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1377 {
1378 if (loop_dump_stream)
1379 fprintf (loop_dump_stream,
1380 "Preconditioning: Floating point final or initial value.\n");
1381 return 0;
1382 }
1383
1384 /* Now set initial_value to be the iteration_var, since that may be a
1385 simpler expression, and is guaranteed to be correct if all of the
1386 above tests succeed.
1387
1388 We can not use the initial_value as calculated, because it will be
1389 one too small for loops of the form "while (i-- > 0)". We can not
1390 emit code before the loop_skip_over insns to fix this problem as this
1391 will then give a number one too large for loops of the form
1392 "while (--i > 0)".
1393
1394 Note that all loops that reach here are entered at the top, because
1395 this function is not called if the loop starts with a jump. */
1396
1397 /* Fail if loop_iteration_var is not live before loop_start, since we need
1398 to test its value in the preconditioning code. */
1399
1400 if (uid_luid[REGNO_FIRST_UID (REGNO (loop_iteration_var))]
1401 > INSN_LUID (loop_start))
1402 {
1403 if (loop_dump_stream)
1404 fprintf (loop_dump_stream,
1405 "Preconditioning: Iteration var not live before loop start.\n");
1406 return 0;
1407 }
1408
1409 *initial_value = loop_iteration_var;
1410 *increment = loop_increment;
1411 *final_value = loop_final_value;
1412
1413 /* Success! */
1414 if (loop_dump_stream)
1415 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1416 return 1;
1417 }
1418
1419
1420 /* All pseudo-registers must be mapped to themselves. Two hard registers
1421 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1422 REGNUM, to avoid function-inlining specific conversions of these
1423 registers. All other hard regs can not be mapped because they may be
1424 used with different
1425 modes. */
1426
1427 static void
1428 init_reg_map (map, maxregnum)
1429 struct inline_remap *map;
1430 int maxregnum;
1431 {
1432 int i;
1433
1434 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1435 map->reg_map[i] = regno_reg_rtx[i];
1436 /* Just clear the rest of the entries. */
1437 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1438 map->reg_map[i] = 0;
1439
1440 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1441 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1442 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1443 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1444 }
1445 \f
1446 /* Strength-reduction will often emit code for optimized biv/givs which
1447 calculates their value in a temporary register, and then copies the result
1448 to the iv. This procedure reconstructs the pattern computing the iv;
1449 verifying that all operands are of the proper form.
1450
1451 The return value is the amount that the giv is incremented by. */
1452
1453 static rtx
1454 calculate_giv_inc (pattern, src_insn, regno)
1455 rtx pattern, src_insn;
1456 int regno;
1457 {
1458 rtx increment;
1459 rtx increment_total = 0;
1460 int tries = 0;
1461
1462 retry:
1463 /* Verify that we have an increment insn here. First check for a plus
1464 as the set source. */
1465 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1466 {
1467 /* SR sometimes computes the new giv value in a temp, then copies it
1468 to the new_reg. */
1469 src_insn = PREV_INSN (src_insn);
1470 pattern = PATTERN (src_insn);
1471 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1472 abort ();
1473
1474 /* The last insn emitted is not needed, so delete it to avoid confusing
1475 the second cse pass. This insn sets the giv unnecessarily. */
1476 delete_insn (get_last_insn ());
1477 }
1478
1479 /* Verify that we have a constant as the second operand of the plus. */
1480 increment = XEXP (SET_SRC (pattern), 1);
1481 if (GET_CODE (increment) != CONST_INT)
1482 {
1483 /* SR sometimes puts the constant in a register, especially if it is
1484 too big to be an add immed operand. */
1485 src_insn = PREV_INSN (src_insn);
1486 increment = SET_SRC (PATTERN (src_insn));
1487
1488 /* SR may have used LO_SUM to compute the constant if it is too large
1489 for a load immed operand. In this case, the constant is in operand
1490 one of the LO_SUM rtx. */
1491 if (GET_CODE (increment) == LO_SUM)
1492 increment = XEXP (increment, 1);
1493
1494 /* Some ports store large constants in memory and add a REG_EQUAL
1495 note to the store insn. */
1496 else if (GET_CODE (increment) == MEM)
1497 {
1498 rtx note = find_reg_note (src_insn, REG_EQUAL, 0);
1499 if (note)
1500 increment = XEXP (note, 0);
1501 }
1502
1503 else if (GET_CODE (increment) == IOR
1504 || GET_CODE (increment) == ASHIFT
1505 || GET_CODE (increment) == PLUS)
1506 {
1507 /* The rs6000 port loads some constants with IOR.
1508 The alpha port loads some constants with ASHIFT and PLUS. */
1509 rtx second_part = XEXP (increment, 1);
1510 enum rtx_code code = GET_CODE (increment);
1511
1512 src_insn = PREV_INSN (src_insn);
1513 increment = SET_SRC (PATTERN (src_insn));
1514 /* Don't need the last insn anymore. */
1515 delete_insn (get_last_insn ());
1516
1517 if (GET_CODE (second_part) != CONST_INT
1518 || GET_CODE (increment) != CONST_INT)
1519 abort ();
1520
1521 if (code == IOR)
1522 increment = GEN_INT (INTVAL (increment) | INTVAL (second_part));
1523 else if (code == PLUS)
1524 increment = GEN_INT (INTVAL (increment) + INTVAL (second_part));
1525 else
1526 increment = GEN_INT (INTVAL (increment) << INTVAL (second_part));
1527 }
1528
1529 if (GET_CODE (increment) != CONST_INT)
1530 abort ();
1531
1532 /* The insn loading the constant into a register is no longer needed,
1533 so delete it. */
1534 delete_insn (get_last_insn ());
1535 }
1536
1537 if (increment_total)
1538 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1539 else
1540 increment_total = increment;
1541
1542 /* Check that the source register is the same as the register we expected
1543 to see as the source. If not, something is seriously wrong. */
1544 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1545 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1546 {
1547 /* Some machines (e.g. the romp), may emit two add instructions for
1548 certain constants, so lets try looking for another add immediately
1549 before this one if we have only seen one add insn so far. */
1550
1551 if (tries == 0)
1552 {
1553 tries++;
1554
1555 src_insn = PREV_INSN (src_insn);
1556 pattern = PATTERN (src_insn);
1557
1558 delete_insn (get_last_insn ());
1559
1560 goto retry;
1561 }
1562
1563 abort ();
1564 }
1565
1566 return increment_total;
1567 }
1568
1569 /* Copy REG_NOTES, except for insn references, because not all insn_map
1570 entries are valid yet. We do need to copy registers now though, because
1571 the reg_map entries can change during copying. */
1572
1573 static rtx
1574 initial_reg_note_copy (notes, map)
1575 rtx notes;
1576 struct inline_remap *map;
1577 {
1578 rtx copy;
1579
1580 if (notes == 0)
1581 return 0;
1582
1583 copy = rtx_alloc (GET_CODE (notes));
1584 PUT_MODE (copy, GET_MODE (notes));
1585
1586 if (GET_CODE (notes) == EXPR_LIST)
1587 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1588 else if (GET_CODE (notes) == INSN_LIST)
1589 /* Don't substitute for these yet. */
1590 XEXP (copy, 0) = XEXP (notes, 0);
1591 else
1592 abort ();
1593
1594 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1595
1596 return copy;
1597 }
1598
1599 /* Fixup insn references in copied REG_NOTES. */
1600
1601 static void
1602 final_reg_note_copy (notes, map)
1603 rtx notes;
1604 struct inline_remap *map;
1605 {
1606 rtx note;
1607
1608 for (note = notes; note; note = XEXP (note, 1))
1609 if (GET_CODE (note) == INSN_LIST)
1610 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1611 }
1612
1613 /* Copy each instruction in the loop, substituting from map as appropriate.
1614 This is very similar to a loop in expand_inline_function. */
1615
1616 static void
1617 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1618 unroll_type, start_label, loop_end, insert_before,
1619 copy_notes_from)
1620 rtx copy_start, copy_end;
1621 struct inline_remap *map;
1622 rtx exit_label;
1623 int last_iteration;
1624 enum unroll_types unroll_type;
1625 rtx start_label, loop_end, insert_before, copy_notes_from;
1626 {
1627 rtx insn, pattern;
1628 rtx tem, copy;
1629 int dest_reg_was_split, i;
1630 rtx cc0_insn = 0;
1631 rtx final_label = 0;
1632 rtx giv_inc, giv_dest_reg, giv_src_reg;
1633
1634 /* If this isn't the last iteration, then map any references to the
1635 start_label to final_label. Final label will then be emitted immediately
1636 after the end of this loop body if it was ever used.
1637
1638 If this is the last iteration, then map references to the start_label
1639 to itself. */
1640 if (! last_iteration)
1641 {
1642 final_label = gen_label_rtx ();
1643 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1644 }
1645 else
1646 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1647
1648 start_sequence ();
1649
1650 insn = copy_start;
1651 do
1652 {
1653 insn = NEXT_INSN (insn);
1654
1655 map->orig_asm_operands_vector = 0;
1656
1657 switch (GET_CODE (insn))
1658 {
1659 case INSN:
1660 pattern = PATTERN (insn);
1661 copy = 0;
1662 giv_inc = 0;
1663
1664 /* Check to see if this is a giv that has been combined with
1665 some split address givs. (Combined in the sense that
1666 `combine_givs' in loop.c has put two givs in the same register.)
1667 In this case, we must search all givs based on the same biv to
1668 find the address givs. Then split the address givs.
1669 Do this before splitting the giv, since that may map the
1670 SET_DEST to a new register. */
1671
1672 if (GET_CODE (pattern) == SET
1673 && GET_CODE (SET_DEST (pattern)) == REG
1674 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1675 {
1676 struct iv_class *bl;
1677 struct induction *v, *tv;
1678 int regno = REGNO (SET_DEST (pattern));
1679
1680 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1681 bl = reg_biv_class[REGNO (v->src_reg)];
1682
1683 /* Although the giv_inc amount is not needed here, we must call
1684 calculate_giv_inc here since it might try to delete the
1685 last insn emitted. If we wait until later to call it,
1686 we might accidentally delete insns generated immediately
1687 below by emit_unrolled_add. */
1688
1689 giv_inc = calculate_giv_inc (pattern, insn, regno);
1690
1691 /* Now find all address giv's that were combined with this
1692 giv 'v'. */
1693 for (tv = bl->giv; tv; tv = tv->next_iv)
1694 if (tv->giv_type == DEST_ADDR && tv->same == v)
1695 {
1696 int this_giv_inc;
1697
1698 /* If this DEST_ADDR giv was not split, then ignore it. */
1699 if (*tv->location != tv->dest_reg)
1700 continue;
1701
1702 /* Scale this_giv_inc if the multiplicative factors of
1703 the two givs are different. */
1704 this_giv_inc = INTVAL (giv_inc);
1705 if (tv->mult_val != v->mult_val)
1706 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1707 * INTVAL (tv->mult_val));
1708
1709 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1710 *tv->location = tv->dest_reg;
1711
1712 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1713 {
1714 /* Must emit an insn to increment the split address
1715 giv. Add in the const_adjust field in case there
1716 was a constant eliminated from the address. */
1717 rtx value, dest_reg;
1718
1719 /* tv->dest_reg will be either a bare register,
1720 or else a register plus a constant. */
1721 if (GET_CODE (tv->dest_reg) == REG)
1722 dest_reg = tv->dest_reg;
1723 else
1724 dest_reg = XEXP (tv->dest_reg, 0);
1725
1726 /* Check for shared address givs, and avoid
1727 incrementing the shared pseudo reg more than
1728 once. */
1729 if (! tv->same_insn && ! tv->shared)
1730 {
1731 /* tv->dest_reg may actually be a (PLUS (REG)
1732 (CONST)) here, so we must call plus_constant
1733 to add the const_adjust amount before calling
1734 emit_unrolled_add below. */
1735 value = plus_constant (tv->dest_reg,
1736 tv->const_adjust);
1737
1738 /* The constant could be too large for an add
1739 immediate, so can't directly emit an insn
1740 here. */
1741 emit_unrolled_add (dest_reg, XEXP (value, 0),
1742 XEXP (value, 1));
1743 }
1744
1745 /* Reset the giv to be just the register again, in case
1746 it is used after the set we have just emitted.
1747 We must subtract the const_adjust factor added in
1748 above. */
1749 tv->dest_reg = plus_constant (dest_reg,
1750 - tv->const_adjust);
1751 *tv->location = tv->dest_reg;
1752 }
1753 }
1754 }
1755
1756 /* If this is a setting of a splittable variable, then determine
1757 how to split the variable, create a new set based on this split,
1758 and set up the reg_map so that later uses of the variable will
1759 use the new split variable. */
1760
1761 dest_reg_was_split = 0;
1762
1763 if (GET_CODE (pattern) == SET
1764 && GET_CODE (SET_DEST (pattern)) == REG
1765 && splittable_regs[REGNO (SET_DEST (pattern))])
1766 {
1767 int regno = REGNO (SET_DEST (pattern));
1768
1769 dest_reg_was_split = 1;
1770
1771 /* Compute the increment value for the giv, if it wasn't
1772 already computed above. */
1773
1774 if (giv_inc == 0)
1775 giv_inc = calculate_giv_inc (pattern, insn, regno);
1776 giv_dest_reg = SET_DEST (pattern);
1777 giv_src_reg = SET_DEST (pattern);
1778
1779 if (unroll_type == UNROLL_COMPLETELY)
1780 {
1781 /* Completely unrolling the loop. Set the induction
1782 variable to a known constant value. */
1783
1784 /* The value in splittable_regs may be an invariant
1785 value, so we must use plus_constant here. */
1786 splittable_regs[regno]
1787 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1788
1789 if (GET_CODE (splittable_regs[regno]) == PLUS)
1790 {
1791 giv_src_reg = XEXP (splittable_regs[regno], 0);
1792 giv_inc = XEXP (splittable_regs[regno], 1);
1793 }
1794 else
1795 {
1796 /* The splittable_regs value must be a REG or a
1797 CONST_INT, so put the entire value in the giv_src_reg
1798 variable. */
1799 giv_src_reg = splittable_regs[regno];
1800 giv_inc = const0_rtx;
1801 }
1802 }
1803 else
1804 {
1805 /* Partially unrolling loop. Create a new pseudo
1806 register for the iteration variable, and set it to
1807 be a constant plus the original register. Except
1808 on the last iteration, when the result has to
1809 go back into the original iteration var register. */
1810
1811 /* Handle bivs which must be mapped to a new register
1812 when split. This happens for bivs which need their
1813 final value set before loop entry. The new register
1814 for the biv was stored in the biv's first struct
1815 induction entry by find_splittable_regs. */
1816
1817 if (regno < max_reg_before_loop
1818 && reg_iv_type[regno] == BASIC_INDUCT)
1819 {
1820 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1821 giv_dest_reg = giv_src_reg;
1822 }
1823
1824 #if 0
1825 /* If non-reduced/final-value givs were split, then
1826 this would have to remap those givs also. See
1827 find_splittable_regs. */
1828 #endif
1829
1830 splittable_regs[regno]
1831 = GEN_INT (INTVAL (giv_inc)
1832 + INTVAL (splittable_regs[regno]));
1833 giv_inc = splittable_regs[regno];
1834
1835 /* Now split the induction variable by changing the dest
1836 of this insn to a new register, and setting its
1837 reg_map entry to point to this new register.
1838
1839 If this is the last iteration, and this is the last insn
1840 that will update the iv, then reuse the original dest,
1841 to ensure that the iv will have the proper value when
1842 the loop exits or repeats.
1843
1844 Using splittable_regs_updates here like this is safe,
1845 because it can only be greater than one if all
1846 instructions modifying the iv are always executed in
1847 order. */
1848
1849 if (! last_iteration
1850 || (splittable_regs_updates[regno]-- != 1))
1851 {
1852 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1853 giv_dest_reg = tem;
1854 map->reg_map[regno] = tem;
1855 record_base_value (REGNO (tem), giv_src_reg);
1856 }
1857 else
1858 map->reg_map[regno] = giv_src_reg;
1859 }
1860
1861 /* The constant being added could be too large for an add
1862 immediate, so can't directly emit an insn here. */
1863 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1864 copy = get_last_insn ();
1865 pattern = PATTERN (copy);
1866 }
1867 else
1868 {
1869 pattern = copy_rtx_and_substitute (pattern, map);
1870 copy = emit_insn (pattern);
1871 }
1872 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1873
1874 #ifdef HAVE_cc0
1875 /* If this insn is setting CC0, it may need to look at
1876 the insn that uses CC0 to see what type of insn it is.
1877 In that case, the call to recog via validate_change will
1878 fail. So don't substitute constants here. Instead,
1879 do it when we emit the following insn.
1880
1881 For example, see the pyr.md file. That machine has signed and
1882 unsigned compares. The compare patterns must check the
1883 following branch insn to see which what kind of compare to
1884 emit.
1885
1886 If the previous insn set CC0, substitute constants on it as
1887 well. */
1888 if (sets_cc0_p (PATTERN (copy)) != 0)
1889 cc0_insn = copy;
1890 else
1891 {
1892 if (cc0_insn)
1893 try_constants (cc0_insn, map);
1894 cc0_insn = 0;
1895 try_constants (copy, map);
1896 }
1897 #else
1898 try_constants (copy, map);
1899 #endif
1900
1901 /* Make split induction variable constants `permanent' since we
1902 know there are no backward branches across iteration variable
1903 settings which would invalidate this. */
1904 if (dest_reg_was_split)
1905 {
1906 int regno = REGNO (SET_DEST (pattern));
1907
1908 if (regno < map->const_equiv_map_size
1909 && map->const_age_map[regno] == map->const_age)
1910 map->const_age_map[regno] = -1;
1911 }
1912 break;
1913
1914 case JUMP_INSN:
1915 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1916 copy = emit_jump_insn (pattern);
1917 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1918
1919 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1920 && ! last_iteration)
1921 {
1922 /* This is a branch to the beginning of the loop; this is the
1923 last insn being copied; and this is not the last iteration.
1924 In this case, we want to change the original fall through
1925 case to be a branch past the end of the loop, and the
1926 original jump label case to fall_through. */
1927
1928 if (invert_exp (pattern, copy))
1929 {
1930 if (! redirect_exp (&pattern,
1931 map->label_map[CODE_LABEL_NUMBER
1932 (JUMP_LABEL (insn))],
1933 exit_label, copy))
1934 abort ();
1935 }
1936 else
1937 {
1938 rtx jmp;
1939 rtx lab = gen_label_rtx ();
1940 /* Can't do it by reversing the jump (probably because we
1941 couldn't reverse the conditions), so emit a new
1942 jump_insn after COPY, and redirect the jump around
1943 that. */
1944 jmp = emit_jump_insn_after (gen_jump (exit_label), copy);
1945 jmp = emit_barrier_after (jmp);
1946 emit_label_after (lab, jmp);
1947 LABEL_NUSES (lab) = 0;
1948 if (! redirect_exp (&pattern,
1949 map->label_map[CODE_LABEL_NUMBER
1950 (JUMP_LABEL (insn))],
1951 lab, copy))
1952 abort ();
1953 }
1954 }
1955
1956 #ifdef HAVE_cc0
1957 if (cc0_insn)
1958 try_constants (cc0_insn, map);
1959 cc0_insn = 0;
1960 #endif
1961 try_constants (copy, map);
1962
1963 /* Set the jump label of COPY correctly to avoid problems with
1964 later passes of unroll_loop, if INSN had jump label set. */
1965 if (JUMP_LABEL (insn))
1966 {
1967 rtx label = 0;
1968
1969 /* Can't use the label_map for every insn, since this may be
1970 the backward branch, and hence the label was not mapped. */
1971 if (GET_CODE (pattern) == SET)
1972 {
1973 tem = SET_SRC (pattern);
1974 if (GET_CODE (tem) == LABEL_REF)
1975 label = XEXP (tem, 0);
1976 else if (GET_CODE (tem) == IF_THEN_ELSE)
1977 {
1978 if (XEXP (tem, 1) != pc_rtx)
1979 label = XEXP (XEXP (tem, 1), 0);
1980 else
1981 label = XEXP (XEXP (tem, 2), 0);
1982 }
1983 }
1984
1985 if (label && GET_CODE (label) == CODE_LABEL)
1986 JUMP_LABEL (copy) = label;
1987 else
1988 {
1989 /* An unrecognizable jump insn, probably the entry jump
1990 for a switch statement. This label must have been mapped,
1991 so just use the label_map to get the new jump label. */
1992 JUMP_LABEL (copy)
1993 = map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))];
1994 }
1995
1996 /* If this is a non-local jump, then must increase the label
1997 use count so that the label will not be deleted when the
1998 original jump is deleted. */
1999 LABEL_NUSES (JUMP_LABEL (copy))++;
2000 }
2001 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
2002 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
2003 {
2004 rtx pat = PATTERN (copy);
2005 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
2006 int len = XVECLEN (pat, diff_vec_p);
2007 int i;
2008
2009 for (i = 0; i < len; i++)
2010 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
2011 }
2012
2013 /* If this used to be a conditional jump insn but whose branch
2014 direction is now known, we must do something special. */
2015 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
2016 {
2017 #ifdef HAVE_cc0
2018 /* The previous insn set cc0 for us. So delete it. */
2019 delete_insn (PREV_INSN (copy));
2020 #endif
2021
2022 /* If this is now a no-op, delete it. */
2023 if (map->last_pc_value == pc_rtx)
2024 {
2025 /* Don't let delete_insn delete the label referenced here,
2026 because we might possibly need it later for some other
2027 instruction in the loop. */
2028 if (JUMP_LABEL (copy))
2029 LABEL_NUSES (JUMP_LABEL (copy))++;
2030 delete_insn (copy);
2031 if (JUMP_LABEL (copy))
2032 LABEL_NUSES (JUMP_LABEL (copy))--;
2033 copy = 0;
2034 }
2035 else
2036 /* Otherwise, this is unconditional jump so we must put a
2037 BARRIER after it. We could do some dead code elimination
2038 here, but jump.c will do it just as well. */
2039 emit_barrier ();
2040 }
2041 break;
2042
2043 case CALL_INSN:
2044 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
2045 copy = emit_call_insn (pattern);
2046 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
2047
2048 /* Because the USAGE information potentially contains objects other
2049 than hard registers, we need to copy it. */
2050 CALL_INSN_FUNCTION_USAGE (copy)
2051 = copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
2052
2053 #ifdef HAVE_cc0
2054 if (cc0_insn)
2055 try_constants (cc0_insn, map);
2056 cc0_insn = 0;
2057 #endif
2058 try_constants (copy, map);
2059
2060 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
2061 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2062 map->const_equiv_map[i] = 0;
2063 break;
2064
2065 case CODE_LABEL:
2066 /* If this is the loop start label, then we don't need to emit a
2067 copy of this label since no one will use it. */
2068
2069 if (insn != start_label)
2070 {
2071 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
2072 map->const_age++;
2073 }
2074 break;
2075
2076 case BARRIER:
2077 copy = emit_barrier ();
2078 break;
2079
2080 case NOTE:
2081 /* VTOP notes are valid only before the loop exit test. If placed
2082 anywhere else, loop may generate bad code. */
2083
2084 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
2085 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
2086 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
2087 copy = emit_note (NOTE_SOURCE_FILE (insn),
2088 NOTE_LINE_NUMBER (insn));
2089 else
2090 copy = 0;
2091 break;
2092
2093 default:
2094 abort ();
2095 break;
2096 }
2097
2098 map->insn_map[INSN_UID (insn)] = copy;
2099 }
2100 while (insn != copy_end);
2101
2102 /* Now finish coping the REG_NOTES. */
2103 insn = copy_start;
2104 do
2105 {
2106 insn = NEXT_INSN (insn);
2107 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
2108 || GET_CODE (insn) == CALL_INSN)
2109 && map->insn_map[INSN_UID (insn)])
2110 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
2111 }
2112 while (insn != copy_end);
2113
2114 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
2115 each of these notes here, since there may be some important ones, such as
2116 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
2117 iteration, because the original notes won't be deleted.
2118
2119 We can't use insert_before here, because when from preconditioning,
2120 insert_before points before the loop. We can't use copy_end, because
2121 there may be insns already inserted after it (which we don't want to
2122 copy) when not from preconditioning code. */
2123
2124 if (! last_iteration)
2125 {
2126 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
2127 {
2128 if (GET_CODE (insn) == NOTE
2129 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
2130 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
2131 }
2132 }
2133
2134 if (final_label && LABEL_NUSES (final_label) > 0)
2135 emit_label (final_label);
2136
2137 tem = gen_sequence ();
2138 end_sequence ();
2139 emit_insn_before (tem, insert_before);
2140 }
2141 \f
2142 /* Emit an insn, using the expand_binop to ensure that a valid insn is
2143 emitted. This will correctly handle the case where the increment value
2144 won't fit in the immediate field of a PLUS insns. */
2145
2146 void
2147 emit_unrolled_add (dest_reg, src_reg, increment)
2148 rtx dest_reg, src_reg, increment;
2149 {
2150 rtx result;
2151
2152 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
2153 dest_reg, 0, OPTAB_LIB_WIDEN);
2154
2155 if (dest_reg != result)
2156 emit_move_insn (dest_reg, result);
2157 }
2158 \f
2159 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
2160 is a backward branch in that range that branches to somewhere between
2161 LOOP_START and INSN. Returns 0 otherwise. */
2162
2163 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
2164 In practice, this is not a problem, because this function is seldom called,
2165 and uses a negligible amount of CPU time on average. */
2166
2167 int
2168 back_branch_in_range_p (insn, loop_start, loop_end)
2169 rtx insn;
2170 rtx loop_start, loop_end;
2171 {
2172 rtx p, q, target_insn;
2173 rtx orig_loop_end = loop_end;
2174
2175 /* Stop before we get to the backward branch at the end of the loop. */
2176 loop_end = prev_nonnote_insn (loop_end);
2177 if (GET_CODE (loop_end) == BARRIER)
2178 loop_end = PREV_INSN (loop_end);
2179
2180 /* Check in case insn has been deleted, search forward for first non
2181 deleted insn following it. */
2182 while (INSN_DELETED_P (insn))
2183 insn = NEXT_INSN (insn);
2184
2185 /* Check for the case where insn is the last insn in the loop. Deal
2186 with the case where INSN was a deleted loop test insn, in which case
2187 it will now be the NOTE_LOOP_END. */
2188 if (insn == loop_end || insn == orig_loop_end)
2189 return 0;
2190
2191 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
2192 {
2193 if (GET_CODE (p) == JUMP_INSN)
2194 {
2195 target_insn = JUMP_LABEL (p);
2196
2197 /* Search from loop_start to insn, to see if one of them is
2198 the target_insn. We can't use INSN_LUID comparisons here,
2199 since insn may not have an LUID entry. */
2200 for (q = loop_start; q != insn; q = NEXT_INSN (q))
2201 if (q == target_insn)
2202 return 1;
2203 }
2204 }
2205
2206 return 0;
2207 }
2208
2209 /* Try to generate the simplest rtx for the expression
2210 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
2211 value of giv's. */
2212
2213 static rtx
2214 fold_rtx_mult_add (mult1, mult2, add1, mode)
2215 rtx mult1, mult2, add1;
2216 enum machine_mode mode;
2217 {
2218 rtx temp, mult_res;
2219 rtx result;
2220
2221 /* The modes must all be the same. This should always be true. For now,
2222 check to make sure. */
2223 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2224 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2225 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2226 abort ();
2227
2228 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2229 will be a constant. */
2230 if (GET_CODE (mult1) == CONST_INT)
2231 {
2232 temp = mult2;
2233 mult2 = mult1;
2234 mult1 = temp;
2235 }
2236
2237 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2238 if (! mult_res)
2239 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2240
2241 /* Again, put the constant second. */
2242 if (GET_CODE (add1) == CONST_INT)
2243 {
2244 temp = add1;
2245 add1 = mult_res;
2246 mult_res = temp;
2247 }
2248
2249 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2250 if (! result)
2251 result = gen_rtx (PLUS, mode, add1, mult_res);
2252
2253 return result;
2254 }
2255
2256 /* Searches the list of induction struct's for the biv BL, to try to calculate
2257 the total increment value for one iteration of the loop as a constant.
2258
2259 Returns the increment value as an rtx, simplified as much as possible,
2260 if it can be calculated. Otherwise, returns 0. */
2261
2262 rtx
2263 biv_total_increment (bl, loop_start, loop_end)
2264 struct iv_class *bl;
2265 rtx loop_start, loop_end;
2266 {
2267 struct induction *v;
2268 rtx result;
2269
2270 /* For increment, must check every instruction that sets it. Each
2271 instruction must be executed only once each time through the loop.
2272 To verify this, we check that the the insn is always executed, and that
2273 there are no backward branches after the insn that branch to before it.
2274 Also, the insn must have a mult_val of one (to make sure it really is
2275 an increment). */
2276
2277 result = const0_rtx;
2278 for (v = bl->biv; v; v = v->next_iv)
2279 {
2280 if (v->always_computable && v->mult_val == const1_rtx
2281 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2282 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2283 else
2284 return 0;
2285 }
2286
2287 return result;
2288 }
2289
2290 /* Determine the initial value of the iteration variable, and the amount
2291 that it is incremented each loop. Use the tables constructed by
2292 the strength reduction pass to calculate these values.
2293
2294 Initial_value and/or increment are set to zero if their values could not
2295 be calculated. */
2296
2297 void
2298 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2299 rtx iteration_var, *initial_value, *increment;
2300 rtx loop_start, loop_end;
2301 {
2302 struct iv_class *bl;
2303 struct induction *v, *b;
2304
2305 /* Clear the result values, in case no answer can be found. */
2306 *initial_value = 0;
2307 *increment = 0;
2308
2309 /* The iteration variable can be either a giv or a biv. Check to see
2310 which it is, and compute the variable's initial value, and increment
2311 value if possible. */
2312
2313 /* If this is a new register, can't handle it since we don't have any
2314 reg_iv_type entry for it. */
2315 if (REGNO (iteration_var) >= max_reg_before_loop)
2316 {
2317 if (loop_dump_stream)
2318 fprintf (loop_dump_stream,
2319 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2320 return;
2321 }
2322
2323 /* Reject iteration variables larger than the host wide int size, since they
2324 could result in a number of iterations greater than the range of our
2325 `unsigned HOST_WIDE_INT' variable loop_n_iterations. */
2326 else if ((GET_MODE_BITSIZE (GET_MODE (iteration_var))
2327 > HOST_BITS_PER_WIDE_INT))
2328 {
2329 if (loop_dump_stream)
2330 fprintf (loop_dump_stream,
2331 "Loop unrolling: Iteration var rejected because mode too large.\n");
2332 return;
2333 }
2334 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2335 {
2336 if (loop_dump_stream)
2337 fprintf (loop_dump_stream,
2338 "Loop unrolling: Iteration var not an integer.\n");
2339 return;
2340 }
2341 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2342 {
2343 /* Grab initial value, only useful if it is a constant. */
2344 bl = reg_biv_class[REGNO (iteration_var)];
2345 *initial_value = bl->initial_value;
2346
2347 *increment = biv_total_increment (bl, loop_start, loop_end);
2348 }
2349 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2350 {
2351 #if 1
2352 /* ??? The code below does not work because the incorrect number of
2353 iterations is calculated when the biv is incremented after the giv
2354 is set (which is the usual case). This can probably be accounted
2355 for by biasing the initial_value by subtracting the amount of the
2356 increment that occurs between the giv set and the giv test. However,
2357 a giv as an iterator is very rare, so it does not seem worthwhile
2358 to handle this. */
2359 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2360 if (loop_dump_stream)
2361 fprintf (loop_dump_stream,
2362 "Loop unrolling: Giv iterators are not handled.\n");
2363 return;
2364 #else
2365 /* Initial value is mult_val times the biv's initial value plus
2366 add_val. Only useful if it is a constant. */
2367 v = reg_iv_info[REGNO (iteration_var)];
2368 bl = reg_biv_class[REGNO (v->src_reg)];
2369 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2370 v->add_val, v->mode);
2371
2372 /* Increment value is mult_val times the increment value of the biv. */
2373
2374 *increment = biv_total_increment (bl, loop_start, loop_end);
2375 if (*increment)
2376 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2377 v->mode);
2378 #endif
2379 }
2380 else
2381 {
2382 if (loop_dump_stream)
2383 fprintf (loop_dump_stream,
2384 "Loop unrolling: Not basic or general induction var.\n");
2385 return;
2386 }
2387 }
2388
2389 /* Calculate the approximate final value of the iteration variable
2390 which has an loop exit test with code COMPARISON_CODE and comparison value
2391 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2392 was signed or unsigned, and the direction of the comparison. This info is
2393 needed to calculate the number of loop iterations. */
2394
2395 static rtx
2396 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2397 enum rtx_code comparison_code;
2398 rtx comparison_value;
2399 int *unsigned_p;
2400 int *compare_dir;
2401 {
2402 /* Calculate the final value of the induction variable.
2403 The exact final value depends on the branch operator, and increment sign.
2404 This is only an approximate value. It will be wrong if the iteration
2405 variable is not incremented by one each time through the loop, and
2406 approx final value - start value % increment != 0. */
2407
2408 *unsigned_p = 0;
2409 switch (comparison_code)
2410 {
2411 case LEU:
2412 *unsigned_p = 1;
2413 case LE:
2414 *compare_dir = 1;
2415 return plus_constant (comparison_value, 1);
2416 case GEU:
2417 *unsigned_p = 1;
2418 case GE:
2419 *compare_dir = -1;
2420 return plus_constant (comparison_value, -1);
2421 case EQ:
2422 /* Can not calculate a final value for this case. */
2423 *compare_dir = 0;
2424 return 0;
2425 case LTU:
2426 *unsigned_p = 1;
2427 case LT:
2428 *compare_dir = 1;
2429 return comparison_value;
2430 break;
2431 case GTU:
2432 *unsigned_p = 1;
2433 case GT:
2434 *compare_dir = -1;
2435 return comparison_value;
2436 case NE:
2437 *compare_dir = 0;
2438 return comparison_value;
2439 default:
2440 abort ();
2441 }
2442 }
2443
2444 /* For each biv and giv, determine whether it can be safely split into
2445 a different variable for each unrolled copy of the loop body. If it
2446 is safe to split, then indicate that by saving some useful info
2447 in the splittable_regs array.
2448
2449 If the loop is being completely unrolled, then splittable_regs will hold
2450 the current value of the induction variable while the loop is unrolled.
2451 It must be set to the initial value of the induction variable here.
2452 Otherwise, splittable_regs will hold the difference between the current
2453 value of the induction variable and the value the induction variable had
2454 at the top of the loop. It must be set to the value 0 here.
2455
2456 Returns the total number of instructions that set registers that are
2457 splittable. */
2458
2459 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2460 constant values are unnecessary, since we can easily calculate increment
2461 values in this case even if nothing is constant. The increment value
2462 should not involve a multiply however. */
2463
2464 /* ?? Even if the biv/giv increment values aren't constant, it may still
2465 be beneficial to split the variable if the loop is only unrolled a few
2466 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2467
2468 static int
2469 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2470 unroll_number)
2471 enum unroll_types unroll_type;
2472 rtx loop_start, loop_end;
2473 rtx end_insert_before;
2474 int unroll_number;
2475 {
2476 struct iv_class *bl;
2477 struct induction *v;
2478 rtx increment, tem;
2479 rtx biv_final_value;
2480 int biv_splittable;
2481 int result = 0;
2482
2483 for (bl = loop_iv_list; bl; bl = bl->next)
2484 {
2485 /* Biv_total_increment must return a constant value,
2486 otherwise we can not calculate the split values. */
2487
2488 increment = biv_total_increment (bl, loop_start, loop_end);
2489 if (! increment || GET_CODE (increment) != CONST_INT)
2490 continue;
2491
2492 /* The loop must be unrolled completely, or else have a known number
2493 of iterations and only one exit, or else the biv must be dead
2494 outside the loop, or else the final value must be known. Otherwise,
2495 it is unsafe to split the biv since it may not have the proper
2496 value on loop exit. */
2497
2498 /* loop_number_exit_count is non-zero if the loop has an exit other than
2499 a fall through at the end. */
2500
2501 biv_splittable = 1;
2502 biv_final_value = 0;
2503 if (unroll_type != UNROLL_COMPLETELY
2504 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2505 || unroll_type == UNROLL_NAIVE)
2506 && (uid_luid[REGNO_LAST_UID (bl->regno)] >= INSN_LUID (loop_end)
2507 || ! bl->init_insn
2508 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2509 || (uid_luid[REGNO_FIRST_UID (bl->regno)]
2510 < INSN_LUID (bl->init_insn))
2511 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2512 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2513 biv_splittable = 0;
2514
2515 /* If any of the insns setting the BIV don't do so with a simple
2516 PLUS, we don't know how to split it. */
2517 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2518 if ((tem = single_set (v->insn)) == 0
2519 || GET_CODE (SET_DEST (tem)) != REG
2520 || REGNO (SET_DEST (tem)) != bl->regno
2521 || GET_CODE (SET_SRC (tem)) != PLUS)
2522 biv_splittable = 0;
2523
2524 /* If final value is non-zero, then must emit an instruction which sets
2525 the value of the biv to the proper value. This is done after
2526 handling all of the givs, since some of them may need to use the
2527 biv's value in their initialization code. */
2528
2529 /* This biv is splittable. If completely unrolling the loop, save
2530 the biv's initial value. Otherwise, save the constant zero. */
2531
2532 if (biv_splittable == 1)
2533 {
2534 if (unroll_type == UNROLL_COMPLETELY)
2535 {
2536 /* If the initial value of the biv is itself (i.e. it is too
2537 complicated for strength_reduce to compute), or is a hard
2538 register, or it isn't invariant, then we must create a new
2539 pseudo reg to hold the initial value of the biv. */
2540
2541 if (GET_CODE (bl->initial_value) == REG
2542 && (REGNO (bl->initial_value) == bl->regno
2543 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER
2544 || ! invariant_p (bl->initial_value)))
2545 {
2546 rtx tem = gen_reg_rtx (bl->biv->mode);
2547
2548 record_base_value (REGNO (tem), bl->biv->add_val);
2549 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2550 loop_start);
2551
2552 if (loop_dump_stream)
2553 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2554 bl->regno, REGNO (tem));
2555
2556 splittable_regs[bl->regno] = tem;
2557 }
2558 else
2559 splittable_regs[bl->regno] = bl->initial_value;
2560 }
2561 else
2562 splittable_regs[bl->regno] = const0_rtx;
2563
2564 /* Save the number of instructions that modify the biv, so that
2565 we can treat the last one specially. */
2566
2567 splittable_regs_updates[bl->regno] = bl->biv_count;
2568 result += bl->biv_count;
2569
2570 if (loop_dump_stream)
2571 fprintf (loop_dump_stream,
2572 "Biv %d safe to split.\n", bl->regno);
2573 }
2574
2575 /* Check every giv that depends on this biv to see whether it is
2576 splittable also. Even if the biv isn't splittable, givs which
2577 depend on it may be splittable if the biv is live outside the
2578 loop, and the givs aren't. */
2579
2580 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2581 increment, unroll_number);
2582
2583 /* If final value is non-zero, then must emit an instruction which sets
2584 the value of the biv to the proper value. This is done after
2585 handling all of the givs, since some of them may need to use the
2586 biv's value in their initialization code. */
2587 if (biv_final_value)
2588 {
2589 /* If the loop has multiple exits, emit the insns before the
2590 loop to ensure that it will always be executed no matter
2591 how the loop exits. Otherwise emit the insn after the loop,
2592 since this is slightly more efficient. */
2593 if (! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
2594 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2595 biv_final_value),
2596 end_insert_before);
2597 else
2598 {
2599 /* Create a new register to hold the value of the biv, and then
2600 set the biv to its final value before the loop start. The biv
2601 is set to its final value before loop start to ensure that
2602 this insn will always be executed, no matter how the loop
2603 exits. */
2604 rtx tem = gen_reg_rtx (bl->biv->mode);
2605 record_base_value (REGNO (tem), bl->biv->add_val);
2606
2607 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2608 loop_start);
2609 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2610 biv_final_value),
2611 loop_start);
2612
2613 if (loop_dump_stream)
2614 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2615 REGNO (bl->biv->src_reg), REGNO (tem));
2616
2617 /* Set up the mapping from the original biv register to the new
2618 register. */
2619 bl->biv->src_reg = tem;
2620 }
2621 }
2622 }
2623 return result;
2624 }
2625
2626 /* Return 1 if the first and last unrolled copy of the address giv V is valid
2627 for the instruction that is using it. Do not make any changes to that
2628 instruction. */
2629
2630 static int
2631 verify_addresses (v, giv_inc, unroll_number)
2632 struct induction *v;
2633 rtx giv_inc;
2634 int unroll_number;
2635 {
2636 int ret = 1;
2637 rtx orig_addr = *v->location;
2638 rtx last_addr = plus_constant (v->dest_reg,
2639 INTVAL (giv_inc) * (unroll_number - 1));
2640
2641 /* First check to see if either address would fail. */
2642 if (! validate_change (v->insn, v->location, v->dest_reg, 0)
2643 || ! validate_change (v->insn, v->location, last_addr, 0))
2644 ret = 0;
2645
2646 /* Now put things back the way they were before. This will always
2647 succeed. */
2648 validate_change (v->insn, v->location, orig_addr, 0);
2649
2650 return ret;
2651 }
2652
2653 /* For every giv based on the biv BL, check to determine whether it is
2654 splittable. This is a subroutine to find_splittable_regs ().
2655
2656 Return the number of instructions that set splittable registers. */
2657
2658 static int
2659 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2660 unroll_number)
2661 struct iv_class *bl;
2662 enum unroll_types unroll_type;
2663 rtx loop_start, loop_end;
2664 rtx increment;
2665 int unroll_number;
2666 {
2667 struct induction *v, *v2;
2668 rtx final_value;
2669 rtx tem;
2670 int result = 0;
2671
2672 /* Scan the list of givs, and set the same_insn field when there are
2673 multiple identical givs in the same insn. */
2674 for (v = bl->giv; v; v = v->next_iv)
2675 for (v2 = v->next_iv; v2; v2 = v2->next_iv)
2676 if (v->insn == v2->insn && rtx_equal_p (v->new_reg, v2->new_reg)
2677 && ! v2->same_insn)
2678 v2->same_insn = v;
2679
2680 for (v = bl->giv; v; v = v->next_iv)
2681 {
2682 rtx giv_inc, value;
2683
2684 /* Only split the giv if it has already been reduced, or if the loop is
2685 being completely unrolled. */
2686 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2687 continue;
2688
2689 /* The giv can be split if the insn that sets the giv is executed once
2690 and only once on every iteration of the loop. */
2691 /* An address giv can always be split. v->insn is just a use not a set,
2692 and hence it does not matter whether it is always executed. All that
2693 matters is that all the biv increments are always executed, and we
2694 won't reach here if they aren't. */
2695 if (v->giv_type != DEST_ADDR
2696 && (! v->always_computable
2697 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2698 continue;
2699
2700 /* The giv increment value must be a constant. */
2701 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2702 v->mode);
2703 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2704 continue;
2705
2706 /* The loop must be unrolled completely, or else have a known number of
2707 iterations and only one exit, or else the giv must be dead outside
2708 the loop, or else the final value of the giv must be known.
2709 Otherwise, it is not safe to split the giv since it may not have the
2710 proper value on loop exit. */
2711
2712 /* The used outside loop test will fail for DEST_ADDR givs. They are
2713 never used outside the loop anyways, so it is always safe to split a
2714 DEST_ADDR giv. */
2715
2716 final_value = 0;
2717 if (unroll_type != UNROLL_COMPLETELY
2718 && (loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
2719 || unroll_type == UNROLL_NAIVE)
2720 && v->giv_type != DEST_ADDR
2721 /* The next part is true if the pseudo is used outside the loop.
2722 We assume that this is true for any pseudo created after loop
2723 starts, because we don't have a reg_n_info entry for them. */
2724 && (REGNO (v->dest_reg) >= max_reg_before_loop
2725 || (REGNO_FIRST_UID (REGNO (v->dest_reg)) != INSN_UID (v->insn)
2726 /* Check for the case where the pseudo is set by a shift/add
2727 sequence, in which case the first insn setting the pseudo
2728 is the first insn of the shift/add sequence. */
2729 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2730 || (REGNO_FIRST_UID (REGNO (v->dest_reg))
2731 != INSN_UID (XEXP (tem, 0)))))
2732 /* Line above always fails if INSN was moved by loop opt. */
2733 || (uid_luid[REGNO_LAST_UID (REGNO (v->dest_reg))]
2734 >= INSN_LUID (loop_end)))
2735 && ! (final_value = v->final_value))
2736 continue;
2737
2738 #if 0
2739 /* Currently, non-reduced/final-value givs are never split. */
2740 /* Should emit insns after the loop if possible, as the biv final value
2741 code below does. */
2742
2743 /* If the final value is non-zero, and the giv has not been reduced,
2744 then must emit an instruction to set the final value. */
2745 if (final_value && !v->new_reg)
2746 {
2747 /* Create a new register to hold the value of the giv, and then set
2748 the giv to its final value before the loop start. The giv is set
2749 to its final value before loop start to ensure that this insn
2750 will always be executed, no matter how we exit. */
2751 tem = gen_reg_rtx (v->mode);
2752 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2753 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2754 loop_start);
2755
2756 if (loop_dump_stream)
2757 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2758 REGNO (v->dest_reg), REGNO (tem));
2759
2760 v->src_reg = tem;
2761 }
2762 #endif
2763
2764 /* This giv is splittable. If completely unrolling the loop, save the
2765 giv's initial value. Otherwise, save the constant zero for it. */
2766
2767 if (unroll_type == UNROLL_COMPLETELY)
2768 {
2769 /* It is not safe to use bl->initial_value here, because it may not
2770 be invariant. It is safe to use the initial value stored in
2771 the splittable_regs array if it is set. In rare cases, it won't
2772 be set, so then we do exactly the same thing as
2773 find_splittable_regs does to get a safe value. */
2774 rtx biv_initial_value;
2775
2776 if (splittable_regs[bl->regno])
2777 biv_initial_value = splittable_regs[bl->regno];
2778 else if (GET_CODE (bl->initial_value) != REG
2779 || (REGNO (bl->initial_value) != bl->regno
2780 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2781 biv_initial_value = bl->initial_value;
2782 else
2783 {
2784 rtx tem = gen_reg_rtx (bl->biv->mode);
2785
2786 record_base_value (REGNO (tem), bl->biv->add_val);
2787 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2788 loop_start);
2789 biv_initial_value = tem;
2790 }
2791 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2792 v->add_val, v->mode);
2793 }
2794 else
2795 value = const0_rtx;
2796
2797 if (v->new_reg)
2798 {
2799 /* If a giv was combined with another giv, then we can only split
2800 this giv if the giv it was combined with was reduced. This
2801 is because the value of v->new_reg is meaningless in this
2802 case. */
2803 if (v->same && ! v->same->new_reg)
2804 {
2805 if (loop_dump_stream)
2806 fprintf (loop_dump_stream,
2807 "giv combined with unreduced giv not split.\n");
2808 continue;
2809 }
2810 /* If the giv is an address destination, it could be something other
2811 than a simple register, these have to be treated differently. */
2812 else if (v->giv_type == DEST_REG)
2813 {
2814 /* If value is not a constant, register, or register plus
2815 constant, then compute its value into a register before
2816 loop start. This prevents invalid rtx sharing, and should
2817 generate better code. We can use bl->initial_value here
2818 instead of splittable_regs[bl->regno] because this code
2819 is going before the loop start. */
2820 if (unroll_type == UNROLL_COMPLETELY
2821 && GET_CODE (value) != CONST_INT
2822 && GET_CODE (value) != REG
2823 && (GET_CODE (value) != PLUS
2824 || GET_CODE (XEXP (value, 0)) != REG
2825 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2826 {
2827 rtx tem = gen_reg_rtx (v->mode);
2828 record_base_value (REGNO (tem), v->add_val);
2829 emit_iv_add_mult (bl->initial_value, v->mult_val,
2830 v->add_val, tem, loop_start);
2831 value = tem;
2832 }
2833
2834 splittable_regs[REGNO (v->new_reg)] = value;
2835 }
2836 else
2837 {
2838 /* Splitting address givs is useful since it will often allow us
2839 to eliminate some increment insns for the base giv as
2840 unnecessary. */
2841
2842 /* If the addr giv is combined with a dest_reg giv, then all
2843 references to that dest reg will be remapped, which is NOT
2844 what we want for split addr regs. We always create a new
2845 register for the split addr giv, just to be safe. */
2846
2847 /* If we have multiple identical address givs within a
2848 single instruction, then use a single pseudo reg for
2849 both. This is necessary in case one is a match_dup
2850 of the other. */
2851
2852 v->const_adjust = 0;
2853
2854 if (v->same_insn)
2855 {
2856 v->dest_reg = v->same_insn->dest_reg;
2857 if (loop_dump_stream)
2858 fprintf (loop_dump_stream,
2859 "Sharing address givs in insn %d\n",
2860 INSN_UID (v->insn));
2861 }
2862 /* If multiple address GIVs have been combined with the
2863 same dest_reg GIV, do not create a new register for
2864 each. */
2865 else if (unroll_type != UNROLL_COMPLETELY
2866 && v->giv_type == DEST_ADDR
2867 && v->same && v->same->giv_type == DEST_ADDR
2868 && v->same->unrolled
2869 /* combine_givs_p may return true for some cases
2870 where the add and mult values are not equal.
2871 To share a register here, the values must be
2872 equal. */
2873 && rtx_equal_p (v->same->mult_val, v->mult_val)
2874 && rtx_equal_p (v->same->add_val, v->add_val))
2875
2876 {
2877 v->dest_reg = v->same->dest_reg;
2878 v->shared = 1;
2879 }
2880 else if (unroll_type != UNROLL_COMPLETELY)
2881 {
2882 /* If not completely unrolling the loop, then create a new
2883 register to hold the split value of the DEST_ADDR giv.
2884 Emit insn to initialize its value before loop start. */
2885
2886 rtx tem = gen_reg_rtx (v->mode);
2887 record_base_value (REGNO (tem), v->add_val);
2888 v->unrolled = 1;
2889
2890 /* If the address giv has a constant in its new_reg value,
2891 then this constant can be pulled out and put in value,
2892 instead of being part of the initialization code. */
2893
2894 if (GET_CODE (v->new_reg) == PLUS
2895 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2896 {
2897 v->dest_reg
2898 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2899
2900 /* Only succeed if this will give valid addresses.
2901 Try to validate both the first and the last
2902 address resulting from loop unrolling, if
2903 one fails, then can't do const elim here. */
2904 if (verify_addresses (v, giv_inc, unroll_number))
2905 {
2906 /* Save the negative of the eliminated const, so
2907 that we can calculate the dest_reg's increment
2908 value later. */
2909 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2910
2911 v->new_reg = XEXP (v->new_reg, 0);
2912 if (loop_dump_stream)
2913 fprintf (loop_dump_stream,
2914 "Eliminating constant from giv %d\n",
2915 REGNO (tem));
2916 }
2917 else
2918 v->dest_reg = tem;
2919 }
2920 else
2921 v->dest_reg = tem;
2922
2923 /* If the address hasn't been checked for validity yet, do so
2924 now, and fail completely if either the first or the last
2925 unrolled copy of the address is not a valid address
2926 for the instruction that uses it. */
2927 if (v->dest_reg == tem
2928 && ! verify_addresses (v, giv_inc, unroll_number))
2929 {
2930 if (loop_dump_stream)
2931 fprintf (loop_dump_stream,
2932 "Invalid address for giv at insn %d\n",
2933 INSN_UID (v->insn));
2934 continue;
2935 }
2936
2937 /* To initialize the new register, just move the value of
2938 new_reg into it. This is not guaranteed to give a valid
2939 instruction on machines with complex addressing modes.
2940 If we can't recognize it, then delete it and emit insns
2941 to calculate the value from scratch. */
2942 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2943 copy_rtx (v->new_reg)),
2944 loop_start);
2945 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2946 {
2947 rtx sequence, ret;
2948
2949 /* We can't use bl->initial_value to compute the initial
2950 value, because the loop may have been preconditioned.
2951 We must calculate it from NEW_REG. Try using
2952 force_operand instead of emit_iv_add_mult. */
2953 delete_insn (PREV_INSN (loop_start));
2954
2955 start_sequence ();
2956 ret = force_operand (v->new_reg, tem);
2957 if (ret != tem)
2958 emit_move_insn (tem, ret);
2959 sequence = gen_sequence ();
2960 end_sequence ();
2961 emit_insn_before (sequence, loop_start);
2962
2963 if (loop_dump_stream)
2964 fprintf (loop_dump_stream,
2965 "Invalid init insn, rewritten.\n");
2966 }
2967 }
2968 else
2969 {
2970 v->dest_reg = value;
2971
2972 /* Check the resulting address for validity, and fail
2973 if the resulting address would be invalid. */
2974 if (! verify_addresses (v, giv_inc, unroll_number))
2975 {
2976 if (loop_dump_stream)
2977 fprintf (loop_dump_stream,
2978 "Invalid address for giv at insn %d\n",
2979 INSN_UID (v->insn));
2980 continue;
2981 }
2982 }
2983
2984 /* Store the value of dest_reg into the insn. This sharing
2985 will not be a problem as this insn will always be copied
2986 later. */
2987
2988 *v->location = v->dest_reg;
2989
2990 /* If this address giv is combined with a dest reg giv, then
2991 save the base giv's induction pointer so that we will be
2992 able to handle this address giv properly. The base giv
2993 itself does not have to be splittable. */
2994
2995 if (v->same && v->same->giv_type == DEST_REG)
2996 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2997
2998 if (GET_CODE (v->new_reg) == REG)
2999 {
3000 /* This giv maybe hasn't been combined with any others.
3001 Make sure that it's giv is marked as splittable here. */
3002
3003 splittable_regs[REGNO (v->new_reg)] = value;
3004
3005 /* Make it appear to depend upon itself, so that the
3006 giv will be properly split in the main loop above. */
3007 if (! v->same)
3008 {
3009 v->same = v;
3010 addr_combined_regs[REGNO (v->new_reg)] = v;
3011 }
3012 }
3013
3014 if (loop_dump_stream)
3015 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
3016 }
3017 }
3018 else
3019 {
3020 #if 0
3021 /* Currently, unreduced giv's can't be split. This is not too much
3022 of a problem since unreduced giv's are not live across loop
3023 iterations anyways. When unrolling a loop completely though,
3024 it makes sense to reduce&split givs when possible, as this will
3025 result in simpler instructions, and will not require that a reg
3026 be live across loop iterations. */
3027
3028 splittable_regs[REGNO (v->dest_reg)] = value;
3029 fprintf (stderr, "Giv %d at insn %d not reduced\n",
3030 REGNO (v->dest_reg), INSN_UID (v->insn));
3031 #else
3032 continue;
3033 #endif
3034 }
3035
3036 /* Unreduced givs are only updated once by definition. Reduced givs
3037 are updated as many times as their biv is. Mark it so if this is
3038 a splittable register. Don't need to do anything for address givs
3039 where this may not be a register. */
3040
3041 if (GET_CODE (v->new_reg) == REG)
3042 {
3043 int count = 1;
3044 if (! v->ignore)
3045 count = reg_biv_class[REGNO (v->src_reg)]->biv_count;
3046
3047 splittable_regs_updates[REGNO (v->new_reg)] = count;
3048 }
3049
3050 result++;
3051
3052 if (loop_dump_stream)
3053 {
3054 int regnum;
3055
3056 if (GET_CODE (v->dest_reg) == CONST_INT)
3057 regnum = -1;
3058 else if (GET_CODE (v->dest_reg) != REG)
3059 regnum = REGNO (XEXP (v->dest_reg, 0));
3060 else
3061 regnum = REGNO (v->dest_reg);
3062 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
3063 regnum, INSN_UID (v->insn));
3064 }
3065 }
3066
3067 return result;
3068 }
3069 \f
3070 /* Try to prove that the register is dead after the loop exits. Trace every
3071 loop exit looking for an insn that will always be executed, which sets
3072 the register to some value, and appears before the first use of the register
3073 is found. If successful, then return 1, otherwise return 0. */
3074
3075 /* ?? Could be made more intelligent in the handling of jumps, so that
3076 it can search past if statements and other similar structures. */
3077
3078 static int
3079 reg_dead_after_loop (reg, loop_start, loop_end)
3080 rtx reg, loop_start, loop_end;
3081 {
3082 rtx insn, label;
3083 enum rtx_code code;
3084 int jump_count = 0;
3085 int label_count = 0;
3086 int this_loop_num = uid_loop_num[INSN_UID (loop_start)];
3087
3088 /* In addition to checking all exits of this loop, we must also check
3089 all exits of inner nested loops that would exit this loop. We don't
3090 have any way to identify those, so we just give up if there are any
3091 such inner loop exits. */
3092
3093 for (label = loop_number_exit_labels[this_loop_num]; label;
3094 label = LABEL_NEXTREF (label))
3095 label_count++;
3096
3097 if (label_count != loop_number_exit_count[this_loop_num])
3098 return 0;
3099
3100 /* HACK: Must also search the loop fall through exit, create a label_ref
3101 here which points to the loop_end, and append the loop_number_exit_labels
3102 list to it. */
3103 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
3104 LABEL_NEXTREF (label) = loop_number_exit_labels[this_loop_num];
3105
3106 for ( ; label; label = LABEL_NEXTREF (label))
3107 {
3108 /* Succeed if find an insn which sets the biv or if reach end of
3109 function. Fail if find an insn that uses the biv, or if come to
3110 a conditional jump. */
3111
3112 insn = NEXT_INSN (XEXP (label, 0));
3113 while (insn)
3114 {
3115 code = GET_CODE (insn);
3116 if (GET_RTX_CLASS (code) == 'i')
3117 {
3118 rtx set;
3119
3120 if (reg_referenced_p (reg, PATTERN (insn)))
3121 return 0;
3122
3123 set = single_set (insn);
3124 if (set && rtx_equal_p (SET_DEST (set), reg))
3125 break;
3126 }
3127
3128 if (code == JUMP_INSN)
3129 {
3130 if (GET_CODE (PATTERN (insn)) == RETURN)
3131 break;
3132 else if (! simplejump_p (insn)
3133 /* Prevent infinite loop following infinite loops. */
3134 || jump_count++ > 20)
3135 return 0;
3136 else
3137 insn = JUMP_LABEL (insn);
3138 }
3139
3140 insn = NEXT_INSN (insn);
3141 }
3142 }
3143
3144 /* Success, the register is dead on all loop exits. */
3145 return 1;
3146 }
3147
3148 /* Try to calculate the final value of the biv, the value it will have at
3149 the end of the loop. If we can do it, return that value. */
3150
3151 rtx
3152 final_biv_value (bl, loop_start, loop_end)
3153 struct iv_class *bl;
3154 rtx loop_start, loop_end;
3155 {
3156 rtx increment, tem;
3157
3158 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
3159
3160 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
3161 return 0;
3162
3163 /* The final value for reversed bivs must be calculated differently than
3164 for ordinary bivs. In this case, there is already an insn after the
3165 loop which sets this biv's final value (if necessary), and there are
3166 no other loop exits, so we can return any value. */
3167 if (bl->reversed)
3168 {
3169 if (loop_dump_stream)
3170 fprintf (loop_dump_stream,
3171 "Final biv value for %d, reversed biv.\n", bl->regno);
3172
3173 return const0_rtx;
3174 }
3175
3176 /* Try to calculate the final value as initial value + (number of iterations
3177 * increment). For this to work, increment must be invariant, the only
3178 exit from the loop must be the fall through at the bottom (otherwise
3179 it may not have its final value when the loop exits), and the initial
3180 value of the biv must be invariant. */
3181
3182 if (loop_n_iterations != 0
3183 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]]
3184 && invariant_p (bl->initial_value))
3185 {
3186 increment = biv_total_increment (bl, loop_start, loop_end);
3187
3188 if (increment && invariant_p (increment))
3189 {
3190 /* Can calculate the loop exit value, emit insns after loop
3191 end to calculate this value into a temporary register in
3192 case it is needed later. */
3193
3194 tem = gen_reg_rtx (bl->biv->mode);
3195 record_base_value (REGNO (tem), bl->biv->add_val);
3196 /* Make sure loop_end is not the last insn. */
3197 if (NEXT_INSN (loop_end) == 0)
3198 emit_note_after (NOTE_INSN_DELETED, loop_end);
3199 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3200 bl->initial_value, tem, NEXT_INSN (loop_end));
3201
3202 if (loop_dump_stream)
3203 fprintf (loop_dump_stream,
3204 "Final biv value for %d, calculated.\n", bl->regno);
3205
3206 return tem;
3207 }
3208 }
3209
3210 /* Check to see if the biv is dead at all loop exits. */
3211 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
3212 {
3213 if (loop_dump_stream)
3214 fprintf (loop_dump_stream,
3215 "Final biv value for %d, biv dead after loop exit.\n",
3216 bl->regno);
3217
3218 return const0_rtx;
3219 }
3220
3221 return 0;
3222 }
3223
3224 /* Try to calculate the final value of the giv, the value it will have at
3225 the end of the loop. If we can do it, return that value. */
3226
3227 rtx
3228 final_giv_value (v, loop_start, loop_end)
3229 struct induction *v;
3230 rtx loop_start, loop_end;
3231 {
3232 struct iv_class *bl;
3233 rtx insn;
3234 rtx increment, tem;
3235 rtx insert_before, seq;
3236
3237 bl = reg_biv_class[REGNO (v->src_reg)];
3238
3239 /* The final value for givs which depend on reversed bivs must be calculated
3240 differently than for ordinary givs. In this case, there is already an
3241 insn after the loop which sets this giv's final value (if necessary),
3242 and there are no other loop exits, so we can return any value. */
3243 if (bl->reversed)
3244 {
3245 if (loop_dump_stream)
3246 fprintf (loop_dump_stream,
3247 "Final giv value for %d, depends on reversed biv\n",
3248 REGNO (v->dest_reg));
3249 return const0_rtx;
3250 }
3251
3252 /* Try to calculate the final value as a function of the biv it depends
3253 upon. The only exit from the loop must be the fall through at the bottom
3254 (otherwise it may not have its final value when the loop exits). */
3255
3256 /* ??? Can calculate the final giv value by subtracting off the
3257 extra biv increments times the giv's mult_val. The loop must have
3258 only one exit for this to work, but the loop iterations does not need
3259 to be known. */
3260
3261 if (loop_n_iterations != 0
3262 && ! loop_number_exit_count[uid_loop_num[INSN_UID (loop_start)]])
3263 {
3264 /* ?? It is tempting to use the biv's value here since these insns will
3265 be put after the loop, and hence the biv will have its final value
3266 then. However, this fails if the biv is subsequently eliminated.
3267 Perhaps determine whether biv's are eliminable before trying to
3268 determine whether giv's are replaceable so that we can use the
3269 biv value here if it is not eliminable. */
3270
3271 /* We are emitting code after the end of the loop, so we must make
3272 sure that bl->initial_value is still valid then. It will still
3273 be valid if it is invariant. */
3274
3275 increment = biv_total_increment (bl, loop_start, loop_end);
3276
3277 if (increment && invariant_p (increment)
3278 && invariant_p (bl->initial_value))
3279 {
3280 /* Can calculate the loop exit value of its biv as
3281 (loop_n_iterations * increment) + initial_value */
3282
3283 /* The loop exit value of the giv is then
3284 (final_biv_value - extra increments) * mult_val + add_val.
3285 The extra increments are any increments to the biv which
3286 occur in the loop after the giv's value is calculated.
3287 We must search from the insn that sets the giv to the end
3288 of the loop to calculate this value. */
3289
3290 insert_before = NEXT_INSN (loop_end);
3291
3292 /* Put the final biv value in tem. */
3293 tem = gen_reg_rtx (bl->biv->mode);
3294 record_base_value (REGNO (tem), bl->biv->add_val);
3295 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3296 bl->initial_value, tem, insert_before);
3297
3298 /* Subtract off extra increments as we find them. */
3299 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3300 insn = NEXT_INSN (insn))
3301 {
3302 struct induction *biv;
3303
3304 for (biv = bl->biv; biv; biv = biv->next_iv)
3305 if (biv->insn == insn)
3306 {
3307 start_sequence ();
3308 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3309 biv->add_val, NULL_RTX, 0,
3310 OPTAB_LIB_WIDEN);
3311 seq = gen_sequence ();
3312 end_sequence ();
3313 emit_insn_before (seq, insert_before);
3314 }
3315 }
3316
3317 /* Now calculate the giv's final value. */
3318 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3319 insert_before);
3320
3321 if (loop_dump_stream)
3322 fprintf (loop_dump_stream,
3323 "Final giv value for %d, calc from biv's value.\n",
3324 REGNO (v->dest_reg));
3325
3326 return tem;
3327 }
3328 }
3329
3330 /* Replaceable giv's should never reach here. */
3331 if (v->replaceable)
3332 abort ();
3333
3334 /* Check to see if the biv is dead at all loop exits. */
3335 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3336 {
3337 if (loop_dump_stream)
3338 fprintf (loop_dump_stream,
3339 "Final giv value for %d, giv dead after loop exit.\n",
3340 REGNO (v->dest_reg));
3341
3342 return const0_rtx;
3343 }
3344
3345 return 0;
3346 }
3347
3348
3349 /* Calculate the number of loop iterations. Returns the exact number of loop
3350 iterations if it can be calculated, otherwise returns zero. */
3351
3352 unsigned HOST_WIDE_INT
3353 loop_iterations (loop_start, loop_end)
3354 rtx loop_start, loop_end;
3355 {
3356 rtx comparison, comparison_value;
3357 rtx iteration_var, initial_value, increment, final_value;
3358 enum rtx_code comparison_code;
3359 HOST_WIDE_INT i;
3360 int increment_dir;
3361 int unsigned_compare, compare_dir, final_larger;
3362 unsigned long tempu;
3363 rtx last_loop_insn;
3364
3365 /* First find the iteration variable. If the last insn is a conditional
3366 branch, and the insn before tests a register value, make that the
3367 iteration variable. */
3368
3369 loop_initial_value = 0;
3370 loop_increment = 0;
3371 loop_final_value = 0;
3372 loop_iteration_var = 0;
3373
3374 /* We used to use pren_nonnote_insn here, but that fails because it might
3375 accidentally get the branch for a contained loop if the branch for this
3376 loop was deleted. We can only trust branches immediately before the
3377 loop_end. */
3378 last_loop_insn = PREV_INSN (loop_end);
3379
3380 comparison = get_condition_for_loop (last_loop_insn);
3381 if (comparison == 0)
3382 {
3383 if (loop_dump_stream)
3384 fprintf (loop_dump_stream,
3385 "Loop unrolling: No final conditional branch found.\n");
3386 return 0;
3387 }
3388
3389 /* ??? Get_condition may switch position of induction variable and
3390 invariant register when it canonicalizes the comparison. */
3391
3392 comparison_code = GET_CODE (comparison);
3393 iteration_var = XEXP (comparison, 0);
3394 comparison_value = XEXP (comparison, 1);
3395
3396 if (GET_CODE (iteration_var) != REG)
3397 {
3398 if (loop_dump_stream)
3399 fprintf (loop_dump_stream,
3400 "Loop unrolling: Comparison not against register.\n");
3401 return 0;
3402 }
3403
3404 /* Loop iterations is always called before any new registers are created
3405 now, so this should never occur. */
3406
3407 if (REGNO (iteration_var) >= max_reg_before_loop)
3408 abort ();
3409
3410 iteration_info (iteration_var, &initial_value, &increment,
3411 loop_start, loop_end);
3412 if (initial_value == 0)
3413 /* iteration_info already printed a message. */
3414 return 0;
3415
3416 /* If the comparison value is an invariant register, then try to find
3417 its value from the insns before the start of the loop. */
3418
3419 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3420 {
3421 rtx insn, set;
3422
3423 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3424 {
3425 if (GET_CODE (insn) == CODE_LABEL)
3426 break;
3427
3428 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3429 && reg_set_p (comparison_value, insn))
3430 {
3431 /* We found the last insn before the loop that sets the register.
3432 If it sets the entire register, and has a REG_EQUAL note,
3433 then use the value of the REG_EQUAL note. */
3434 if ((set = single_set (insn))
3435 && (SET_DEST (set) == comparison_value))
3436 {
3437 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3438
3439 /* Only use the REG_EQUAL note if it is a constant.
3440 Other things, divide in particular, will cause
3441 problems later if we use them. */
3442 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3443 && CONSTANT_P (XEXP (note, 0)))
3444 comparison_value = XEXP (note, 0);
3445 }
3446 break;
3447 }
3448 }
3449 }
3450
3451 final_value = approx_final_value (comparison_code, comparison_value,
3452 &unsigned_compare, &compare_dir);
3453
3454 /* Save the calculated values describing this loop's bounds, in case
3455 precondition_loop_p will need them later. These values can not be
3456 recalculated inside precondition_loop_p because strength reduction
3457 optimizations may obscure the loop's structure. */
3458
3459 loop_iteration_var = iteration_var;
3460 loop_initial_value = initial_value;
3461 loop_increment = increment;
3462 loop_final_value = final_value;
3463 loop_comparison_code = comparison_code;
3464
3465 if (increment == 0)
3466 {
3467 if (loop_dump_stream)
3468 fprintf (loop_dump_stream,
3469 "Loop unrolling: Increment value can't be calculated.\n");
3470 return 0;
3471 }
3472 else if (GET_CODE (increment) != CONST_INT)
3473 {
3474 if (loop_dump_stream)
3475 fprintf (loop_dump_stream,
3476 "Loop unrolling: Increment value not constant.\n");
3477 return 0;
3478 }
3479 else if (GET_CODE (initial_value) != CONST_INT)
3480 {
3481 if (loop_dump_stream)
3482 fprintf (loop_dump_stream,
3483 "Loop unrolling: Initial value not constant.\n");
3484 return 0;
3485 }
3486 else if (final_value == 0)
3487 {
3488 if (loop_dump_stream)
3489 fprintf (loop_dump_stream,
3490 "Loop unrolling: EQ comparison loop.\n");
3491 return 0;
3492 }
3493 else if (GET_CODE (final_value) != CONST_INT)
3494 {
3495 if (loop_dump_stream)
3496 fprintf (loop_dump_stream,
3497 "Loop unrolling: Final value not constant.\n");
3498 return 0;
3499 }
3500
3501 /* ?? Final value and initial value do not have to be constants.
3502 Only their difference has to be constant. When the iteration variable
3503 is an array address, the final value and initial value might both
3504 be addresses with the same base but different constant offsets.
3505 Final value must be invariant for this to work.
3506
3507 To do this, need some way to find the values of registers which are
3508 invariant. */
3509
3510 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3511 if (unsigned_compare)
3512 final_larger
3513 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3514 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3515 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3516 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3517 else
3518 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3519 - (INTVAL (final_value) < INTVAL (initial_value));
3520
3521 if (INTVAL (increment) > 0)
3522 increment_dir = 1;
3523 else if (INTVAL (increment) == 0)
3524 increment_dir = 0;
3525 else
3526 increment_dir = -1;
3527
3528 /* There are 27 different cases: compare_dir = -1, 0, 1;
3529 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3530 There are 4 normal cases, 4 reverse cases (where the iteration variable
3531 will overflow before the loop exits), 4 infinite loop cases, and 15
3532 immediate exit (0 or 1 iteration depending on loop type) cases.
3533 Only try to optimize the normal cases. */
3534
3535 /* (compare_dir/final_larger/increment_dir)
3536 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3537 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3538 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3539 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3540
3541 /* ?? If the meaning of reverse loops (where the iteration variable
3542 will overflow before the loop exits) is undefined, then could
3543 eliminate all of these special checks, and just always assume
3544 the loops are normal/immediate/infinite. Note that this means
3545 the sign of increment_dir does not have to be known. Also,
3546 since it does not really hurt if immediate exit loops or infinite loops
3547 are optimized, then that case could be ignored also, and hence all
3548 loops can be optimized.
3549
3550 According to ANSI Spec, the reverse loop case result is undefined,
3551 because the action on overflow is undefined.
3552
3553 See also the special test for NE loops below. */
3554
3555 if (final_larger == increment_dir && final_larger != 0
3556 && (final_larger == compare_dir || compare_dir == 0))
3557 /* Normal case. */
3558 ;
3559 else
3560 {
3561 if (loop_dump_stream)
3562 fprintf (loop_dump_stream,
3563 "Loop unrolling: Not normal loop.\n");
3564 return 0;
3565 }
3566
3567 /* Calculate the number of iterations, final_value is only an approximation,
3568 so correct for that. Note that tempu and loop_n_iterations are
3569 unsigned, because they can be as large as 2^n - 1. */
3570
3571 i = INTVAL (increment);
3572 if (i > 0)
3573 tempu = INTVAL (final_value) - INTVAL (initial_value);
3574 else if (i < 0)
3575 {
3576 tempu = INTVAL (initial_value) - INTVAL (final_value);
3577 i = -i;
3578 }
3579 else
3580 abort ();
3581
3582 /* For NE tests, make sure that the iteration variable won't miss the
3583 final value. If tempu mod i is not zero, then the iteration variable
3584 will overflow before the loop exits, and we can not calculate the
3585 number of iterations. */
3586 if (compare_dir == 0 && (tempu % i) != 0)
3587 return 0;
3588
3589 return tempu / i + ((tempu % i) != 0);
3590 }
3591
3592 /* Replace uses of split bivs with their split pseudo register. This is
3593 for original instructions which remain after loop unrolling without
3594 copying. */
3595
3596 static rtx
3597 remap_split_bivs (x)
3598 rtx x;
3599 {
3600 register enum rtx_code code;
3601 register int i;
3602 register char *fmt;
3603
3604 if (x == 0)
3605 return x;
3606
3607 code = GET_CODE (x);
3608 switch (code)
3609 {
3610 case SCRATCH:
3611 case PC:
3612 case CC0:
3613 case CONST_INT:
3614 case CONST_DOUBLE:
3615 case CONST:
3616 case SYMBOL_REF:
3617 case LABEL_REF:
3618 return x;
3619
3620 case REG:
3621 #if 0
3622 /* If non-reduced/final-value givs were split, then this would also
3623 have to remap those givs also. */
3624 #endif
3625 if (REGNO (x) < max_reg_before_loop
3626 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3627 return reg_biv_class[REGNO (x)]->biv->src_reg;
3628 break;
3629
3630 default:
3631 break;
3632 }
3633
3634 fmt = GET_RTX_FORMAT (code);
3635 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3636 {
3637 if (fmt[i] == 'e')
3638 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3639 if (fmt[i] == 'E')
3640 {
3641 register int j;
3642 for (j = 0; j < XVECLEN (x, i); j++)
3643 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3644 }
3645 }
3646 return x;
3647 }
3648
3649 /* If FIRST_UID is a set of REGNO, and FIRST_UID dominates LAST_UID (e.g.
3650 FIST_UID is always executed if LAST_UID is), then return 1. Otherwise
3651 return 0. COPY_START is where we can start looking for the insns
3652 FIRST_UID and LAST_UID. COPY_END is where we stop looking for these
3653 insns.
3654
3655 If there is no JUMP_INSN between LOOP_START and FIRST_UID, then FIRST_UID
3656 must dominate LAST_UID.
3657
3658 If there is a CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3659 may not dominate LAST_UID.
3660
3661 If there is no CODE_LABEL between FIRST_UID and LAST_UID, then FIRST_UID
3662 must dominate LAST_UID. */
3663
3664 int
3665 set_dominates_use (regno, first_uid, last_uid, copy_start, copy_end)
3666 int regno;
3667 int first_uid;
3668 int last_uid;
3669 rtx copy_start;
3670 rtx copy_end;
3671 {
3672 int passed_jump = 0;
3673 rtx p = NEXT_INSN (copy_start);
3674
3675 while (INSN_UID (p) != first_uid)
3676 {
3677 if (GET_CODE (p) == JUMP_INSN)
3678 passed_jump= 1;
3679 /* Could not find FIRST_UID. */
3680 if (p == copy_end)
3681 return 0;
3682 p = NEXT_INSN (p);
3683 }
3684
3685 /* Verify that FIRST_UID is an insn that entirely sets REGNO. */
3686 if (GET_RTX_CLASS (GET_CODE (p)) != 'i'
3687 || ! dead_or_set_regno_p (p, regno))
3688 return 0;
3689
3690 /* FIRST_UID is always executed. */
3691 if (passed_jump == 0)
3692 return 1;
3693
3694 while (INSN_UID (p) != last_uid)
3695 {
3696 /* If we see a CODE_LABEL between FIRST_UID and LAST_UID, then we
3697 can not be sure that FIRST_UID dominates LAST_UID. */
3698 if (GET_CODE (p) == CODE_LABEL)
3699 return 0;
3700 /* Could not find LAST_UID, but we reached the end of the loop, so
3701 it must be safe. */
3702 else if (p == copy_end)
3703 return 1;
3704 p = NEXT_INSN (p);
3705 }
3706
3707 /* FIRST_UID is always executed if LAST_UID is executed. */
3708 return 1;
3709 }