(loop_iterations): Only use REG_EQUAL note value if it
[gcc.git] / gcc / unroll.c
1 /* Try to unroll loops, and split induction variables.
2 Copyright (C) 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by James E. Wilson, Cygnus Support/UC Berkeley.
4
5 This file is part of GNU CC.
6
7 GNU CC is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2, or (at your option)
10 any later version.
11
12 GNU CC is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GNU CC; see the file COPYING. If not, write to
19 the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 /* Try to unroll a loop, and split induction variables.
22
23 Loops for which the number of iterations can be calculated exactly are
24 handled specially. If the number of iterations times the insn_count is
25 less than MAX_UNROLLED_INSNS, then the loop is unrolled completely.
26 Otherwise, we try to unroll the loop a number of times modulo the number
27 of iterations, so that only one exit test will be needed. It is unrolled
28 a number of times approximately equal to MAX_UNROLLED_INSNS divided by
29 the insn count.
30
31 Otherwise, if the number of iterations can be calculated exactly at
32 run time, and the loop is always entered at the top, then we try to
33 precondition the loop. That is, at run time, calculate how many times
34 the loop will execute, and then execute the loop body a few times so
35 that the remaining iterations will be some multiple of 4 (or 2 if the
36 loop is large). Then fall through to a loop unrolled 4 (or 2) times,
37 with only one exit test needed at the end of the loop.
38
39 Otherwise, if the number of iterations can not be calculated exactly,
40 not even at run time, then we still unroll the loop a number of times
41 approximately equal to MAX_UNROLLED_INSNS divided by the insn count,
42 but there must be an exit test after each copy of the loop body.
43
44 For each induction variable, which is dead outside the loop (replaceable)
45 or for which we can easily calculate the final value, if we can easily
46 calculate its value at each place where it is set as a function of the
47 current loop unroll count and the variable's value at loop entry, then
48 the induction variable is split into `N' different variables, one for
49 each copy of the loop body. One variable is live across the backward
50 branch, and the others are all calculated as a function of this variable.
51 This helps eliminate data dependencies, and leads to further opportunities
52 for cse. */
53
54 /* Possible improvements follow: */
55
56 /* ??? Add an extra pass somewhere to determine whether unrolling will
57 give any benefit. E.g. after generating all unrolled insns, compute the
58 cost of all insns and compare against cost of insns in rolled loop.
59
60 - On traditional architectures, unrolling a non-constant bound loop
61 is a win if there is a giv whose only use is in memory addresses, the
62 memory addresses can be split, and hence giv increments can be
63 eliminated.
64 - It is also a win if the loop is executed many times, and preconditioning
65 can be performed for the loop.
66 Add code to check for these and similar cases. */
67
68 /* ??? Improve control of which loops get unrolled. Could use profiling
69 info to only unroll the most commonly executed loops. Perhaps have
70 a user specifyable option to control the amount of code expansion,
71 or the percent of loops to consider for unrolling. Etc. */
72
73 /* ??? Look at the register copies inside the loop to see if they form a
74 simple permutation. If so, iterate the permutation until it gets back to
75 the start state. This is how many times we should unroll the loop, for
76 best results, because then all register copies can be eliminated.
77 For example, the lisp nreverse function should be unrolled 3 times
78 while (this)
79 {
80 next = this->cdr;
81 this->cdr = prev;
82 prev = this;
83 this = next;
84 }
85
86 ??? The number of times to unroll the loop may also be based on data
87 references in the loop. For example, if we have a loop that references
88 x[i-1], x[i], and x[i+1], we should unroll it a multiple of 3 times. */
89
90 /* ??? Add some simple linear equation solving capability so that we can
91 determine the number of loop iterations for more complex loops.
92 For example, consider this loop from gdb
93 #define SWAP_TARGET_AND_HOST(buffer,len)
94 {
95 char tmp;
96 char *p = (char *) buffer;
97 char *q = ((char *) buffer) + len - 1;
98 int iterations = (len + 1) >> 1;
99 int i;
100 for (p; p < q; p++, q--;)
101 {
102 tmp = *q;
103 *q = *p;
104 *p = tmp;
105 }
106 }
107 Note that:
108 start value = p = &buffer + current_iteration
109 end value = q = &buffer + len - 1 - current_iteration
110 Given the loop exit test of "p < q", then there must be "q - p" iterations,
111 set equal to zero and solve for number of iterations:
112 q - p = len - 1 - 2*current_iteration = 0
113 current_iteration = (len - 1) / 2
114 Hence, there are (len - 1) / 2 (rounded up to the nearest integer)
115 iterations of this loop. */
116
117 /* ??? Currently, no labels are marked as loop invariant when doing loop
118 unrolling. This is because an insn inside the loop, that loads the address
119 of a label inside the loop into a register, could be moved outside the loop
120 by the invariant code motion pass if labels were invariant. If the loop
121 is subsequently unrolled, the code will be wrong because each unrolled
122 body of the loop will use the same address, whereas each actually needs a
123 different address. A case where this happens is when a loop containing
124 a switch statement is unrolled.
125
126 It would be better to let labels be considered invariant. When we
127 unroll loops here, check to see if any insns using a label local to the
128 loop were moved before the loop. If so, then correct the problem, by
129 moving the insn back into the loop, or perhaps replicate the insn before
130 the loop, one copy for each time the loop is unrolled. */
131
132 /* The prime factors looked for when trying to unroll a loop by some
133 number which is modulo the total number of iterations. Just checking
134 for these 4 prime factors will find at least one factor for 75% of
135 all numbers theoretically. Practically speaking, this will succeed
136 almost all of the time since loops are generally a multiple of 2
137 and/or 5. */
138
139 #define NUM_FACTORS 4
140
141 struct _factor { int factor, count; } factors[NUM_FACTORS]
142 = { {2, 0}, {3, 0}, {5, 0}, {7, 0}};
143
144 /* Describes the different types of loop unrolling performed. */
145
146 enum unroll_types { UNROLL_COMPLETELY, UNROLL_MODULO, UNROLL_NAIVE };
147
148 #include "config.h"
149 #include "rtl.h"
150 #include "insn-config.h"
151 #include "integrate.h"
152 #include "regs.h"
153 #include "flags.h"
154 #include "expr.h"
155 #include <stdio.h>
156 #include "loop.h"
157
158 /* This controls which loops are unrolled, and by how much we unroll
159 them. */
160
161 #ifndef MAX_UNROLLED_INSNS
162 #define MAX_UNROLLED_INSNS 100
163 #endif
164
165 /* Indexed by register number, if non-zero, then it contains a pointer
166 to a struct induction for a DEST_REG giv which has been combined with
167 one of more address givs. This is needed because whenever such a DEST_REG
168 giv is modified, we must modify the value of all split address givs
169 that were combined with this DEST_REG giv. */
170
171 static struct induction **addr_combined_regs;
172
173 /* Indexed by register number, if this is a splittable induction variable,
174 then this will hold the current value of the register, which depends on the
175 iteration number. */
176
177 static rtx *splittable_regs;
178
179 /* Indexed by register number, if this is a splittable induction variable,
180 then this will hold the number of instructions in the loop that modify
181 the induction variable. Used to ensure that only the last insn modifying
182 a split iv will update the original iv of the dest. */
183
184 static int *splittable_regs_updates;
185
186 /* Values describing the current loop's iteration variable. These are set up
187 by loop_iterations, and used by precondition_loop_p. */
188
189 static rtx loop_iteration_var;
190 static rtx loop_initial_value;
191 static rtx loop_increment;
192 static rtx loop_final_value;
193
194 /* Forward declarations. */
195
196 static void init_reg_map ();
197 static int precondition_loop_p ();
198 static void copy_loop_body ();
199 static void iteration_info ();
200 static rtx approx_final_value ();
201 static int find_splittable_regs ();
202 static int find_splittable_givs ();
203 static rtx fold_rtx_mult_add ();
204 static rtx remap_split_bivs ();
205
206 /* Try to unroll one loop and split induction variables in the loop.
207
208 The loop is described by the arguments LOOP_END, INSN_COUNT, and
209 LOOP_START. END_INSERT_BEFORE indicates where insns should be added
210 which need to be executed when the loop falls through. STRENGTH_REDUCTION_P
211 indicates whether information generated in the strength reduction pass
212 is available.
213
214 This function is intended to be called from within `strength_reduce'
215 in loop.c. */
216
217 void
218 unroll_loop (loop_end, insn_count, loop_start, end_insert_before,
219 strength_reduce_p)
220 rtx loop_end;
221 int insn_count;
222 rtx loop_start;
223 rtx end_insert_before;
224 int strength_reduce_p;
225 {
226 int i, j, temp;
227 int unroll_number = 1;
228 rtx copy_start, copy_end;
229 rtx insn, copy, sequence, pattern, tem;
230 int max_labelno, max_insnno;
231 rtx insert_before;
232 struct inline_remap *map;
233 char *local_label;
234 int maxregnum;
235 int new_maxregnum;
236 rtx exit_label = 0;
237 rtx start_label;
238 struct iv_class *bl;
239 int splitting_not_safe = 0;
240 enum unroll_types unroll_type;
241 int loop_preconditioned = 0;
242 rtx safety_label;
243 /* This points to the last real insn in the loop, which should be either
244 a JUMP_INSN (for conditional jumps) or a BARRIER (for unconditional
245 jumps). */
246 rtx last_loop_insn;
247
248 /* Don't bother unrolling huge loops. Since the minimum factor is
249 two, loops greater than one half of MAX_UNROLLED_INSNS will never
250 be unrolled. */
251 if (insn_count > MAX_UNROLLED_INSNS / 2)
252 {
253 if (loop_dump_stream)
254 fprintf (loop_dump_stream, "Unrolling failure: Loop too big.\n");
255 return;
256 }
257
258 /* When emitting debugger info, we can't unroll loops with unequal numbers
259 of block_beg and block_end notes, because that would unbalance the block
260 structure of the function. This can happen as a result of the
261 "if (foo) bar; else break;" optimization in jump.c. */
262
263 if (write_symbols != NO_DEBUG)
264 {
265 int block_begins = 0;
266 int block_ends = 0;
267
268 for (insn = loop_start; insn != loop_end; insn = NEXT_INSN (insn))
269 {
270 if (GET_CODE (insn) == NOTE)
271 {
272 if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_BEG)
273 block_begins++;
274 else if (NOTE_LINE_NUMBER (insn) == NOTE_INSN_BLOCK_END)
275 block_ends++;
276 }
277 }
278
279 if (block_begins != block_ends)
280 {
281 if (loop_dump_stream)
282 fprintf (loop_dump_stream,
283 "Unrolling failure: Unbalanced block notes.\n");
284 return;
285 }
286 }
287
288 /* Determine type of unroll to perform. Depends on the number of iterations
289 and the size of the loop. */
290
291 /* If there is no strength reduce info, then set loop_n_iterations to zero.
292 This can happen if strength_reduce can't find any bivs in the loop.
293 A value of zero indicates that the number of iterations could not be
294 calculated. */
295
296 if (! strength_reduce_p)
297 loop_n_iterations = 0;
298
299 if (loop_dump_stream && loop_n_iterations > 0)
300 fprintf (loop_dump_stream,
301 "Loop unrolling: %d iterations.\n", loop_n_iterations);
302
303 /* Find and save a pointer to the last nonnote insn in the loop. */
304
305 last_loop_insn = prev_nonnote_insn (loop_end);
306
307 /* Calculate how many times to unroll the loop. Indicate whether or
308 not the loop is being completely unrolled. */
309
310 if (loop_n_iterations == 1)
311 {
312 /* If number of iterations is exactly 1, then eliminate the compare and
313 branch at the end of the loop since they will never be taken.
314 Then return, since no other action is needed here. */
315
316 /* If the last instruction is not a BARRIER or a JUMP_INSN, then
317 don't do anything. */
318
319 if (GET_CODE (last_loop_insn) == BARRIER)
320 {
321 /* Delete the jump insn. This will delete the barrier also. */
322 delete_insn (PREV_INSN (last_loop_insn));
323 }
324 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
325 {
326 #ifdef HAVE_cc0
327 /* The immediately preceding insn is a compare which must be
328 deleted. */
329 delete_insn (last_loop_insn);
330 delete_insn (PREV_INSN (last_loop_insn));
331 #else
332 /* The immediately preceding insn may not be the compare, so don't
333 delete it. */
334 delete_insn (last_loop_insn);
335 #endif
336 }
337 return;
338 }
339 else if (loop_n_iterations > 0
340 && loop_n_iterations * insn_count < MAX_UNROLLED_INSNS)
341 {
342 unroll_number = loop_n_iterations;
343 unroll_type = UNROLL_COMPLETELY;
344 }
345 else if (loop_n_iterations > 0)
346 {
347 /* Try to factor the number of iterations. Don't bother with the
348 general case, only using 2, 3, 5, and 7 will get 75% of all
349 numbers theoretically, and almost all in practice. */
350
351 for (i = 0; i < NUM_FACTORS; i++)
352 factors[i].count = 0;
353
354 temp = loop_n_iterations;
355 for (i = NUM_FACTORS - 1; i >= 0; i--)
356 while (temp % factors[i].factor == 0)
357 {
358 factors[i].count++;
359 temp = temp / factors[i].factor;
360 }
361
362 /* Start with the larger factors first so that we generally
363 get lots of unrolling. */
364
365 unroll_number = 1;
366 temp = insn_count;
367 for (i = 3; i >= 0; i--)
368 while (factors[i].count--)
369 {
370 if (temp * factors[i].factor < MAX_UNROLLED_INSNS)
371 {
372 unroll_number *= factors[i].factor;
373 temp *= factors[i].factor;
374 }
375 else
376 break;
377 }
378
379 /* If we couldn't find any factors, then unroll as in the normal
380 case. */
381 if (unroll_number == 1)
382 {
383 if (loop_dump_stream)
384 fprintf (loop_dump_stream,
385 "Loop unrolling: No factors found.\n");
386 }
387 else
388 unroll_type = UNROLL_MODULO;
389 }
390
391
392 /* Default case, calculate number of times to unroll loop based on its
393 size. */
394 if (unroll_number == 1)
395 {
396 if (8 * insn_count < MAX_UNROLLED_INSNS)
397 unroll_number = 8;
398 else if (4 * insn_count < MAX_UNROLLED_INSNS)
399 unroll_number = 4;
400 else
401 unroll_number = 2;
402
403 unroll_type = UNROLL_NAIVE;
404 }
405
406 /* Now we know how many times to unroll the loop. */
407
408 if (loop_dump_stream)
409 fprintf (loop_dump_stream,
410 "Unrolling loop %d times.\n", unroll_number);
411
412
413 if (unroll_type == UNROLL_COMPLETELY || unroll_type == UNROLL_MODULO)
414 {
415 /* Loops of these types should never start with a jump down to
416 the exit condition test. For now, check for this case just to
417 be sure. UNROLL_NAIVE loops can be of this form, this case is
418 handled below. */
419 insn = loop_start;
420 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
421 insn = NEXT_INSN (insn);
422 if (GET_CODE (insn) == JUMP_INSN)
423 abort ();
424 }
425
426 if (unroll_type == UNROLL_COMPLETELY)
427 {
428 /* Completely unrolling the loop: Delete the compare and branch at
429 the end (the last two instructions). This delete must done at the
430 very end of loop unrolling, to avoid problems with calls to
431 back_branch_in_range_p, which is called by find_splittable_regs.
432 All increments of splittable bivs/givs are changed to load constant
433 instructions. */
434
435 copy_start = loop_start;
436
437 /* Set insert_before to the instruction immediately after the JUMP_INSN
438 (or BARRIER), so that any NOTEs between the JUMP_INSN and the end of
439 the loop will be correctly handled by copy_loop_body. */
440 insert_before = NEXT_INSN (last_loop_insn);
441
442 /* Set copy_end to the insn before the jump at the end of the loop. */
443 if (GET_CODE (last_loop_insn) == BARRIER)
444 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
445 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
446 {
447 #ifdef HAVE_cc0
448 /* The instruction immediately before the JUMP_INSN is a compare
449 instruction which we do not want to copy. */
450 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
451 #else
452 /* The instruction immediately before the JUMP_INSN may not be the
453 compare, so we must copy it. */
454 copy_end = PREV_INSN (last_loop_insn);
455 #endif
456 }
457 else
458 {
459 /* We currently can't unroll a loop if it doesn't end with a
460 JUMP_INSN. There would need to be a mechanism that recognizes
461 this case, and then inserts a jump after each loop body, which
462 jumps to after the last loop body. */
463 if (loop_dump_stream)
464 fprintf (loop_dump_stream,
465 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
466 return;
467 }
468 }
469 else if (unroll_type == UNROLL_MODULO)
470 {
471 /* Partially unrolling the loop: The compare and branch at the end
472 (the last two instructions) must remain. Don't copy the compare
473 and branch instructions at the end of the loop. Insert the unrolled
474 code immediately before the compare/branch at the end so that the
475 code will fall through to them as before. */
476
477 copy_start = loop_start;
478
479 /* Set insert_before to the jump insn at the end of the loop.
480 Set copy_end to before the jump insn at the end of the loop. */
481 if (GET_CODE (last_loop_insn) == BARRIER)
482 {
483 insert_before = PREV_INSN (last_loop_insn);
484 copy_end = PREV_INSN (insert_before);
485 }
486 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
487 {
488 #ifdef HAVE_cc0
489 /* The instruction immediately before the JUMP_INSN is a compare
490 instruction which we do not want to copy or delete. */
491 insert_before = PREV_INSN (last_loop_insn);
492 copy_end = PREV_INSN (insert_before);
493 #else
494 /* The instruction immediately before the JUMP_INSN may not be the
495 compare, so we must copy it. */
496 insert_before = last_loop_insn;
497 copy_end = PREV_INSN (last_loop_insn);
498 #endif
499 }
500 else
501 {
502 /* We currently can't unroll a loop if it doesn't end with a
503 JUMP_INSN. There would need to be a mechanism that recognizes
504 this case, and then inserts a jump after each loop body, which
505 jumps to after the last loop body. */
506 if (loop_dump_stream)
507 fprintf (loop_dump_stream,
508 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
509 return;
510 }
511 }
512 else
513 {
514 /* Normal case: Must copy the compare and branch instructions at the
515 end of the loop. */
516
517 if (GET_CODE (last_loop_insn) == BARRIER)
518 {
519 /* Loop ends with an unconditional jump and a barrier.
520 Handle this like above, don't copy jump and barrier.
521 This is not strictly necessary, but doing so prevents generating
522 unconditional jumps to an immediately following label.
523
524 This will be corrected below if the target of this jump is
525 not the start_label. */
526
527 insert_before = PREV_INSN (last_loop_insn);
528 copy_end = PREV_INSN (insert_before);
529 }
530 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
531 {
532 /* Set insert_before to immediately after the JUMP_INSN, so that
533 NOTEs at the end of the loop will be correctly handled by
534 copy_loop_body. */
535 insert_before = NEXT_INSN (last_loop_insn);
536 copy_end = last_loop_insn;
537 }
538 else
539 {
540 /* We currently can't unroll a loop if it doesn't end with a
541 JUMP_INSN. There would need to be a mechanism that recognizes
542 this case, and then inserts a jump after each loop body, which
543 jumps to after the last loop body. */
544 if (loop_dump_stream)
545 fprintf (loop_dump_stream,
546 "Unrolling failure: loop does not end with a JUMP_INSN.\n");
547 return;
548 }
549
550 /* If copying exit test branches because they can not be eliminated,
551 then must convert the fall through case of the branch to a jump past
552 the end of the loop. Create a label to emit after the loop and save
553 it for later use. Do not use the label after the loop, if any, since
554 it might be used by insns outside the loop, or there might be insns
555 added before it later by final_[bg]iv_value which must be after
556 the real exit label. */
557 exit_label = gen_label_rtx ();
558
559 insn = loop_start;
560 while (GET_CODE (insn) != CODE_LABEL && GET_CODE (insn) != JUMP_INSN)
561 insn = NEXT_INSN (insn);
562
563 if (GET_CODE (insn) == JUMP_INSN)
564 {
565 /* The loop starts with a jump down to the exit condition test.
566 Start copying the loop after the barrier following this
567 jump insn. */
568 copy_start = NEXT_INSN (insn);
569
570 /* Splitting induction variables doesn't work when the loop is
571 entered via a jump to the bottom, because then we end up doing
572 a comparison against a new register for a split variable, but
573 we did not execute the set insn for the new register because
574 it was skipped over. */
575 splitting_not_safe = 1;
576 if (loop_dump_stream)
577 fprintf (loop_dump_stream,
578 "Splitting not safe, because loop not entered at top.\n");
579 }
580 else
581 copy_start = loop_start;
582 }
583
584 /* This should always be the first label in the loop. */
585 start_label = NEXT_INSN (copy_start);
586 /* There may be a line number note and/or a loop continue note here. */
587 while (GET_CODE (start_label) == NOTE)
588 start_label = NEXT_INSN (start_label);
589 if (GET_CODE (start_label) != CODE_LABEL)
590 {
591 /* This can happen as a result of jump threading. If the first insns in
592 the loop test the same condition as the loop's backward jump, or the
593 opposite condition, then the backward jump will be modified to point
594 to elsewhere, and the loop's start label is deleted.
595
596 This case currently can not be handled by the loop unrolling code. */
597
598 if (loop_dump_stream)
599 fprintf (loop_dump_stream,
600 "Unrolling failure: unknown insns between BEG note and loop label.\n");
601 return;
602 }
603 if (LABEL_NAME (start_label))
604 {
605 /* The jump optimization pass must have combined the original start label
606 with a named label for a goto. We can't unroll this case because
607 jumps which go to the named label must be handled differently than
608 jumps to the loop start, and it is impossible to differentiate them
609 in this case. */
610 if (loop_dump_stream)
611 fprintf (loop_dump_stream,
612 "Unrolling failure: loop start label is gone\n");
613 return;
614 }
615
616 if (unroll_type == UNROLL_NAIVE
617 && GET_CODE (last_loop_insn) == BARRIER
618 && start_label != JUMP_LABEL (PREV_INSN (last_loop_insn)))
619 {
620 /* In this case, we must copy the jump and barrier, because they will
621 not be converted to jumps to an immediately following label. */
622
623 insert_before = NEXT_INSN (last_loop_insn);
624 copy_end = last_loop_insn;
625 }
626
627 /* Allocate a translation table for the labels and insn numbers.
628 They will be filled in as we copy the insns in the loop. */
629
630 max_labelno = max_label_num ();
631 max_insnno = get_max_uid ();
632
633 map = (struct inline_remap *) alloca (sizeof (struct inline_remap));
634
635 map->integrating = 0;
636
637 /* Allocate the label map. */
638
639 if (max_labelno > 0)
640 {
641 map->label_map = (rtx *) alloca (max_labelno * sizeof (rtx));
642
643 local_label = (char *) alloca (max_labelno);
644 bzero (local_label, max_labelno);
645 }
646 else
647 map->label_map = 0;
648
649 /* Search the loop and mark all local labels, i.e. the ones which have to
650 be distinct labels when copied. For all labels which might be
651 non-local, set their label_map entries to point to themselves.
652 If they happen to be local their label_map entries will be overwritten
653 before the loop body is copied. The label_map entries for local labels
654 will be set to a different value each time the loop body is copied. */
655
656 for (insn = copy_start; insn != loop_end; insn = NEXT_INSN (insn))
657 {
658 if (GET_CODE (insn) == CODE_LABEL)
659 local_label[CODE_LABEL_NUMBER (insn)] = 1;
660 else if (GET_CODE (insn) == JUMP_INSN)
661 {
662 if (JUMP_LABEL (insn))
663 map->label_map[CODE_LABEL_NUMBER (JUMP_LABEL (insn))]
664 = JUMP_LABEL (insn);
665 else if (GET_CODE (PATTERN (insn)) == ADDR_VEC
666 || GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC)
667 {
668 rtx pat = PATTERN (insn);
669 int diff_vec_p = GET_CODE (PATTERN (insn)) == ADDR_DIFF_VEC;
670 int len = XVECLEN (pat, diff_vec_p);
671 rtx label;
672
673 for (i = 0; i < len; i++)
674 {
675 label = XEXP (XVECEXP (pat, diff_vec_p, i), 0);
676 map->label_map[CODE_LABEL_NUMBER (label)] = label;
677 }
678 }
679 }
680 }
681
682 /* Allocate space for the insn map. */
683
684 map->insn_map = (rtx *) alloca (max_insnno * sizeof (rtx));
685
686 /* Set this to zero, to indicate that we are doing loop unrolling,
687 not function inlining. */
688 map->inline_target = 0;
689
690 /* The register and constant maps depend on the number of registers
691 present, so the final maps can't be created until after
692 find_splittable_regs is called. However, they are needed for
693 preconditioning, so we create temporary maps when preconditioning
694 is performed. */
695
696 /* The preconditioning code may allocate two new pseudo registers. */
697 maxregnum = max_reg_num ();
698
699 /* Allocate and zero out the splittable_regs and addr_combined_regs
700 arrays. These must be zeroed here because they will be used if
701 loop preconditioning is performed, and must be zero for that case.
702
703 It is safe to do this here, since the extra registers created by the
704 preconditioning code and find_splittable_regs will never be used
705 to access the splittable_regs[] and addr_combined_regs[] arrays. */
706
707 splittable_regs = (rtx *) alloca (maxregnum * sizeof (rtx));
708 bzero ((char *) splittable_regs, maxregnum * sizeof (rtx));
709 splittable_regs_updates = (int *) alloca (maxregnum * sizeof (int));
710 bzero ((char *) splittable_regs_updates, maxregnum * sizeof (int));
711 addr_combined_regs
712 = (struct induction **) alloca (maxregnum * sizeof (struct induction *));
713 bzero ((char *) addr_combined_regs, maxregnum * sizeof (struct induction *));
714
715 /* If this loop requires exit tests when unrolled, check to see if we
716 can precondition the loop so as to make the exit tests unnecessary.
717 Just like variable splitting, this is not safe if the loop is entered
718 via a jump to the bottom. Also, can not do this if no strength
719 reduce info, because precondition_loop_p uses this info. */
720
721 /* Must copy the loop body for preconditioning before the following
722 find_splittable_regs call since that will emit insns which need to
723 be after the preconditioned loop copies, but immediately before the
724 unrolled loop copies. */
725
726 /* Also, it is not safe to split induction variables for the preconditioned
727 copies of the loop body. If we split induction variables, then the code
728 assumes that each induction variable can be represented as a function
729 of its initial value and the loop iteration number. This is not true
730 in this case, because the last preconditioned copy of the loop body
731 could be any iteration from the first up to the `unroll_number-1'th,
732 depending on the initial value of the iteration variable. Therefore
733 we can not split induction variables here, because we can not calculate
734 their value. Hence, this code must occur before find_splittable_regs
735 is called. */
736
737 if (unroll_type == UNROLL_NAIVE && ! splitting_not_safe && strength_reduce_p)
738 {
739 rtx initial_value, final_value, increment;
740
741 if (precondition_loop_p (&initial_value, &final_value, &increment,
742 loop_start, loop_end))
743 {
744 register rtx diff, temp;
745 enum machine_mode mode;
746 rtx *labels;
747 int abs_inc, neg_inc;
748
749 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
750
751 map->const_equiv_map = (rtx *) alloca (maxregnum * sizeof (rtx));
752 map->const_age_map = (unsigned *) alloca (maxregnum
753 * sizeof (unsigned));
754 map->const_equiv_map_size = maxregnum;
755 global_const_equiv_map = map->const_equiv_map;
756 global_const_equiv_map_size = maxregnum;
757
758 init_reg_map (map, maxregnum);
759
760 /* Limit loop unrolling to 4, since this will make 7 copies of
761 the loop body. */
762 if (unroll_number > 4)
763 unroll_number = 4;
764
765 /* Save the absolute value of the increment, and also whether or
766 not it is negative. */
767 neg_inc = 0;
768 abs_inc = INTVAL (increment);
769 if (abs_inc < 0)
770 {
771 abs_inc = - abs_inc;
772 neg_inc = 1;
773 }
774
775 start_sequence ();
776
777 /* Decide what mode to do these calculations in. Choose the larger
778 of final_value's mode and initial_value's mode, or a full-word if
779 both are constants. */
780 mode = GET_MODE (final_value);
781 if (mode == VOIDmode)
782 {
783 mode = GET_MODE (initial_value);
784 if (mode == VOIDmode)
785 mode = word_mode;
786 }
787 else if (mode != GET_MODE (initial_value)
788 && (GET_MODE_SIZE (mode)
789 < GET_MODE_SIZE (GET_MODE (initial_value))))
790 mode = GET_MODE (initial_value);
791
792 /* Calculate the difference between the final and initial values.
793 Final value may be a (plus (reg x) (const_int 1)) rtx.
794 Let the following cse pass simplify this if initial value is
795 a constant.
796
797 We must copy the final and initial values here to avoid
798 improperly shared rtl. */
799
800 diff = expand_binop (mode, sub_optab, copy_rtx (final_value),
801 copy_rtx (initial_value), NULL_RTX, 0,
802 OPTAB_LIB_WIDEN);
803
804 /* Now calculate (diff % (unroll * abs (increment))) by using an
805 and instruction. */
806 diff = expand_binop (GET_MODE (diff), and_optab, diff,
807 GEN_INT (unroll_number * abs_inc - 1),
808 NULL_RTX, 0, OPTAB_LIB_WIDEN);
809
810 /* Now emit a sequence of branches to jump to the proper precond
811 loop entry point. */
812
813 labels = (rtx *) alloca (sizeof (rtx) * unroll_number);
814 for (i = 0; i < unroll_number; i++)
815 labels[i] = gen_label_rtx ();
816
817 /* Assuming the unroll_number is 4, and the increment is 2, then
818 for a negative increment: for a positive increment:
819 diff = 0,1 precond 0 diff = 0,7 precond 0
820 diff = 2,3 precond 3 diff = 1,2 precond 1
821 diff = 4,5 precond 2 diff = 3,4 precond 2
822 diff = 6,7 precond 1 diff = 5,6 precond 3 */
823
824 /* We only need to emit (unroll_number - 1) branches here, the
825 last case just falls through to the following code. */
826
827 /* ??? This would give better code if we emitted a tree of branches
828 instead of the current linear list of branches. */
829
830 for (i = 0; i < unroll_number - 1; i++)
831 {
832 int cmp_const;
833
834 /* For negative increments, must invert the constant compared
835 against, except when comparing against zero. */
836 if (i == 0)
837 cmp_const = 0;
838 else if (neg_inc)
839 cmp_const = unroll_number - i;
840 else
841 cmp_const = i;
842
843 emit_cmp_insn (diff, GEN_INT (abs_inc * cmp_const),
844 EQ, NULL_RTX, mode, 0, 0);
845
846 if (i == 0)
847 emit_jump_insn (gen_beq (labels[i]));
848 else if (neg_inc)
849 emit_jump_insn (gen_bge (labels[i]));
850 else
851 emit_jump_insn (gen_ble (labels[i]));
852 JUMP_LABEL (get_last_insn ()) = labels[i];
853 LABEL_NUSES (labels[i])++;
854 }
855
856 /* If the increment is greater than one, then we need another branch,
857 to handle other cases equivalent to 0. */
858
859 /* ??? This should be merged into the code above somehow to help
860 simplify the code here, and reduce the number of branches emitted.
861 For the negative increment case, the branch here could easily
862 be merged with the `0' case branch above. For the positive
863 increment case, it is not clear how this can be simplified. */
864
865 if (abs_inc != 1)
866 {
867 int cmp_const;
868
869 if (neg_inc)
870 cmp_const = abs_inc - 1;
871 else
872 cmp_const = abs_inc * (unroll_number - 1) + 1;
873
874 emit_cmp_insn (diff, GEN_INT (cmp_const), EQ, NULL_RTX,
875 mode, 0, 0);
876
877 if (neg_inc)
878 emit_jump_insn (gen_ble (labels[0]));
879 else
880 emit_jump_insn (gen_bge (labels[0]));
881 JUMP_LABEL (get_last_insn ()) = labels[0];
882 LABEL_NUSES (labels[0])++;
883 }
884
885 sequence = gen_sequence ();
886 end_sequence ();
887 emit_insn_before (sequence, loop_start);
888
889 /* Only the last copy of the loop body here needs the exit
890 test, so set copy_end to exclude the compare/branch here,
891 and then reset it inside the loop when get to the last
892 copy. */
893
894 if (GET_CODE (last_loop_insn) == BARRIER)
895 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
896 else if (GET_CODE (last_loop_insn) == JUMP_INSN)
897 {
898 #ifdef HAVE_cc0
899 /* The immediately preceding insn is a compare which we do not
900 want to copy. */
901 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
902 #else
903 /* The immediately preceding insn may not be a compare, so we
904 must copy it. */
905 copy_end = PREV_INSN (last_loop_insn);
906 #endif
907 }
908 else
909 abort ();
910
911 for (i = 1; i < unroll_number; i++)
912 {
913 emit_label_after (labels[unroll_number - i],
914 PREV_INSN (loop_start));
915
916 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
917 bzero ((char *) map->const_equiv_map, maxregnum * sizeof (rtx));
918 bzero ((char *) map->const_age_map,
919 maxregnum * sizeof (unsigned));
920 map->const_age = 0;
921
922 for (j = 0; j < max_labelno; j++)
923 if (local_label[j])
924 map->label_map[j] = gen_label_rtx ();
925
926 /* The last copy needs the compare/branch insns at the end,
927 so reset copy_end here if the loop ends with a conditional
928 branch. */
929
930 if (i == unroll_number - 1)
931 {
932 if (GET_CODE (last_loop_insn) == BARRIER)
933 copy_end = PREV_INSN (PREV_INSN (last_loop_insn));
934 else
935 copy_end = last_loop_insn;
936 }
937
938 /* None of the copies are the `last_iteration', so just
939 pass zero for that parameter. */
940 copy_loop_body (copy_start, copy_end, map, exit_label, 0,
941 unroll_type, start_label, loop_end,
942 loop_start, copy_end);
943 }
944 emit_label_after (labels[0], PREV_INSN (loop_start));
945
946 if (GET_CODE (last_loop_insn) == BARRIER)
947 {
948 insert_before = PREV_INSN (last_loop_insn);
949 copy_end = PREV_INSN (insert_before);
950 }
951 else
952 {
953 #ifdef HAVE_cc0
954 /* The immediately preceding insn is a compare which we do not
955 want to copy. */
956 insert_before = PREV_INSN (last_loop_insn);
957 copy_end = PREV_INSN (insert_before);
958 #else
959 /* The immediately preceding insn may not be a compare, so we
960 must copy it. */
961 insert_before = last_loop_insn;
962 copy_end = PREV_INSN (last_loop_insn);
963 #endif
964 }
965
966 /* Set unroll type to MODULO now. */
967 unroll_type = UNROLL_MODULO;
968 loop_preconditioned = 1;
969 }
970 }
971
972 /* If reach here, and the loop type is UNROLL_NAIVE, then don't unroll
973 the loop unless all loops are being unrolled. */
974 if (unroll_type == UNROLL_NAIVE && ! flag_unroll_all_loops)
975 {
976 if (loop_dump_stream)
977 fprintf (loop_dump_stream, "Unrolling failure: Naive unrolling not being done.\n");
978 return;
979 }
980
981 /* At this point, we are guaranteed to unroll the loop. */
982
983 /* For each biv and giv, determine whether it can be safely split into
984 a different variable for each unrolled copy of the loop body.
985 We precalculate and save this info here, since computing it is
986 expensive.
987
988 Do this before deleting any instructions from the loop, so that
989 back_branch_in_range_p will work correctly. */
990
991 if (splitting_not_safe)
992 temp = 0;
993 else
994 temp = find_splittable_regs (unroll_type, loop_start, loop_end,
995 end_insert_before, unroll_number);
996
997 /* find_splittable_regs may have created some new registers, so must
998 reallocate the reg_map with the new larger size, and must realloc
999 the constant maps also. */
1000
1001 maxregnum = max_reg_num ();
1002 map->reg_map = (rtx *) alloca (maxregnum * sizeof (rtx));
1003
1004 init_reg_map (map, maxregnum);
1005
1006 /* Space is needed in some of the map for new registers, so new_maxregnum
1007 is an (over)estimate of how many registers will exist at the end. */
1008 new_maxregnum = maxregnum + (temp * unroll_number * 2);
1009
1010 /* Must realloc space for the constant maps, because the number of registers
1011 may have changed. */
1012
1013 map->const_equiv_map = (rtx *) alloca (new_maxregnum * sizeof (rtx));
1014 map->const_age_map = (unsigned *) alloca (new_maxregnum * sizeof (unsigned));
1015
1016 map->const_equiv_map_size = new_maxregnum;
1017 global_const_equiv_map = map->const_equiv_map;
1018 global_const_equiv_map_size = new_maxregnum;
1019
1020 /* Search the list of bivs and givs to find ones which need to be remapped
1021 when split, and set their reg_map entry appropriately. */
1022
1023 for (bl = loop_iv_list; bl; bl = bl->next)
1024 {
1025 if (REGNO (bl->biv->src_reg) != bl->regno)
1026 map->reg_map[bl->regno] = bl->biv->src_reg;
1027 #if 0
1028 /* Currently, non-reduced/final-value givs are never split. */
1029 for (v = bl->giv; v; v = v->next_iv)
1030 if (REGNO (v->src_reg) != bl->regno)
1031 map->reg_map[REGNO (v->dest_reg)] = v->src_reg;
1032 #endif
1033 }
1034
1035 /* If the loop is being partially unrolled, and the iteration variables
1036 are being split, and are being renamed for the split, then must fix up
1037 the compare/jump instruction at the end of the loop to refer to the new
1038 registers. This compare isn't copied, so the registers used in it
1039 will never be replaced if it isn't done here. */
1040
1041 if (unroll_type == UNROLL_MODULO)
1042 {
1043 insn = NEXT_INSN (copy_end);
1044 if (GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN)
1045 PATTERN (insn) = remap_split_bivs (PATTERN (insn));
1046 }
1047
1048 /* For unroll_number - 1 times, make a copy of each instruction
1049 between copy_start and copy_end, and insert these new instructions
1050 before the end of the loop. */
1051
1052 for (i = 0; i < unroll_number; i++)
1053 {
1054 bzero ((char *) map->insn_map, max_insnno * sizeof (rtx));
1055 bzero ((char *) map->const_equiv_map, new_maxregnum * sizeof (rtx));
1056 bzero ((char *) map->const_age_map, new_maxregnum * sizeof (unsigned));
1057 map->const_age = 0;
1058
1059 for (j = 0; j < max_labelno; j++)
1060 if (local_label[j])
1061 map->label_map[j] = gen_label_rtx ();
1062
1063 /* If loop starts with a branch to the test, then fix it so that
1064 it points to the test of the first unrolled copy of the loop. */
1065 if (i == 0 && loop_start != copy_start)
1066 {
1067 insn = PREV_INSN (copy_start);
1068 pattern = PATTERN (insn);
1069
1070 tem = map->label_map[CODE_LABEL_NUMBER
1071 (XEXP (SET_SRC (pattern), 0))];
1072 SET_SRC (pattern) = gen_rtx (LABEL_REF, VOIDmode, tem);
1073
1074 /* Set the jump label so that it can be used by later loop unrolling
1075 passes. */
1076 JUMP_LABEL (insn) = tem;
1077 LABEL_NUSES (tem)++;
1078 }
1079
1080 copy_loop_body (copy_start, copy_end, map, exit_label,
1081 i == unroll_number - 1, unroll_type, start_label,
1082 loop_end, insert_before, insert_before);
1083 }
1084
1085 /* Before deleting any insns, emit a CODE_LABEL immediately after the last
1086 insn to be deleted. This prevents any runaway delete_insn call from
1087 more insns that it should, as it always stops at a CODE_LABEL. */
1088
1089 /* Delete the compare and branch at the end of the loop if completely
1090 unrolling the loop. Deleting the backward branch at the end also
1091 deletes the code label at the start of the loop. This is done at
1092 the very end to avoid problems with back_branch_in_range_p. */
1093
1094 if (unroll_type == UNROLL_COMPLETELY)
1095 safety_label = emit_label_after (gen_label_rtx (), last_loop_insn);
1096 else
1097 safety_label = emit_label_after (gen_label_rtx (), copy_end);
1098
1099 /* Delete all of the original loop instructions. Don't delete the
1100 LOOP_BEG note, or the first code label in the loop. */
1101
1102 insn = NEXT_INSN (copy_start);
1103 while (insn != safety_label)
1104 {
1105 if (insn != start_label)
1106 insn = delete_insn (insn);
1107 else
1108 insn = NEXT_INSN (insn);
1109 }
1110
1111 /* Can now delete the 'safety' label emitted to protect us from runaway
1112 delete_insn calls. */
1113 if (INSN_DELETED_P (safety_label))
1114 abort ();
1115 delete_insn (safety_label);
1116
1117 /* If exit_label exists, emit it after the loop. Doing the emit here
1118 forces it to have a higher INSN_UID than any insn in the unrolled loop.
1119 This is needed so that mostly_true_jump in reorg.c will treat jumps
1120 to this loop end label correctly, i.e. predict that they are usually
1121 not taken. */
1122 if (exit_label)
1123 emit_label_after (exit_label, loop_end);
1124 }
1125 \f
1126 /* Return true if the loop can be safely, and profitably, preconditioned
1127 so that the unrolled copies of the loop body don't need exit tests.
1128
1129 This only works if final_value, initial_value and increment can be
1130 determined, and if increment is a constant power of 2.
1131 If increment is not a power of 2, then the preconditioning modulo
1132 operation would require a real modulo instead of a boolean AND, and this
1133 is not considered `profitable'. */
1134
1135 /* ??? If the loop is known to be executed very many times, or the machine
1136 has a very cheap divide instruction, then preconditioning is a win even
1137 when the increment is not a power of 2. Use RTX_COST to compute
1138 whether divide is cheap. */
1139
1140 static int
1141 precondition_loop_p (initial_value, final_value, increment, loop_start,
1142 loop_end)
1143 rtx *initial_value, *final_value, *increment;
1144 rtx loop_start, loop_end;
1145 {
1146
1147 if (loop_n_iterations > 0)
1148 {
1149 *initial_value = const0_rtx;
1150 *increment = const1_rtx;
1151 *final_value = GEN_INT (loop_n_iterations);
1152
1153 if (loop_dump_stream)
1154 fprintf (loop_dump_stream,
1155 "Preconditioning: Success, number of iterations known, %d.\n",
1156 loop_n_iterations);
1157 return 1;
1158 }
1159
1160 if (loop_initial_value == 0)
1161 {
1162 if (loop_dump_stream)
1163 fprintf (loop_dump_stream,
1164 "Preconditioning: Could not find initial value.\n");
1165 return 0;
1166 }
1167 else if (loop_increment == 0)
1168 {
1169 if (loop_dump_stream)
1170 fprintf (loop_dump_stream,
1171 "Preconditioning: Could not find increment value.\n");
1172 return 0;
1173 }
1174 else if (GET_CODE (loop_increment) != CONST_INT)
1175 {
1176 if (loop_dump_stream)
1177 fprintf (loop_dump_stream,
1178 "Preconditioning: Increment not a constant.\n");
1179 return 0;
1180 }
1181 else if ((exact_log2 (INTVAL (loop_increment)) < 0)
1182 && (exact_log2 (- INTVAL (loop_increment)) < 0))
1183 {
1184 if (loop_dump_stream)
1185 fprintf (loop_dump_stream,
1186 "Preconditioning: Increment not a constant power of 2.\n");
1187 return 0;
1188 }
1189
1190 /* Unsigned_compare and compare_dir can be ignored here, since they do
1191 not matter for preconditioning. */
1192
1193 if (loop_final_value == 0)
1194 {
1195 if (loop_dump_stream)
1196 fprintf (loop_dump_stream,
1197 "Preconditioning: EQ comparison loop.\n");
1198 return 0;
1199 }
1200
1201 /* Must ensure that final_value is invariant, so call invariant_p to
1202 check. Before doing so, must check regno against max_reg_before_loop
1203 to make sure that the register is in the range covered by invariant_p.
1204 If it isn't, then it is most likely a biv/giv which by definition are
1205 not invariant. */
1206 if ((GET_CODE (loop_final_value) == REG
1207 && REGNO (loop_final_value) >= max_reg_before_loop)
1208 || (GET_CODE (loop_final_value) == PLUS
1209 && REGNO (XEXP (loop_final_value, 0)) >= max_reg_before_loop)
1210 || ! invariant_p (loop_final_value))
1211 {
1212 if (loop_dump_stream)
1213 fprintf (loop_dump_stream,
1214 "Preconditioning: Final value not invariant.\n");
1215 return 0;
1216 }
1217
1218 /* Fail for floating point values, since the caller of this function
1219 does not have code to deal with them. */
1220 if (GET_MODE_CLASS (GET_MODE (loop_final_value)) == MODE_FLOAT
1221 || GET_MODE_CLASS (GET_MODE (loop_initial_value)) == MODE_FLOAT)
1222 {
1223 if (loop_dump_stream)
1224 fprintf (loop_dump_stream,
1225 "Preconditioning: Floating point final or initial value.\n");
1226 return 0;
1227 }
1228
1229 /* Now set initial_value to be the iteration_var, since that may be a
1230 simpler expression, and is guaranteed to be correct if all of the
1231 above tests succeed.
1232
1233 We can not use the initial_value as calculated, because it will be
1234 one too small for loops of the form "while (i-- > 0)". We can not
1235 emit code before the loop_skip_over insns to fix this problem as this
1236 will then give a number one too large for loops of the form
1237 "while (--i > 0)".
1238
1239 Note that all loops that reach here are entered at the top, because
1240 this function is not called if the loop starts with a jump. */
1241
1242 /* Fail if loop_iteration_var is not live before loop_start, since we need
1243 to test its value in the preconditioning code. */
1244
1245 if (uid_luid[regno_first_uid[REGNO (loop_iteration_var)]]
1246 > INSN_LUID (loop_start))
1247 {
1248 if (loop_dump_stream)
1249 fprintf (loop_dump_stream,
1250 "Preconditioning: Iteration var not live before loop start.\n");
1251 return 0;
1252 }
1253
1254 *initial_value = loop_iteration_var;
1255 *increment = loop_increment;
1256 *final_value = loop_final_value;
1257
1258 /* Success! */
1259 if (loop_dump_stream)
1260 fprintf (loop_dump_stream, "Preconditioning: Successful.\n");
1261 return 1;
1262 }
1263
1264
1265 /* All pseudo-registers must be mapped to themselves. Two hard registers
1266 must be mapped, VIRTUAL_STACK_VARS_REGNUM and VIRTUAL_INCOMING_ARGS_
1267 REGNUM, to avoid function-inlining specific conversions of these
1268 registers. All other hard regs can not be mapped because they may be
1269 used with different
1270 modes. */
1271
1272 static void
1273 init_reg_map (map, maxregnum)
1274 struct inline_remap *map;
1275 int maxregnum;
1276 {
1277 int i;
1278
1279 for (i = maxregnum - 1; i > LAST_VIRTUAL_REGISTER; i--)
1280 map->reg_map[i] = regno_reg_rtx[i];
1281 /* Just clear the rest of the entries. */
1282 for (i = LAST_VIRTUAL_REGISTER; i >= 0; i--)
1283 map->reg_map[i] = 0;
1284
1285 map->reg_map[VIRTUAL_STACK_VARS_REGNUM]
1286 = regno_reg_rtx[VIRTUAL_STACK_VARS_REGNUM];
1287 map->reg_map[VIRTUAL_INCOMING_ARGS_REGNUM]
1288 = regno_reg_rtx[VIRTUAL_INCOMING_ARGS_REGNUM];
1289 }
1290 \f
1291 /* Strength-reduction will often emit code for optimized biv/givs which
1292 calculates their value in a temporary register, and then copies the result
1293 to the iv. This procedure reconstructs the pattern computing the iv;
1294 verifying that all operands are of the proper form.
1295
1296 The return value is the amount that the giv is incremented by. */
1297
1298 static rtx
1299 calculate_giv_inc (pattern, src_insn, regno)
1300 rtx pattern, src_insn;
1301 int regno;
1302 {
1303 rtx increment;
1304 rtx increment_total = 0;
1305 int tries = 0;
1306
1307 retry:
1308 /* Verify that we have an increment insn here. First check for a plus
1309 as the set source. */
1310 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1311 {
1312 /* SR sometimes computes the new giv value in a temp, then copies it
1313 to the new_reg. */
1314 src_insn = PREV_INSN (src_insn);
1315 pattern = PATTERN (src_insn);
1316 if (GET_CODE (SET_SRC (pattern)) != PLUS)
1317 abort ();
1318
1319 /* The last insn emitted is not needed, so delete it to avoid confusing
1320 the second cse pass. This insn sets the giv unnecessarily. */
1321 delete_insn (get_last_insn ());
1322 }
1323
1324 /* Verify that we have a constant as the second operand of the plus. */
1325 increment = XEXP (SET_SRC (pattern), 1);
1326 if (GET_CODE (increment) != CONST_INT)
1327 {
1328 /* SR sometimes puts the constant in a register, especially if it is
1329 too big to be an add immed operand. */
1330 src_insn = PREV_INSN (src_insn);
1331 increment = SET_SRC (PATTERN (src_insn));
1332
1333 /* SR may have used LO_SUM to compute the constant if it is too large
1334 for a load immed operand. In this case, the constant is in operand
1335 one of the LO_SUM rtx. */
1336 if (GET_CODE (increment) == LO_SUM)
1337 increment = XEXP (increment, 1);
1338
1339 if (GET_CODE (increment) != CONST_INT)
1340 abort ();
1341
1342 /* The insn loading the constant into a register is not longer needed,
1343 so delete it. */
1344 delete_insn (get_last_insn ());
1345 }
1346
1347 if (increment_total)
1348 increment_total = GEN_INT (INTVAL (increment_total) + INTVAL (increment));
1349 else
1350 increment_total = increment;
1351
1352 /* Check that the source register is the same as the register we expected
1353 to see as the source. If not, something is seriously wrong. */
1354 if (GET_CODE (XEXP (SET_SRC (pattern), 0)) != REG
1355 || REGNO (XEXP (SET_SRC (pattern), 0)) != regno)
1356 {
1357 /* Some machines (e.g. the romp), may emit two add instructions for
1358 certain constants, so lets try looking for another add immediately
1359 before this one if we have only seen one add insn so far. */
1360
1361 if (tries == 0)
1362 {
1363 tries++;
1364
1365 src_insn = PREV_INSN (src_insn);
1366 pattern = PATTERN (src_insn);
1367
1368 delete_insn (get_last_insn ());
1369
1370 goto retry;
1371 }
1372
1373 abort ();
1374 }
1375
1376 return increment_total;
1377 }
1378
1379 /* Copy REG_NOTES, except for insn references, because not all insn_map
1380 entries are valid yet. We do need to copy registers now though, because
1381 the reg_map entries can change during copying. */
1382
1383 static rtx
1384 initial_reg_note_copy (notes, map)
1385 rtx notes;
1386 struct inline_remap *map;
1387 {
1388 rtx copy;
1389
1390 if (notes == 0)
1391 return 0;
1392
1393 copy = rtx_alloc (GET_CODE (notes));
1394 PUT_MODE (copy, GET_MODE (notes));
1395
1396 if (GET_CODE (notes) == EXPR_LIST)
1397 XEXP (copy, 0) = copy_rtx_and_substitute (XEXP (notes, 0), map);
1398 else if (GET_CODE (notes) == INSN_LIST)
1399 /* Don't substitute for these yet. */
1400 XEXP (copy, 0) = XEXP (notes, 0);
1401 else
1402 abort ();
1403
1404 XEXP (copy, 1) = initial_reg_note_copy (XEXP (notes, 1), map);
1405
1406 return copy;
1407 }
1408
1409 /* Fixup insn references in copied REG_NOTES. */
1410
1411 static void
1412 final_reg_note_copy (notes, map)
1413 rtx notes;
1414 struct inline_remap *map;
1415 {
1416 rtx note;
1417
1418 for (note = notes; note; note = XEXP (note, 1))
1419 if (GET_CODE (note) == INSN_LIST)
1420 XEXP (note, 0) = map->insn_map[INSN_UID (XEXP (note, 0))];
1421 }
1422
1423 /* Copy each instruction in the loop, substituting from map as appropriate.
1424 This is very similar to a loop in expand_inline_function. */
1425
1426 static void
1427 copy_loop_body (copy_start, copy_end, map, exit_label, last_iteration,
1428 unroll_type, start_label, loop_end, insert_before,
1429 copy_notes_from)
1430 rtx copy_start, copy_end;
1431 struct inline_remap *map;
1432 rtx exit_label;
1433 int last_iteration;
1434 enum unroll_types unroll_type;
1435 rtx start_label, loop_end, insert_before, copy_notes_from;
1436 {
1437 rtx insn, pattern;
1438 rtx tem, copy;
1439 int dest_reg_was_split, i;
1440 rtx cc0_insn = 0;
1441 rtx final_label = 0;
1442 rtx giv_inc, giv_dest_reg, giv_src_reg;
1443
1444 /* If this isn't the last iteration, then map any references to the
1445 start_label to final_label. Final label will then be emitted immediately
1446 after the end of this loop body if it was ever used.
1447
1448 If this is the last iteration, then map references to the start_label
1449 to itself. */
1450 if (! last_iteration)
1451 {
1452 final_label = gen_label_rtx ();
1453 map->label_map[CODE_LABEL_NUMBER (start_label)] = final_label;
1454 }
1455 else
1456 map->label_map[CODE_LABEL_NUMBER (start_label)] = start_label;
1457
1458 start_sequence ();
1459
1460 insn = copy_start;
1461 do
1462 {
1463 insn = NEXT_INSN (insn);
1464
1465 map->orig_asm_operands_vector = 0;
1466
1467 switch (GET_CODE (insn))
1468 {
1469 case INSN:
1470 pattern = PATTERN (insn);
1471 copy = 0;
1472 giv_inc = 0;
1473
1474 /* Check to see if this is a giv that has been combined with
1475 some split address givs. (Combined in the sense that
1476 `combine_givs' in loop.c has put two givs in the same register.)
1477 In this case, we must search all givs based on the same biv to
1478 find the address givs. Then split the address givs.
1479 Do this before splitting the giv, since that may map the
1480 SET_DEST to a new register. */
1481
1482 if (GET_CODE (pattern) == SET
1483 && GET_CODE (SET_DEST (pattern)) == REG
1484 && addr_combined_regs[REGNO (SET_DEST (pattern))])
1485 {
1486 struct iv_class *bl;
1487 struct induction *v, *tv;
1488 int regno = REGNO (SET_DEST (pattern));
1489
1490 v = addr_combined_regs[REGNO (SET_DEST (pattern))];
1491 bl = reg_biv_class[REGNO (v->src_reg)];
1492
1493 /* Although the giv_inc amount is not needed here, we must call
1494 calculate_giv_inc here since it might try to delete the
1495 last insn emitted. If we wait until later to call it,
1496 we might accidentally delete insns generated immediately
1497 below by emit_unrolled_add. */
1498
1499 giv_inc = calculate_giv_inc (pattern, insn, regno);
1500
1501 /* Now find all address giv's that were combined with this
1502 giv 'v'. */
1503 for (tv = bl->giv; tv; tv = tv->next_iv)
1504 if (tv->giv_type == DEST_ADDR && tv->same == v)
1505 {
1506 int this_giv_inc = INTVAL (giv_inc);
1507
1508 /* Scale this_giv_inc if the multiplicative factors of
1509 the two givs are different. */
1510 if (tv->mult_val != v->mult_val)
1511 this_giv_inc = (this_giv_inc / INTVAL (v->mult_val)
1512 * INTVAL (tv->mult_val));
1513
1514 tv->dest_reg = plus_constant (tv->dest_reg, this_giv_inc);
1515 *tv->location = tv->dest_reg;
1516
1517 if (last_iteration && unroll_type != UNROLL_COMPLETELY)
1518 {
1519 /* Must emit an insn to increment the split address
1520 giv. Add in the const_adjust field in case there
1521 was a constant eliminated from the address. */
1522 rtx value, dest_reg;
1523
1524 /* tv->dest_reg will be either a bare register,
1525 or else a register plus a constant. */
1526 if (GET_CODE (tv->dest_reg) == REG)
1527 dest_reg = tv->dest_reg;
1528 else
1529 dest_reg = XEXP (tv->dest_reg, 0);
1530
1531 /* Check for shared address givs, and avoid
1532 incrementing the shared psuedo reg more than
1533 once. */
1534 if (! (tv != v && tv->insn == v->insn
1535 && tv->new_reg == v->new_reg))
1536 {
1537 /* tv->dest_reg may actually be a (PLUS (REG)
1538 (CONST)) here, so we must call plus_constant
1539 to add the const_adjust amount before calling
1540 emit_unrolled_add below. */
1541 value = plus_constant (tv->dest_reg,
1542 tv->const_adjust);
1543
1544 /* The constant could be too large for an add
1545 immediate, so can't directly emit an insn
1546 here. */
1547 emit_unrolled_add (dest_reg, XEXP (value, 0),
1548 XEXP (value, 1));
1549 }
1550
1551 /* Reset the giv to be just the register again, in case
1552 it is used after the set we have just emitted.
1553 We must subtract the const_adjust factor added in
1554 above. */
1555 tv->dest_reg = plus_constant (dest_reg,
1556 - tv->const_adjust);
1557 *tv->location = tv->dest_reg;
1558 }
1559 }
1560 }
1561
1562 /* If this is a setting of a splittable variable, then determine
1563 how to split the variable, create a new set based on this split,
1564 and set up the reg_map so that later uses of the variable will
1565 use the new split variable. */
1566
1567 dest_reg_was_split = 0;
1568
1569 if (GET_CODE (pattern) == SET
1570 && GET_CODE (SET_DEST (pattern)) == REG
1571 && splittable_regs[REGNO (SET_DEST (pattern))])
1572 {
1573 int regno = REGNO (SET_DEST (pattern));
1574
1575 dest_reg_was_split = 1;
1576
1577 /* Compute the increment value for the giv, if it wasn't
1578 already computed above. */
1579
1580 if (giv_inc == 0)
1581 giv_inc = calculate_giv_inc (pattern, insn, regno);
1582 giv_dest_reg = SET_DEST (pattern);
1583 giv_src_reg = SET_DEST (pattern);
1584
1585 if (unroll_type == UNROLL_COMPLETELY)
1586 {
1587 /* Completely unrolling the loop. Set the induction
1588 variable to a known constant value. */
1589
1590 /* The value in splittable_regs may be an invariant
1591 value, so we must use plus_constant here. */
1592 splittable_regs[regno]
1593 = plus_constant (splittable_regs[regno], INTVAL (giv_inc));
1594
1595 if (GET_CODE (splittable_regs[regno]) == PLUS)
1596 {
1597 giv_src_reg = XEXP (splittable_regs[regno], 0);
1598 giv_inc = XEXP (splittable_regs[regno], 1);
1599 }
1600 else
1601 {
1602 /* The splittable_regs value must be a REG or a
1603 CONST_INT, so put the entire value in the giv_src_reg
1604 variable. */
1605 giv_src_reg = splittable_regs[regno];
1606 giv_inc = const0_rtx;
1607 }
1608 }
1609 else
1610 {
1611 /* Partially unrolling loop. Create a new pseudo
1612 register for the iteration variable, and set it to
1613 be a constant plus the original register. Except
1614 on the last iteration, when the result has to
1615 go back into the original iteration var register. */
1616
1617 /* Handle bivs which must be mapped to a new register
1618 when split. This happens for bivs which need their
1619 final value set before loop entry. The new register
1620 for the biv was stored in the biv's first struct
1621 induction entry by find_splittable_regs. */
1622
1623 if (regno < max_reg_before_loop
1624 && reg_iv_type[regno] == BASIC_INDUCT)
1625 {
1626 giv_src_reg = reg_biv_class[regno]->biv->src_reg;
1627 giv_dest_reg = giv_src_reg;
1628 }
1629
1630 #if 0
1631 /* If non-reduced/final-value givs were split, then
1632 this would have to remap those givs also. See
1633 find_splittable_regs. */
1634 #endif
1635
1636 splittable_regs[regno]
1637 = GEN_INT (INTVAL (giv_inc)
1638 + INTVAL (splittable_regs[regno]));
1639 giv_inc = splittable_regs[regno];
1640
1641 /* Now split the induction variable by changing the dest
1642 of this insn to a new register, and setting its
1643 reg_map entry to point to this new register.
1644
1645 If this is the last iteration, and this is the last insn
1646 that will update the iv, then reuse the original dest,
1647 to ensure that the iv will have the proper value when
1648 the loop exits or repeats.
1649
1650 Using splittable_regs_updates here like this is safe,
1651 because it can only be greater than one if all
1652 instructions modifying the iv are always executed in
1653 order. */
1654
1655 if (! last_iteration
1656 || (splittable_regs_updates[regno]-- != 1))
1657 {
1658 tem = gen_reg_rtx (GET_MODE (giv_src_reg));
1659 giv_dest_reg = tem;
1660 map->reg_map[regno] = tem;
1661 }
1662 else
1663 map->reg_map[regno] = giv_src_reg;
1664 }
1665
1666 /* The constant being added could be too large for an add
1667 immediate, so can't directly emit an insn here. */
1668 emit_unrolled_add (giv_dest_reg, giv_src_reg, giv_inc);
1669 copy = get_last_insn ();
1670 pattern = PATTERN (copy);
1671 }
1672 else
1673 {
1674 pattern = copy_rtx_and_substitute (pattern, map);
1675 copy = emit_insn (pattern);
1676 }
1677 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1678
1679 #ifdef HAVE_cc0
1680 /* If this insn is setting CC0, it may need to look at
1681 the insn that uses CC0 to see what type of insn it is.
1682 In that case, the call to recog via validate_change will
1683 fail. So don't substitute constants here. Instead,
1684 do it when we emit the following insn.
1685
1686 For example, see the pyr.md file. That machine has signed and
1687 unsigned compares. The compare patterns must check the
1688 following branch insn to see which what kind of compare to
1689 emit.
1690
1691 If the previous insn set CC0, substitute constants on it as
1692 well. */
1693 if (sets_cc0_p (copy) != 0)
1694 cc0_insn = copy;
1695 else
1696 {
1697 if (cc0_insn)
1698 try_constants (cc0_insn, map);
1699 cc0_insn = 0;
1700 try_constants (copy, map);
1701 }
1702 #else
1703 try_constants (copy, map);
1704 #endif
1705
1706 /* Make split induction variable constants `permanent' since we
1707 know there are no backward branches across iteration variable
1708 settings which would invalidate this. */
1709 if (dest_reg_was_split)
1710 {
1711 int regno = REGNO (SET_DEST (pattern));
1712
1713 if (regno < map->const_equiv_map_size
1714 && map->const_age_map[regno] == map->const_age)
1715 map->const_age_map[regno] = -1;
1716 }
1717 break;
1718
1719 case JUMP_INSN:
1720 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1721 copy = emit_jump_insn (pattern);
1722 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1723
1724 if (JUMP_LABEL (insn) == start_label && insn == copy_end
1725 && ! last_iteration)
1726 {
1727 /* This is a branch to the beginning of the loop; this is the
1728 last insn being copied; and this is not the last iteration.
1729 In this case, we want to change the original fall through
1730 case to be a branch past the end of the loop, and the
1731 original jump label case to fall_through. */
1732
1733 if (! invert_exp (pattern, copy)
1734 || ! redirect_exp (&pattern,
1735 map->label_map[CODE_LABEL_NUMBER
1736 (JUMP_LABEL (insn))],
1737 exit_label, copy))
1738 abort ();
1739 }
1740
1741 #ifdef HAVE_cc0
1742 if (cc0_insn)
1743 try_constants (cc0_insn, map);
1744 cc0_insn = 0;
1745 #endif
1746 try_constants (copy, map);
1747
1748 /* Set the jump label of COPY correctly to avoid problems with
1749 later passes of unroll_loop, if INSN had jump label set. */
1750 if (JUMP_LABEL (insn))
1751 {
1752 rtx label = 0;
1753
1754 /* Can't use the label_map for every insn, since this may be
1755 the backward branch, and hence the label was not mapped. */
1756 if (GET_CODE (pattern) == SET)
1757 {
1758 tem = SET_SRC (pattern);
1759 if (GET_CODE (tem) == LABEL_REF)
1760 label = XEXP (tem, 0);
1761 else if (GET_CODE (tem) == IF_THEN_ELSE)
1762 {
1763 if (XEXP (tem, 1) != pc_rtx)
1764 label = XEXP (XEXP (tem, 1), 0);
1765 else
1766 label = XEXP (XEXP (tem, 2), 0);
1767 }
1768 }
1769
1770 if (label && GET_CODE (label) == CODE_LABEL)
1771 JUMP_LABEL (copy) = label;
1772 else
1773 {
1774 /* An unrecognizable jump insn, probably the entry jump
1775 for a switch statement. This label must have been mapped,
1776 so just use the label_map to get the new jump label. */
1777 JUMP_LABEL (copy) = map->label_map[CODE_LABEL_NUMBER
1778 (JUMP_LABEL (insn))];
1779 }
1780
1781 /* If this is a non-local jump, then must increase the label
1782 use count so that the label will not be deleted when the
1783 original jump is deleted. */
1784 LABEL_NUSES (JUMP_LABEL (copy))++;
1785 }
1786 else if (GET_CODE (PATTERN (copy)) == ADDR_VEC
1787 || GET_CODE (PATTERN (copy)) == ADDR_DIFF_VEC)
1788 {
1789 rtx pat = PATTERN (copy);
1790 int diff_vec_p = GET_CODE (pat) == ADDR_DIFF_VEC;
1791 int len = XVECLEN (pat, diff_vec_p);
1792 int i;
1793
1794 for (i = 0; i < len; i++)
1795 LABEL_NUSES (XEXP (XVECEXP (pat, diff_vec_p, i), 0))++;
1796 }
1797
1798 /* If this used to be a conditional jump insn but whose branch
1799 direction is now known, we must do something special. */
1800 if (condjump_p (insn) && !simplejump_p (insn) && map->last_pc_value)
1801 {
1802 #ifdef HAVE_cc0
1803 /* The previous insn set cc0 for us. So delete it. */
1804 delete_insn (PREV_INSN (copy));
1805 #endif
1806
1807 /* If this is now a no-op, delete it. */
1808 if (map->last_pc_value == pc_rtx)
1809 {
1810 /* Don't let delete_insn delete the label referenced here,
1811 because we might possibly need it later for some other
1812 instruction in the loop. */
1813 if (JUMP_LABEL (copy))
1814 LABEL_NUSES (JUMP_LABEL (copy))++;
1815 delete_insn (copy);
1816 if (JUMP_LABEL (copy))
1817 LABEL_NUSES (JUMP_LABEL (copy))--;
1818 copy = 0;
1819 }
1820 else
1821 /* Otherwise, this is unconditional jump so we must put a
1822 BARRIER after it. We could do some dead code elimination
1823 here, but jump.c will do it just as well. */
1824 emit_barrier ();
1825 }
1826 break;
1827
1828 case CALL_INSN:
1829 pattern = copy_rtx_and_substitute (PATTERN (insn), map);
1830 copy = emit_call_insn (pattern);
1831 REG_NOTES (copy) = initial_reg_note_copy (REG_NOTES (insn), map);
1832
1833 /* Because the USAGE information potentially contains objects other
1834 than hard registers, we need to copy it. */
1835 CALL_INSN_FUNCTION_USAGE (copy) =
1836 copy_rtx_and_substitute (CALL_INSN_FUNCTION_USAGE (insn), map);
1837
1838 #ifdef HAVE_cc0
1839 if (cc0_insn)
1840 try_constants (cc0_insn, map);
1841 cc0_insn = 0;
1842 #endif
1843 try_constants (copy, map);
1844
1845 /* Be lazy and assume CALL_INSNs clobber all hard registers. */
1846 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1847 map->const_equiv_map[i] = 0;
1848 break;
1849
1850 case CODE_LABEL:
1851 /* If this is the loop start label, then we don't need to emit a
1852 copy of this label since no one will use it. */
1853
1854 if (insn != start_label)
1855 {
1856 copy = emit_label (map->label_map[CODE_LABEL_NUMBER (insn)]);
1857 map->const_age++;
1858 }
1859 break;
1860
1861 case BARRIER:
1862 copy = emit_barrier ();
1863 break;
1864
1865 case NOTE:
1866 /* VTOP notes are valid only before the loop exit test. If placed
1867 anywhere else, loop may generate bad code. */
1868
1869 if (NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED
1870 && (NOTE_LINE_NUMBER (insn) != NOTE_INSN_LOOP_VTOP
1871 || (last_iteration && unroll_type != UNROLL_COMPLETELY)))
1872 copy = emit_note (NOTE_SOURCE_FILE (insn),
1873 NOTE_LINE_NUMBER (insn));
1874 else
1875 copy = 0;
1876 break;
1877
1878 default:
1879 abort ();
1880 break;
1881 }
1882
1883 map->insn_map[INSN_UID (insn)] = copy;
1884 }
1885 while (insn != copy_end);
1886
1887 /* Now finish coping the REG_NOTES. */
1888 insn = copy_start;
1889 do
1890 {
1891 insn = NEXT_INSN (insn);
1892 if ((GET_CODE (insn) == INSN || GET_CODE (insn) == JUMP_INSN
1893 || GET_CODE (insn) == CALL_INSN)
1894 && map->insn_map[INSN_UID (insn)])
1895 final_reg_note_copy (REG_NOTES (map->insn_map[INSN_UID (insn)]), map);
1896 }
1897 while (insn != copy_end);
1898
1899 /* There may be notes between copy_notes_from and loop_end. Emit a copy of
1900 each of these notes here, since there may be some important ones, such as
1901 NOTE_INSN_BLOCK_END notes, in this group. We don't do this on the last
1902 iteration, because the original notes won't be deleted.
1903
1904 We can't use insert_before here, because when from preconditioning,
1905 insert_before points before the loop. We can't use copy_end, because
1906 there may be insns already inserted after it (which we don't want to
1907 copy) when not from preconditioning code. */
1908
1909 if (! last_iteration)
1910 {
1911 for (insn = copy_notes_from; insn != loop_end; insn = NEXT_INSN (insn))
1912 {
1913 if (GET_CODE (insn) == NOTE
1914 && NOTE_LINE_NUMBER (insn) != NOTE_INSN_DELETED)
1915 emit_note (NOTE_SOURCE_FILE (insn), NOTE_LINE_NUMBER (insn));
1916 }
1917 }
1918
1919 if (final_label && LABEL_NUSES (final_label) > 0)
1920 emit_label (final_label);
1921
1922 tem = gen_sequence ();
1923 end_sequence ();
1924 emit_insn_before (tem, insert_before);
1925 }
1926 \f
1927 /* Emit an insn, using the expand_binop to ensure that a valid insn is
1928 emitted. This will correctly handle the case where the increment value
1929 won't fit in the immediate field of a PLUS insns. */
1930
1931 void
1932 emit_unrolled_add (dest_reg, src_reg, increment)
1933 rtx dest_reg, src_reg, increment;
1934 {
1935 rtx result;
1936
1937 result = expand_binop (GET_MODE (dest_reg), add_optab, src_reg, increment,
1938 dest_reg, 0, OPTAB_LIB_WIDEN);
1939
1940 if (dest_reg != result)
1941 emit_move_insn (dest_reg, result);
1942 }
1943 \f
1944 /* Searches the insns between INSN and LOOP_END. Returns 1 if there
1945 is a backward branch in that range that branches to somewhere between
1946 LOOP_START and INSN. Returns 0 otherwise. */
1947
1948 /* ??? This is quadratic algorithm. Could be rewritten to be linear.
1949 In practice, this is not a problem, because this function is seldom called,
1950 and uses a negligible amount of CPU time on average. */
1951
1952 static int
1953 back_branch_in_range_p (insn, loop_start, loop_end)
1954 rtx insn;
1955 rtx loop_start, loop_end;
1956 {
1957 rtx p, q, target_insn;
1958
1959 /* Stop before we get to the backward branch at the end of the loop. */
1960 loop_end = prev_nonnote_insn (loop_end);
1961 if (GET_CODE (loop_end) == BARRIER)
1962 loop_end = PREV_INSN (loop_end);
1963
1964 /* Check in case insn has been deleted, search forward for first non
1965 deleted insn following it. */
1966 while (INSN_DELETED_P (insn))
1967 insn = NEXT_INSN (insn);
1968
1969 /* Check for the case where insn is the last insn in the loop. */
1970 if (insn == loop_end)
1971 return 0;
1972
1973 for (p = NEXT_INSN (insn); p != loop_end; p = NEXT_INSN (p))
1974 {
1975 if (GET_CODE (p) == JUMP_INSN)
1976 {
1977 target_insn = JUMP_LABEL (p);
1978
1979 /* Search from loop_start to insn, to see if one of them is
1980 the target_insn. We can't use INSN_LUID comparisons here,
1981 since insn may not have an LUID entry. */
1982 for (q = loop_start; q != insn; q = NEXT_INSN (q))
1983 if (q == target_insn)
1984 return 1;
1985 }
1986 }
1987
1988 return 0;
1989 }
1990
1991 /* Try to generate the simplest rtx for the expression
1992 (PLUS (MULT mult1 mult2) add1). This is used to calculate the initial
1993 value of giv's. */
1994
1995 static rtx
1996 fold_rtx_mult_add (mult1, mult2, add1, mode)
1997 rtx mult1, mult2, add1;
1998 enum machine_mode mode;
1999 {
2000 rtx temp, mult_res;
2001 rtx result;
2002
2003 /* The modes must all be the same. This should always be true. For now,
2004 check to make sure. */
2005 if ((GET_MODE (mult1) != mode && GET_MODE (mult1) != VOIDmode)
2006 || (GET_MODE (mult2) != mode && GET_MODE (mult2) != VOIDmode)
2007 || (GET_MODE (add1) != mode && GET_MODE (add1) != VOIDmode))
2008 abort ();
2009
2010 /* Ensure that if at least one of mult1/mult2 are constant, then mult2
2011 will be a constant. */
2012 if (GET_CODE (mult1) == CONST_INT)
2013 {
2014 temp = mult2;
2015 mult2 = mult1;
2016 mult1 = temp;
2017 }
2018
2019 mult_res = simplify_binary_operation (MULT, mode, mult1, mult2);
2020 if (! mult_res)
2021 mult_res = gen_rtx (MULT, mode, mult1, mult2);
2022
2023 /* Again, put the constant second. */
2024 if (GET_CODE (add1) == CONST_INT)
2025 {
2026 temp = add1;
2027 add1 = mult_res;
2028 mult_res = temp;
2029 }
2030
2031 result = simplify_binary_operation (PLUS, mode, add1, mult_res);
2032 if (! result)
2033 result = gen_rtx (PLUS, mode, add1, mult_res);
2034
2035 return result;
2036 }
2037
2038 /* Searches the list of induction struct's for the biv BL, to try to calculate
2039 the total increment value for one iteration of the loop as a constant.
2040
2041 Returns the increment value as an rtx, simplified as much as possible,
2042 if it can be calculated. Otherwise, returns 0. */
2043
2044 rtx
2045 biv_total_increment (bl, loop_start, loop_end)
2046 struct iv_class *bl;
2047 rtx loop_start, loop_end;
2048 {
2049 struct induction *v;
2050 rtx result;
2051
2052 /* For increment, must check every instruction that sets it. Each
2053 instruction must be executed only once each time through the loop.
2054 To verify this, we check that the the insn is always executed, and that
2055 there are no backward branches after the insn that branch to before it.
2056 Also, the insn must have a mult_val of one (to make sure it really is
2057 an increment). */
2058
2059 result = const0_rtx;
2060 for (v = bl->biv; v; v = v->next_iv)
2061 {
2062 if (v->always_computable && v->mult_val == const1_rtx
2063 && ! back_branch_in_range_p (v->insn, loop_start, loop_end))
2064 result = fold_rtx_mult_add (result, const1_rtx, v->add_val, v->mode);
2065 else
2066 return 0;
2067 }
2068
2069 return result;
2070 }
2071
2072 /* Determine the initial value of the iteration variable, and the amount
2073 that it is incremented each loop. Use the tables constructed by
2074 the strength reduction pass to calculate these values.
2075
2076 Initial_value and/or increment are set to zero if their values could not
2077 be calculated. */
2078
2079 static void
2080 iteration_info (iteration_var, initial_value, increment, loop_start, loop_end)
2081 rtx iteration_var, *initial_value, *increment;
2082 rtx loop_start, loop_end;
2083 {
2084 struct iv_class *bl;
2085 struct induction *v, *b;
2086
2087 /* Clear the result values, in case no answer can be found. */
2088 *initial_value = 0;
2089 *increment = 0;
2090
2091 /* The iteration variable can be either a giv or a biv. Check to see
2092 which it is, and compute the variable's initial value, and increment
2093 value if possible. */
2094
2095 /* If this is a new register, can't handle it since we don't have any
2096 reg_iv_type entry for it. */
2097 if (REGNO (iteration_var) >= max_reg_before_loop)
2098 {
2099 if (loop_dump_stream)
2100 fprintf (loop_dump_stream,
2101 "Loop unrolling: No reg_iv_type entry for iteration var.\n");
2102 return;
2103 }
2104 /* Reject iteration variables larger than the host long size, since they
2105 could result in a number of iterations greater than the range of our
2106 `unsigned long' variable loop_n_iterations. */
2107 else if (GET_MODE_BITSIZE (GET_MODE (iteration_var)) > HOST_BITS_PER_LONG)
2108 {
2109 if (loop_dump_stream)
2110 fprintf (loop_dump_stream,
2111 "Loop unrolling: Iteration var rejected because mode larger than host long.\n");
2112 return;
2113 }
2114 else if (GET_MODE_CLASS (GET_MODE (iteration_var)) != MODE_INT)
2115 {
2116 if (loop_dump_stream)
2117 fprintf (loop_dump_stream,
2118 "Loop unrolling: Iteration var not an integer.\n");
2119 return;
2120 }
2121 else if (reg_iv_type[REGNO (iteration_var)] == BASIC_INDUCT)
2122 {
2123 /* Grab initial value, only useful if it is a constant. */
2124 bl = reg_biv_class[REGNO (iteration_var)];
2125 *initial_value = bl->initial_value;
2126
2127 *increment = biv_total_increment (bl, loop_start, loop_end);
2128 }
2129 else if (reg_iv_type[REGNO (iteration_var)] == GENERAL_INDUCT)
2130 {
2131 #if 1
2132 /* ??? The code below does not work because the incorrect number of
2133 iterations is calculated when the biv is incremented after the giv
2134 is set (which is the usual case). This can probably be accounted
2135 for by biasing the initial_value by subtracting the amount of the
2136 increment that occurs between the giv set and the giv test. However,
2137 a giv as an iterator is very rare, so it does not seem worthwhile
2138 to handle this. */
2139 /* ??? An example failure is: i = 6; do {;} while (i++ < 9). */
2140 if (loop_dump_stream)
2141 fprintf (loop_dump_stream,
2142 "Loop unrolling: Giv iterators are not handled.\n");
2143 return;
2144 #else
2145 /* Initial value is mult_val times the biv's initial value plus
2146 add_val. Only useful if it is a constant. */
2147 v = reg_iv_info[REGNO (iteration_var)];
2148 bl = reg_biv_class[REGNO (v->src_reg)];
2149 *initial_value = fold_rtx_mult_add (v->mult_val, bl->initial_value,
2150 v->add_val, v->mode);
2151
2152 /* Increment value is mult_val times the increment value of the biv. */
2153
2154 *increment = biv_total_increment (bl, loop_start, loop_end);
2155 if (*increment)
2156 *increment = fold_rtx_mult_add (v->mult_val, *increment, const0_rtx,
2157 v->mode);
2158 #endif
2159 }
2160 else
2161 {
2162 if (loop_dump_stream)
2163 fprintf (loop_dump_stream,
2164 "Loop unrolling: Not basic or general induction var.\n");
2165 return;
2166 }
2167 }
2168
2169 /* Calculate the approximate final value of the iteration variable
2170 which has an loop exit test with code COMPARISON_CODE and comparison value
2171 of COMPARISON_VALUE. Also returns an indication of whether the comparison
2172 was signed or unsigned, and the direction of the comparison. This info is
2173 needed to calculate the number of loop iterations. */
2174
2175 static rtx
2176 approx_final_value (comparison_code, comparison_value, unsigned_p, compare_dir)
2177 enum rtx_code comparison_code;
2178 rtx comparison_value;
2179 int *unsigned_p;
2180 int *compare_dir;
2181 {
2182 /* Calculate the final value of the induction variable.
2183 The exact final value depends on the branch operator, and increment sign.
2184 This is only an approximate value. It will be wrong if the iteration
2185 variable is not incremented by one each time through the loop, and
2186 approx final value - start value % increment != 0. */
2187
2188 *unsigned_p = 0;
2189 switch (comparison_code)
2190 {
2191 case LEU:
2192 *unsigned_p = 1;
2193 case LE:
2194 *compare_dir = 1;
2195 return plus_constant (comparison_value, 1);
2196 case GEU:
2197 *unsigned_p = 1;
2198 case GE:
2199 *compare_dir = -1;
2200 return plus_constant (comparison_value, -1);
2201 case EQ:
2202 /* Can not calculate a final value for this case. */
2203 *compare_dir = 0;
2204 return 0;
2205 case LTU:
2206 *unsigned_p = 1;
2207 case LT:
2208 *compare_dir = 1;
2209 return comparison_value;
2210 break;
2211 case GTU:
2212 *unsigned_p = 1;
2213 case GT:
2214 *compare_dir = -1;
2215 return comparison_value;
2216 case NE:
2217 *compare_dir = 0;
2218 return comparison_value;
2219 default:
2220 abort ();
2221 }
2222 }
2223
2224 /* For each biv and giv, determine whether it can be safely split into
2225 a different variable for each unrolled copy of the loop body. If it
2226 is safe to split, then indicate that by saving some useful info
2227 in the splittable_regs array.
2228
2229 If the loop is being completely unrolled, then splittable_regs will hold
2230 the current value of the induction variable while the loop is unrolled.
2231 It must be set to the initial value of the induction variable here.
2232 Otherwise, splittable_regs will hold the difference between the current
2233 value of the induction variable and the value the induction variable had
2234 at the top of the loop. It must be set to the value 0 here.
2235
2236 Returns the total number of instructions that set registers that are
2237 splittable. */
2238
2239 /* ?? If the loop is only unrolled twice, then most of the restrictions to
2240 constant values are unnecessary, since we can easily calculate increment
2241 values in this case even if nothing is constant. The increment value
2242 should not involve a multiply however. */
2243
2244 /* ?? Even if the biv/giv increment values aren't constant, it may still
2245 be beneficial to split the variable if the loop is only unrolled a few
2246 times, since multiplies by small integers (1,2,3,4) are very cheap. */
2247
2248 static int
2249 find_splittable_regs (unroll_type, loop_start, loop_end, end_insert_before,
2250 unroll_number)
2251 enum unroll_types unroll_type;
2252 rtx loop_start, loop_end;
2253 rtx end_insert_before;
2254 int unroll_number;
2255 {
2256 struct iv_class *bl;
2257 struct induction *v;
2258 rtx increment, tem;
2259 rtx biv_final_value;
2260 int biv_splittable;
2261 int result = 0;
2262
2263 for (bl = loop_iv_list; bl; bl = bl->next)
2264 {
2265 /* Biv_total_increment must return a constant value,
2266 otherwise we can not calculate the split values. */
2267
2268 increment = biv_total_increment (bl, loop_start, loop_end);
2269 if (! increment || GET_CODE (increment) != CONST_INT)
2270 continue;
2271
2272 /* The loop must be unrolled completely, or else have a known number
2273 of iterations and only one exit, or else the biv must be dead
2274 outside the loop, or else the final value must be known. Otherwise,
2275 it is unsafe to split the biv since it may not have the proper
2276 value on loop exit. */
2277
2278 /* loop_number_exit_labels is non-zero if the loop has an exit other than
2279 a fall through at the end. */
2280
2281 biv_splittable = 1;
2282 biv_final_value = 0;
2283 if (unroll_type != UNROLL_COMPLETELY
2284 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2285 || unroll_type == UNROLL_NAIVE)
2286 && (uid_luid[regno_last_uid[bl->regno]] >= INSN_LUID (loop_end)
2287 || ! bl->init_insn
2288 || INSN_UID (bl->init_insn) >= max_uid_for_loop
2289 || (uid_luid[regno_first_uid[bl->regno]]
2290 < INSN_LUID (bl->init_insn))
2291 || reg_mentioned_p (bl->biv->dest_reg, SET_SRC (bl->init_set)))
2292 && ! (biv_final_value = final_biv_value (bl, loop_start, loop_end)))
2293 biv_splittable = 0;
2294
2295 /* If any of the insns setting the BIV don't do so with a simple
2296 PLUS, we don't know how to split it. */
2297 for (v = bl->biv; biv_splittable && v; v = v->next_iv)
2298 if ((tem = single_set (v->insn)) == 0
2299 || GET_CODE (SET_DEST (tem)) != REG
2300 || REGNO (SET_DEST (tem)) != bl->regno
2301 || GET_CODE (SET_SRC (tem)) != PLUS)
2302 biv_splittable = 0;
2303
2304 /* If final value is non-zero, then must emit an instruction which sets
2305 the value of the biv to the proper value. This is done after
2306 handling all of the givs, since some of them may need to use the
2307 biv's value in their initialization code. */
2308
2309 /* This biv is splittable. If completely unrolling the loop, save
2310 the biv's initial value. Otherwise, save the constant zero. */
2311
2312 if (biv_splittable == 1)
2313 {
2314 if (unroll_type == UNROLL_COMPLETELY)
2315 {
2316 /* If the initial value of the biv is itself (i.e. it is too
2317 complicated for strength_reduce to compute), or is a hard
2318 register, then we must create a new pseudo reg to hold the
2319 initial value of the biv. */
2320
2321 if (GET_CODE (bl->initial_value) == REG
2322 && (REGNO (bl->initial_value) == bl->regno
2323 || REGNO (bl->initial_value) < FIRST_PSEUDO_REGISTER))
2324 {
2325 rtx tem = gen_reg_rtx (bl->biv->mode);
2326
2327 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2328 loop_start);
2329
2330 if (loop_dump_stream)
2331 fprintf (loop_dump_stream, "Biv %d initial value remapped to %d.\n",
2332 bl->regno, REGNO (tem));
2333
2334 splittable_regs[bl->regno] = tem;
2335 }
2336 else
2337 splittable_regs[bl->regno] = bl->initial_value;
2338 }
2339 else
2340 splittable_regs[bl->regno] = const0_rtx;
2341
2342 /* Save the number of instructions that modify the biv, so that
2343 we can treat the last one specially. */
2344
2345 splittable_regs_updates[bl->regno] = bl->biv_count;
2346 result += bl->biv_count;
2347
2348 if (loop_dump_stream)
2349 fprintf (loop_dump_stream,
2350 "Biv %d safe to split.\n", bl->regno);
2351 }
2352
2353 /* Check every giv that depends on this biv to see whether it is
2354 splittable also. Even if the biv isn't splittable, givs which
2355 depend on it may be splittable if the biv is live outside the
2356 loop, and the givs aren't. */
2357
2358 result += find_splittable_givs (bl, unroll_type, loop_start, loop_end,
2359 increment, unroll_number);
2360
2361 /* If final value is non-zero, then must emit an instruction which sets
2362 the value of the biv to the proper value. This is done after
2363 handling all of the givs, since some of them may need to use the
2364 biv's value in their initialization code. */
2365 if (biv_final_value)
2366 {
2367 /* If the loop has multiple exits, emit the insns before the
2368 loop to ensure that it will always be executed no matter
2369 how the loop exits. Otherwise emit the insn after the loop,
2370 since this is slightly more efficient. */
2371 if (! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2372 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2373 biv_final_value),
2374 end_insert_before);
2375 else
2376 {
2377 /* Create a new register to hold the value of the biv, and then
2378 set the biv to its final value before the loop start. The biv
2379 is set to its final value before loop start to ensure that
2380 this insn will always be executed, no matter how the loop
2381 exits. */
2382 rtx tem = gen_reg_rtx (bl->biv->mode);
2383 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2384 loop_start);
2385 emit_insn_before (gen_move_insn (bl->biv->src_reg,
2386 biv_final_value),
2387 loop_start);
2388
2389 if (loop_dump_stream)
2390 fprintf (loop_dump_stream, "Biv %d mapped to %d for split.\n",
2391 REGNO (bl->biv->src_reg), REGNO (tem));
2392
2393 /* Set up the mapping from the original biv register to the new
2394 register. */
2395 bl->biv->src_reg = tem;
2396 }
2397 }
2398 }
2399 return result;
2400 }
2401
2402 /* For every giv based on the biv BL, check to determine whether it is
2403 splittable. This is a subroutine to find_splittable_regs ().
2404
2405 Return the number of instructions that set splittable registers. */
2406
2407 static int
2408 find_splittable_givs (bl, unroll_type, loop_start, loop_end, increment,
2409 unroll_number)
2410 struct iv_class *bl;
2411 enum unroll_types unroll_type;
2412 rtx loop_start, loop_end;
2413 rtx increment;
2414 int unroll_number;
2415 {
2416 struct induction *v;
2417 rtx final_value;
2418 rtx tem;
2419 int result = 0;
2420
2421 for (v = bl->giv; v; v = v->next_iv)
2422 {
2423 rtx giv_inc, value;
2424
2425 /* Only split the giv if it has already been reduced, or if the loop is
2426 being completely unrolled. */
2427 if (unroll_type != UNROLL_COMPLETELY && v->ignore)
2428 continue;
2429
2430 /* The giv can be split if the insn that sets the giv is executed once
2431 and only once on every iteration of the loop. */
2432 /* An address giv can always be split. v->insn is just a use not a set,
2433 and hence it does not matter whether it is always executed. All that
2434 matters is that all the biv increments are always executed, and we
2435 won't reach here if they aren't. */
2436 if (v->giv_type != DEST_ADDR
2437 && (! v->always_computable
2438 || back_branch_in_range_p (v->insn, loop_start, loop_end)))
2439 continue;
2440
2441 /* The giv increment value must be a constant. */
2442 giv_inc = fold_rtx_mult_add (v->mult_val, increment, const0_rtx,
2443 v->mode);
2444 if (! giv_inc || GET_CODE (giv_inc) != CONST_INT)
2445 continue;
2446
2447 /* The loop must be unrolled completely, or else have a known number of
2448 iterations and only one exit, or else the giv must be dead outside
2449 the loop, or else the final value of the giv must be known.
2450 Otherwise, it is not safe to split the giv since it may not have the
2451 proper value on loop exit. */
2452
2453 /* The used outside loop test will fail for DEST_ADDR givs. They are
2454 never used outside the loop anyways, so it is always safe to split a
2455 DEST_ADDR giv. */
2456
2457 final_value = 0;
2458 if (unroll_type != UNROLL_COMPLETELY
2459 && (loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2460 || unroll_type == UNROLL_NAIVE)
2461 && v->giv_type != DEST_ADDR
2462 && ((regno_first_uid[REGNO (v->dest_reg)] != INSN_UID (v->insn)
2463 /* Check for the case where the pseudo is set by a shift/add
2464 sequence, in which case the first insn setting the pseudo
2465 is the first insn of the shift/add sequence. */
2466 && (! (tem = find_reg_note (v->insn, REG_RETVAL, NULL_RTX))
2467 || (regno_first_uid[REGNO (v->dest_reg)]
2468 != INSN_UID (XEXP (tem, 0)))))
2469 /* Line above always fails if INSN was moved by loop opt. */
2470 || (uid_luid[regno_last_uid[REGNO (v->dest_reg)]]
2471 >= INSN_LUID (loop_end)))
2472 && ! (final_value = v->final_value))
2473 continue;
2474
2475 #if 0
2476 /* Currently, non-reduced/final-value givs are never split. */
2477 /* Should emit insns after the loop if possible, as the biv final value
2478 code below does. */
2479
2480 /* If the final value is non-zero, and the giv has not been reduced,
2481 then must emit an instruction to set the final value. */
2482 if (final_value && !v->new_reg)
2483 {
2484 /* Create a new register to hold the value of the giv, and then set
2485 the giv to its final value before the loop start. The giv is set
2486 to its final value before loop start to ensure that this insn
2487 will always be executed, no matter how we exit. */
2488 tem = gen_reg_rtx (v->mode);
2489 emit_insn_before (gen_move_insn (tem, v->dest_reg), loop_start);
2490 emit_insn_before (gen_move_insn (v->dest_reg, final_value),
2491 loop_start);
2492
2493 if (loop_dump_stream)
2494 fprintf (loop_dump_stream, "Giv %d mapped to %d for split.\n",
2495 REGNO (v->dest_reg), REGNO (tem));
2496
2497 v->src_reg = tem;
2498 }
2499 #endif
2500
2501 /* This giv is splittable. If completely unrolling the loop, save the
2502 giv's initial value. Otherwise, save the constant zero for it. */
2503
2504 if (unroll_type == UNROLL_COMPLETELY)
2505 {
2506 /* It is not safe to use bl->initial_value here, because it may not
2507 be invariant. It is safe to use the initial value stored in
2508 the splittable_regs array if it is set. In rare cases, it won't
2509 be set, so then we do exactly the same thing as
2510 find_splittable_regs does to get a safe value. */
2511 rtx biv_initial_value;
2512
2513 if (splittable_regs[bl->regno])
2514 biv_initial_value = splittable_regs[bl->regno];
2515 else if (GET_CODE (bl->initial_value) != REG
2516 || (REGNO (bl->initial_value) != bl->regno
2517 && REGNO (bl->initial_value) >= FIRST_PSEUDO_REGISTER))
2518 biv_initial_value = bl->initial_value;
2519 else
2520 {
2521 rtx tem = gen_reg_rtx (bl->biv->mode);
2522
2523 emit_insn_before (gen_move_insn (tem, bl->biv->src_reg),
2524 loop_start);
2525 biv_initial_value = tem;
2526 }
2527 value = fold_rtx_mult_add (v->mult_val, biv_initial_value,
2528 v->add_val, v->mode);
2529 }
2530 else
2531 value = const0_rtx;
2532
2533 if (v->new_reg)
2534 {
2535 /* If a giv was combined with another giv, then we can only split
2536 this giv if the giv it was combined with was reduced. This
2537 is because the value of v->new_reg is meaningless in this
2538 case. */
2539 if (v->same && ! v->same->new_reg)
2540 {
2541 if (loop_dump_stream)
2542 fprintf (loop_dump_stream,
2543 "giv combined with unreduced giv not split.\n");
2544 continue;
2545 }
2546 /* If the giv is an address destination, it could be something other
2547 than a simple register, these have to be treated differently. */
2548 else if (v->giv_type == DEST_REG)
2549 {
2550 /* If value is not a constant, register, or register plus
2551 constant, then compute its value into a register before
2552 loop start. This prevents illegal rtx sharing, and should
2553 generate better code. We can use bl->initial_value here
2554 instead of splittable_regs[bl->regno] because this code
2555 is going before the loop start. */
2556 if (unroll_type == UNROLL_COMPLETELY
2557 && GET_CODE (value) != CONST_INT
2558 && GET_CODE (value) != REG
2559 && (GET_CODE (value) != PLUS
2560 || GET_CODE (XEXP (value, 0)) != REG
2561 || GET_CODE (XEXP (value, 1)) != CONST_INT))
2562 {
2563 rtx tem = gen_reg_rtx (v->mode);
2564 emit_iv_add_mult (bl->initial_value, v->mult_val,
2565 v->add_val, tem, loop_start);
2566 value = tem;
2567 }
2568
2569 splittable_regs[REGNO (v->new_reg)] = value;
2570 }
2571 else
2572 {
2573 /* Splitting address givs is useful since it will often allow us
2574 to eliminate some increment insns for the base giv as
2575 unnecessary. */
2576
2577 /* If the addr giv is combined with a dest_reg giv, then all
2578 references to that dest reg will be remapped, which is NOT
2579 what we want for split addr regs. We always create a new
2580 register for the split addr giv, just to be safe. */
2581
2582 /* ??? If there are multiple address givs which have been
2583 combined with the same dest_reg giv, then we may only need
2584 one new register for them. Pulling out constants below will
2585 catch some of the common cases of this. Currently, I leave
2586 the work of simplifying multiple address givs to the
2587 following cse pass. */
2588
2589 /* As a special case, if we have multiple identical address givs
2590 within a single instruction, then we do use a single psuedo
2591 reg for both. This is necessary in case one is a match_dup
2592 of the other. */
2593
2594 v->const_adjust = 0;
2595
2596 if (v->same && v->same->insn == v->insn
2597 && v->new_reg == v->same->new_reg)
2598 {
2599 v->dest_reg = v->same->dest_reg;
2600 if (loop_dump_stream)
2601 fprintf (loop_dump_stream,
2602 "Sharing address givs with reg %d\n",
2603 REGNO (v->dest_reg));
2604 }
2605 else if (unroll_type != UNROLL_COMPLETELY)
2606 {
2607 /* If not completely unrolling the loop, then create a new
2608 register to hold the split value of the DEST_ADDR giv.
2609 Emit insn to initialize its value before loop start. */
2610 tem = gen_reg_rtx (v->mode);
2611
2612 /* If the address giv has a constant in its new_reg value,
2613 then this constant can be pulled out and put in value,
2614 instead of being part of the initialization code. */
2615
2616 if (GET_CODE (v->new_reg) == PLUS
2617 && GET_CODE (XEXP (v->new_reg, 1)) == CONST_INT)
2618 {
2619 v->dest_reg
2620 = plus_constant (tem, INTVAL (XEXP (v->new_reg,1)));
2621
2622 /* Only succeed if this will give valid addresses.
2623 Try to validate both the first and the last
2624 address resulting from loop unrolling, if
2625 one fails, then can't do const elim here. */
2626 if (memory_address_p (v->mem_mode, v->dest_reg)
2627 && memory_address_p (v->mem_mode,
2628 plus_constant (v->dest_reg,
2629 INTVAL (giv_inc)
2630 * (unroll_number - 1))))
2631 {
2632 /* Save the negative of the eliminated const, so
2633 that we can calculate the dest_reg's increment
2634 value later. */
2635 v->const_adjust = - INTVAL (XEXP (v->new_reg, 1));
2636
2637 v->new_reg = XEXP (v->new_reg, 0);
2638 if (loop_dump_stream)
2639 fprintf (loop_dump_stream,
2640 "Eliminating constant from giv %d\n",
2641 REGNO (tem));
2642 }
2643 else
2644 v->dest_reg = tem;
2645 }
2646 else
2647 v->dest_reg = tem;
2648
2649 /* If the address hasn't been checked for validity yet, do so
2650 now, and fail completely if either the first or the last
2651 unrolled copy of the address is not a valid address. */
2652 if (v->dest_reg == tem
2653 && (! memory_address_p (v->mem_mode, v->dest_reg)
2654 || ! memory_address_p (v->mem_mode,
2655 plus_constant (v->dest_reg,
2656 INTVAL (giv_inc)
2657 * (unroll_number -1)))))
2658 {
2659 if (loop_dump_stream)
2660 fprintf (loop_dump_stream,
2661 "Illegal address for giv at insn %d\n",
2662 INSN_UID (v->insn));
2663 continue;
2664 }
2665
2666 /* To initialize the new register, just move the value of
2667 new_reg into it. This is not guaranteed to give a valid
2668 instruction on machines with complex addressing modes.
2669 If we can't recognize it, then delete it and emit insns
2670 to calculate the value from scratch. */
2671 emit_insn_before (gen_rtx (SET, VOIDmode, tem,
2672 copy_rtx (v->new_reg)),
2673 loop_start);
2674 if (recog_memoized (PREV_INSN (loop_start)) < 0)
2675 {
2676 rtx sequence, ret;
2677
2678 /* We can't use bl->initial_value to compute the initial
2679 value, because the loop may have been preconditioned.
2680 We must calculate it from NEW_REG. Try using
2681 force_operand instead of emit_iv_add_mult. */
2682 delete_insn (PREV_INSN (loop_start));
2683
2684 start_sequence ();
2685 ret = force_operand (v->new_reg, tem);
2686 if (ret != tem)
2687 emit_move_insn (tem, ret);
2688 sequence = gen_sequence ();
2689 end_sequence ();
2690 emit_insn_before (sequence, loop_start);
2691
2692 if (loop_dump_stream)
2693 fprintf (loop_dump_stream,
2694 "Illegal init insn, rewritten.\n");
2695 }
2696 }
2697 else
2698 {
2699 v->dest_reg = value;
2700
2701 /* Check the resulting address for validity, and fail
2702 if the resulting address would be illegal. */
2703 if (! memory_address_p (v->mem_mode, v->dest_reg)
2704 || ! memory_address_p (v->mem_mode,
2705 plus_constant (v->dest_reg,
2706 INTVAL (giv_inc) *
2707 (unroll_number -1))))
2708 {
2709 if (loop_dump_stream)
2710 fprintf (loop_dump_stream,
2711 "Illegal address for giv at insn %d\n",
2712 INSN_UID (v->insn));
2713 continue;
2714 }
2715 }
2716
2717 /* Store the value of dest_reg into the insn. This sharing
2718 will not be a problem as this insn will always be copied
2719 later. */
2720
2721 *v->location = v->dest_reg;
2722
2723 /* If this address giv is combined with a dest reg giv, then
2724 save the base giv's induction pointer so that we will be
2725 able to handle this address giv properly. The base giv
2726 itself does not have to be splittable. */
2727
2728 if (v->same && v->same->giv_type == DEST_REG)
2729 addr_combined_regs[REGNO (v->same->new_reg)] = v->same;
2730
2731 if (GET_CODE (v->new_reg) == REG)
2732 {
2733 /* This giv maybe hasn't been combined with any others.
2734 Make sure that it's giv is marked as splittable here. */
2735
2736 splittable_regs[REGNO (v->new_reg)] = value;
2737
2738 /* Make it appear to depend upon itself, so that the
2739 giv will be properly split in the main loop above. */
2740 if (! v->same)
2741 {
2742 v->same = v;
2743 addr_combined_regs[REGNO (v->new_reg)] = v;
2744 }
2745 }
2746
2747 if (loop_dump_stream)
2748 fprintf (loop_dump_stream, "DEST_ADDR giv being split.\n");
2749 }
2750 }
2751 else
2752 {
2753 #if 0
2754 /* Currently, unreduced giv's can't be split. This is not too much
2755 of a problem since unreduced giv's are not live across loop
2756 iterations anyways. When unrolling a loop completely though,
2757 it makes sense to reduce&split givs when possible, as this will
2758 result in simpler instructions, and will not require that a reg
2759 be live across loop iterations. */
2760
2761 splittable_regs[REGNO (v->dest_reg)] = value;
2762 fprintf (stderr, "Giv %d at insn %d not reduced\n",
2763 REGNO (v->dest_reg), INSN_UID (v->insn));
2764 #else
2765 continue;
2766 #endif
2767 }
2768
2769 /* Givs are only updated once by definition. Mark it so if this is
2770 a splittable register. Don't need to do anything for address givs
2771 where this may not be a register. */
2772
2773 if (GET_CODE (v->new_reg) == REG)
2774 splittable_regs_updates[REGNO (v->new_reg)] = 1;
2775
2776 result++;
2777
2778 if (loop_dump_stream)
2779 {
2780 int regnum;
2781
2782 if (GET_CODE (v->dest_reg) == CONST_INT)
2783 regnum = -1;
2784 else if (GET_CODE (v->dest_reg) != REG)
2785 regnum = REGNO (XEXP (v->dest_reg, 0));
2786 else
2787 regnum = REGNO (v->dest_reg);
2788 fprintf (loop_dump_stream, "Giv %d at insn %d safe to split.\n",
2789 regnum, INSN_UID (v->insn));
2790 }
2791 }
2792
2793 return result;
2794 }
2795 \f
2796 /* Try to prove that the register is dead after the loop exits. Trace every
2797 loop exit looking for an insn that will always be executed, which sets
2798 the register to some value, and appears before the first use of the register
2799 is found. If successful, then return 1, otherwise return 0. */
2800
2801 /* ?? Could be made more intelligent in the handling of jumps, so that
2802 it can search past if statements and other similar structures. */
2803
2804 static int
2805 reg_dead_after_loop (reg, loop_start, loop_end)
2806 rtx reg, loop_start, loop_end;
2807 {
2808 rtx insn, label;
2809 enum rtx_code code;
2810 int jump_count = 0;
2811
2812 /* HACK: Must also search the loop fall through exit, create a label_ref
2813 here which points to the loop_end, and append the loop_number_exit_labels
2814 list to it. */
2815 label = gen_rtx (LABEL_REF, VOIDmode, loop_end);
2816 LABEL_NEXTREF (label)
2817 = loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]];
2818
2819 for ( ; label; label = LABEL_NEXTREF (label))
2820 {
2821 /* Succeed if find an insn which sets the biv or if reach end of
2822 function. Fail if find an insn that uses the biv, or if come to
2823 a conditional jump. */
2824
2825 insn = NEXT_INSN (XEXP (label, 0));
2826 while (insn)
2827 {
2828 code = GET_CODE (insn);
2829 if (GET_RTX_CLASS (code) == 'i')
2830 {
2831 rtx set;
2832
2833 if (reg_referenced_p (reg, PATTERN (insn)))
2834 return 0;
2835
2836 set = single_set (insn);
2837 if (set && rtx_equal_p (SET_DEST (set), reg))
2838 break;
2839 }
2840
2841 if (code == JUMP_INSN)
2842 {
2843 if (GET_CODE (PATTERN (insn)) == RETURN)
2844 break;
2845 else if (! simplejump_p (insn)
2846 /* Prevent infinite loop following infinite loops. */
2847 || jump_count++ > 20)
2848 return 0;
2849 else
2850 insn = JUMP_LABEL (insn);
2851 }
2852
2853 insn = NEXT_INSN (insn);
2854 }
2855 }
2856
2857 /* Success, the register is dead on all loop exits. */
2858 return 1;
2859 }
2860
2861 /* Try to calculate the final value of the biv, the value it will have at
2862 the end of the loop. If we can do it, return that value. */
2863
2864 rtx
2865 final_biv_value (bl, loop_start, loop_end)
2866 struct iv_class *bl;
2867 rtx loop_start, loop_end;
2868 {
2869 rtx increment, tem;
2870
2871 /* ??? This only works for MODE_INT biv's. Reject all others for now. */
2872
2873 if (GET_MODE_CLASS (bl->biv->mode) != MODE_INT)
2874 return 0;
2875
2876 /* The final value for reversed bivs must be calculated differently than
2877 for ordinary bivs. In this case, there is already an insn after the
2878 loop which sets this biv's final value (if necessary), and there are
2879 no other loop exits, so we can return any value. */
2880 if (bl->reversed)
2881 {
2882 if (loop_dump_stream)
2883 fprintf (loop_dump_stream,
2884 "Final biv value for %d, reversed biv.\n", bl->regno);
2885
2886 return const0_rtx;
2887 }
2888
2889 /* Try to calculate the final value as initial value + (number of iterations
2890 * increment). For this to work, increment must be invariant, the only
2891 exit from the loop must be the fall through at the bottom (otherwise
2892 it may not have its final value when the loop exits), and the initial
2893 value of the biv must be invariant. */
2894
2895 if (loop_n_iterations != 0
2896 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]]
2897 && invariant_p (bl->initial_value))
2898 {
2899 increment = biv_total_increment (bl, loop_start, loop_end);
2900
2901 if (increment && invariant_p (increment))
2902 {
2903 /* Can calculate the loop exit value, emit insns after loop
2904 end to calculate this value into a temporary register in
2905 case it is needed later. */
2906
2907 tem = gen_reg_rtx (bl->biv->mode);
2908 /* Make sure loop_end is not the last insn. */
2909 if (NEXT_INSN (loop_end) == 0)
2910 emit_note_after (NOTE_INSN_DELETED, loop_end);
2911 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
2912 bl->initial_value, tem, NEXT_INSN (loop_end));
2913
2914 if (loop_dump_stream)
2915 fprintf (loop_dump_stream,
2916 "Final biv value for %d, calculated.\n", bl->regno);
2917
2918 return tem;
2919 }
2920 }
2921
2922 /* Check to see if the biv is dead at all loop exits. */
2923 if (reg_dead_after_loop (bl->biv->src_reg, loop_start, loop_end))
2924 {
2925 if (loop_dump_stream)
2926 fprintf (loop_dump_stream,
2927 "Final biv value for %d, biv dead after loop exit.\n",
2928 bl->regno);
2929
2930 return const0_rtx;
2931 }
2932
2933 return 0;
2934 }
2935
2936 /* Try to calculate the final value of the giv, the value it will have at
2937 the end of the loop. If we can do it, return that value. */
2938
2939 rtx
2940 final_giv_value (v, loop_start, loop_end)
2941 struct induction *v;
2942 rtx loop_start, loop_end;
2943 {
2944 struct iv_class *bl;
2945 rtx insn;
2946 rtx increment, tem;
2947 rtx insert_before, seq;
2948
2949 bl = reg_biv_class[REGNO (v->src_reg)];
2950
2951 /* The final value for givs which depend on reversed bivs must be calculated
2952 differently than for ordinary givs. In this case, there is already an
2953 insn after the loop which sets this giv's final value (if necessary),
2954 and there are no other loop exits, so we can return any value. */
2955 if (bl->reversed)
2956 {
2957 if (loop_dump_stream)
2958 fprintf (loop_dump_stream,
2959 "Final giv value for %d, depends on reversed biv\n",
2960 REGNO (v->dest_reg));
2961 return const0_rtx;
2962 }
2963
2964 /* Try to calculate the final value as a function of the biv it depends
2965 upon. The only exit from the loop must be the fall through at the bottom
2966 (otherwise it may not have its final value when the loop exits). */
2967
2968 /* ??? Can calculate the final giv value by subtracting off the
2969 extra biv increments times the giv's mult_val. The loop must have
2970 only one exit for this to work, but the loop iterations does not need
2971 to be known. */
2972
2973 if (loop_n_iterations != 0
2974 && ! loop_number_exit_labels[uid_loop_num[INSN_UID (loop_start)]])
2975 {
2976 /* ?? It is tempting to use the biv's value here since these insns will
2977 be put after the loop, and hence the biv will have its final value
2978 then. However, this fails if the biv is subsequently eliminated.
2979 Perhaps determine whether biv's are eliminable before trying to
2980 determine whether giv's are replaceable so that we can use the
2981 biv value here if it is not eliminable. */
2982
2983 increment = biv_total_increment (bl, loop_start, loop_end);
2984
2985 if (increment && invariant_p (increment))
2986 {
2987 /* Can calculate the loop exit value of its biv as
2988 (loop_n_iterations * increment) + initial_value */
2989
2990 /* The loop exit value of the giv is then
2991 (final_biv_value - extra increments) * mult_val + add_val.
2992 The extra increments are any increments to the biv which
2993 occur in the loop after the giv's value is calculated.
2994 We must search from the insn that sets the giv to the end
2995 of the loop to calculate this value. */
2996
2997 insert_before = NEXT_INSN (loop_end);
2998
2999 /* Put the final biv value in tem. */
3000 tem = gen_reg_rtx (bl->biv->mode);
3001 emit_iv_add_mult (increment, GEN_INT (loop_n_iterations),
3002 bl->initial_value, tem, insert_before);
3003
3004 /* Subtract off extra increments as we find them. */
3005 for (insn = NEXT_INSN (v->insn); insn != loop_end;
3006 insn = NEXT_INSN (insn))
3007 {
3008 struct induction *biv;
3009
3010 for (biv = bl->biv; biv; biv = biv->next_iv)
3011 if (biv->insn == insn)
3012 {
3013 start_sequence ();
3014 tem = expand_binop (GET_MODE (tem), sub_optab, tem,
3015 biv->add_val, NULL_RTX, 0,
3016 OPTAB_LIB_WIDEN);
3017 seq = gen_sequence ();
3018 end_sequence ();
3019 emit_insn_before (seq, insert_before);
3020 }
3021 }
3022
3023 /* Now calculate the giv's final value. */
3024 emit_iv_add_mult (tem, v->mult_val, v->add_val, tem,
3025 insert_before);
3026
3027 if (loop_dump_stream)
3028 fprintf (loop_dump_stream,
3029 "Final giv value for %d, calc from biv's value.\n",
3030 REGNO (v->dest_reg));
3031
3032 return tem;
3033 }
3034 }
3035
3036 /* Replaceable giv's should never reach here. */
3037 if (v->replaceable)
3038 abort ();
3039
3040 /* Check to see if the biv is dead at all loop exits. */
3041 if (reg_dead_after_loop (v->dest_reg, loop_start, loop_end))
3042 {
3043 if (loop_dump_stream)
3044 fprintf (loop_dump_stream,
3045 "Final giv value for %d, giv dead after loop exit.\n",
3046 REGNO (v->dest_reg));
3047
3048 return const0_rtx;
3049 }
3050
3051 return 0;
3052 }
3053
3054
3055 /* Calculate the number of loop iterations. Returns the exact number of loop
3056 iterations if it can be calculated, otherwise returns zero. */
3057
3058 unsigned HOST_WIDE_INT
3059 loop_iterations (loop_start, loop_end)
3060 rtx loop_start, loop_end;
3061 {
3062 rtx comparison, comparison_value;
3063 rtx iteration_var, initial_value, increment, final_value;
3064 enum rtx_code comparison_code;
3065 HOST_WIDE_INT i;
3066 int increment_dir;
3067 int unsigned_compare, compare_dir, final_larger;
3068 unsigned long tempu;
3069 rtx last_loop_insn;
3070
3071 /* First find the iteration variable. If the last insn is a conditional
3072 branch, and the insn before tests a register value, make that the
3073 iteration variable. */
3074
3075 loop_initial_value = 0;
3076 loop_increment = 0;
3077 loop_final_value = 0;
3078 loop_iteration_var = 0;
3079
3080 last_loop_insn = prev_nonnote_insn (loop_end);
3081
3082 comparison = get_condition_for_loop (last_loop_insn);
3083 if (comparison == 0)
3084 {
3085 if (loop_dump_stream)
3086 fprintf (loop_dump_stream,
3087 "Loop unrolling: No final conditional branch found.\n");
3088 return 0;
3089 }
3090
3091 /* ??? Get_condition may switch position of induction variable and
3092 invariant register when it canonicalizes the comparison. */
3093
3094 comparison_code = GET_CODE (comparison);
3095 iteration_var = XEXP (comparison, 0);
3096 comparison_value = XEXP (comparison, 1);
3097
3098 if (GET_CODE (iteration_var) != REG)
3099 {
3100 if (loop_dump_stream)
3101 fprintf (loop_dump_stream,
3102 "Loop unrolling: Comparison not against register.\n");
3103 return 0;
3104 }
3105
3106 /* Loop iterations is always called before any new registers are created
3107 now, so this should never occur. */
3108
3109 if (REGNO (iteration_var) >= max_reg_before_loop)
3110 abort ();
3111
3112 iteration_info (iteration_var, &initial_value, &increment,
3113 loop_start, loop_end);
3114 if (initial_value == 0)
3115 /* iteration_info already printed a message. */
3116 return 0;
3117
3118 if (increment == 0)
3119 {
3120 if (loop_dump_stream)
3121 fprintf (loop_dump_stream,
3122 "Loop unrolling: Increment value can't be calculated.\n");
3123 return 0;
3124 }
3125 if (GET_CODE (increment) != CONST_INT)
3126 {
3127 if (loop_dump_stream)
3128 fprintf (loop_dump_stream,
3129 "Loop unrolling: Increment value not constant.\n");
3130 return 0;
3131 }
3132 if (GET_CODE (initial_value) != CONST_INT)
3133 {
3134 if (loop_dump_stream)
3135 fprintf (loop_dump_stream,
3136 "Loop unrolling: Initial value not constant.\n");
3137 return 0;
3138 }
3139
3140 /* If the comparison value is an invariant register, then try to find
3141 its value from the insns before the start of the loop. */
3142
3143 if (GET_CODE (comparison_value) == REG && invariant_p (comparison_value))
3144 {
3145 rtx insn, set;
3146
3147 for (insn = PREV_INSN (loop_start); insn ; insn = PREV_INSN (insn))
3148 {
3149 if (GET_CODE (insn) == CODE_LABEL)
3150 break;
3151
3152 else if (GET_RTX_CLASS (GET_CODE (insn)) == 'i'
3153 && reg_set_p (comparison_value, insn))
3154 {
3155 /* We found the last insn before the loop that sets the register.
3156 If it sets the entire register, and has a REG_EQUAL note,
3157 then use the value of the REG_EQUAL note. */
3158 if ((set = single_set (insn))
3159 && (SET_DEST (set) == comparison_value))
3160 {
3161 rtx note = find_reg_note (insn, REG_EQUAL, NULL_RTX);
3162
3163 /* Only use the REG_EQUAL note if it is a constant.
3164 Other things, divide in particular, will cause
3165 problems later if we use them. */
3166 if (note && GET_CODE (XEXP (note, 0)) != EXPR_LIST
3167 && CONSTANT_P (XEXP (note, 0)))
3168 comparison_value = XEXP (note, 0);
3169 }
3170 break;
3171 }
3172 }
3173 }
3174
3175 final_value = approx_final_value (comparison_code, comparison_value,
3176 &unsigned_compare, &compare_dir);
3177
3178 /* Save the calculated values describing this loop's bounds, in case
3179 precondition_loop_p will need them later. These values can not be
3180 recalculated inside precondition_loop_p because strength reduction
3181 optimizations may obscure the loop's structure. */
3182
3183 loop_iteration_var = iteration_var;
3184 loop_initial_value = initial_value;
3185 loop_increment = increment;
3186 loop_final_value = final_value;
3187
3188 if (final_value == 0)
3189 {
3190 if (loop_dump_stream)
3191 fprintf (loop_dump_stream,
3192 "Loop unrolling: EQ comparison loop.\n");
3193 return 0;
3194 }
3195 else if (GET_CODE (final_value) != CONST_INT)
3196 {
3197 if (loop_dump_stream)
3198 fprintf (loop_dump_stream,
3199 "Loop unrolling: Final value not constant.\n");
3200 return 0;
3201 }
3202
3203 /* ?? Final value and initial value do not have to be constants.
3204 Only their difference has to be constant. When the iteration variable
3205 is an array address, the final value and initial value might both
3206 be addresses with the same base but different constant offsets.
3207 Final value must be invariant for this to work.
3208
3209 To do this, need some way to find the values of registers which are
3210 invariant. */
3211
3212 /* Final_larger is 1 if final larger, 0 if they are equal, otherwise -1. */
3213 if (unsigned_compare)
3214 final_larger
3215 = ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3216 > (unsigned HOST_WIDE_INT) INTVAL (initial_value))
3217 - ((unsigned HOST_WIDE_INT) INTVAL (final_value)
3218 < (unsigned HOST_WIDE_INT) INTVAL (initial_value));
3219 else
3220 final_larger = (INTVAL (final_value) > INTVAL (initial_value))
3221 - (INTVAL (final_value) < INTVAL (initial_value));
3222
3223 if (INTVAL (increment) > 0)
3224 increment_dir = 1;
3225 else if (INTVAL (increment) == 0)
3226 increment_dir = 0;
3227 else
3228 increment_dir = -1;
3229
3230 /* There are 27 different cases: compare_dir = -1, 0, 1;
3231 final_larger = -1, 0, 1; increment_dir = -1, 0, 1.
3232 There are 4 normal cases, 4 reverse cases (where the iteration variable
3233 will overflow before the loop exits), 4 infinite loop cases, and 15
3234 immediate exit (0 or 1 iteration depending on loop type) cases.
3235 Only try to optimize the normal cases. */
3236
3237 /* (compare_dir/final_larger/increment_dir)
3238 Normal cases: (0/-1/-1), (0/1/1), (-1/-1/-1), (1/1/1)
3239 Reverse cases: (0/-1/1), (0/1/-1), (-1/-1/1), (1/1/-1)
3240 Infinite loops: (0/-1/0), (0/1/0), (-1/-1/0), (1/1/0)
3241 Immediate exit: (0/0/X), (-1/0/X), (-1/1/X), (1/0/X), (1/-1/X) */
3242
3243 /* ?? If the meaning of reverse loops (where the iteration variable
3244 will overflow before the loop exits) is undefined, then could
3245 eliminate all of these special checks, and just always assume
3246 the loops are normal/immediate/infinite. Note that this means
3247 the sign of increment_dir does not have to be known. Also,
3248 since it does not really hurt if immediate exit loops or infinite loops
3249 are optimized, then that case could be ignored also, and hence all
3250 loops can be optimized.
3251
3252 According to ANSI Spec, the reverse loop case result is undefined,
3253 because the action on overflow is undefined.
3254
3255 See also the special test for NE loops below. */
3256
3257 if (final_larger == increment_dir && final_larger != 0
3258 && (final_larger == compare_dir || compare_dir == 0))
3259 /* Normal case. */
3260 ;
3261 else
3262 {
3263 if (loop_dump_stream)
3264 fprintf (loop_dump_stream,
3265 "Loop unrolling: Not normal loop.\n");
3266 return 0;
3267 }
3268
3269 /* Calculate the number of iterations, final_value is only an approximation,
3270 so correct for that. Note that tempu and loop_n_iterations are
3271 unsigned, because they can be as large as 2^n - 1. */
3272
3273 i = INTVAL (increment);
3274 if (i > 0)
3275 tempu = INTVAL (final_value) - INTVAL (initial_value);
3276 else if (i < 0)
3277 {
3278 tempu = INTVAL (initial_value) - INTVAL (final_value);
3279 i = -i;
3280 }
3281 else
3282 abort ();
3283
3284 /* For NE tests, make sure that the iteration variable won't miss the
3285 final value. If tempu mod i is not zero, then the iteration variable
3286 will overflow before the loop exits, and we can not calculate the
3287 number of iterations. */
3288 if (compare_dir == 0 && (tempu % i) != 0)
3289 return 0;
3290
3291 return tempu / i + ((tempu % i) != 0);
3292 }
3293
3294 /* Replace uses of split bivs with their split psuedo register. This is
3295 for original instructions which remain after loop unrolling without
3296 copying. */
3297
3298 static rtx
3299 remap_split_bivs (x)
3300 rtx x;
3301 {
3302 register enum rtx_code code;
3303 register int i;
3304 register char *fmt;
3305
3306 if (x == 0)
3307 return x;
3308
3309 code = GET_CODE (x);
3310 switch (code)
3311 {
3312 case SCRATCH:
3313 case PC:
3314 case CC0:
3315 case CONST_INT:
3316 case CONST_DOUBLE:
3317 case CONST:
3318 case SYMBOL_REF:
3319 case LABEL_REF:
3320 return x;
3321
3322 case REG:
3323 #if 0
3324 /* If non-reduced/final-value givs were split, then this would also
3325 have to remap those givs also. */
3326 #endif
3327 if (REGNO (x) < max_reg_before_loop
3328 && reg_iv_type[REGNO (x)] == BASIC_INDUCT)
3329 return reg_biv_class[REGNO (x)]->biv->src_reg;
3330 }
3331
3332 fmt = GET_RTX_FORMAT (code);
3333 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
3334 {
3335 if (fmt[i] == 'e')
3336 XEXP (x, i) = remap_split_bivs (XEXP (x, i));
3337 if (fmt[i] == 'E')
3338 {
3339 register int j;
3340 for (j = 0; j < XVECLEN (x, i); j++)
3341 XVECEXP (x, i, j) = remap_split_bivs (XVECEXP (x, i, j));
3342 }
3343 }
3344 return x;
3345 }