2a81e3676cc5a0c9eb205fd2d1696d304b2caf72
[gcc.git] / gcc / unwind-dw2-fde.c
1 /* Subroutines needed for unwinding stack frames for exception handling. */
2 /* Copyright (C) 1997, 1998, 1999, 2000, 2001, 2002, 2003 Free Software Foundation, Inc.
3 Contributed by Jason Merrill <jason@cygnus.com>.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it under
8 the terms of the GNU General Public License as published by the Free
9 Software Foundation; either version 2, or (at your option) any later
10 version.
11
12 In addition to the permissions in the GNU General Public License, the
13 Free Software Foundation gives you unlimited permission to link the
14 compiled version of this file into combinations with other programs,
15 and to distribute those combinations without any restriction coming
16 from the use of this file. (The General Public License restrictions
17 do apply in other respects; for example, they cover modification of
18 the file, and distribution when not linked into a combine
19 executable.)
20
21 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
22 WARRANTY; without even the implied warranty of MERCHANTABILITY or
23 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
24 for more details.
25
26 You should have received a copy of the GNU General Public License
27 along with GCC; see the file COPYING. If not, write to the Free
28 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
29 02111-1307, USA. */
30
31 #ifndef _Unwind_Find_FDE
32 #include "tconfig.h"
33 #include "tsystem.h"
34 #include "coretypes.h"
35 #include "tm.h"
36 #include "dwarf2.h"
37 #include "unwind.h"
38 #define NO_BASE_OF_ENCODED_VALUE
39 #include "unwind-pe.h"
40 #include "unwind-dw2-fde.h"
41 #include "gthr.h"
42 #endif
43
44 /* The unseen_objects list contains objects that have been registered
45 but not yet categorized in any way. The seen_objects list has had
46 it's pc_begin and count fields initialized at minimum, and is sorted
47 by decreasing value of pc_begin. */
48 static struct object *unseen_objects;
49 static struct object *seen_objects;
50
51 #ifdef __GTHREAD_MUTEX_INIT
52 static __gthread_mutex_t object_mutex = __GTHREAD_MUTEX_INIT;
53 #else
54 static __gthread_mutex_t object_mutex;
55 #endif
56
57 #ifdef __GTHREAD_MUTEX_INIT_FUNCTION
58 static void
59 init_object_mutex (void)
60 {
61 __GTHREAD_MUTEX_INIT_FUNCTION (&object_mutex);
62 }
63
64 static void
65 init_object_mutex_once (void)
66 {
67 static __gthread_once_t once = __GTHREAD_ONCE_INIT;
68 __gthread_once (&once, init_object_mutex);
69 }
70 #else
71 #define init_object_mutex_once()
72 #endif
73
74 /* Called from crtbegin.o to register the unwind info for an object. */
75
76 void
77 __register_frame_info_bases (const void *begin, struct object *ob,
78 void *tbase, void *dbase)
79 {
80 /* If .eh_frame is empty, don't register at all. */
81 if ((uword *) begin == 0 || *(uword *) begin == 0)
82 return;
83
84 ob->pc_begin = (void *)-1;
85 ob->tbase = tbase;
86 ob->dbase = dbase;
87 ob->u.single = begin;
88 ob->s.i = 0;
89 ob->s.b.encoding = DW_EH_PE_omit;
90 #ifdef DWARF2_OBJECT_END_PTR_EXTENSION
91 ob->fde_end = NULL;
92 #endif
93
94 init_object_mutex_once ();
95 __gthread_mutex_lock (&object_mutex);
96
97 ob->next = unseen_objects;
98 unseen_objects = ob;
99
100 __gthread_mutex_unlock (&object_mutex);
101 }
102
103 void
104 __register_frame_info (const void *begin, struct object *ob)
105 {
106 __register_frame_info_bases (begin, ob, 0, 0);
107 }
108
109 void
110 __register_frame (void *begin)
111 {
112 struct object *ob;
113
114 /* If .eh_frame is empty, don't register at all. */
115 if (*(uword *) begin == 0)
116 return;
117
118 ob = malloc (sizeof (struct object));
119 __register_frame_info (begin, ob);
120 }
121
122 /* Similar, but BEGIN is actually a pointer to a table of unwind entries
123 for different translation units. Called from the file generated by
124 collect2. */
125
126 void
127 __register_frame_info_table_bases (void *begin, struct object *ob,
128 void *tbase, void *dbase)
129 {
130 ob->pc_begin = (void *)-1;
131 ob->tbase = tbase;
132 ob->dbase = dbase;
133 ob->u.array = begin;
134 ob->s.i = 0;
135 ob->s.b.from_array = 1;
136 ob->s.b.encoding = DW_EH_PE_omit;
137
138 init_object_mutex_once ();
139 __gthread_mutex_lock (&object_mutex);
140
141 ob->next = unseen_objects;
142 unseen_objects = ob;
143
144 __gthread_mutex_unlock (&object_mutex);
145 }
146
147 void
148 __register_frame_info_table (void *begin, struct object *ob)
149 {
150 __register_frame_info_table_bases (begin, ob, 0, 0);
151 }
152
153 void
154 __register_frame_table (void *begin)
155 {
156 struct object *ob = malloc (sizeof (struct object));
157 __register_frame_info_table (begin, ob);
158 }
159
160 /* Called from crtbegin.o to deregister the unwind info for an object. */
161 /* ??? Glibc has for a while now exported __register_frame_info and
162 __deregister_frame_info. If we call __register_frame_info_bases
163 from crtbegin (wherein it is declared weak), and this object does
164 not get pulled from libgcc.a for other reasons, then the
165 invocation of __deregister_frame_info will be resolved from glibc.
166 Since the registration did not happen there, we'll abort.
167
168 Therefore, declare a new deregistration entry point that does the
169 exact same thing, but will resolve to the same library as
170 implements __register_frame_info_bases. */
171
172 void *
173 __deregister_frame_info_bases (const void *begin)
174 {
175 struct object **p;
176 struct object *ob = 0;
177
178 /* If .eh_frame is empty, we haven't registered. */
179 if ((uword *) begin == 0 || *(uword *) begin == 0)
180 return ob;
181
182 init_object_mutex_once ();
183 __gthread_mutex_lock (&object_mutex);
184
185 for (p = &unseen_objects; *p ; p = &(*p)->next)
186 if ((*p)->u.single == begin)
187 {
188 ob = *p;
189 *p = ob->next;
190 goto out;
191 }
192
193 for (p = &seen_objects; *p ; p = &(*p)->next)
194 if ((*p)->s.b.sorted)
195 {
196 if ((*p)->u.sort->orig_data == begin)
197 {
198 ob = *p;
199 *p = ob->next;
200 free (ob->u.sort);
201 goto out;
202 }
203 }
204 else
205 {
206 if ((*p)->u.single == begin)
207 {
208 ob = *p;
209 *p = ob->next;
210 goto out;
211 }
212 }
213
214 __gthread_mutex_unlock (&object_mutex);
215 abort ();
216
217 out:
218 __gthread_mutex_unlock (&object_mutex);
219 return (void *) ob;
220 }
221
222 void *
223 __deregister_frame_info (const void *begin)
224 {
225 return __deregister_frame_info_bases (begin);
226 }
227
228 void
229 __deregister_frame (void *begin)
230 {
231 /* If .eh_frame is empty, we haven't registered. */
232 if (*(uword *) begin != 0)
233 free (__deregister_frame_info (begin));
234 }
235
236 \f
237 /* Like base_of_encoded_value, but take the base from a struct object
238 instead of an _Unwind_Context. */
239
240 static _Unwind_Ptr
241 base_from_object (unsigned char encoding, struct object *ob)
242 {
243 if (encoding == DW_EH_PE_omit)
244 return 0;
245
246 switch (encoding & 0x70)
247 {
248 case DW_EH_PE_absptr:
249 case DW_EH_PE_pcrel:
250 case DW_EH_PE_aligned:
251 return 0;
252
253 case DW_EH_PE_textrel:
254 return (_Unwind_Ptr) ob->tbase;
255 case DW_EH_PE_datarel:
256 return (_Unwind_Ptr) ob->dbase;
257 }
258 abort ();
259 }
260
261 /* Return the FDE pointer encoding from the CIE. */
262 /* ??? This is a subset of extract_cie_info from unwind-dw2.c. */
263
264 static int
265 get_cie_encoding (const struct dwarf_cie *cie)
266 {
267 const unsigned char *aug, *p;
268 _Unwind_Ptr dummy;
269 _Unwind_Word utmp;
270 _Unwind_Sword stmp;
271
272 aug = cie->augmentation;
273 if (aug[0] != 'z')
274 return DW_EH_PE_absptr;
275
276 p = aug + strlen (aug) + 1; /* Skip the augmentation string. */
277 p = read_uleb128 (p, &utmp); /* Skip code alignment. */
278 p = read_sleb128 (p, &stmp); /* Skip data alignment. */
279 if (cie->version == 1) /* Skip return address column. */
280 p++;
281 else
282 p = read_uleb128 (p, &utmp);
283
284 aug++; /* Skip 'z' */
285 p = read_uleb128 (p, &utmp); /* Skip augmentation length. */
286 while (1)
287 {
288 /* This is what we're looking for. */
289 if (*aug == 'R')
290 return *p;
291 /* Personality encoding and pointer. */
292 else if (*aug == 'P')
293 {
294 /* ??? Avoid dereferencing indirect pointers, since we're
295 faking the base address. Gotta keep DW_EH_PE_aligned
296 intact, however. */
297 p = read_encoded_value_with_base (*p & 0x7F, 0, p + 1, &dummy);
298 }
299 /* LSDA encoding. */
300 else if (*aug == 'L')
301 p++;
302 /* Otherwise end of string, or unknown augmentation. */
303 else
304 return DW_EH_PE_absptr;
305 aug++;
306 }
307 }
308
309 static inline int
310 get_fde_encoding (const struct dwarf_fde *f)
311 {
312 return get_cie_encoding (get_cie (f));
313 }
314
315 \f
316 /* Sorting an array of FDEs by address.
317 (Ideally we would have the linker sort the FDEs so we don't have to do
318 it at run time. But the linkers are not yet prepared for this.) */
319
320 /* Comparison routines. Three variants of increasing complexity. */
321
322 static int
323 fde_unencoded_compare (struct object *ob __attribute__((unused)),
324 const fde *x, const fde *y)
325 {
326 _Unwind_Ptr x_ptr = *(_Unwind_Ptr *) x->pc_begin;
327 _Unwind_Ptr y_ptr = *(_Unwind_Ptr *) y->pc_begin;
328
329 if (x_ptr > y_ptr)
330 return 1;
331 if (x_ptr < y_ptr)
332 return -1;
333 return 0;
334 }
335
336 static int
337 fde_single_encoding_compare (struct object *ob, const fde *x, const fde *y)
338 {
339 _Unwind_Ptr base, x_ptr, y_ptr;
340
341 base = base_from_object (ob->s.b.encoding, ob);
342 read_encoded_value_with_base (ob->s.b.encoding, base, x->pc_begin, &x_ptr);
343 read_encoded_value_with_base (ob->s.b.encoding, base, y->pc_begin, &y_ptr);
344
345 if (x_ptr > y_ptr)
346 return 1;
347 if (x_ptr < y_ptr)
348 return -1;
349 return 0;
350 }
351
352 static int
353 fde_mixed_encoding_compare (struct object *ob, const fde *x, const fde *y)
354 {
355 int x_encoding, y_encoding;
356 _Unwind_Ptr x_ptr, y_ptr;
357
358 x_encoding = get_fde_encoding (x);
359 read_encoded_value_with_base (x_encoding, base_from_object (x_encoding, ob),
360 x->pc_begin, &x_ptr);
361
362 y_encoding = get_fde_encoding (y);
363 read_encoded_value_with_base (y_encoding, base_from_object (y_encoding, ob),
364 y->pc_begin, &y_ptr);
365
366 if (x_ptr > y_ptr)
367 return 1;
368 if (x_ptr < y_ptr)
369 return -1;
370 return 0;
371 }
372
373 typedef int (*fde_compare_t) (struct object *, const fde *, const fde *);
374
375
376 /* This is a special mix of insertion sort and heap sort, optimized for
377 the data sets that actually occur. They look like
378 101 102 103 127 128 105 108 110 190 111 115 119 125 160 126 129 130.
379 I.e. a linearly increasing sequence (coming from functions in the text
380 section), with additionally a few unordered elements (coming from functions
381 in gnu_linkonce sections) whose values are higher than the values in the
382 surrounding linear sequence (but not necessarily higher than the values
383 at the end of the linear sequence!).
384 The worst-case total run time is O(N) + O(n log (n)), where N is the
385 total number of FDEs and n is the number of erratic ones. */
386
387 struct fde_accumulator
388 {
389 struct fde_vector *linear;
390 struct fde_vector *erratic;
391 };
392
393 static inline int
394 start_fde_sort (struct fde_accumulator *accu, size_t count)
395 {
396 size_t size;
397 if (! count)
398 return 0;
399
400 size = sizeof (struct fde_vector) + sizeof (const fde *) * count;
401 if ((accu->linear = malloc (size)))
402 {
403 accu->linear->count = 0;
404 if ((accu->erratic = malloc (size)))
405 accu->erratic->count = 0;
406 return 1;
407 }
408 else
409 return 0;
410 }
411
412 static inline void
413 fde_insert (struct fde_accumulator *accu, const fde *this_fde)
414 {
415 if (accu->linear)
416 accu->linear->array[accu->linear->count++] = this_fde;
417 }
418
419 /* Split LINEAR into a linear sequence with low values and an erratic
420 sequence with high values, put the linear one (of longest possible
421 length) into LINEAR and the erratic one into ERRATIC. This is O(N).
422
423 Because the longest linear sequence we are trying to locate within the
424 incoming LINEAR array can be interspersed with (high valued) erratic
425 entries. We construct a chain indicating the sequenced entries.
426 To avoid having to allocate this chain, we overlay it onto the space of
427 the ERRATIC array during construction. A final pass iterates over the
428 chain to determine what should be placed in the ERRATIC array, and
429 what is the linear sequence. This overlay is safe from aliasing. */
430
431 static inline void
432 fde_split (struct object *ob, fde_compare_t fde_compare,
433 struct fde_vector *linear, struct fde_vector *erratic)
434 {
435 static const fde *marker;
436 size_t count = linear->count;
437 const fde **chain_end = &marker;
438 size_t i, j, k;
439
440 /* This should optimize out, but it is wise to make sure this assumption
441 is correct. Should these have different sizes, we cannot cast between
442 them and the overlaying onto ERRATIC will not work. */
443 if (sizeof (const fde *) != sizeof (const fde **))
444 abort ();
445
446 for (i = 0; i < count; i++)
447 {
448 const fde **probe;
449
450 for (probe = chain_end;
451 probe != &marker && fde_compare (ob, linear->array[i], *probe) < 0;
452 probe = chain_end)
453 {
454 chain_end = (const fde **) erratic->array[probe - linear->array];
455 erratic->array[probe - linear->array] = NULL;
456 }
457 erratic->array[i] = (const fde *) chain_end;
458 chain_end = &linear->array[i];
459 }
460
461 /* Each entry in LINEAR which is part of the linear sequence we have
462 discovered will correspond to a non-NULL entry in the chain we built in
463 the ERRATIC array. */
464 for (i = j = k = 0; i < count; i++)
465 if (erratic->array[i])
466 linear->array[j++] = linear->array[i];
467 else
468 erratic->array[k++] = linear->array[i];
469 linear->count = j;
470 erratic->count = k;
471 }
472
473 #define SWAP(x,y) do { const fde * tmp = x; x = y; y = tmp; } while (0)
474
475 /* Convert a semi-heap to a heap. A semi-heap is a heap except possibly
476 for the first (root) node; push it down to its rightful place. */
477
478 static void
479 frame_downheap (struct object *ob, fde_compare_t fde_compare, const fde **a,
480 int lo, int hi)
481 {
482 int i, j;
483
484 for (i = lo, j = 2*i+1;
485 j < hi;
486 j = 2*i+1)
487 {
488 if (j+1 < hi && fde_compare (ob, a[j], a[j+1]) < 0)
489 ++j;
490
491 if (fde_compare (ob, a[i], a[j]) < 0)
492 {
493 SWAP (a[i], a[j]);
494 i = j;
495 }
496 else
497 break;
498 }
499 }
500
501 /* This is O(n log(n)). BSD/OS defines heapsort in stdlib.h, so we must
502 use a name that does not conflict. */
503
504 static void
505 frame_heapsort (struct object *ob, fde_compare_t fde_compare,
506 struct fde_vector *erratic)
507 {
508 /* For a description of this algorithm, see:
509 Samuel P. Harbison, Guy L. Steele Jr.: C, a reference manual, 2nd ed.,
510 p. 60-61. */
511 const fde ** a = erratic->array;
512 /* A portion of the array is called a "heap" if for all i>=0:
513 If i and 2i+1 are valid indices, then a[i] >= a[2i+1].
514 If i and 2i+2 are valid indices, then a[i] >= a[2i+2]. */
515 size_t n = erratic->count;
516 int m;
517
518 /* Expand our heap incrementally from the end of the array, heapifying
519 each resulting semi-heap as we go. After each step, a[m] is the top
520 of a heap. */
521 for (m = n/2-1; m >= 0; --m)
522 frame_downheap (ob, fde_compare, a, m, n);
523
524 /* Shrink our heap incrementally from the end of the array, first
525 swapping out the largest element a[0] and then re-heapifying the
526 resulting semi-heap. After each step, a[0..m) is a heap. */
527 for (m = n-1; m >= 1; --m)
528 {
529 SWAP (a[0], a[m]);
530 frame_downheap (ob, fde_compare, a, 0, m);
531 }
532 #undef SWAP
533 }
534
535 /* Merge V1 and V2, both sorted, and put the result into V1. */
536 static inline void
537 fde_merge (struct object *ob, fde_compare_t fde_compare,
538 struct fde_vector *v1, struct fde_vector *v2)
539 {
540 size_t i1, i2;
541 const fde * fde2;
542
543 i2 = v2->count;
544 if (i2 > 0)
545 {
546 i1 = v1->count;
547 do
548 {
549 i2--;
550 fde2 = v2->array[i2];
551 while (i1 > 0 && fde_compare (ob, v1->array[i1-1], fde2) > 0)
552 {
553 v1->array[i1+i2] = v1->array[i1-1];
554 i1--;
555 }
556 v1->array[i1+i2] = fde2;
557 }
558 while (i2 > 0);
559 v1->count += v2->count;
560 }
561 }
562
563 static inline void
564 end_fde_sort (struct object *ob, struct fde_accumulator *accu, size_t count)
565 {
566 fde_compare_t fde_compare;
567
568 if (accu->linear && accu->linear->count != count)
569 abort ();
570
571 if (ob->s.b.mixed_encoding)
572 fde_compare = fde_mixed_encoding_compare;
573 else if (ob->s.b.encoding == DW_EH_PE_absptr)
574 fde_compare = fde_unencoded_compare;
575 else
576 fde_compare = fde_single_encoding_compare;
577
578 if (accu->erratic)
579 {
580 fde_split (ob, fde_compare, accu->linear, accu->erratic);
581 if (accu->linear->count + accu->erratic->count != count)
582 abort ();
583 frame_heapsort (ob, fde_compare, accu->erratic);
584 fde_merge (ob, fde_compare, accu->linear, accu->erratic);
585 free (accu->erratic);
586 }
587 else
588 {
589 /* We've not managed to malloc an erratic array,
590 so heap sort in the linear one. */
591 frame_heapsort (ob, fde_compare, accu->linear);
592 }
593 }
594
595 \f
596 /* Update encoding, mixed_encoding, and pc_begin for OB for the
597 fde array beginning at THIS_FDE. Return the number of fdes
598 encountered along the way. */
599
600 static size_t
601 classify_object_over_fdes (struct object *ob, const fde *this_fde)
602 {
603 const struct dwarf_cie *last_cie = 0;
604 size_t count = 0;
605 int encoding = DW_EH_PE_absptr;
606 _Unwind_Ptr base = 0;
607
608 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
609 {
610 const struct dwarf_cie *this_cie;
611 _Unwind_Ptr mask, pc_begin;
612
613 /* Skip CIEs. */
614 if (this_fde->CIE_delta == 0)
615 continue;
616
617 /* Determine the encoding for this FDE. Note mixed encoded
618 objects for later. */
619 this_cie = get_cie (this_fde);
620 if (this_cie != last_cie)
621 {
622 last_cie = this_cie;
623 encoding = get_cie_encoding (this_cie);
624 base = base_from_object (encoding, ob);
625 if (ob->s.b.encoding == DW_EH_PE_omit)
626 ob->s.b.encoding = encoding;
627 else if (ob->s.b.encoding != encoding)
628 ob->s.b.mixed_encoding = 1;
629 }
630
631 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
632 &pc_begin);
633
634 /* Take care to ignore link-once functions that were removed.
635 In these cases, the function address will be NULL, but if
636 the encoding is smaller than a pointer a true NULL may not
637 be representable. Assume 0 in the representable bits is NULL. */
638 mask = size_of_encoded_value (encoding);
639 if (mask < sizeof (void *))
640 mask = (1L << (mask << 3)) - 1;
641 else
642 mask = -1;
643
644 if ((pc_begin & mask) == 0)
645 continue;
646
647 count += 1;
648 if ((void *) pc_begin < ob->pc_begin)
649 ob->pc_begin = (void *) pc_begin;
650 }
651
652 return count;
653 }
654
655 static void
656 add_fdes (struct object *ob, struct fde_accumulator *accu, const fde *this_fde)
657 {
658 const struct dwarf_cie *last_cie = 0;
659 int encoding = ob->s.b.encoding;
660 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
661
662 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
663 {
664 const struct dwarf_cie *this_cie;
665
666 /* Skip CIEs. */
667 if (this_fde->CIE_delta == 0)
668 continue;
669
670 if (ob->s.b.mixed_encoding)
671 {
672 /* Determine the encoding for this FDE. Note mixed encoded
673 objects for later. */
674 this_cie = get_cie (this_fde);
675 if (this_cie != last_cie)
676 {
677 last_cie = this_cie;
678 encoding = get_cie_encoding (this_cie);
679 base = base_from_object (encoding, ob);
680 }
681 }
682
683 if (encoding == DW_EH_PE_absptr)
684 {
685 if (*(_Unwind_Ptr *) this_fde->pc_begin == 0)
686 continue;
687 }
688 else
689 {
690 _Unwind_Ptr pc_begin, mask;
691
692 read_encoded_value_with_base (encoding, base, this_fde->pc_begin,
693 &pc_begin);
694
695 /* Take care to ignore link-once functions that were removed.
696 In these cases, the function address will be NULL, but if
697 the encoding is smaller than a pointer a true NULL may not
698 be representable. Assume 0 in the representable bits is NULL. */
699 mask = size_of_encoded_value (encoding);
700 if (mask < sizeof (void *))
701 mask = (1L << (mask << 3)) - 1;
702 else
703 mask = -1;
704
705 if ((pc_begin & mask) == 0)
706 continue;
707 }
708
709 fde_insert (accu, this_fde);
710 }
711 }
712
713 /* Set up a sorted array of pointers to FDEs for a loaded object. We
714 count up the entries before allocating the array because it's likely to
715 be faster. We can be called multiple times, should we have failed to
716 allocate a sorted fde array on a previous occasion. */
717
718 static inline void
719 init_object (struct object* ob)
720 {
721 struct fde_accumulator accu;
722 size_t count;
723
724 count = ob->s.b.count;
725 if (count == 0)
726 {
727 if (ob->s.b.from_array)
728 {
729 fde **p = ob->u.array;
730 for (count = 0; *p; ++p)
731 count += classify_object_over_fdes (ob, *p);
732 }
733 else
734 count = classify_object_over_fdes (ob, ob->u.single);
735
736 /* The count field we have in the main struct object is somewhat
737 limited, but should suffice for virtually all cases. If the
738 counted value doesn't fit, re-write a zero. The worst that
739 happens is that we re-count next time -- admittedly non-trivial
740 in that this implies some 2M fdes, but at least we function. */
741 ob->s.b.count = count;
742 if (ob->s.b.count != count)
743 ob->s.b.count = 0;
744 }
745
746 if (!start_fde_sort (&accu, count))
747 return;
748
749 if (ob->s.b.from_array)
750 {
751 fde **p;
752 for (p = ob->u.array; *p; ++p)
753 add_fdes (ob, &accu, *p);
754 }
755 else
756 add_fdes (ob, &accu, ob->u.single);
757
758 end_fde_sort (ob, &accu, count);
759
760 /* Save the original fde pointer, since this is the key by which the
761 DSO will deregister the object. */
762 accu.linear->orig_data = ob->u.single;
763 ob->u.sort = accu.linear;
764
765 ob->s.b.sorted = 1;
766 }
767
768 /* A linear search through a set of FDEs for the given PC. This is
769 used when there was insufficient memory to allocate and sort an
770 array. */
771
772 static const fde *
773 linear_search_fdes (struct object *ob, const fde *this_fde, void *pc)
774 {
775 const struct dwarf_cie *last_cie = 0;
776 int encoding = ob->s.b.encoding;
777 _Unwind_Ptr base = base_from_object (ob->s.b.encoding, ob);
778
779 for (; ! last_fde (ob, this_fde); this_fde = next_fde (this_fde))
780 {
781 const struct dwarf_cie *this_cie;
782 _Unwind_Ptr pc_begin, pc_range;
783
784 /* Skip CIEs. */
785 if (this_fde->CIE_delta == 0)
786 continue;
787
788 if (ob->s.b.mixed_encoding)
789 {
790 /* Determine the encoding for this FDE. Note mixed encoded
791 objects for later. */
792 this_cie = get_cie (this_fde);
793 if (this_cie != last_cie)
794 {
795 last_cie = this_cie;
796 encoding = get_cie_encoding (this_cie);
797 base = base_from_object (encoding, ob);
798 }
799 }
800
801 if (encoding == DW_EH_PE_absptr)
802 {
803 pc_begin = ((_Unwind_Ptr *) this_fde->pc_begin)[0];
804 pc_range = ((_Unwind_Ptr *) this_fde->pc_begin)[1];
805 if (pc_begin == 0)
806 continue;
807 }
808 else
809 {
810 _Unwind_Ptr mask;
811 const char *p;
812
813 p = read_encoded_value_with_base (encoding, base,
814 this_fde->pc_begin, &pc_begin);
815 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
816
817 /* Take care to ignore link-once functions that were removed.
818 In these cases, the function address will be NULL, but if
819 the encoding is smaller than a pointer a true NULL may not
820 be representable. Assume 0 in the representable bits is NULL. */
821 mask = size_of_encoded_value (encoding);
822 if (mask < sizeof (void *))
823 mask = (1L << (mask << 3)) - 1;
824 else
825 mask = -1;
826
827 if ((pc_begin & mask) == 0)
828 continue;
829 }
830
831 if ((_Unwind_Ptr) pc - pc_begin < pc_range)
832 return this_fde;
833 }
834
835 return NULL;
836 }
837
838 /* Binary search for an FDE containing the given PC. Here are three
839 implementations of increasing complexity. */
840
841 static inline const fde *
842 binary_search_unencoded_fdes (struct object *ob, void *pc)
843 {
844 struct fde_vector *vec = ob->u.sort;
845 size_t lo, hi;
846
847 for (lo = 0, hi = vec->count; lo < hi; )
848 {
849 size_t i = (lo + hi) / 2;
850 const fde *f = vec->array[i];
851 void *pc_begin;
852 uaddr pc_range;
853
854 pc_begin = ((void **) f->pc_begin)[0];
855 pc_range = ((uaddr *) f->pc_begin)[1];
856
857 if (pc < pc_begin)
858 hi = i;
859 else if (pc >= pc_begin + pc_range)
860 lo = i + 1;
861 else
862 return f;
863 }
864
865 return NULL;
866 }
867
868 static inline const fde *
869 binary_search_single_encoding_fdes (struct object *ob, void *pc)
870 {
871 struct fde_vector *vec = ob->u.sort;
872 int encoding = ob->s.b.encoding;
873 _Unwind_Ptr base = base_from_object (encoding, ob);
874 size_t lo, hi;
875
876 for (lo = 0, hi = vec->count; lo < hi; )
877 {
878 size_t i = (lo + hi) / 2;
879 const fde *f = vec->array[i];
880 _Unwind_Ptr pc_begin, pc_range;
881 const char *p;
882
883 p = read_encoded_value_with_base (encoding, base, f->pc_begin,
884 &pc_begin);
885 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
886
887 if ((_Unwind_Ptr) pc < pc_begin)
888 hi = i;
889 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
890 lo = i + 1;
891 else
892 return f;
893 }
894
895 return NULL;
896 }
897
898 static inline const fde *
899 binary_search_mixed_encoding_fdes (struct object *ob, void *pc)
900 {
901 struct fde_vector *vec = ob->u.sort;
902 size_t lo, hi;
903
904 for (lo = 0, hi = vec->count; lo < hi; )
905 {
906 size_t i = (lo + hi) / 2;
907 const fde *f = vec->array[i];
908 _Unwind_Ptr pc_begin, pc_range;
909 const char *p;
910 int encoding;
911
912 encoding = get_fde_encoding (f);
913 p = read_encoded_value_with_base (encoding,
914 base_from_object (encoding, ob),
915 f->pc_begin, &pc_begin);
916 read_encoded_value_with_base (encoding & 0x0F, 0, p, &pc_range);
917
918 if ((_Unwind_Ptr) pc < pc_begin)
919 hi = i;
920 else if ((_Unwind_Ptr) pc >= pc_begin + pc_range)
921 lo = i + 1;
922 else
923 return f;
924 }
925
926 return NULL;
927 }
928
929 static const fde *
930 search_object (struct object* ob, void *pc)
931 {
932 /* If the data hasn't been sorted, try to do this now. We may have
933 more memory available than last time we tried. */
934 if (! ob->s.b.sorted)
935 {
936 init_object (ob);
937
938 /* Despite the above comment, the normal reason to get here is
939 that we've not processed this object before. A quick range
940 check is in order. */
941 if (pc < ob->pc_begin)
942 return NULL;
943 }
944
945 if (ob->s.b.sorted)
946 {
947 if (ob->s.b.mixed_encoding)
948 return binary_search_mixed_encoding_fdes (ob, pc);
949 else if (ob->s.b.encoding == DW_EH_PE_absptr)
950 return binary_search_unencoded_fdes (ob, pc);
951 else
952 return binary_search_single_encoding_fdes (ob, pc);
953 }
954 else
955 {
956 /* Long slow labourious linear search, cos we've no memory. */
957 if (ob->s.b.from_array)
958 {
959 fde **p;
960 for (p = ob->u.array; *p ; p++)
961 {
962 const fde *f = linear_search_fdes (ob, *p, pc);
963 if (f)
964 return f;
965 }
966 return NULL;
967 }
968 else
969 return linear_search_fdes (ob, ob->u.single, pc);
970 }
971 }
972
973 const fde *
974 _Unwind_Find_FDE (void *pc, struct dwarf_eh_bases *bases)
975 {
976 struct object *ob;
977 const fde *f = NULL;
978
979 init_object_mutex_once ();
980 __gthread_mutex_lock (&object_mutex);
981
982 /* Linear search through the classified objects, to find the one
983 containing the pc. Note that pc_begin is sorted descending, and
984 we expect objects to be non-overlapping. */
985 for (ob = seen_objects; ob; ob = ob->next)
986 if (pc >= ob->pc_begin)
987 {
988 f = search_object (ob, pc);
989 if (f)
990 goto fini;
991 break;
992 }
993
994 /* Classify and search the objects we've not yet processed. */
995 while ((ob = unseen_objects))
996 {
997 struct object **p;
998
999 unseen_objects = ob->next;
1000 f = search_object (ob, pc);
1001
1002 /* Insert the object into the classified list. */
1003 for (p = &seen_objects; *p ; p = &(*p)->next)
1004 if ((*p)->pc_begin < ob->pc_begin)
1005 break;
1006 ob->next = *p;
1007 *p = ob;
1008
1009 if (f)
1010 goto fini;
1011 }
1012
1013 fini:
1014 __gthread_mutex_unlock (&object_mutex);
1015
1016 if (f)
1017 {
1018 int encoding;
1019
1020 bases->tbase = ob->tbase;
1021 bases->dbase = ob->dbase;
1022
1023 encoding = ob->s.b.encoding;
1024 if (ob->s.b.mixed_encoding)
1025 encoding = get_fde_encoding (f);
1026 read_encoded_value_with_base (encoding, base_from_object (encoding, ob),
1027 f->pc_begin, (_Unwind_Ptr *)&bases->func);
1028 }
1029
1030 return f;
1031 }