51e519a743f0a5803bbc8cfc2d03a1d69d9d61c1
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2017 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "memmodel.h"
99 #include "tm_p.h"
100 #include "insn-config.h"
101 #include "regs.h"
102 #include "emit-rtl.h"
103 #include "recog.h"
104 #include "diagnostic.h"
105 #include "varasm.h"
106 #include "stor-layout.h"
107 #include "cfgrtl.h"
108 #include "cfganal.h"
109 #include "reload.h"
110 #include "calls.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "params.h"
115 #include "tree-pretty-print.h"
116 #include "rtl-iter.h"
117 #include "fibonacci_heap.h"
118
119 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
120 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 struct micro_operation
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 };
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 struct attrs
246 {
247 /* Pointer to next member of the list. */
248 attrs *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 };
259
260 /* Structure for chaining the locations. */
261 struct location_chain
262 {
263 /* Next element in the chain. */
264 location_chain *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 };
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 struct loc_exp_dep
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep **pprev;
291 };
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 struct expand_depth
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 };
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 struct variable_part
332 {
333 /* Chain of locations of the part. */
334 location_chain *loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 };
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 };
365
366 /* Structure describing where the variable is located. */
367 struct variable
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 };
389
390 /* Pointer to the BB's information specific to variable tracking pass. */
391 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
392
393 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
394 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
395
396 #if CHECKING_P && (GCC_VERSION >= 2007)
397
398 /* Access VAR's Ith part's offset, checking that it's not a one-part
399 variable. */
400 #define VAR_PART_OFFSET(var, i) __extension__ \
401 (*({ variable *const __v = (var); \
402 gcc_checking_assert (!__v->onepart); \
403 &__v->var_part[(i)].aux.offset; }))
404
405 /* Access VAR's one-part auxiliary data, checking that it is a
406 one-part variable. */
407 #define VAR_LOC_1PAUX(var) __extension__ \
408 (*({ variable *const __v = (var); \
409 gcc_checking_assert (__v->onepart); \
410 &__v->var_part[0].aux.onepaux; }))
411
412 #else
413 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
414 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
415 #endif
416
417 /* These are accessor macros for the one-part auxiliary data. When
418 convenient for users, they're guarded by tests that the data was
419 allocated. */
420 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
421 ? VAR_LOC_1PAUX (var)->backlinks \
422 : NULL)
423 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
424 ? &VAR_LOC_1PAUX (var)->backlinks \
425 : NULL)
426 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
427 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
428 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
429 ? &VAR_LOC_1PAUX (var)->deps \
430 : NULL)
431
432
433
434 typedef unsigned int dvuid;
435
436 /* Return the uid of DV. */
437
438 static inline dvuid
439 dv_uid (decl_or_value dv)
440 {
441 if (dv_is_value_p (dv))
442 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
443 else
444 return DECL_UID (dv_as_decl (dv));
445 }
446
447 /* Compute the hash from the uid. */
448
449 static inline hashval_t
450 dv_uid2hash (dvuid uid)
451 {
452 return uid;
453 }
454
455 /* The hash function for a mask table in a shared_htab chain. */
456
457 static inline hashval_t
458 dv_htab_hash (decl_or_value dv)
459 {
460 return dv_uid2hash (dv_uid (dv));
461 }
462
463 static void variable_htab_free (void *);
464
465 /* Variable hashtable helpers. */
466
467 struct variable_hasher : pointer_hash <variable>
468 {
469 typedef void *compare_type;
470 static inline hashval_t hash (const variable *);
471 static inline bool equal (const variable *, const void *);
472 static inline void remove (variable *);
473 };
474
475 /* The hash function for variable_htab, computes the hash value
476 from the declaration of variable X. */
477
478 inline hashval_t
479 variable_hasher::hash (const variable *v)
480 {
481 return dv_htab_hash (v->dv);
482 }
483
484 /* Compare the declaration of variable X with declaration Y. */
485
486 inline bool
487 variable_hasher::equal (const variable *v, const void *y)
488 {
489 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
490
491 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
492 }
493
494 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
495
496 inline void
497 variable_hasher::remove (variable *var)
498 {
499 variable_htab_free (var);
500 }
501
502 typedef hash_table<variable_hasher> variable_table_type;
503 typedef variable_table_type::iterator variable_iterator_type;
504
505 /* Structure for passing some other parameters to function
506 emit_note_insn_var_location. */
507 struct emit_note_data
508 {
509 /* The instruction which the note will be emitted before/after. */
510 rtx_insn *insn;
511
512 /* Where the note will be emitted (before/after insn)? */
513 enum emit_note_where where;
514
515 /* The variables and values active at this point. */
516 variable_table_type *vars;
517 };
518
519 /* Structure holding a refcounted hash table. If refcount > 1,
520 it must be first unshared before modified. */
521 struct shared_hash
522 {
523 /* Reference count. */
524 int refcount;
525
526 /* Actual hash table. */
527 variable_table_type *htab;
528 };
529
530 /* Structure holding the IN or OUT set for a basic block. */
531 struct dataflow_set
532 {
533 /* Adjustment of stack offset. */
534 HOST_WIDE_INT stack_adjust;
535
536 /* Attributes for registers (lists of attrs). */
537 attrs *regs[FIRST_PSEUDO_REGISTER];
538
539 /* Variable locations. */
540 shared_hash *vars;
541
542 /* Vars that is being traversed. */
543 shared_hash *traversed_vars;
544 };
545
546 /* The structure (one for each basic block) containing the information
547 needed for variable tracking. */
548 struct variable_tracking_info
549 {
550 /* The vector of micro operations. */
551 vec<micro_operation> mos;
552
553 /* The IN and OUT set for dataflow analysis. */
554 dataflow_set in;
555 dataflow_set out;
556
557 /* The permanent-in dataflow set for this block. This is used to
558 hold values for which we had to compute entry values. ??? This
559 should probably be dynamically allocated, to avoid using more
560 memory in non-debug builds. */
561 dataflow_set *permp;
562
563 /* Has the block been visited in DFS? */
564 bool visited;
565
566 /* Has the block been flooded in VTA? */
567 bool flooded;
568
569 };
570
571 /* Alloc pool for struct attrs_def. */
572 object_allocator<attrs> attrs_pool ("attrs pool");
573
574 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
575
576 static pool_allocator var_pool
577 ("variable_def pool", sizeof (variable) +
578 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
579
580 /* Alloc pool for struct variable_def with a single var_part entry. */
581 static pool_allocator valvar_pool
582 ("small variable_def pool", sizeof (variable));
583
584 /* Alloc pool for struct location_chain. */
585 static object_allocator<location_chain> location_chain_pool
586 ("location_chain pool");
587
588 /* Alloc pool for struct shared_hash. */
589 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
590
591 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
592 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
593
594 /* Changed variables, notes will be emitted for them. */
595 static variable_table_type *changed_variables;
596
597 /* Shall notes be emitted? */
598 static bool emit_notes;
599
600 /* Values whose dynamic location lists have gone empty, but whose
601 cselib location lists are still usable. Use this to hold the
602 current location, the backlinks, etc, during emit_notes. */
603 static variable_table_type *dropped_values;
604
605 /* Empty shared hashtable. */
606 static shared_hash *empty_shared_hash;
607
608 /* Scratch register bitmap used by cselib_expand_value_rtx. */
609 static bitmap scratch_regs = NULL;
610
611 #ifdef HAVE_window_save
612 struct GTY(()) parm_reg {
613 rtx outgoing;
614 rtx incoming;
615 };
616
617
618 /* Vector of windowed parameter registers, if any. */
619 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
620 #endif
621
622 /* Variable used to tell whether cselib_process_insn called our hook. */
623 static bool cselib_hook_called;
624
625 /* Local function prototypes. */
626 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
627 HOST_WIDE_INT *);
628 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
629 HOST_WIDE_INT *);
630 static bool vt_stack_adjustments (void);
631
632 static void init_attrs_list_set (attrs **);
633 static void attrs_list_clear (attrs **);
634 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
635 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
636 static void attrs_list_copy (attrs **, attrs *);
637 static void attrs_list_union (attrs **, attrs *);
638
639 static variable **unshare_variable (dataflow_set *set, variable **slot,
640 variable *var, enum var_init_status);
641 static void vars_copy (variable_table_type *, variable_table_type *);
642 static tree var_debug_decl (tree);
643 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
644 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
645 enum var_init_status, rtx);
646 static void var_reg_delete (dataflow_set *, rtx, bool);
647 static void var_regno_delete (dataflow_set *, int);
648 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
649 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
650 enum var_init_status, rtx);
651 static void var_mem_delete (dataflow_set *, rtx, bool);
652
653 static void dataflow_set_init (dataflow_set *);
654 static void dataflow_set_clear (dataflow_set *);
655 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
656 static int variable_union_info_cmp_pos (const void *, const void *);
657 static void dataflow_set_union (dataflow_set *, dataflow_set *);
658 static location_chain *find_loc_in_1pdv (rtx, variable *,
659 variable_table_type *);
660 static bool canon_value_cmp (rtx, rtx);
661 static int loc_cmp (rtx, rtx);
662 static bool variable_part_different_p (variable_part *, variable_part *);
663 static bool onepart_variable_different_p (variable *, variable *);
664 static bool variable_different_p (variable *, variable *);
665 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
666 static void dataflow_set_destroy (dataflow_set *);
667
668 static bool track_expr_p (tree, bool);
669 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
670 static void add_uses_1 (rtx *, void *);
671 static void add_stores (rtx, const_rtx, void *);
672 static bool compute_bb_dataflow (basic_block);
673 static bool vt_find_locations (void);
674
675 static void dump_attrs_list (attrs *);
676 static void dump_var (variable *);
677 static void dump_vars (variable_table_type *);
678 static void dump_dataflow_set (dataflow_set *);
679 static void dump_dataflow_sets (void);
680
681 static void set_dv_changed (decl_or_value, bool);
682 static void variable_was_changed (variable *, dataflow_set *);
683 static variable **set_slot_part (dataflow_set *, rtx, variable **,
684 decl_or_value, HOST_WIDE_INT,
685 enum var_init_status, rtx);
686 static void set_variable_part (dataflow_set *, rtx,
687 decl_or_value, HOST_WIDE_INT,
688 enum var_init_status, rtx, enum insert_option);
689 static variable **clobber_slot_part (dataflow_set *, rtx,
690 variable **, HOST_WIDE_INT, rtx);
691 static void clobber_variable_part (dataflow_set *, rtx,
692 decl_or_value, HOST_WIDE_INT, rtx);
693 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
694 HOST_WIDE_INT);
695 static void delete_variable_part (dataflow_set *, rtx,
696 decl_or_value, HOST_WIDE_INT);
697 static void emit_notes_in_bb (basic_block, dataflow_set *);
698 static void vt_emit_notes (void);
699
700 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
701 static void vt_add_function_parameters (void);
702 static bool vt_initialize (void);
703 static void vt_finalize (void);
704
705 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
706
707 static int
708 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
709 void *arg)
710 {
711 if (dest != stack_pointer_rtx)
712 return 0;
713
714 switch (GET_CODE (op))
715 {
716 case PRE_INC:
717 case PRE_DEC:
718 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
719 return 0;
720 case POST_INC:
721 case POST_DEC:
722 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
723 return 0;
724 case PRE_MODIFY:
725 case POST_MODIFY:
726 /* We handle only adjustments by constant amount. */
727 gcc_assert (GET_CODE (src) == PLUS
728 && CONST_INT_P (XEXP (src, 1))
729 && XEXP (src, 0) == stack_pointer_rtx);
730 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
731 -= INTVAL (XEXP (src, 1));
732 return 0;
733 default:
734 gcc_unreachable ();
735 }
736 }
737
738 /* Given a SET, calculate the amount of stack adjustment it contains
739 PRE- and POST-modifying stack pointer.
740 This function is similar to stack_adjust_offset. */
741
742 static void
743 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
744 HOST_WIDE_INT *post)
745 {
746 rtx src = SET_SRC (pattern);
747 rtx dest = SET_DEST (pattern);
748 enum rtx_code code;
749
750 if (dest == stack_pointer_rtx)
751 {
752 /* (set (reg sp) (plus (reg sp) (const_int))) */
753 code = GET_CODE (src);
754 if (! (code == PLUS || code == MINUS)
755 || XEXP (src, 0) != stack_pointer_rtx
756 || !CONST_INT_P (XEXP (src, 1)))
757 return;
758
759 if (code == MINUS)
760 *post += INTVAL (XEXP (src, 1));
761 else
762 *post -= INTVAL (XEXP (src, 1));
763 return;
764 }
765 HOST_WIDE_INT res[2] = { 0, 0 };
766 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
767 *pre += res[0];
768 *post += res[1];
769 }
770
771 /* Given an INSN, calculate the amount of stack adjustment it contains
772 PRE- and POST-modifying stack pointer. */
773
774 static void
775 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
776 HOST_WIDE_INT *post)
777 {
778 rtx pattern;
779
780 *pre = 0;
781 *post = 0;
782
783 pattern = PATTERN (insn);
784 if (RTX_FRAME_RELATED_P (insn))
785 {
786 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
787 if (expr)
788 pattern = XEXP (expr, 0);
789 }
790
791 if (GET_CODE (pattern) == SET)
792 stack_adjust_offset_pre_post (pattern, pre, post);
793 else if (GET_CODE (pattern) == PARALLEL
794 || GET_CODE (pattern) == SEQUENCE)
795 {
796 int i;
797
798 /* There may be stack adjustments inside compound insns. Search
799 for them. */
800 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
801 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
802 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
803 }
804 }
805
806 /* Compute stack adjustments for all blocks by traversing DFS tree.
807 Return true when the adjustments on all incoming edges are consistent.
808 Heavily borrowed from pre_and_rev_post_order_compute. */
809
810 static bool
811 vt_stack_adjustments (void)
812 {
813 edge_iterator *stack;
814 int sp;
815
816 /* Initialize entry block. */
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
818 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
819 = INCOMING_FRAME_SP_OFFSET;
820 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
821 = INCOMING_FRAME_SP_OFFSET;
822
823 /* Allocate stack for back-tracking up CFG. */
824 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
825 sp = 0;
826
827 /* Push the first edge on to the stack. */
828 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
829
830 while (sp)
831 {
832 edge_iterator ei;
833 basic_block src;
834 basic_block dest;
835
836 /* Look at the edge on the top of the stack. */
837 ei = stack[sp - 1];
838 src = ei_edge (ei)->src;
839 dest = ei_edge (ei)->dest;
840
841 /* Check if the edge destination has been visited yet. */
842 if (!VTI (dest)->visited)
843 {
844 rtx_insn *insn;
845 HOST_WIDE_INT pre, post, offset;
846 VTI (dest)->visited = true;
847 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
848
849 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
850 for (insn = BB_HEAD (dest);
851 insn != NEXT_INSN (BB_END (dest));
852 insn = NEXT_INSN (insn))
853 if (INSN_P (insn))
854 {
855 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
856 offset += pre + post;
857 }
858
859 VTI (dest)->out.stack_adjust = offset;
860
861 if (EDGE_COUNT (dest->succs) > 0)
862 /* Since the DEST node has been visited for the first
863 time, check its successors. */
864 stack[sp++] = ei_start (dest->succs);
865 }
866 else
867 {
868 /* We can end up with different stack adjustments for the exit block
869 of a shrink-wrapped function if stack_adjust_offset_pre_post
870 doesn't understand the rtx pattern used to restore the stack
871 pointer in the epilogue. For example, on s390(x), the stack
872 pointer is often restored via a load-multiple instruction
873 and so no stack_adjust offset is recorded for it. This means
874 that the stack offset at the end of the epilogue block is the
875 same as the offset before the epilogue, whereas other paths
876 to the exit block will have the correct stack_adjust.
877
878 It is safe to ignore these differences because (a) we never
879 use the stack_adjust for the exit block in this pass and
880 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
881 function are correct.
882
883 We must check whether the adjustments on other edges are
884 the same though. */
885 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
886 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
887 {
888 free (stack);
889 return false;
890 }
891
892 if (! ei_one_before_end_p (ei))
893 /* Go to the next edge. */
894 ei_next (&stack[sp - 1]);
895 else
896 /* Return to previous level if there are no more edges. */
897 sp--;
898 }
899 }
900
901 free (stack);
902 return true;
903 }
904
905 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
906 hard_frame_pointer_rtx is being mapped to it and offset for it. */
907 static rtx cfa_base_rtx;
908 static HOST_WIDE_INT cfa_base_offset;
909
910 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
911 or hard_frame_pointer_rtx. */
912
913 static inline rtx
914 compute_cfa_pointer (HOST_WIDE_INT adjustment)
915 {
916 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
917 }
918
919 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
920 or -1 if the replacement shouldn't be done. */
921 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
922
923 /* Data for adjust_mems callback. */
924
925 struct adjust_mem_data
926 {
927 bool store;
928 machine_mode mem_mode;
929 HOST_WIDE_INT stack_adjust;
930 auto_vec<rtx> side_effects;
931 };
932
933 /* Helper for adjust_mems. Return true if X is suitable for
934 transformation of wider mode arithmetics to narrower mode. */
935
936 static bool
937 use_narrower_mode_test (rtx x, const_rtx subreg)
938 {
939 subrtx_var_iterator::array_type array;
940 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
941 {
942 rtx x = *iter;
943 if (CONSTANT_P (x))
944 iter.skip_subrtxes ();
945 else
946 switch (GET_CODE (x))
947 {
948 case REG:
949 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
950 return false;
951 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
952 subreg_lowpart_offset (GET_MODE (subreg),
953 GET_MODE (x))))
954 return false;
955 break;
956 case PLUS:
957 case MINUS:
958 case MULT:
959 break;
960 case ASHIFT:
961 iter.substitute (XEXP (x, 0));
962 break;
963 default:
964 return false;
965 }
966 }
967 return true;
968 }
969
970 /* Transform X into narrower mode MODE from wider mode WMODE. */
971
972 static rtx
973 use_narrower_mode (rtx x, scalar_int_mode mode, scalar_int_mode wmode)
974 {
975 rtx op0, op1;
976 if (CONSTANT_P (x))
977 return lowpart_subreg (mode, x, wmode);
978 switch (GET_CODE (x))
979 {
980 case REG:
981 return lowpart_subreg (mode, x, wmode);
982 case PLUS:
983 case MINUS:
984 case MULT:
985 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
986 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
987 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
988 case ASHIFT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = XEXP (x, 1);
991 /* Ensure shift amount is not wider than mode. */
992 if (GET_MODE (op1) == VOIDmode)
993 op1 = lowpart_subreg (mode, op1, wmode);
994 else if (GET_MODE_PRECISION (mode)
995 < GET_MODE_PRECISION (as_a <scalar_int_mode> (GET_MODE (op1))))
996 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
997 return simplify_gen_binary (ASHIFT, mode, op0, op1);
998 default:
999 gcc_unreachable ();
1000 }
1001 }
1002
1003 /* Helper function for adjusting used MEMs. */
1004
1005 static rtx
1006 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1007 {
1008 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1009 rtx mem, addr = loc, tem;
1010 machine_mode mem_mode_save;
1011 bool store_save;
1012 scalar_int_mode tem_mode, tem_subreg_mode;
1013 switch (GET_CODE (loc))
1014 {
1015 case REG:
1016 /* Don't do any sp or fp replacements outside of MEM addresses
1017 on the LHS. */
1018 if (amd->mem_mode == VOIDmode && amd->store)
1019 return loc;
1020 if (loc == stack_pointer_rtx
1021 && !frame_pointer_needed
1022 && cfa_base_rtx)
1023 return compute_cfa_pointer (amd->stack_adjust);
1024 else if (loc == hard_frame_pointer_rtx
1025 && frame_pointer_needed
1026 && hard_frame_pointer_adjustment != -1
1027 && cfa_base_rtx)
1028 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1029 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1030 return loc;
1031 case MEM:
1032 mem = loc;
1033 if (!amd->store)
1034 {
1035 mem = targetm.delegitimize_address (mem);
1036 if (mem != loc && !MEM_P (mem))
1037 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1038 }
1039
1040 addr = XEXP (mem, 0);
1041 mem_mode_save = amd->mem_mode;
1042 amd->mem_mode = GET_MODE (mem);
1043 store_save = amd->store;
1044 amd->store = false;
1045 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1046 amd->store = store_save;
1047 amd->mem_mode = mem_mode_save;
1048 if (mem == loc)
1049 addr = targetm.delegitimize_address (addr);
1050 if (addr != XEXP (mem, 0))
1051 mem = replace_equiv_address_nv (mem, addr);
1052 if (!amd->store)
1053 mem = avoid_constant_pool_reference (mem);
1054 return mem;
1055 case PRE_INC:
1056 case PRE_DEC:
1057 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1058 gen_int_mode (GET_CODE (loc) == PRE_INC
1059 ? GET_MODE_SIZE (amd->mem_mode)
1060 : -GET_MODE_SIZE (amd->mem_mode),
1061 GET_MODE (loc)));
1062 /* FALLTHRU */
1063 case POST_INC:
1064 case POST_DEC:
1065 if (addr == loc)
1066 addr = XEXP (loc, 0);
1067 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1068 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1069 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1070 gen_int_mode ((GET_CODE (loc) == PRE_INC
1071 || GET_CODE (loc) == POST_INC)
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 store_save = amd->store;
1076 amd->store = false;
1077 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1078 amd->store = store_save;
1079 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1080 return addr;
1081 case PRE_MODIFY:
1082 addr = XEXP (loc, 1);
1083 /* FALLTHRU */
1084 case POST_MODIFY:
1085 if (addr == loc)
1086 addr = XEXP (loc, 0);
1087 gcc_assert (amd->mem_mode != VOIDmode);
1088 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1089 store_save = amd->store;
1090 amd->store = false;
1091 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1092 adjust_mems, data);
1093 amd->store = store_save;
1094 amd->side_effects.safe_push (gen_rtx_SET (XEXP (loc, 0), tem));
1095 return addr;
1096 case SUBREG:
1097 /* First try without delegitimization of whole MEMs and
1098 avoid_constant_pool_reference, which is more likely to succeed. */
1099 store_save = amd->store;
1100 amd->store = true;
1101 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1102 data);
1103 amd->store = store_save;
1104 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1105 if (mem == SUBREG_REG (loc))
1106 {
1107 tem = loc;
1108 goto finish_subreg;
1109 }
1110 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1111 GET_MODE (SUBREG_REG (loc)),
1112 SUBREG_BYTE (loc));
1113 if (tem)
1114 goto finish_subreg;
1115 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1116 GET_MODE (SUBREG_REG (loc)),
1117 SUBREG_BYTE (loc));
1118 if (tem == NULL_RTX)
1119 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1120 finish_subreg:
1121 if (MAY_HAVE_DEBUG_INSNS
1122 && GET_CODE (tem) == SUBREG
1123 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1124 || GET_CODE (SUBREG_REG (tem)) == MINUS
1125 || GET_CODE (SUBREG_REG (tem)) == MULT
1126 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1127 && is_a <scalar_int_mode> (GET_MODE (tem), &tem_mode)
1128 && is_a <scalar_int_mode> (GET_MODE (SUBREG_REG (tem)),
1129 &tem_subreg_mode)
1130 && (GET_MODE_PRECISION (tem_mode)
1131 < GET_MODE_PRECISION (tem_subreg_mode))
1132 && subreg_lowpart_p (tem)
1133 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1134 return use_narrower_mode (SUBREG_REG (tem), tem_mode, tem_subreg_mode);
1135 return tem;
1136 case ASM_OPERANDS:
1137 /* Don't do any replacements in second and following
1138 ASM_OPERANDS of inline-asm with multiple sets.
1139 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1140 and ASM_OPERANDS_LABEL_VEC need to be equal between
1141 all the ASM_OPERANDs in the insn and adjust_insn will
1142 fix this up. */
1143 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1144 return loc;
1145 break;
1146 default:
1147 break;
1148 }
1149 return NULL_RTX;
1150 }
1151
1152 /* Helper function for replacement of uses. */
1153
1154 static void
1155 adjust_mem_uses (rtx *x, void *data)
1156 {
1157 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1158 if (new_x != *x)
1159 validate_change (NULL_RTX, x, new_x, true);
1160 }
1161
1162 /* Helper function for replacement of stores. */
1163
1164 static void
1165 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1166 {
1167 if (MEM_P (loc))
1168 {
1169 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1170 adjust_mems, data);
1171 if (new_dest != SET_DEST (expr))
1172 {
1173 rtx xexpr = CONST_CAST_RTX (expr);
1174 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1175 }
1176 }
1177 }
1178
1179 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1180 replace them with their value in the insn and add the side-effects
1181 as other sets to the insn. */
1182
1183 static void
1184 adjust_insn (basic_block bb, rtx_insn *insn)
1185 {
1186 rtx set;
1187
1188 #ifdef HAVE_window_save
1189 /* If the target machine has an explicit window save instruction, the
1190 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1191 if (RTX_FRAME_RELATED_P (insn)
1192 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1193 {
1194 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1195 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1196 parm_reg *p;
1197
1198 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1199 {
1200 XVECEXP (rtl, 0, i * 2)
1201 = gen_rtx_SET (p->incoming, p->outgoing);
1202 /* Do not clobber the attached DECL, but only the REG. */
1203 XVECEXP (rtl, 0, i * 2 + 1)
1204 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1205 gen_raw_REG (GET_MODE (p->outgoing),
1206 REGNO (p->outgoing)));
1207 }
1208
1209 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1210 return;
1211 }
1212 #endif
1213
1214 adjust_mem_data amd;
1215 amd.mem_mode = VOIDmode;
1216 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1217
1218 amd.store = true;
1219 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1220
1221 amd.store = false;
1222 if (GET_CODE (PATTERN (insn)) == PARALLEL
1223 && asm_noperands (PATTERN (insn)) > 0
1224 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1225 {
1226 rtx body, set0;
1227 int i;
1228
1229 /* inline-asm with multiple sets is tiny bit more complicated,
1230 because the 3 vectors in ASM_OPERANDS need to be shared between
1231 all ASM_OPERANDS in the instruction. adjust_mems will
1232 not touch ASM_OPERANDS other than the first one, asm_noperands
1233 test above needs to be called before that (otherwise it would fail)
1234 and afterwards this code fixes it up. */
1235 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1236 body = PATTERN (insn);
1237 set0 = XVECEXP (body, 0, 0);
1238 gcc_checking_assert (GET_CODE (set0) == SET
1239 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1240 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1241 for (i = 1; i < XVECLEN (body, 0); i++)
1242 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1243 break;
1244 else
1245 {
1246 set = XVECEXP (body, 0, i);
1247 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1248 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1249 == i);
1250 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1251 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1252 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1256 {
1257 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1258 ASM_OPERANDS_INPUT_VEC (newsrc)
1259 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1260 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_LABEL_VEC (newsrc)
1263 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1264 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1265 }
1266 }
1267 }
1268 else
1269 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1270
1271 /* For read-only MEMs containing some constant, prefer those
1272 constants. */
1273 set = single_set (insn);
1274 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1275 {
1276 rtx note = find_reg_equal_equiv_note (insn);
1277
1278 if (note && CONSTANT_P (XEXP (note, 0)))
1279 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1280 }
1281
1282 if (!amd.side_effects.is_empty ())
1283 {
1284 rtx *pat, new_pat;
1285 int i, oldn;
1286
1287 pat = &PATTERN (insn);
1288 if (GET_CODE (*pat) == COND_EXEC)
1289 pat = &COND_EXEC_CODE (*pat);
1290 if (GET_CODE (*pat) == PARALLEL)
1291 oldn = XVECLEN (*pat, 0);
1292 else
1293 oldn = 1;
1294 unsigned int newn = amd.side_effects.length ();
1295 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1296 if (GET_CODE (*pat) == PARALLEL)
1297 for (i = 0; i < oldn; i++)
1298 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1299 else
1300 XVECEXP (new_pat, 0, 0) = *pat;
1301
1302 rtx effect;
1303 unsigned int j;
1304 FOR_EACH_VEC_ELT_REVERSE (amd.side_effects, j, effect)
1305 XVECEXP (new_pat, 0, j + oldn) = effect;
1306 validate_change (NULL_RTX, pat, new_pat, true);
1307 }
1308 }
1309
1310 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1311 static inline rtx
1312 dv_as_rtx (decl_or_value dv)
1313 {
1314 tree decl;
1315
1316 if (dv_is_value_p (dv))
1317 return dv_as_value (dv);
1318
1319 decl = dv_as_decl (dv);
1320
1321 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1322 return DECL_RTL_KNOWN_SET (decl);
1323 }
1324
1325 /* Return nonzero if a decl_or_value must not have more than one
1326 variable part. The returned value discriminates among various
1327 kinds of one-part DVs ccording to enum onepart_enum. */
1328 static inline onepart_enum
1329 dv_onepart_p (decl_or_value dv)
1330 {
1331 tree decl;
1332
1333 if (!MAY_HAVE_DEBUG_INSNS)
1334 return NOT_ONEPART;
1335
1336 if (dv_is_value_p (dv))
1337 return ONEPART_VALUE;
1338
1339 decl = dv_as_decl (dv);
1340
1341 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1342 return ONEPART_DEXPR;
1343
1344 if (target_for_debug_bind (decl) != NULL_TREE)
1345 return ONEPART_VDECL;
1346
1347 return NOT_ONEPART;
1348 }
1349
1350 /* Return the variable pool to be used for a dv of type ONEPART. */
1351 static inline pool_allocator &
1352 onepart_pool (onepart_enum onepart)
1353 {
1354 return onepart ? valvar_pool : var_pool;
1355 }
1356
1357 /* Allocate a variable_def from the corresponding variable pool. */
1358 static inline variable *
1359 onepart_pool_allocate (onepart_enum onepart)
1360 {
1361 return (variable*) onepart_pool (onepart).allocate ();
1362 }
1363
1364 /* Build a decl_or_value out of a decl. */
1365 static inline decl_or_value
1366 dv_from_decl (tree decl)
1367 {
1368 decl_or_value dv;
1369 dv = decl;
1370 gcc_checking_assert (dv_is_decl_p (dv));
1371 return dv;
1372 }
1373
1374 /* Build a decl_or_value out of a value. */
1375 static inline decl_or_value
1376 dv_from_value (rtx value)
1377 {
1378 decl_or_value dv;
1379 dv = value;
1380 gcc_checking_assert (dv_is_value_p (dv));
1381 return dv;
1382 }
1383
1384 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1385 static inline decl_or_value
1386 dv_from_rtx (rtx x)
1387 {
1388 decl_or_value dv;
1389
1390 switch (GET_CODE (x))
1391 {
1392 case DEBUG_EXPR:
1393 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1394 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1395 break;
1396
1397 case VALUE:
1398 dv = dv_from_value (x);
1399 break;
1400
1401 default:
1402 gcc_unreachable ();
1403 }
1404
1405 return dv;
1406 }
1407
1408 extern void debug_dv (decl_or_value dv);
1409
1410 DEBUG_FUNCTION void
1411 debug_dv (decl_or_value dv)
1412 {
1413 if (dv_is_value_p (dv))
1414 debug_rtx (dv_as_value (dv));
1415 else
1416 debug_generic_stmt (dv_as_decl (dv));
1417 }
1418
1419 static void loc_exp_dep_clear (variable *var);
1420
1421 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1422
1423 static void
1424 variable_htab_free (void *elem)
1425 {
1426 int i;
1427 variable *var = (variable *) elem;
1428 location_chain *node, *next;
1429
1430 gcc_checking_assert (var->refcount > 0);
1431
1432 var->refcount--;
1433 if (var->refcount > 0)
1434 return;
1435
1436 for (i = 0; i < var->n_var_parts; i++)
1437 {
1438 for (node = var->var_part[i].loc_chain; node; node = next)
1439 {
1440 next = node->next;
1441 delete node;
1442 }
1443 var->var_part[i].loc_chain = NULL;
1444 }
1445 if (var->onepart && VAR_LOC_1PAUX (var))
1446 {
1447 loc_exp_dep_clear (var);
1448 if (VAR_LOC_DEP_LST (var))
1449 VAR_LOC_DEP_LST (var)->pprev = NULL;
1450 XDELETE (VAR_LOC_1PAUX (var));
1451 /* These may be reused across functions, so reset
1452 e.g. NO_LOC_P. */
1453 if (var->onepart == ONEPART_DEXPR)
1454 set_dv_changed (var->dv, true);
1455 }
1456 onepart_pool (var->onepart).remove (var);
1457 }
1458
1459 /* Initialize the set (array) SET of attrs to empty lists. */
1460
1461 static void
1462 init_attrs_list_set (attrs **set)
1463 {
1464 int i;
1465
1466 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1467 set[i] = NULL;
1468 }
1469
1470 /* Make the list *LISTP empty. */
1471
1472 static void
1473 attrs_list_clear (attrs **listp)
1474 {
1475 attrs *list, *next;
1476
1477 for (list = *listp; list; list = next)
1478 {
1479 next = list->next;
1480 delete list;
1481 }
1482 *listp = NULL;
1483 }
1484
1485 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1486
1487 static attrs *
1488 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1489 {
1490 for (; list; list = list->next)
1491 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1492 return list;
1493 return NULL;
1494 }
1495
1496 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1497
1498 static void
1499 attrs_list_insert (attrs **listp, decl_or_value dv,
1500 HOST_WIDE_INT offset, rtx loc)
1501 {
1502 attrs *list = new attrs;
1503 list->loc = loc;
1504 list->dv = dv;
1505 list->offset = offset;
1506 list->next = *listp;
1507 *listp = list;
1508 }
1509
1510 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1511
1512 static void
1513 attrs_list_copy (attrs **dstp, attrs *src)
1514 {
1515 attrs_list_clear (dstp);
1516 for (; src; src = src->next)
1517 {
1518 attrs *n = new attrs;
1519 n->loc = src->loc;
1520 n->dv = src->dv;
1521 n->offset = src->offset;
1522 n->next = *dstp;
1523 *dstp = n;
1524 }
1525 }
1526
1527 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1528
1529 static void
1530 attrs_list_union (attrs **dstp, attrs *src)
1531 {
1532 for (; src; src = src->next)
1533 {
1534 if (!attrs_list_member (*dstp, src->dv, src->offset))
1535 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1536 }
1537 }
1538
1539 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1540 *DSTP. */
1541
1542 static void
1543 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1544 {
1545 gcc_assert (!*dstp);
1546 for (; src; src = src->next)
1547 {
1548 if (!dv_onepart_p (src->dv))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1550 }
1551 for (src = src2; src; src = src->next)
1552 {
1553 if (!dv_onepart_p (src->dv)
1554 && !attrs_list_member (*dstp, src->dv, src->offset))
1555 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1556 }
1557 }
1558
1559 /* Shared hashtable support. */
1560
1561 /* Return true if VARS is shared. */
1562
1563 static inline bool
1564 shared_hash_shared (shared_hash *vars)
1565 {
1566 return vars->refcount > 1;
1567 }
1568
1569 /* Return the hash table for VARS. */
1570
1571 static inline variable_table_type *
1572 shared_hash_htab (shared_hash *vars)
1573 {
1574 return vars->htab;
1575 }
1576
1577 /* Return true if VAR is shared, or maybe because VARS is shared. */
1578
1579 static inline bool
1580 shared_var_p (variable *var, shared_hash *vars)
1581 {
1582 /* Don't count an entry in the changed_variables table as a duplicate. */
1583 return ((var->refcount > 1 + (int) var->in_changed_variables)
1584 || shared_hash_shared (vars));
1585 }
1586
1587 /* Copy variables into a new hash table. */
1588
1589 static shared_hash *
1590 shared_hash_unshare (shared_hash *vars)
1591 {
1592 shared_hash *new_vars = new shared_hash;
1593 gcc_assert (vars->refcount > 1);
1594 new_vars->refcount = 1;
1595 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1596 vars_copy (new_vars->htab, vars->htab);
1597 vars->refcount--;
1598 return new_vars;
1599 }
1600
1601 /* Increment reference counter on VARS and return it. */
1602
1603 static inline shared_hash *
1604 shared_hash_copy (shared_hash *vars)
1605 {
1606 vars->refcount++;
1607 return vars;
1608 }
1609
1610 /* Decrement reference counter and destroy hash table if not shared
1611 anymore. */
1612
1613 static void
1614 shared_hash_destroy (shared_hash *vars)
1615 {
1616 gcc_checking_assert (vars->refcount > 0);
1617 if (--vars->refcount == 0)
1618 {
1619 delete vars->htab;
1620 delete vars;
1621 }
1622 }
1623
1624 /* Unshare *PVARS if shared and return slot for DV. If INS is
1625 INSERT, insert it if not already present. */
1626
1627 static inline variable **
1628 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1629 hashval_t dvhash, enum insert_option ins)
1630 {
1631 if (shared_hash_shared (*pvars))
1632 *pvars = shared_hash_unshare (*pvars);
1633 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1634 }
1635
1636 static inline variable **
1637 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1638 enum insert_option ins)
1639 {
1640 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1641 }
1642
1643 /* Return slot for DV, if it is already present in the hash table.
1644 If it is not present, insert it only VARS is not shared, otherwise
1645 return NULL. */
1646
1647 static inline variable **
1648 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1649 {
1650 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1651 shared_hash_shared (vars)
1652 ? NO_INSERT : INSERT);
1653 }
1654
1655 static inline variable **
1656 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1657 {
1658 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1659 }
1660
1661 /* Return slot for DV only if it is already present in the hash table. */
1662
1663 static inline variable **
1664 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1665 hashval_t dvhash)
1666 {
1667 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1668 }
1669
1670 static inline variable **
1671 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1672 {
1673 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1674 }
1675
1676 /* Return variable for DV or NULL if not already present in the hash
1677 table. */
1678
1679 static inline variable *
1680 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1681 {
1682 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1683 }
1684
1685 static inline variable *
1686 shared_hash_find (shared_hash *vars, decl_or_value dv)
1687 {
1688 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1689 }
1690
1691 /* Return true if TVAL is better than CVAL as a canonival value. We
1692 choose lowest-numbered VALUEs, using the RTX address as a
1693 tie-breaker. The idea is to arrange them into a star topology,
1694 such that all of them are at most one step away from the canonical
1695 value, and the canonical value has backlinks to all of them, in
1696 addition to all the actual locations. We don't enforce this
1697 topology throughout the entire dataflow analysis, though.
1698 */
1699
1700 static inline bool
1701 canon_value_cmp (rtx tval, rtx cval)
1702 {
1703 return !cval
1704 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1705 }
1706
1707 static bool dst_can_be_shared;
1708
1709 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1710
1711 static variable **
1712 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1713 enum var_init_status initialized)
1714 {
1715 variable *new_var;
1716 int i;
1717
1718 new_var = onepart_pool_allocate (var->onepart);
1719 new_var->dv = var->dv;
1720 new_var->refcount = 1;
1721 var->refcount--;
1722 new_var->n_var_parts = var->n_var_parts;
1723 new_var->onepart = var->onepart;
1724 new_var->in_changed_variables = false;
1725
1726 if (! flag_var_tracking_uninit)
1727 initialized = VAR_INIT_STATUS_INITIALIZED;
1728
1729 for (i = 0; i < var->n_var_parts; i++)
1730 {
1731 location_chain *node;
1732 location_chain **nextp;
1733
1734 if (i == 0 && var->onepart)
1735 {
1736 /* One-part auxiliary data is only used while emitting
1737 notes, so propagate it to the new variable in the active
1738 dataflow set. If we're not emitting notes, this will be
1739 a no-op. */
1740 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1741 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1742 VAR_LOC_1PAUX (var) = NULL;
1743 }
1744 else
1745 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1746 nextp = &new_var->var_part[i].loc_chain;
1747 for (node = var->var_part[i].loc_chain; node; node = node->next)
1748 {
1749 location_chain *new_lc;
1750
1751 new_lc = new location_chain;
1752 new_lc->next = NULL;
1753 if (node->init > initialized)
1754 new_lc->init = node->init;
1755 else
1756 new_lc->init = initialized;
1757 if (node->set_src && !(MEM_P (node->set_src)))
1758 new_lc->set_src = node->set_src;
1759 else
1760 new_lc->set_src = NULL;
1761 new_lc->loc = node->loc;
1762
1763 *nextp = new_lc;
1764 nextp = &new_lc->next;
1765 }
1766
1767 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1768 }
1769
1770 dst_can_be_shared = false;
1771 if (shared_hash_shared (set->vars))
1772 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1773 else if (set->traversed_vars && set->vars != set->traversed_vars)
1774 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1775 *slot = new_var;
1776 if (var->in_changed_variables)
1777 {
1778 variable **cslot
1779 = changed_variables->find_slot_with_hash (var->dv,
1780 dv_htab_hash (var->dv),
1781 NO_INSERT);
1782 gcc_assert (*cslot == (void *) var);
1783 var->in_changed_variables = false;
1784 variable_htab_free (var);
1785 *cslot = new_var;
1786 new_var->in_changed_variables = true;
1787 }
1788 return slot;
1789 }
1790
1791 /* Copy all variables from hash table SRC to hash table DST. */
1792
1793 static void
1794 vars_copy (variable_table_type *dst, variable_table_type *src)
1795 {
1796 variable_iterator_type hi;
1797 variable *var;
1798
1799 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1800 {
1801 variable **dstp;
1802 var->refcount++;
1803 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1804 INSERT);
1805 *dstp = var;
1806 }
1807 }
1808
1809 /* Map a decl to its main debug decl. */
1810
1811 static inline tree
1812 var_debug_decl (tree decl)
1813 {
1814 if (decl && VAR_P (decl) && DECL_HAS_DEBUG_EXPR_P (decl))
1815 {
1816 tree debugdecl = DECL_DEBUG_EXPR (decl);
1817 if (DECL_P (debugdecl))
1818 decl = debugdecl;
1819 }
1820
1821 return decl;
1822 }
1823
1824 /* Set the register LOC to contain DV, OFFSET. */
1825
1826 static void
1827 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1828 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1829 enum insert_option iopt)
1830 {
1831 attrs *node;
1832 bool decl_p = dv_is_decl_p (dv);
1833
1834 if (decl_p)
1835 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1836
1837 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1838 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1839 && node->offset == offset)
1840 break;
1841 if (!node)
1842 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1843 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1844 }
1845
1846 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1847
1848 static void
1849 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1850 rtx set_src)
1851 {
1852 tree decl = REG_EXPR (loc);
1853 HOST_WIDE_INT offset = REG_OFFSET (loc);
1854
1855 var_reg_decl_set (set, loc, initialized,
1856 dv_from_decl (decl), offset, set_src, INSERT);
1857 }
1858
1859 static enum var_init_status
1860 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1861 {
1862 variable *var;
1863 int i;
1864 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1865
1866 if (! flag_var_tracking_uninit)
1867 return VAR_INIT_STATUS_INITIALIZED;
1868
1869 var = shared_hash_find (set->vars, dv);
1870 if (var)
1871 {
1872 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1873 {
1874 location_chain *nextp;
1875 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1876 if (rtx_equal_p (nextp->loc, loc))
1877 {
1878 ret_val = nextp->init;
1879 break;
1880 }
1881 }
1882 }
1883
1884 return ret_val;
1885 }
1886
1887 /* Delete current content of register LOC in dataflow set SET and set
1888 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1889 MODIFY is true, any other live copies of the same variable part are
1890 also deleted from the dataflow set, otherwise the variable part is
1891 assumed to be copied from another location holding the same
1892 part. */
1893
1894 static void
1895 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1896 enum var_init_status initialized, rtx set_src)
1897 {
1898 tree decl = REG_EXPR (loc);
1899 HOST_WIDE_INT offset = REG_OFFSET (loc);
1900 attrs *node, *next;
1901 attrs **nextp;
1902
1903 decl = var_debug_decl (decl);
1904
1905 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1906 initialized = get_init_value (set, loc, dv_from_decl (decl));
1907
1908 nextp = &set->regs[REGNO (loc)];
1909 for (node = *nextp; node; node = next)
1910 {
1911 next = node->next;
1912 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1913 {
1914 delete_variable_part (set, node->loc, node->dv, node->offset);
1915 delete node;
1916 *nextp = next;
1917 }
1918 else
1919 {
1920 node->loc = loc;
1921 nextp = &node->next;
1922 }
1923 }
1924 if (modify)
1925 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1926 var_reg_set (set, loc, initialized, set_src);
1927 }
1928
1929 /* Delete the association of register LOC in dataflow set SET with any
1930 variables that aren't onepart. If CLOBBER is true, also delete any
1931 other live copies of the same variable part, and delete the
1932 association with onepart dvs too. */
1933
1934 static void
1935 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1936 {
1937 attrs **nextp = &set->regs[REGNO (loc)];
1938 attrs *node, *next;
1939
1940 if (clobber)
1941 {
1942 tree decl = REG_EXPR (loc);
1943 HOST_WIDE_INT offset = REG_OFFSET (loc);
1944
1945 decl = var_debug_decl (decl);
1946
1947 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1948 }
1949
1950 for (node = *nextp; node; node = next)
1951 {
1952 next = node->next;
1953 if (clobber || !dv_onepart_p (node->dv))
1954 {
1955 delete_variable_part (set, node->loc, node->dv, node->offset);
1956 delete node;
1957 *nextp = next;
1958 }
1959 else
1960 nextp = &node->next;
1961 }
1962 }
1963
1964 /* Delete content of register with number REGNO in dataflow set SET. */
1965
1966 static void
1967 var_regno_delete (dataflow_set *set, int regno)
1968 {
1969 attrs **reg = &set->regs[regno];
1970 attrs *node, *next;
1971
1972 for (node = *reg; node; node = next)
1973 {
1974 next = node->next;
1975 delete_variable_part (set, node->loc, node->dv, node->offset);
1976 delete node;
1977 }
1978 *reg = NULL;
1979 }
1980
1981 /* Return true if I is the negated value of a power of two. */
1982 static bool
1983 negative_power_of_two_p (HOST_WIDE_INT i)
1984 {
1985 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1986 return pow2_or_zerop (x);
1987 }
1988
1989 /* Strip constant offsets and alignments off of LOC. Return the base
1990 expression. */
1991
1992 static rtx
1993 vt_get_canonicalize_base (rtx loc)
1994 {
1995 while ((GET_CODE (loc) == PLUS
1996 || GET_CODE (loc) == AND)
1997 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1998 && (GET_CODE (loc) != AND
1999 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2000 loc = XEXP (loc, 0);
2001
2002 return loc;
2003 }
2004
2005 /* This caches canonicalized addresses for VALUEs, computed using
2006 information in the global cselib table. */
2007 static hash_map<rtx, rtx> *global_get_addr_cache;
2008
2009 /* This caches canonicalized addresses for VALUEs, computed using
2010 information from the global cache and information pertaining to a
2011 basic block being analyzed. */
2012 static hash_map<rtx, rtx> *local_get_addr_cache;
2013
2014 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2015
2016 /* Return the canonical address for LOC, that must be a VALUE, using a
2017 cached global equivalence or computing it and storing it in the
2018 global cache. */
2019
2020 static rtx
2021 get_addr_from_global_cache (rtx const loc)
2022 {
2023 rtx x;
2024
2025 gcc_checking_assert (GET_CODE (loc) == VALUE);
2026
2027 bool existed;
2028 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2029 if (existed)
2030 return *slot;
2031
2032 x = canon_rtx (get_addr (loc));
2033
2034 /* Tentative, avoiding infinite recursion. */
2035 *slot = x;
2036
2037 if (x != loc)
2038 {
2039 rtx nx = vt_canonicalize_addr (NULL, x);
2040 if (nx != x)
2041 {
2042 /* The table may have moved during recursion, recompute
2043 SLOT. */
2044 *global_get_addr_cache->get (loc) = x = nx;
2045 }
2046 }
2047
2048 return x;
2049 }
2050
2051 /* Return the canonical address for LOC, that must be a VALUE, using a
2052 cached local equivalence or computing it and storing it in the
2053 local cache. */
2054
2055 static rtx
2056 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2057 {
2058 rtx x;
2059 decl_or_value dv;
2060 variable *var;
2061 location_chain *l;
2062
2063 gcc_checking_assert (GET_CODE (loc) == VALUE);
2064
2065 bool existed;
2066 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2067 if (existed)
2068 return *slot;
2069
2070 x = get_addr_from_global_cache (loc);
2071
2072 /* Tentative, avoiding infinite recursion. */
2073 *slot = x;
2074
2075 /* Recurse to cache local expansion of X, or if we need to search
2076 for a VALUE in the expansion. */
2077 if (x != loc)
2078 {
2079 rtx nx = vt_canonicalize_addr (set, x);
2080 if (nx != x)
2081 {
2082 slot = local_get_addr_cache->get (loc);
2083 *slot = x = nx;
2084 }
2085 return x;
2086 }
2087
2088 dv = dv_from_rtx (x);
2089 var = shared_hash_find (set->vars, dv);
2090 if (!var)
2091 return x;
2092
2093 /* Look for an improved equivalent expression. */
2094 for (l = var->var_part[0].loc_chain; l; l = l->next)
2095 {
2096 rtx base = vt_get_canonicalize_base (l->loc);
2097 if (GET_CODE (base) == VALUE
2098 && canon_value_cmp (base, loc))
2099 {
2100 rtx nx = vt_canonicalize_addr (set, l->loc);
2101 if (x != nx)
2102 {
2103 slot = local_get_addr_cache->get (loc);
2104 *slot = x = nx;
2105 }
2106 break;
2107 }
2108 }
2109
2110 return x;
2111 }
2112
2113 /* Canonicalize LOC using equivalences from SET in addition to those
2114 in the cselib static table. It expects a VALUE-based expression,
2115 and it will only substitute VALUEs with other VALUEs or
2116 function-global equivalences, so that, if two addresses have base
2117 VALUEs that are locally or globally related in ways that
2118 memrefs_conflict_p cares about, they will both canonicalize to
2119 expressions that have the same base VALUE.
2120
2121 The use of VALUEs as canonical base addresses enables the canonical
2122 RTXs to remain unchanged globally, if they resolve to a constant,
2123 or throughout a basic block otherwise, so that they can be cached
2124 and the cache needs not be invalidated when REGs, MEMs or such
2125 change. */
2126
2127 static rtx
2128 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2129 {
2130 HOST_WIDE_INT ofst = 0;
2131 machine_mode mode = GET_MODE (oloc);
2132 rtx loc = oloc;
2133 rtx x;
2134 bool retry = true;
2135
2136 while (retry)
2137 {
2138 while (GET_CODE (loc) == PLUS
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2140 {
2141 ofst += INTVAL (XEXP (loc, 1));
2142 loc = XEXP (loc, 0);
2143 }
2144
2145 /* Alignment operations can't normally be combined, so just
2146 canonicalize the base and we're done. We'll normally have
2147 only one stack alignment anyway. */
2148 if (GET_CODE (loc) == AND
2149 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2150 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2151 {
2152 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2153 if (x != XEXP (loc, 0))
2154 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2155 retry = false;
2156 }
2157
2158 if (GET_CODE (loc) == VALUE)
2159 {
2160 if (set)
2161 loc = get_addr_from_local_cache (set, loc);
2162 else
2163 loc = get_addr_from_global_cache (loc);
2164
2165 /* Consolidate plus_constants. */
2166 while (ofst && GET_CODE (loc) == PLUS
2167 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2168 {
2169 ofst += INTVAL (XEXP (loc, 1));
2170 loc = XEXP (loc, 0);
2171 }
2172
2173 retry = false;
2174 }
2175 else
2176 {
2177 x = canon_rtx (loc);
2178 if (retry)
2179 retry = (x != loc);
2180 loc = x;
2181 }
2182 }
2183
2184 /* Add OFST back in. */
2185 if (ofst)
2186 {
2187 /* Don't build new RTL if we can help it. */
2188 if (GET_CODE (oloc) == PLUS
2189 && XEXP (oloc, 0) == loc
2190 && INTVAL (XEXP (oloc, 1)) == ofst)
2191 return oloc;
2192
2193 loc = plus_constant (mode, loc, ofst);
2194 }
2195
2196 return loc;
2197 }
2198
2199 /* Return true iff there's a true dependence between MLOC and LOC.
2200 MADDR must be a canonicalized version of MLOC's address. */
2201
2202 static inline bool
2203 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2204 {
2205 if (GET_CODE (loc) != MEM)
2206 return false;
2207
2208 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2209 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2210 return false;
2211
2212 return true;
2213 }
2214
2215 /* Hold parameters for the hashtab traversal function
2216 drop_overlapping_mem_locs, see below. */
2217
2218 struct overlapping_mems
2219 {
2220 dataflow_set *set;
2221 rtx loc, addr;
2222 };
2223
2224 /* Remove all MEMs that overlap with COMS->LOC from the location list
2225 of a hash table entry for a onepart variable. COMS->ADDR must be a
2226 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2227 canonicalized itself. */
2228
2229 int
2230 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2231 {
2232 dataflow_set *set = coms->set;
2233 rtx mloc = coms->loc, addr = coms->addr;
2234 variable *var = *slot;
2235
2236 if (var->onepart != NOT_ONEPART)
2237 {
2238 location_chain *loc, **locp;
2239 bool changed = false;
2240 rtx cur_loc;
2241
2242 gcc_assert (var->n_var_parts == 1);
2243
2244 if (shared_var_p (var, set->vars))
2245 {
2246 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2247 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2248 break;
2249
2250 if (!loc)
2251 return 1;
2252
2253 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2254 var = *slot;
2255 gcc_assert (var->n_var_parts == 1);
2256 }
2257
2258 if (VAR_LOC_1PAUX (var))
2259 cur_loc = VAR_LOC_FROM (var);
2260 else
2261 cur_loc = var->var_part[0].cur_loc;
2262
2263 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2264 loc; loc = *locp)
2265 {
2266 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2267 {
2268 locp = &loc->next;
2269 continue;
2270 }
2271
2272 *locp = loc->next;
2273 /* If we have deleted the location which was last emitted
2274 we have to emit new location so add the variable to set
2275 of changed variables. */
2276 if (cur_loc == loc->loc)
2277 {
2278 changed = true;
2279 var->var_part[0].cur_loc = NULL;
2280 if (VAR_LOC_1PAUX (var))
2281 VAR_LOC_FROM (var) = NULL;
2282 }
2283 delete loc;
2284 }
2285
2286 if (!var->var_part[0].loc_chain)
2287 {
2288 var->n_var_parts--;
2289 changed = true;
2290 }
2291 if (changed)
2292 variable_was_changed (var, set);
2293 }
2294
2295 return 1;
2296 }
2297
2298 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2299
2300 static void
2301 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2302 {
2303 struct overlapping_mems coms;
2304
2305 gcc_checking_assert (GET_CODE (loc) == MEM);
2306
2307 coms.set = set;
2308 coms.loc = canon_rtx (loc);
2309 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2310
2311 set->traversed_vars = set->vars;
2312 shared_hash_htab (set->vars)
2313 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2314 set->traversed_vars = NULL;
2315 }
2316
2317 /* Set the location of DV, OFFSET as the MEM LOC. */
2318
2319 static void
2320 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2321 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2322 enum insert_option iopt)
2323 {
2324 if (dv_is_decl_p (dv))
2325 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2326
2327 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2328 }
2329
2330 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2331 SET to LOC.
2332 Adjust the address first if it is stack pointer based. */
2333
2334 static void
2335 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2336 rtx set_src)
2337 {
2338 tree decl = MEM_EXPR (loc);
2339 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2340
2341 var_mem_decl_set (set, loc, initialized,
2342 dv_from_decl (decl), offset, set_src, INSERT);
2343 }
2344
2345 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2346 dataflow set SET to LOC. If MODIFY is true, any other live copies
2347 of the same variable part are also deleted from the dataflow set,
2348 otherwise the variable part is assumed to be copied from another
2349 location holding the same part.
2350 Adjust the address first if it is stack pointer based. */
2351
2352 static void
2353 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2354 enum var_init_status initialized, rtx set_src)
2355 {
2356 tree decl = MEM_EXPR (loc);
2357 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2358
2359 clobber_overlapping_mems (set, loc);
2360 decl = var_debug_decl (decl);
2361
2362 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2363 initialized = get_init_value (set, loc, dv_from_decl (decl));
2364
2365 if (modify)
2366 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2367 var_mem_set (set, loc, initialized, set_src);
2368 }
2369
2370 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2371 true, also delete any other live copies of the same variable part.
2372 Adjust the address first if it is stack pointer based. */
2373
2374 static void
2375 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2376 {
2377 tree decl = MEM_EXPR (loc);
2378 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2379
2380 clobber_overlapping_mems (set, loc);
2381 decl = var_debug_decl (decl);
2382 if (clobber)
2383 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2384 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2385 }
2386
2387 /* Return true if LOC should not be expanded for location expressions,
2388 or used in them. */
2389
2390 static inline bool
2391 unsuitable_loc (rtx loc)
2392 {
2393 switch (GET_CODE (loc))
2394 {
2395 case PC:
2396 case SCRATCH:
2397 case CC0:
2398 case ASM_INPUT:
2399 case ASM_OPERANDS:
2400 return true;
2401
2402 default:
2403 return false;
2404 }
2405 }
2406
2407 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2408 bound to it. */
2409
2410 static inline void
2411 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2412 {
2413 if (REG_P (loc))
2414 {
2415 if (modified)
2416 var_regno_delete (set, REGNO (loc));
2417 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2418 dv_from_value (val), 0, NULL_RTX, INSERT);
2419 }
2420 else if (MEM_P (loc))
2421 {
2422 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2423
2424 if (modified)
2425 clobber_overlapping_mems (set, loc);
2426
2427 if (l && GET_CODE (l->loc) == VALUE)
2428 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2429
2430 /* If this MEM is a global constant, we don't need it in the
2431 dynamic tables. ??? We should test this before emitting the
2432 micro-op in the first place. */
2433 while (l)
2434 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2435 break;
2436 else
2437 l = l->next;
2438
2439 if (!l)
2440 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2441 dv_from_value (val), 0, NULL_RTX, INSERT);
2442 }
2443 else
2444 {
2445 /* Other kinds of equivalences are necessarily static, at least
2446 so long as we do not perform substitutions while merging
2447 expressions. */
2448 gcc_unreachable ();
2449 set_variable_part (set, loc, dv_from_value (val), 0,
2450 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2451 }
2452 }
2453
2454 /* Bind a value to a location it was just stored in. If MODIFIED
2455 holds, assume the location was modified, detaching it from any
2456 values bound to it. */
2457
2458 static void
2459 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2460 bool modified)
2461 {
2462 cselib_val *v = CSELIB_VAL_PTR (val);
2463
2464 gcc_assert (cselib_preserved_value_p (v));
2465
2466 if (dump_file)
2467 {
2468 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2469 print_inline_rtx (dump_file, loc, 0);
2470 fprintf (dump_file, " evaluates to ");
2471 print_inline_rtx (dump_file, val, 0);
2472 if (v->locs)
2473 {
2474 struct elt_loc_list *l;
2475 for (l = v->locs; l; l = l->next)
2476 {
2477 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2478 print_inline_rtx (dump_file, l->loc, 0);
2479 }
2480 }
2481 fprintf (dump_file, "\n");
2482 }
2483
2484 gcc_checking_assert (!unsuitable_loc (loc));
2485
2486 val_bind (set, val, loc, modified);
2487 }
2488
2489 /* Clear (canonical address) slots that reference X. */
2490
2491 bool
2492 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2493 {
2494 if (vt_get_canonicalize_base (*slot) == x)
2495 *slot = NULL;
2496 return true;
2497 }
2498
2499 /* Reset this node, detaching all its equivalences. Return the slot
2500 in the variable hash table that holds dv, if there is one. */
2501
2502 static void
2503 val_reset (dataflow_set *set, decl_or_value dv)
2504 {
2505 variable *var = shared_hash_find (set->vars, dv) ;
2506 location_chain *node;
2507 rtx cval;
2508
2509 if (!var || !var->n_var_parts)
2510 return;
2511
2512 gcc_assert (var->n_var_parts == 1);
2513
2514 if (var->onepart == ONEPART_VALUE)
2515 {
2516 rtx x = dv_as_value (dv);
2517
2518 /* Relationships in the global cache don't change, so reset the
2519 local cache entry only. */
2520 rtx *slot = local_get_addr_cache->get (x);
2521 if (slot)
2522 {
2523 /* If the value resolved back to itself, odds are that other
2524 values may have cached it too. These entries now refer
2525 to the old X, so detach them too. Entries that used the
2526 old X but resolved to something else remain ok as long as
2527 that something else isn't also reset. */
2528 if (*slot == x)
2529 local_get_addr_cache
2530 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2531 *slot = NULL;
2532 }
2533 }
2534
2535 cval = NULL;
2536 for (node = var->var_part[0].loc_chain; node; node = node->next)
2537 if (GET_CODE (node->loc) == VALUE
2538 && canon_value_cmp (node->loc, cval))
2539 cval = node->loc;
2540
2541 for (node = var->var_part[0].loc_chain; node; node = node->next)
2542 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2543 {
2544 /* Redirect the equivalence link to the new canonical
2545 value, or simply remove it if it would point at
2546 itself. */
2547 if (cval)
2548 set_variable_part (set, cval, dv_from_value (node->loc),
2549 0, node->init, node->set_src, NO_INSERT);
2550 delete_variable_part (set, dv_as_value (dv),
2551 dv_from_value (node->loc), 0);
2552 }
2553
2554 if (cval)
2555 {
2556 decl_or_value cdv = dv_from_value (cval);
2557
2558 /* Keep the remaining values connected, accumulating links
2559 in the canonical value. */
2560 for (node = var->var_part[0].loc_chain; node; node = node->next)
2561 {
2562 if (node->loc == cval)
2563 continue;
2564 else if (GET_CODE (node->loc) == REG)
2565 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2566 node->set_src, NO_INSERT);
2567 else if (GET_CODE (node->loc) == MEM)
2568 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2569 node->set_src, NO_INSERT);
2570 else
2571 set_variable_part (set, node->loc, cdv, 0,
2572 node->init, node->set_src, NO_INSERT);
2573 }
2574 }
2575
2576 /* We remove this last, to make sure that the canonical value is not
2577 removed to the point of requiring reinsertion. */
2578 if (cval)
2579 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2580
2581 clobber_variable_part (set, NULL, dv, 0, NULL);
2582 }
2583
2584 /* Find the values in a given location and map the val to another
2585 value, if it is unique, or add the location as one holding the
2586 value. */
2587
2588 static void
2589 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2590 {
2591 decl_or_value dv = dv_from_value (val);
2592
2593 if (dump_file && (dump_flags & TDF_DETAILS))
2594 {
2595 if (insn)
2596 fprintf (dump_file, "%i: ", INSN_UID (insn));
2597 else
2598 fprintf (dump_file, "head: ");
2599 print_inline_rtx (dump_file, val, 0);
2600 fputs (" is at ", dump_file);
2601 print_inline_rtx (dump_file, loc, 0);
2602 fputc ('\n', dump_file);
2603 }
2604
2605 val_reset (set, dv);
2606
2607 gcc_checking_assert (!unsuitable_loc (loc));
2608
2609 if (REG_P (loc))
2610 {
2611 attrs *node, *found = NULL;
2612
2613 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2614 if (dv_is_value_p (node->dv)
2615 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2616 {
2617 found = node;
2618
2619 /* Map incoming equivalences. ??? Wouldn't it be nice if
2620 we just started sharing the location lists? Maybe a
2621 circular list ending at the value itself or some
2622 such. */
2623 set_variable_part (set, dv_as_value (node->dv),
2624 dv_from_value (val), node->offset,
2625 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2626 set_variable_part (set, val, node->dv, node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 }
2629
2630 /* If we didn't find any equivalence, we need to remember that
2631 this value is held in the named register. */
2632 if (found)
2633 return;
2634 }
2635 /* ??? Attempt to find and merge equivalent MEMs or other
2636 expressions too. */
2637
2638 val_bind (set, val, loc, false);
2639 }
2640
2641 /* Initialize dataflow set SET to be empty.
2642 VARS_SIZE is the initial size of hash table VARS. */
2643
2644 static void
2645 dataflow_set_init (dataflow_set *set)
2646 {
2647 init_attrs_list_set (set->regs);
2648 set->vars = shared_hash_copy (empty_shared_hash);
2649 set->stack_adjust = 0;
2650 set->traversed_vars = NULL;
2651 }
2652
2653 /* Delete the contents of dataflow set SET. */
2654
2655 static void
2656 dataflow_set_clear (dataflow_set *set)
2657 {
2658 int i;
2659
2660 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2661 attrs_list_clear (&set->regs[i]);
2662
2663 shared_hash_destroy (set->vars);
2664 set->vars = shared_hash_copy (empty_shared_hash);
2665 }
2666
2667 /* Copy the contents of dataflow set SRC to DST. */
2668
2669 static void
2670 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2671 {
2672 int i;
2673
2674 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2675 attrs_list_copy (&dst->regs[i], src->regs[i]);
2676
2677 shared_hash_destroy (dst->vars);
2678 dst->vars = shared_hash_copy (src->vars);
2679 dst->stack_adjust = src->stack_adjust;
2680 }
2681
2682 /* Information for merging lists of locations for a given offset of variable.
2683 */
2684 struct variable_union_info
2685 {
2686 /* Node of the location chain. */
2687 location_chain *lc;
2688
2689 /* The sum of positions in the input chains. */
2690 int pos;
2691
2692 /* The position in the chain of DST dataflow set. */
2693 int pos_dst;
2694 };
2695
2696 /* Buffer for location list sorting and its allocated size. */
2697 static struct variable_union_info *vui_vec;
2698 static int vui_allocated;
2699
2700 /* Compare function for qsort, order the structures by POS element. */
2701
2702 static int
2703 variable_union_info_cmp_pos (const void *n1, const void *n2)
2704 {
2705 const struct variable_union_info *const i1 =
2706 (const struct variable_union_info *) n1;
2707 const struct variable_union_info *const i2 =
2708 ( const struct variable_union_info *) n2;
2709
2710 if (i1->pos != i2->pos)
2711 return i1->pos - i2->pos;
2712
2713 return (i1->pos_dst - i2->pos_dst);
2714 }
2715
2716 /* Compute union of location parts of variable *SLOT and the same variable
2717 from hash table DATA. Compute "sorted" union of the location chains
2718 for common offsets, i.e. the locations of a variable part are sorted by
2719 a priority where the priority is the sum of the positions in the 2 chains
2720 (if a location is only in one list the position in the second list is
2721 defined to be larger than the length of the chains).
2722 When we are updating the location parts the newest location is in the
2723 beginning of the chain, so when we do the described "sorted" union
2724 we keep the newest locations in the beginning. */
2725
2726 static int
2727 variable_union (variable *src, dataflow_set *set)
2728 {
2729 variable *dst;
2730 variable **dstp;
2731 int i, j, k;
2732
2733 dstp = shared_hash_find_slot (set->vars, src->dv);
2734 if (!dstp || !*dstp)
2735 {
2736 src->refcount++;
2737
2738 dst_can_be_shared = false;
2739 if (!dstp)
2740 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2741
2742 *dstp = src;
2743
2744 /* Continue traversing the hash table. */
2745 return 1;
2746 }
2747 else
2748 dst = *dstp;
2749
2750 gcc_assert (src->n_var_parts);
2751 gcc_checking_assert (src->onepart == dst->onepart);
2752
2753 /* We can combine one-part variables very efficiently, because their
2754 entries are in canonical order. */
2755 if (src->onepart)
2756 {
2757 location_chain **nodep, *dnode, *snode;
2758
2759 gcc_assert (src->n_var_parts == 1
2760 && dst->n_var_parts == 1);
2761
2762 snode = src->var_part[0].loc_chain;
2763 gcc_assert (snode);
2764
2765 restart_onepart_unshared:
2766 nodep = &dst->var_part[0].loc_chain;
2767 dnode = *nodep;
2768 gcc_assert (dnode);
2769
2770 while (snode)
2771 {
2772 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2773
2774 if (r > 0)
2775 {
2776 location_chain *nnode;
2777
2778 if (shared_var_p (dst, set->vars))
2779 {
2780 dstp = unshare_variable (set, dstp, dst,
2781 VAR_INIT_STATUS_INITIALIZED);
2782 dst = *dstp;
2783 goto restart_onepart_unshared;
2784 }
2785
2786 *nodep = nnode = new location_chain;
2787 nnode->loc = snode->loc;
2788 nnode->init = snode->init;
2789 if (!snode->set_src || MEM_P (snode->set_src))
2790 nnode->set_src = NULL;
2791 else
2792 nnode->set_src = snode->set_src;
2793 nnode->next = dnode;
2794 dnode = nnode;
2795 }
2796 else if (r == 0)
2797 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2798
2799 if (r >= 0)
2800 snode = snode->next;
2801
2802 nodep = &dnode->next;
2803 dnode = *nodep;
2804 }
2805
2806 return 1;
2807 }
2808
2809 gcc_checking_assert (!src->onepart);
2810
2811 /* Count the number of location parts, result is K. */
2812 for (i = 0, j = 0, k = 0;
2813 i < src->n_var_parts && j < dst->n_var_parts; k++)
2814 {
2815 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2816 {
2817 i++;
2818 j++;
2819 }
2820 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2821 i++;
2822 else
2823 j++;
2824 }
2825 k += src->n_var_parts - i;
2826 k += dst->n_var_parts - j;
2827
2828 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2829 thus there are at most MAX_VAR_PARTS different offsets. */
2830 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2831
2832 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2833 {
2834 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2835 dst = *dstp;
2836 }
2837
2838 i = src->n_var_parts - 1;
2839 j = dst->n_var_parts - 1;
2840 dst->n_var_parts = k;
2841
2842 for (k--; k >= 0; k--)
2843 {
2844 location_chain *node, *node2;
2845
2846 if (i >= 0 && j >= 0
2847 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2848 {
2849 /* Compute the "sorted" union of the chains, i.e. the locations which
2850 are in both chains go first, they are sorted by the sum of
2851 positions in the chains. */
2852 int dst_l, src_l;
2853 int ii, jj, n;
2854 struct variable_union_info *vui;
2855
2856 /* If DST is shared compare the location chains.
2857 If they are different we will modify the chain in DST with
2858 high probability so make a copy of DST. */
2859 if (shared_var_p (dst, set->vars))
2860 {
2861 for (node = src->var_part[i].loc_chain,
2862 node2 = dst->var_part[j].loc_chain; node && node2;
2863 node = node->next, node2 = node2->next)
2864 {
2865 if (!((REG_P (node2->loc)
2866 && REG_P (node->loc)
2867 && REGNO (node2->loc) == REGNO (node->loc))
2868 || rtx_equal_p (node2->loc, node->loc)))
2869 {
2870 if (node2->init < node->init)
2871 node2->init = node->init;
2872 break;
2873 }
2874 }
2875 if (node || node2)
2876 {
2877 dstp = unshare_variable (set, dstp, dst,
2878 VAR_INIT_STATUS_UNKNOWN);
2879 dst = (variable *)*dstp;
2880 }
2881 }
2882
2883 src_l = 0;
2884 for (node = src->var_part[i].loc_chain; node; node = node->next)
2885 src_l++;
2886 dst_l = 0;
2887 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2888 dst_l++;
2889
2890 if (dst_l == 1)
2891 {
2892 /* The most common case, much simpler, no qsort is needed. */
2893 location_chain *dstnode = dst->var_part[j].loc_chain;
2894 dst->var_part[k].loc_chain = dstnode;
2895 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2896 node2 = dstnode;
2897 for (node = src->var_part[i].loc_chain; node; node = node->next)
2898 if (!((REG_P (dstnode->loc)
2899 && REG_P (node->loc)
2900 && REGNO (dstnode->loc) == REGNO (node->loc))
2901 || rtx_equal_p (dstnode->loc, node->loc)))
2902 {
2903 location_chain *new_node;
2904
2905 /* Copy the location from SRC. */
2906 new_node = new location_chain;
2907 new_node->loc = node->loc;
2908 new_node->init = node->init;
2909 if (!node->set_src || MEM_P (node->set_src))
2910 new_node->set_src = NULL;
2911 else
2912 new_node->set_src = node->set_src;
2913 node2->next = new_node;
2914 node2 = new_node;
2915 }
2916 node2->next = NULL;
2917 }
2918 else
2919 {
2920 if (src_l + dst_l > vui_allocated)
2921 {
2922 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2923 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2924 vui_allocated);
2925 }
2926 vui = vui_vec;
2927
2928 /* Fill in the locations from DST. */
2929 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2930 node = node->next, jj++)
2931 {
2932 vui[jj].lc = node;
2933 vui[jj].pos_dst = jj;
2934
2935 /* Pos plus value larger than a sum of 2 valid positions. */
2936 vui[jj].pos = jj + src_l + dst_l;
2937 }
2938
2939 /* Fill in the locations from SRC. */
2940 n = dst_l;
2941 for (node = src->var_part[i].loc_chain, ii = 0; node;
2942 node = node->next, ii++)
2943 {
2944 /* Find location from NODE. */
2945 for (jj = 0; jj < dst_l; jj++)
2946 {
2947 if ((REG_P (vui[jj].lc->loc)
2948 && REG_P (node->loc)
2949 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2950 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2951 {
2952 vui[jj].pos = jj + ii;
2953 break;
2954 }
2955 }
2956 if (jj >= dst_l) /* The location has not been found. */
2957 {
2958 location_chain *new_node;
2959
2960 /* Copy the location from SRC. */
2961 new_node = new location_chain;
2962 new_node->loc = node->loc;
2963 new_node->init = node->init;
2964 if (!node->set_src || MEM_P (node->set_src))
2965 new_node->set_src = NULL;
2966 else
2967 new_node->set_src = node->set_src;
2968 vui[n].lc = new_node;
2969 vui[n].pos_dst = src_l + dst_l;
2970 vui[n].pos = ii + src_l + dst_l;
2971 n++;
2972 }
2973 }
2974
2975 if (dst_l == 2)
2976 {
2977 /* Special case still very common case. For dst_l == 2
2978 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2979 vui[i].pos == i + src_l + dst_l. */
2980 if (vui[0].pos > vui[1].pos)
2981 {
2982 /* Order should be 1, 0, 2... */
2983 dst->var_part[k].loc_chain = vui[1].lc;
2984 vui[1].lc->next = vui[0].lc;
2985 if (n >= 3)
2986 {
2987 vui[0].lc->next = vui[2].lc;
2988 vui[n - 1].lc->next = NULL;
2989 }
2990 else
2991 vui[0].lc->next = NULL;
2992 ii = 3;
2993 }
2994 else
2995 {
2996 dst->var_part[k].loc_chain = vui[0].lc;
2997 if (n >= 3 && vui[2].pos < vui[1].pos)
2998 {
2999 /* Order should be 0, 2, 1, 3... */
3000 vui[0].lc->next = vui[2].lc;
3001 vui[2].lc->next = vui[1].lc;
3002 if (n >= 4)
3003 {
3004 vui[1].lc->next = vui[3].lc;
3005 vui[n - 1].lc->next = NULL;
3006 }
3007 else
3008 vui[1].lc->next = NULL;
3009 ii = 4;
3010 }
3011 else
3012 {
3013 /* Order should be 0, 1, 2... */
3014 ii = 1;
3015 vui[n - 1].lc->next = NULL;
3016 }
3017 }
3018 for (; ii < n; ii++)
3019 vui[ii - 1].lc->next = vui[ii].lc;
3020 }
3021 else
3022 {
3023 qsort (vui, n, sizeof (struct variable_union_info),
3024 variable_union_info_cmp_pos);
3025
3026 /* Reconnect the nodes in sorted order. */
3027 for (ii = 1; ii < n; ii++)
3028 vui[ii - 1].lc->next = vui[ii].lc;
3029 vui[n - 1].lc->next = NULL;
3030 dst->var_part[k].loc_chain = vui[0].lc;
3031 }
3032
3033 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3034 }
3035 i--;
3036 j--;
3037 }
3038 else if ((i >= 0 && j >= 0
3039 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3040 || i < 0)
3041 {
3042 dst->var_part[k] = dst->var_part[j];
3043 j--;
3044 }
3045 else if ((i >= 0 && j >= 0
3046 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3047 || j < 0)
3048 {
3049 location_chain **nextp;
3050
3051 /* Copy the chain from SRC. */
3052 nextp = &dst->var_part[k].loc_chain;
3053 for (node = src->var_part[i].loc_chain; node; node = node->next)
3054 {
3055 location_chain *new_lc;
3056
3057 new_lc = new location_chain;
3058 new_lc->next = NULL;
3059 new_lc->init = node->init;
3060 if (!node->set_src || MEM_P (node->set_src))
3061 new_lc->set_src = NULL;
3062 else
3063 new_lc->set_src = node->set_src;
3064 new_lc->loc = node->loc;
3065
3066 *nextp = new_lc;
3067 nextp = &new_lc->next;
3068 }
3069
3070 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3071 i--;
3072 }
3073 dst->var_part[k].cur_loc = NULL;
3074 }
3075
3076 if (flag_var_tracking_uninit)
3077 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3078 {
3079 location_chain *node, *node2;
3080 for (node = src->var_part[i].loc_chain; node; node = node->next)
3081 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3082 if (rtx_equal_p (node->loc, node2->loc))
3083 {
3084 if (node->init > node2->init)
3085 node2->init = node->init;
3086 }
3087 }
3088
3089 /* Continue traversing the hash table. */
3090 return 1;
3091 }
3092
3093 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3094
3095 static void
3096 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3097 {
3098 int i;
3099
3100 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3101 attrs_list_union (&dst->regs[i], src->regs[i]);
3102
3103 if (dst->vars == empty_shared_hash)
3104 {
3105 shared_hash_destroy (dst->vars);
3106 dst->vars = shared_hash_copy (src->vars);
3107 }
3108 else
3109 {
3110 variable_iterator_type hi;
3111 variable *var;
3112
3113 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3114 var, variable, hi)
3115 variable_union (var, dst);
3116 }
3117 }
3118
3119 /* Whether the value is currently being expanded. */
3120 #define VALUE_RECURSED_INTO(x) \
3121 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3122
3123 /* Whether no expansion was found, saving useless lookups.
3124 It must only be set when VALUE_CHANGED is clear. */
3125 #define NO_LOC_P(x) \
3126 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3127
3128 /* Whether cur_loc in the value needs to be (re)computed. */
3129 #define VALUE_CHANGED(x) \
3130 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3131 /* Whether cur_loc in the decl needs to be (re)computed. */
3132 #define DECL_CHANGED(x) TREE_VISITED (x)
3133
3134 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3135 user DECLs, this means they're in changed_variables. Values and
3136 debug exprs may be left with this flag set if no user variable
3137 requires them to be evaluated. */
3138
3139 static inline void
3140 set_dv_changed (decl_or_value dv, bool newv)
3141 {
3142 switch (dv_onepart_p (dv))
3143 {
3144 case ONEPART_VALUE:
3145 if (newv)
3146 NO_LOC_P (dv_as_value (dv)) = false;
3147 VALUE_CHANGED (dv_as_value (dv)) = newv;
3148 break;
3149
3150 case ONEPART_DEXPR:
3151 if (newv)
3152 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3153 /* Fall through. */
3154
3155 default:
3156 DECL_CHANGED (dv_as_decl (dv)) = newv;
3157 break;
3158 }
3159 }
3160
3161 /* Return true if DV needs to have its cur_loc recomputed. */
3162
3163 static inline bool
3164 dv_changed_p (decl_or_value dv)
3165 {
3166 return (dv_is_value_p (dv)
3167 ? VALUE_CHANGED (dv_as_value (dv))
3168 : DECL_CHANGED (dv_as_decl (dv)));
3169 }
3170
3171 /* Return a location list node whose loc is rtx_equal to LOC, in the
3172 location list of a one-part variable or value VAR, or in that of
3173 any values recursively mentioned in the location lists. VARS must
3174 be in star-canonical form. */
3175
3176 static location_chain *
3177 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3178 {
3179 location_chain *node;
3180 enum rtx_code loc_code;
3181
3182 if (!var)
3183 return NULL;
3184
3185 gcc_checking_assert (var->onepart);
3186
3187 if (!var->n_var_parts)
3188 return NULL;
3189
3190 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3191
3192 loc_code = GET_CODE (loc);
3193 for (node = var->var_part[0].loc_chain; node; node = node->next)
3194 {
3195 decl_or_value dv;
3196 variable *rvar;
3197
3198 if (GET_CODE (node->loc) != loc_code)
3199 {
3200 if (GET_CODE (node->loc) != VALUE)
3201 continue;
3202 }
3203 else if (loc == node->loc)
3204 return node;
3205 else if (loc_code != VALUE)
3206 {
3207 if (rtx_equal_p (loc, node->loc))
3208 return node;
3209 continue;
3210 }
3211
3212 /* Since we're in star-canonical form, we don't need to visit
3213 non-canonical nodes: one-part variables and non-canonical
3214 values would only point back to the canonical node. */
3215 if (dv_is_value_p (var->dv)
3216 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3217 {
3218 /* Skip all subsequent VALUEs. */
3219 while (node->next && GET_CODE (node->next->loc) == VALUE)
3220 {
3221 node = node->next;
3222 gcc_checking_assert (!canon_value_cmp (node->loc,
3223 dv_as_value (var->dv)));
3224 if (loc == node->loc)
3225 return node;
3226 }
3227 continue;
3228 }
3229
3230 gcc_checking_assert (node == var->var_part[0].loc_chain);
3231 gcc_checking_assert (!node->next);
3232
3233 dv = dv_from_value (node->loc);
3234 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3235 return find_loc_in_1pdv (loc, rvar, vars);
3236 }
3237
3238 /* ??? Gotta look in cselib_val locations too. */
3239
3240 return NULL;
3241 }
3242
3243 /* Hash table iteration argument passed to variable_merge. */
3244 struct dfset_merge
3245 {
3246 /* The set in which the merge is to be inserted. */
3247 dataflow_set *dst;
3248 /* The set that we're iterating in. */
3249 dataflow_set *cur;
3250 /* The set that may contain the other dv we are to merge with. */
3251 dataflow_set *src;
3252 /* Number of onepart dvs in src. */
3253 int src_onepart_cnt;
3254 };
3255
3256 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3257 loc_cmp order, and it is maintained as such. */
3258
3259 static void
3260 insert_into_intersection (location_chain **nodep, rtx loc,
3261 enum var_init_status status)
3262 {
3263 location_chain *node;
3264 int r;
3265
3266 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3267 if ((r = loc_cmp (node->loc, loc)) == 0)
3268 {
3269 node->init = MIN (node->init, status);
3270 return;
3271 }
3272 else if (r > 0)
3273 break;
3274
3275 node = new location_chain;
3276
3277 node->loc = loc;
3278 node->set_src = NULL;
3279 node->init = status;
3280 node->next = *nodep;
3281 *nodep = node;
3282 }
3283
3284 /* Insert in DEST the intersection of the locations present in both
3285 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3286 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3287 DSM->dst. */
3288
3289 static void
3290 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3291 location_chain *s1node, variable *s2var)
3292 {
3293 dataflow_set *s1set = dsm->cur;
3294 dataflow_set *s2set = dsm->src;
3295 location_chain *found;
3296
3297 if (s2var)
3298 {
3299 location_chain *s2node;
3300
3301 gcc_checking_assert (s2var->onepart);
3302
3303 if (s2var->n_var_parts)
3304 {
3305 s2node = s2var->var_part[0].loc_chain;
3306
3307 for (; s1node && s2node;
3308 s1node = s1node->next, s2node = s2node->next)
3309 if (s1node->loc != s2node->loc)
3310 break;
3311 else if (s1node->loc == val)
3312 continue;
3313 else
3314 insert_into_intersection (dest, s1node->loc,
3315 MIN (s1node->init, s2node->init));
3316 }
3317 }
3318
3319 for (; s1node; s1node = s1node->next)
3320 {
3321 if (s1node->loc == val)
3322 continue;
3323
3324 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3325 shared_hash_htab (s2set->vars))))
3326 {
3327 insert_into_intersection (dest, s1node->loc,
3328 MIN (s1node->init, found->init));
3329 continue;
3330 }
3331
3332 if (GET_CODE (s1node->loc) == VALUE
3333 && !VALUE_RECURSED_INTO (s1node->loc))
3334 {
3335 decl_or_value dv = dv_from_value (s1node->loc);
3336 variable *svar = shared_hash_find (s1set->vars, dv);
3337 if (svar)
3338 {
3339 if (svar->n_var_parts == 1)
3340 {
3341 VALUE_RECURSED_INTO (s1node->loc) = true;
3342 intersect_loc_chains (val, dest, dsm,
3343 svar->var_part[0].loc_chain,
3344 s2var);
3345 VALUE_RECURSED_INTO (s1node->loc) = false;
3346 }
3347 }
3348 }
3349
3350 /* ??? gotta look in cselib_val locations too. */
3351
3352 /* ??? if the location is equivalent to any location in src,
3353 searched recursively
3354
3355 add to dst the values needed to represent the equivalence
3356
3357 telling whether locations S is equivalent to another dv's
3358 location list:
3359
3360 for each location D in the list
3361
3362 if S and D satisfy rtx_equal_p, then it is present
3363
3364 else if D is a value, recurse without cycles
3365
3366 else if S and D have the same CODE and MODE
3367
3368 for each operand oS and the corresponding oD
3369
3370 if oS and oD are not equivalent, then S an D are not equivalent
3371
3372 else if they are RTX vectors
3373
3374 if any vector oS element is not equivalent to its respective oD,
3375 then S and D are not equivalent
3376
3377 */
3378
3379
3380 }
3381 }
3382
3383 /* Return -1 if X should be before Y in a location list for a 1-part
3384 variable, 1 if Y should be before X, and 0 if they're equivalent
3385 and should not appear in the list. */
3386
3387 static int
3388 loc_cmp (rtx x, rtx y)
3389 {
3390 int i, j, r;
3391 RTX_CODE code = GET_CODE (x);
3392 const char *fmt;
3393
3394 if (x == y)
3395 return 0;
3396
3397 if (REG_P (x))
3398 {
3399 if (!REG_P (y))
3400 return -1;
3401 gcc_assert (GET_MODE (x) == GET_MODE (y));
3402 if (REGNO (x) == REGNO (y))
3403 return 0;
3404 else if (REGNO (x) < REGNO (y))
3405 return -1;
3406 else
3407 return 1;
3408 }
3409
3410 if (REG_P (y))
3411 return 1;
3412
3413 if (MEM_P (x))
3414 {
3415 if (!MEM_P (y))
3416 return -1;
3417 gcc_assert (GET_MODE (x) == GET_MODE (y));
3418 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3419 }
3420
3421 if (MEM_P (y))
3422 return 1;
3423
3424 if (GET_CODE (x) == VALUE)
3425 {
3426 if (GET_CODE (y) != VALUE)
3427 return -1;
3428 /* Don't assert the modes are the same, that is true only
3429 when not recursing. (subreg:QI (value:SI 1:1) 0)
3430 and (subreg:QI (value:DI 2:2) 0) can be compared,
3431 even when the modes are different. */
3432 if (canon_value_cmp (x, y))
3433 return -1;
3434 else
3435 return 1;
3436 }
3437
3438 if (GET_CODE (y) == VALUE)
3439 return 1;
3440
3441 /* Entry value is the least preferable kind of expression. */
3442 if (GET_CODE (x) == ENTRY_VALUE)
3443 {
3444 if (GET_CODE (y) != ENTRY_VALUE)
3445 return 1;
3446 gcc_assert (GET_MODE (x) == GET_MODE (y));
3447 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3448 }
3449
3450 if (GET_CODE (y) == ENTRY_VALUE)
3451 return -1;
3452
3453 if (GET_CODE (x) == GET_CODE (y))
3454 /* Compare operands below. */;
3455 else if (GET_CODE (x) < GET_CODE (y))
3456 return -1;
3457 else
3458 return 1;
3459
3460 gcc_assert (GET_MODE (x) == GET_MODE (y));
3461
3462 if (GET_CODE (x) == DEBUG_EXPR)
3463 {
3464 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3465 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3466 return -1;
3467 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3468 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3469 return 1;
3470 }
3471
3472 fmt = GET_RTX_FORMAT (code);
3473 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3474 switch (fmt[i])
3475 {
3476 case 'w':
3477 if (XWINT (x, i) == XWINT (y, i))
3478 break;
3479 else if (XWINT (x, i) < XWINT (y, i))
3480 return -1;
3481 else
3482 return 1;
3483
3484 case 'n':
3485 case 'i':
3486 if (XINT (x, i) == XINT (y, i))
3487 break;
3488 else if (XINT (x, i) < XINT (y, i))
3489 return -1;
3490 else
3491 return 1;
3492
3493 case 'V':
3494 case 'E':
3495 /* Compare the vector length first. */
3496 if (XVECLEN (x, i) == XVECLEN (y, i))
3497 /* Compare the vectors elements. */;
3498 else if (XVECLEN (x, i) < XVECLEN (y, i))
3499 return -1;
3500 else
3501 return 1;
3502
3503 for (j = 0; j < XVECLEN (x, i); j++)
3504 if ((r = loc_cmp (XVECEXP (x, i, j),
3505 XVECEXP (y, i, j))))
3506 return r;
3507 break;
3508
3509 case 'e':
3510 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3511 return r;
3512 break;
3513
3514 case 'S':
3515 case 's':
3516 if (XSTR (x, i) == XSTR (y, i))
3517 break;
3518 if (!XSTR (x, i))
3519 return -1;
3520 if (!XSTR (y, i))
3521 return 1;
3522 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3523 break;
3524 else if (r < 0)
3525 return -1;
3526 else
3527 return 1;
3528
3529 case 'u':
3530 /* These are just backpointers, so they don't matter. */
3531 break;
3532
3533 case '0':
3534 case 't':
3535 break;
3536
3537 /* It is believed that rtx's at this level will never
3538 contain anything but integers and other rtx's,
3539 except for within LABEL_REFs and SYMBOL_REFs. */
3540 default:
3541 gcc_unreachable ();
3542 }
3543 if (CONST_WIDE_INT_P (x))
3544 {
3545 /* Compare the vector length first. */
3546 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3547 return 1;
3548 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3549 return -1;
3550
3551 /* Compare the vectors elements. */;
3552 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3553 {
3554 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3555 return -1;
3556 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3557 return 1;
3558 }
3559 }
3560
3561 return 0;
3562 }
3563
3564 /* Check the order of entries in one-part variables. */
3565
3566 int
3567 canonicalize_loc_order_check (variable **slot,
3568 dataflow_set *data ATTRIBUTE_UNUSED)
3569 {
3570 variable *var = *slot;
3571 location_chain *node, *next;
3572
3573 #ifdef ENABLE_RTL_CHECKING
3574 int i;
3575 for (i = 0; i < var->n_var_parts; i++)
3576 gcc_assert (var->var_part[0].cur_loc == NULL);
3577 gcc_assert (!var->in_changed_variables);
3578 #endif
3579
3580 if (!var->onepart)
3581 return 1;
3582
3583 gcc_assert (var->n_var_parts == 1);
3584 node = var->var_part[0].loc_chain;
3585 gcc_assert (node);
3586
3587 while ((next = node->next))
3588 {
3589 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3590 node = next;
3591 }
3592
3593 return 1;
3594 }
3595
3596 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3597 more likely to be chosen as canonical for an equivalence set.
3598 Ensure less likely values can reach more likely neighbors, making
3599 the connections bidirectional. */
3600
3601 int
3602 canonicalize_values_mark (variable **slot, dataflow_set *set)
3603 {
3604 variable *var = *slot;
3605 decl_or_value dv = var->dv;
3606 rtx val;
3607 location_chain *node;
3608
3609 if (!dv_is_value_p (dv))
3610 return 1;
3611
3612 gcc_checking_assert (var->n_var_parts == 1);
3613
3614 val = dv_as_value (dv);
3615
3616 for (node = var->var_part[0].loc_chain; node; node = node->next)
3617 if (GET_CODE (node->loc) == VALUE)
3618 {
3619 if (canon_value_cmp (node->loc, val))
3620 VALUE_RECURSED_INTO (val) = true;
3621 else
3622 {
3623 decl_or_value odv = dv_from_value (node->loc);
3624 variable **oslot;
3625 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3626
3627 set_slot_part (set, val, oslot, odv, 0,
3628 node->init, NULL_RTX);
3629
3630 VALUE_RECURSED_INTO (node->loc) = true;
3631 }
3632 }
3633
3634 return 1;
3635 }
3636
3637 /* Remove redundant entries from equivalence lists in onepart
3638 variables, canonicalizing equivalence sets into star shapes. */
3639
3640 int
3641 canonicalize_values_star (variable **slot, dataflow_set *set)
3642 {
3643 variable *var = *slot;
3644 decl_or_value dv = var->dv;
3645 location_chain *node;
3646 decl_or_value cdv;
3647 rtx val, cval;
3648 variable **cslot;
3649 bool has_value;
3650 bool has_marks;
3651
3652 if (!var->onepart)
3653 return 1;
3654
3655 gcc_checking_assert (var->n_var_parts == 1);
3656
3657 if (dv_is_value_p (dv))
3658 {
3659 cval = dv_as_value (dv);
3660 if (!VALUE_RECURSED_INTO (cval))
3661 return 1;
3662 VALUE_RECURSED_INTO (cval) = false;
3663 }
3664 else
3665 cval = NULL_RTX;
3666
3667 restart:
3668 val = cval;
3669 has_value = false;
3670 has_marks = false;
3671
3672 gcc_assert (var->n_var_parts == 1);
3673
3674 for (node = var->var_part[0].loc_chain; node; node = node->next)
3675 if (GET_CODE (node->loc) == VALUE)
3676 {
3677 has_value = true;
3678 if (VALUE_RECURSED_INTO (node->loc))
3679 has_marks = true;
3680 if (canon_value_cmp (node->loc, cval))
3681 cval = node->loc;
3682 }
3683
3684 if (!has_value)
3685 return 1;
3686
3687 if (cval == val)
3688 {
3689 if (!has_marks || dv_is_decl_p (dv))
3690 return 1;
3691
3692 /* Keep it marked so that we revisit it, either after visiting a
3693 child node, or after visiting a new parent that might be
3694 found out. */
3695 VALUE_RECURSED_INTO (val) = true;
3696
3697 for (node = var->var_part[0].loc_chain; node; node = node->next)
3698 if (GET_CODE (node->loc) == VALUE
3699 && VALUE_RECURSED_INTO (node->loc))
3700 {
3701 cval = node->loc;
3702 restart_with_cval:
3703 VALUE_RECURSED_INTO (cval) = false;
3704 dv = dv_from_value (cval);
3705 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3706 if (!slot)
3707 {
3708 gcc_assert (dv_is_decl_p (var->dv));
3709 /* The canonical value was reset and dropped.
3710 Remove it. */
3711 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3712 return 1;
3713 }
3714 var = *slot;
3715 gcc_assert (dv_is_value_p (var->dv));
3716 if (var->n_var_parts == 0)
3717 return 1;
3718 gcc_assert (var->n_var_parts == 1);
3719 goto restart;
3720 }
3721
3722 VALUE_RECURSED_INTO (val) = false;
3723
3724 return 1;
3725 }
3726
3727 /* Push values to the canonical one. */
3728 cdv = dv_from_value (cval);
3729 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3730
3731 for (node = var->var_part[0].loc_chain; node; node = node->next)
3732 if (node->loc != cval)
3733 {
3734 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3735 node->init, NULL_RTX);
3736 if (GET_CODE (node->loc) == VALUE)
3737 {
3738 decl_or_value ndv = dv_from_value (node->loc);
3739
3740 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3741 NO_INSERT);
3742
3743 if (canon_value_cmp (node->loc, val))
3744 {
3745 /* If it could have been a local minimum, it's not any more,
3746 since it's now neighbor to cval, so it may have to push
3747 to it. Conversely, if it wouldn't have prevailed over
3748 val, then whatever mark it has is fine: if it was to
3749 push, it will now push to a more canonical node, but if
3750 it wasn't, then it has already pushed any values it might
3751 have to. */
3752 VALUE_RECURSED_INTO (node->loc) = true;
3753 /* Make sure we visit node->loc by ensuring we cval is
3754 visited too. */
3755 VALUE_RECURSED_INTO (cval) = true;
3756 }
3757 else if (!VALUE_RECURSED_INTO (node->loc))
3758 /* If we have no need to "recurse" into this node, it's
3759 already "canonicalized", so drop the link to the old
3760 parent. */
3761 clobber_variable_part (set, cval, ndv, 0, NULL);
3762 }
3763 else if (GET_CODE (node->loc) == REG)
3764 {
3765 attrs *list = set->regs[REGNO (node->loc)], **listp;
3766
3767 /* Change an existing attribute referring to dv so that it
3768 refers to cdv, removing any duplicate this might
3769 introduce, and checking that no previous duplicates
3770 existed, all in a single pass. */
3771
3772 while (list)
3773 {
3774 if (list->offset == 0
3775 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3776 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3777 break;
3778
3779 list = list->next;
3780 }
3781
3782 gcc_assert (list);
3783 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3784 {
3785 list->dv = cdv;
3786 for (listp = &list->next; (list = *listp); listp = &list->next)
3787 {
3788 if (list->offset)
3789 continue;
3790
3791 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3792 {
3793 *listp = list->next;
3794 delete list;
3795 list = *listp;
3796 break;
3797 }
3798
3799 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3800 }
3801 }
3802 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3803 {
3804 for (listp = &list->next; (list = *listp); listp = &list->next)
3805 {
3806 if (list->offset)
3807 continue;
3808
3809 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3810 {
3811 *listp = list->next;
3812 delete list;
3813 list = *listp;
3814 break;
3815 }
3816
3817 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3818 }
3819 }
3820 else
3821 gcc_unreachable ();
3822
3823 if (flag_checking)
3824 while (list)
3825 {
3826 if (list->offset == 0
3827 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3828 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3829 gcc_unreachable ();
3830
3831 list = list->next;
3832 }
3833 }
3834 }
3835
3836 if (val)
3837 set_slot_part (set, val, cslot, cdv, 0,
3838 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3839
3840 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3841
3842 /* Variable may have been unshared. */
3843 var = *slot;
3844 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3845 && var->var_part[0].loc_chain->next == NULL);
3846
3847 if (VALUE_RECURSED_INTO (cval))
3848 goto restart_with_cval;
3849
3850 return 1;
3851 }
3852
3853 /* Bind one-part variables to the canonical value in an equivalence
3854 set. Not doing this causes dataflow convergence failure in rare
3855 circumstances, see PR42873. Unfortunately we can't do this
3856 efficiently as part of canonicalize_values_star, since we may not
3857 have determined or even seen the canonical value of a set when we
3858 get to a variable that references another member of the set. */
3859
3860 int
3861 canonicalize_vars_star (variable **slot, dataflow_set *set)
3862 {
3863 variable *var = *slot;
3864 decl_or_value dv = var->dv;
3865 location_chain *node;
3866 rtx cval;
3867 decl_or_value cdv;
3868 variable **cslot;
3869 variable *cvar;
3870 location_chain *cnode;
3871
3872 if (!var->onepart || var->onepart == ONEPART_VALUE)
3873 return 1;
3874
3875 gcc_assert (var->n_var_parts == 1);
3876
3877 node = var->var_part[0].loc_chain;
3878
3879 if (GET_CODE (node->loc) != VALUE)
3880 return 1;
3881
3882 gcc_assert (!node->next);
3883 cval = node->loc;
3884
3885 /* Push values to the canonical one. */
3886 cdv = dv_from_value (cval);
3887 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3888 if (!cslot)
3889 return 1;
3890 cvar = *cslot;
3891 gcc_assert (cvar->n_var_parts == 1);
3892
3893 cnode = cvar->var_part[0].loc_chain;
3894
3895 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3896 that are not “more canonical” than it. */
3897 if (GET_CODE (cnode->loc) != VALUE
3898 || !canon_value_cmp (cnode->loc, cval))
3899 return 1;
3900
3901 /* CVAL was found to be non-canonical. Change the variable to point
3902 to the canonical VALUE. */
3903 gcc_assert (!cnode->next);
3904 cval = cnode->loc;
3905
3906 slot = set_slot_part (set, cval, slot, dv, 0,
3907 node->init, node->set_src);
3908 clobber_slot_part (set, cval, slot, 0, node->set_src);
3909
3910 return 1;
3911 }
3912
3913 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3914 corresponding entry in DSM->src. Multi-part variables are combined
3915 with variable_union, whereas onepart dvs are combined with
3916 intersection. */
3917
3918 static int
3919 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3920 {
3921 dataflow_set *dst = dsm->dst;
3922 variable **dstslot;
3923 variable *s2var, *dvar = NULL;
3924 decl_or_value dv = s1var->dv;
3925 onepart_enum onepart = s1var->onepart;
3926 rtx val;
3927 hashval_t dvhash;
3928 location_chain *node, **nodep;
3929
3930 /* If the incoming onepart variable has an empty location list, then
3931 the intersection will be just as empty. For other variables,
3932 it's always union. */
3933 gcc_checking_assert (s1var->n_var_parts
3934 && s1var->var_part[0].loc_chain);
3935
3936 if (!onepart)
3937 return variable_union (s1var, dst);
3938
3939 gcc_checking_assert (s1var->n_var_parts == 1);
3940
3941 dvhash = dv_htab_hash (dv);
3942 if (dv_is_value_p (dv))
3943 val = dv_as_value (dv);
3944 else
3945 val = NULL;
3946
3947 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3948 if (!s2var)
3949 {
3950 dst_can_be_shared = false;
3951 return 1;
3952 }
3953
3954 dsm->src_onepart_cnt--;
3955 gcc_assert (s2var->var_part[0].loc_chain
3956 && s2var->onepart == onepart
3957 && s2var->n_var_parts == 1);
3958
3959 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3960 if (dstslot)
3961 {
3962 dvar = *dstslot;
3963 gcc_assert (dvar->refcount == 1
3964 && dvar->onepart == onepart
3965 && dvar->n_var_parts == 1);
3966 nodep = &dvar->var_part[0].loc_chain;
3967 }
3968 else
3969 {
3970 nodep = &node;
3971 node = NULL;
3972 }
3973
3974 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3975 {
3976 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3977 dvhash, INSERT);
3978 *dstslot = dvar = s2var;
3979 dvar->refcount++;
3980 }
3981 else
3982 {
3983 dst_can_be_shared = false;
3984
3985 intersect_loc_chains (val, nodep, dsm,
3986 s1var->var_part[0].loc_chain, s2var);
3987
3988 if (!dstslot)
3989 {
3990 if (node)
3991 {
3992 dvar = onepart_pool_allocate (onepart);
3993 dvar->dv = dv;
3994 dvar->refcount = 1;
3995 dvar->n_var_parts = 1;
3996 dvar->onepart = onepart;
3997 dvar->in_changed_variables = false;
3998 dvar->var_part[0].loc_chain = node;
3999 dvar->var_part[0].cur_loc = NULL;
4000 if (onepart)
4001 VAR_LOC_1PAUX (dvar) = NULL;
4002 else
4003 VAR_PART_OFFSET (dvar, 0) = 0;
4004
4005 dstslot
4006 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4007 INSERT);
4008 gcc_assert (!*dstslot);
4009 *dstslot = dvar;
4010 }
4011 else
4012 return 1;
4013 }
4014 }
4015
4016 nodep = &dvar->var_part[0].loc_chain;
4017 while ((node = *nodep))
4018 {
4019 location_chain **nextp = &node->next;
4020
4021 if (GET_CODE (node->loc) == REG)
4022 {
4023 attrs *list;
4024
4025 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4026 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4027 && dv_is_value_p (list->dv))
4028 break;
4029
4030 if (!list)
4031 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4032 dv, 0, node->loc);
4033 /* If this value became canonical for another value that had
4034 this register, we want to leave it alone. */
4035 else if (dv_as_value (list->dv) != val)
4036 {
4037 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4038 dstslot, dv, 0,
4039 node->init, NULL_RTX);
4040 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4041
4042 /* Since nextp points into the removed node, we can't
4043 use it. The pointer to the next node moved to nodep.
4044 However, if the variable we're walking is unshared
4045 during our walk, we'll keep walking the location list
4046 of the previously-shared variable, in which case the
4047 node won't have been removed, and we'll want to skip
4048 it. That's why we test *nodep here. */
4049 if (*nodep != node)
4050 nextp = nodep;
4051 }
4052 }
4053 else
4054 /* Canonicalization puts registers first, so we don't have to
4055 walk it all. */
4056 break;
4057 nodep = nextp;
4058 }
4059
4060 if (dvar != *dstslot)
4061 dvar = *dstslot;
4062 nodep = &dvar->var_part[0].loc_chain;
4063
4064 if (val)
4065 {
4066 /* Mark all referenced nodes for canonicalization, and make sure
4067 we have mutual equivalence links. */
4068 VALUE_RECURSED_INTO (val) = true;
4069 for (node = *nodep; node; node = node->next)
4070 if (GET_CODE (node->loc) == VALUE)
4071 {
4072 VALUE_RECURSED_INTO (node->loc) = true;
4073 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4074 node->init, NULL, INSERT);
4075 }
4076
4077 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4078 gcc_assert (*dstslot == dvar);
4079 canonicalize_values_star (dstslot, dst);
4080 gcc_checking_assert (dstslot
4081 == shared_hash_find_slot_noinsert_1 (dst->vars,
4082 dv, dvhash));
4083 dvar = *dstslot;
4084 }
4085 else
4086 {
4087 bool has_value = false, has_other = false;
4088
4089 /* If we have one value and anything else, we're going to
4090 canonicalize this, so make sure all values have an entry in
4091 the table and are marked for canonicalization. */
4092 for (node = *nodep; node; node = node->next)
4093 {
4094 if (GET_CODE (node->loc) == VALUE)
4095 {
4096 /* If this was marked during register canonicalization,
4097 we know we have to canonicalize values. */
4098 if (has_value)
4099 has_other = true;
4100 has_value = true;
4101 if (has_other)
4102 break;
4103 }
4104 else
4105 {
4106 has_other = true;
4107 if (has_value)
4108 break;
4109 }
4110 }
4111
4112 if (has_value && has_other)
4113 {
4114 for (node = *nodep; node; node = node->next)
4115 {
4116 if (GET_CODE (node->loc) == VALUE)
4117 {
4118 decl_or_value dv = dv_from_value (node->loc);
4119 variable **slot = NULL;
4120
4121 if (shared_hash_shared (dst->vars))
4122 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4123 if (!slot)
4124 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4125 INSERT);
4126 if (!*slot)
4127 {
4128 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4129 var->dv = dv;
4130 var->refcount = 1;
4131 var->n_var_parts = 1;
4132 var->onepart = ONEPART_VALUE;
4133 var->in_changed_variables = false;
4134 var->var_part[0].loc_chain = NULL;
4135 var->var_part[0].cur_loc = NULL;
4136 VAR_LOC_1PAUX (var) = NULL;
4137 *slot = var;
4138 }
4139
4140 VALUE_RECURSED_INTO (node->loc) = true;
4141 }
4142 }
4143
4144 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4145 gcc_assert (*dstslot == dvar);
4146 canonicalize_values_star (dstslot, dst);
4147 gcc_checking_assert (dstslot
4148 == shared_hash_find_slot_noinsert_1 (dst->vars,
4149 dv, dvhash));
4150 dvar = *dstslot;
4151 }
4152 }
4153
4154 if (!onepart_variable_different_p (dvar, s2var))
4155 {
4156 variable_htab_free (dvar);
4157 *dstslot = dvar = s2var;
4158 dvar->refcount++;
4159 }
4160 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4161 {
4162 variable_htab_free (dvar);
4163 *dstslot = dvar = s1var;
4164 dvar->refcount++;
4165 dst_can_be_shared = false;
4166 }
4167 else
4168 dst_can_be_shared = false;
4169
4170 return 1;
4171 }
4172
4173 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4174 multi-part variable. Unions of multi-part variables and
4175 intersections of one-part ones will be handled in
4176 variable_merge_over_cur(). */
4177
4178 static int
4179 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4180 {
4181 dataflow_set *dst = dsm->dst;
4182 decl_or_value dv = s2var->dv;
4183
4184 if (!s2var->onepart)
4185 {
4186 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4187 *dstp = s2var;
4188 s2var->refcount++;
4189 return 1;
4190 }
4191
4192 dsm->src_onepart_cnt++;
4193 return 1;
4194 }
4195
4196 /* Combine dataflow set information from SRC2 into DST, using PDST
4197 to carry over information across passes. */
4198
4199 static void
4200 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4201 {
4202 dataflow_set cur = *dst;
4203 dataflow_set *src1 = &cur;
4204 struct dfset_merge dsm;
4205 int i;
4206 size_t src1_elems, src2_elems;
4207 variable_iterator_type hi;
4208 variable *var;
4209
4210 src1_elems = shared_hash_htab (src1->vars)->elements ();
4211 src2_elems = shared_hash_htab (src2->vars)->elements ();
4212 dataflow_set_init (dst);
4213 dst->stack_adjust = cur.stack_adjust;
4214 shared_hash_destroy (dst->vars);
4215 dst->vars = new shared_hash;
4216 dst->vars->refcount = 1;
4217 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4218
4219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4220 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4221
4222 dsm.dst = dst;
4223 dsm.src = src2;
4224 dsm.cur = src1;
4225 dsm.src_onepart_cnt = 0;
4226
4227 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4228 var, variable, hi)
4229 variable_merge_over_src (var, &dsm);
4230 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4231 var, variable, hi)
4232 variable_merge_over_cur (var, &dsm);
4233
4234 if (dsm.src_onepart_cnt)
4235 dst_can_be_shared = false;
4236
4237 dataflow_set_destroy (src1);
4238 }
4239
4240 /* Mark register equivalences. */
4241
4242 static void
4243 dataflow_set_equiv_regs (dataflow_set *set)
4244 {
4245 int i;
4246 attrs *list, **listp;
4247
4248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4249 {
4250 rtx canon[NUM_MACHINE_MODES];
4251
4252 /* If the list is empty or one entry, no need to canonicalize
4253 anything. */
4254 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4255 continue;
4256
4257 memset (canon, 0, sizeof (canon));
4258
4259 for (list = set->regs[i]; list; list = list->next)
4260 if (list->offset == 0 && dv_is_value_p (list->dv))
4261 {
4262 rtx val = dv_as_value (list->dv);
4263 rtx *cvalp = &canon[(int)GET_MODE (val)];
4264 rtx cval = *cvalp;
4265
4266 if (canon_value_cmp (val, cval))
4267 *cvalp = val;
4268 }
4269
4270 for (list = set->regs[i]; list; list = list->next)
4271 if (list->offset == 0 && dv_onepart_p (list->dv))
4272 {
4273 rtx cval = canon[(int)GET_MODE (list->loc)];
4274
4275 if (!cval)
4276 continue;
4277
4278 if (dv_is_value_p (list->dv))
4279 {
4280 rtx val = dv_as_value (list->dv);
4281
4282 if (val == cval)
4283 continue;
4284
4285 VALUE_RECURSED_INTO (val) = true;
4286 set_variable_part (set, val, dv_from_value (cval), 0,
4287 VAR_INIT_STATUS_INITIALIZED,
4288 NULL, NO_INSERT);
4289 }
4290
4291 VALUE_RECURSED_INTO (cval) = true;
4292 set_variable_part (set, cval, list->dv, 0,
4293 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4294 }
4295
4296 for (listp = &set->regs[i]; (list = *listp);
4297 listp = list ? &list->next : listp)
4298 if (list->offset == 0 && dv_onepart_p (list->dv))
4299 {
4300 rtx cval = canon[(int)GET_MODE (list->loc)];
4301 variable **slot;
4302
4303 if (!cval)
4304 continue;
4305
4306 if (dv_is_value_p (list->dv))
4307 {
4308 rtx val = dv_as_value (list->dv);
4309 if (!VALUE_RECURSED_INTO (val))
4310 continue;
4311 }
4312
4313 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4314 canonicalize_values_star (slot, set);
4315 if (*listp != list)
4316 list = NULL;
4317 }
4318 }
4319 }
4320
4321 /* Remove any redundant values in the location list of VAR, which must
4322 be unshared and 1-part. */
4323
4324 static void
4325 remove_duplicate_values (variable *var)
4326 {
4327 location_chain *node, **nodep;
4328
4329 gcc_assert (var->onepart);
4330 gcc_assert (var->n_var_parts == 1);
4331 gcc_assert (var->refcount == 1);
4332
4333 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4334 {
4335 if (GET_CODE (node->loc) == VALUE)
4336 {
4337 if (VALUE_RECURSED_INTO (node->loc))
4338 {
4339 /* Remove duplicate value node. */
4340 *nodep = node->next;
4341 delete node;
4342 continue;
4343 }
4344 else
4345 VALUE_RECURSED_INTO (node->loc) = true;
4346 }
4347 nodep = &node->next;
4348 }
4349
4350 for (node = var->var_part[0].loc_chain; node; node = node->next)
4351 if (GET_CODE (node->loc) == VALUE)
4352 {
4353 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4354 VALUE_RECURSED_INTO (node->loc) = false;
4355 }
4356 }
4357
4358
4359 /* Hash table iteration argument passed to variable_post_merge. */
4360 struct dfset_post_merge
4361 {
4362 /* The new input set for the current block. */
4363 dataflow_set *set;
4364 /* Pointer to the permanent input set for the current block, or
4365 NULL. */
4366 dataflow_set **permp;
4367 };
4368
4369 /* Create values for incoming expressions associated with one-part
4370 variables that don't have value numbers for them. */
4371
4372 int
4373 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4374 {
4375 dataflow_set *set = dfpm->set;
4376 variable *var = *slot;
4377 location_chain *node;
4378
4379 if (!var->onepart || !var->n_var_parts)
4380 return 1;
4381
4382 gcc_assert (var->n_var_parts == 1);
4383
4384 if (dv_is_decl_p (var->dv))
4385 {
4386 bool check_dupes = false;
4387
4388 restart:
4389 for (node = var->var_part[0].loc_chain; node; node = node->next)
4390 {
4391 if (GET_CODE (node->loc) == VALUE)
4392 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4393 else if (GET_CODE (node->loc) == REG)
4394 {
4395 attrs *att, **attp, **curp = NULL;
4396
4397 if (var->refcount != 1)
4398 {
4399 slot = unshare_variable (set, slot, var,
4400 VAR_INIT_STATUS_INITIALIZED);
4401 var = *slot;
4402 goto restart;
4403 }
4404
4405 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4406 attp = &att->next)
4407 if (att->offset == 0
4408 && GET_MODE (att->loc) == GET_MODE (node->loc))
4409 {
4410 if (dv_is_value_p (att->dv))
4411 {
4412 rtx cval = dv_as_value (att->dv);
4413 node->loc = cval;
4414 check_dupes = true;
4415 break;
4416 }
4417 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4418 curp = attp;
4419 }
4420
4421 if (!curp)
4422 {
4423 curp = attp;
4424 while (*curp)
4425 if ((*curp)->offset == 0
4426 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4427 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4428 break;
4429 else
4430 curp = &(*curp)->next;
4431 gcc_assert (*curp);
4432 }
4433
4434 if (!att)
4435 {
4436 decl_or_value cdv;
4437 rtx cval;
4438
4439 if (!*dfpm->permp)
4440 {
4441 *dfpm->permp = XNEW (dataflow_set);
4442 dataflow_set_init (*dfpm->permp);
4443 }
4444
4445 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4446 att; att = att->next)
4447 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4448 {
4449 gcc_assert (att->offset == 0
4450 && dv_is_value_p (att->dv));
4451 val_reset (set, att->dv);
4452 break;
4453 }
4454
4455 if (att)
4456 {
4457 cdv = att->dv;
4458 cval = dv_as_value (cdv);
4459 }
4460 else
4461 {
4462 /* Create a unique value to hold this register,
4463 that ought to be found and reused in
4464 subsequent rounds. */
4465 cselib_val *v;
4466 gcc_assert (!cselib_lookup (node->loc,
4467 GET_MODE (node->loc), 0,
4468 VOIDmode));
4469 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4470 VOIDmode);
4471 cselib_preserve_value (v);
4472 cselib_invalidate_rtx (node->loc);
4473 cval = v->val_rtx;
4474 cdv = dv_from_value (cval);
4475 if (dump_file)
4476 fprintf (dump_file,
4477 "Created new value %u:%u for reg %i\n",
4478 v->uid, v->hash, REGNO (node->loc));
4479 }
4480
4481 var_reg_decl_set (*dfpm->permp, node->loc,
4482 VAR_INIT_STATUS_INITIALIZED,
4483 cdv, 0, NULL, INSERT);
4484
4485 node->loc = cval;
4486 check_dupes = true;
4487 }
4488
4489 /* Remove attribute referring to the decl, which now
4490 uses the value for the register, already existing or
4491 to be added when we bring perm in. */
4492 att = *curp;
4493 *curp = att->next;
4494 delete att;
4495 }
4496 }
4497
4498 if (check_dupes)
4499 remove_duplicate_values (var);
4500 }
4501
4502 return 1;
4503 }
4504
4505 /* Reset values in the permanent set that are not associated with the
4506 chosen expression. */
4507
4508 int
4509 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4510 {
4511 dataflow_set *set = dfpm->set;
4512 variable *pvar = *pslot, *var;
4513 location_chain *pnode;
4514 decl_or_value dv;
4515 attrs *att;
4516
4517 gcc_assert (dv_is_value_p (pvar->dv)
4518 && pvar->n_var_parts == 1);
4519 pnode = pvar->var_part[0].loc_chain;
4520 gcc_assert (pnode
4521 && !pnode->next
4522 && REG_P (pnode->loc));
4523
4524 dv = pvar->dv;
4525
4526 var = shared_hash_find (set->vars, dv);
4527 if (var)
4528 {
4529 /* Although variable_post_merge_new_vals may have made decls
4530 non-star-canonical, values that pre-existed in canonical form
4531 remain canonical, and newly-created values reference a single
4532 REG, so they are canonical as well. Since VAR has the
4533 location list for a VALUE, using find_loc_in_1pdv for it is
4534 fine, since VALUEs don't map back to DECLs. */
4535 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4536 return 1;
4537 val_reset (set, dv);
4538 }
4539
4540 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4541 if (att->offset == 0
4542 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4543 && dv_is_value_p (att->dv))
4544 break;
4545
4546 /* If there is a value associated with this register already, create
4547 an equivalence. */
4548 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4549 {
4550 rtx cval = dv_as_value (att->dv);
4551 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4552 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4553 NULL, INSERT);
4554 }
4555 else if (!att)
4556 {
4557 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4558 dv, 0, pnode->loc);
4559 variable_union (pvar, set);
4560 }
4561
4562 return 1;
4563 }
4564
4565 /* Just checking stuff and registering register attributes for
4566 now. */
4567
4568 static void
4569 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4570 {
4571 struct dfset_post_merge dfpm;
4572
4573 dfpm.set = set;
4574 dfpm.permp = permp;
4575
4576 shared_hash_htab (set->vars)
4577 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4578 if (*permp)
4579 shared_hash_htab ((*permp)->vars)
4580 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4581 shared_hash_htab (set->vars)
4582 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4585 }
4586
4587 /* Return a node whose loc is a MEM that refers to EXPR in the
4588 location list of a one-part variable or value VAR, or in that of
4589 any values recursively mentioned in the location lists. */
4590
4591 static location_chain *
4592 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4593 {
4594 location_chain *node;
4595 decl_or_value dv;
4596 variable *var;
4597 location_chain *where = NULL;
4598
4599 if (!val)
4600 return NULL;
4601
4602 gcc_assert (GET_CODE (val) == VALUE
4603 && !VALUE_RECURSED_INTO (val));
4604
4605 dv = dv_from_value (val);
4606 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4607
4608 if (!var)
4609 return NULL;
4610
4611 gcc_assert (var->onepart);
4612
4613 if (!var->n_var_parts)
4614 return NULL;
4615
4616 VALUE_RECURSED_INTO (val) = true;
4617
4618 for (node = var->var_part[0].loc_chain; node; node = node->next)
4619 if (MEM_P (node->loc)
4620 && MEM_EXPR (node->loc) == expr
4621 && INT_MEM_OFFSET (node->loc) == 0)
4622 {
4623 where = node;
4624 break;
4625 }
4626 else if (GET_CODE (node->loc) == VALUE
4627 && !VALUE_RECURSED_INTO (node->loc)
4628 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4629 break;
4630
4631 VALUE_RECURSED_INTO (val) = false;
4632
4633 return where;
4634 }
4635
4636 /* Return TRUE if the value of MEM may vary across a call. */
4637
4638 static bool
4639 mem_dies_at_call (rtx mem)
4640 {
4641 tree expr = MEM_EXPR (mem);
4642 tree decl;
4643
4644 if (!expr)
4645 return true;
4646
4647 decl = get_base_address (expr);
4648
4649 if (!decl)
4650 return true;
4651
4652 if (!DECL_P (decl))
4653 return true;
4654
4655 return (may_be_aliased (decl)
4656 || (!TREE_READONLY (decl) && is_global_var (decl)));
4657 }
4658
4659 /* Remove all MEMs from the location list of a hash table entry for a
4660 one-part variable, except those whose MEM attributes map back to
4661 the variable itself, directly or within a VALUE. */
4662
4663 int
4664 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4665 {
4666 variable *var = *slot;
4667
4668 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4669 {
4670 tree decl = dv_as_decl (var->dv);
4671 location_chain *loc, **locp;
4672 bool changed = false;
4673
4674 if (!var->n_var_parts)
4675 return 1;
4676
4677 gcc_assert (var->n_var_parts == 1);
4678
4679 if (shared_var_p (var, set->vars))
4680 {
4681 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4682 {
4683 /* We want to remove dying MEMs that don't refer to DECL. */
4684 if (GET_CODE (loc->loc) == MEM
4685 && (MEM_EXPR (loc->loc) != decl
4686 || INT_MEM_OFFSET (loc->loc) != 0)
4687 && mem_dies_at_call (loc->loc))
4688 break;
4689 /* We want to move here MEMs that do refer to DECL. */
4690 else if (GET_CODE (loc->loc) == VALUE
4691 && find_mem_expr_in_1pdv (decl, loc->loc,
4692 shared_hash_htab (set->vars)))
4693 break;
4694 }
4695
4696 if (!loc)
4697 return 1;
4698
4699 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4700 var = *slot;
4701 gcc_assert (var->n_var_parts == 1);
4702 }
4703
4704 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4705 loc; loc = *locp)
4706 {
4707 rtx old_loc = loc->loc;
4708 if (GET_CODE (old_loc) == VALUE)
4709 {
4710 location_chain *mem_node
4711 = find_mem_expr_in_1pdv (decl, loc->loc,
4712 shared_hash_htab (set->vars));
4713
4714 /* ??? This picks up only one out of multiple MEMs that
4715 refer to the same variable. Do we ever need to be
4716 concerned about dealing with more than one, or, given
4717 that they should all map to the same variable
4718 location, their addresses will have been merged and
4719 they will be regarded as equivalent? */
4720 if (mem_node)
4721 {
4722 loc->loc = mem_node->loc;
4723 loc->set_src = mem_node->set_src;
4724 loc->init = MIN (loc->init, mem_node->init);
4725 }
4726 }
4727
4728 if (GET_CODE (loc->loc) != MEM
4729 || (MEM_EXPR (loc->loc) == decl
4730 && INT_MEM_OFFSET (loc->loc) == 0)
4731 || !mem_dies_at_call (loc->loc))
4732 {
4733 if (old_loc != loc->loc && emit_notes)
4734 {
4735 if (old_loc == var->var_part[0].cur_loc)
4736 {
4737 changed = true;
4738 var->var_part[0].cur_loc = NULL;
4739 }
4740 }
4741 locp = &loc->next;
4742 continue;
4743 }
4744
4745 if (emit_notes)
4746 {
4747 if (old_loc == var->var_part[0].cur_loc)
4748 {
4749 changed = true;
4750 var->var_part[0].cur_loc = NULL;
4751 }
4752 }
4753 *locp = loc->next;
4754 delete loc;
4755 }
4756
4757 if (!var->var_part[0].loc_chain)
4758 {
4759 var->n_var_parts--;
4760 changed = true;
4761 }
4762 if (changed)
4763 variable_was_changed (var, set);
4764 }
4765
4766 return 1;
4767 }
4768
4769 /* Remove all MEMs from the location list of a hash table entry for a
4770 onepart variable. */
4771
4772 int
4773 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4774 {
4775 variable *var = *slot;
4776
4777 if (var->onepart != NOT_ONEPART)
4778 {
4779 location_chain *loc, **locp;
4780 bool changed = false;
4781 rtx cur_loc;
4782
4783 gcc_assert (var->n_var_parts == 1);
4784
4785 if (shared_var_p (var, set->vars))
4786 {
4787 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4788 if (GET_CODE (loc->loc) == MEM
4789 && mem_dies_at_call (loc->loc))
4790 break;
4791
4792 if (!loc)
4793 return 1;
4794
4795 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4796 var = *slot;
4797 gcc_assert (var->n_var_parts == 1);
4798 }
4799
4800 if (VAR_LOC_1PAUX (var))
4801 cur_loc = VAR_LOC_FROM (var);
4802 else
4803 cur_loc = var->var_part[0].cur_loc;
4804
4805 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4806 loc; loc = *locp)
4807 {
4808 if (GET_CODE (loc->loc) != MEM
4809 || !mem_dies_at_call (loc->loc))
4810 {
4811 locp = &loc->next;
4812 continue;
4813 }
4814
4815 *locp = loc->next;
4816 /* If we have deleted the location which was last emitted
4817 we have to emit new location so add the variable to set
4818 of changed variables. */
4819 if (cur_loc == loc->loc)
4820 {
4821 changed = true;
4822 var->var_part[0].cur_loc = NULL;
4823 if (VAR_LOC_1PAUX (var))
4824 VAR_LOC_FROM (var) = NULL;
4825 }
4826 delete loc;
4827 }
4828
4829 if (!var->var_part[0].loc_chain)
4830 {
4831 var->n_var_parts--;
4832 changed = true;
4833 }
4834 if (changed)
4835 variable_was_changed (var, set);
4836 }
4837
4838 return 1;
4839 }
4840
4841 /* Remove all variable-location information about call-clobbered
4842 registers, as well as associations between MEMs and VALUEs. */
4843
4844 static void
4845 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4846 {
4847 unsigned int r;
4848 hard_reg_set_iterator hrsi;
4849 HARD_REG_SET invalidated_regs;
4850
4851 get_call_reg_set_usage (call_insn, &invalidated_regs,
4852 regs_invalidated_by_call);
4853
4854 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4855 var_regno_delete (set, r);
4856
4857 if (MAY_HAVE_DEBUG_INSNS)
4858 {
4859 set->traversed_vars = set->vars;
4860 shared_hash_htab (set->vars)
4861 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4862 set->traversed_vars = set->vars;
4863 shared_hash_htab (set->vars)
4864 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4865 set->traversed_vars = NULL;
4866 }
4867 }
4868
4869 static bool
4870 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4871 {
4872 location_chain *lc1, *lc2;
4873
4874 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4875 {
4876 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4877 {
4878 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4879 {
4880 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4881 break;
4882 }
4883 if (rtx_equal_p (lc1->loc, lc2->loc))
4884 break;
4885 }
4886 if (!lc2)
4887 return true;
4888 }
4889 return false;
4890 }
4891
4892 /* Return true if one-part variables VAR1 and VAR2 are different.
4893 They must be in canonical order. */
4894
4895 static bool
4896 onepart_variable_different_p (variable *var1, variable *var2)
4897 {
4898 location_chain *lc1, *lc2;
4899
4900 if (var1 == var2)
4901 return false;
4902
4903 gcc_assert (var1->n_var_parts == 1
4904 && var2->n_var_parts == 1);
4905
4906 lc1 = var1->var_part[0].loc_chain;
4907 lc2 = var2->var_part[0].loc_chain;
4908
4909 gcc_assert (lc1 && lc2);
4910
4911 while (lc1 && lc2)
4912 {
4913 if (loc_cmp (lc1->loc, lc2->loc))
4914 return true;
4915 lc1 = lc1->next;
4916 lc2 = lc2->next;
4917 }
4918
4919 return lc1 != lc2;
4920 }
4921
4922 /* Return true if one-part variables VAR1 and VAR2 are different.
4923 They must be in canonical order. */
4924
4925 static void
4926 dump_onepart_variable_differences (variable *var1, variable *var2)
4927 {
4928 location_chain *lc1, *lc2;
4929
4930 gcc_assert (var1 != var2);
4931 gcc_assert (dump_file);
4932 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4933 gcc_assert (var1->n_var_parts == 1
4934 && var2->n_var_parts == 1);
4935
4936 lc1 = var1->var_part[0].loc_chain;
4937 lc2 = var2->var_part[0].loc_chain;
4938
4939 gcc_assert (lc1 && lc2);
4940
4941 while (lc1 && lc2)
4942 {
4943 switch (loc_cmp (lc1->loc, lc2->loc))
4944 {
4945 case -1:
4946 fprintf (dump_file, "removed: ");
4947 print_rtl_single (dump_file, lc1->loc);
4948 lc1 = lc1->next;
4949 continue;
4950 case 0:
4951 break;
4952 case 1:
4953 fprintf (dump_file, "added: ");
4954 print_rtl_single (dump_file, lc2->loc);
4955 lc2 = lc2->next;
4956 continue;
4957 default:
4958 gcc_unreachable ();
4959 }
4960 lc1 = lc1->next;
4961 lc2 = lc2->next;
4962 }
4963
4964 while (lc1)
4965 {
4966 fprintf (dump_file, "removed: ");
4967 print_rtl_single (dump_file, lc1->loc);
4968 lc1 = lc1->next;
4969 }
4970
4971 while (lc2)
4972 {
4973 fprintf (dump_file, "added: ");
4974 print_rtl_single (dump_file, lc2->loc);
4975 lc2 = lc2->next;
4976 }
4977 }
4978
4979 /* Return true if variables VAR1 and VAR2 are different. */
4980
4981 static bool
4982 variable_different_p (variable *var1, variable *var2)
4983 {
4984 int i;
4985
4986 if (var1 == var2)
4987 return false;
4988
4989 if (var1->onepart != var2->onepart)
4990 return true;
4991
4992 if (var1->n_var_parts != var2->n_var_parts)
4993 return true;
4994
4995 if (var1->onepart && var1->n_var_parts)
4996 {
4997 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4998 && var1->n_var_parts == 1);
4999 /* One-part values have locations in a canonical order. */
5000 return onepart_variable_different_p (var1, var2);
5001 }
5002
5003 for (i = 0; i < var1->n_var_parts; i++)
5004 {
5005 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5006 return true;
5007 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5008 return true;
5009 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5010 return true;
5011 }
5012 return false;
5013 }
5014
5015 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5016
5017 static bool
5018 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5019 {
5020 variable_iterator_type hi;
5021 variable *var1;
5022 bool diffound = false;
5023 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5024
5025 #define RETRUE \
5026 do \
5027 { \
5028 if (!details) \
5029 return true; \
5030 else \
5031 diffound = true; \
5032 } \
5033 while (0)
5034
5035 if (old_set->vars == new_set->vars)
5036 return false;
5037
5038 if (shared_hash_htab (old_set->vars)->elements ()
5039 != shared_hash_htab (new_set->vars)->elements ())
5040 RETRUE;
5041
5042 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5043 var1, variable, hi)
5044 {
5045 variable_table_type *htab = shared_hash_htab (new_set->vars);
5046 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5047
5048 if (!var2)
5049 {
5050 if (dump_file && (dump_flags & TDF_DETAILS))
5051 {
5052 fprintf (dump_file, "dataflow difference found: removal of:\n");
5053 dump_var (var1);
5054 }
5055 RETRUE;
5056 }
5057 else if (variable_different_p (var1, var2))
5058 {
5059 if (details)
5060 {
5061 fprintf (dump_file, "dataflow difference found: "
5062 "old and new follow:\n");
5063 dump_var (var1);
5064 if (dv_onepart_p (var1->dv))
5065 dump_onepart_variable_differences (var1, var2);
5066 dump_var (var2);
5067 }
5068 RETRUE;
5069 }
5070 }
5071
5072 /* There's no need to traverse the second hashtab unless we want to
5073 print the details. If both have the same number of elements and
5074 the second one had all entries found in the first one, then the
5075 second can't have any extra entries. */
5076 if (!details)
5077 return diffound;
5078
5079 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5080 var1, variable, hi)
5081 {
5082 variable_table_type *htab = shared_hash_htab (old_set->vars);
5083 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5084 if (!var2)
5085 {
5086 if (details)
5087 {
5088 fprintf (dump_file, "dataflow difference found: addition of:\n");
5089 dump_var (var1);
5090 }
5091 RETRUE;
5092 }
5093 }
5094
5095 #undef RETRUE
5096
5097 return diffound;
5098 }
5099
5100 /* Free the contents of dataflow set SET. */
5101
5102 static void
5103 dataflow_set_destroy (dataflow_set *set)
5104 {
5105 int i;
5106
5107 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5108 attrs_list_clear (&set->regs[i]);
5109
5110 shared_hash_destroy (set->vars);
5111 set->vars = NULL;
5112 }
5113
5114 /* Return true if T is a tracked parameter with non-degenerate record type. */
5115
5116 static bool
5117 tracked_record_parameter_p (tree t)
5118 {
5119 if (TREE_CODE (t) != PARM_DECL)
5120 return false;
5121
5122 if (DECL_MODE (t) == BLKmode)
5123 return false;
5124
5125 tree type = TREE_TYPE (t);
5126 if (TREE_CODE (type) != RECORD_TYPE)
5127 return false;
5128
5129 if (TYPE_FIELDS (type) == NULL_TREE
5130 || DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5131 return false;
5132
5133 return true;
5134 }
5135
5136 /* Shall EXPR be tracked? */
5137
5138 static bool
5139 track_expr_p (tree expr, bool need_rtl)
5140 {
5141 rtx decl_rtl;
5142 tree realdecl;
5143
5144 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5145 return DECL_RTL_SET_P (expr);
5146
5147 /* If EXPR is not a parameter or a variable do not track it. */
5148 if (!VAR_P (expr) && TREE_CODE (expr) != PARM_DECL)
5149 return 0;
5150
5151 /* It also must have a name... */
5152 if (!DECL_NAME (expr) && need_rtl)
5153 return 0;
5154
5155 /* ... and a RTL assigned to it. */
5156 decl_rtl = DECL_RTL_IF_SET (expr);
5157 if (!decl_rtl && need_rtl)
5158 return 0;
5159
5160 /* If this expression is really a debug alias of some other declaration, we
5161 don't need to track this expression if the ultimate declaration is
5162 ignored. */
5163 realdecl = expr;
5164 if (VAR_P (realdecl) && DECL_HAS_DEBUG_EXPR_P (realdecl))
5165 {
5166 realdecl = DECL_DEBUG_EXPR (realdecl);
5167 if (!DECL_P (realdecl))
5168 {
5169 if (handled_component_p (realdecl)
5170 || (TREE_CODE (realdecl) == MEM_REF
5171 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5172 {
5173 HOST_WIDE_INT bitsize, bitpos, maxsize;
5174 bool reverse;
5175 tree innerdecl
5176 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5177 &maxsize, &reverse);
5178 if (!DECL_P (innerdecl)
5179 || DECL_IGNORED_P (innerdecl)
5180 /* Do not track declarations for parts of tracked record
5181 parameters since we want to track them as a whole. */
5182 || tracked_record_parameter_p (innerdecl)
5183 || TREE_STATIC (innerdecl)
5184 || bitsize <= 0
5185 || bitpos + bitsize > 256
5186 || bitsize != maxsize)
5187 return 0;
5188 else
5189 realdecl = expr;
5190 }
5191 else
5192 return 0;
5193 }
5194 }
5195
5196 /* Do not track EXPR if REALDECL it should be ignored for debugging
5197 purposes. */
5198 if (DECL_IGNORED_P (realdecl))
5199 return 0;
5200
5201 /* Do not track global variables until we are able to emit correct location
5202 list for them. */
5203 if (TREE_STATIC (realdecl))
5204 return 0;
5205
5206 /* When the EXPR is a DECL for alias of some variable (see example)
5207 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5208 DECL_RTL contains SYMBOL_REF.
5209
5210 Example:
5211 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5212 char **_dl_argv;
5213 */
5214 if (decl_rtl && MEM_P (decl_rtl)
5215 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5216 return 0;
5217
5218 /* If RTX is a memory it should not be very large (because it would be
5219 an array or struct). */
5220 if (decl_rtl && MEM_P (decl_rtl))
5221 {
5222 /* Do not track structures and arrays. */
5223 if ((GET_MODE (decl_rtl) == BLKmode
5224 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5225 && !tracked_record_parameter_p (realdecl))
5226 return 0;
5227 if (MEM_SIZE_KNOWN_P (decl_rtl)
5228 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5229 return 0;
5230 }
5231
5232 DECL_CHANGED (expr) = 0;
5233 DECL_CHANGED (realdecl) = 0;
5234 return 1;
5235 }
5236
5237 /* Determine whether a given LOC refers to the same variable part as
5238 EXPR+OFFSET. */
5239
5240 static bool
5241 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5242 {
5243 tree expr2;
5244 HOST_WIDE_INT offset2;
5245
5246 if (! DECL_P (expr))
5247 return false;
5248
5249 if (REG_P (loc))
5250 {
5251 expr2 = REG_EXPR (loc);
5252 offset2 = REG_OFFSET (loc);
5253 }
5254 else if (MEM_P (loc))
5255 {
5256 expr2 = MEM_EXPR (loc);
5257 offset2 = INT_MEM_OFFSET (loc);
5258 }
5259 else
5260 return false;
5261
5262 if (! expr2 || ! DECL_P (expr2))
5263 return false;
5264
5265 expr = var_debug_decl (expr);
5266 expr2 = var_debug_decl (expr2);
5267
5268 return (expr == expr2 && offset == offset2);
5269 }
5270
5271 /* LOC is a REG or MEM that we would like to track if possible.
5272 If EXPR is null, we don't know what expression LOC refers to,
5273 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5274 LOC is an lvalue register.
5275
5276 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5277 is something we can track. When returning true, store the mode of
5278 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5279 from EXPR in *OFFSET_OUT (if nonnull). */
5280
5281 static bool
5282 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5283 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5284 {
5285 machine_mode mode;
5286
5287 if (expr == NULL || !track_expr_p (expr, true))
5288 return false;
5289
5290 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5291 whole subreg, but only the old inner part is really relevant. */
5292 mode = GET_MODE (loc);
5293 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5294 {
5295 machine_mode pseudo_mode;
5296
5297 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5298 if (paradoxical_subreg_p (mode, pseudo_mode))
5299 {
5300 offset += byte_lowpart_offset (pseudo_mode, mode);
5301 mode = pseudo_mode;
5302 }
5303 }
5304
5305 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5306 Do the same if we are storing to a register and EXPR occupies
5307 the whole of register LOC; in that case, the whole of EXPR is
5308 being changed. We exclude complex modes from the second case
5309 because the real and imaginary parts are represented as separate
5310 pseudo registers, even if the whole complex value fits into one
5311 hard register. */
5312 if ((paradoxical_subreg_p (mode, DECL_MODE (expr))
5313 || (store_reg_p
5314 && !COMPLEX_MODE_P (DECL_MODE (expr))
5315 && hard_regno_nregs (REGNO (loc), DECL_MODE (expr)) == 1))
5316 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5317 {
5318 mode = DECL_MODE (expr);
5319 offset = 0;
5320 }
5321
5322 if (offset < 0 || offset >= MAX_VAR_PARTS)
5323 return false;
5324
5325 if (mode_out)
5326 *mode_out = mode;
5327 if (offset_out)
5328 *offset_out = offset;
5329 return true;
5330 }
5331
5332 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5333 want to track. When returning nonnull, make sure that the attributes
5334 on the returned value are updated. */
5335
5336 static rtx
5337 var_lowpart (machine_mode mode, rtx loc)
5338 {
5339 unsigned int offset, reg_offset, regno;
5340
5341 if (GET_MODE (loc) == mode)
5342 return loc;
5343
5344 if (!REG_P (loc) && !MEM_P (loc))
5345 return NULL;
5346
5347 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5348
5349 if (MEM_P (loc))
5350 return adjust_address_nv (loc, mode, offset);
5351
5352 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5353 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5354 reg_offset, mode);
5355 return gen_rtx_REG_offset (loc, mode, regno, offset);
5356 }
5357
5358 /* Carry information about uses and stores while walking rtx. */
5359
5360 struct count_use_info
5361 {
5362 /* The insn where the RTX is. */
5363 rtx_insn *insn;
5364
5365 /* The basic block where insn is. */
5366 basic_block bb;
5367
5368 /* The array of n_sets sets in the insn, as determined by cselib. */
5369 struct cselib_set *sets;
5370 int n_sets;
5371
5372 /* True if we're counting stores, false otherwise. */
5373 bool store_p;
5374 };
5375
5376 /* Find a VALUE corresponding to X. */
5377
5378 static inline cselib_val *
5379 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5380 {
5381 int i;
5382
5383 if (cui->sets)
5384 {
5385 /* This is called after uses are set up and before stores are
5386 processed by cselib, so it's safe to look up srcs, but not
5387 dsts. So we look up expressions that appear in srcs or in
5388 dest expressions, but we search the sets array for dests of
5389 stores. */
5390 if (cui->store_p)
5391 {
5392 /* Some targets represent memset and memcpy patterns
5393 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5394 (set (mem:BLK ...) (const_int ...)) or
5395 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5396 in that case, otherwise we end up with mode mismatches. */
5397 if (mode == BLKmode && MEM_P (x))
5398 return NULL;
5399 for (i = 0; i < cui->n_sets; i++)
5400 if (cui->sets[i].dest == x)
5401 return cui->sets[i].src_elt;
5402 }
5403 else
5404 return cselib_lookup (x, mode, 0, VOIDmode);
5405 }
5406
5407 return NULL;
5408 }
5409
5410 /* Replace all registers and addresses in an expression with VALUE
5411 expressions that map back to them, unless the expression is a
5412 register. If no mapping is or can be performed, returns NULL. */
5413
5414 static rtx
5415 replace_expr_with_values (rtx loc)
5416 {
5417 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5418 return NULL;
5419 else if (MEM_P (loc))
5420 {
5421 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5422 get_address_mode (loc), 0,
5423 GET_MODE (loc));
5424 if (addr)
5425 return replace_equiv_address_nv (loc, addr->val_rtx);
5426 else
5427 return NULL;
5428 }
5429 else
5430 return cselib_subst_to_values (loc, VOIDmode);
5431 }
5432
5433 /* Return true if X contains a DEBUG_EXPR. */
5434
5435 static bool
5436 rtx_debug_expr_p (const_rtx x)
5437 {
5438 subrtx_iterator::array_type array;
5439 FOR_EACH_SUBRTX (iter, array, x, ALL)
5440 if (GET_CODE (*iter) == DEBUG_EXPR)
5441 return true;
5442 return false;
5443 }
5444
5445 /* Determine what kind of micro operation to choose for a USE. Return
5446 MO_CLOBBER if no micro operation is to be generated. */
5447
5448 static enum micro_operation_type
5449 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5450 {
5451 tree expr;
5452
5453 if (cui && cui->sets)
5454 {
5455 if (GET_CODE (loc) == VAR_LOCATION)
5456 {
5457 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5458 {
5459 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5460 if (! VAR_LOC_UNKNOWN_P (ploc))
5461 {
5462 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5463 VOIDmode);
5464
5465 /* ??? flag_float_store and volatile mems are never
5466 given values, but we could in theory use them for
5467 locations. */
5468 gcc_assert (val || 1);
5469 }
5470 return MO_VAL_LOC;
5471 }
5472 else
5473 return MO_CLOBBER;
5474 }
5475
5476 if (REG_P (loc) || MEM_P (loc))
5477 {
5478 if (modep)
5479 *modep = GET_MODE (loc);
5480 if (cui->store_p)
5481 {
5482 if (REG_P (loc)
5483 || (find_use_val (loc, GET_MODE (loc), cui)
5484 && cselib_lookup (XEXP (loc, 0),
5485 get_address_mode (loc), 0,
5486 GET_MODE (loc))))
5487 return MO_VAL_SET;
5488 }
5489 else
5490 {
5491 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5492
5493 if (val && !cselib_preserved_value_p (val))
5494 return MO_VAL_USE;
5495 }
5496 }
5497 }
5498
5499 if (REG_P (loc))
5500 {
5501 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5502
5503 if (loc == cfa_base_rtx)
5504 return MO_CLOBBER;
5505 expr = REG_EXPR (loc);
5506
5507 if (!expr)
5508 return MO_USE_NO_VAR;
5509 else if (target_for_debug_bind (var_debug_decl (expr)))
5510 return MO_CLOBBER;
5511 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5512 false, modep, NULL))
5513 return MO_USE;
5514 else
5515 return MO_USE_NO_VAR;
5516 }
5517 else if (MEM_P (loc))
5518 {
5519 expr = MEM_EXPR (loc);
5520
5521 if (!expr)
5522 return MO_CLOBBER;
5523 else if (target_for_debug_bind (var_debug_decl (expr)))
5524 return MO_CLOBBER;
5525 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5526 false, modep, NULL)
5527 /* Multi-part variables shouldn't refer to one-part
5528 variable names such as VALUEs (never happens) or
5529 DEBUG_EXPRs (only happens in the presence of debug
5530 insns). */
5531 && (!MAY_HAVE_DEBUG_INSNS
5532 || !rtx_debug_expr_p (XEXP (loc, 0))))
5533 return MO_USE;
5534 else
5535 return MO_CLOBBER;
5536 }
5537
5538 return MO_CLOBBER;
5539 }
5540
5541 /* Log to OUT information about micro-operation MOPT involving X in
5542 INSN of BB. */
5543
5544 static inline void
5545 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5546 enum micro_operation_type mopt, FILE *out)
5547 {
5548 fprintf (out, "bb %i op %i insn %i %s ",
5549 bb->index, VTI (bb)->mos.length (),
5550 INSN_UID (insn), micro_operation_type_name[mopt]);
5551 print_inline_rtx (out, x, 2);
5552 fputc ('\n', out);
5553 }
5554
5555 /* Tell whether the CONCAT used to holds a VALUE and its location
5556 needs value resolution, i.e., an attempt of mapping the location
5557 back to other incoming values. */
5558 #define VAL_NEEDS_RESOLUTION(x) \
5559 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5560 /* Whether the location in the CONCAT is a tracked expression, that
5561 should also be handled like a MO_USE. */
5562 #define VAL_HOLDS_TRACK_EXPR(x) \
5563 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5564 /* Whether the location in the CONCAT should be handled like a MO_COPY
5565 as well. */
5566 #define VAL_EXPR_IS_COPIED(x) \
5567 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5568 /* Whether the location in the CONCAT should be handled like a
5569 MO_CLOBBER as well. */
5570 #define VAL_EXPR_IS_CLOBBERED(x) \
5571 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5572
5573 /* All preserved VALUEs. */
5574 static vec<rtx> preserved_values;
5575
5576 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5577
5578 static void
5579 preserve_value (cselib_val *val)
5580 {
5581 cselib_preserve_value (val);
5582 preserved_values.safe_push (val->val_rtx);
5583 }
5584
5585 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5586 any rtxes not suitable for CONST use not replaced by VALUEs
5587 are discovered. */
5588
5589 static bool
5590 non_suitable_const (const_rtx x)
5591 {
5592 subrtx_iterator::array_type array;
5593 FOR_EACH_SUBRTX (iter, array, x, ALL)
5594 {
5595 const_rtx x = *iter;
5596 switch (GET_CODE (x))
5597 {
5598 case REG:
5599 case DEBUG_EXPR:
5600 case PC:
5601 case SCRATCH:
5602 case CC0:
5603 case ASM_INPUT:
5604 case ASM_OPERANDS:
5605 return true;
5606 case MEM:
5607 if (!MEM_READONLY_P (x))
5608 return true;
5609 break;
5610 default:
5611 break;
5612 }
5613 }
5614 return false;
5615 }
5616
5617 /* Add uses (register and memory references) LOC which will be tracked
5618 to VTI (bb)->mos. */
5619
5620 static void
5621 add_uses (rtx loc, struct count_use_info *cui)
5622 {
5623 machine_mode mode = VOIDmode;
5624 enum micro_operation_type type = use_type (loc, cui, &mode);
5625
5626 if (type != MO_CLOBBER)
5627 {
5628 basic_block bb = cui->bb;
5629 micro_operation mo;
5630
5631 mo.type = type;
5632 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5633 mo.insn = cui->insn;
5634
5635 if (type == MO_VAL_LOC)
5636 {
5637 rtx oloc = loc;
5638 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5639 cselib_val *val;
5640
5641 gcc_assert (cui->sets);
5642
5643 if (MEM_P (vloc)
5644 && !REG_P (XEXP (vloc, 0))
5645 && !MEM_P (XEXP (vloc, 0)))
5646 {
5647 rtx mloc = vloc;
5648 machine_mode address_mode = get_address_mode (mloc);
5649 cselib_val *val
5650 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5651 GET_MODE (mloc));
5652
5653 if (val && !cselib_preserved_value_p (val))
5654 preserve_value (val);
5655 }
5656
5657 if (CONSTANT_P (vloc)
5658 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5659 /* For constants don't look up any value. */;
5660 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5661 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5662 {
5663 machine_mode mode2;
5664 enum micro_operation_type type2;
5665 rtx nloc = NULL;
5666 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5667
5668 if (resolvable)
5669 nloc = replace_expr_with_values (vloc);
5670
5671 if (nloc)
5672 {
5673 oloc = shallow_copy_rtx (oloc);
5674 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5675 }
5676
5677 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5678
5679 type2 = use_type (vloc, 0, &mode2);
5680
5681 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5682 || type2 == MO_CLOBBER);
5683
5684 if (type2 == MO_CLOBBER
5685 && !cselib_preserved_value_p (val))
5686 {
5687 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5688 preserve_value (val);
5689 }
5690 }
5691 else if (!VAR_LOC_UNKNOWN_P (vloc))
5692 {
5693 oloc = shallow_copy_rtx (oloc);
5694 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5695 }
5696
5697 mo.u.loc = oloc;
5698 }
5699 else if (type == MO_VAL_USE)
5700 {
5701 machine_mode mode2 = VOIDmode;
5702 enum micro_operation_type type2;
5703 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5704 rtx vloc, oloc = loc, nloc;
5705
5706 gcc_assert (cui->sets);
5707
5708 if (MEM_P (oloc)
5709 && !REG_P (XEXP (oloc, 0))
5710 && !MEM_P (XEXP (oloc, 0)))
5711 {
5712 rtx mloc = oloc;
5713 machine_mode address_mode = get_address_mode (mloc);
5714 cselib_val *val
5715 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5716 GET_MODE (mloc));
5717
5718 if (val && !cselib_preserved_value_p (val))
5719 preserve_value (val);
5720 }
5721
5722 type2 = use_type (loc, 0, &mode2);
5723
5724 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5725 || type2 == MO_CLOBBER);
5726
5727 if (type2 == MO_USE)
5728 vloc = var_lowpart (mode2, loc);
5729 else
5730 vloc = oloc;
5731
5732 /* The loc of a MO_VAL_USE may have two forms:
5733
5734 (concat val src): val is at src, a value-based
5735 representation.
5736
5737 (concat (concat val use) src): same as above, with use as
5738 the MO_USE tracked value, if it differs from src.
5739
5740 */
5741
5742 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5743 nloc = replace_expr_with_values (loc);
5744 if (!nloc)
5745 nloc = oloc;
5746
5747 if (vloc != nloc)
5748 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5749 else
5750 oloc = val->val_rtx;
5751
5752 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5753
5754 if (type2 == MO_USE)
5755 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5756 if (!cselib_preserved_value_p (val))
5757 {
5758 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5759 preserve_value (val);
5760 }
5761 }
5762 else
5763 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5764
5765 if (dump_file && (dump_flags & TDF_DETAILS))
5766 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5767 VTI (bb)->mos.safe_push (mo);
5768 }
5769 }
5770
5771 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5772
5773 static void
5774 add_uses_1 (rtx *x, void *cui)
5775 {
5776 subrtx_var_iterator::array_type array;
5777 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5778 add_uses (*iter, (struct count_use_info *) cui);
5779 }
5780
5781 /* This is the value used during expansion of locations. We want it
5782 to be unbounded, so that variables expanded deep in a recursion
5783 nest are fully evaluated, so that their values are cached
5784 correctly. We avoid recursion cycles through other means, and we
5785 don't unshare RTL, so excess complexity is not a problem. */
5786 #define EXPR_DEPTH (INT_MAX)
5787 /* We use this to keep too-complex expressions from being emitted as
5788 location notes, and then to debug information. Users can trade
5789 compile time for ridiculously complex expressions, although they're
5790 seldom useful, and they may often have to be discarded as not
5791 representable anyway. */
5792 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5793
5794 /* Attempt to reverse the EXPR operation in the debug info and record
5795 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5796 no longer live we can express its value as VAL - 6. */
5797
5798 static void
5799 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5800 {
5801 rtx src, arg, ret;
5802 cselib_val *v;
5803 struct elt_loc_list *l;
5804 enum rtx_code code;
5805 int count;
5806
5807 if (GET_CODE (expr) != SET)
5808 return;
5809
5810 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5811 return;
5812
5813 src = SET_SRC (expr);
5814 switch (GET_CODE (src))
5815 {
5816 case PLUS:
5817 case MINUS:
5818 case XOR:
5819 case NOT:
5820 case NEG:
5821 if (!REG_P (XEXP (src, 0)))
5822 return;
5823 break;
5824 case SIGN_EXTEND:
5825 case ZERO_EXTEND:
5826 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5827 return;
5828 break;
5829 default:
5830 return;
5831 }
5832
5833 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5834 return;
5835
5836 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5837 if (!v || !cselib_preserved_value_p (v))
5838 return;
5839
5840 /* Use canonical V to avoid creating multiple redundant expressions
5841 for different VALUES equivalent to V. */
5842 v = canonical_cselib_val (v);
5843
5844 /* Adding a reverse op isn't useful if V already has an always valid
5845 location. Ignore ENTRY_VALUE, while it is always constant, we should
5846 prefer non-ENTRY_VALUE locations whenever possible. */
5847 for (l = v->locs, count = 0; l; l = l->next, count++)
5848 if (CONSTANT_P (l->loc)
5849 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5850 return;
5851 /* Avoid creating too large locs lists. */
5852 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5853 return;
5854
5855 switch (GET_CODE (src))
5856 {
5857 case NOT:
5858 case NEG:
5859 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5860 return;
5861 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5862 break;
5863 case SIGN_EXTEND:
5864 case ZERO_EXTEND:
5865 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5866 break;
5867 case XOR:
5868 code = XOR;
5869 goto binary;
5870 case PLUS:
5871 code = MINUS;
5872 goto binary;
5873 case MINUS:
5874 code = PLUS;
5875 goto binary;
5876 binary:
5877 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5878 return;
5879 arg = XEXP (src, 1);
5880 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5881 {
5882 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5883 if (arg == NULL_RTX)
5884 return;
5885 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5886 return;
5887 }
5888 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5889 break;
5890 default:
5891 gcc_unreachable ();
5892 }
5893
5894 cselib_add_permanent_equiv (v, ret, insn);
5895 }
5896
5897 /* Add stores (register and memory references) LOC which will be tracked
5898 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5899 CUIP->insn is instruction which the LOC is part of. */
5900
5901 static void
5902 add_stores (rtx loc, const_rtx expr, void *cuip)
5903 {
5904 machine_mode mode = VOIDmode, mode2;
5905 struct count_use_info *cui = (struct count_use_info *)cuip;
5906 basic_block bb = cui->bb;
5907 micro_operation mo;
5908 rtx oloc = loc, nloc, src = NULL;
5909 enum micro_operation_type type = use_type (loc, cui, &mode);
5910 bool track_p = false;
5911 cselib_val *v;
5912 bool resolve, preserve;
5913
5914 if (type == MO_CLOBBER)
5915 return;
5916
5917 mode2 = mode;
5918
5919 if (REG_P (loc))
5920 {
5921 gcc_assert (loc != cfa_base_rtx);
5922 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5923 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5924 || GET_CODE (expr) == CLOBBER)
5925 {
5926 mo.type = MO_CLOBBER;
5927 mo.u.loc = loc;
5928 if (GET_CODE (expr) == SET
5929 && SET_DEST (expr) == loc
5930 && !unsuitable_loc (SET_SRC (expr))
5931 && find_use_val (loc, mode, cui))
5932 {
5933 gcc_checking_assert (type == MO_VAL_SET);
5934 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5935 }
5936 }
5937 else
5938 {
5939 if (GET_CODE (expr) == SET
5940 && SET_DEST (expr) == loc
5941 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5942 src = var_lowpart (mode2, SET_SRC (expr));
5943 loc = var_lowpart (mode2, loc);
5944
5945 if (src == NULL)
5946 {
5947 mo.type = MO_SET;
5948 mo.u.loc = loc;
5949 }
5950 else
5951 {
5952 rtx xexpr = gen_rtx_SET (loc, src);
5953 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5954 {
5955 /* If this is an instruction copying (part of) a parameter
5956 passed by invisible reference to its register location,
5957 pretend it's a SET so that the initial memory location
5958 is discarded, as the parameter register can be reused
5959 for other purposes and we do not track locations based
5960 on generic registers. */
5961 if (MEM_P (src)
5962 && REG_EXPR (loc)
5963 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5964 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5965 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5966 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5967 != arg_pointer_rtx)
5968 mo.type = MO_SET;
5969 else
5970 mo.type = MO_COPY;
5971 }
5972 else
5973 mo.type = MO_SET;
5974 mo.u.loc = xexpr;
5975 }
5976 }
5977 mo.insn = cui->insn;
5978 }
5979 else if (MEM_P (loc)
5980 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5981 || cui->sets))
5982 {
5983 if (MEM_P (loc) && type == MO_VAL_SET
5984 && !REG_P (XEXP (loc, 0))
5985 && !MEM_P (XEXP (loc, 0)))
5986 {
5987 rtx mloc = loc;
5988 machine_mode address_mode = get_address_mode (mloc);
5989 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5990 address_mode, 0,
5991 GET_MODE (mloc));
5992
5993 if (val && !cselib_preserved_value_p (val))
5994 preserve_value (val);
5995 }
5996
5997 if (GET_CODE (expr) == CLOBBER || !track_p)
5998 {
5999 mo.type = MO_CLOBBER;
6000 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6001 }
6002 else
6003 {
6004 if (GET_CODE (expr) == SET
6005 && SET_DEST (expr) == loc
6006 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6007 src = var_lowpart (mode2, SET_SRC (expr));
6008 loc = var_lowpart (mode2, loc);
6009
6010 if (src == NULL)
6011 {
6012 mo.type = MO_SET;
6013 mo.u.loc = loc;
6014 }
6015 else
6016 {
6017 rtx xexpr = gen_rtx_SET (loc, src);
6018 if (same_variable_part_p (SET_SRC (xexpr),
6019 MEM_EXPR (loc),
6020 INT_MEM_OFFSET (loc)))
6021 mo.type = MO_COPY;
6022 else
6023 mo.type = MO_SET;
6024 mo.u.loc = xexpr;
6025 }
6026 }
6027 mo.insn = cui->insn;
6028 }
6029 else
6030 return;
6031
6032 if (type != MO_VAL_SET)
6033 goto log_and_return;
6034
6035 v = find_use_val (oloc, mode, cui);
6036
6037 if (!v)
6038 goto log_and_return;
6039
6040 resolve = preserve = !cselib_preserved_value_p (v);
6041
6042 /* We cannot track values for multiple-part variables, so we track only
6043 locations for tracked record parameters. */
6044 if (track_p
6045 && REG_P (loc)
6046 && REG_EXPR (loc)
6047 && tracked_record_parameter_p (REG_EXPR (loc)))
6048 {
6049 /* Although we don't use the value here, it could be used later by the
6050 mere virtue of its existence as the operand of the reverse operation
6051 that gave rise to it (typically extension/truncation). Make sure it
6052 is preserved as required by vt_expand_var_loc_chain. */
6053 if (preserve)
6054 preserve_value (v);
6055 goto log_and_return;
6056 }
6057
6058 if (loc == stack_pointer_rtx
6059 && hard_frame_pointer_adjustment != -1
6060 && preserve)
6061 cselib_set_value_sp_based (v);
6062
6063 nloc = replace_expr_with_values (oloc);
6064 if (nloc)
6065 oloc = nloc;
6066
6067 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6068 {
6069 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6070
6071 if (oval == v)
6072 return;
6073 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6074
6075 if (oval && !cselib_preserved_value_p (oval))
6076 {
6077 micro_operation moa;
6078
6079 preserve_value (oval);
6080
6081 moa.type = MO_VAL_USE;
6082 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6083 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6084 moa.insn = cui->insn;
6085
6086 if (dump_file && (dump_flags & TDF_DETAILS))
6087 log_op_type (moa.u.loc, cui->bb, cui->insn,
6088 moa.type, dump_file);
6089 VTI (bb)->mos.safe_push (moa);
6090 }
6091
6092 resolve = false;
6093 }
6094 else if (resolve && GET_CODE (mo.u.loc) == SET)
6095 {
6096 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6097 nloc = replace_expr_with_values (SET_SRC (expr));
6098 else
6099 nloc = NULL_RTX;
6100
6101 /* Avoid the mode mismatch between oexpr and expr. */
6102 if (!nloc && mode != mode2)
6103 {
6104 nloc = SET_SRC (expr);
6105 gcc_assert (oloc == SET_DEST (expr));
6106 }
6107
6108 if (nloc && nloc != SET_SRC (mo.u.loc))
6109 oloc = gen_rtx_SET (oloc, nloc);
6110 else
6111 {
6112 if (oloc == SET_DEST (mo.u.loc))
6113 /* No point in duplicating. */
6114 oloc = mo.u.loc;
6115 if (!REG_P (SET_SRC (mo.u.loc)))
6116 resolve = false;
6117 }
6118 }
6119 else if (!resolve)
6120 {
6121 if (GET_CODE (mo.u.loc) == SET
6122 && oloc == SET_DEST (mo.u.loc))
6123 /* No point in duplicating. */
6124 oloc = mo.u.loc;
6125 }
6126 else
6127 resolve = false;
6128
6129 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6130
6131 if (mo.u.loc != oloc)
6132 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6133
6134 /* The loc of a MO_VAL_SET may have various forms:
6135
6136 (concat val dst): dst now holds val
6137
6138 (concat val (set dst src)): dst now holds val, copied from src
6139
6140 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6141 after replacing mems and non-top-level regs with values.
6142
6143 (concat (concat val dstv) (set dst src)): dst now holds val,
6144 copied from src. dstv is a value-based representation of dst, if
6145 it differs from dst. If resolution is needed, src is a REG, and
6146 its mode is the same as that of val.
6147
6148 (concat (concat val (set dstv srcv)) (set dst src)): src
6149 copied to dst, holding val. dstv and srcv are value-based
6150 representations of dst and src, respectively.
6151
6152 */
6153
6154 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6155 reverse_op (v->val_rtx, expr, cui->insn);
6156
6157 mo.u.loc = loc;
6158
6159 if (track_p)
6160 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6161 if (preserve)
6162 {
6163 VAL_NEEDS_RESOLUTION (loc) = resolve;
6164 preserve_value (v);
6165 }
6166 if (mo.type == MO_CLOBBER)
6167 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6168 if (mo.type == MO_COPY)
6169 VAL_EXPR_IS_COPIED (loc) = 1;
6170
6171 mo.type = MO_VAL_SET;
6172
6173 log_and_return:
6174 if (dump_file && (dump_flags & TDF_DETAILS))
6175 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6176 VTI (bb)->mos.safe_push (mo);
6177 }
6178
6179 /* Arguments to the call. */
6180 static rtx call_arguments;
6181
6182 /* Compute call_arguments. */
6183
6184 static void
6185 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6186 {
6187 rtx link, x, call;
6188 rtx prev, cur, next;
6189 rtx this_arg = NULL_RTX;
6190 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6191 tree obj_type_ref = NULL_TREE;
6192 CUMULATIVE_ARGS args_so_far_v;
6193 cumulative_args_t args_so_far;
6194
6195 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6196 args_so_far = pack_cumulative_args (&args_so_far_v);
6197 call = get_call_rtx_from (insn);
6198 if (call)
6199 {
6200 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6201 {
6202 rtx symbol = XEXP (XEXP (call, 0), 0);
6203 if (SYMBOL_REF_DECL (symbol))
6204 fndecl = SYMBOL_REF_DECL (symbol);
6205 }
6206 if (fndecl == NULL_TREE)
6207 fndecl = MEM_EXPR (XEXP (call, 0));
6208 if (fndecl
6209 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6210 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6211 fndecl = NULL_TREE;
6212 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6213 type = TREE_TYPE (fndecl);
6214 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6215 {
6216 if (TREE_CODE (fndecl) == INDIRECT_REF
6217 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6218 obj_type_ref = TREE_OPERAND (fndecl, 0);
6219 fndecl = NULL_TREE;
6220 }
6221 if (type)
6222 {
6223 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6224 t = TREE_CHAIN (t))
6225 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6226 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6227 break;
6228 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6229 type = NULL;
6230 else
6231 {
6232 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6233 link = CALL_INSN_FUNCTION_USAGE (insn);
6234 #ifndef PCC_STATIC_STRUCT_RETURN
6235 if (aggregate_value_p (TREE_TYPE (type), type)
6236 && targetm.calls.struct_value_rtx (type, 0) == 0)
6237 {
6238 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6239 machine_mode mode = TYPE_MODE (struct_addr);
6240 rtx reg;
6241 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6242 nargs + 1);
6243 reg = targetm.calls.function_arg (args_so_far, mode,
6244 struct_addr, true);
6245 targetm.calls.function_arg_advance (args_so_far, mode,
6246 struct_addr, true);
6247 if (reg == NULL_RTX)
6248 {
6249 for (; link; link = XEXP (link, 1))
6250 if (GET_CODE (XEXP (link, 0)) == USE
6251 && MEM_P (XEXP (XEXP (link, 0), 0)))
6252 {
6253 link = XEXP (link, 1);
6254 break;
6255 }
6256 }
6257 }
6258 else
6259 #endif
6260 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6261 nargs);
6262 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6263 {
6264 machine_mode mode;
6265 t = TYPE_ARG_TYPES (type);
6266 mode = TYPE_MODE (TREE_VALUE (t));
6267 this_arg = targetm.calls.function_arg (args_so_far, mode,
6268 TREE_VALUE (t), true);
6269 if (this_arg && !REG_P (this_arg))
6270 this_arg = NULL_RTX;
6271 else if (this_arg == NULL_RTX)
6272 {
6273 for (; link; link = XEXP (link, 1))
6274 if (GET_CODE (XEXP (link, 0)) == USE
6275 && MEM_P (XEXP (XEXP (link, 0), 0)))
6276 {
6277 this_arg = XEXP (XEXP (link, 0), 0);
6278 break;
6279 }
6280 }
6281 }
6282 }
6283 }
6284 }
6285 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6286
6287 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6288 if (GET_CODE (XEXP (link, 0)) == USE)
6289 {
6290 rtx item = NULL_RTX;
6291 x = XEXP (XEXP (link, 0), 0);
6292 if (GET_MODE (link) == VOIDmode
6293 || GET_MODE (link) == BLKmode
6294 || (GET_MODE (link) != GET_MODE (x)
6295 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6296 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6297 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6298 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6299 /* Can't do anything for these, if the original type mode
6300 isn't known or can't be converted. */;
6301 else if (REG_P (x))
6302 {
6303 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6304 scalar_int_mode mode;
6305 if (val && cselib_preserved_value_p (val))
6306 item = val->val_rtx;
6307 else if (is_a <scalar_int_mode> (GET_MODE (x), &mode))
6308 {
6309 opt_scalar_int_mode mode_iter;
6310 FOR_EACH_WIDER_MODE (mode_iter, mode)
6311 {
6312 mode = mode_iter.require ();
6313 if (GET_MODE_BITSIZE (mode) > BITS_PER_WORD)
6314 break;
6315
6316 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6317 if (reg == NULL_RTX || !REG_P (reg))
6318 continue;
6319 val = cselib_lookup (reg, mode, 0, VOIDmode);
6320 if (val && cselib_preserved_value_p (val))
6321 {
6322 item = val->val_rtx;
6323 break;
6324 }
6325 }
6326 }
6327 }
6328 else if (MEM_P (x))
6329 {
6330 rtx mem = x;
6331 cselib_val *val;
6332
6333 if (!frame_pointer_needed)
6334 {
6335 struct adjust_mem_data amd;
6336 amd.mem_mode = VOIDmode;
6337 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6338 amd.store = true;
6339 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6340 &amd);
6341 gcc_assert (amd.side_effects.is_empty ());
6342 }
6343 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6344 if (val && cselib_preserved_value_p (val))
6345 item = val->val_rtx;
6346 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6347 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6348 {
6349 /* For non-integer stack argument see also if they weren't
6350 initialized by integers. */
6351 scalar_int_mode imode;
6352 if (int_mode_for_mode (GET_MODE (mem)).exists (&imode)
6353 && imode != GET_MODE (mem))
6354 {
6355 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6356 imode, 0, VOIDmode);
6357 if (val && cselib_preserved_value_p (val))
6358 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6359 imode);
6360 }
6361 }
6362 }
6363 if (item)
6364 {
6365 rtx x2 = x;
6366 if (GET_MODE (item) != GET_MODE (link))
6367 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6368 if (GET_MODE (x2) != GET_MODE (link))
6369 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6370 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6371 call_arguments
6372 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6373 }
6374 if (t && t != void_list_node)
6375 {
6376 tree argtype = TREE_VALUE (t);
6377 machine_mode mode = TYPE_MODE (argtype);
6378 rtx reg;
6379 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6380 {
6381 argtype = build_pointer_type (argtype);
6382 mode = TYPE_MODE (argtype);
6383 }
6384 reg = targetm.calls.function_arg (args_so_far, mode,
6385 argtype, true);
6386 if (TREE_CODE (argtype) == REFERENCE_TYPE
6387 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6388 && reg
6389 && REG_P (reg)
6390 && GET_MODE (reg) == mode
6391 && (GET_MODE_CLASS (mode) == MODE_INT
6392 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6393 && REG_P (x)
6394 && REGNO (x) == REGNO (reg)
6395 && GET_MODE (x) == mode
6396 && item)
6397 {
6398 machine_mode indmode
6399 = TYPE_MODE (TREE_TYPE (argtype));
6400 rtx mem = gen_rtx_MEM (indmode, x);
6401 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6402 if (val && cselib_preserved_value_p (val))
6403 {
6404 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6405 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6406 call_arguments);
6407 }
6408 else
6409 {
6410 struct elt_loc_list *l;
6411 tree initial;
6412
6413 /* Try harder, when passing address of a constant
6414 pool integer it can be easily read back. */
6415 item = XEXP (item, 1);
6416 if (GET_CODE (item) == SUBREG)
6417 item = SUBREG_REG (item);
6418 gcc_assert (GET_CODE (item) == VALUE);
6419 val = CSELIB_VAL_PTR (item);
6420 for (l = val->locs; l; l = l->next)
6421 if (GET_CODE (l->loc) == SYMBOL_REF
6422 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6423 && SYMBOL_REF_DECL (l->loc)
6424 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6425 {
6426 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6427 if (tree_fits_shwi_p (initial))
6428 {
6429 item = GEN_INT (tree_to_shwi (initial));
6430 item = gen_rtx_CONCAT (indmode, mem, item);
6431 call_arguments
6432 = gen_rtx_EXPR_LIST (VOIDmode, item,
6433 call_arguments);
6434 }
6435 break;
6436 }
6437 }
6438 }
6439 targetm.calls.function_arg_advance (args_so_far, mode,
6440 argtype, true);
6441 t = TREE_CHAIN (t);
6442 }
6443 }
6444
6445 /* Add debug arguments. */
6446 if (fndecl
6447 && TREE_CODE (fndecl) == FUNCTION_DECL
6448 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6449 {
6450 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6451 if (debug_args)
6452 {
6453 unsigned int ix;
6454 tree param;
6455 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6456 {
6457 rtx item;
6458 tree dtemp = (**debug_args)[ix + 1];
6459 machine_mode mode = DECL_MODE (dtemp);
6460 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6461 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6462 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6463 call_arguments);
6464 }
6465 }
6466 }
6467
6468 /* Reverse call_arguments chain. */
6469 prev = NULL_RTX;
6470 for (cur = call_arguments; cur; cur = next)
6471 {
6472 next = XEXP (cur, 1);
6473 XEXP (cur, 1) = prev;
6474 prev = cur;
6475 }
6476 call_arguments = prev;
6477
6478 x = get_call_rtx_from (insn);
6479 if (x)
6480 {
6481 x = XEXP (XEXP (x, 0), 0);
6482 if (GET_CODE (x) == SYMBOL_REF)
6483 /* Don't record anything. */;
6484 else if (CONSTANT_P (x))
6485 {
6486 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6487 pc_rtx, x);
6488 call_arguments
6489 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6490 }
6491 else
6492 {
6493 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6494 if (val && cselib_preserved_value_p (val))
6495 {
6496 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6497 call_arguments
6498 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6499 }
6500 }
6501 }
6502 if (this_arg)
6503 {
6504 machine_mode mode
6505 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6506 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6507 HOST_WIDE_INT token
6508 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6509 if (token)
6510 clobbered = plus_constant (mode, clobbered,
6511 token * GET_MODE_SIZE (mode));
6512 clobbered = gen_rtx_MEM (mode, clobbered);
6513 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6514 call_arguments
6515 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6516 }
6517 }
6518
6519 /* Callback for cselib_record_sets_hook, that records as micro
6520 operations uses and stores in an insn after cselib_record_sets has
6521 analyzed the sets in an insn, but before it modifies the stored
6522 values in the internal tables, unless cselib_record_sets doesn't
6523 call it directly (perhaps because we're not doing cselib in the
6524 first place, in which case sets and n_sets will be 0). */
6525
6526 static void
6527 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6528 {
6529 basic_block bb = BLOCK_FOR_INSN (insn);
6530 int n1, n2;
6531 struct count_use_info cui;
6532 micro_operation *mos;
6533
6534 cselib_hook_called = true;
6535
6536 cui.insn = insn;
6537 cui.bb = bb;
6538 cui.sets = sets;
6539 cui.n_sets = n_sets;
6540
6541 n1 = VTI (bb)->mos.length ();
6542 cui.store_p = false;
6543 note_uses (&PATTERN (insn), add_uses_1, &cui);
6544 n2 = VTI (bb)->mos.length () - 1;
6545 mos = VTI (bb)->mos.address ();
6546
6547 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6548 MO_VAL_LOC last. */
6549 while (n1 < n2)
6550 {
6551 while (n1 < n2 && mos[n1].type == MO_USE)
6552 n1++;
6553 while (n1 < n2 && mos[n2].type != MO_USE)
6554 n2--;
6555 if (n1 < n2)
6556 std::swap (mos[n1], mos[n2]);
6557 }
6558
6559 n2 = VTI (bb)->mos.length () - 1;
6560 while (n1 < n2)
6561 {
6562 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6563 n1++;
6564 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6565 n2--;
6566 if (n1 < n2)
6567 std::swap (mos[n1], mos[n2]);
6568 }
6569
6570 if (CALL_P (insn))
6571 {
6572 micro_operation mo;
6573
6574 mo.type = MO_CALL;
6575 mo.insn = insn;
6576 mo.u.loc = call_arguments;
6577 call_arguments = NULL_RTX;
6578
6579 if (dump_file && (dump_flags & TDF_DETAILS))
6580 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6581 VTI (bb)->mos.safe_push (mo);
6582 }
6583
6584 n1 = VTI (bb)->mos.length ();
6585 /* This will record NEXT_INSN (insn), such that we can
6586 insert notes before it without worrying about any
6587 notes that MO_USEs might emit after the insn. */
6588 cui.store_p = true;
6589 note_stores (PATTERN (insn), add_stores, &cui);
6590 n2 = VTI (bb)->mos.length () - 1;
6591 mos = VTI (bb)->mos.address ();
6592
6593 /* Order the MO_VAL_USEs first (note_stores does nothing
6594 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6595 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6596 while (n1 < n2)
6597 {
6598 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6599 n1++;
6600 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6601 n2--;
6602 if (n1 < n2)
6603 std::swap (mos[n1], mos[n2]);
6604 }
6605
6606 n2 = VTI (bb)->mos.length () - 1;
6607 while (n1 < n2)
6608 {
6609 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6610 n1++;
6611 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6612 n2--;
6613 if (n1 < n2)
6614 std::swap (mos[n1], mos[n2]);
6615 }
6616 }
6617
6618 static enum var_init_status
6619 find_src_status (dataflow_set *in, rtx src)
6620 {
6621 tree decl = NULL_TREE;
6622 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6623
6624 if (! flag_var_tracking_uninit)
6625 status = VAR_INIT_STATUS_INITIALIZED;
6626
6627 if (src && REG_P (src))
6628 decl = var_debug_decl (REG_EXPR (src));
6629 else if (src && MEM_P (src))
6630 decl = var_debug_decl (MEM_EXPR (src));
6631
6632 if (src && decl)
6633 status = get_init_value (in, src, dv_from_decl (decl));
6634
6635 return status;
6636 }
6637
6638 /* SRC is the source of an assignment. Use SET to try to find what
6639 was ultimately assigned to SRC. Return that value if known,
6640 otherwise return SRC itself. */
6641
6642 static rtx
6643 find_src_set_src (dataflow_set *set, rtx src)
6644 {
6645 tree decl = NULL_TREE; /* The variable being copied around. */
6646 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6647 variable *var;
6648 location_chain *nextp;
6649 int i;
6650 bool found;
6651
6652 if (src && REG_P (src))
6653 decl = var_debug_decl (REG_EXPR (src));
6654 else if (src && MEM_P (src))
6655 decl = var_debug_decl (MEM_EXPR (src));
6656
6657 if (src && decl)
6658 {
6659 decl_or_value dv = dv_from_decl (decl);
6660
6661 var = shared_hash_find (set->vars, dv);
6662 if (var)
6663 {
6664 found = false;
6665 for (i = 0; i < var->n_var_parts && !found; i++)
6666 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6667 nextp = nextp->next)
6668 if (rtx_equal_p (nextp->loc, src))
6669 {
6670 set_src = nextp->set_src;
6671 found = true;
6672 }
6673
6674 }
6675 }
6676
6677 return set_src;
6678 }
6679
6680 /* Compute the changes of variable locations in the basic block BB. */
6681
6682 static bool
6683 compute_bb_dataflow (basic_block bb)
6684 {
6685 unsigned int i;
6686 micro_operation *mo;
6687 bool changed;
6688 dataflow_set old_out;
6689 dataflow_set *in = &VTI (bb)->in;
6690 dataflow_set *out = &VTI (bb)->out;
6691
6692 dataflow_set_init (&old_out);
6693 dataflow_set_copy (&old_out, out);
6694 dataflow_set_copy (out, in);
6695
6696 if (MAY_HAVE_DEBUG_INSNS)
6697 local_get_addr_cache = new hash_map<rtx, rtx>;
6698
6699 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6700 {
6701 rtx_insn *insn = mo->insn;
6702
6703 switch (mo->type)
6704 {
6705 case MO_CALL:
6706 dataflow_set_clear_at_call (out, insn);
6707 break;
6708
6709 case MO_USE:
6710 {
6711 rtx loc = mo->u.loc;
6712
6713 if (REG_P (loc))
6714 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6715 else if (MEM_P (loc))
6716 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6717 }
6718 break;
6719
6720 case MO_VAL_LOC:
6721 {
6722 rtx loc = mo->u.loc;
6723 rtx val, vloc;
6724 tree var;
6725
6726 if (GET_CODE (loc) == CONCAT)
6727 {
6728 val = XEXP (loc, 0);
6729 vloc = XEXP (loc, 1);
6730 }
6731 else
6732 {
6733 val = NULL_RTX;
6734 vloc = loc;
6735 }
6736
6737 var = PAT_VAR_LOCATION_DECL (vloc);
6738
6739 clobber_variable_part (out, NULL_RTX,
6740 dv_from_decl (var), 0, NULL_RTX);
6741 if (val)
6742 {
6743 if (VAL_NEEDS_RESOLUTION (loc))
6744 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6745 set_variable_part (out, val, dv_from_decl (var), 0,
6746 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6747 INSERT);
6748 }
6749 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6750 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6751 dv_from_decl (var), 0,
6752 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6753 INSERT);
6754 }
6755 break;
6756
6757 case MO_VAL_USE:
6758 {
6759 rtx loc = mo->u.loc;
6760 rtx val, vloc, uloc;
6761
6762 vloc = uloc = XEXP (loc, 1);
6763 val = XEXP (loc, 0);
6764
6765 if (GET_CODE (val) == CONCAT)
6766 {
6767 uloc = XEXP (val, 1);
6768 val = XEXP (val, 0);
6769 }
6770
6771 if (VAL_NEEDS_RESOLUTION (loc))
6772 val_resolve (out, val, vloc, insn);
6773 else
6774 val_store (out, val, uloc, insn, false);
6775
6776 if (VAL_HOLDS_TRACK_EXPR (loc))
6777 {
6778 if (GET_CODE (uloc) == REG)
6779 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6780 NULL);
6781 else if (GET_CODE (uloc) == MEM)
6782 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6783 NULL);
6784 }
6785 }
6786 break;
6787
6788 case MO_VAL_SET:
6789 {
6790 rtx loc = mo->u.loc;
6791 rtx val, vloc, uloc;
6792 rtx dstv, srcv;
6793
6794 vloc = loc;
6795 uloc = XEXP (vloc, 1);
6796 val = XEXP (vloc, 0);
6797 vloc = uloc;
6798
6799 if (GET_CODE (uloc) == SET)
6800 {
6801 dstv = SET_DEST (uloc);
6802 srcv = SET_SRC (uloc);
6803 }
6804 else
6805 {
6806 dstv = uloc;
6807 srcv = NULL;
6808 }
6809
6810 if (GET_CODE (val) == CONCAT)
6811 {
6812 dstv = vloc = XEXP (val, 1);
6813 val = XEXP (val, 0);
6814 }
6815
6816 if (GET_CODE (vloc) == SET)
6817 {
6818 srcv = SET_SRC (vloc);
6819
6820 gcc_assert (val != srcv);
6821 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6822
6823 dstv = vloc = SET_DEST (vloc);
6824
6825 if (VAL_NEEDS_RESOLUTION (loc))
6826 val_resolve (out, val, srcv, insn);
6827 }
6828 else if (VAL_NEEDS_RESOLUTION (loc))
6829 {
6830 gcc_assert (GET_CODE (uloc) == SET
6831 && GET_CODE (SET_SRC (uloc)) == REG);
6832 val_resolve (out, val, SET_SRC (uloc), insn);
6833 }
6834
6835 if (VAL_HOLDS_TRACK_EXPR (loc))
6836 {
6837 if (VAL_EXPR_IS_CLOBBERED (loc))
6838 {
6839 if (REG_P (uloc))
6840 var_reg_delete (out, uloc, true);
6841 else if (MEM_P (uloc))
6842 {
6843 gcc_assert (MEM_P (dstv));
6844 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6845 var_mem_delete (out, dstv, true);
6846 }
6847 }
6848 else
6849 {
6850 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6851 rtx src = NULL, dst = uloc;
6852 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6853
6854 if (GET_CODE (uloc) == SET)
6855 {
6856 src = SET_SRC (uloc);
6857 dst = SET_DEST (uloc);
6858 }
6859
6860 if (copied_p)
6861 {
6862 if (flag_var_tracking_uninit)
6863 {
6864 status = find_src_status (in, src);
6865
6866 if (status == VAR_INIT_STATUS_UNKNOWN)
6867 status = find_src_status (out, src);
6868 }
6869
6870 src = find_src_set_src (in, src);
6871 }
6872
6873 if (REG_P (dst))
6874 var_reg_delete_and_set (out, dst, !copied_p,
6875 status, srcv);
6876 else if (MEM_P (dst))
6877 {
6878 gcc_assert (MEM_P (dstv));
6879 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6880 var_mem_delete_and_set (out, dstv, !copied_p,
6881 status, srcv);
6882 }
6883 }
6884 }
6885 else if (REG_P (uloc))
6886 var_regno_delete (out, REGNO (uloc));
6887 else if (MEM_P (uloc))
6888 {
6889 gcc_checking_assert (GET_CODE (vloc) == MEM);
6890 gcc_checking_assert (dstv == vloc);
6891 if (dstv != vloc)
6892 clobber_overlapping_mems (out, vloc);
6893 }
6894
6895 val_store (out, val, dstv, insn, true);
6896 }
6897 break;
6898
6899 case MO_SET:
6900 {
6901 rtx loc = mo->u.loc;
6902 rtx set_src = NULL;
6903
6904 if (GET_CODE (loc) == SET)
6905 {
6906 set_src = SET_SRC (loc);
6907 loc = SET_DEST (loc);
6908 }
6909
6910 if (REG_P (loc))
6911 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6912 set_src);
6913 else if (MEM_P (loc))
6914 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6915 set_src);
6916 }
6917 break;
6918
6919 case MO_COPY:
6920 {
6921 rtx loc = mo->u.loc;
6922 enum var_init_status src_status;
6923 rtx set_src = NULL;
6924
6925 if (GET_CODE (loc) == SET)
6926 {
6927 set_src = SET_SRC (loc);
6928 loc = SET_DEST (loc);
6929 }
6930
6931 if (! flag_var_tracking_uninit)
6932 src_status = VAR_INIT_STATUS_INITIALIZED;
6933 else
6934 {
6935 src_status = find_src_status (in, set_src);
6936
6937 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6938 src_status = find_src_status (out, set_src);
6939 }
6940
6941 set_src = find_src_set_src (in, set_src);
6942
6943 if (REG_P (loc))
6944 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6945 else if (MEM_P (loc))
6946 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6947 }
6948 break;
6949
6950 case MO_USE_NO_VAR:
6951 {
6952 rtx loc = mo->u.loc;
6953
6954 if (REG_P (loc))
6955 var_reg_delete (out, loc, false);
6956 else if (MEM_P (loc))
6957 var_mem_delete (out, loc, false);
6958 }
6959 break;
6960
6961 case MO_CLOBBER:
6962 {
6963 rtx loc = mo->u.loc;
6964
6965 if (REG_P (loc))
6966 var_reg_delete (out, loc, true);
6967 else if (MEM_P (loc))
6968 var_mem_delete (out, loc, true);
6969 }
6970 break;
6971
6972 case MO_ADJUST:
6973 out->stack_adjust += mo->u.adjust;
6974 break;
6975 }
6976 }
6977
6978 if (MAY_HAVE_DEBUG_INSNS)
6979 {
6980 delete local_get_addr_cache;
6981 local_get_addr_cache = NULL;
6982
6983 dataflow_set_equiv_regs (out);
6984 shared_hash_htab (out->vars)
6985 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6986 shared_hash_htab (out->vars)
6987 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6988 if (flag_checking)
6989 shared_hash_htab (out->vars)
6990 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6991 }
6992 changed = dataflow_set_different (&old_out, out);
6993 dataflow_set_destroy (&old_out);
6994 return changed;
6995 }
6996
6997 /* Find the locations of variables in the whole function. */
6998
6999 static bool
7000 vt_find_locations (void)
7001 {
7002 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7003 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7004 sbitmap in_worklist, in_pending;
7005 basic_block bb;
7006 edge e;
7007 int *bb_order;
7008 int *rc_order;
7009 int i;
7010 int htabsz = 0;
7011 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7012 bool success = true;
7013
7014 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7015 /* Compute reverse completion order of depth first search of the CFG
7016 so that the data-flow runs faster. */
7017 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7018 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7019 pre_and_rev_post_order_compute (NULL, rc_order, false);
7020 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7021 bb_order[rc_order[i]] = i;
7022 free (rc_order);
7023
7024 auto_sbitmap visited (last_basic_block_for_fn (cfun));
7025 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7026 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7027 bitmap_clear (in_worklist);
7028
7029 FOR_EACH_BB_FN (bb, cfun)
7030 pending->insert (bb_order[bb->index], bb);
7031 bitmap_ones (in_pending);
7032
7033 while (success && !pending->empty ())
7034 {
7035 std::swap (worklist, pending);
7036 std::swap (in_worklist, in_pending);
7037
7038 bitmap_clear (visited);
7039
7040 while (!worklist->empty ())
7041 {
7042 bb = worklist->extract_min ();
7043 bitmap_clear_bit (in_worklist, bb->index);
7044 gcc_assert (!bitmap_bit_p (visited, bb->index));
7045 if (!bitmap_bit_p (visited, bb->index))
7046 {
7047 bool changed;
7048 edge_iterator ei;
7049 int oldinsz, oldoutsz;
7050
7051 bitmap_set_bit (visited, bb->index);
7052
7053 if (VTI (bb)->in.vars)
7054 {
7055 htabsz
7056 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7057 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7058 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7059 oldoutsz
7060 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7061 }
7062 else
7063 oldinsz = oldoutsz = 0;
7064
7065 if (MAY_HAVE_DEBUG_INSNS)
7066 {
7067 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7068 bool first = true, adjust = false;
7069
7070 /* Calculate the IN set as the intersection of
7071 predecessor OUT sets. */
7072
7073 dataflow_set_clear (in);
7074 dst_can_be_shared = true;
7075
7076 FOR_EACH_EDGE (e, ei, bb->preds)
7077 if (!VTI (e->src)->flooded)
7078 gcc_assert (bb_order[bb->index]
7079 <= bb_order[e->src->index]);
7080 else if (first)
7081 {
7082 dataflow_set_copy (in, &VTI (e->src)->out);
7083 first_out = &VTI (e->src)->out;
7084 first = false;
7085 }
7086 else
7087 {
7088 dataflow_set_merge (in, &VTI (e->src)->out);
7089 adjust = true;
7090 }
7091
7092 if (adjust)
7093 {
7094 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7095
7096 if (flag_checking)
7097 /* Merge and merge_adjust should keep entries in
7098 canonical order. */
7099 shared_hash_htab (in->vars)
7100 ->traverse <dataflow_set *,
7101 canonicalize_loc_order_check> (in);
7102
7103 if (dst_can_be_shared)
7104 {
7105 shared_hash_destroy (in->vars);
7106 in->vars = shared_hash_copy (first_out->vars);
7107 }
7108 }
7109
7110 VTI (bb)->flooded = true;
7111 }
7112 else
7113 {
7114 /* Calculate the IN set as union of predecessor OUT sets. */
7115 dataflow_set_clear (&VTI (bb)->in);
7116 FOR_EACH_EDGE (e, ei, bb->preds)
7117 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7118 }
7119
7120 changed = compute_bb_dataflow (bb);
7121 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7122 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7123
7124 if (htabmax && htabsz > htabmax)
7125 {
7126 if (MAY_HAVE_DEBUG_INSNS)
7127 inform (DECL_SOURCE_LOCATION (cfun->decl),
7128 "variable tracking size limit exceeded with "
7129 "-fvar-tracking-assignments, retrying without");
7130 else
7131 inform (DECL_SOURCE_LOCATION (cfun->decl),
7132 "variable tracking size limit exceeded");
7133 success = false;
7134 break;
7135 }
7136
7137 if (changed)
7138 {
7139 FOR_EACH_EDGE (e, ei, bb->succs)
7140 {
7141 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7142 continue;
7143
7144 if (bitmap_bit_p (visited, e->dest->index))
7145 {
7146 if (!bitmap_bit_p (in_pending, e->dest->index))
7147 {
7148 /* Send E->DEST to next round. */
7149 bitmap_set_bit (in_pending, e->dest->index);
7150 pending->insert (bb_order[e->dest->index],
7151 e->dest);
7152 }
7153 }
7154 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7155 {
7156 /* Add E->DEST to current round. */
7157 bitmap_set_bit (in_worklist, e->dest->index);
7158 worklist->insert (bb_order[e->dest->index],
7159 e->dest);
7160 }
7161 }
7162 }
7163
7164 if (dump_file)
7165 fprintf (dump_file,
7166 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7167 bb->index,
7168 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7169 oldinsz,
7170 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7171 oldoutsz,
7172 (int)worklist->nodes (), (int)pending->nodes (),
7173 htabsz);
7174
7175 if (dump_file && (dump_flags & TDF_DETAILS))
7176 {
7177 fprintf (dump_file, "BB %i IN:\n", bb->index);
7178 dump_dataflow_set (&VTI (bb)->in);
7179 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7180 dump_dataflow_set (&VTI (bb)->out);
7181 }
7182 }
7183 }
7184 }
7185
7186 if (success && MAY_HAVE_DEBUG_INSNS)
7187 FOR_EACH_BB_FN (bb, cfun)
7188 gcc_assert (VTI (bb)->flooded);
7189
7190 free (bb_order);
7191 delete worklist;
7192 delete pending;
7193 sbitmap_free (in_worklist);
7194 sbitmap_free (in_pending);
7195
7196 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7197 return success;
7198 }
7199
7200 /* Print the content of the LIST to dump file. */
7201
7202 static void
7203 dump_attrs_list (attrs *list)
7204 {
7205 for (; list; list = list->next)
7206 {
7207 if (dv_is_decl_p (list->dv))
7208 print_mem_expr (dump_file, dv_as_decl (list->dv));
7209 else
7210 print_rtl_single (dump_file, dv_as_value (list->dv));
7211 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7212 }
7213 fprintf (dump_file, "\n");
7214 }
7215
7216 /* Print the information about variable *SLOT to dump file. */
7217
7218 int
7219 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7220 {
7221 variable *var = *slot;
7222
7223 dump_var (var);
7224
7225 /* Continue traversing the hash table. */
7226 return 1;
7227 }
7228
7229 /* Print the information about variable VAR to dump file. */
7230
7231 static void
7232 dump_var (variable *var)
7233 {
7234 int i;
7235 location_chain *node;
7236
7237 if (dv_is_decl_p (var->dv))
7238 {
7239 const_tree decl = dv_as_decl (var->dv);
7240
7241 if (DECL_NAME (decl))
7242 {
7243 fprintf (dump_file, " name: %s",
7244 IDENTIFIER_POINTER (DECL_NAME (decl)));
7245 if (dump_flags & TDF_UID)
7246 fprintf (dump_file, "D.%u", DECL_UID (decl));
7247 }
7248 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7249 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7250 else
7251 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7252 fprintf (dump_file, "\n");
7253 }
7254 else
7255 {
7256 fputc (' ', dump_file);
7257 print_rtl_single (dump_file, dv_as_value (var->dv));
7258 }
7259
7260 for (i = 0; i < var->n_var_parts; i++)
7261 {
7262 fprintf (dump_file, " offset %ld\n",
7263 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7264 for (node = var->var_part[i].loc_chain; node; node = node->next)
7265 {
7266 fprintf (dump_file, " ");
7267 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7268 fprintf (dump_file, "[uninit]");
7269 print_rtl_single (dump_file, node->loc);
7270 }
7271 }
7272 }
7273
7274 /* Print the information about variables from hash table VARS to dump file. */
7275
7276 static void
7277 dump_vars (variable_table_type *vars)
7278 {
7279 if (vars->elements () > 0)
7280 {
7281 fprintf (dump_file, "Variables:\n");
7282 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7283 }
7284 }
7285
7286 /* Print the dataflow set SET to dump file. */
7287
7288 static void
7289 dump_dataflow_set (dataflow_set *set)
7290 {
7291 int i;
7292
7293 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7294 set->stack_adjust);
7295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7296 {
7297 if (set->regs[i])
7298 {
7299 fprintf (dump_file, "Reg %d:", i);
7300 dump_attrs_list (set->regs[i]);
7301 }
7302 }
7303 dump_vars (shared_hash_htab (set->vars));
7304 fprintf (dump_file, "\n");
7305 }
7306
7307 /* Print the IN and OUT sets for each basic block to dump file. */
7308
7309 static void
7310 dump_dataflow_sets (void)
7311 {
7312 basic_block bb;
7313
7314 FOR_EACH_BB_FN (bb, cfun)
7315 {
7316 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7317 fprintf (dump_file, "IN:\n");
7318 dump_dataflow_set (&VTI (bb)->in);
7319 fprintf (dump_file, "OUT:\n");
7320 dump_dataflow_set (&VTI (bb)->out);
7321 }
7322 }
7323
7324 /* Return the variable for DV in dropped_values, inserting one if
7325 requested with INSERT. */
7326
7327 static inline variable *
7328 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7329 {
7330 variable **slot;
7331 variable *empty_var;
7332 onepart_enum onepart;
7333
7334 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7335
7336 if (!slot)
7337 return NULL;
7338
7339 if (*slot)
7340 return *slot;
7341
7342 gcc_checking_assert (insert == INSERT);
7343
7344 onepart = dv_onepart_p (dv);
7345
7346 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7347
7348 empty_var = onepart_pool_allocate (onepart);
7349 empty_var->dv = dv;
7350 empty_var->refcount = 1;
7351 empty_var->n_var_parts = 0;
7352 empty_var->onepart = onepart;
7353 empty_var->in_changed_variables = false;
7354 empty_var->var_part[0].loc_chain = NULL;
7355 empty_var->var_part[0].cur_loc = NULL;
7356 VAR_LOC_1PAUX (empty_var) = NULL;
7357 set_dv_changed (dv, true);
7358
7359 *slot = empty_var;
7360
7361 return empty_var;
7362 }
7363
7364 /* Recover the one-part aux from dropped_values. */
7365
7366 static struct onepart_aux *
7367 recover_dropped_1paux (variable *var)
7368 {
7369 variable *dvar;
7370
7371 gcc_checking_assert (var->onepart);
7372
7373 if (VAR_LOC_1PAUX (var))
7374 return VAR_LOC_1PAUX (var);
7375
7376 if (var->onepart == ONEPART_VDECL)
7377 return NULL;
7378
7379 dvar = variable_from_dropped (var->dv, NO_INSERT);
7380
7381 if (!dvar)
7382 return NULL;
7383
7384 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7385 VAR_LOC_1PAUX (dvar) = NULL;
7386
7387 return VAR_LOC_1PAUX (var);
7388 }
7389
7390 /* Add variable VAR to the hash table of changed variables and
7391 if it has no locations delete it from SET's hash table. */
7392
7393 static void
7394 variable_was_changed (variable *var, dataflow_set *set)
7395 {
7396 hashval_t hash = dv_htab_hash (var->dv);
7397
7398 if (emit_notes)
7399 {
7400 variable **slot;
7401
7402 /* Remember this decl or VALUE has been added to changed_variables. */
7403 set_dv_changed (var->dv, true);
7404
7405 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7406
7407 if (*slot)
7408 {
7409 variable *old_var = *slot;
7410 gcc_assert (old_var->in_changed_variables);
7411 old_var->in_changed_variables = false;
7412 if (var != old_var && var->onepart)
7413 {
7414 /* Restore the auxiliary info from an empty variable
7415 previously created for changed_variables, so it is
7416 not lost. */
7417 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7418 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7419 VAR_LOC_1PAUX (old_var) = NULL;
7420 }
7421 variable_htab_free (*slot);
7422 }
7423
7424 if (set && var->n_var_parts == 0)
7425 {
7426 onepart_enum onepart = var->onepart;
7427 variable *empty_var = NULL;
7428 variable **dslot = NULL;
7429
7430 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7431 {
7432 dslot = dropped_values->find_slot_with_hash (var->dv,
7433 dv_htab_hash (var->dv),
7434 INSERT);
7435 empty_var = *dslot;
7436
7437 if (empty_var)
7438 {
7439 gcc_checking_assert (!empty_var->in_changed_variables);
7440 if (!VAR_LOC_1PAUX (var))
7441 {
7442 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7443 VAR_LOC_1PAUX (empty_var) = NULL;
7444 }
7445 else
7446 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7447 }
7448 }
7449
7450 if (!empty_var)
7451 {
7452 empty_var = onepart_pool_allocate (onepart);
7453 empty_var->dv = var->dv;
7454 empty_var->refcount = 1;
7455 empty_var->n_var_parts = 0;
7456 empty_var->onepart = onepart;
7457 if (dslot)
7458 {
7459 empty_var->refcount++;
7460 *dslot = empty_var;
7461 }
7462 }
7463 else
7464 empty_var->refcount++;
7465 empty_var->in_changed_variables = true;
7466 *slot = empty_var;
7467 if (onepart)
7468 {
7469 empty_var->var_part[0].loc_chain = NULL;
7470 empty_var->var_part[0].cur_loc = NULL;
7471 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7472 VAR_LOC_1PAUX (var) = NULL;
7473 }
7474 goto drop_var;
7475 }
7476 else
7477 {
7478 if (var->onepart && !VAR_LOC_1PAUX (var))
7479 recover_dropped_1paux (var);
7480 var->refcount++;
7481 var->in_changed_variables = true;
7482 *slot = var;
7483 }
7484 }
7485 else
7486 {
7487 gcc_assert (set);
7488 if (var->n_var_parts == 0)
7489 {
7490 variable **slot;
7491
7492 drop_var:
7493 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7494 if (slot)
7495 {
7496 if (shared_hash_shared (set->vars))
7497 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7498 NO_INSERT);
7499 shared_hash_htab (set->vars)->clear_slot (slot);
7500 }
7501 }
7502 }
7503 }
7504
7505 /* Look for the index in VAR->var_part corresponding to OFFSET.
7506 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7507 referenced int will be set to the index that the part has or should
7508 have, if it should be inserted. */
7509
7510 static inline int
7511 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7512 int *insertion_point)
7513 {
7514 int pos, low, high;
7515
7516 if (var->onepart)
7517 {
7518 if (offset != 0)
7519 return -1;
7520
7521 if (insertion_point)
7522 *insertion_point = 0;
7523
7524 return var->n_var_parts - 1;
7525 }
7526
7527 /* Find the location part. */
7528 low = 0;
7529 high = var->n_var_parts;
7530 while (low != high)
7531 {
7532 pos = (low + high) / 2;
7533 if (VAR_PART_OFFSET (var, pos) < offset)
7534 low = pos + 1;
7535 else
7536 high = pos;
7537 }
7538 pos = low;
7539
7540 if (insertion_point)
7541 *insertion_point = pos;
7542
7543 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7544 return pos;
7545
7546 return -1;
7547 }
7548
7549 static variable **
7550 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7551 decl_or_value dv, HOST_WIDE_INT offset,
7552 enum var_init_status initialized, rtx set_src)
7553 {
7554 int pos;
7555 location_chain *node, *next;
7556 location_chain **nextp;
7557 variable *var;
7558 onepart_enum onepart;
7559
7560 var = *slot;
7561
7562 if (var)
7563 onepart = var->onepart;
7564 else
7565 onepart = dv_onepart_p (dv);
7566
7567 gcc_checking_assert (offset == 0 || !onepart);
7568 gcc_checking_assert (loc != dv_as_opaque (dv));
7569
7570 if (! flag_var_tracking_uninit)
7571 initialized = VAR_INIT_STATUS_INITIALIZED;
7572
7573 if (!var)
7574 {
7575 /* Create new variable information. */
7576 var = onepart_pool_allocate (onepart);
7577 var->dv = dv;
7578 var->refcount = 1;
7579 var->n_var_parts = 1;
7580 var->onepart = onepart;
7581 var->in_changed_variables = false;
7582 if (var->onepart)
7583 VAR_LOC_1PAUX (var) = NULL;
7584 else
7585 VAR_PART_OFFSET (var, 0) = offset;
7586 var->var_part[0].loc_chain = NULL;
7587 var->var_part[0].cur_loc = NULL;
7588 *slot = var;
7589 pos = 0;
7590 nextp = &var->var_part[0].loc_chain;
7591 }
7592 else if (onepart)
7593 {
7594 int r = -1, c = 0;
7595
7596 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7597
7598 pos = 0;
7599
7600 if (GET_CODE (loc) == VALUE)
7601 {
7602 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7603 nextp = &node->next)
7604 if (GET_CODE (node->loc) == VALUE)
7605 {
7606 if (node->loc == loc)
7607 {
7608 r = 0;
7609 break;
7610 }
7611 if (canon_value_cmp (node->loc, loc))
7612 c++;
7613 else
7614 {
7615 r = 1;
7616 break;
7617 }
7618 }
7619 else if (REG_P (node->loc) || MEM_P (node->loc))
7620 c++;
7621 else
7622 {
7623 r = 1;
7624 break;
7625 }
7626 }
7627 else if (REG_P (loc))
7628 {
7629 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7630 nextp = &node->next)
7631 if (REG_P (node->loc))
7632 {
7633 if (REGNO (node->loc) < REGNO (loc))
7634 c++;
7635 else
7636 {
7637 if (REGNO (node->loc) == REGNO (loc))
7638 r = 0;
7639 else
7640 r = 1;
7641 break;
7642 }
7643 }
7644 else
7645 {
7646 r = 1;
7647 break;
7648 }
7649 }
7650 else if (MEM_P (loc))
7651 {
7652 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7653 nextp = &node->next)
7654 if (REG_P (node->loc))
7655 c++;
7656 else if (MEM_P (node->loc))
7657 {
7658 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7659 break;
7660 else
7661 c++;
7662 }
7663 else
7664 {
7665 r = 1;
7666 break;
7667 }
7668 }
7669 else
7670 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7671 nextp = &node->next)
7672 if ((r = loc_cmp (node->loc, loc)) >= 0)
7673 break;
7674 else
7675 c++;
7676
7677 if (r == 0)
7678 return slot;
7679
7680 if (shared_var_p (var, set->vars))
7681 {
7682 slot = unshare_variable (set, slot, var, initialized);
7683 var = *slot;
7684 for (nextp = &var->var_part[0].loc_chain; c;
7685 nextp = &(*nextp)->next)
7686 c--;
7687 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7688 }
7689 }
7690 else
7691 {
7692 int inspos = 0;
7693
7694 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7695
7696 pos = find_variable_location_part (var, offset, &inspos);
7697
7698 if (pos >= 0)
7699 {
7700 node = var->var_part[pos].loc_chain;
7701
7702 if (node
7703 && ((REG_P (node->loc) && REG_P (loc)
7704 && REGNO (node->loc) == REGNO (loc))
7705 || rtx_equal_p (node->loc, loc)))
7706 {
7707 /* LOC is in the beginning of the chain so we have nothing
7708 to do. */
7709 if (node->init < initialized)
7710 node->init = initialized;
7711 if (set_src != NULL)
7712 node->set_src = set_src;
7713
7714 return slot;
7715 }
7716 else
7717 {
7718 /* We have to make a copy of a shared variable. */
7719 if (shared_var_p (var, set->vars))
7720 {
7721 slot = unshare_variable (set, slot, var, initialized);
7722 var = *slot;
7723 }
7724 }
7725 }
7726 else
7727 {
7728 /* We have not found the location part, new one will be created. */
7729
7730 /* We have to make a copy of the shared variable. */
7731 if (shared_var_p (var, set->vars))
7732 {
7733 slot = unshare_variable (set, slot, var, initialized);
7734 var = *slot;
7735 }
7736
7737 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7738 thus there are at most MAX_VAR_PARTS different offsets. */
7739 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7740 && (!var->n_var_parts || !onepart));
7741
7742 /* We have to move the elements of array starting at index
7743 inspos to the next position. */
7744 for (pos = var->n_var_parts; pos > inspos; pos--)
7745 var->var_part[pos] = var->var_part[pos - 1];
7746
7747 var->n_var_parts++;
7748 gcc_checking_assert (!onepart);
7749 VAR_PART_OFFSET (var, pos) = offset;
7750 var->var_part[pos].loc_chain = NULL;
7751 var->var_part[pos].cur_loc = NULL;
7752 }
7753
7754 /* Delete the location from the list. */
7755 nextp = &var->var_part[pos].loc_chain;
7756 for (node = var->var_part[pos].loc_chain; node; node = next)
7757 {
7758 next = node->next;
7759 if ((REG_P (node->loc) && REG_P (loc)
7760 && REGNO (node->loc) == REGNO (loc))
7761 || rtx_equal_p (node->loc, loc))
7762 {
7763 /* Save these values, to assign to the new node, before
7764 deleting this one. */
7765 if (node->init > initialized)
7766 initialized = node->init;
7767 if (node->set_src != NULL && set_src == NULL)
7768 set_src = node->set_src;
7769 if (var->var_part[pos].cur_loc == node->loc)
7770 var->var_part[pos].cur_loc = NULL;
7771 delete node;
7772 *nextp = next;
7773 break;
7774 }
7775 else
7776 nextp = &node->next;
7777 }
7778
7779 nextp = &var->var_part[pos].loc_chain;
7780 }
7781
7782 /* Add the location to the beginning. */
7783 node = new location_chain;
7784 node->loc = loc;
7785 node->init = initialized;
7786 node->set_src = set_src;
7787 node->next = *nextp;
7788 *nextp = node;
7789
7790 /* If no location was emitted do so. */
7791 if (var->var_part[pos].cur_loc == NULL)
7792 variable_was_changed (var, set);
7793
7794 return slot;
7795 }
7796
7797 /* Set the part of variable's location in the dataflow set SET. The
7798 variable part is specified by variable's declaration in DV and
7799 offset OFFSET and the part's location by LOC. IOPT should be
7800 NO_INSERT if the variable is known to be in SET already and the
7801 variable hash table must not be resized, and INSERT otherwise. */
7802
7803 static void
7804 set_variable_part (dataflow_set *set, rtx loc,
7805 decl_or_value dv, HOST_WIDE_INT offset,
7806 enum var_init_status initialized, rtx set_src,
7807 enum insert_option iopt)
7808 {
7809 variable **slot;
7810
7811 if (iopt == NO_INSERT)
7812 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7813 else
7814 {
7815 slot = shared_hash_find_slot (set->vars, dv);
7816 if (!slot)
7817 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7818 }
7819 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7820 }
7821
7822 /* Remove all recorded register locations for the given variable part
7823 from dataflow set SET, except for those that are identical to loc.
7824 The variable part is specified by variable's declaration or value
7825 DV and offset OFFSET. */
7826
7827 static variable **
7828 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7829 HOST_WIDE_INT offset, rtx set_src)
7830 {
7831 variable *var = *slot;
7832 int pos = find_variable_location_part (var, offset, NULL);
7833
7834 if (pos >= 0)
7835 {
7836 location_chain *node, *next;
7837
7838 /* Remove the register locations from the dataflow set. */
7839 next = var->var_part[pos].loc_chain;
7840 for (node = next; node; node = next)
7841 {
7842 next = node->next;
7843 if (node->loc != loc
7844 && (!flag_var_tracking_uninit
7845 || !set_src
7846 || MEM_P (set_src)
7847 || !rtx_equal_p (set_src, node->set_src)))
7848 {
7849 if (REG_P (node->loc))
7850 {
7851 attrs *anode, *anext;
7852 attrs **anextp;
7853
7854 /* Remove the variable part from the register's
7855 list, but preserve any other variable parts
7856 that might be regarded as live in that same
7857 register. */
7858 anextp = &set->regs[REGNO (node->loc)];
7859 for (anode = *anextp; anode; anode = anext)
7860 {
7861 anext = anode->next;
7862 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7863 && anode->offset == offset)
7864 {
7865 delete anode;
7866 *anextp = anext;
7867 }
7868 else
7869 anextp = &anode->next;
7870 }
7871 }
7872
7873 slot = delete_slot_part (set, node->loc, slot, offset);
7874 }
7875 }
7876 }
7877
7878 return slot;
7879 }
7880
7881 /* Remove all recorded register locations for the given variable part
7882 from dataflow set SET, except for those that are identical to loc.
7883 The variable part is specified by variable's declaration or value
7884 DV and offset OFFSET. */
7885
7886 static void
7887 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7888 HOST_WIDE_INT offset, rtx set_src)
7889 {
7890 variable **slot;
7891
7892 if (!dv_as_opaque (dv)
7893 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7894 return;
7895
7896 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7897 if (!slot)
7898 return;
7899
7900 clobber_slot_part (set, loc, slot, offset, set_src);
7901 }
7902
7903 /* Delete the part of variable's location from dataflow set SET. The
7904 variable part is specified by its SET->vars slot SLOT and offset
7905 OFFSET and the part's location by LOC. */
7906
7907 static variable **
7908 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7909 HOST_WIDE_INT offset)
7910 {
7911 variable *var = *slot;
7912 int pos = find_variable_location_part (var, offset, NULL);
7913
7914 if (pos >= 0)
7915 {
7916 location_chain *node, *next;
7917 location_chain **nextp;
7918 bool changed;
7919 rtx cur_loc;
7920
7921 if (shared_var_p (var, set->vars))
7922 {
7923 /* If the variable contains the location part we have to
7924 make a copy of the variable. */
7925 for (node = var->var_part[pos].loc_chain; node;
7926 node = node->next)
7927 {
7928 if ((REG_P (node->loc) && REG_P (loc)
7929 && REGNO (node->loc) == REGNO (loc))
7930 || rtx_equal_p (node->loc, loc))
7931 {
7932 slot = unshare_variable (set, slot, var,
7933 VAR_INIT_STATUS_UNKNOWN);
7934 var = *slot;
7935 break;
7936 }
7937 }
7938 }
7939
7940 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7941 cur_loc = VAR_LOC_FROM (var);
7942 else
7943 cur_loc = var->var_part[pos].cur_loc;
7944
7945 /* Delete the location part. */
7946 changed = false;
7947 nextp = &var->var_part[pos].loc_chain;
7948 for (node = *nextp; node; node = next)
7949 {
7950 next = node->next;
7951 if ((REG_P (node->loc) && REG_P (loc)
7952 && REGNO (node->loc) == REGNO (loc))
7953 || rtx_equal_p (node->loc, loc))
7954 {
7955 /* If we have deleted the location which was last emitted
7956 we have to emit new location so add the variable to set
7957 of changed variables. */
7958 if (cur_loc == node->loc)
7959 {
7960 changed = true;
7961 var->var_part[pos].cur_loc = NULL;
7962 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7963 VAR_LOC_FROM (var) = NULL;
7964 }
7965 delete node;
7966 *nextp = next;
7967 break;
7968 }
7969 else
7970 nextp = &node->next;
7971 }
7972
7973 if (var->var_part[pos].loc_chain == NULL)
7974 {
7975 changed = true;
7976 var->n_var_parts--;
7977 while (pos < var->n_var_parts)
7978 {
7979 var->var_part[pos] = var->var_part[pos + 1];
7980 pos++;
7981 }
7982 }
7983 if (changed)
7984 variable_was_changed (var, set);
7985 }
7986
7987 return slot;
7988 }
7989
7990 /* Delete the part of variable's location from dataflow set SET. The
7991 variable part is specified by variable's declaration or value DV
7992 and offset OFFSET and the part's location by LOC. */
7993
7994 static void
7995 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7996 HOST_WIDE_INT offset)
7997 {
7998 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7999 if (!slot)
8000 return;
8001
8002 delete_slot_part (set, loc, slot, offset);
8003 }
8004
8005
8006 /* Structure for passing some other parameters to function
8007 vt_expand_loc_callback. */
8008 struct expand_loc_callback_data
8009 {
8010 /* The variables and values active at this point. */
8011 variable_table_type *vars;
8012
8013 /* Stack of values and debug_exprs under expansion, and their
8014 children. */
8015 auto_vec<rtx, 4> expanding;
8016
8017 /* Stack of values and debug_exprs whose expansion hit recursion
8018 cycles. They will have VALUE_RECURSED_INTO marked when added to
8019 this list. This flag will be cleared if any of its dependencies
8020 resolves to a valid location. So, if the flag remains set at the
8021 end of the search, we know no valid location for this one can
8022 possibly exist. */
8023 auto_vec<rtx, 4> pending;
8024
8025 /* The maximum depth among the sub-expressions under expansion.
8026 Zero indicates no expansion so far. */
8027 expand_depth depth;
8028 };
8029
8030 /* Allocate the one-part auxiliary data structure for VAR, with enough
8031 room for COUNT dependencies. */
8032
8033 static void
8034 loc_exp_dep_alloc (variable *var, int count)
8035 {
8036 size_t allocsize;
8037
8038 gcc_checking_assert (var->onepart);
8039
8040 /* We can be called with COUNT == 0 to allocate the data structure
8041 without any dependencies, e.g. for the backlinks only. However,
8042 if we are specifying a COUNT, then the dependency list must have
8043 been emptied before. It would be possible to adjust pointers or
8044 force it empty here, but this is better done at an earlier point
8045 in the algorithm, so we instead leave an assertion to catch
8046 errors. */
8047 gcc_checking_assert (!count
8048 || VAR_LOC_DEP_VEC (var) == NULL
8049 || VAR_LOC_DEP_VEC (var)->is_empty ());
8050
8051 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8052 return;
8053
8054 allocsize = offsetof (struct onepart_aux, deps)
8055 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8056
8057 if (VAR_LOC_1PAUX (var))
8058 {
8059 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8060 VAR_LOC_1PAUX (var), allocsize);
8061 /* If the reallocation moves the onepaux structure, the
8062 back-pointer to BACKLINKS in the first list member will still
8063 point to its old location. Adjust it. */
8064 if (VAR_LOC_DEP_LST (var))
8065 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8066 }
8067 else
8068 {
8069 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8070 *VAR_LOC_DEP_LSTP (var) = NULL;
8071 VAR_LOC_FROM (var) = NULL;
8072 VAR_LOC_DEPTH (var).complexity = 0;
8073 VAR_LOC_DEPTH (var).entryvals = 0;
8074 }
8075 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8076 }
8077
8078 /* Remove all entries from the vector of active dependencies of VAR,
8079 removing them from the back-links lists too. */
8080
8081 static void
8082 loc_exp_dep_clear (variable *var)
8083 {
8084 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8085 {
8086 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8087 if (led->next)
8088 led->next->pprev = led->pprev;
8089 if (led->pprev)
8090 *led->pprev = led->next;
8091 VAR_LOC_DEP_VEC (var)->pop ();
8092 }
8093 }
8094
8095 /* Insert an active dependency from VAR on X to the vector of
8096 dependencies, and add the corresponding back-link to X's list of
8097 back-links in VARS. */
8098
8099 static void
8100 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8101 {
8102 decl_or_value dv;
8103 variable *xvar;
8104 loc_exp_dep *led;
8105
8106 dv = dv_from_rtx (x);
8107
8108 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8109 an additional look up? */
8110 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8111
8112 if (!xvar)
8113 {
8114 xvar = variable_from_dropped (dv, NO_INSERT);
8115 gcc_checking_assert (xvar);
8116 }
8117
8118 /* No point in adding the same backlink more than once. This may
8119 arise if say the same value appears in two complex expressions in
8120 the same loc_list, or even more than once in a single
8121 expression. */
8122 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8123 return;
8124
8125 if (var->onepart == NOT_ONEPART)
8126 led = new loc_exp_dep;
8127 else
8128 {
8129 loc_exp_dep empty;
8130 memset (&empty, 0, sizeof (empty));
8131 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8132 led = &VAR_LOC_DEP_VEC (var)->last ();
8133 }
8134 led->dv = var->dv;
8135 led->value = x;
8136
8137 loc_exp_dep_alloc (xvar, 0);
8138 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8139 led->next = *led->pprev;
8140 if (led->next)
8141 led->next->pprev = &led->next;
8142 *led->pprev = led;
8143 }
8144
8145 /* Create active dependencies of VAR on COUNT values starting at
8146 VALUE, and corresponding back-links to the entries in VARS. Return
8147 true if we found any pending-recursion results. */
8148
8149 static bool
8150 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8151 variable_table_type *vars)
8152 {
8153 bool pending_recursion = false;
8154
8155 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8156 || VAR_LOC_DEP_VEC (var)->is_empty ());
8157
8158 /* Set up all dependencies from last_child (as set up at the end of
8159 the loop above) to the end. */
8160 loc_exp_dep_alloc (var, count);
8161
8162 while (count--)
8163 {
8164 rtx x = *value++;
8165
8166 if (!pending_recursion)
8167 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8168
8169 loc_exp_insert_dep (var, x, vars);
8170 }
8171
8172 return pending_recursion;
8173 }
8174
8175 /* Notify the back-links of IVAR that are pending recursion that we
8176 have found a non-NIL value for it, so they are cleared for another
8177 attempt to compute a current location. */
8178
8179 static void
8180 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8181 {
8182 loc_exp_dep *led, *next;
8183
8184 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8185 {
8186 decl_or_value dv = led->dv;
8187 variable *var;
8188
8189 next = led->next;
8190
8191 if (dv_is_value_p (dv))
8192 {
8193 rtx value = dv_as_value (dv);
8194
8195 /* If we have already resolved it, leave it alone. */
8196 if (!VALUE_RECURSED_INTO (value))
8197 continue;
8198
8199 /* Check that VALUE_RECURSED_INTO, true from the test above,
8200 implies NO_LOC_P. */
8201 gcc_checking_assert (NO_LOC_P (value));
8202
8203 /* We won't notify variables that are being expanded,
8204 because their dependency list is cleared before
8205 recursing. */
8206 NO_LOC_P (value) = false;
8207 VALUE_RECURSED_INTO (value) = false;
8208
8209 gcc_checking_assert (dv_changed_p (dv));
8210 }
8211 else
8212 {
8213 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8214 if (!dv_changed_p (dv))
8215 continue;
8216 }
8217
8218 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8219
8220 if (!var)
8221 var = variable_from_dropped (dv, NO_INSERT);
8222
8223 if (var)
8224 notify_dependents_of_resolved_value (var, vars);
8225
8226 if (next)
8227 next->pprev = led->pprev;
8228 if (led->pprev)
8229 *led->pprev = next;
8230 led->next = NULL;
8231 led->pprev = NULL;
8232 }
8233 }
8234
8235 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8236 int max_depth, void *data);
8237
8238 /* Return the combined depth, when one sub-expression evaluated to
8239 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8240
8241 static inline expand_depth
8242 update_depth (expand_depth saved_depth, expand_depth best_depth)
8243 {
8244 /* If we didn't find anything, stick with what we had. */
8245 if (!best_depth.complexity)
8246 return saved_depth;
8247
8248 /* If we found hadn't found anything, use the depth of the current
8249 expression. Do NOT add one extra level, we want to compute the
8250 maximum depth among sub-expressions. We'll increment it later,
8251 if appropriate. */
8252 if (!saved_depth.complexity)
8253 return best_depth;
8254
8255 /* Combine the entryval count so that regardless of which one we
8256 return, the entryval count is accurate. */
8257 best_depth.entryvals = saved_depth.entryvals
8258 = best_depth.entryvals + saved_depth.entryvals;
8259
8260 if (saved_depth.complexity < best_depth.complexity)
8261 return best_depth;
8262 else
8263 return saved_depth;
8264 }
8265
8266 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8267 DATA for cselib expand callback. If PENDRECP is given, indicate in
8268 it whether any sub-expression couldn't be fully evaluated because
8269 it is pending recursion resolution. */
8270
8271 static inline rtx
8272 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8273 bool *pendrecp)
8274 {
8275 struct expand_loc_callback_data *elcd
8276 = (struct expand_loc_callback_data *) data;
8277 location_chain *loc, *next;
8278 rtx result = NULL;
8279 int first_child, result_first_child, last_child;
8280 bool pending_recursion;
8281 rtx loc_from = NULL;
8282 struct elt_loc_list *cloc = NULL;
8283 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8284 int wanted_entryvals, found_entryvals = 0;
8285
8286 /* Clear all backlinks pointing at this, so that we're not notified
8287 while we're active. */
8288 loc_exp_dep_clear (var);
8289
8290 retry:
8291 if (var->onepart == ONEPART_VALUE)
8292 {
8293 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8294
8295 gcc_checking_assert (cselib_preserved_value_p (val));
8296
8297 cloc = val->locs;
8298 }
8299
8300 first_child = result_first_child = last_child
8301 = elcd->expanding.length ();
8302
8303 wanted_entryvals = found_entryvals;
8304
8305 /* Attempt to expand each available location in turn. */
8306 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8307 loc || cloc; loc = next)
8308 {
8309 result_first_child = last_child;
8310
8311 if (!loc)
8312 {
8313 loc_from = cloc->loc;
8314 next = loc;
8315 cloc = cloc->next;
8316 if (unsuitable_loc (loc_from))
8317 continue;
8318 }
8319 else
8320 {
8321 loc_from = loc->loc;
8322 next = loc->next;
8323 }
8324
8325 gcc_checking_assert (!unsuitable_loc (loc_from));
8326
8327 elcd->depth.complexity = elcd->depth.entryvals = 0;
8328 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8329 vt_expand_loc_callback, data);
8330 last_child = elcd->expanding.length ();
8331
8332 if (result)
8333 {
8334 depth = elcd->depth;
8335
8336 gcc_checking_assert (depth.complexity
8337 || result_first_child == last_child);
8338
8339 if (last_child - result_first_child != 1)
8340 {
8341 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8342 depth.entryvals++;
8343 depth.complexity++;
8344 }
8345
8346 if (depth.complexity <= EXPR_USE_DEPTH)
8347 {
8348 if (depth.entryvals <= wanted_entryvals)
8349 break;
8350 else if (!found_entryvals || depth.entryvals < found_entryvals)
8351 found_entryvals = depth.entryvals;
8352 }
8353
8354 result = NULL;
8355 }
8356
8357 /* Set it up in case we leave the loop. */
8358 depth.complexity = depth.entryvals = 0;
8359 loc_from = NULL;
8360 result_first_child = first_child;
8361 }
8362
8363 if (!loc_from && wanted_entryvals < found_entryvals)
8364 {
8365 /* We found entries with ENTRY_VALUEs and skipped them. Since
8366 we could not find any expansions without ENTRY_VALUEs, but we
8367 found at least one with them, go back and get an entry with
8368 the minimum number ENTRY_VALUE count that we found. We could
8369 avoid looping, but since each sub-loc is already resolved,
8370 the re-expansion should be trivial. ??? Should we record all
8371 attempted locs as dependencies, so that we retry the
8372 expansion should any of them change, in the hope it can give
8373 us a new entry without an ENTRY_VALUE? */
8374 elcd->expanding.truncate (first_child);
8375 goto retry;
8376 }
8377
8378 /* Register all encountered dependencies as active. */
8379 pending_recursion = loc_exp_dep_set
8380 (var, result, elcd->expanding.address () + result_first_child,
8381 last_child - result_first_child, elcd->vars);
8382
8383 elcd->expanding.truncate (first_child);
8384
8385 /* Record where the expansion came from. */
8386 gcc_checking_assert (!result || !pending_recursion);
8387 VAR_LOC_FROM (var) = loc_from;
8388 VAR_LOC_DEPTH (var) = depth;
8389
8390 gcc_checking_assert (!depth.complexity == !result);
8391
8392 elcd->depth = update_depth (saved_depth, depth);
8393
8394 /* Indicate whether any of the dependencies are pending recursion
8395 resolution. */
8396 if (pendrecp)
8397 *pendrecp = pending_recursion;
8398
8399 if (!pendrecp || !pending_recursion)
8400 var->var_part[0].cur_loc = result;
8401
8402 return result;
8403 }
8404
8405 /* Callback for cselib_expand_value, that looks for expressions
8406 holding the value in the var-tracking hash tables. Return X for
8407 standard processing, anything else is to be used as-is. */
8408
8409 static rtx
8410 vt_expand_loc_callback (rtx x, bitmap regs,
8411 int max_depth ATTRIBUTE_UNUSED,
8412 void *data)
8413 {
8414 struct expand_loc_callback_data *elcd
8415 = (struct expand_loc_callback_data *) data;
8416 decl_or_value dv;
8417 variable *var;
8418 rtx result, subreg;
8419 bool pending_recursion = false;
8420 bool from_empty = false;
8421
8422 switch (GET_CODE (x))
8423 {
8424 case SUBREG:
8425 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8426 EXPR_DEPTH,
8427 vt_expand_loc_callback, data);
8428
8429 if (!subreg)
8430 return NULL;
8431
8432 result = simplify_gen_subreg (GET_MODE (x), subreg,
8433 GET_MODE (SUBREG_REG (x)),
8434 SUBREG_BYTE (x));
8435
8436 /* Invalid SUBREGs are ok in debug info. ??? We could try
8437 alternate expansions for the VALUE as well. */
8438 if (!result)
8439 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8440
8441 return result;
8442
8443 case DEBUG_EXPR:
8444 case VALUE:
8445 dv = dv_from_rtx (x);
8446 break;
8447
8448 default:
8449 return x;
8450 }
8451
8452 elcd->expanding.safe_push (x);
8453
8454 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8455 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8456
8457 if (NO_LOC_P (x))
8458 {
8459 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8460 return NULL;
8461 }
8462
8463 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8464
8465 if (!var)
8466 {
8467 from_empty = true;
8468 var = variable_from_dropped (dv, INSERT);
8469 }
8470
8471 gcc_checking_assert (var);
8472
8473 if (!dv_changed_p (dv))
8474 {
8475 gcc_checking_assert (!NO_LOC_P (x));
8476 gcc_checking_assert (var->var_part[0].cur_loc);
8477 gcc_checking_assert (VAR_LOC_1PAUX (var));
8478 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8479
8480 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8481
8482 return var->var_part[0].cur_loc;
8483 }
8484
8485 VALUE_RECURSED_INTO (x) = true;
8486 /* This is tentative, but it makes some tests simpler. */
8487 NO_LOC_P (x) = true;
8488
8489 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8490
8491 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8492
8493 if (pending_recursion)
8494 {
8495 gcc_checking_assert (!result);
8496 elcd->pending.safe_push (x);
8497 }
8498 else
8499 {
8500 NO_LOC_P (x) = !result;
8501 VALUE_RECURSED_INTO (x) = false;
8502 set_dv_changed (dv, false);
8503
8504 if (result)
8505 notify_dependents_of_resolved_value (var, elcd->vars);
8506 }
8507
8508 return result;
8509 }
8510
8511 /* While expanding variables, we may encounter recursion cycles
8512 because of mutual (possibly indirect) dependencies between two
8513 particular variables (or values), say A and B. If we're trying to
8514 expand A when we get to B, which in turn attempts to expand A, if
8515 we can't find any other expansion for B, we'll add B to this
8516 pending-recursion stack, and tentatively return NULL for its
8517 location. This tentative value will be used for any other
8518 occurrences of B, unless A gets some other location, in which case
8519 it will notify B that it is worth another try at computing a
8520 location for it, and it will use the location computed for A then.
8521 At the end of the expansion, the tentative NULL locations become
8522 final for all members of PENDING that didn't get a notification.
8523 This function performs this finalization of NULL locations. */
8524
8525 static void
8526 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8527 {
8528 while (!pending->is_empty ())
8529 {
8530 rtx x = pending->pop ();
8531 decl_or_value dv;
8532
8533 if (!VALUE_RECURSED_INTO (x))
8534 continue;
8535
8536 gcc_checking_assert (NO_LOC_P (x));
8537 VALUE_RECURSED_INTO (x) = false;
8538 dv = dv_from_rtx (x);
8539 gcc_checking_assert (dv_changed_p (dv));
8540 set_dv_changed (dv, false);
8541 }
8542 }
8543
8544 /* Initialize expand_loc_callback_data D with variable hash table V.
8545 It must be a macro because of alloca (vec stack). */
8546 #define INIT_ELCD(d, v) \
8547 do \
8548 { \
8549 (d).vars = (v); \
8550 (d).depth.complexity = (d).depth.entryvals = 0; \
8551 } \
8552 while (0)
8553 /* Finalize expand_loc_callback_data D, resolved to location L. */
8554 #define FINI_ELCD(d, l) \
8555 do \
8556 { \
8557 resolve_expansions_pending_recursion (&(d).pending); \
8558 (d).pending.release (); \
8559 (d).expanding.release (); \
8560 \
8561 if ((l) && MEM_P (l)) \
8562 (l) = targetm.delegitimize_address (l); \
8563 } \
8564 while (0)
8565
8566 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8567 equivalences in VARS, updating their CUR_LOCs in the process. */
8568
8569 static rtx
8570 vt_expand_loc (rtx loc, variable_table_type *vars)
8571 {
8572 struct expand_loc_callback_data data;
8573 rtx result;
8574
8575 if (!MAY_HAVE_DEBUG_INSNS)
8576 return loc;
8577
8578 INIT_ELCD (data, vars);
8579
8580 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8581 vt_expand_loc_callback, &data);
8582
8583 FINI_ELCD (data, result);
8584
8585 return result;
8586 }
8587
8588 /* Expand the one-part VARiable to a location, using the equivalences
8589 in VARS, updating their CUR_LOCs in the process. */
8590
8591 static rtx
8592 vt_expand_1pvar (variable *var, variable_table_type *vars)
8593 {
8594 struct expand_loc_callback_data data;
8595 rtx loc;
8596
8597 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8598
8599 if (!dv_changed_p (var->dv))
8600 return var->var_part[0].cur_loc;
8601
8602 INIT_ELCD (data, vars);
8603
8604 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8605
8606 gcc_checking_assert (data.expanding.is_empty ());
8607
8608 FINI_ELCD (data, loc);
8609
8610 return loc;
8611 }
8612
8613 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8614 additional parameters: WHERE specifies whether the note shall be emitted
8615 before or after instruction INSN. */
8616
8617 int
8618 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8619 {
8620 variable *var = *varp;
8621 rtx_insn *insn = data->insn;
8622 enum emit_note_where where = data->where;
8623 variable_table_type *vars = data->vars;
8624 rtx_note *note;
8625 rtx note_vl;
8626 int i, j, n_var_parts;
8627 bool complete;
8628 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8629 HOST_WIDE_INT last_limit;
8630 tree type_size_unit;
8631 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8632 rtx loc[MAX_VAR_PARTS];
8633 tree decl;
8634 location_chain *lc;
8635
8636 gcc_checking_assert (var->onepart == NOT_ONEPART
8637 || var->onepart == ONEPART_VDECL);
8638
8639 decl = dv_as_decl (var->dv);
8640
8641 complete = true;
8642 last_limit = 0;
8643 n_var_parts = 0;
8644 if (!var->onepart)
8645 for (i = 0; i < var->n_var_parts; i++)
8646 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8647 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8648 for (i = 0; i < var->n_var_parts; i++)
8649 {
8650 machine_mode mode, wider_mode;
8651 rtx loc2;
8652 HOST_WIDE_INT offset;
8653
8654 if (i == 0 && var->onepart)
8655 {
8656 gcc_checking_assert (var->n_var_parts == 1);
8657 offset = 0;
8658 initialized = VAR_INIT_STATUS_INITIALIZED;
8659 loc2 = vt_expand_1pvar (var, vars);
8660 }
8661 else
8662 {
8663 if (last_limit < VAR_PART_OFFSET (var, i))
8664 {
8665 complete = false;
8666 break;
8667 }
8668 else if (last_limit > VAR_PART_OFFSET (var, i))
8669 continue;
8670 offset = VAR_PART_OFFSET (var, i);
8671 loc2 = var->var_part[i].cur_loc;
8672 if (loc2 && GET_CODE (loc2) == MEM
8673 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8674 {
8675 rtx depval = XEXP (loc2, 0);
8676
8677 loc2 = vt_expand_loc (loc2, vars);
8678
8679 if (loc2)
8680 loc_exp_insert_dep (var, depval, vars);
8681 }
8682 if (!loc2)
8683 {
8684 complete = false;
8685 continue;
8686 }
8687 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8688 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8689 if (var->var_part[i].cur_loc == lc->loc)
8690 {
8691 initialized = lc->init;
8692 break;
8693 }
8694 gcc_assert (lc);
8695 }
8696
8697 offsets[n_var_parts] = offset;
8698 if (!loc2)
8699 {
8700 complete = false;
8701 continue;
8702 }
8703 loc[n_var_parts] = loc2;
8704 mode = GET_MODE (var->var_part[i].cur_loc);
8705 if (mode == VOIDmode && var->onepart)
8706 mode = DECL_MODE (decl);
8707 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8708
8709 /* Attempt to merge adjacent registers or memory. */
8710 for (j = i + 1; j < var->n_var_parts; j++)
8711 if (last_limit <= VAR_PART_OFFSET (var, j))
8712 break;
8713 if (j < var->n_var_parts
8714 && GET_MODE_WIDER_MODE (mode).exists (&wider_mode)
8715 && var->var_part[j].cur_loc
8716 && mode == GET_MODE (var->var_part[j].cur_loc)
8717 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8718 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8719 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8720 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8721 {
8722 rtx new_loc = NULL;
8723
8724 if (REG_P (loc[n_var_parts])
8725 && hard_regno_nregs (REGNO (loc[n_var_parts]), mode) * 2
8726 == hard_regno_nregs (REGNO (loc[n_var_parts]), wider_mode)
8727 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8728 == REGNO (loc2))
8729 {
8730 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8731 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8732 mode, 0);
8733 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8734 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8735 if (new_loc)
8736 {
8737 if (!REG_P (new_loc)
8738 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8739 new_loc = NULL;
8740 else
8741 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8742 }
8743 }
8744 else if (MEM_P (loc[n_var_parts])
8745 && GET_CODE (XEXP (loc2, 0)) == PLUS
8746 && REG_P (XEXP (XEXP (loc2, 0), 0))
8747 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8748 {
8749 if ((REG_P (XEXP (loc[n_var_parts], 0))
8750 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8751 XEXP (XEXP (loc2, 0), 0))
8752 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8753 == GET_MODE_SIZE (mode))
8754 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8755 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8756 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8757 XEXP (XEXP (loc2, 0), 0))
8758 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8759 + GET_MODE_SIZE (mode)
8760 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8761 new_loc = adjust_address_nv (loc[n_var_parts],
8762 wider_mode, 0);
8763 }
8764
8765 if (new_loc)
8766 {
8767 loc[n_var_parts] = new_loc;
8768 mode = wider_mode;
8769 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8770 i = j;
8771 }
8772 }
8773 ++n_var_parts;
8774 }
8775 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8776 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8777 complete = false;
8778
8779 if (! flag_var_tracking_uninit)
8780 initialized = VAR_INIT_STATUS_INITIALIZED;
8781
8782 note_vl = NULL_RTX;
8783 if (!complete)
8784 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8785 else if (n_var_parts == 1)
8786 {
8787 rtx expr_list;
8788
8789 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8790 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8791 else
8792 expr_list = loc[0];
8793
8794 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8795 }
8796 else if (n_var_parts)
8797 {
8798 rtx parallel;
8799
8800 for (i = 0; i < n_var_parts; i++)
8801 loc[i]
8802 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8803
8804 parallel = gen_rtx_PARALLEL (VOIDmode,
8805 gen_rtvec_v (n_var_parts, loc));
8806 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8807 parallel, initialized);
8808 }
8809
8810 if (where != EMIT_NOTE_BEFORE_INSN)
8811 {
8812 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8813 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8814 NOTE_DURING_CALL_P (note) = true;
8815 }
8816 else
8817 {
8818 /* Make sure that the call related notes come first. */
8819 while (NEXT_INSN (insn)
8820 && NOTE_P (insn)
8821 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8822 && NOTE_DURING_CALL_P (insn))
8823 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8824 insn = NEXT_INSN (insn);
8825 if (NOTE_P (insn)
8826 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8827 && NOTE_DURING_CALL_P (insn))
8828 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8829 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8830 else
8831 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8832 }
8833 NOTE_VAR_LOCATION (note) = note_vl;
8834
8835 set_dv_changed (var->dv, false);
8836 gcc_assert (var->in_changed_variables);
8837 var->in_changed_variables = false;
8838 changed_variables->clear_slot (varp);
8839
8840 /* Continue traversing the hash table. */
8841 return 1;
8842 }
8843
8844 /* While traversing changed_variables, push onto DATA (a stack of RTX
8845 values) entries that aren't user variables. */
8846
8847 int
8848 var_track_values_to_stack (variable **slot,
8849 vec<rtx, va_heap> *changed_values_stack)
8850 {
8851 variable *var = *slot;
8852
8853 if (var->onepart == ONEPART_VALUE)
8854 changed_values_stack->safe_push (dv_as_value (var->dv));
8855 else if (var->onepart == ONEPART_DEXPR)
8856 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8857
8858 return 1;
8859 }
8860
8861 /* Remove from changed_variables the entry whose DV corresponds to
8862 value or debug_expr VAL. */
8863 static void
8864 remove_value_from_changed_variables (rtx val)
8865 {
8866 decl_or_value dv = dv_from_rtx (val);
8867 variable **slot;
8868 variable *var;
8869
8870 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8871 NO_INSERT);
8872 var = *slot;
8873 var->in_changed_variables = false;
8874 changed_variables->clear_slot (slot);
8875 }
8876
8877 /* If VAL (a value or debug_expr) has backlinks to variables actively
8878 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8879 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8880 have dependencies of their own to notify. */
8881
8882 static void
8883 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8884 vec<rtx, va_heap> *changed_values_stack)
8885 {
8886 variable **slot;
8887 variable *var;
8888 loc_exp_dep *led;
8889 decl_or_value dv = dv_from_rtx (val);
8890
8891 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8892 NO_INSERT);
8893 if (!slot)
8894 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8895 if (!slot)
8896 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8897 NO_INSERT);
8898 var = *slot;
8899
8900 while ((led = VAR_LOC_DEP_LST (var)))
8901 {
8902 decl_or_value ldv = led->dv;
8903 variable *ivar;
8904
8905 /* Deactivate and remove the backlink, as it was “used up”. It
8906 makes no sense to attempt to notify the same entity again:
8907 either it will be recomputed and re-register an active
8908 dependency, or it will still have the changed mark. */
8909 if (led->next)
8910 led->next->pprev = led->pprev;
8911 if (led->pprev)
8912 *led->pprev = led->next;
8913 led->next = NULL;
8914 led->pprev = NULL;
8915
8916 if (dv_changed_p (ldv))
8917 continue;
8918
8919 switch (dv_onepart_p (ldv))
8920 {
8921 case ONEPART_VALUE:
8922 case ONEPART_DEXPR:
8923 set_dv_changed (ldv, true);
8924 changed_values_stack->safe_push (dv_as_rtx (ldv));
8925 break;
8926
8927 case ONEPART_VDECL:
8928 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8929 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8930 variable_was_changed (ivar, NULL);
8931 break;
8932
8933 case NOT_ONEPART:
8934 delete led;
8935 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8936 if (ivar)
8937 {
8938 int i = ivar->n_var_parts;
8939 while (i--)
8940 {
8941 rtx loc = ivar->var_part[i].cur_loc;
8942
8943 if (loc && GET_CODE (loc) == MEM
8944 && XEXP (loc, 0) == val)
8945 {
8946 variable_was_changed (ivar, NULL);
8947 break;
8948 }
8949 }
8950 }
8951 break;
8952
8953 default:
8954 gcc_unreachable ();
8955 }
8956 }
8957 }
8958
8959 /* Take out of changed_variables any entries that don't refer to use
8960 variables. Back-propagate change notifications from values and
8961 debug_exprs to their active dependencies in HTAB or in
8962 CHANGED_VARIABLES. */
8963
8964 static void
8965 process_changed_values (variable_table_type *htab)
8966 {
8967 int i, n;
8968 rtx val;
8969 auto_vec<rtx, 20> changed_values_stack;
8970
8971 /* Move values from changed_variables to changed_values_stack. */
8972 changed_variables
8973 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8974 (&changed_values_stack);
8975
8976 /* Back-propagate change notifications in values while popping
8977 them from the stack. */
8978 for (n = i = changed_values_stack.length ();
8979 i > 0; i = changed_values_stack.length ())
8980 {
8981 val = changed_values_stack.pop ();
8982 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8983
8984 /* This condition will hold when visiting each of the entries
8985 originally in changed_variables. We can't remove them
8986 earlier because this could drop the backlinks before we got a
8987 chance to use them. */
8988 if (i == n)
8989 {
8990 remove_value_from_changed_variables (val);
8991 n--;
8992 }
8993 }
8994 }
8995
8996 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8997 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8998 the notes shall be emitted before of after instruction INSN. */
8999
9000 static void
9001 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9002 shared_hash *vars)
9003 {
9004 emit_note_data data;
9005 variable_table_type *htab = shared_hash_htab (vars);
9006
9007 if (!changed_variables->elements ())
9008 return;
9009
9010 if (MAY_HAVE_DEBUG_INSNS)
9011 process_changed_values (htab);
9012
9013 data.insn = insn;
9014 data.where = where;
9015 data.vars = htab;
9016
9017 changed_variables
9018 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9019 }
9020
9021 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9022 same variable in hash table DATA or is not there at all. */
9023
9024 int
9025 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9026 {
9027 variable *old_var, *new_var;
9028
9029 old_var = *slot;
9030 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9031
9032 if (!new_var)
9033 {
9034 /* Variable has disappeared. */
9035 variable *empty_var = NULL;
9036
9037 if (old_var->onepart == ONEPART_VALUE
9038 || old_var->onepart == ONEPART_DEXPR)
9039 {
9040 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9041 if (empty_var)
9042 {
9043 gcc_checking_assert (!empty_var->in_changed_variables);
9044 if (!VAR_LOC_1PAUX (old_var))
9045 {
9046 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9047 VAR_LOC_1PAUX (empty_var) = NULL;
9048 }
9049 else
9050 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9051 }
9052 }
9053
9054 if (!empty_var)
9055 {
9056 empty_var = onepart_pool_allocate (old_var->onepart);
9057 empty_var->dv = old_var->dv;
9058 empty_var->refcount = 0;
9059 empty_var->n_var_parts = 0;
9060 empty_var->onepart = old_var->onepart;
9061 empty_var->in_changed_variables = false;
9062 }
9063
9064 if (empty_var->onepart)
9065 {
9066 /* Propagate the auxiliary data to (ultimately)
9067 changed_variables. */
9068 empty_var->var_part[0].loc_chain = NULL;
9069 empty_var->var_part[0].cur_loc = NULL;
9070 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9071 VAR_LOC_1PAUX (old_var) = NULL;
9072 }
9073 variable_was_changed (empty_var, NULL);
9074 /* Continue traversing the hash table. */
9075 return 1;
9076 }
9077 /* Update cur_loc and one-part auxiliary data, before new_var goes
9078 through variable_was_changed. */
9079 if (old_var != new_var && new_var->onepart)
9080 {
9081 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9082 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9083 VAR_LOC_1PAUX (old_var) = NULL;
9084 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9085 }
9086 if (variable_different_p (old_var, new_var))
9087 variable_was_changed (new_var, NULL);
9088
9089 /* Continue traversing the hash table. */
9090 return 1;
9091 }
9092
9093 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9094 table DATA. */
9095
9096 int
9097 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9098 {
9099 variable *old_var, *new_var;
9100
9101 new_var = *slot;
9102 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9103 if (!old_var)
9104 {
9105 int i;
9106 for (i = 0; i < new_var->n_var_parts; i++)
9107 new_var->var_part[i].cur_loc = NULL;
9108 variable_was_changed (new_var, NULL);
9109 }
9110
9111 /* Continue traversing the hash table. */
9112 return 1;
9113 }
9114
9115 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9116 NEW_SET. */
9117
9118 static void
9119 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9120 dataflow_set *new_set)
9121 {
9122 shared_hash_htab (old_set->vars)
9123 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9124 (shared_hash_htab (new_set->vars));
9125 shared_hash_htab (new_set->vars)
9126 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9127 (shared_hash_htab (old_set->vars));
9128 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9129 }
9130
9131 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9132
9133 static rtx_insn *
9134 next_non_note_insn_var_location (rtx_insn *insn)
9135 {
9136 while (insn)
9137 {
9138 insn = NEXT_INSN (insn);
9139 if (insn == 0
9140 || !NOTE_P (insn)
9141 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9142 break;
9143 }
9144
9145 return insn;
9146 }
9147
9148 /* Emit the notes for changes of location parts in the basic block BB. */
9149
9150 static void
9151 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9152 {
9153 unsigned int i;
9154 micro_operation *mo;
9155
9156 dataflow_set_clear (set);
9157 dataflow_set_copy (set, &VTI (bb)->in);
9158
9159 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9160 {
9161 rtx_insn *insn = mo->insn;
9162 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9163
9164 switch (mo->type)
9165 {
9166 case MO_CALL:
9167 dataflow_set_clear_at_call (set, insn);
9168 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9169 {
9170 rtx arguments = mo->u.loc, *p = &arguments;
9171 rtx_note *note;
9172 while (*p)
9173 {
9174 XEXP (XEXP (*p, 0), 1)
9175 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9176 shared_hash_htab (set->vars));
9177 /* If expansion is successful, keep it in the list. */
9178 if (XEXP (XEXP (*p, 0), 1))
9179 p = &XEXP (*p, 1);
9180 /* Otherwise, if the following item is data_value for it,
9181 drop it too too. */
9182 else if (XEXP (*p, 1)
9183 && REG_P (XEXP (XEXP (*p, 0), 0))
9184 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9185 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9186 0))
9187 && REGNO (XEXP (XEXP (*p, 0), 0))
9188 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9189 0), 0)))
9190 *p = XEXP (XEXP (*p, 1), 1);
9191 /* Just drop this item. */
9192 else
9193 *p = XEXP (*p, 1);
9194 }
9195 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9196 NOTE_VAR_LOCATION (note) = arguments;
9197 }
9198 break;
9199
9200 case MO_USE:
9201 {
9202 rtx loc = mo->u.loc;
9203
9204 if (REG_P (loc))
9205 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9206 else
9207 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9208
9209 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9210 }
9211 break;
9212
9213 case MO_VAL_LOC:
9214 {
9215 rtx loc = mo->u.loc;
9216 rtx val, vloc;
9217 tree var;
9218
9219 if (GET_CODE (loc) == CONCAT)
9220 {
9221 val = XEXP (loc, 0);
9222 vloc = XEXP (loc, 1);
9223 }
9224 else
9225 {
9226 val = NULL_RTX;
9227 vloc = loc;
9228 }
9229
9230 var = PAT_VAR_LOCATION_DECL (vloc);
9231
9232 clobber_variable_part (set, NULL_RTX,
9233 dv_from_decl (var), 0, NULL_RTX);
9234 if (val)
9235 {
9236 if (VAL_NEEDS_RESOLUTION (loc))
9237 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9238 set_variable_part (set, val, dv_from_decl (var), 0,
9239 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9240 INSERT);
9241 }
9242 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9243 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9244 dv_from_decl (var), 0,
9245 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9246 INSERT);
9247
9248 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9249 }
9250 break;
9251
9252 case MO_VAL_USE:
9253 {
9254 rtx loc = mo->u.loc;
9255 rtx val, vloc, uloc;
9256
9257 vloc = uloc = XEXP (loc, 1);
9258 val = XEXP (loc, 0);
9259
9260 if (GET_CODE (val) == CONCAT)
9261 {
9262 uloc = XEXP (val, 1);
9263 val = XEXP (val, 0);
9264 }
9265
9266 if (VAL_NEEDS_RESOLUTION (loc))
9267 val_resolve (set, val, vloc, insn);
9268 else
9269 val_store (set, val, uloc, insn, false);
9270
9271 if (VAL_HOLDS_TRACK_EXPR (loc))
9272 {
9273 if (GET_CODE (uloc) == REG)
9274 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9275 NULL);
9276 else if (GET_CODE (uloc) == MEM)
9277 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9278 NULL);
9279 }
9280
9281 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9282 }
9283 break;
9284
9285 case MO_VAL_SET:
9286 {
9287 rtx loc = mo->u.loc;
9288 rtx val, vloc, uloc;
9289 rtx dstv, srcv;
9290
9291 vloc = loc;
9292 uloc = XEXP (vloc, 1);
9293 val = XEXP (vloc, 0);
9294 vloc = uloc;
9295
9296 if (GET_CODE (uloc) == SET)
9297 {
9298 dstv = SET_DEST (uloc);
9299 srcv = SET_SRC (uloc);
9300 }
9301 else
9302 {
9303 dstv = uloc;
9304 srcv = NULL;
9305 }
9306
9307 if (GET_CODE (val) == CONCAT)
9308 {
9309 dstv = vloc = XEXP (val, 1);
9310 val = XEXP (val, 0);
9311 }
9312
9313 if (GET_CODE (vloc) == SET)
9314 {
9315 srcv = SET_SRC (vloc);
9316
9317 gcc_assert (val != srcv);
9318 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9319
9320 dstv = vloc = SET_DEST (vloc);
9321
9322 if (VAL_NEEDS_RESOLUTION (loc))
9323 val_resolve (set, val, srcv, insn);
9324 }
9325 else if (VAL_NEEDS_RESOLUTION (loc))
9326 {
9327 gcc_assert (GET_CODE (uloc) == SET
9328 && GET_CODE (SET_SRC (uloc)) == REG);
9329 val_resolve (set, val, SET_SRC (uloc), insn);
9330 }
9331
9332 if (VAL_HOLDS_TRACK_EXPR (loc))
9333 {
9334 if (VAL_EXPR_IS_CLOBBERED (loc))
9335 {
9336 if (REG_P (uloc))
9337 var_reg_delete (set, uloc, true);
9338 else if (MEM_P (uloc))
9339 {
9340 gcc_assert (MEM_P (dstv));
9341 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9342 var_mem_delete (set, dstv, true);
9343 }
9344 }
9345 else
9346 {
9347 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9348 rtx src = NULL, dst = uloc;
9349 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9350
9351 if (GET_CODE (uloc) == SET)
9352 {
9353 src = SET_SRC (uloc);
9354 dst = SET_DEST (uloc);
9355 }
9356
9357 if (copied_p)
9358 {
9359 status = find_src_status (set, src);
9360
9361 src = find_src_set_src (set, src);
9362 }
9363
9364 if (REG_P (dst))
9365 var_reg_delete_and_set (set, dst, !copied_p,
9366 status, srcv);
9367 else if (MEM_P (dst))
9368 {
9369 gcc_assert (MEM_P (dstv));
9370 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9371 var_mem_delete_and_set (set, dstv, !copied_p,
9372 status, srcv);
9373 }
9374 }
9375 }
9376 else if (REG_P (uloc))
9377 var_regno_delete (set, REGNO (uloc));
9378 else if (MEM_P (uloc))
9379 {
9380 gcc_checking_assert (GET_CODE (vloc) == MEM);
9381 gcc_checking_assert (vloc == dstv);
9382 if (vloc != dstv)
9383 clobber_overlapping_mems (set, vloc);
9384 }
9385
9386 val_store (set, val, dstv, insn, true);
9387
9388 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9389 set->vars);
9390 }
9391 break;
9392
9393 case MO_SET:
9394 {
9395 rtx loc = mo->u.loc;
9396 rtx set_src = NULL;
9397
9398 if (GET_CODE (loc) == SET)
9399 {
9400 set_src = SET_SRC (loc);
9401 loc = SET_DEST (loc);
9402 }
9403
9404 if (REG_P (loc))
9405 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9406 set_src);
9407 else
9408 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9409 set_src);
9410
9411 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9412 set->vars);
9413 }
9414 break;
9415
9416 case MO_COPY:
9417 {
9418 rtx loc = mo->u.loc;
9419 enum var_init_status src_status;
9420 rtx set_src = NULL;
9421
9422 if (GET_CODE (loc) == SET)
9423 {
9424 set_src = SET_SRC (loc);
9425 loc = SET_DEST (loc);
9426 }
9427
9428 src_status = find_src_status (set, set_src);
9429 set_src = find_src_set_src (set, set_src);
9430
9431 if (REG_P (loc))
9432 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9433 else
9434 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9435
9436 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9437 set->vars);
9438 }
9439 break;
9440
9441 case MO_USE_NO_VAR:
9442 {
9443 rtx loc = mo->u.loc;
9444
9445 if (REG_P (loc))
9446 var_reg_delete (set, loc, false);
9447 else
9448 var_mem_delete (set, loc, false);
9449
9450 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9451 }
9452 break;
9453
9454 case MO_CLOBBER:
9455 {
9456 rtx loc = mo->u.loc;
9457
9458 if (REG_P (loc))
9459 var_reg_delete (set, loc, true);
9460 else
9461 var_mem_delete (set, loc, true);
9462
9463 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9464 set->vars);
9465 }
9466 break;
9467
9468 case MO_ADJUST:
9469 set->stack_adjust += mo->u.adjust;
9470 break;
9471 }
9472 }
9473 }
9474
9475 /* Emit notes for the whole function. */
9476
9477 static void
9478 vt_emit_notes (void)
9479 {
9480 basic_block bb;
9481 dataflow_set cur;
9482
9483 gcc_assert (!changed_variables->elements ());
9484
9485 /* Free memory occupied by the out hash tables, as they aren't used
9486 anymore. */
9487 FOR_EACH_BB_FN (bb, cfun)
9488 dataflow_set_clear (&VTI (bb)->out);
9489
9490 /* Enable emitting notes by functions (mainly by set_variable_part and
9491 delete_variable_part). */
9492 emit_notes = true;
9493
9494 if (MAY_HAVE_DEBUG_INSNS)
9495 {
9496 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9497 }
9498
9499 dataflow_set_init (&cur);
9500
9501 FOR_EACH_BB_FN (bb, cfun)
9502 {
9503 /* Emit the notes for changes of variable locations between two
9504 subsequent basic blocks. */
9505 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9506
9507 if (MAY_HAVE_DEBUG_INSNS)
9508 local_get_addr_cache = new hash_map<rtx, rtx>;
9509
9510 /* Emit the notes for the changes in the basic block itself. */
9511 emit_notes_in_bb (bb, &cur);
9512
9513 if (MAY_HAVE_DEBUG_INSNS)
9514 delete local_get_addr_cache;
9515 local_get_addr_cache = NULL;
9516
9517 /* Free memory occupied by the in hash table, we won't need it
9518 again. */
9519 dataflow_set_clear (&VTI (bb)->in);
9520 }
9521
9522 if (flag_checking)
9523 shared_hash_htab (cur.vars)
9524 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9525 (shared_hash_htab (empty_shared_hash));
9526
9527 dataflow_set_destroy (&cur);
9528
9529 if (MAY_HAVE_DEBUG_INSNS)
9530 delete dropped_values;
9531 dropped_values = NULL;
9532
9533 emit_notes = false;
9534 }
9535
9536 /* If there is a declaration and offset associated with register/memory RTL
9537 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9538
9539 static bool
9540 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9541 {
9542 if (REG_P (rtl))
9543 {
9544 if (REG_ATTRS (rtl))
9545 {
9546 *declp = REG_EXPR (rtl);
9547 *offsetp = REG_OFFSET (rtl);
9548 return true;
9549 }
9550 }
9551 else if (GET_CODE (rtl) == PARALLEL)
9552 {
9553 tree decl = NULL_TREE;
9554 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9555 int len = XVECLEN (rtl, 0), i;
9556
9557 for (i = 0; i < len; i++)
9558 {
9559 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9560 if (!REG_P (reg) || !REG_ATTRS (reg))
9561 break;
9562 if (!decl)
9563 decl = REG_EXPR (reg);
9564 if (REG_EXPR (reg) != decl)
9565 break;
9566 if (REG_OFFSET (reg) < offset)
9567 offset = REG_OFFSET (reg);
9568 }
9569
9570 if (i == len)
9571 {
9572 *declp = decl;
9573 *offsetp = offset;
9574 return true;
9575 }
9576 }
9577 else if (MEM_P (rtl))
9578 {
9579 if (MEM_ATTRS (rtl))
9580 {
9581 *declp = MEM_EXPR (rtl);
9582 *offsetp = INT_MEM_OFFSET (rtl);
9583 return true;
9584 }
9585 }
9586 return false;
9587 }
9588
9589 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9590 of VAL. */
9591
9592 static void
9593 record_entry_value (cselib_val *val, rtx rtl)
9594 {
9595 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9596
9597 ENTRY_VALUE_EXP (ev) = rtl;
9598
9599 cselib_add_permanent_equiv (val, ev, get_insns ());
9600 }
9601
9602 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9603
9604 static void
9605 vt_add_function_parameter (tree parm)
9606 {
9607 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9608 rtx incoming = DECL_INCOMING_RTL (parm);
9609 tree decl;
9610 machine_mode mode;
9611 HOST_WIDE_INT offset;
9612 dataflow_set *out;
9613 decl_or_value dv;
9614
9615 if (TREE_CODE (parm) != PARM_DECL)
9616 return;
9617
9618 if (!decl_rtl || !incoming)
9619 return;
9620
9621 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9622 return;
9623
9624 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9625 rewrite the incoming location of parameters passed on the stack
9626 into MEMs based on the argument pointer, so that incoming doesn't
9627 depend on a pseudo. */
9628 if (MEM_P (incoming)
9629 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9630 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9631 && XEXP (XEXP (incoming, 0), 0)
9632 == crtl->args.internal_arg_pointer
9633 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9634 {
9635 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9636 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9637 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9638 incoming
9639 = replace_equiv_address_nv (incoming,
9640 plus_constant (Pmode,
9641 arg_pointer_rtx, off));
9642 }
9643
9644 #ifdef HAVE_window_save
9645 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9646 If the target machine has an explicit window save instruction, the
9647 actual entry value is the corresponding OUTGOING_REGNO instead. */
9648 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9649 {
9650 if (REG_P (incoming)
9651 && HARD_REGISTER_P (incoming)
9652 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9653 {
9654 parm_reg p;
9655 p.incoming = incoming;
9656 incoming
9657 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9658 OUTGOING_REGNO (REGNO (incoming)), 0);
9659 p.outgoing = incoming;
9660 vec_safe_push (windowed_parm_regs, p);
9661 }
9662 else if (GET_CODE (incoming) == PARALLEL)
9663 {
9664 rtx outgoing
9665 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9666 int i;
9667
9668 for (i = 0; i < XVECLEN (incoming, 0); i++)
9669 {
9670 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9671 parm_reg p;
9672 p.incoming = reg;
9673 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9674 OUTGOING_REGNO (REGNO (reg)), 0);
9675 p.outgoing = reg;
9676 XVECEXP (outgoing, 0, i)
9677 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9678 XEXP (XVECEXP (incoming, 0, i), 1));
9679 vec_safe_push (windowed_parm_regs, p);
9680 }
9681
9682 incoming = outgoing;
9683 }
9684 else if (MEM_P (incoming)
9685 && REG_P (XEXP (incoming, 0))
9686 && HARD_REGISTER_P (XEXP (incoming, 0)))
9687 {
9688 rtx reg = XEXP (incoming, 0);
9689 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9690 {
9691 parm_reg p;
9692 p.incoming = reg;
9693 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9694 p.outgoing = reg;
9695 vec_safe_push (windowed_parm_regs, p);
9696 incoming = replace_equiv_address_nv (incoming, reg);
9697 }
9698 }
9699 }
9700 #endif
9701
9702 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9703 {
9704 if (MEM_P (incoming))
9705 {
9706 /* This means argument is passed by invisible reference. */
9707 offset = 0;
9708 decl = parm;
9709 }
9710 else
9711 {
9712 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9713 return;
9714 offset += byte_lowpart_offset (GET_MODE (incoming),
9715 GET_MODE (decl_rtl));
9716 }
9717 }
9718
9719 if (!decl)
9720 return;
9721
9722 if (parm != decl)
9723 {
9724 /* If that DECL_RTL wasn't a pseudo that got spilled to
9725 memory, bail out. Otherwise, the spill slot sharing code
9726 will force the memory to reference spill_slot_decl (%sfp),
9727 so we don't match above. That's ok, the pseudo must have
9728 referenced the entire parameter, so just reset OFFSET. */
9729 if (decl != get_spill_slot_decl (false))
9730 return;
9731 offset = 0;
9732 }
9733
9734 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9735 return;
9736
9737 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9738
9739 dv = dv_from_decl (parm);
9740
9741 if (target_for_debug_bind (parm)
9742 /* We can't deal with these right now, because this kind of
9743 variable is single-part. ??? We could handle parallels
9744 that describe multiple locations for the same single
9745 value, but ATM we don't. */
9746 && GET_CODE (incoming) != PARALLEL)
9747 {
9748 cselib_val *val;
9749 rtx lowpart;
9750
9751 /* ??? We shouldn't ever hit this, but it may happen because
9752 arguments passed by invisible reference aren't dealt with
9753 above: incoming-rtl will have Pmode rather than the
9754 expected mode for the type. */
9755 if (offset)
9756 return;
9757
9758 lowpart = var_lowpart (mode, incoming);
9759 if (!lowpart)
9760 return;
9761
9762 val = cselib_lookup_from_insn (lowpart, mode, true,
9763 VOIDmode, get_insns ());
9764
9765 /* ??? Float-typed values in memory are not handled by
9766 cselib. */
9767 if (val)
9768 {
9769 preserve_value (val);
9770 set_variable_part (out, val->val_rtx, dv, offset,
9771 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9772 dv = dv_from_value (val->val_rtx);
9773 }
9774
9775 if (MEM_P (incoming))
9776 {
9777 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9778 VOIDmode, get_insns ());
9779 if (val)
9780 {
9781 preserve_value (val);
9782 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9783 }
9784 }
9785 }
9786
9787 if (REG_P (incoming))
9788 {
9789 incoming = var_lowpart (mode, incoming);
9790 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9791 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9792 incoming);
9793 set_variable_part (out, incoming, dv, offset,
9794 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9795 if (dv_is_value_p (dv))
9796 {
9797 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9798 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9799 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9800 {
9801 machine_mode indmode
9802 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9803 rtx mem = gen_rtx_MEM (indmode, incoming);
9804 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9805 VOIDmode,
9806 get_insns ());
9807 if (val)
9808 {
9809 preserve_value (val);
9810 record_entry_value (val, mem);
9811 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9812 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9813 }
9814 }
9815 }
9816 }
9817 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9818 {
9819 int i;
9820
9821 for (i = 0; i < XVECLEN (incoming, 0); i++)
9822 {
9823 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9824 offset = REG_OFFSET (reg);
9825 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9826 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9827 set_variable_part (out, reg, dv, offset,
9828 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9829 }
9830 }
9831 else if (MEM_P (incoming))
9832 {
9833 incoming = var_lowpart (mode, incoming);
9834 set_variable_part (out, incoming, dv, offset,
9835 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9836 }
9837 }
9838
9839 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9840
9841 static void
9842 vt_add_function_parameters (void)
9843 {
9844 tree parm;
9845
9846 for (parm = DECL_ARGUMENTS (current_function_decl);
9847 parm; parm = DECL_CHAIN (parm))
9848 if (!POINTER_BOUNDS_P (parm))
9849 vt_add_function_parameter (parm);
9850
9851 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9852 {
9853 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9854
9855 if (TREE_CODE (vexpr) == INDIRECT_REF)
9856 vexpr = TREE_OPERAND (vexpr, 0);
9857
9858 if (TREE_CODE (vexpr) == PARM_DECL
9859 && DECL_ARTIFICIAL (vexpr)
9860 && !DECL_IGNORED_P (vexpr)
9861 && DECL_NAMELESS (vexpr))
9862 vt_add_function_parameter (vexpr);
9863 }
9864 }
9865
9866 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9867 ensure it isn't flushed during cselib_reset_table.
9868 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9869 has been eliminated. */
9870
9871 static void
9872 vt_init_cfa_base (void)
9873 {
9874 cselib_val *val;
9875
9876 #ifdef FRAME_POINTER_CFA_OFFSET
9877 cfa_base_rtx = frame_pointer_rtx;
9878 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9879 #else
9880 cfa_base_rtx = arg_pointer_rtx;
9881 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9882 #endif
9883 if (cfa_base_rtx == hard_frame_pointer_rtx
9884 || !fixed_regs[REGNO (cfa_base_rtx)])
9885 {
9886 cfa_base_rtx = NULL_RTX;
9887 return;
9888 }
9889 if (!MAY_HAVE_DEBUG_INSNS)
9890 return;
9891
9892 /* Tell alias analysis that cfa_base_rtx should share
9893 find_base_term value with stack pointer or hard frame pointer. */
9894 if (!frame_pointer_needed)
9895 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9896 else if (!crtl->stack_realign_tried)
9897 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9898
9899 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9900 VOIDmode, get_insns ());
9901 preserve_value (val);
9902 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9903 }
9904
9905 /* Allocate and initialize the data structures for variable tracking
9906 and parse the RTL to get the micro operations. */
9907
9908 static bool
9909 vt_initialize (void)
9910 {
9911 basic_block bb;
9912 HOST_WIDE_INT fp_cfa_offset = -1;
9913
9914 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9915
9916 empty_shared_hash = shared_hash_pool.allocate ();
9917 empty_shared_hash->refcount = 1;
9918 empty_shared_hash->htab = new variable_table_type (1);
9919 changed_variables = new variable_table_type (10);
9920
9921 /* Init the IN and OUT sets. */
9922 FOR_ALL_BB_FN (bb, cfun)
9923 {
9924 VTI (bb)->visited = false;
9925 VTI (bb)->flooded = false;
9926 dataflow_set_init (&VTI (bb)->in);
9927 dataflow_set_init (&VTI (bb)->out);
9928 VTI (bb)->permp = NULL;
9929 }
9930
9931 if (MAY_HAVE_DEBUG_INSNS)
9932 {
9933 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9934 scratch_regs = BITMAP_ALLOC (NULL);
9935 preserved_values.create (256);
9936 global_get_addr_cache = new hash_map<rtx, rtx>;
9937 }
9938 else
9939 {
9940 scratch_regs = NULL;
9941 global_get_addr_cache = NULL;
9942 }
9943
9944 if (MAY_HAVE_DEBUG_INSNS)
9945 {
9946 rtx reg, expr;
9947 int ofst;
9948 cselib_val *val;
9949
9950 #ifdef FRAME_POINTER_CFA_OFFSET
9951 reg = frame_pointer_rtx;
9952 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9953 #else
9954 reg = arg_pointer_rtx;
9955 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9956 #endif
9957
9958 ofst -= INCOMING_FRAME_SP_OFFSET;
9959
9960 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9961 VOIDmode, get_insns ());
9962 preserve_value (val);
9963 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9964 cselib_preserve_cfa_base_value (val, REGNO (reg));
9965 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9966 stack_pointer_rtx, -ofst);
9967 cselib_add_permanent_equiv (val, expr, get_insns ());
9968
9969 if (ofst)
9970 {
9971 val = cselib_lookup_from_insn (stack_pointer_rtx,
9972 GET_MODE (stack_pointer_rtx), 1,
9973 VOIDmode, get_insns ());
9974 preserve_value (val);
9975 expr = plus_constant (GET_MODE (reg), reg, ofst);
9976 cselib_add_permanent_equiv (val, expr, get_insns ());
9977 }
9978 }
9979
9980 /* In order to factor out the adjustments made to the stack pointer or to
9981 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9982 instead of individual location lists, we're going to rewrite MEMs based
9983 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9984 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9985 resp. arg_pointer_rtx. We can do this either when there is no frame
9986 pointer in the function and stack adjustments are consistent for all
9987 basic blocks or when there is a frame pointer and no stack realignment.
9988 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9989 has been eliminated. */
9990 if (!frame_pointer_needed)
9991 {
9992 rtx reg, elim;
9993
9994 if (!vt_stack_adjustments ())
9995 return false;
9996
9997 #ifdef FRAME_POINTER_CFA_OFFSET
9998 reg = frame_pointer_rtx;
9999 #else
10000 reg = arg_pointer_rtx;
10001 #endif
10002 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10003 if (elim != reg)
10004 {
10005 if (GET_CODE (elim) == PLUS)
10006 elim = XEXP (elim, 0);
10007 if (elim == stack_pointer_rtx)
10008 vt_init_cfa_base ();
10009 }
10010 }
10011 else if (!crtl->stack_realign_tried)
10012 {
10013 rtx reg, elim;
10014
10015 #ifdef FRAME_POINTER_CFA_OFFSET
10016 reg = frame_pointer_rtx;
10017 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10018 #else
10019 reg = arg_pointer_rtx;
10020 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10021 #endif
10022 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10023 if (elim != reg)
10024 {
10025 if (GET_CODE (elim) == PLUS)
10026 {
10027 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10028 elim = XEXP (elim, 0);
10029 }
10030 if (elim != hard_frame_pointer_rtx)
10031 fp_cfa_offset = -1;
10032 }
10033 else
10034 fp_cfa_offset = -1;
10035 }
10036
10037 /* If the stack is realigned and a DRAP register is used, we're going to
10038 rewrite MEMs based on it representing incoming locations of parameters
10039 passed on the stack into MEMs based on the argument pointer. Although
10040 we aren't going to rewrite other MEMs, we still need to initialize the
10041 virtual CFA pointer in order to ensure that the argument pointer will
10042 be seen as a constant throughout the function.
10043
10044 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10045 else if (stack_realign_drap)
10046 {
10047 rtx reg, elim;
10048
10049 #ifdef FRAME_POINTER_CFA_OFFSET
10050 reg = frame_pointer_rtx;
10051 #else
10052 reg = arg_pointer_rtx;
10053 #endif
10054 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10055 if (elim != reg)
10056 {
10057 if (GET_CODE (elim) == PLUS)
10058 elim = XEXP (elim, 0);
10059 if (elim == hard_frame_pointer_rtx)
10060 vt_init_cfa_base ();
10061 }
10062 }
10063
10064 hard_frame_pointer_adjustment = -1;
10065
10066 vt_add_function_parameters ();
10067
10068 FOR_EACH_BB_FN (bb, cfun)
10069 {
10070 rtx_insn *insn;
10071 HOST_WIDE_INT pre, post = 0;
10072 basic_block first_bb, last_bb;
10073
10074 if (MAY_HAVE_DEBUG_INSNS)
10075 {
10076 cselib_record_sets_hook = add_with_sets;
10077 if (dump_file && (dump_flags & TDF_DETAILS))
10078 fprintf (dump_file, "first value: %i\n",
10079 cselib_get_next_uid ());
10080 }
10081
10082 first_bb = bb;
10083 for (;;)
10084 {
10085 edge e;
10086 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10087 || ! single_pred_p (bb->next_bb))
10088 break;
10089 e = find_edge (bb, bb->next_bb);
10090 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10091 break;
10092 bb = bb->next_bb;
10093 }
10094 last_bb = bb;
10095
10096 /* Add the micro-operations to the vector. */
10097 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10098 {
10099 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10100 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10101 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10102 insn = NEXT_INSN (insn))
10103 {
10104 if (INSN_P (insn))
10105 {
10106 if (!frame_pointer_needed)
10107 {
10108 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10109 if (pre)
10110 {
10111 micro_operation mo;
10112 mo.type = MO_ADJUST;
10113 mo.u.adjust = pre;
10114 mo.insn = insn;
10115 if (dump_file && (dump_flags & TDF_DETAILS))
10116 log_op_type (PATTERN (insn), bb, insn,
10117 MO_ADJUST, dump_file);
10118 VTI (bb)->mos.safe_push (mo);
10119 VTI (bb)->out.stack_adjust += pre;
10120 }
10121 }
10122
10123 cselib_hook_called = false;
10124 adjust_insn (bb, insn);
10125 if (MAY_HAVE_DEBUG_INSNS)
10126 {
10127 if (CALL_P (insn))
10128 prepare_call_arguments (bb, insn);
10129 cselib_process_insn (insn);
10130 if (dump_file && (dump_flags & TDF_DETAILS))
10131 {
10132 print_rtl_single (dump_file, insn);
10133 dump_cselib_table (dump_file);
10134 }
10135 }
10136 if (!cselib_hook_called)
10137 add_with_sets (insn, 0, 0);
10138 cancel_changes (0);
10139
10140 if (!frame_pointer_needed && post)
10141 {
10142 micro_operation mo;
10143 mo.type = MO_ADJUST;
10144 mo.u.adjust = post;
10145 mo.insn = insn;
10146 if (dump_file && (dump_flags & TDF_DETAILS))
10147 log_op_type (PATTERN (insn), bb, insn,
10148 MO_ADJUST, dump_file);
10149 VTI (bb)->mos.safe_push (mo);
10150 VTI (bb)->out.stack_adjust += post;
10151 }
10152
10153 if (fp_cfa_offset != -1
10154 && hard_frame_pointer_adjustment == -1
10155 && fp_setter_insn (insn))
10156 {
10157 vt_init_cfa_base ();
10158 hard_frame_pointer_adjustment = fp_cfa_offset;
10159 /* Disassociate sp from fp now. */
10160 if (MAY_HAVE_DEBUG_INSNS)
10161 {
10162 cselib_val *v;
10163 cselib_invalidate_rtx (stack_pointer_rtx);
10164 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10165 VOIDmode);
10166 if (v && !cselib_preserved_value_p (v))
10167 {
10168 cselib_set_value_sp_based (v);
10169 preserve_value (v);
10170 }
10171 }
10172 }
10173 }
10174 }
10175 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10176 }
10177
10178 bb = last_bb;
10179
10180 if (MAY_HAVE_DEBUG_INSNS)
10181 {
10182 cselib_preserve_only_values ();
10183 cselib_reset_table (cselib_get_next_uid ());
10184 cselib_record_sets_hook = NULL;
10185 }
10186 }
10187
10188 hard_frame_pointer_adjustment = -1;
10189 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10190 cfa_base_rtx = NULL_RTX;
10191 return true;
10192 }
10193
10194 /* This is *not* reset after each function. It gives each
10195 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10196 a unique label number. */
10197
10198 static int debug_label_num = 1;
10199
10200 /* Get rid of all debug insns from the insn stream. */
10201
10202 static void
10203 delete_debug_insns (void)
10204 {
10205 basic_block bb;
10206 rtx_insn *insn, *next;
10207
10208 if (!MAY_HAVE_DEBUG_INSNS)
10209 return;
10210
10211 FOR_EACH_BB_FN (bb, cfun)
10212 {
10213 FOR_BB_INSNS_SAFE (bb, insn, next)
10214 if (DEBUG_INSN_P (insn))
10215 {
10216 tree decl = INSN_VAR_LOCATION_DECL (insn);
10217 if (TREE_CODE (decl) == LABEL_DECL
10218 && DECL_NAME (decl)
10219 && !DECL_RTL_SET_P (decl))
10220 {
10221 PUT_CODE (insn, NOTE);
10222 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10223 NOTE_DELETED_LABEL_NAME (insn)
10224 = IDENTIFIER_POINTER (DECL_NAME (decl));
10225 SET_DECL_RTL (decl, insn);
10226 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10227 }
10228 else
10229 delete_insn (insn);
10230 }
10231 }
10232 }
10233
10234 /* Run a fast, BB-local only version of var tracking, to take care of
10235 information that we don't do global analysis on, such that not all
10236 information is lost. If SKIPPED holds, we're skipping the global
10237 pass entirely, so we should try to use information it would have
10238 handled as well.. */
10239
10240 static void
10241 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10242 {
10243 /* ??? Just skip it all for now. */
10244 delete_debug_insns ();
10245 }
10246
10247 /* Free the data structures needed for variable tracking. */
10248
10249 static void
10250 vt_finalize (void)
10251 {
10252 basic_block bb;
10253
10254 FOR_EACH_BB_FN (bb, cfun)
10255 {
10256 VTI (bb)->mos.release ();
10257 }
10258
10259 FOR_ALL_BB_FN (bb, cfun)
10260 {
10261 dataflow_set_destroy (&VTI (bb)->in);
10262 dataflow_set_destroy (&VTI (bb)->out);
10263 if (VTI (bb)->permp)
10264 {
10265 dataflow_set_destroy (VTI (bb)->permp);
10266 XDELETE (VTI (bb)->permp);
10267 }
10268 }
10269 free_aux_for_blocks ();
10270 delete empty_shared_hash->htab;
10271 empty_shared_hash->htab = NULL;
10272 delete changed_variables;
10273 changed_variables = NULL;
10274 attrs_pool.release ();
10275 var_pool.release ();
10276 location_chain_pool.release ();
10277 shared_hash_pool.release ();
10278
10279 if (MAY_HAVE_DEBUG_INSNS)
10280 {
10281 if (global_get_addr_cache)
10282 delete global_get_addr_cache;
10283 global_get_addr_cache = NULL;
10284 loc_exp_dep_pool.release ();
10285 valvar_pool.release ();
10286 preserved_values.release ();
10287 cselib_finish ();
10288 BITMAP_FREE (scratch_regs);
10289 scratch_regs = NULL;
10290 }
10291
10292 #ifdef HAVE_window_save
10293 vec_free (windowed_parm_regs);
10294 #endif
10295
10296 if (vui_vec)
10297 XDELETEVEC (vui_vec);
10298 vui_vec = NULL;
10299 vui_allocated = 0;
10300 }
10301
10302 /* The entry point to variable tracking pass. */
10303
10304 static inline unsigned int
10305 variable_tracking_main_1 (void)
10306 {
10307 bool success;
10308
10309 if (flag_var_tracking_assignments < 0
10310 /* Var-tracking right now assumes the IR doesn't contain
10311 any pseudos at this point. */
10312 || targetm.no_register_allocation)
10313 {
10314 delete_debug_insns ();
10315 return 0;
10316 }
10317
10318 if (n_basic_blocks_for_fn (cfun) > 500 &&
10319 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10320 {
10321 vt_debug_insns_local (true);
10322 return 0;
10323 }
10324
10325 mark_dfs_back_edges ();
10326 if (!vt_initialize ())
10327 {
10328 vt_finalize ();
10329 vt_debug_insns_local (true);
10330 return 0;
10331 }
10332
10333 success = vt_find_locations ();
10334
10335 if (!success && flag_var_tracking_assignments > 0)
10336 {
10337 vt_finalize ();
10338
10339 delete_debug_insns ();
10340
10341 /* This is later restored by our caller. */
10342 flag_var_tracking_assignments = 0;
10343
10344 success = vt_initialize ();
10345 gcc_assert (success);
10346
10347 success = vt_find_locations ();
10348 }
10349
10350 if (!success)
10351 {
10352 vt_finalize ();
10353 vt_debug_insns_local (false);
10354 return 0;
10355 }
10356
10357 if (dump_file && (dump_flags & TDF_DETAILS))
10358 {
10359 dump_dataflow_sets ();
10360 dump_reg_info (dump_file);
10361 dump_flow_info (dump_file, dump_flags);
10362 }
10363
10364 timevar_push (TV_VAR_TRACKING_EMIT);
10365 vt_emit_notes ();
10366 timevar_pop (TV_VAR_TRACKING_EMIT);
10367
10368 vt_finalize ();
10369 vt_debug_insns_local (false);
10370 return 0;
10371 }
10372
10373 unsigned int
10374 variable_tracking_main (void)
10375 {
10376 unsigned int ret;
10377 int save = flag_var_tracking_assignments;
10378
10379 ret = variable_tracking_main_1 ();
10380
10381 flag_var_tracking_assignments = save;
10382
10383 return ret;
10384 }
10385 \f
10386 namespace {
10387
10388 const pass_data pass_data_variable_tracking =
10389 {
10390 RTL_PASS, /* type */
10391 "vartrack", /* name */
10392 OPTGROUP_NONE, /* optinfo_flags */
10393 TV_VAR_TRACKING, /* tv_id */
10394 0, /* properties_required */
10395 0, /* properties_provided */
10396 0, /* properties_destroyed */
10397 0, /* todo_flags_start */
10398 0, /* todo_flags_finish */
10399 };
10400
10401 class pass_variable_tracking : public rtl_opt_pass
10402 {
10403 public:
10404 pass_variable_tracking (gcc::context *ctxt)
10405 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10406 {}
10407
10408 /* opt_pass methods: */
10409 virtual bool gate (function *)
10410 {
10411 return (flag_var_tracking && !targetm.delay_vartrack);
10412 }
10413
10414 virtual unsigned int execute (function *)
10415 {
10416 return variable_tracking_main ();
10417 }
10418
10419 }; // class pass_variable_tracking
10420
10421 } // anon namespace
10422
10423 rtl_opt_pass *
10424 make_pass_variable_tracking (gcc::context *ctxt)
10425 {
10426 return new pass_variable_tracking (ctxt);
10427 }