re PR tree-optimization/43833 (false warning: array subscript is above array bounds...
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
28
29 How does the variable tracking pass work?
30
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
38
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
45
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
55
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
61
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
71
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
79
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
86
87 */
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
105 #include "regs.h"
106 #include "expr.h"
107 #include "timevar.h"
108 #include "tree-pass.h"
109 #include "tree-flow.h"
110 #include "cselib.h"
111 #include "target.h"
112 #include "toplev.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "pointer-set.h"
116 #include "recog.h"
117
118 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
119 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
120 Currently the value is the same as IDENTIFIER_NODE, which has such
121 a property. If this compile time assertion ever fails, make sure that
122 the new tree code that equals (int) VALUE has the same property. */
123 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
124
125 /* Type of micro operation. */
126 enum micro_operation_type
127 {
128 MO_USE, /* Use location (REG or MEM). */
129 MO_USE_NO_VAR,/* Use location which is not associated with a variable
130 or the variable is not trackable. */
131 MO_VAL_USE, /* Use location which is associated with a value. */
132 MO_VAL_LOC, /* Use location which appears in a debug insn. */
133 MO_VAL_SET, /* Set location associated with a value. */
134 MO_SET, /* Set location. */
135 MO_COPY, /* Copy the same portion of a variable from one
136 location to another. */
137 MO_CLOBBER, /* Clobber location. */
138 MO_CALL, /* Call insn. */
139 MO_ADJUST /* Adjust stack pointer. */
140
141 };
142
143 static const char * const ATTRIBUTE_UNUSED
144 micro_operation_type_name[] = {
145 "MO_USE",
146 "MO_USE_NO_VAR",
147 "MO_VAL_USE",
148 "MO_VAL_LOC",
149 "MO_VAL_SET",
150 "MO_SET",
151 "MO_COPY",
152 "MO_CLOBBER",
153 "MO_CALL",
154 "MO_ADJUST"
155 };
156
157 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
158 Notes emitted as AFTER_CALL are to take effect during the call,
159 rather than after the call. */
160 enum emit_note_where
161 {
162 EMIT_NOTE_BEFORE_INSN,
163 EMIT_NOTE_AFTER_INSN,
164 EMIT_NOTE_AFTER_CALL_INSN
165 };
166
167 /* Structure holding information about micro operation. */
168 typedef struct micro_operation_def
169 {
170 /* Type of micro operation. */
171 enum micro_operation_type type;
172
173 /* The instruction which the micro operation is in, for MO_USE,
174 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
175 instruction or note in the original flow (before any var-tracking
176 notes are inserted, to simplify emission of notes), for MO_SET
177 and MO_CLOBBER. */
178 rtx insn;
179
180 union {
181 /* Location. For MO_SET and MO_COPY, this is the SET that
182 performs the assignment, if known, otherwise it is the target
183 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
184 CONCAT of the VALUE and the LOC associated with it. For
185 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
186 associated with it. */
187 rtx loc;
188
189 /* Stack adjustment. */
190 HOST_WIDE_INT adjust;
191 } u;
192 } micro_operation;
193
194 DEF_VEC_O(micro_operation);
195 DEF_VEC_ALLOC_O(micro_operation,heap);
196
197 /* A declaration of a variable, or an RTL value being handled like a
198 declaration. */
199 typedef void *decl_or_value;
200
201 /* Structure for passing some other parameters to function
202 emit_note_insn_var_location. */
203 typedef struct emit_note_data_def
204 {
205 /* The instruction which the note will be emitted before/after. */
206 rtx insn;
207
208 /* Where the note will be emitted (before/after insn)? */
209 enum emit_note_where where;
210
211 /* The variables and values active at this point. */
212 htab_t vars;
213 } emit_note_data;
214
215 /* Description of location of a part of a variable. The content of a physical
216 register is described by a chain of these structures.
217 The chains are pretty short (usually 1 or 2 elements) and thus
218 chain is the best data structure. */
219 typedef struct attrs_def
220 {
221 /* Pointer to next member of the list. */
222 struct attrs_def *next;
223
224 /* The rtx of register. */
225 rtx loc;
226
227 /* The declaration corresponding to LOC. */
228 decl_or_value dv;
229
230 /* Offset from start of DECL. */
231 HOST_WIDE_INT offset;
232 } *attrs;
233
234 /* Structure holding a refcounted hash table. If refcount > 1,
235 it must be first unshared before modified. */
236 typedef struct shared_hash_def
237 {
238 /* Reference count. */
239 int refcount;
240
241 /* Actual hash table. */
242 htab_t htab;
243 } *shared_hash;
244
245 /* Structure holding the IN or OUT set for a basic block. */
246 typedef struct dataflow_set_def
247 {
248 /* Adjustment of stack offset. */
249 HOST_WIDE_INT stack_adjust;
250
251 /* Attributes for registers (lists of attrs). */
252 attrs regs[FIRST_PSEUDO_REGISTER];
253
254 /* Variable locations. */
255 shared_hash vars;
256
257 /* Vars that is being traversed. */
258 shared_hash traversed_vars;
259 } dataflow_set;
260
261 /* The structure (one for each basic block) containing the information
262 needed for variable tracking. */
263 typedef struct variable_tracking_info_def
264 {
265 /* The vector of micro operations. */
266 VEC(micro_operation, heap) *mos;
267
268 /* The IN and OUT set for dataflow analysis. */
269 dataflow_set in;
270 dataflow_set out;
271
272 /* The permanent-in dataflow set for this block. This is used to
273 hold values for which we had to compute entry values. ??? This
274 should probably be dynamically allocated, to avoid using more
275 memory in non-debug builds. */
276 dataflow_set *permp;
277
278 /* Has the block been visited in DFS? */
279 bool visited;
280
281 /* Has the block been flooded in VTA? */
282 bool flooded;
283
284 } *variable_tracking_info;
285
286 /* Structure for chaining the locations. */
287 typedef struct location_chain_def
288 {
289 /* Next element in the chain. */
290 struct location_chain_def *next;
291
292 /* The location (REG, MEM or VALUE). */
293 rtx loc;
294
295 /* The "value" stored in this location. */
296 rtx set_src;
297
298 /* Initialized? */
299 enum var_init_status init;
300 } *location_chain;
301
302 /* Structure describing one part of variable. */
303 typedef struct variable_part_def
304 {
305 /* Chain of locations of the part. */
306 location_chain loc_chain;
307
308 /* Location which was last emitted to location list. */
309 rtx cur_loc;
310
311 /* The offset in the variable. */
312 HOST_WIDE_INT offset;
313 } variable_part;
314
315 /* Maximum number of location parts. */
316 #define MAX_VAR_PARTS 16
317
318 /* Structure describing where the variable is located. */
319 typedef struct variable_def
320 {
321 /* The declaration of the variable, or an RTL value being handled
322 like a declaration. */
323 decl_or_value dv;
324
325 /* Reference count. */
326 int refcount;
327
328 /* Number of variable parts. */
329 char n_var_parts;
330
331 /* True if this variable changed (any of its) cur_loc fields
332 during the current emit_notes_for_changes resp.
333 emit_notes_for_differences call. */
334 bool cur_loc_changed;
335
336 /* True if this variable_def struct is currently in the
337 changed_variables hash table. */
338 bool in_changed_variables;
339
340 /* The variable parts. */
341 variable_part var_part[1];
342 } *variable;
343 typedef const struct variable_def *const_variable;
344
345 /* Structure for chaining backlinks from referenced VALUEs to
346 DVs that are referencing them. */
347 typedef struct value_chain_def
348 {
349 /* Next value_chain entry. */
350 struct value_chain_def *next;
351
352 /* The declaration of the variable, or an RTL value
353 being handled like a declaration, whose var_parts[0].loc_chain
354 references the VALUE owning this value_chain. */
355 decl_or_value dv;
356
357 /* Reference count. */
358 int refcount;
359 } *value_chain;
360 typedef const struct value_chain_def *const_value_chain;
361
362 /* Pointer to the BB's information specific to variable tracking pass. */
363 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
364
365 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
366 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
367
368 /* Alloc pool for struct attrs_def. */
369 static alloc_pool attrs_pool;
370
371 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
372 static alloc_pool var_pool;
373
374 /* Alloc pool for struct variable_def with a single var_part entry. */
375 static alloc_pool valvar_pool;
376
377 /* Alloc pool for struct location_chain_def. */
378 static alloc_pool loc_chain_pool;
379
380 /* Alloc pool for struct shared_hash_def. */
381 static alloc_pool shared_hash_pool;
382
383 /* Alloc pool for struct value_chain_def. */
384 static alloc_pool value_chain_pool;
385
386 /* Changed variables, notes will be emitted for them. */
387 static htab_t changed_variables;
388
389 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
390 static htab_t value_chains;
391
392 /* Shall notes be emitted? */
393 static bool emit_notes;
394
395 /* Empty shared hashtable. */
396 static shared_hash empty_shared_hash;
397
398 /* Scratch register bitmap used by cselib_expand_value_rtx. */
399 static bitmap scratch_regs = NULL;
400
401 /* Variable used to tell whether cselib_process_insn called our hook. */
402 static bool cselib_hook_called;
403
404 /* Local function prototypes. */
405 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
406 HOST_WIDE_INT *);
407 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
408 HOST_WIDE_INT *);
409 static bool vt_stack_adjustments (void);
410 static rtx compute_cfa_pointer (HOST_WIDE_INT);
411 static hashval_t variable_htab_hash (const void *);
412 static int variable_htab_eq (const void *, const void *);
413 static void variable_htab_free (void *);
414
415 static void init_attrs_list_set (attrs *);
416 static void attrs_list_clear (attrs *);
417 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
418 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
419 static void attrs_list_copy (attrs *, attrs);
420 static void attrs_list_union (attrs *, attrs);
421
422 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
423 enum var_init_status);
424 static int vars_copy_1 (void **, void *);
425 static void vars_copy (htab_t, htab_t);
426 static tree var_debug_decl (tree);
427 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
428 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
429 enum var_init_status, rtx);
430 static void var_reg_delete (dataflow_set *, rtx, bool);
431 static void var_regno_delete (dataflow_set *, int);
432 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
433 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
434 enum var_init_status, rtx);
435 static void var_mem_delete (dataflow_set *, rtx, bool);
436
437 static void dataflow_set_init (dataflow_set *);
438 static void dataflow_set_clear (dataflow_set *);
439 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
440 static int variable_union_info_cmp_pos (const void *, const void *);
441 static int variable_union (void **, void *);
442 static void dataflow_set_union (dataflow_set *, dataflow_set *);
443 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
444 static bool canon_value_cmp (rtx, rtx);
445 static int loc_cmp (rtx, rtx);
446 static bool variable_part_different_p (variable_part *, variable_part *);
447 static bool onepart_variable_different_p (variable, variable);
448 static bool variable_different_p (variable, variable);
449 static int dataflow_set_different_1 (void **, void *);
450 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
451 static void dataflow_set_destroy (dataflow_set *);
452
453 static bool contains_symbol_ref (rtx);
454 static bool track_expr_p (tree, bool);
455 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
456 static int add_uses (rtx *, void *);
457 static void add_uses_1 (rtx *, void *);
458 static void add_stores (rtx, const_rtx, void *);
459 static bool compute_bb_dataflow (basic_block);
460 static bool vt_find_locations (void);
461
462 static void dump_attrs_list (attrs);
463 static int dump_var_slot (void **, void *);
464 static void dump_var (variable);
465 static void dump_vars (htab_t);
466 static void dump_dataflow_set (dataflow_set *);
467 static void dump_dataflow_sets (void);
468
469 static void variable_was_changed (variable, dataflow_set *);
470 static void **set_slot_part (dataflow_set *, rtx, void **,
471 decl_or_value, HOST_WIDE_INT,
472 enum var_init_status, rtx);
473 static void set_variable_part (dataflow_set *, rtx,
474 decl_or_value, HOST_WIDE_INT,
475 enum var_init_status, rtx, enum insert_option);
476 static void **clobber_slot_part (dataflow_set *, rtx,
477 void **, HOST_WIDE_INT, rtx);
478 static void clobber_variable_part (dataflow_set *, rtx,
479 decl_or_value, HOST_WIDE_INT, rtx);
480 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
481 static void delete_variable_part (dataflow_set *, rtx,
482 decl_or_value, HOST_WIDE_INT);
483 static int emit_note_insn_var_location (void **, void *);
484 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
485 static int emit_notes_for_differences_1 (void **, void *);
486 static int emit_notes_for_differences_2 (void **, void *);
487 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
488 static void emit_notes_in_bb (basic_block, dataflow_set *);
489 static void vt_emit_notes (void);
490
491 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
492 static void vt_add_function_parameters (void);
493 static bool vt_initialize (void);
494 static void vt_finalize (void);
495
496 /* Given a SET, calculate the amount of stack adjustment it contains
497 PRE- and POST-modifying stack pointer.
498 This function is similar to stack_adjust_offset. */
499
500 static void
501 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
502 HOST_WIDE_INT *post)
503 {
504 rtx src = SET_SRC (pattern);
505 rtx dest = SET_DEST (pattern);
506 enum rtx_code code;
507
508 if (dest == stack_pointer_rtx)
509 {
510 /* (set (reg sp) (plus (reg sp) (const_int))) */
511 code = GET_CODE (src);
512 if (! (code == PLUS || code == MINUS)
513 || XEXP (src, 0) != stack_pointer_rtx
514 || !CONST_INT_P (XEXP (src, 1)))
515 return;
516
517 if (code == MINUS)
518 *post += INTVAL (XEXP (src, 1));
519 else
520 *post -= INTVAL (XEXP (src, 1));
521 }
522 else if (MEM_P (dest))
523 {
524 /* (set (mem (pre_dec (reg sp))) (foo)) */
525 src = XEXP (dest, 0);
526 code = GET_CODE (src);
527
528 switch (code)
529 {
530 case PRE_MODIFY:
531 case POST_MODIFY:
532 if (XEXP (src, 0) == stack_pointer_rtx)
533 {
534 rtx val = XEXP (XEXP (src, 1), 1);
535 /* We handle only adjustments by constant amount. */
536 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
537 CONST_INT_P (val));
538
539 if (code == PRE_MODIFY)
540 *pre -= INTVAL (val);
541 else
542 *post -= INTVAL (val);
543 break;
544 }
545 return;
546
547 case PRE_DEC:
548 if (XEXP (src, 0) == stack_pointer_rtx)
549 {
550 *pre += GET_MODE_SIZE (GET_MODE (dest));
551 break;
552 }
553 return;
554
555 case POST_DEC:
556 if (XEXP (src, 0) == stack_pointer_rtx)
557 {
558 *post += GET_MODE_SIZE (GET_MODE (dest));
559 break;
560 }
561 return;
562
563 case PRE_INC:
564 if (XEXP (src, 0) == stack_pointer_rtx)
565 {
566 *pre -= GET_MODE_SIZE (GET_MODE (dest));
567 break;
568 }
569 return;
570
571 case POST_INC:
572 if (XEXP (src, 0) == stack_pointer_rtx)
573 {
574 *post -= GET_MODE_SIZE (GET_MODE (dest));
575 break;
576 }
577 return;
578
579 default:
580 return;
581 }
582 }
583 }
584
585 /* Given an INSN, calculate the amount of stack adjustment it contains
586 PRE- and POST-modifying stack pointer. */
587
588 static void
589 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
590 HOST_WIDE_INT *post)
591 {
592 rtx pattern;
593
594 *pre = 0;
595 *post = 0;
596
597 pattern = PATTERN (insn);
598 if (RTX_FRAME_RELATED_P (insn))
599 {
600 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
601 if (expr)
602 pattern = XEXP (expr, 0);
603 }
604
605 if (GET_CODE (pattern) == SET)
606 stack_adjust_offset_pre_post (pattern, pre, post);
607 else if (GET_CODE (pattern) == PARALLEL
608 || GET_CODE (pattern) == SEQUENCE)
609 {
610 int i;
611
612 /* There may be stack adjustments inside compound insns. Search
613 for them. */
614 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
615 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
616 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
617 }
618 }
619
620 /* Compute stack adjustments for all blocks by traversing DFS tree.
621 Return true when the adjustments on all incoming edges are consistent.
622 Heavily borrowed from pre_and_rev_post_order_compute. */
623
624 static bool
625 vt_stack_adjustments (void)
626 {
627 edge_iterator *stack;
628 int sp;
629
630 /* Initialize entry block. */
631 VTI (ENTRY_BLOCK_PTR)->visited = true;
632 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
633 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
634
635 /* Allocate stack for back-tracking up CFG. */
636 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
637 sp = 0;
638
639 /* Push the first edge on to the stack. */
640 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
641
642 while (sp)
643 {
644 edge_iterator ei;
645 basic_block src;
646 basic_block dest;
647
648 /* Look at the edge on the top of the stack. */
649 ei = stack[sp - 1];
650 src = ei_edge (ei)->src;
651 dest = ei_edge (ei)->dest;
652
653 /* Check if the edge destination has been visited yet. */
654 if (!VTI (dest)->visited)
655 {
656 rtx insn;
657 HOST_WIDE_INT pre, post, offset;
658 VTI (dest)->visited = true;
659 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
660
661 if (dest != EXIT_BLOCK_PTR)
662 for (insn = BB_HEAD (dest);
663 insn != NEXT_INSN (BB_END (dest));
664 insn = NEXT_INSN (insn))
665 if (INSN_P (insn))
666 {
667 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
668 offset += pre + post;
669 }
670
671 VTI (dest)->out.stack_adjust = offset;
672
673 if (EDGE_COUNT (dest->succs) > 0)
674 /* Since the DEST node has been visited for the first
675 time, check its successors. */
676 stack[sp++] = ei_start (dest->succs);
677 }
678 else
679 {
680 /* Check whether the adjustments on the edges are the same. */
681 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
682 {
683 free (stack);
684 return false;
685 }
686
687 if (! ei_one_before_end_p (ei))
688 /* Go to the next edge. */
689 ei_next (&stack[sp - 1]);
690 else
691 /* Return to previous level if there are no more edges. */
692 sp--;
693 }
694 }
695
696 free (stack);
697 return true;
698 }
699
700 /* Compute a CFA-based value for the stack pointer. */
701
702 static rtx
703 compute_cfa_pointer (HOST_WIDE_INT adjustment)
704 {
705 rtx cfa;
706
707 #ifdef FRAME_POINTER_CFA_OFFSET
708 adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
709 cfa = plus_constant (frame_pointer_rtx, adjustment);
710 #else
711 adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
712 cfa = plus_constant (arg_pointer_rtx, adjustment);
713 #endif
714
715 return cfa;
716 }
717
718 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
719 or -1 if the replacement shouldn't be done. */
720 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
721
722 /* Data for adjust_mems callback. */
723
724 struct adjust_mem_data
725 {
726 bool store;
727 enum machine_mode mem_mode;
728 HOST_WIDE_INT stack_adjust;
729 rtx side_effects;
730 };
731
732 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
733 transformation of wider mode arithmetics to narrower mode,
734 -1 if it is suitable and subexpressions shouldn't be
735 traversed and 0 if it is suitable and subexpressions should
736 be traversed. Called through for_each_rtx. */
737
738 static int
739 use_narrower_mode_test (rtx *loc, void *data)
740 {
741 rtx subreg = (rtx) data;
742
743 if (CONSTANT_P (*loc))
744 return -1;
745 switch (GET_CODE (*loc))
746 {
747 case REG:
748 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0))
749 return 1;
750 return -1;
751 case PLUS:
752 case MINUS:
753 case MULT:
754 return 0;
755 case ASHIFT:
756 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
757 return 1;
758 else
759 return -1;
760 default:
761 return 1;
762 }
763 }
764
765 /* Transform X into narrower mode MODE from wider mode WMODE. */
766
767 static rtx
768 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
769 {
770 rtx op0, op1;
771 if (CONSTANT_P (x))
772 return lowpart_subreg (mode, x, wmode);
773 switch (GET_CODE (x))
774 {
775 case REG:
776 return lowpart_subreg (mode, x, wmode);
777 case PLUS:
778 case MINUS:
779 case MULT:
780 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
781 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
782 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
783 case ASHIFT:
784 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
785 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
786 default:
787 gcc_unreachable ();
788 }
789 }
790
791 /* Helper function for adjusting used MEMs. */
792
793 static rtx
794 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
795 {
796 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
797 rtx mem, addr = loc, tem;
798 enum machine_mode mem_mode_save;
799 bool store_save;
800 switch (GET_CODE (loc))
801 {
802 case REG:
803 /* Don't do any sp or fp replacements outside of MEM addresses. */
804 if (amd->mem_mode == VOIDmode)
805 return loc;
806 if (loc == stack_pointer_rtx
807 && !frame_pointer_needed)
808 return compute_cfa_pointer (amd->stack_adjust);
809 else if (loc == hard_frame_pointer_rtx
810 && frame_pointer_needed
811 && hard_frame_pointer_adjustment != -1)
812 return compute_cfa_pointer (hard_frame_pointer_adjustment);
813 return loc;
814 case MEM:
815 mem = loc;
816 if (!amd->store)
817 {
818 mem = targetm.delegitimize_address (mem);
819 if (mem != loc && !MEM_P (mem))
820 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
821 }
822
823 addr = XEXP (mem, 0);
824 mem_mode_save = amd->mem_mode;
825 amd->mem_mode = GET_MODE (mem);
826 store_save = amd->store;
827 amd->store = false;
828 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
829 amd->store = store_save;
830 amd->mem_mode = mem_mode_save;
831 if (mem == loc)
832 addr = targetm.delegitimize_address (addr);
833 if (addr != XEXP (mem, 0))
834 mem = replace_equiv_address_nv (mem, addr);
835 if (!amd->store)
836 mem = avoid_constant_pool_reference (mem);
837 return mem;
838 case PRE_INC:
839 case PRE_DEC:
840 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
841 GEN_INT (GET_CODE (loc) == PRE_INC
842 ? GET_MODE_SIZE (amd->mem_mode)
843 : -GET_MODE_SIZE (amd->mem_mode)));
844 case POST_INC:
845 case POST_DEC:
846 if (addr == loc)
847 addr = XEXP (loc, 0);
848 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
849 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
850 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
851 GEN_INT ((GET_CODE (loc) == PRE_INC
852 || GET_CODE (loc) == POST_INC)
853 ? GET_MODE_SIZE (amd->mem_mode)
854 : -GET_MODE_SIZE (amd->mem_mode)));
855 amd->side_effects = alloc_EXPR_LIST (0,
856 gen_rtx_SET (VOIDmode,
857 XEXP (loc, 0),
858 tem),
859 amd->side_effects);
860 return addr;
861 case PRE_MODIFY:
862 addr = XEXP (loc, 1);
863 case POST_MODIFY:
864 if (addr == loc)
865 addr = XEXP (loc, 0);
866 gcc_assert (amd->mem_mode != VOIDmode);
867 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
868 amd->side_effects = alloc_EXPR_LIST (0,
869 gen_rtx_SET (VOIDmode,
870 XEXP (loc, 0),
871 XEXP (loc, 1)),
872 amd->side_effects);
873 return addr;
874 case SUBREG:
875 /* First try without delegitimization of whole MEMs and
876 avoid_constant_pool_reference, which is more likely to succeed. */
877 store_save = amd->store;
878 amd->store = true;
879 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
880 data);
881 amd->store = store_save;
882 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
883 if (mem == SUBREG_REG (loc))
884 {
885 tem = loc;
886 goto finish_subreg;
887 }
888 tem = simplify_gen_subreg (GET_MODE (loc), mem,
889 GET_MODE (SUBREG_REG (loc)),
890 SUBREG_BYTE (loc));
891 if (tem)
892 goto finish_subreg;
893 tem = simplify_gen_subreg (GET_MODE (loc), addr,
894 GET_MODE (SUBREG_REG (loc)),
895 SUBREG_BYTE (loc));
896 if (tem == NULL_RTX)
897 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
898 finish_subreg:
899 if (MAY_HAVE_DEBUG_INSNS
900 && GET_CODE (tem) == SUBREG
901 && (GET_CODE (SUBREG_REG (tem)) == PLUS
902 || GET_CODE (SUBREG_REG (tem)) == MINUS
903 || GET_CODE (SUBREG_REG (tem)) == MULT
904 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
905 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
906 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
907 && GET_MODE_SIZE (GET_MODE (tem))
908 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
909 && subreg_lowpart_p (tem)
910 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
911 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
912 GET_MODE (SUBREG_REG (tem)));
913 return tem;
914 default:
915 break;
916 }
917 return NULL_RTX;
918 }
919
920 /* Helper function for replacement of uses. */
921
922 static void
923 adjust_mem_uses (rtx *x, void *data)
924 {
925 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
926 if (new_x != *x)
927 validate_change (NULL_RTX, x, new_x, true);
928 }
929
930 /* Helper function for replacement of stores. */
931
932 static void
933 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
934 {
935 if (MEM_P (loc))
936 {
937 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
938 adjust_mems, data);
939 if (new_dest != SET_DEST (expr))
940 {
941 rtx xexpr = CONST_CAST_RTX (expr);
942 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
943 }
944 }
945 }
946
947 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
948 replace them with their value in the insn and add the side-effects
949 as other sets to the insn. */
950
951 static void
952 adjust_insn (basic_block bb, rtx insn)
953 {
954 struct adjust_mem_data amd;
955 rtx set;
956 amd.mem_mode = VOIDmode;
957 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
958 amd.side_effects = NULL_RTX;
959
960 amd.store = true;
961 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
962
963 amd.store = false;
964 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
965
966 /* For read-only MEMs containing some constant, prefer those
967 constants. */
968 set = single_set (insn);
969 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
970 {
971 rtx note = find_reg_equal_equiv_note (insn);
972
973 if (note && CONSTANT_P (XEXP (note, 0)))
974 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
975 }
976
977 if (amd.side_effects)
978 {
979 rtx *pat, new_pat, s;
980 int i, oldn, newn;
981
982 pat = &PATTERN (insn);
983 if (GET_CODE (*pat) == COND_EXEC)
984 pat = &COND_EXEC_CODE (*pat);
985 if (GET_CODE (*pat) == PARALLEL)
986 oldn = XVECLEN (*pat, 0);
987 else
988 oldn = 1;
989 for (s = amd.side_effects, newn = 0; s; newn++)
990 s = XEXP (s, 1);
991 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
992 if (GET_CODE (*pat) == PARALLEL)
993 for (i = 0; i < oldn; i++)
994 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
995 else
996 XVECEXP (new_pat, 0, 0) = *pat;
997 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
998 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
999 free_EXPR_LIST_list (&amd.side_effects);
1000 validate_change (NULL_RTX, pat, new_pat, true);
1001 }
1002 }
1003
1004 /* Return true if a decl_or_value DV is a DECL or NULL. */
1005 static inline bool
1006 dv_is_decl_p (decl_or_value dv)
1007 {
1008 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1009 }
1010
1011 /* Return true if a decl_or_value is a VALUE rtl. */
1012 static inline bool
1013 dv_is_value_p (decl_or_value dv)
1014 {
1015 return dv && !dv_is_decl_p (dv);
1016 }
1017
1018 /* Return the decl in the decl_or_value. */
1019 static inline tree
1020 dv_as_decl (decl_or_value dv)
1021 {
1022 #ifdef ENABLE_CHECKING
1023 gcc_assert (dv_is_decl_p (dv));
1024 #endif
1025 return (tree) dv;
1026 }
1027
1028 /* Return the value in the decl_or_value. */
1029 static inline rtx
1030 dv_as_value (decl_or_value dv)
1031 {
1032 #ifdef ENABLE_CHECKING
1033 gcc_assert (dv_is_value_p (dv));
1034 #endif
1035 return (rtx)dv;
1036 }
1037
1038 /* Return the opaque pointer in the decl_or_value. */
1039 static inline void *
1040 dv_as_opaque (decl_or_value dv)
1041 {
1042 return dv;
1043 }
1044
1045 /* Return true if a decl_or_value must not have more than one variable
1046 part. */
1047 static inline bool
1048 dv_onepart_p (decl_or_value dv)
1049 {
1050 tree decl;
1051
1052 if (!MAY_HAVE_DEBUG_INSNS)
1053 return false;
1054
1055 if (dv_is_value_p (dv))
1056 return true;
1057
1058 decl = dv_as_decl (dv);
1059
1060 if (!decl)
1061 return true;
1062
1063 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1064 return true;
1065
1066 return (target_for_debug_bind (decl) != NULL_TREE);
1067 }
1068
1069 /* Return the variable pool to be used for dv, depending on whether it
1070 can have multiple parts or not. */
1071 static inline alloc_pool
1072 dv_pool (decl_or_value dv)
1073 {
1074 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1075 }
1076
1077 /* Build a decl_or_value out of a decl. */
1078 static inline decl_or_value
1079 dv_from_decl (tree decl)
1080 {
1081 decl_or_value dv;
1082 dv = decl;
1083 #ifdef ENABLE_CHECKING
1084 gcc_assert (dv_is_decl_p (dv));
1085 #endif
1086 return dv;
1087 }
1088
1089 /* Build a decl_or_value out of a value. */
1090 static inline decl_or_value
1091 dv_from_value (rtx value)
1092 {
1093 decl_or_value dv;
1094 dv = value;
1095 #ifdef ENABLE_CHECKING
1096 gcc_assert (dv_is_value_p (dv));
1097 #endif
1098 return dv;
1099 }
1100
1101 extern void debug_dv (decl_or_value dv);
1102
1103 void
1104 debug_dv (decl_or_value dv)
1105 {
1106 if (dv_is_value_p (dv))
1107 debug_rtx (dv_as_value (dv));
1108 else
1109 debug_generic_stmt (dv_as_decl (dv));
1110 }
1111
1112 typedef unsigned int dvuid;
1113
1114 /* Return the uid of DV. */
1115
1116 static inline dvuid
1117 dv_uid (decl_or_value dv)
1118 {
1119 if (dv_is_value_p (dv))
1120 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1121 else
1122 return DECL_UID (dv_as_decl (dv));
1123 }
1124
1125 /* Compute the hash from the uid. */
1126
1127 static inline hashval_t
1128 dv_uid2hash (dvuid uid)
1129 {
1130 return uid;
1131 }
1132
1133 /* The hash function for a mask table in a shared_htab chain. */
1134
1135 static inline hashval_t
1136 dv_htab_hash (decl_or_value dv)
1137 {
1138 return dv_uid2hash (dv_uid (dv));
1139 }
1140
1141 /* The hash function for variable_htab, computes the hash value
1142 from the declaration of variable X. */
1143
1144 static hashval_t
1145 variable_htab_hash (const void *x)
1146 {
1147 const_variable const v = (const_variable) x;
1148
1149 return dv_htab_hash (v->dv);
1150 }
1151
1152 /* Compare the declaration of variable X with declaration Y. */
1153
1154 static int
1155 variable_htab_eq (const void *x, const void *y)
1156 {
1157 const_variable const v = (const_variable) x;
1158 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1159
1160 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1161 }
1162
1163 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1164
1165 static void
1166 variable_htab_free (void *elem)
1167 {
1168 int i;
1169 variable var = (variable) elem;
1170 location_chain node, next;
1171
1172 gcc_assert (var->refcount > 0);
1173
1174 var->refcount--;
1175 if (var->refcount > 0)
1176 return;
1177
1178 for (i = 0; i < var->n_var_parts; i++)
1179 {
1180 for (node = var->var_part[i].loc_chain; node; node = next)
1181 {
1182 next = node->next;
1183 pool_free (loc_chain_pool, node);
1184 }
1185 var->var_part[i].loc_chain = NULL;
1186 }
1187 pool_free (dv_pool (var->dv), var);
1188 }
1189
1190 /* The hash function for value_chains htab, computes the hash value
1191 from the VALUE. */
1192
1193 static hashval_t
1194 value_chain_htab_hash (const void *x)
1195 {
1196 const_value_chain const v = (const_value_chain) x;
1197
1198 return dv_htab_hash (v->dv);
1199 }
1200
1201 /* Compare the VALUE X with VALUE Y. */
1202
1203 static int
1204 value_chain_htab_eq (const void *x, const void *y)
1205 {
1206 const_value_chain const v = (const_value_chain) x;
1207 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1208
1209 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1210 }
1211
1212 /* Initialize the set (array) SET of attrs to empty lists. */
1213
1214 static void
1215 init_attrs_list_set (attrs *set)
1216 {
1217 int i;
1218
1219 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1220 set[i] = NULL;
1221 }
1222
1223 /* Make the list *LISTP empty. */
1224
1225 static void
1226 attrs_list_clear (attrs *listp)
1227 {
1228 attrs list, next;
1229
1230 for (list = *listp; list; list = next)
1231 {
1232 next = list->next;
1233 pool_free (attrs_pool, list);
1234 }
1235 *listp = NULL;
1236 }
1237
1238 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1239
1240 static attrs
1241 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1242 {
1243 for (; list; list = list->next)
1244 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1245 return list;
1246 return NULL;
1247 }
1248
1249 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1250
1251 static void
1252 attrs_list_insert (attrs *listp, decl_or_value dv,
1253 HOST_WIDE_INT offset, rtx loc)
1254 {
1255 attrs list;
1256
1257 list = (attrs) pool_alloc (attrs_pool);
1258 list->loc = loc;
1259 list->dv = dv;
1260 list->offset = offset;
1261 list->next = *listp;
1262 *listp = list;
1263 }
1264
1265 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1266
1267 static void
1268 attrs_list_copy (attrs *dstp, attrs src)
1269 {
1270 attrs n;
1271
1272 attrs_list_clear (dstp);
1273 for (; src; src = src->next)
1274 {
1275 n = (attrs) pool_alloc (attrs_pool);
1276 n->loc = src->loc;
1277 n->dv = src->dv;
1278 n->offset = src->offset;
1279 n->next = *dstp;
1280 *dstp = n;
1281 }
1282 }
1283
1284 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1285
1286 static void
1287 attrs_list_union (attrs *dstp, attrs src)
1288 {
1289 for (; src; src = src->next)
1290 {
1291 if (!attrs_list_member (*dstp, src->dv, src->offset))
1292 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1293 }
1294 }
1295
1296 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1297 *DSTP. */
1298
1299 static void
1300 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1301 {
1302 gcc_assert (!*dstp);
1303 for (; src; src = src->next)
1304 {
1305 if (!dv_onepart_p (src->dv))
1306 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1307 }
1308 for (src = src2; src; src = src->next)
1309 {
1310 if (!dv_onepart_p (src->dv)
1311 && !attrs_list_member (*dstp, src->dv, src->offset))
1312 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1313 }
1314 }
1315
1316 /* Shared hashtable support. */
1317
1318 /* Return true if VARS is shared. */
1319
1320 static inline bool
1321 shared_hash_shared (shared_hash vars)
1322 {
1323 return vars->refcount > 1;
1324 }
1325
1326 /* Return the hash table for VARS. */
1327
1328 static inline htab_t
1329 shared_hash_htab (shared_hash vars)
1330 {
1331 return vars->htab;
1332 }
1333
1334 /* Return true if VAR is shared, or maybe because VARS is shared. */
1335
1336 static inline bool
1337 shared_var_p (variable var, shared_hash vars)
1338 {
1339 /* Don't count an entry in the changed_variables table as a duplicate. */
1340 return ((var->refcount > 1 + (int) var->in_changed_variables)
1341 || shared_hash_shared (vars));
1342 }
1343
1344 /* Copy variables into a new hash table. */
1345
1346 static shared_hash
1347 shared_hash_unshare (shared_hash vars)
1348 {
1349 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1350 gcc_assert (vars->refcount > 1);
1351 new_vars->refcount = 1;
1352 new_vars->htab
1353 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1354 variable_htab_eq, variable_htab_free);
1355 vars_copy (new_vars->htab, vars->htab);
1356 vars->refcount--;
1357 return new_vars;
1358 }
1359
1360 /* Increment reference counter on VARS and return it. */
1361
1362 static inline shared_hash
1363 shared_hash_copy (shared_hash vars)
1364 {
1365 vars->refcount++;
1366 return vars;
1367 }
1368
1369 /* Decrement reference counter and destroy hash table if not shared
1370 anymore. */
1371
1372 static void
1373 shared_hash_destroy (shared_hash vars)
1374 {
1375 gcc_assert (vars->refcount > 0);
1376 if (--vars->refcount == 0)
1377 {
1378 htab_delete (vars->htab);
1379 pool_free (shared_hash_pool, vars);
1380 }
1381 }
1382
1383 /* Unshare *PVARS if shared and return slot for DV. If INS is
1384 INSERT, insert it if not already present. */
1385
1386 static inline void **
1387 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1388 hashval_t dvhash, enum insert_option ins)
1389 {
1390 if (shared_hash_shared (*pvars))
1391 *pvars = shared_hash_unshare (*pvars);
1392 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1393 }
1394
1395 static inline void **
1396 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1397 enum insert_option ins)
1398 {
1399 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1400 }
1401
1402 /* Return slot for DV, if it is already present in the hash table.
1403 If it is not present, insert it only VARS is not shared, otherwise
1404 return NULL. */
1405
1406 static inline void **
1407 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1408 {
1409 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1410 shared_hash_shared (vars)
1411 ? NO_INSERT : INSERT);
1412 }
1413
1414 static inline void **
1415 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1416 {
1417 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1418 }
1419
1420 /* Return slot for DV only if it is already present in the hash table. */
1421
1422 static inline void **
1423 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1424 hashval_t dvhash)
1425 {
1426 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1427 NO_INSERT);
1428 }
1429
1430 static inline void **
1431 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1432 {
1433 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1434 }
1435
1436 /* Return variable for DV or NULL if not already present in the hash
1437 table. */
1438
1439 static inline variable
1440 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1441 {
1442 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1443 }
1444
1445 static inline variable
1446 shared_hash_find (shared_hash vars, decl_or_value dv)
1447 {
1448 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1449 }
1450
1451 /* Return true if TVAL is better than CVAL as a canonival value. We
1452 choose lowest-numbered VALUEs, using the RTX address as a
1453 tie-breaker. The idea is to arrange them into a star topology,
1454 such that all of them are at most one step away from the canonical
1455 value, and the canonical value has backlinks to all of them, in
1456 addition to all the actual locations. We don't enforce this
1457 topology throughout the entire dataflow analysis, though.
1458 */
1459
1460 static inline bool
1461 canon_value_cmp (rtx tval, rtx cval)
1462 {
1463 return !cval
1464 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1465 }
1466
1467 static bool dst_can_be_shared;
1468
1469 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1470
1471 static void **
1472 unshare_variable (dataflow_set *set, void **slot, variable var,
1473 enum var_init_status initialized)
1474 {
1475 variable new_var;
1476 int i;
1477
1478 new_var = (variable) pool_alloc (dv_pool (var->dv));
1479 new_var->dv = var->dv;
1480 new_var->refcount = 1;
1481 var->refcount--;
1482 new_var->n_var_parts = var->n_var_parts;
1483 new_var->cur_loc_changed = var->cur_loc_changed;
1484 var->cur_loc_changed = false;
1485 new_var->in_changed_variables = false;
1486
1487 if (! flag_var_tracking_uninit)
1488 initialized = VAR_INIT_STATUS_INITIALIZED;
1489
1490 for (i = 0; i < var->n_var_parts; i++)
1491 {
1492 location_chain node;
1493 location_chain *nextp;
1494
1495 new_var->var_part[i].offset = var->var_part[i].offset;
1496 nextp = &new_var->var_part[i].loc_chain;
1497 for (node = var->var_part[i].loc_chain; node; node = node->next)
1498 {
1499 location_chain new_lc;
1500
1501 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1502 new_lc->next = NULL;
1503 if (node->init > initialized)
1504 new_lc->init = node->init;
1505 else
1506 new_lc->init = initialized;
1507 if (node->set_src && !(MEM_P (node->set_src)))
1508 new_lc->set_src = node->set_src;
1509 else
1510 new_lc->set_src = NULL;
1511 new_lc->loc = node->loc;
1512
1513 *nextp = new_lc;
1514 nextp = &new_lc->next;
1515 }
1516
1517 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1518 }
1519
1520 dst_can_be_shared = false;
1521 if (shared_hash_shared (set->vars))
1522 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1523 else if (set->traversed_vars && set->vars != set->traversed_vars)
1524 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1525 *slot = new_var;
1526 if (var->in_changed_variables)
1527 {
1528 void **cslot
1529 = htab_find_slot_with_hash (changed_variables, var->dv,
1530 dv_htab_hash (var->dv), NO_INSERT);
1531 gcc_assert (*cslot == (void *) var);
1532 var->in_changed_variables = false;
1533 variable_htab_free (var);
1534 *cslot = new_var;
1535 new_var->in_changed_variables = true;
1536 }
1537 return slot;
1538 }
1539
1540 /* Add a variable from *SLOT to hash table DATA and increase its reference
1541 count. */
1542
1543 static int
1544 vars_copy_1 (void **slot, void *data)
1545 {
1546 htab_t dst = (htab_t) data;
1547 variable src;
1548 void **dstp;
1549
1550 src = (variable) *slot;
1551 src->refcount++;
1552
1553 dstp = htab_find_slot_with_hash (dst, src->dv,
1554 dv_htab_hash (src->dv),
1555 INSERT);
1556 *dstp = src;
1557
1558 /* Continue traversing the hash table. */
1559 return 1;
1560 }
1561
1562 /* Copy all variables from hash table SRC to hash table DST. */
1563
1564 static void
1565 vars_copy (htab_t dst, htab_t src)
1566 {
1567 htab_traverse_noresize (src, vars_copy_1, dst);
1568 }
1569
1570 /* Map a decl to its main debug decl. */
1571
1572 static inline tree
1573 var_debug_decl (tree decl)
1574 {
1575 if (decl && DECL_P (decl)
1576 && DECL_DEBUG_EXPR_IS_FROM (decl) && DECL_DEBUG_EXPR (decl)
1577 && DECL_P (DECL_DEBUG_EXPR (decl)))
1578 decl = DECL_DEBUG_EXPR (decl);
1579
1580 return decl;
1581 }
1582
1583 /* Set the register LOC to contain DV, OFFSET. */
1584
1585 static void
1586 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1587 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1588 enum insert_option iopt)
1589 {
1590 attrs node;
1591 bool decl_p = dv_is_decl_p (dv);
1592
1593 if (decl_p)
1594 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1595
1596 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1597 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1598 && node->offset == offset)
1599 break;
1600 if (!node)
1601 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1602 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1603 }
1604
1605 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1606
1607 static void
1608 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1609 rtx set_src)
1610 {
1611 tree decl = REG_EXPR (loc);
1612 HOST_WIDE_INT offset = REG_OFFSET (loc);
1613
1614 var_reg_decl_set (set, loc, initialized,
1615 dv_from_decl (decl), offset, set_src, INSERT);
1616 }
1617
1618 static enum var_init_status
1619 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1620 {
1621 variable var;
1622 int i;
1623 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1624
1625 if (! flag_var_tracking_uninit)
1626 return VAR_INIT_STATUS_INITIALIZED;
1627
1628 var = shared_hash_find (set->vars, dv);
1629 if (var)
1630 {
1631 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1632 {
1633 location_chain nextp;
1634 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1635 if (rtx_equal_p (nextp->loc, loc))
1636 {
1637 ret_val = nextp->init;
1638 break;
1639 }
1640 }
1641 }
1642
1643 return ret_val;
1644 }
1645
1646 /* Delete current content of register LOC in dataflow set SET and set
1647 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1648 MODIFY is true, any other live copies of the same variable part are
1649 also deleted from the dataflow set, otherwise the variable part is
1650 assumed to be copied from another location holding the same
1651 part. */
1652
1653 static void
1654 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1655 enum var_init_status initialized, rtx set_src)
1656 {
1657 tree decl = REG_EXPR (loc);
1658 HOST_WIDE_INT offset = REG_OFFSET (loc);
1659 attrs node, next;
1660 attrs *nextp;
1661
1662 decl = var_debug_decl (decl);
1663
1664 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1665 initialized = get_init_value (set, loc, dv_from_decl (decl));
1666
1667 nextp = &set->regs[REGNO (loc)];
1668 for (node = *nextp; node; node = next)
1669 {
1670 next = node->next;
1671 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1672 {
1673 delete_variable_part (set, node->loc, node->dv, node->offset);
1674 pool_free (attrs_pool, node);
1675 *nextp = next;
1676 }
1677 else
1678 {
1679 node->loc = loc;
1680 nextp = &node->next;
1681 }
1682 }
1683 if (modify)
1684 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1685 var_reg_set (set, loc, initialized, set_src);
1686 }
1687
1688 /* Delete the association of register LOC in dataflow set SET with any
1689 variables that aren't onepart. If CLOBBER is true, also delete any
1690 other live copies of the same variable part, and delete the
1691 association with onepart dvs too. */
1692
1693 static void
1694 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1695 {
1696 attrs *nextp = &set->regs[REGNO (loc)];
1697 attrs node, next;
1698
1699 if (clobber)
1700 {
1701 tree decl = REG_EXPR (loc);
1702 HOST_WIDE_INT offset = REG_OFFSET (loc);
1703
1704 decl = var_debug_decl (decl);
1705
1706 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1707 }
1708
1709 for (node = *nextp; node; node = next)
1710 {
1711 next = node->next;
1712 if (clobber || !dv_onepart_p (node->dv))
1713 {
1714 delete_variable_part (set, node->loc, node->dv, node->offset);
1715 pool_free (attrs_pool, node);
1716 *nextp = next;
1717 }
1718 else
1719 nextp = &node->next;
1720 }
1721 }
1722
1723 /* Delete content of register with number REGNO in dataflow set SET. */
1724
1725 static void
1726 var_regno_delete (dataflow_set *set, int regno)
1727 {
1728 attrs *reg = &set->regs[regno];
1729 attrs node, next;
1730
1731 for (node = *reg; node; node = next)
1732 {
1733 next = node->next;
1734 delete_variable_part (set, node->loc, node->dv, node->offset);
1735 pool_free (attrs_pool, node);
1736 }
1737 *reg = NULL;
1738 }
1739
1740 /* Set the location of DV, OFFSET as the MEM LOC. */
1741
1742 static void
1743 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1744 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1745 enum insert_option iopt)
1746 {
1747 if (dv_is_decl_p (dv))
1748 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1749
1750 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1751 }
1752
1753 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1754 SET to LOC.
1755 Adjust the address first if it is stack pointer based. */
1756
1757 static void
1758 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1759 rtx set_src)
1760 {
1761 tree decl = MEM_EXPR (loc);
1762 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1763
1764 var_mem_decl_set (set, loc, initialized,
1765 dv_from_decl (decl), offset, set_src, INSERT);
1766 }
1767
1768 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1769 dataflow set SET to LOC. If MODIFY is true, any other live copies
1770 of the same variable part are also deleted from the dataflow set,
1771 otherwise the variable part is assumed to be copied from another
1772 location holding the same part.
1773 Adjust the address first if it is stack pointer based. */
1774
1775 static void
1776 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1777 enum var_init_status initialized, rtx set_src)
1778 {
1779 tree decl = MEM_EXPR (loc);
1780 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1781
1782 decl = var_debug_decl (decl);
1783
1784 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1785 initialized = get_init_value (set, loc, dv_from_decl (decl));
1786
1787 if (modify)
1788 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1789 var_mem_set (set, loc, initialized, set_src);
1790 }
1791
1792 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1793 true, also delete any other live copies of the same variable part.
1794 Adjust the address first if it is stack pointer based. */
1795
1796 static void
1797 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1798 {
1799 tree decl = MEM_EXPR (loc);
1800 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1801
1802 decl = var_debug_decl (decl);
1803 if (clobber)
1804 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1805 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1806 }
1807
1808 /* Bind a value to a location it was just stored in. If MODIFIED
1809 holds, assume the location was modified, detaching it from any
1810 values bound to it. */
1811
1812 static void
1813 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1814 {
1815 cselib_val *v = CSELIB_VAL_PTR (val);
1816
1817 gcc_assert (cselib_preserved_value_p (v));
1818
1819 if (dump_file)
1820 {
1821 fprintf (dump_file, "%i: ", INSN_UID (insn));
1822 print_inline_rtx (dump_file, val, 0);
1823 fprintf (dump_file, " stored in ");
1824 print_inline_rtx (dump_file, loc, 0);
1825 if (v->locs)
1826 {
1827 struct elt_loc_list *l;
1828 for (l = v->locs; l; l = l->next)
1829 {
1830 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1831 print_inline_rtx (dump_file, l->loc, 0);
1832 }
1833 }
1834 fprintf (dump_file, "\n");
1835 }
1836
1837 if (REG_P (loc))
1838 {
1839 if (modified)
1840 var_regno_delete (set, REGNO (loc));
1841 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1842 dv_from_value (val), 0, NULL_RTX, INSERT);
1843 }
1844 else if (MEM_P (loc))
1845 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1846 dv_from_value (val), 0, NULL_RTX, INSERT);
1847 else
1848 set_variable_part (set, loc, dv_from_value (val), 0,
1849 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1850 }
1851
1852 /* Reset this node, detaching all its equivalences. Return the slot
1853 in the variable hash table that holds dv, if there is one. */
1854
1855 static void
1856 val_reset (dataflow_set *set, decl_or_value dv)
1857 {
1858 variable var = shared_hash_find (set->vars, dv) ;
1859 location_chain node;
1860 rtx cval;
1861
1862 if (!var || !var->n_var_parts)
1863 return;
1864
1865 gcc_assert (var->n_var_parts == 1);
1866
1867 cval = NULL;
1868 for (node = var->var_part[0].loc_chain; node; node = node->next)
1869 if (GET_CODE (node->loc) == VALUE
1870 && canon_value_cmp (node->loc, cval))
1871 cval = node->loc;
1872
1873 for (node = var->var_part[0].loc_chain; node; node = node->next)
1874 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1875 {
1876 /* Redirect the equivalence link to the new canonical
1877 value, or simply remove it if it would point at
1878 itself. */
1879 if (cval)
1880 set_variable_part (set, cval, dv_from_value (node->loc),
1881 0, node->init, node->set_src, NO_INSERT);
1882 delete_variable_part (set, dv_as_value (dv),
1883 dv_from_value (node->loc), 0);
1884 }
1885
1886 if (cval)
1887 {
1888 decl_or_value cdv = dv_from_value (cval);
1889
1890 /* Keep the remaining values connected, accummulating links
1891 in the canonical value. */
1892 for (node = var->var_part[0].loc_chain; node; node = node->next)
1893 {
1894 if (node->loc == cval)
1895 continue;
1896 else if (GET_CODE (node->loc) == REG)
1897 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1898 node->set_src, NO_INSERT);
1899 else if (GET_CODE (node->loc) == MEM)
1900 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1901 node->set_src, NO_INSERT);
1902 else
1903 set_variable_part (set, node->loc, cdv, 0,
1904 node->init, node->set_src, NO_INSERT);
1905 }
1906 }
1907
1908 /* We remove this last, to make sure that the canonical value is not
1909 removed to the point of requiring reinsertion. */
1910 if (cval)
1911 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1912
1913 clobber_variable_part (set, NULL, dv, 0, NULL);
1914
1915 /* ??? Should we make sure there aren't other available values or
1916 variables whose values involve this one other than by
1917 equivalence? E.g., at the very least we should reset MEMs, those
1918 shouldn't be too hard to find cselib-looking up the value as an
1919 address, then locating the resulting value in our own hash
1920 table. */
1921 }
1922
1923 /* Find the values in a given location and map the val to another
1924 value, if it is unique, or add the location as one holding the
1925 value. */
1926
1927 static void
1928 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1929 {
1930 decl_or_value dv = dv_from_value (val);
1931
1932 if (dump_file && (dump_flags & TDF_DETAILS))
1933 {
1934 if (insn)
1935 fprintf (dump_file, "%i: ", INSN_UID (insn));
1936 else
1937 fprintf (dump_file, "head: ");
1938 print_inline_rtx (dump_file, val, 0);
1939 fputs (" is at ", dump_file);
1940 print_inline_rtx (dump_file, loc, 0);
1941 fputc ('\n', dump_file);
1942 }
1943
1944 val_reset (set, dv);
1945
1946 if (REG_P (loc))
1947 {
1948 attrs node, found = NULL;
1949
1950 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1951 if (dv_is_value_p (node->dv)
1952 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
1953 {
1954 found = node;
1955
1956 /* Map incoming equivalences. ??? Wouldn't it be nice if
1957 we just started sharing the location lists? Maybe a
1958 circular list ending at the value itself or some
1959 such. */
1960 set_variable_part (set, dv_as_value (node->dv),
1961 dv_from_value (val), node->offset,
1962 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1963 set_variable_part (set, val, node->dv, node->offset,
1964 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1965 }
1966
1967 /* If we didn't find any equivalence, we need to remember that
1968 this value is held in the named register. */
1969 if (!found)
1970 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1971 dv_from_value (val), 0, NULL_RTX, INSERT);
1972 }
1973 else if (MEM_P (loc))
1974 /* ??? Merge equivalent MEMs. */
1975 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1976 dv_from_value (val), 0, NULL_RTX, INSERT);
1977 else
1978 /* ??? Merge equivalent expressions. */
1979 set_variable_part (set, loc, dv_from_value (val), 0,
1980 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1981 }
1982
1983 /* Initialize dataflow set SET to be empty.
1984 VARS_SIZE is the initial size of hash table VARS. */
1985
1986 static void
1987 dataflow_set_init (dataflow_set *set)
1988 {
1989 init_attrs_list_set (set->regs);
1990 set->vars = shared_hash_copy (empty_shared_hash);
1991 set->stack_adjust = 0;
1992 set->traversed_vars = NULL;
1993 }
1994
1995 /* Delete the contents of dataflow set SET. */
1996
1997 static void
1998 dataflow_set_clear (dataflow_set *set)
1999 {
2000 int i;
2001
2002 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2003 attrs_list_clear (&set->regs[i]);
2004
2005 shared_hash_destroy (set->vars);
2006 set->vars = shared_hash_copy (empty_shared_hash);
2007 }
2008
2009 /* Copy the contents of dataflow set SRC to DST. */
2010
2011 static void
2012 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2013 {
2014 int i;
2015
2016 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2017 attrs_list_copy (&dst->regs[i], src->regs[i]);
2018
2019 shared_hash_destroy (dst->vars);
2020 dst->vars = shared_hash_copy (src->vars);
2021 dst->stack_adjust = src->stack_adjust;
2022 }
2023
2024 /* Information for merging lists of locations for a given offset of variable.
2025 */
2026 struct variable_union_info
2027 {
2028 /* Node of the location chain. */
2029 location_chain lc;
2030
2031 /* The sum of positions in the input chains. */
2032 int pos;
2033
2034 /* The position in the chain of DST dataflow set. */
2035 int pos_dst;
2036 };
2037
2038 /* Buffer for location list sorting and its allocated size. */
2039 static struct variable_union_info *vui_vec;
2040 static int vui_allocated;
2041
2042 /* Compare function for qsort, order the structures by POS element. */
2043
2044 static int
2045 variable_union_info_cmp_pos (const void *n1, const void *n2)
2046 {
2047 const struct variable_union_info *const i1 =
2048 (const struct variable_union_info *) n1;
2049 const struct variable_union_info *const i2 =
2050 ( const struct variable_union_info *) n2;
2051
2052 if (i1->pos != i2->pos)
2053 return i1->pos - i2->pos;
2054
2055 return (i1->pos_dst - i2->pos_dst);
2056 }
2057
2058 /* Compute union of location parts of variable *SLOT and the same variable
2059 from hash table DATA. Compute "sorted" union of the location chains
2060 for common offsets, i.e. the locations of a variable part are sorted by
2061 a priority where the priority is the sum of the positions in the 2 chains
2062 (if a location is only in one list the position in the second list is
2063 defined to be larger than the length of the chains).
2064 When we are updating the location parts the newest location is in the
2065 beginning of the chain, so when we do the described "sorted" union
2066 we keep the newest locations in the beginning. */
2067
2068 static int
2069 variable_union (void **slot, void *data)
2070 {
2071 variable src, dst;
2072 void **dstp;
2073 dataflow_set *set = (dataflow_set *) data;
2074 int i, j, k;
2075
2076 src = (variable) *slot;
2077 dstp = shared_hash_find_slot (set->vars, src->dv);
2078 if (!dstp || !*dstp)
2079 {
2080 src->refcount++;
2081
2082 dst_can_be_shared = false;
2083 if (!dstp)
2084 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2085
2086 *dstp = src;
2087
2088 /* Continue traversing the hash table. */
2089 return 1;
2090 }
2091 else
2092 dst = (variable) *dstp;
2093
2094 gcc_assert (src->n_var_parts);
2095
2096 /* We can combine one-part variables very efficiently, because their
2097 entries are in canonical order. */
2098 if (dv_onepart_p (src->dv))
2099 {
2100 location_chain *nodep, dnode, snode;
2101
2102 gcc_assert (src->n_var_parts == 1);
2103 gcc_assert (dst->n_var_parts == 1);
2104
2105 snode = src->var_part[0].loc_chain;
2106 gcc_assert (snode);
2107
2108 restart_onepart_unshared:
2109 nodep = &dst->var_part[0].loc_chain;
2110 dnode = *nodep;
2111 gcc_assert (dnode);
2112
2113 while (snode)
2114 {
2115 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2116
2117 if (r > 0)
2118 {
2119 location_chain nnode;
2120
2121 if (shared_var_p (dst, set->vars))
2122 {
2123 dstp = unshare_variable (set, dstp, dst,
2124 VAR_INIT_STATUS_INITIALIZED);
2125 dst = (variable)*dstp;
2126 goto restart_onepart_unshared;
2127 }
2128
2129 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2130 nnode->loc = snode->loc;
2131 nnode->init = snode->init;
2132 if (!snode->set_src || MEM_P (snode->set_src))
2133 nnode->set_src = NULL;
2134 else
2135 nnode->set_src = snode->set_src;
2136 nnode->next = dnode;
2137 dnode = nnode;
2138 }
2139 #ifdef ENABLE_CHECKING
2140 else if (r == 0)
2141 gcc_assert (rtx_equal_p (dnode->loc, snode->loc));
2142 #endif
2143
2144 if (r >= 0)
2145 snode = snode->next;
2146
2147 nodep = &dnode->next;
2148 dnode = *nodep;
2149 }
2150
2151 return 1;
2152 }
2153
2154 /* Count the number of location parts, result is K. */
2155 for (i = 0, j = 0, k = 0;
2156 i < src->n_var_parts && j < dst->n_var_parts; k++)
2157 {
2158 if (src->var_part[i].offset == dst->var_part[j].offset)
2159 {
2160 i++;
2161 j++;
2162 }
2163 else if (src->var_part[i].offset < dst->var_part[j].offset)
2164 i++;
2165 else
2166 j++;
2167 }
2168 k += src->n_var_parts - i;
2169 k += dst->n_var_parts - j;
2170
2171 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2172 thus there are at most MAX_VAR_PARTS different offsets. */
2173 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2174
2175 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2176 {
2177 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2178 dst = (variable)*dstp;
2179 }
2180
2181 i = src->n_var_parts - 1;
2182 j = dst->n_var_parts - 1;
2183 dst->n_var_parts = k;
2184
2185 for (k--; k >= 0; k--)
2186 {
2187 location_chain node, node2;
2188
2189 if (i >= 0 && j >= 0
2190 && src->var_part[i].offset == dst->var_part[j].offset)
2191 {
2192 /* Compute the "sorted" union of the chains, i.e. the locations which
2193 are in both chains go first, they are sorted by the sum of
2194 positions in the chains. */
2195 int dst_l, src_l;
2196 int ii, jj, n;
2197 struct variable_union_info *vui;
2198
2199 /* If DST is shared compare the location chains.
2200 If they are different we will modify the chain in DST with
2201 high probability so make a copy of DST. */
2202 if (shared_var_p (dst, set->vars))
2203 {
2204 for (node = src->var_part[i].loc_chain,
2205 node2 = dst->var_part[j].loc_chain; node && node2;
2206 node = node->next, node2 = node2->next)
2207 {
2208 if (!((REG_P (node2->loc)
2209 && REG_P (node->loc)
2210 && REGNO (node2->loc) == REGNO (node->loc))
2211 || rtx_equal_p (node2->loc, node->loc)))
2212 {
2213 if (node2->init < node->init)
2214 node2->init = node->init;
2215 break;
2216 }
2217 }
2218 if (node || node2)
2219 {
2220 dstp = unshare_variable (set, dstp, dst,
2221 VAR_INIT_STATUS_UNKNOWN);
2222 dst = (variable)*dstp;
2223 }
2224 }
2225
2226 src_l = 0;
2227 for (node = src->var_part[i].loc_chain; node; node = node->next)
2228 src_l++;
2229 dst_l = 0;
2230 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2231 dst_l++;
2232
2233 if (dst_l == 1)
2234 {
2235 /* The most common case, much simpler, no qsort is needed. */
2236 location_chain dstnode = dst->var_part[j].loc_chain;
2237 dst->var_part[k].loc_chain = dstnode;
2238 dst->var_part[k].offset = dst->var_part[j].offset;
2239 node2 = dstnode;
2240 for (node = src->var_part[i].loc_chain; node; node = node->next)
2241 if (!((REG_P (dstnode->loc)
2242 && REG_P (node->loc)
2243 && REGNO (dstnode->loc) == REGNO (node->loc))
2244 || rtx_equal_p (dstnode->loc, node->loc)))
2245 {
2246 location_chain new_node;
2247
2248 /* Copy the location from SRC. */
2249 new_node = (location_chain) pool_alloc (loc_chain_pool);
2250 new_node->loc = node->loc;
2251 new_node->init = node->init;
2252 if (!node->set_src || MEM_P (node->set_src))
2253 new_node->set_src = NULL;
2254 else
2255 new_node->set_src = node->set_src;
2256 node2->next = new_node;
2257 node2 = new_node;
2258 }
2259 node2->next = NULL;
2260 }
2261 else
2262 {
2263 if (src_l + dst_l > vui_allocated)
2264 {
2265 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2266 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2267 vui_allocated);
2268 }
2269 vui = vui_vec;
2270
2271 /* Fill in the locations from DST. */
2272 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2273 node = node->next, jj++)
2274 {
2275 vui[jj].lc = node;
2276 vui[jj].pos_dst = jj;
2277
2278 /* Pos plus value larger than a sum of 2 valid positions. */
2279 vui[jj].pos = jj + src_l + dst_l;
2280 }
2281
2282 /* Fill in the locations from SRC. */
2283 n = dst_l;
2284 for (node = src->var_part[i].loc_chain, ii = 0; node;
2285 node = node->next, ii++)
2286 {
2287 /* Find location from NODE. */
2288 for (jj = 0; jj < dst_l; jj++)
2289 {
2290 if ((REG_P (vui[jj].lc->loc)
2291 && REG_P (node->loc)
2292 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2293 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2294 {
2295 vui[jj].pos = jj + ii;
2296 break;
2297 }
2298 }
2299 if (jj >= dst_l) /* The location has not been found. */
2300 {
2301 location_chain new_node;
2302
2303 /* Copy the location from SRC. */
2304 new_node = (location_chain) pool_alloc (loc_chain_pool);
2305 new_node->loc = node->loc;
2306 new_node->init = node->init;
2307 if (!node->set_src || MEM_P (node->set_src))
2308 new_node->set_src = NULL;
2309 else
2310 new_node->set_src = node->set_src;
2311 vui[n].lc = new_node;
2312 vui[n].pos_dst = src_l + dst_l;
2313 vui[n].pos = ii + src_l + dst_l;
2314 n++;
2315 }
2316 }
2317
2318 if (dst_l == 2)
2319 {
2320 /* Special case still very common case. For dst_l == 2
2321 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2322 vui[i].pos == i + src_l + dst_l. */
2323 if (vui[0].pos > vui[1].pos)
2324 {
2325 /* Order should be 1, 0, 2... */
2326 dst->var_part[k].loc_chain = vui[1].lc;
2327 vui[1].lc->next = vui[0].lc;
2328 if (n >= 3)
2329 {
2330 vui[0].lc->next = vui[2].lc;
2331 vui[n - 1].lc->next = NULL;
2332 }
2333 else
2334 vui[0].lc->next = NULL;
2335 ii = 3;
2336 }
2337 else
2338 {
2339 dst->var_part[k].loc_chain = vui[0].lc;
2340 if (n >= 3 && vui[2].pos < vui[1].pos)
2341 {
2342 /* Order should be 0, 2, 1, 3... */
2343 vui[0].lc->next = vui[2].lc;
2344 vui[2].lc->next = vui[1].lc;
2345 if (n >= 4)
2346 {
2347 vui[1].lc->next = vui[3].lc;
2348 vui[n - 1].lc->next = NULL;
2349 }
2350 else
2351 vui[1].lc->next = NULL;
2352 ii = 4;
2353 }
2354 else
2355 {
2356 /* Order should be 0, 1, 2... */
2357 ii = 1;
2358 vui[n - 1].lc->next = NULL;
2359 }
2360 }
2361 for (; ii < n; ii++)
2362 vui[ii - 1].lc->next = vui[ii].lc;
2363 }
2364 else
2365 {
2366 qsort (vui, n, sizeof (struct variable_union_info),
2367 variable_union_info_cmp_pos);
2368
2369 /* Reconnect the nodes in sorted order. */
2370 for (ii = 1; ii < n; ii++)
2371 vui[ii - 1].lc->next = vui[ii].lc;
2372 vui[n - 1].lc->next = NULL;
2373 dst->var_part[k].loc_chain = vui[0].lc;
2374 }
2375
2376 dst->var_part[k].offset = dst->var_part[j].offset;
2377 }
2378 i--;
2379 j--;
2380 }
2381 else if ((i >= 0 && j >= 0
2382 && src->var_part[i].offset < dst->var_part[j].offset)
2383 || i < 0)
2384 {
2385 dst->var_part[k] = dst->var_part[j];
2386 j--;
2387 }
2388 else if ((i >= 0 && j >= 0
2389 && src->var_part[i].offset > dst->var_part[j].offset)
2390 || j < 0)
2391 {
2392 location_chain *nextp;
2393
2394 /* Copy the chain from SRC. */
2395 nextp = &dst->var_part[k].loc_chain;
2396 for (node = src->var_part[i].loc_chain; node; node = node->next)
2397 {
2398 location_chain new_lc;
2399
2400 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2401 new_lc->next = NULL;
2402 new_lc->init = node->init;
2403 if (!node->set_src || MEM_P (node->set_src))
2404 new_lc->set_src = NULL;
2405 else
2406 new_lc->set_src = node->set_src;
2407 new_lc->loc = node->loc;
2408
2409 *nextp = new_lc;
2410 nextp = &new_lc->next;
2411 }
2412
2413 dst->var_part[k].offset = src->var_part[i].offset;
2414 i--;
2415 }
2416 dst->var_part[k].cur_loc = NULL;
2417 }
2418
2419 if (flag_var_tracking_uninit)
2420 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2421 {
2422 location_chain node, node2;
2423 for (node = src->var_part[i].loc_chain; node; node = node->next)
2424 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2425 if (rtx_equal_p (node->loc, node2->loc))
2426 {
2427 if (node->init > node2->init)
2428 node2->init = node->init;
2429 }
2430 }
2431
2432 /* Continue traversing the hash table. */
2433 return 1;
2434 }
2435
2436 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2437
2438 static void
2439 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2440 {
2441 int i;
2442
2443 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2444 attrs_list_union (&dst->regs[i], src->regs[i]);
2445
2446 if (dst->vars == empty_shared_hash)
2447 {
2448 shared_hash_destroy (dst->vars);
2449 dst->vars = shared_hash_copy (src->vars);
2450 }
2451 else
2452 htab_traverse (shared_hash_htab (src->vars), variable_union, dst);
2453 }
2454
2455 /* Whether the value is currently being expanded. */
2456 #define VALUE_RECURSED_INTO(x) \
2457 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2458 /* Whether the value is in changed_variables hash table. */
2459 #define VALUE_CHANGED(x) \
2460 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2461 /* Whether the decl is in changed_variables hash table. */
2462 #define DECL_CHANGED(x) TREE_VISITED (x)
2463
2464 /* Record that DV has been added into resp. removed from changed_variables
2465 hashtable. */
2466
2467 static inline void
2468 set_dv_changed (decl_or_value dv, bool newv)
2469 {
2470 if (dv_is_value_p (dv))
2471 VALUE_CHANGED (dv_as_value (dv)) = newv;
2472 else
2473 DECL_CHANGED (dv_as_decl (dv)) = newv;
2474 }
2475
2476 /* Return true if DV is present in changed_variables hash table. */
2477
2478 static inline bool
2479 dv_changed_p (decl_or_value dv)
2480 {
2481 return (dv_is_value_p (dv)
2482 ? VALUE_CHANGED (dv_as_value (dv))
2483 : DECL_CHANGED (dv_as_decl (dv)));
2484 }
2485
2486 /* Return a location list node whose loc is rtx_equal to LOC, in the
2487 location list of a one-part variable or value VAR, or in that of
2488 any values recursively mentioned in the location lists. */
2489
2490 static location_chain
2491 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2492 {
2493 location_chain node;
2494
2495 if (!var)
2496 return NULL;
2497
2498 gcc_assert (dv_onepart_p (var->dv));
2499
2500 if (!var->n_var_parts)
2501 return NULL;
2502
2503 gcc_assert (var->var_part[0].offset == 0);
2504
2505 for (node = var->var_part[0].loc_chain; node; node = node->next)
2506 if (rtx_equal_p (loc, node->loc))
2507 return node;
2508 else if (GET_CODE (node->loc) == VALUE
2509 && !VALUE_RECURSED_INTO (node->loc))
2510 {
2511 decl_or_value dv = dv_from_value (node->loc);
2512 variable var = (variable)
2513 htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2514
2515 if (var)
2516 {
2517 location_chain where;
2518 VALUE_RECURSED_INTO (node->loc) = true;
2519 if ((where = find_loc_in_1pdv (loc, var, vars)))
2520 {
2521 VALUE_RECURSED_INTO (node->loc) = false;
2522 return where;
2523 }
2524 VALUE_RECURSED_INTO (node->loc) = false;
2525 }
2526 }
2527
2528 return NULL;
2529 }
2530
2531 /* Hash table iteration argument passed to variable_merge. */
2532 struct dfset_merge
2533 {
2534 /* The set in which the merge is to be inserted. */
2535 dataflow_set *dst;
2536 /* The set that we're iterating in. */
2537 dataflow_set *cur;
2538 /* The set that may contain the other dv we are to merge with. */
2539 dataflow_set *src;
2540 /* Number of onepart dvs in src. */
2541 int src_onepart_cnt;
2542 };
2543
2544 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2545 loc_cmp order, and it is maintained as such. */
2546
2547 static void
2548 insert_into_intersection (location_chain *nodep, rtx loc,
2549 enum var_init_status status)
2550 {
2551 location_chain node;
2552 int r;
2553
2554 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2555 if ((r = loc_cmp (node->loc, loc)) == 0)
2556 {
2557 node->init = MIN (node->init, status);
2558 return;
2559 }
2560 else if (r > 0)
2561 break;
2562
2563 node = (location_chain) pool_alloc (loc_chain_pool);
2564
2565 node->loc = loc;
2566 node->set_src = NULL;
2567 node->init = status;
2568 node->next = *nodep;
2569 *nodep = node;
2570 }
2571
2572 /* Insert in DEST the intersection the locations present in both
2573 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2574 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2575 DSM->dst. */
2576
2577 static void
2578 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2579 location_chain s1node, variable s2var)
2580 {
2581 dataflow_set *s1set = dsm->cur;
2582 dataflow_set *s2set = dsm->src;
2583 location_chain found;
2584
2585 for (; s1node; s1node = s1node->next)
2586 {
2587 if (s1node->loc == val)
2588 continue;
2589
2590 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2591 shared_hash_htab (s2set->vars))))
2592 {
2593 insert_into_intersection (dest, s1node->loc,
2594 MIN (s1node->init, found->init));
2595 continue;
2596 }
2597
2598 if (GET_CODE (s1node->loc) == VALUE
2599 && !VALUE_RECURSED_INTO (s1node->loc))
2600 {
2601 decl_or_value dv = dv_from_value (s1node->loc);
2602 variable svar = shared_hash_find (s1set->vars, dv);
2603 if (svar)
2604 {
2605 if (svar->n_var_parts == 1)
2606 {
2607 VALUE_RECURSED_INTO (s1node->loc) = true;
2608 intersect_loc_chains (val, dest, dsm,
2609 svar->var_part[0].loc_chain,
2610 s2var);
2611 VALUE_RECURSED_INTO (s1node->loc) = false;
2612 }
2613 }
2614 }
2615
2616 /* ??? if the location is equivalent to any location in src,
2617 searched recursively
2618
2619 add to dst the values needed to represent the equivalence
2620
2621 telling whether locations S is equivalent to another dv's
2622 location list:
2623
2624 for each location D in the list
2625
2626 if S and D satisfy rtx_equal_p, then it is present
2627
2628 else if D is a value, recurse without cycles
2629
2630 else if S and D have the same CODE and MODE
2631
2632 for each operand oS and the corresponding oD
2633
2634 if oS and oD are not equivalent, then S an D are not equivalent
2635
2636 else if they are RTX vectors
2637
2638 if any vector oS element is not equivalent to its respective oD,
2639 then S and D are not equivalent
2640
2641 */
2642
2643
2644 }
2645 }
2646
2647 /* Return -1 if X should be before Y in a location list for a 1-part
2648 variable, 1 if Y should be before X, and 0 if they're equivalent
2649 and should not appear in the list. */
2650
2651 static int
2652 loc_cmp (rtx x, rtx y)
2653 {
2654 int i, j, r;
2655 RTX_CODE code = GET_CODE (x);
2656 const char *fmt;
2657
2658 if (x == y)
2659 return 0;
2660
2661 if (REG_P (x))
2662 {
2663 if (!REG_P (y))
2664 return -1;
2665 gcc_assert (GET_MODE (x) == GET_MODE (y));
2666 if (REGNO (x) == REGNO (y))
2667 return 0;
2668 else if (REGNO (x) < REGNO (y))
2669 return -1;
2670 else
2671 return 1;
2672 }
2673
2674 if (REG_P (y))
2675 return 1;
2676
2677 if (MEM_P (x))
2678 {
2679 if (!MEM_P (y))
2680 return -1;
2681 gcc_assert (GET_MODE (x) == GET_MODE (y));
2682 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2683 }
2684
2685 if (MEM_P (y))
2686 return 1;
2687
2688 if (GET_CODE (x) == VALUE)
2689 {
2690 if (GET_CODE (y) != VALUE)
2691 return -1;
2692 /* Don't assert the modes are the same, that is true only
2693 when not recursing. (subreg:QI (value:SI 1:1) 0)
2694 and (subreg:QI (value:DI 2:2) 0) can be compared,
2695 even when the modes are different. */
2696 if (canon_value_cmp (x, y))
2697 return -1;
2698 else
2699 return 1;
2700 }
2701
2702 if (GET_CODE (y) == VALUE)
2703 return 1;
2704
2705 if (GET_CODE (x) == GET_CODE (y))
2706 /* Compare operands below. */;
2707 else if (GET_CODE (x) < GET_CODE (y))
2708 return -1;
2709 else
2710 return 1;
2711
2712 gcc_assert (GET_MODE (x) == GET_MODE (y));
2713
2714 if (GET_CODE (x) == DEBUG_EXPR)
2715 {
2716 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2717 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2718 return -1;
2719 #ifdef ENABLE_CHECKING
2720 gcc_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2721 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2722 #endif
2723 return 1;
2724 }
2725
2726 fmt = GET_RTX_FORMAT (code);
2727 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2728 switch (fmt[i])
2729 {
2730 case 'w':
2731 if (XWINT (x, i) == XWINT (y, i))
2732 break;
2733 else if (XWINT (x, i) < XWINT (y, i))
2734 return -1;
2735 else
2736 return 1;
2737
2738 case 'n':
2739 case 'i':
2740 if (XINT (x, i) == XINT (y, i))
2741 break;
2742 else if (XINT (x, i) < XINT (y, i))
2743 return -1;
2744 else
2745 return 1;
2746
2747 case 'V':
2748 case 'E':
2749 /* Compare the vector length first. */
2750 if (XVECLEN (x, i) == XVECLEN (y, i))
2751 /* Compare the vectors elements. */;
2752 else if (XVECLEN (x, i) < XVECLEN (y, i))
2753 return -1;
2754 else
2755 return 1;
2756
2757 for (j = 0; j < XVECLEN (x, i); j++)
2758 if ((r = loc_cmp (XVECEXP (x, i, j),
2759 XVECEXP (y, i, j))))
2760 return r;
2761 break;
2762
2763 case 'e':
2764 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2765 return r;
2766 break;
2767
2768 case 'S':
2769 case 's':
2770 if (XSTR (x, i) == XSTR (y, i))
2771 break;
2772 if (!XSTR (x, i))
2773 return -1;
2774 if (!XSTR (y, i))
2775 return 1;
2776 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2777 break;
2778 else if (r < 0)
2779 return -1;
2780 else
2781 return 1;
2782
2783 case 'u':
2784 /* These are just backpointers, so they don't matter. */
2785 break;
2786
2787 case '0':
2788 case 't':
2789 break;
2790
2791 /* It is believed that rtx's at this level will never
2792 contain anything but integers and other rtx's,
2793 except for within LABEL_REFs and SYMBOL_REFs. */
2794 default:
2795 gcc_unreachable ();
2796 }
2797
2798 return 0;
2799 }
2800
2801 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2802 from VALUE to DVP. */
2803
2804 static int
2805 add_value_chain (rtx *loc, void *dvp)
2806 {
2807 decl_or_value dv, ldv;
2808 value_chain vc, nvc;
2809 void **slot;
2810
2811 if (GET_CODE (*loc) == VALUE)
2812 ldv = dv_from_value (*loc);
2813 else if (GET_CODE (*loc) == DEBUG_EXPR)
2814 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2815 else
2816 return 0;
2817
2818 if (dv_as_opaque (ldv) == dvp)
2819 return 0;
2820
2821 dv = (decl_or_value) dvp;
2822 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2823 INSERT);
2824 if (!*slot)
2825 {
2826 vc = (value_chain) pool_alloc (value_chain_pool);
2827 vc->dv = ldv;
2828 vc->next = NULL;
2829 vc->refcount = 0;
2830 *slot = (void *) vc;
2831 }
2832 else
2833 {
2834 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2835 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2836 break;
2837 if (vc)
2838 {
2839 vc->refcount++;
2840 return 0;
2841 }
2842 }
2843 vc = (value_chain) *slot;
2844 nvc = (value_chain) pool_alloc (value_chain_pool);
2845 nvc->dv = dv;
2846 nvc->next = vc->next;
2847 nvc->refcount = 1;
2848 vc->next = nvc;
2849 return 0;
2850 }
2851
2852 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2853 from those VALUEs to DVP. */
2854
2855 static void
2856 add_value_chains (decl_or_value dv, rtx loc)
2857 {
2858 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2859 {
2860 add_value_chain (&loc, dv_as_opaque (dv));
2861 return;
2862 }
2863 if (REG_P (loc))
2864 return;
2865 if (MEM_P (loc))
2866 loc = XEXP (loc, 0);
2867 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2868 }
2869
2870 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2871 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2872 that is something we never can express in .debug_info and can prevent
2873 reverse ops from being used. */
2874
2875 static void
2876 add_cselib_value_chains (decl_or_value dv)
2877 {
2878 struct elt_loc_list **l;
2879
2880 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2881 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2882 *l = (*l)->next;
2883 else
2884 {
2885 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2886 l = &(*l)->next;
2887 }
2888 }
2889
2890 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2891 from VALUE to DVP. */
2892
2893 static int
2894 remove_value_chain (rtx *loc, void *dvp)
2895 {
2896 decl_or_value dv, ldv;
2897 value_chain vc;
2898 void **slot;
2899
2900 if (GET_CODE (*loc) == VALUE)
2901 ldv = dv_from_value (*loc);
2902 else if (GET_CODE (*loc) == DEBUG_EXPR)
2903 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2904 else
2905 return 0;
2906
2907 if (dv_as_opaque (ldv) == dvp)
2908 return 0;
2909
2910 dv = (decl_or_value) dvp;
2911 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2912 NO_INSERT);
2913 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
2914 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
2915 {
2916 value_chain dvc = vc->next;
2917 gcc_assert (dvc->refcount > 0);
2918 if (--dvc->refcount == 0)
2919 {
2920 vc->next = dvc->next;
2921 pool_free (value_chain_pool, dvc);
2922 if (vc->next == NULL && vc == (value_chain) *slot)
2923 {
2924 pool_free (value_chain_pool, vc);
2925 htab_clear_slot (value_chains, slot);
2926 }
2927 }
2928 return 0;
2929 }
2930 gcc_unreachable ();
2931 }
2932
2933 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
2934 from those VALUEs to DVP. */
2935
2936 static void
2937 remove_value_chains (decl_or_value dv, rtx loc)
2938 {
2939 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2940 {
2941 remove_value_chain (&loc, dv_as_opaque (dv));
2942 return;
2943 }
2944 if (REG_P (loc))
2945 return;
2946 if (MEM_P (loc))
2947 loc = XEXP (loc, 0);
2948 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
2949 }
2950
2951 #if ENABLE_CHECKING
2952 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
2953 VALUEs to DV. */
2954
2955 static void
2956 remove_cselib_value_chains (decl_or_value dv)
2957 {
2958 struct elt_loc_list *l;
2959
2960 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
2961 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
2962 }
2963
2964 /* Check the order of entries in one-part variables. */
2965
2966 static int
2967 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
2968 {
2969 variable var = (variable) *slot;
2970 decl_or_value dv = var->dv;
2971 location_chain node, next;
2972
2973 #ifdef ENABLE_RTL_CHECKING
2974 int i;
2975 for (i = 0; i < var->n_var_parts; i++)
2976 gcc_assert (var->var_part[0].cur_loc == NULL);
2977 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
2978 #endif
2979
2980 if (!dv_onepart_p (dv))
2981 return 1;
2982
2983 gcc_assert (var->n_var_parts == 1);
2984 node = var->var_part[0].loc_chain;
2985 gcc_assert (node);
2986
2987 while ((next = node->next))
2988 {
2989 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
2990 node = next;
2991 }
2992
2993 return 1;
2994 }
2995 #endif
2996
2997 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
2998 more likely to be chosen as canonical for an equivalence set.
2999 Ensure less likely values can reach more likely neighbors, making
3000 the connections bidirectional. */
3001
3002 static int
3003 canonicalize_values_mark (void **slot, void *data)
3004 {
3005 dataflow_set *set = (dataflow_set *)data;
3006 variable var = (variable) *slot;
3007 decl_or_value dv = var->dv;
3008 rtx val;
3009 location_chain node;
3010
3011 if (!dv_is_value_p (dv))
3012 return 1;
3013
3014 gcc_assert (var->n_var_parts == 1);
3015
3016 val = dv_as_value (dv);
3017
3018 for (node = var->var_part[0].loc_chain; node; node = node->next)
3019 if (GET_CODE (node->loc) == VALUE)
3020 {
3021 if (canon_value_cmp (node->loc, val))
3022 VALUE_RECURSED_INTO (val) = true;
3023 else
3024 {
3025 decl_or_value odv = dv_from_value (node->loc);
3026 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3027
3028 oslot = set_slot_part (set, val, oslot, odv, 0,
3029 node->init, NULL_RTX);
3030
3031 VALUE_RECURSED_INTO (node->loc) = true;
3032 }
3033 }
3034
3035 return 1;
3036 }
3037
3038 /* Remove redundant entries from equivalence lists in onepart
3039 variables, canonicalizing equivalence sets into star shapes. */
3040
3041 static int
3042 canonicalize_values_star (void **slot, void *data)
3043 {
3044 dataflow_set *set = (dataflow_set *)data;
3045 variable var = (variable) *slot;
3046 decl_or_value dv = var->dv;
3047 location_chain node;
3048 decl_or_value cdv;
3049 rtx val, cval;
3050 void **cslot;
3051 bool has_value;
3052 bool has_marks;
3053
3054 if (!dv_onepart_p (dv))
3055 return 1;
3056
3057 gcc_assert (var->n_var_parts == 1);
3058
3059 if (dv_is_value_p (dv))
3060 {
3061 cval = dv_as_value (dv);
3062 if (!VALUE_RECURSED_INTO (cval))
3063 return 1;
3064 VALUE_RECURSED_INTO (cval) = false;
3065 }
3066 else
3067 cval = NULL_RTX;
3068
3069 restart:
3070 val = cval;
3071 has_value = false;
3072 has_marks = false;
3073
3074 gcc_assert (var->n_var_parts == 1);
3075
3076 for (node = var->var_part[0].loc_chain; node; node = node->next)
3077 if (GET_CODE (node->loc) == VALUE)
3078 {
3079 has_value = true;
3080 if (VALUE_RECURSED_INTO (node->loc))
3081 has_marks = true;
3082 if (canon_value_cmp (node->loc, cval))
3083 cval = node->loc;
3084 }
3085
3086 if (!has_value)
3087 return 1;
3088
3089 if (cval == val)
3090 {
3091 if (!has_marks || dv_is_decl_p (dv))
3092 return 1;
3093
3094 /* Keep it marked so that we revisit it, either after visiting a
3095 child node, or after visiting a new parent that might be
3096 found out. */
3097 VALUE_RECURSED_INTO (val) = true;
3098
3099 for (node = var->var_part[0].loc_chain; node; node = node->next)
3100 if (GET_CODE (node->loc) == VALUE
3101 && VALUE_RECURSED_INTO (node->loc))
3102 {
3103 cval = node->loc;
3104 restart_with_cval:
3105 VALUE_RECURSED_INTO (cval) = false;
3106 dv = dv_from_value (cval);
3107 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3108 if (!slot)
3109 {
3110 gcc_assert (dv_is_decl_p (var->dv));
3111 /* The canonical value was reset and dropped.
3112 Remove it. */
3113 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3114 return 1;
3115 }
3116 var = (variable)*slot;
3117 gcc_assert (dv_is_value_p (var->dv));
3118 if (var->n_var_parts == 0)
3119 return 1;
3120 gcc_assert (var->n_var_parts == 1);
3121 goto restart;
3122 }
3123
3124 VALUE_RECURSED_INTO (val) = false;
3125
3126 return 1;
3127 }
3128
3129 /* Push values to the canonical one. */
3130 cdv = dv_from_value (cval);
3131 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3132
3133 for (node = var->var_part[0].loc_chain; node; node = node->next)
3134 if (node->loc != cval)
3135 {
3136 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3137 node->init, NULL_RTX);
3138 if (GET_CODE (node->loc) == VALUE)
3139 {
3140 decl_or_value ndv = dv_from_value (node->loc);
3141
3142 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3143 NO_INSERT);
3144
3145 if (canon_value_cmp (node->loc, val))
3146 {
3147 /* If it could have been a local minimum, it's not any more,
3148 since it's now neighbor to cval, so it may have to push
3149 to it. Conversely, if it wouldn't have prevailed over
3150 val, then whatever mark it has is fine: if it was to
3151 push, it will now push to a more canonical node, but if
3152 it wasn't, then it has already pushed any values it might
3153 have to. */
3154 VALUE_RECURSED_INTO (node->loc) = true;
3155 /* Make sure we visit node->loc by ensuring we cval is
3156 visited too. */
3157 VALUE_RECURSED_INTO (cval) = true;
3158 }
3159 else if (!VALUE_RECURSED_INTO (node->loc))
3160 /* If we have no need to "recurse" into this node, it's
3161 already "canonicalized", so drop the link to the old
3162 parent. */
3163 clobber_variable_part (set, cval, ndv, 0, NULL);
3164 }
3165 else if (GET_CODE (node->loc) == REG)
3166 {
3167 attrs list = set->regs[REGNO (node->loc)], *listp;
3168
3169 /* Change an existing attribute referring to dv so that it
3170 refers to cdv, removing any duplicate this might
3171 introduce, and checking that no previous duplicates
3172 existed, all in a single pass. */
3173
3174 while (list)
3175 {
3176 if (list->offset == 0
3177 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3178 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3179 break;
3180
3181 list = list->next;
3182 }
3183
3184 gcc_assert (list);
3185 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3186 {
3187 list->dv = cdv;
3188 for (listp = &list->next; (list = *listp); listp = &list->next)
3189 {
3190 if (list->offset)
3191 continue;
3192
3193 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3194 {
3195 *listp = list->next;
3196 pool_free (attrs_pool, list);
3197 list = *listp;
3198 break;
3199 }
3200
3201 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3202 }
3203 }
3204 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3205 {
3206 for (listp = &list->next; (list = *listp); listp = &list->next)
3207 {
3208 if (list->offset)
3209 continue;
3210
3211 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3212 {
3213 *listp = list->next;
3214 pool_free (attrs_pool, list);
3215 list = *listp;
3216 break;
3217 }
3218
3219 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3220 }
3221 }
3222 else
3223 gcc_unreachable ();
3224
3225 #if ENABLE_CHECKING
3226 while (list)
3227 {
3228 if (list->offset == 0
3229 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3230 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3231 gcc_unreachable ();
3232
3233 list = list->next;
3234 }
3235 #endif
3236 }
3237 }
3238
3239 if (val)
3240 cslot = set_slot_part (set, val, cslot, cdv, 0,
3241 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3242
3243 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3244
3245 /* Variable may have been unshared. */
3246 var = (variable)*slot;
3247 gcc_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3248 && var->var_part[0].loc_chain->next == NULL);
3249
3250 if (VALUE_RECURSED_INTO (cval))
3251 goto restart_with_cval;
3252
3253 return 1;
3254 }
3255
3256 /* Bind one-part variables to the canonical value in an equivalence
3257 set. Not doing this causes dataflow convergence failure in rare
3258 circumstances, see PR42873. Unfortunately we can't do this
3259 efficiently as part of canonicalize_values_star, since we may not
3260 have determined or even seen the canonical value of a set when we
3261 get to a variable that references another member of the set. */
3262
3263 static int
3264 canonicalize_vars_star (void **slot, void *data)
3265 {
3266 dataflow_set *set = (dataflow_set *)data;
3267 variable var = (variable) *slot;
3268 decl_or_value dv = var->dv;
3269 location_chain node;
3270 rtx cval;
3271 decl_or_value cdv;
3272 void **cslot;
3273 variable cvar;
3274 location_chain cnode;
3275
3276 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3277 return 1;
3278
3279 gcc_assert (var->n_var_parts == 1);
3280
3281 node = var->var_part[0].loc_chain;
3282
3283 if (GET_CODE (node->loc) != VALUE)
3284 return 1;
3285
3286 gcc_assert (!node->next);
3287 cval = node->loc;
3288
3289 /* Push values to the canonical one. */
3290 cdv = dv_from_value (cval);
3291 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3292 if (!cslot)
3293 return 1;
3294 cvar = (variable)*cslot;
3295 gcc_assert (cvar->n_var_parts == 1);
3296
3297 cnode = cvar->var_part[0].loc_chain;
3298
3299 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3300 that are not “more canonical” than it. */
3301 if (GET_CODE (cnode->loc) != VALUE
3302 || !canon_value_cmp (cnode->loc, cval))
3303 return 1;
3304
3305 /* CVAL was found to be non-canonical. Change the variable to point
3306 to the canonical VALUE. */
3307 gcc_assert (!cnode->next);
3308 cval = cnode->loc;
3309
3310 slot = set_slot_part (set, cval, slot, dv, 0,
3311 node->init, node->set_src);
3312 slot = clobber_slot_part (set, cval, slot, 0, node->set_src);
3313
3314 return 1;
3315 }
3316
3317 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3318 corresponding entry in DSM->src. Multi-part variables are combined
3319 with variable_union, whereas onepart dvs are combined with
3320 intersection. */
3321
3322 static int
3323 variable_merge_over_cur (void **s1slot, void *data)
3324 {
3325 struct dfset_merge *dsm = (struct dfset_merge *)data;
3326 dataflow_set *dst = dsm->dst;
3327 void **dstslot;
3328 variable s1var = (variable) *s1slot;
3329 variable s2var, dvar = NULL;
3330 decl_or_value dv = s1var->dv;
3331 bool onepart = dv_onepart_p (dv);
3332 rtx val;
3333 hashval_t dvhash;
3334 location_chain node, *nodep;
3335
3336 /* If the incoming onepart variable has an empty location list, then
3337 the intersection will be just as empty. For other variables,
3338 it's always union. */
3339 gcc_assert (s1var->n_var_parts);
3340 gcc_assert (s1var->var_part[0].loc_chain);
3341
3342 if (!onepart)
3343 return variable_union (s1slot, dst);
3344
3345 gcc_assert (s1var->n_var_parts == 1);
3346 gcc_assert (s1var->var_part[0].offset == 0);
3347
3348 dvhash = dv_htab_hash (dv);
3349 if (dv_is_value_p (dv))
3350 val = dv_as_value (dv);
3351 else
3352 val = NULL;
3353
3354 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3355 if (!s2var)
3356 {
3357 dst_can_be_shared = false;
3358 return 1;
3359 }
3360
3361 dsm->src_onepart_cnt--;
3362 gcc_assert (s2var->var_part[0].loc_chain);
3363 gcc_assert (s2var->n_var_parts == 1);
3364 gcc_assert (s2var->var_part[0].offset == 0);
3365
3366 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3367 if (dstslot)
3368 {
3369 dvar = (variable)*dstslot;
3370 gcc_assert (dvar->refcount == 1);
3371 gcc_assert (dvar->n_var_parts == 1);
3372 gcc_assert (dvar->var_part[0].offset == 0);
3373 nodep = &dvar->var_part[0].loc_chain;
3374 }
3375 else
3376 {
3377 nodep = &node;
3378 node = NULL;
3379 }
3380
3381 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3382 {
3383 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3384 dvhash, INSERT);
3385 *dstslot = dvar = s2var;
3386 dvar->refcount++;
3387 }
3388 else
3389 {
3390 dst_can_be_shared = false;
3391
3392 intersect_loc_chains (val, nodep, dsm,
3393 s1var->var_part[0].loc_chain, s2var);
3394
3395 if (!dstslot)
3396 {
3397 if (node)
3398 {
3399 dvar = (variable) pool_alloc (dv_pool (dv));
3400 dvar->dv = dv;
3401 dvar->refcount = 1;
3402 dvar->n_var_parts = 1;
3403 dvar->cur_loc_changed = false;
3404 dvar->in_changed_variables = false;
3405 dvar->var_part[0].offset = 0;
3406 dvar->var_part[0].loc_chain = node;
3407 dvar->var_part[0].cur_loc = NULL;
3408
3409 dstslot
3410 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3411 INSERT);
3412 gcc_assert (!*dstslot);
3413 *dstslot = dvar;
3414 }
3415 else
3416 return 1;
3417 }
3418 }
3419
3420 nodep = &dvar->var_part[0].loc_chain;
3421 while ((node = *nodep))
3422 {
3423 location_chain *nextp = &node->next;
3424
3425 if (GET_CODE (node->loc) == REG)
3426 {
3427 attrs list;
3428
3429 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3430 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3431 && dv_is_value_p (list->dv))
3432 break;
3433
3434 if (!list)
3435 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3436 dv, 0, node->loc);
3437 /* If this value became canonical for another value that had
3438 this register, we want to leave it alone. */
3439 else if (dv_as_value (list->dv) != val)
3440 {
3441 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3442 dstslot, dv, 0,
3443 node->init, NULL_RTX);
3444 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3445
3446 /* Since nextp points into the removed node, we can't
3447 use it. The pointer to the next node moved to nodep.
3448 However, if the variable we're walking is unshared
3449 during our walk, we'll keep walking the location list
3450 of the previously-shared variable, in which case the
3451 node won't have been removed, and we'll want to skip
3452 it. That's why we test *nodep here. */
3453 if (*nodep != node)
3454 nextp = nodep;
3455 }
3456 }
3457 else
3458 /* Canonicalization puts registers first, so we don't have to
3459 walk it all. */
3460 break;
3461 nodep = nextp;
3462 }
3463
3464 if (dvar != (variable)*dstslot)
3465 dvar = (variable)*dstslot;
3466 nodep = &dvar->var_part[0].loc_chain;
3467
3468 if (val)
3469 {
3470 /* Mark all referenced nodes for canonicalization, and make sure
3471 we have mutual equivalence links. */
3472 VALUE_RECURSED_INTO (val) = true;
3473 for (node = *nodep; node; node = node->next)
3474 if (GET_CODE (node->loc) == VALUE)
3475 {
3476 VALUE_RECURSED_INTO (node->loc) = true;
3477 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3478 node->init, NULL, INSERT);
3479 }
3480
3481 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3482 gcc_assert (*dstslot == dvar);
3483 canonicalize_values_star (dstslot, dst);
3484 #ifdef ENABLE_CHECKING
3485 gcc_assert (dstslot
3486 == shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash));
3487 #endif
3488 dvar = (variable)*dstslot;
3489 }
3490 else
3491 {
3492 bool has_value = false, has_other = false;
3493
3494 /* If we have one value and anything else, we're going to
3495 canonicalize this, so make sure all values have an entry in
3496 the table and are marked for canonicalization. */
3497 for (node = *nodep; node; node = node->next)
3498 {
3499 if (GET_CODE (node->loc) == VALUE)
3500 {
3501 /* If this was marked during register canonicalization,
3502 we know we have to canonicalize values. */
3503 if (has_value)
3504 has_other = true;
3505 has_value = true;
3506 if (has_other)
3507 break;
3508 }
3509 else
3510 {
3511 has_other = true;
3512 if (has_value)
3513 break;
3514 }
3515 }
3516
3517 if (has_value && has_other)
3518 {
3519 for (node = *nodep; node; node = node->next)
3520 {
3521 if (GET_CODE (node->loc) == VALUE)
3522 {
3523 decl_or_value dv = dv_from_value (node->loc);
3524 void **slot = NULL;
3525
3526 if (shared_hash_shared (dst->vars))
3527 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3528 if (!slot)
3529 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3530 INSERT);
3531 if (!*slot)
3532 {
3533 variable var = (variable) pool_alloc (dv_pool (dv));
3534 var->dv = dv;
3535 var->refcount = 1;
3536 var->n_var_parts = 1;
3537 var->cur_loc_changed = false;
3538 var->in_changed_variables = false;
3539 var->var_part[0].offset = 0;
3540 var->var_part[0].loc_chain = NULL;
3541 var->var_part[0].cur_loc = NULL;
3542 *slot = var;
3543 }
3544
3545 VALUE_RECURSED_INTO (node->loc) = true;
3546 }
3547 }
3548
3549 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3550 gcc_assert (*dstslot == dvar);
3551 canonicalize_values_star (dstslot, dst);
3552 #ifdef ENABLE_CHECKING
3553 gcc_assert (dstslot
3554 == shared_hash_find_slot_noinsert_1 (dst->vars,
3555 dv, dvhash));
3556 #endif
3557 dvar = (variable)*dstslot;
3558 }
3559 }
3560
3561 if (!onepart_variable_different_p (dvar, s2var))
3562 {
3563 variable_htab_free (dvar);
3564 *dstslot = dvar = s2var;
3565 dvar->refcount++;
3566 }
3567 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3568 {
3569 variable_htab_free (dvar);
3570 *dstslot = dvar = s1var;
3571 dvar->refcount++;
3572 dst_can_be_shared = false;
3573 }
3574 else
3575 dst_can_be_shared = false;
3576
3577 return 1;
3578 }
3579
3580 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3581 multi-part variable. Unions of multi-part variables and
3582 intersections of one-part ones will be handled in
3583 variable_merge_over_cur(). */
3584
3585 static int
3586 variable_merge_over_src (void **s2slot, void *data)
3587 {
3588 struct dfset_merge *dsm = (struct dfset_merge *)data;
3589 dataflow_set *dst = dsm->dst;
3590 variable s2var = (variable) *s2slot;
3591 decl_or_value dv = s2var->dv;
3592 bool onepart = dv_onepart_p (dv);
3593
3594 if (!onepart)
3595 {
3596 void **dstp = shared_hash_find_slot (dst->vars, dv);
3597 *dstp = s2var;
3598 s2var->refcount++;
3599 return 1;
3600 }
3601
3602 dsm->src_onepart_cnt++;
3603 return 1;
3604 }
3605
3606 /* Combine dataflow set information from SRC2 into DST, using PDST
3607 to carry over information across passes. */
3608
3609 static void
3610 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3611 {
3612 dataflow_set cur = *dst;
3613 dataflow_set *src1 = &cur;
3614 struct dfset_merge dsm;
3615 int i;
3616 size_t src1_elems, src2_elems;
3617
3618 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3619 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3620 dataflow_set_init (dst);
3621 dst->stack_adjust = cur.stack_adjust;
3622 shared_hash_destroy (dst->vars);
3623 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3624 dst->vars->refcount = 1;
3625 dst->vars->htab
3626 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3627 variable_htab_eq, variable_htab_free);
3628
3629 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3630 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3631
3632 dsm.dst = dst;
3633 dsm.src = src2;
3634 dsm.cur = src1;
3635 dsm.src_onepart_cnt = 0;
3636
3637 htab_traverse (shared_hash_htab (dsm.src->vars), variable_merge_over_src,
3638 &dsm);
3639 htab_traverse (shared_hash_htab (dsm.cur->vars), variable_merge_over_cur,
3640 &dsm);
3641
3642 if (dsm.src_onepart_cnt)
3643 dst_can_be_shared = false;
3644
3645 dataflow_set_destroy (src1);
3646 }
3647
3648 /* Mark register equivalences. */
3649
3650 static void
3651 dataflow_set_equiv_regs (dataflow_set *set)
3652 {
3653 int i;
3654 attrs list, *listp;
3655
3656 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3657 {
3658 rtx canon[NUM_MACHINE_MODES];
3659
3660 memset (canon, 0, sizeof (canon));
3661
3662 for (list = set->regs[i]; list; list = list->next)
3663 if (list->offset == 0 && dv_is_value_p (list->dv))
3664 {
3665 rtx val = dv_as_value (list->dv);
3666 rtx *cvalp = &canon[(int)GET_MODE (val)];
3667 rtx cval = *cvalp;
3668
3669 if (canon_value_cmp (val, cval))
3670 *cvalp = val;
3671 }
3672
3673 for (list = set->regs[i]; list; list = list->next)
3674 if (list->offset == 0 && dv_onepart_p (list->dv))
3675 {
3676 rtx cval = canon[(int)GET_MODE (list->loc)];
3677
3678 if (!cval)
3679 continue;
3680
3681 if (dv_is_value_p (list->dv))
3682 {
3683 rtx val = dv_as_value (list->dv);
3684
3685 if (val == cval)
3686 continue;
3687
3688 VALUE_RECURSED_INTO (val) = true;
3689 set_variable_part (set, val, dv_from_value (cval), 0,
3690 VAR_INIT_STATUS_INITIALIZED,
3691 NULL, NO_INSERT);
3692 }
3693
3694 VALUE_RECURSED_INTO (cval) = true;
3695 set_variable_part (set, cval, list->dv, 0,
3696 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3697 }
3698
3699 for (listp = &set->regs[i]; (list = *listp);
3700 listp = list ? &list->next : listp)
3701 if (list->offset == 0 && dv_onepart_p (list->dv))
3702 {
3703 rtx cval = canon[(int)GET_MODE (list->loc)];
3704 void **slot;
3705
3706 if (!cval)
3707 continue;
3708
3709 if (dv_is_value_p (list->dv))
3710 {
3711 rtx val = dv_as_value (list->dv);
3712 if (!VALUE_RECURSED_INTO (val))
3713 continue;
3714 }
3715
3716 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3717 canonicalize_values_star (slot, set);
3718 if (*listp != list)
3719 list = NULL;
3720 }
3721 }
3722 }
3723
3724 /* Remove any redundant values in the location list of VAR, which must
3725 be unshared and 1-part. */
3726
3727 static void
3728 remove_duplicate_values (variable var)
3729 {
3730 location_chain node, *nodep;
3731
3732 gcc_assert (dv_onepart_p (var->dv));
3733 gcc_assert (var->n_var_parts == 1);
3734 gcc_assert (var->refcount == 1);
3735
3736 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3737 {
3738 if (GET_CODE (node->loc) == VALUE)
3739 {
3740 if (VALUE_RECURSED_INTO (node->loc))
3741 {
3742 /* Remove duplicate value node. */
3743 *nodep = node->next;
3744 pool_free (loc_chain_pool, node);
3745 continue;
3746 }
3747 else
3748 VALUE_RECURSED_INTO (node->loc) = true;
3749 }
3750 nodep = &node->next;
3751 }
3752
3753 for (node = var->var_part[0].loc_chain; node; node = node->next)
3754 if (GET_CODE (node->loc) == VALUE)
3755 {
3756 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3757 VALUE_RECURSED_INTO (node->loc) = false;
3758 }
3759 }
3760
3761
3762 /* Hash table iteration argument passed to variable_post_merge. */
3763 struct dfset_post_merge
3764 {
3765 /* The new input set for the current block. */
3766 dataflow_set *set;
3767 /* Pointer to the permanent input set for the current block, or
3768 NULL. */
3769 dataflow_set **permp;
3770 };
3771
3772 /* Create values for incoming expressions associated with one-part
3773 variables that don't have value numbers for them. */
3774
3775 static int
3776 variable_post_merge_new_vals (void **slot, void *info)
3777 {
3778 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3779 dataflow_set *set = dfpm->set;
3780 variable var = (variable)*slot;
3781 location_chain node;
3782
3783 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3784 return 1;
3785
3786 gcc_assert (var->n_var_parts == 1);
3787
3788 if (dv_is_decl_p (var->dv))
3789 {
3790 bool check_dupes = false;
3791
3792 restart:
3793 for (node = var->var_part[0].loc_chain; node; node = node->next)
3794 {
3795 if (GET_CODE (node->loc) == VALUE)
3796 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3797 else if (GET_CODE (node->loc) == REG)
3798 {
3799 attrs att, *attp, *curp = NULL;
3800
3801 if (var->refcount != 1)
3802 {
3803 slot = unshare_variable (set, slot, var,
3804 VAR_INIT_STATUS_INITIALIZED);
3805 var = (variable)*slot;
3806 goto restart;
3807 }
3808
3809 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3810 attp = &att->next)
3811 if (att->offset == 0
3812 && GET_MODE (att->loc) == GET_MODE (node->loc))
3813 {
3814 if (dv_is_value_p (att->dv))
3815 {
3816 rtx cval = dv_as_value (att->dv);
3817 node->loc = cval;
3818 check_dupes = true;
3819 break;
3820 }
3821 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3822 curp = attp;
3823 }
3824
3825 if (!curp)
3826 {
3827 curp = attp;
3828 while (*curp)
3829 if ((*curp)->offset == 0
3830 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3831 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3832 break;
3833 else
3834 curp = &(*curp)->next;
3835 gcc_assert (*curp);
3836 }
3837
3838 if (!att)
3839 {
3840 decl_or_value cdv;
3841 rtx cval;
3842
3843 if (!*dfpm->permp)
3844 {
3845 *dfpm->permp = XNEW (dataflow_set);
3846 dataflow_set_init (*dfpm->permp);
3847 }
3848
3849 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3850 att; att = att->next)
3851 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3852 {
3853 gcc_assert (att->offset == 0);
3854 gcc_assert (dv_is_value_p (att->dv));
3855 val_reset (set, att->dv);
3856 break;
3857 }
3858
3859 if (att)
3860 {
3861 cdv = att->dv;
3862 cval = dv_as_value (cdv);
3863 }
3864 else
3865 {
3866 /* Create a unique value to hold this register,
3867 that ought to be found and reused in
3868 subsequent rounds. */
3869 cselib_val *v;
3870 gcc_assert (!cselib_lookup (node->loc,
3871 GET_MODE (node->loc), 0));
3872 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1);
3873 cselib_preserve_value (v);
3874 cselib_invalidate_rtx (node->loc);
3875 cval = v->val_rtx;
3876 cdv = dv_from_value (cval);
3877 if (dump_file)
3878 fprintf (dump_file,
3879 "Created new value %u:%u for reg %i\n",
3880 v->uid, v->hash, REGNO (node->loc));
3881 }
3882
3883 var_reg_decl_set (*dfpm->permp, node->loc,
3884 VAR_INIT_STATUS_INITIALIZED,
3885 cdv, 0, NULL, INSERT);
3886
3887 node->loc = cval;
3888 check_dupes = true;
3889 }
3890
3891 /* Remove attribute referring to the decl, which now
3892 uses the value for the register, already existing or
3893 to be added when we bring perm in. */
3894 att = *curp;
3895 *curp = att->next;
3896 pool_free (attrs_pool, att);
3897 }
3898 }
3899
3900 if (check_dupes)
3901 remove_duplicate_values (var);
3902 }
3903
3904 return 1;
3905 }
3906
3907 /* Reset values in the permanent set that are not associated with the
3908 chosen expression. */
3909
3910 static int
3911 variable_post_merge_perm_vals (void **pslot, void *info)
3912 {
3913 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3914 dataflow_set *set = dfpm->set;
3915 variable pvar = (variable)*pslot, var;
3916 location_chain pnode;
3917 decl_or_value dv;
3918 attrs att;
3919
3920 gcc_assert (dv_is_value_p (pvar->dv));
3921 gcc_assert (pvar->n_var_parts == 1);
3922 pnode = pvar->var_part[0].loc_chain;
3923 gcc_assert (pnode);
3924 gcc_assert (!pnode->next);
3925 gcc_assert (REG_P (pnode->loc));
3926
3927 dv = pvar->dv;
3928
3929 var = shared_hash_find (set->vars, dv);
3930 if (var)
3931 {
3932 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
3933 return 1;
3934 val_reset (set, dv);
3935 }
3936
3937 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
3938 if (att->offset == 0
3939 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
3940 && dv_is_value_p (att->dv))
3941 break;
3942
3943 /* If there is a value associated with this register already, create
3944 an equivalence. */
3945 if (att && dv_as_value (att->dv) != dv_as_value (dv))
3946 {
3947 rtx cval = dv_as_value (att->dv);
3948 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
3949 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
3950 NULL, INSERT);
3951 }
3952 else if (!att)
3953 {
3954 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
3955 dv, 0, pnode->loc);
3956 variable_union (pslot, set);
3957 }
3958
3959 return 1;
3960 }
3961
3962 /* Just checking stuff and registering register attributes for
3963 now. */
3964
3965 static void
3966 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
3967 {
3968 struct dfset_post_merge dfpm;
3969
3970 dfpm.set = set;
3971 dfpm.permp = permp;
3972
3973 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
3974 &dfpm);
3975 if (*permp)
3976 htab_traverse (shared_hash_htab ((*permp)->vars),
3977 variable_post_merge_perm_vals, &dfpm);
3978 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
3979 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
3980 }
3981
3982 /* Return a node whose loc is a MEM that refers to EXPR in the
3983 location list of a one-part variable or value VAR, or in that of
3984 any values recursively mentioned in the location lists. */
3985
3986 static location_chain
3987 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
3988 {
3989 location_chain node;
3990 decl_or_value dv;
3991 variable var;
3992 location_chain where = NULL;
3993
3994 if (!val)
3995 return NULL;
3996
3997 gcc_assert (GET_CODE (val) == VALUE);
3998
3999 gcc_assert (!VALUE_RECURSED_INTO (val));
4000
4001 dv = dv_from_value (val);
4002 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4003
4004 if (!var)
4005 return NULL;
4006
4007 gcc_assert (dv_onepart_p (var->dv));
4008
4009 if (!var->n_var_parts)
4010 return NULL;
4011
4012 gcc_assert (var->var_part[0].offset == 0);
4013
4014 VALUE_RECURSED_INTO (val) = true;
4015
4016 for (node = var->var_part[0].loc_chain; node; node = node->next)
4017 if (MEM_P (node->loc) && MEM_EXPR (node->loc) == expr
4018 && MEM_OFFSET (node->loc) == 0)
4019 {
4020 where = node;
4021 break;
4022 }
4023 else if (GET_CODE (node->loc) == VALUE
4024 && !VALUE_RECURSED_INTO (node->loc)
4025 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4026 break;
4027
4028 VALUE_RECURSED_INTO (val) = false;
4029
4030 return where;
4031 }
4032
4033 /* Return TRUE if the value of MEM may vary across a call. */
4034
4035 static bool
4036 mem_dies_at_call (rtx mem)
4037 {
4038 tree expr = MEM_EXPR (mem);
4039 tree decl;
4040
4041 if (!expr)
4042 return true;
4043
4044 decl = get_base_address (expr);
4045
4046 if (!decl)
4047 return true;
4048
4049 if (!DECL_P (decl))
4050 return true;
4051
4052 return (may_be_aliased (decl)
4053 || (!TREE_READONLY (decl) && is_global_var (decl)));
4054 }
4055
4056 /* Remove all MEMs from the location list of a hash table entry for a
4057 one-part variable, except those whose MEM attributes map back to
4058 the variable itself, directly or within a VALUE. */
4059
4060 static int
4061 dataflow_set_preserve_mem_locs (void **slot, void *data)
4062 {
4063 dataflow_set *set = (dataflow_set *) data;
4064 variable var = (variable) *slot;
4065
4066 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4067 {
4068 tree decl = dv_as_decl (var->dv);
4069 location_chain loc, *locp;
4070 bool changed = false;
4071
4072 if (!var->n_var_parts)
4073 return 1;
4074
4075 gcc_assert (var->n_var_parts == 1);
4076
4077 if (shared_var_p (var, set->vars))
4078 {
4079 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4080 {
4081 /* We want to remove dying MEMs that doesn't refer to
4082 DECL. */
4083 if (GET_CODE (loc->loc) == MEM
4084 && (MEM_EXPR (loc->loc) != decl
4085 || MEM_OFFSET (loc->loc))
4086 && !mem_dies_at_call (loc->loc))
4087 break;
4088 /* We want to move here MEMs that do refer to DECL. */
4089 else if (GET_CODE (loc->loc) == VALUE
4090 && find_mem_expr_in_1pdv (decl, loc->loc,
4091 shared_hash_htab (set->vars)))
4092 break;
4093 }
4094
4095 if (!loc)
4096 return 1;
4097
4098 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4099 var = (variable)*slot;
4100 gcc_assert (var->n_var_parts == 1);
4101 }
4102
4103 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4104 loc; loc = *locp)
4105 {
4106 rtx old_loc = loc->loc;
4107 if (GET_CODE (old_loc) == VALUE)
4108 {
4109 location_chain mem_node
4110 = find_mem_expr_in_1pdv (decl, loc->loc,
4111 shared_hash_htab (set->vars));
4112
4113 /* ??? This picks up only one out of multiple MEMs that
4114 refer to the same variable. Do we ever need to be
4115 concerned about dealing with more than one, or, given
4116 that they should all map to the same variable
4117 location, their addresses will have been merged and
4118 they will be regarded as equivalent? */
4119 if (mem_node)
4120 {
4121 loc->loc = mem_node->loc;
4122 loc->set_src = mem_node->set_src;
4123 loc->init = MIN (loc->init, mem_node->init);
4124 }
4125 }
4126
4127 if (GET_CODE (loc->loc) != MEM
4128 || (MEM_EXPR (loc->loc) == decl
4129 && MEM_OFFSET (loc->loc) == 0)
4130 || !mem_dies_at_call (loc->loc))
4131 {
4132 if (old_loc != loc->loc && emit_notes)
4133 {
4134 if (old_loc == var->var_part[0].cur_loc)
4135 {
4136 changed = true;
4137 var->var_part[0].cur_loc = NULL;
4138 var->cur_loc_changed = true;
4139 }
4140 add_value_chains (var->dv, loc->loc);
4141 remove_value_chains (var->dv, old_loc);
4142 }
4143 locp = &loc->next;
4144 continue;
4145 }
4146
4147 if (emit_notes)
4148 {
4149 remove_value_chains (var->dv, old_loc);
4150 if (old_loc == var->var_part[0].cur_loc)
4151 {
4152 changed = true;
4153 var->var_part[0].cur_loc = NULL;
4154 var->cur_loc_changed = true;
4155 }
4156 }
4157 *locp = loc->next;
4158 pool_free (loc_chain_pool, loc);
4159 }
4160
4161 if (!var->var_part[0].loc_chain)
4162 {
4163 var->n_var_parts--;
4164 changed = true;
4165 }
4166 if (changed)
4167 variable_was_changed (var, set);
4168 }
4169
4170 return 1;
4171 }
4172
4173 /* Remove all MEMs from the location list of a hash table entry for a
4174 value. */
4175
4176 static int
4177 dataflow_set_remove_mem_locs (void **slot, void *data)
4178 {
4179 dataflow_set *set = (dataflow_set *) data;
4180 variable var = (variable) *slot;
4181
4182 if (dv_is_value_p (var->dv))
4183 {
4184 location_chain loc, *locp;
4185 bool changed = false;
4186
4187 gcc_assert (var->n_var_parts == 1);
4188
4189 if (shared_var_p (var, set->vars))
4190 {
4191 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4192 if (GET_CODE (loc->loc) == MEM
4193 && mem_dies_at_call (loc->loc))
4194 break;
4195
4196 if (!loc)
4197 return 1;
4198
4199 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4200 var = (variable)*slot;
4201 gcc_assert (var->n_var_parts == 1);
4202 }
4203
4204 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4205 loc; loc = *locp)
4206 {
4207 if (GET_CODE (loc->loc) != MEM
4208 || !mem_dies_at_call (loc->loc))
4209 {
4210 locp = &loc->next;
4211 continue;
4212 }
4213
4214 if (emit_notes)
4215 remove_value_chains (var->dv, loc->loc);
4216 *locp = loc->next;
4217 /* If we have deleted the location which was last emitted
4218 we have to emit new location so add the variable to set
4219 of changed variables. */
4220 if (var->var_part[0].cur_loc == loc->loc)
4221 {
4222 changed = true;
4223 var->var_part[0].cur_loc = NULL;
4224 var->cur_loc_changed = true;
4225 }
4226 pool_free (loc_chain_pool, loc);
4227 }
4228
4229 if (!var->var_part[0].loc_chain)
4230 {
4231 var->n_var_parts--;
4232 changed = true;
4233 }
4234 if (changed)
4235 variable_was_changed (var, set);
4236 }
4237
4238 return 1;
4239 }
4240
4241 /* Remove all variable-location information about call-clobbered
4242 registers, as well as associations between MEMs and VALUEs. */
4243
4244 static void
4245 dataflow_set_clear_at_call (dataflow_set *set)
4246 {
4247 int r;
4248
4249 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4250 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4251 var_regno_delete (set, r);
4252
4253 if (MAY_HAVE_DEBUG_INSNS)
4254 {
4255 set->traversed_vars = set->vars;
4256 htab_traverse (shared_hash_htab (set->vars),
4257 dataflow_set_preserve_mem_locs, set);
4258 set->traversed_vars = set->vars;
4259 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4260 set);
4261 set->traversed_vars = NULL;
4262 }
4263 }
4264
4265 /* Flag whether two dataflow sets being compared contain different data. */
4266 static bool
4267 dataflow_set_different_value;
4268
4269 static bool
4270 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4271 {
4272 location_chain lc1, lc2;
4273
4274 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4275 {
4276 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4277 {
4278 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4279 {
4280 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4281 break;
4282 }
4283 if (rtx_equal_p (lc1->loc, lc2->loc))
4284 break;
4285 }
4286 if (!lc2)
4287 return true;
4288 }
4289 return false;
4290 }
4291
4292 /* Return true if one-part variables VAR1 and VAR2 are different.
4293 They must be in canonical order. */
4294
4295 static bool
4296 onepart_variable_different_p (variable var1, variable var2)
4297 {
4298 location_chain lc1, lc2;
4299
4300 if (var1 == var2)
4301 return false;
4302
4303 gcc_assert (var1->n_var_parts == 1);
4304 gcc_assert (var2->n_var_parts == 1);
4305
4306 lc1 = var1->var_part[0].loc_chain;
4307 lc2 = var2->var_part[0].loc_chain;
4308
4309 gcc_assert (lc1);
4310 gcc_assert (lc2);
4311
4312 while (lc1 && lc2)
4313 {
4314 if (loc_cmp (lc1->loc, lc2->loc))
4315 return true;
4316 lc1 = lc1->next;
4317 lc2 = lc2->next;
4318 }
4319
4320 return lc1 != lc2;
4321 }
4322
4323 /* Return true if variables VAR1 and VAR2 are different. */
4324
4325 static bool
4326 variable_different_p (variable var1, variable var2)
4327 {
4328 int i;
4329
4330 if (var1 == var2)
4331 return false;
4332
4333 if (var1->n_var_parts != var2->n_var_parts)
4334 return true;
4335
4336 for (i = 0; i < var1->n_var_parts; i++)
4337 {
4338 if (var1->var_part[i].offset != var2->var_part[i].offset)
4339 return true;
4340 /* One-part values have locations in a canonical order. */
4341 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4342 {
4343 gcc_assert (var1->n_var_parts == 1);
4344 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4345 return onepart_variable_different_p (var1, var2);
4346 }
4347 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4348 return true;
4349 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4350 return true;
4351 }
4352 return false;
4353 }
4354
4355 /* Compare variable *SLOT with the same variable in hash table DATA
4356 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
4357
4358 static int
4359 dataflow_set_different_1 (void **slot, void *data)
4360 {
4361 htab_t htab = (htab_t) data;
4362 variable var1, var2;
4363
4364 var1 = (variable) *slot;
4365 var2 = (variable) htab_find_with_hash (htab, var1->dv,
4366 dv_htab_hash (var1->dv));
4367 if (!var2)
4368 {
4369 dataflow_set_different_value = true;
4370
4371 if (dump_file && (dump_flags & TDF_DETAILS))
4372 {
4373 fprintf (dump_file, "dataflow difference found: removal of:\n");
4374 dump_var (var1);
4375 }
4376
4377 /* Stop traversing the hash table. */
4378 return 0;
4379 }
4380
4381 if (variable_different_p (var1, var2))
4382 {
4383 dataflow_set_different_value = true;
4384
4385 if (dump_file && (dump_flags & TDF_DETAILS))
4386 {
4387 fprintf (dump_file, "dataflow difference found: old and new follow:\n");
4388 dump_var (var1);
4389 dump_var (var2);
4390 }
4391
4392 /* Stop traversing the hash table. */
4393 return 0;
4394 }
4395
4396 /* Continue traversing the hash table. */
4397 return 1;
4398 }
4399
4400 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4401
4402 static bool
4403 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4404 {
4405 if (old_set->vars == new_set->vars)
4406 return false;
4407
4408 if (htab_elements (shared_hash_htab (old_set->vars))
4409 != htab_elements (shared_hash_htab (new_set->vars)))
4410 return true;
4411
4412 dataflow_set_different_value = false;
4413
4414 htab_traverse (shared_hash_htab (old_set->vars), dataflow_set_different_1,
4415 shared_hash_htab (new_set->vars));
4416 /* No need to traverse the second hashtab, if both have the same number
4417 of elements and the second one had all entries found in the first one,
4418 then it can't have any extra entries. */
4419 return dataflow_set_different_value;
4420 }
4421
4422 /* Free the contents of dataflow set SET. */
4423
4424 static void
4425 dataflow_set_destroy (dataflow_set *set)
4426 {
4427 int i;
4428
4429 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4430 attrs_list_clear (&set->regs[i]);
4431
4432 shared_hash_destroy (set->vars);
4433 set->vars = NULL;
4434 }
4435
4436 /* Return true if RTL X contains a SYMBOL_REF. */
4437
4438 static bool
4439 contains_symbol_ref (rtx x)
4440 {
4441 const char *fmt;
4442 RTX_CODE code;
4443 int i;
4444
4445 if (!x)
4446 return false;
4447
4448 code = GET_CODE (x);
4449 if (code == SYMBOL_REF)
4450 return true;
4451
4452 fmt = GET_RTX_FORMAT (code);
4453 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4454 {
4455 if (fmt[i] == 'e')
4456 {
4457 if (contains_symbol_ref (XEXP (x, i)))
4458 return true;
4459 }
4460 else if (fmt[i] == 'E')
4461 {
4462 int j;
4463 for (j = 0; j < XVECLEN (x, i); j++)
4464 if (contains_symbol_ref (XVECEXP (x, i, j)))
4465 return true;
4466 }
4467 }
4468
4469 return false;
4470 }
4471
4472 /* Shall EXPR be tracked? */
4473
4474 static bool
4475 track_expr_p (tree expr, bool need_rtl)
4476 {
4477 rtx decl_rtl;
4478 tree realdecl;
4479
4480 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4481 return DECL_RTL_SET_P (expr);
4482
4483 /* If EXPR is not a parameter or a variable do not track it. */
4484 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4485 return 0;
4486
4487 /* It also must have a name... */
4488 if (!DECL_NAME (expr) && need_rtl)
4489 return 0;
4490
4491 /* ... and a RTL assigned to it. */
4492 decl_rtl = DECL_RTL_IF_SET (expr);
4493 if (!decl_rtl && need_rtl)
4494 return 0;
4495
4496 /* If this expression is really a debug alias of some other declaration, we
4497 don't need to track this expression if the ultimate declaration is
4498 ignored. */
4499 realdecl = expr;
4500 if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
4501 {
4502 realdecl = DECL_DEBUG_EXPR (realdecl);
4503 /* ??? We don't yet know how to emit DW_OP_piece for variable
4504 that has been SRA'ed. */
4505 if (!DECL_P (realdecl))
4506 return 0;
4507 }
4508
4509 /* Do not track EXPR if REALDECL it should be ignored for debugging
4510 purposes. */
4511 if (DECL_IGNORED_P (realdecl))
4512 return 0;
4513
4514 /* Do not track global variables until we are able to emit correct location
4515 list for them. */
4516 if (TREE_STATIC (realdecl))
4517 return 0;
4518
4519 /* When the EXPR is a DECL for alias of some variable (see example)
4520 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4521 DECL_RTL contains SYMBOL_REF.
4522
4523 Example:
4524 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4525 char **_dl_argv;
4526 */
4527 if (decl_rtl && MEM_P (decl_rtl)
4528 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4529 return 0;
4530
4531 /* If RTX is a memory it should not be very large (because it would be
4532 an array or struct). */
4533 if (decl_rtl && MEM_P (decl_rtl))
4534 {
4535 /* Do not track structures and arrays. */
4536 if (GET_MODE (decl_rtl) == BLKmode
4537 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4538 return 0;
4539 if (MEM_SIZE (decl_rtl)
4540 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4541 return 0;
4542 }
4543
4544 DECL_CHANGED (expr) = 0;
4545 DECL_CHANGED (realdecl) = 0;
4546 return 1;
4547 }
4548
4549 /* Determine whether a given LOC refers to the same variable part as
4550 EXPR+OFFSET. */
4551
4552 static bool
4553 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4554 {
4555 tree expr2;
4556 HOST_WIDE_INT offset2;
4557
4558 if (! DECL_P (expr))
4559 return false;
4560
4561 if (REG_P (loc))
4562 {
4563 expr2 = REG_EXPR (loc);
4564 offset2 = REG_OFFSET (loc);
4565 }
4566 else if (MEM_P (loc))
4567 {
4568 expr2 = MEM_EXPR (loc);
4569 offset2 = INT_MEM_OFFSET (loc);
4570 }
4571 else
4572 return false;
4573
4574 if (! expr2 || ! DECL_P (expr2))
4575 return false;
4576
4577 expr = var_debug_decl (expr);
4578 expr2 = var_debug_decl (expr2);
4579
4580 return (expr == expr2 && offset == offset2);
4581 }
4582
4583 /* LOC is a REG or MEM that we would like to track if possible.
4584 If EXPR is null, we don't know what expression LOC refers to,
4585 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4586 LOC is an lvalue register.
4587
4588 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4589 is something we can track. When returning true, store the mode of
4590 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4591 from EXPR in *OFFSET_OUT (if nonnull). */
4592
4593 static bool
4594 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4595 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4596 {
4597 enum machine_mode mode;
4598
4599 if (expr == NULL || !track_expr_p (expr, true))
4600 return false;
4601
4602 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4603 whole subreg, but only the old inner part is really relevant. */
4604 mode = GET_MODE (loc);
4605 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4606 {
4607 enum machine_mode pseudo_mode;
4608
4609 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4610 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4611 {
4612 offset += byte_lowpart_offset (pseudo_mode, mode);
4613 mode = pseudo_mode;
4614 }
4615 }
4616
4617 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4618 Do the same if we are storing to a register and EXPR occupies
4619 the whole of register LOC; in that case, the whole of EXPR is
4620 being changed. We exclude complex modes from the second case
4621 because the real and imaginary parts are represented as separate
4622 pseudo registers, even if the whole complex value fits into one
4623 hard register. */
4624 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4625 || (store_reg_p
4626 && !COMPLEX_MODE_P (DECL_MODE (expr))
4627 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4628 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4629 {
4630 mode = DECL_MODE (expr);
4631 offset = 0;
4632 }
4633
4634 if (offset < 0 || offset >= MAX_VAR_PARTS)
4635 return false;
4636
4637 if (mode_out)
4638 *mode_out = mode;
4639 if (offset_out)
4640 *offset_out = offset;
4641 return true;
4642 }
4643
4644 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4645 want to track. When returning nonnull, make sure that the attributes
4646 on the returned value are updated. */
4647
4648 static rtx
4649 var_lowpart (enum machine_mode mode, rtx loc)
4650 {
4651 unsigned int offset, reg_offset, regno;
4652
4653 if (!REG_P (loc) && !MEM_P (loc))
4654 return NULL;
4655
4656 if (GET_MODE (loc) == mode)
4657 return loc;
4658
4659 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4660
4661 if (MEM_P (loc))
4662 return adjust_address_nv (loc, mode, offset);
4663
4664 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4665 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4666 reg_offset, mode);
4667 return gen_rtx_REG_offset (loc, mode, regno, offset);
4668 }
4669
4670 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
4671 hard_frame_pointer_rtx is being mapped to it. */
4672 static rtx cfa_base_rtx;
4673
4674 /* Carry information about uses and stores while walking rtx. */
4675
4676 struct count_use_info
4677 {
4678 /* The insn where the RTX is. */
4679 rtx insn;
4680
4681 /* The basic block where insn is. */
4682 basic_block bb;
4683
4684 /* The array of n_sets sets in the insn, as determined by cselib. */
4685 struct cselib_set *sets;
4686 int n_sets;
4687
4688 /* True if we're counting stores, false otherwise. */
4689 bool store_p;
4690 };
4691
4692 /* Find a VALUE corresponding to X. */
4693
4694 static inline cselib_val *
4695 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4696 {
4697 int i;
4698
4699 if (cui->sets)
4700 {
4701 /* This is called after uses are set up and before stores are
4702 processed bycselib, so it's safe to look up srcs, but not
4703 dsts. So we look up expressions that appear in srcs or in
4704 dest expressions, but we search the sets array for dests of
4705 stores. */
4706 if (cui->store_p)
4707 {
4708 for (i = 0; i < cui->n_sets; i++)
4709 if (cui->sets[i].dest == x)
4710 return cui->sets[i].src_elt;
4711 }
4712 else
4713 return cselib_lookup (x, mode, 0);
4714 }
4715
4716 return NULL;
4717 }
4718
4719 /* Helper function to get mode of MEM's address. */
4720
4721 static inline enum machine_mode
4722 get_address_mode (rtx mem)
4723 {
4724 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4725 if (mode != VOIDmode)
4726 return mode;
4727 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4728 }
4729
4730 /* Replace all registers and addresses in an expression with VALUE
4731 expressions that map back to them, unless the expression is a
4732 register. If no mapping is or can be performed, returns NULL. */
4733
4734 static rtx
4735 replace_expr_with_values (rtx loc)
4736 {
4737 if (REG_P (loc))
4738 return NULL;
4739 else if (MEM_P (loc))
4740 {
4741 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4742 get_address_mode (loc), 0);
4743 if (addr)
4744 return replace_equiv_address_nv (loc, addr->val_rtx);
4745 else
4746 return NULL;
4747 }
4748 else
4749 return cselib_subst_to_values (loc);
4750 }
4751
4752 /* Determine what kind of micro operation to choose for a USE. Return
4753 MO_CLOBBER if no micro operation is to be generated. */
4754
4755 static enum micro_operation_type
4756 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4757 {
4758 tree expr;
4759
4760 if (cui && cui->sets)
4761 {
4762 if (GET_CODE (loc) == VAR_LOCATION)
4763 {
4764 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4765 {
4766 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4767 if (! VAR_LOC_UNKNOWN_P (ploc))
4768 {
4769 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1);
4770
4771 /* ??? flag_float_store and volatile mems are never
4772 given values, but we could in theory use them for
4773 locations. */
4774 gcc_assert (val || 1);
4775 }
4776 return MO_VAL_LOC;
4777 }
4778 else
4779 return MO_CLOBBER;
4780 }
4781
4782 if (REG_P (loc) || MEM_P (loc))
4783 {
4784 if (modep)
4785 *modep = GET_MODE (loc);
4786 if (cui->store_p)
4787 {
4788 if (REG_P (loc)
4789 || (find_use_val (loc, GET_MODE (loc), cui)
4790 && cselib_lookup (XEXP (loc, 0),
4791 get_address_mode (loc), 0)))
4792 return MO_VAL_SET;
4793 }
4794 else
4795 {
4796 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4797
4798 if (val && !cselib_preserved_value_p (val))
4799 return MO_VAL_USE;
4800 }
4801 }
4802 }
4803
4804 if (REG_P (loc))
4805 {
4806 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4807
4808 if (loc == cfa_base_rtx)
4809 return MO_CLOBBER;
4810 expr = REG_EXPR (loc);
4811
4812 if (!expr)
4813 return MO_USE_NO_VAR;
4814 else if (target_for_debug_bind (var_debug_decl (expr)))
4815 return MO_CLOBBER;
4816 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4817 false, modep, NULL))
4818 return MO_USE;
4819 else
4820 return MO_USE_NO_VAR;
4821 }
4822 else if (MEM_P (loc))
4823 {
4824 expr = MEM_EXPR (loc);
4825
4826 if (!expr)
4827 return MO_CLOBBER;
4828 else if (target_for_debug_bind (var_debug_decl (expr)))
4829 return MO_CLOBBER;
4830 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4831 false, modep, NULL))
4832 return MO_USE;
4833 else
4834 return MO_CLOBBER;
4835 }
4836
4837 return MO_CLOBBER;
4838 }
4839
4840 /* Log to OUT information about micro-operation MOPT involving X in
4841 INSN of BB. */
4842
4843 static inline void
4844 log_op_type (rtx x, basic_block bb, rtx insn,
4845 enum micro_operation_type mopt, FILE *out)
4846 {
4847 fprintf (out, "bb %i op %i insn %i %s ",
4848 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4849 INSN_UID (insn), micro_operation_type_name[mopt]);
4850 print_inline_rtx (out, x, 2);
4851 fputc ('\n', out);
4852 }
4853
4854 /* Tell whether the CONCAT used to holds a VALUE and its location
4855 needs value resolution, i.e., an attempt of mapping the location
4856 back to other incoming values. */
4857 #define VAL_NEEDS_RESOLUTION(x) \
4858 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4859 /* Whether the location in the CONCAT is a tracked expression, that
4860 should also be handled like a MO_USE. */
4861 #define VAL_HOLDS_TRACK_EXPR(x) \
4862 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4863 /* Whether the location in the CONCAT should be handled like a MO_COPY
4864 as well. */
4865 #define VAL_EXPR_IS_COPIED(x) \
4866 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4867 /* Whether the location in the CONCAT should be handled like a
4868 MO_CLOBBER as well. */
4869 #define VAL_EXPR_IS_CLOBBERED(x) \
4870 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4871 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4872 a reverse operation that should be handled afterwards. */
4873 #define VAL_EXPR_HAS_REVERSE(x) \
4874 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4875
4876 /* All preserved VALUEs. */
4877 static VEC (rtx, heap) *preserved_values;
4878
4879 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4880
4881 static void
4882 preserve_value (cselib_val *val)
4883 {
4884 cselib_preserve_value (val);
4885 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4886 }
4887
4888 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4889 any rtxes not suitable for CONST use not replaced by VALUEs
4890 are discovered. */
4891
4892 static int
4893 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
4894 {
4895 if (*x == NULL_RTX)
4896 return 0;
4897
4898 switch (GET_CODE (*x))
4899 {
4900 case REG:
4901 case DEBUG_EXPR:
4902 case PC:
4903 case SCRATCH:
4904 case CC0:
4905 case ASM_INPUT:
4906 case ASM_OPERANDS:
4907 return 1;
4908 case MEM:
4909 return !MEM_READONLY_P (*x);
4910 default:
4911 return 0;
4912 }
4913 }
4914
4915 /* Add uses (register and memory references) LOC which will be tracked
4916 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
4917
4918 static int
4919 add_uses (rtx *ploc, void *data)
4920 {
4921 rtx loc = *ploc;
4922 enum machine_mode mode = VOIDmode;
4923 struct count_use_info *cui = (struct count_use_info *)data;
4924 enum micro_operation_type type = use_type (loc, cui, &mode);
4925
4926 if (type != MO_CLOBBER)
4927 {
4928 basic_block bb = cui->bb;
4929 micro_operation mo;
4930
4931 mo.type = type;
4932 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
4933 mo.insn = cui->insn;
4934
4935 if (type == MO_VAL_LOC)
4936 {
4937 rtx oloc = loc;
4938 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
4939 cselib_val *val;
4940
4941 gcc_assert (cui->sets);
4942
4943 if (MEM_P (vloc)
4944 && !REG_P (XEXP (vloc, 0))
4945 && !MEM_P (XEXP (vloc, 0))
4946 && (GET_CODE (XEXP (vloc, 0)) != PLUS
4947 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
4948 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
4949 {
4950 rtx mloc = vloc;
4951 enum machine_mode address_mode = get_address_mode (mloc);
4952 cselib_val *val
4953 = cselib_lookup (XEXP (mloc, 0), address_mode, 0);
4954
4955 if (val && !cselib_preserved_value_p (val))
4956 {
4957 micro_operation moa;
4958 preserve_value (val);
4959 mloc = cselib_subst_to_values (XEXP (mloc, 0));
4960 moa.type = MO_VAL_USE;
4961 moa.insn = cui->insn;
4962 moa.u.loc = gen_rtx_CONCAT (address_mode,
4963 val->val_rtx, mloc);
4964 if (dump_file && (dump_flags & TDF_DETAILS))
4965 log_op_type (moa.u.loc, cui->bb, cui->insn,
4966 moa.type, dump_file);
4967 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
4968 }
4969 }
4970
4971 if (CONSTANT_P (vloc)
4972 && (GET_CODE (vloc) != CONST
4973 || for_each_rtx (&vloc, non_suitable_const, NULL)))
4974 /* For constants don't look up any value. */;
4975 else if (!VAR_LOC_UNKNOWN_P (vloc)
4976 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
4977 {
4978 enum machine_mode mode2;
4979 enum micro_operation_type type2;
4980 rtx nloc = replace_expr_with_values (vloc);
4981
4982 if (nloc)
4983 {
4984 oloc = shallow_copy_rtx (oloc);
4985 PAT_VAR_LOCATION_LOC (oloc) = nloc;
4986 }
4987
4988 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
4989
4990 type2 = use_type (vloc, 0, &mode2);
4991
4992 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
4993 || type2 == MO_CLOBBER);
4994
4995 if (type2 == MO_CLOBBER
4996 && !cselib_preserved_value_p (val))
4997 {
4998 VAL_NEEDS_RESOLUTION (oloc) = 1;
4999 preserve_value (val);
5000 }
5001 }
5002 else if (!VAR_LOC_UNKNOWN_P (vloc))
5003 {
5004 oloc = shallow_copy_rtx (oloc);
5005 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5006 }
5007
5008 mo.u.loc = oloc;
5009 }
5010 else if (type == MO_VAL_USE)
5011 {
5012 enum machine_mode mode2 = VOIDmode;
5013 enum micro_operation_type type2;
5014 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5015 rtx vloc, oloc = loc, nloc;
5016
5017 gcc_assert (cui->sets);
5018
5019 if (MEM_P (oloc)
5020 && !REG_P (XEXP (oloc, 0))
5021 && !MEM_P (XEXP (oloc, 0))
5022 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5023 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5024 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5025 {
5026 rtx mloc = oloc;
5027 enum machine_mode address_mode = get_address_mode (mloc);
5028 cselib_val *val
5029 = cselib_lookup (XEXP (mloc, 0), address_mode, 0);
5030
5031 if (val && !cselib_preserved_value_p (val))
5032 {
5033 micro_operation moa;
5034 preserve_value (val);
5035 mloc = cselib_subst_to_values (XEXP (mloc, 0));
5036 moa.type = MO_VAL_USE;
5037 moa.insn = cui->insn;
5038 moa.u.loc = gen_rtx_CONCAT (address_mode,
5039 val->val_rtx, mloc);
5040 if (dump_file && (dump_flags & TDF_DETAILS))
5041 log_op_type (moa.u.loc, cui->bb, cui->insn,
5042 moa.type, dump_file);
5043 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5044 }
5045 }
5046
5047 type2 = use_type (loc, 0, &mode2);
5048
5049 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5050 || type2 == MO_CLOBBER);
5051
5052 if (type2 == MO_USE)
5053 vloc = var_lowpart (mode2, loc);
5054 else
5055 vloc = oloc;
5056
5057 /* The loc of a MO_VAL_USE may have two forms:
5058
5059 (concat val src): val is at src, a value-based
5060 representation.
5061
5062 (concat (concat val use) src): same as above, with use as
5063 the MO_USE tracked value, if it differs from src.
5064
5065 */
5066
5067 nloc = replace_expr_with_values (loc);
5068 if (!nloc)
5069 nloc = oloc;
5070
5071 if (vloc != nloc)
5072 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5073 else
5074 oloc = val->val_rtx;
5075
5076 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5077
5078 if (type2 == MO_USE)
5079 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5080 if (!cselib_preserved_value_p (val))
5081 {
5082 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5083 preserve_value (val);
5084 }
5085 }
5086 else
5087 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5088
5089 if (dump_file && (dump_flags & TDF_DETAILS))
5090 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5091 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5092 }
5093
5094 return 0;
5095 }
5096
5097 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5098
5099 static void
5100 add_uses_1 (rtx *x, void *cui)
5101 {
5102 for_each_rtx (x, add_uses, cui);
5103 }
5104
5105 /* Attempt to reverse the EXPR operation in the debug info. Say for
5106 reg1 = reg2 + 6 even when reg2 is no longer live we
5107 can express its value as VAL - 6. */
5108
5109 static rtx
5110 reverse_op (rtx val, const_rtx expr)
5111 {
5112 rtx src, arg, ret;
5113 cselib_val *v;
5114 enum rtx_code code;
5115
5116 if (GET_CODE (expr) != SET)
5117 return NULL_RTX;
5118
5119 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5120 return NULL_RTX;
5121
5122 src = SET_SRC (expr);
5123 switch (GET_CODE (src))
5124 {
5125 case PLUS:
5126 case MINUS:
5127 case XOR:
5128 case NOT:
5129 case NEG:
5130 case SIGN_EXTEND:
5131 case ZERO_EXTEND:
5132 break;
5133 default:
5134 return NULL_RTX;
5135 }
5136
5137 if (!REG_P (XEXP (src, 0)) || !SCALAR_INT_MODE_P (GET_MODE (src)))
5138 return NULL_RTX;
5139
5140 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0);
5141 if (!v || !cselib_preserved_value_p (v))
5142 return NULL_RTX;
5143
5144 switch (GET_CODE (src))
5145 {
5146 case NOT:
5147 case NEG:
5148 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5149 return NULL_RTX;
5150 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5151 break;
5152 case SIGN_EXTEND:
5153 case ZERO_EXTEND:
5154 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5155 break;
5156 case XOR:
5157 code = XOR;
5158 goto binary;
5159 case PLUS:
5160 code = MINUS;
5161 goto binary;
5162 case MINUS:
5163 code = PLUS;
5164 goto binary;
5165 binary:
5166 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5167 return NULL_RTX;
5168 arg = XEXP (src, 1);
5169 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5170 {
5171 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5172 if (arg == NULL_RTX)
5173 return NULL_RTX;
5174 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5175 return NULL_RTX;
5176 }
5177 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5178 if (ret == val)
5179 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5180 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5181 breaks a lot of routines during var-tracking. */
5182 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5183 break;
5184 default:
5185 gcc_unreachable ();
5186 }
5187
5188 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5189 }
5190
5191 /* Add stores (register and memory references) LOC which will be tracked
5192 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5193 CUIP->insn is instruction which the LOC is part of. */
5194
5195 static void
5196 add_stores (rtx loc, const_rtx expr, void *cuip)
5197 {
5198 enum machine_mode mode = VOIDmode, mode2;
5199 struct count_use_info *cui = (struct count_use_info *)cuip;
5200 basic_block bb = cui->bb;
5201 micro_operation mo;
5202 rtx oloc = loc, nloc, src = NULL;
5203 enum micro_operation_type type = use_type (loc, cui, &mode);
5204 bool track_p = false;
5205 cselib_val *v;
5206 bool resolve, preserve;
5207 rtx reverse;
5208
5209 if (type == MO_CLOBBER)
5210 return;
5211
5212 mode2 = mode;
5213
5214 if (REG_P (loc))
5215 {
5216 gcc_assert (loc != cfa_base_rtx);
5217 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5218 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5219 || GET_CODE (expr) == CLOBBER)
5220 {
5221 mo.type = MO_CLOBBER;
5222 mo.u.loc = loc;
5223 }
5224 else
5225 {
5226 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
5227 src = var_lowpart (mode2, SET_SRC (expr));
5228 loc = var_lowpart (mode2, loc);
5229
5230 if (src == NULL)
5231 {
5232 mo.type = MO_SET;
5233 mo.u.loc = loc;
5234 }
5235 else
5236 {
5237 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5238 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5239 mo.type = MO_COPY;
5240 else
5241 mo.type = MO_SET;
5242 mo.u.loc = xexpr;
5243 }
5244 }
5245 mo.insn = cui->insn;
5246 }
5247 else if (MEM_P (loc)
5248 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5249 || cui->sets))
5250 {
5251 if (MEM_P (loc) && type == MO_VAL_SET
5252 && !REG_P (XEXP (loc, 0))
5253 && !MEM_P (XEXP (loc, 0))
5254 && (GET_CODE (XEXP (loc, 0)) != PLUS
5255 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5256 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5257 {
5258 rtx mloc = loc;
5259 enum machine_mode address_mode = get_address_mode (mloc);
5260 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5261 address_mode, 0);
5262
5263 if (val && !cselib_preserved_value_p (val))
5264 {
5265 preserve_value (val);
5266 mo.type = MO_VAL_USE;
5267 mloc = cselib_subst_to_values (XEXP (mloc, 0));
5268 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5269 mo.insn = cui->insn;
5270 if (dump_file && (dump_flags & TDF_DETAILS))
5271 log_op_type (mo.u.loc, cui->bb, cui->insn,
5272 mo.type, dump_file);
5273 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5274 }
5275 }
5276
5277 if (GET_CODE (expr) == CLOBBER || !track_p)
5278 {
5279 mo.type = MO_CLOBBER;
5280 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5281 }
5282 else
5283 {
5284 if (GET_CODE (expr) == SET && SET_DEST (expr) == loc)
5285 src = var_lowpart (mode2, SET_SRC (expr));
5286 loc = var_lowpart (mode2, loc);
5287
5288 if (src == NULL)
5289 {
5290 mo.type = MO_SET;
5291 mo.u.loc = loc;
5292 }
5293 else
5294 {
5295 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5296 if (same_variable_part_p (SET_SRC (xexpr),
5297 MEM_EXPR (loc),
5298 INT_MEM_OFFSET (loc)))
5299 mo.type = MO_COPY;
5300 else
5301 mo.type = MO_SET;
5302 mo.u.loc = xexpr;
5303 }
5304 }
5305 mo.insn = cui->insn;
5306 }
5307 else
5308 return;
5309
5310 if (type != MO_VAL_SET)
5311 goto log_and_return;
5312
5313 v = find_use_val (oloc, mode, cui);
5314
5315 if (!v)
5316 goto log_and_return;
5317
5318 resolve = preserve = !cselib_preserved_value_p (v);
5319
5320 nloc = replace_expr_with_values (oloc);
5321 if (nloc)
5322 oloc = nloc;
5323
5324 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5325 {
5326 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0);
5327
5328 gcc_assert (oval != v);
5329 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5330
5331 if (!cselib_preserved_value_p (oval))
5332 {
5333 micro_operation moa;
5334
5335 preserve_value (oval);
5336
5337 moa.type = MO_VAL_USE;
5338 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5339 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5340 moa.insn = cui->insn;
5341
5342 if (dump_file && (dump_flags & TDF_DETAILS))
5343 log_op_type (moa.u.loc, cui->bb, cui->insn,
5344 moa.type, dump_file);
5345 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5346 }
5347
5348 resolve = false;
5349 }
5350 else if (resolve && GET_CODE (mo.u.loc) == SET)
5351 {
5352 nloc = replace_expr_with_values (SET_SRC (expr));
5353
5354 /* Avoid the mode mismatch between oexpr and expr. */
5355 if (!nloc && mode != mode2)
5356 {
5357 nloc = SET_SRC (expr);
5358 gcc_assert (oloc == SET_DEST (expr));
5359 }
5360
5361 if (nloc)
5362 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5363 else
5364 {
5365 if (oloc == SET_DEST (mo.u.loc))
5366 /* No point in duplicating. */
5367 oloc = mo.u.loc;
5368 if (!REG_P (SET_SRC (mo.u.loc)))
5369 resolve = false;
5370 }
5371 }
5372 else if (!resolve)
5373 {
5374 if (GET_CODE (mo.u.loc) == SET
5375 && oloc == SET_DEST (mo.u.loc))
5376 /* No point in duplicating. */
5377 oloc = mo.u.loc;
5378 }
5379 else
5380 resolve = false;
5381
5382 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5383
5384 if (mo.u.loc != oloc)
5385 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5386
5387 /* The loc of a MO_VAL_SET may have various forms:
5388
5389 (concat val dst): dst now holds val
5390
5391 (concat val (set dst src)): dst now holds val, copied from src
5392
5393 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5394 after replacing mems and non-top-level regs with values.
5395
5396 (concat (concat val dstv) (set dst src)): dst now holds val,
5397 copied from src. dstv is a value-based representation of dst, if
5398 it differs from dst. If resolution is needed, src is a REG, and
5399 its mode is the same as that of val.
5400
5401 (concat (concat val (set dstv srcv)) (set dst src)): src
5402 copied to dst, holding val. dstv and srcv are value-based
5403 representations of dst and src, respectively.
5404
5405 */
5406
5407 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5408 {
5409 reverse = reverse_op (v->val_rtx, expr);
5410 if (reverse)
5411 {
5412 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5413 VAL_EXPR_HAS_REVERSE (loc) = 1;
5414 }
5415 }
5416
5417 mo.u.loc = loc;
5418
5419 if (track_p)
5420 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5421 if (preserve)
5422 {
5423 VAL_NEEDS_RESOLUTION (loc) = resolve;
5424 preserve_value (v);
5425 }
5426 if (mo.type == MO_CLOBBER)
5427 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5428 if (mo.type == MO_COPY)
5429 VAL_EXPR_IS_COPIED (loc) = 1;
5430
5431 mo.type = MO_VAL_SET;
5432
5433 log_and_return:
5434 if (dump_file && (dump_flags & TDF_DETAILS))
5435 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5436 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5437 }
5438
5439 /* Callback for cselib_record_sets_hook, that records as micro
5440 operations uses and stores in an insn after cselib_record_sets has
5441 analyzed the sets in an insn, but before it modifies the stored
5442 values in the internal tables, unless cselib_record_sets doesn't
5443 call it directly (perhaps because we're not doing cselib in the
5444 first place, in which case sets and n_sets will be 0). */
5445
5446 static void
5447 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5448 {
5449 basic_block bb = BLOCK_FOR_INSN (insn);
5450 int n1, n2;
5451 struct count_use_info cui;
5452 micro_operation *mos;
5453
5454 cselib_hook_called = true;
5455
5456 cui.insn = insn;
5457 cui.bb = bb;
5458 cui.sets = sets;
5459 cui.n_sets = n_sets;
5460
5461 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5462 cui.store_p = false;
5463 note_uses (&PATTERN (insn), add_uses_1, &cui);
5464 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5465 mos = VEC_address (micro_operation, VTI (bb)->mos);
5466
5467 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5468 MO_VAL_LOC last. */
5469 while (n1 < n2)
5470 {
5471 while (n1 < n2 && mos[n1].type == MO_USE)
5472 n1++;
5473 while (n1 < n2 && mos[n2].type != MO_USE)
5474 n2--;
5475 if (n1 < n2)
5476 {
5477 micro_operation sw;
5478
5479 sw = mos[n1];
5480 mos[n1] = mos[n2];
5481 mos[n2] = sw;
5482 }
5483 }
5484
5485 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5486 while (n1 < n2)
5487 {
5488 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5489 n1++;
5490 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5491 n2--;
5492 if (n1 < n2)
5493 {
5494 micro_operation sw;
5495
5496 sw = mos[n1];
5497 mos[n1] = mos[n2];
5498 mos[n2] = sw;
5499 }
5500 }
5501
5502 if (CALL_P (insn))
5503 {
5504 micro_operation mo;
5505
5506 mo.type = MO_CALL;
5507 mo.insn = insn;
5508 mo.u.loc = NULL_RTX;
5509
5510 if (dump_file && (dump_flags & TDF_DETAILS))
5511 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5512 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5513 }
5514
5515 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5516 /* This will record NEXT_INSN (insn), such that we can
5517 insert notes before it without worrying about any
5518 notes that MO_USEs might emit after the insn. */
5519 cui.store_p = true;
5520 note_stores (PATTERN (insn), add_stores, &cui);
5521 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5522 mos = VEC_address (micro_operation, VTI (bb)->mos);
5523
5524 /* Order the MO_VAL_USEs first (note_stores does nothing
5525 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5526 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5527 while (n1 < n2)
5528 {
5529 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5530 n1++;
5531 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5532 n2--;
5533 if (n1 < n2)
5534 {
5535 micro_operation sw;
5536
5537 sw = mos[n1];
5538 mos[n1] = mos[n2];
5539 mos[n2] = sw;
5540 }
5541 }
5542
5543 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5544 while (n1 < n2)
5545 {
5546 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5547 n1++;
5548 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5549 n2--;
5550 if (n1 < n2)
5551 {
5552 micro_operation sw;
5553
5554 sw = mos[n1];
5555 mos[n1] = mos[n2];
5556 mos[n2] = sw;
5557 }
5558 }
5559 }
5560
5561 static enum var_init_status
5562 find_src_status (dataflow_set *in, rtx src)
5563 {
5564 tree decl = NULL_TREE;
5565 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5566
5567 if (! flag_var_tracking_uninit)
5568 status = VAR_INIT_STATUS_INITIALIZED;
5569
5570 if (src && REG_P (src))
5571 decl = var_debug_decl (REG_EXPR (src));
5572 else if (src && MEM_P (src))
5573 decl = var_debug_decl (MEM_EXPR (src));
5574
5575 if (src && decl)
5576 status = get_init_value (in, src, dv_from_decl (decl));
5577
5578 return status;
5579 }
5580
5581 /* SRC is the source of an assignment. Use SET to try to find what
5582 was ultimately assigned to SRC. Return that value if known,
5583 otherwise return SRC itself. */
5584
5585 static rtx
5586 find_src_set_src (dataflow_set *set, rtx src)
5587 {
5588 tree decl = NULL_TREE; /* The variable being copied around. */
5589 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
5590 variable var;
5591 location_chain nextp;
5592 int i;
5593 bool found;
5594
5595 if (src && REG_P (src))
5596 decl = var_debug_decl (REG_EXPR (src));
5597 else if (src && MEM_P (src))
5598 decl = var_debug_decl (MEM_EXPR (src));
5599
5600 if (src && decl)
5601 {
5602 decl_or_value dv = dv_from_decl (decl);
5603
5604 var = shared_hash_find (set->vars, dv);
5605 if (var)
5606 {
5607 found = false;
5608 for (i = 0; i < var->n_var_parts && !found; i++)
5609 for (nextp = var->var_part[i].loc_chain; nextp && !found;
5610 nextp = nextp->next)
5611 if (rtx_equal_p (nextp->loc, src))
5612 {
5613 set_src = nextp->set_src;
5614 found = true;
5615 }
5616
5617 }
5618 }
5619
5620 return set_src;
5621 }
5622
5623 /* Compute the changes of variable locations in the basic block BB. */
5624
5625 static bool
5626 compute_bb_dataflow (basic_block bb)
5627 {
5628 unsigned int i;
5629 micro_operation *mo;
5630 bool changed;
5631 dataflow_set old_out;
5632 dataflow_set *in = &VTI (bb)->in;
5633 dataflow_set *out = &VTI (bb)->out;
5634
5635 dataflow_set_init (&old_out);
5636 dataflow_set_copy (&old_out, out);
5637 dataflow_set_copy (out, in);
5638
5639 for (i = 0; VEC_iterate (micro_operation, VTI (bb)->mos, i, mo); i++)
5640 {
5641 rtx insn = mo->insn;
5642
5643 switch (mo->type)
5644 {
5645 case MO_CALL:
5646 dataflow_set_clear_at_call (out);
5647 break;
5648
5649 case MO_USE:
5650 {
5651 rtx loc = mo->u.loc;
5652
5653 if (REG_P (loc))
5654 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
5655 else if (MEM_P (loc))
5656 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
5657 }
5658 break;
5659
5660 case MO_VAL_LOC:
5661 {
5662 rtx loc = mo->u.loc;
5663 rtx val, vloc;
5664 tree var;
5665
5666 if (GET_CODE (loc) == CONCAT)
5667 {
5668 val = XEXP (loc, 0);
5669 vloc = XEXP (loc, 1);
5670 }
5671 else
5672 {
5673 val = NULL_RTX;
5674 vloc = loc;
5675 }
5676
5677 var = PAT_VAR_LOCATION_DECL (vloc);
5678
5679 clobber_variable_part (out, NULL_RTX,
5680 dv_from_decl (var), 0, NULL_RTX);
5681 if (val)
5682 {
5683 if (VAL_NEEDS_RESOLUTION (loc))
5684 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
5685 set_variable_part (out, val, dv_from_decl (var), 0,
5686 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
5687 INSERT);
5688 }
5689 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
5690 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
5691 dv_from_decl (var), 0,
5692 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
5693 INSERT);
5694 }
5695 break;
5696
5697 case MO_VAL_USE:
5698 {
5699 rtx loc = mo->u.loc;
5700 rtx val, vloc, uloc;
5701
5702 vloc = uloc = XEXP (loc, 1);
5703 val = XEXP (loc, 0);
5704
5705 if (GET_CODE (val) == CONCAT)
5706 {
5707 uloc = XEXP (val, 1);
5708 val = XEXP (val, 0);
5709 }
5710
5711 if (VAL_NEEDS_RESOLUTION (loc))
5712 val_resolve (out, val, vloc, insn);
5713 else
5714 val_store (out, val, uloc, insn, false);
5715
5716 if (VAL_HOLDS_TRACK_EXPR (loc))
5717 {
5718 if (GET_CODE (uloc) == REG)
5719 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
5720 NULL);
5721 else if (GET_CODE (uloc) == MEM)
5722 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
5723 NULL);
5724 }
5725 }
5726 break;
5727
5728 case MO_VAL_SET:
5729 {
5730 rtx loc = mo->u.loc;
5731 rtx val, vloc, uloc, reverse = NULL_RTX;
5732
5733 vloc = loc;
5734 if (VAL_EXPR_HAS_REVERSE (loc))
5735 {
5736 reverse = XEXP (loc, 1);
5737 vloc = XEXP (loc, 0);
5738 }
5739 uloc = XEXP (vloc, 1);
5740 val = XEXP (vloc, 0);
5741 vloc = uloc;
5742
5743 if (GET_CODE (val) == CONCAT)
5744 {
5745 vloc = XEXP (val, 1);
5746 val = XEXP (val, 0);
5747 }
5748
5749 if (GET_CODE (vloc) == SET)
5750 {
5751 rtx vsrc = SET_SRC (vloc);
5752
5753 gcc_assert (val != vsrc);
5754 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
5755
5756 vloc = SET_DEST (vloc);
5757
5758 if (VAL_NEEDS_RESOLUTION (loc))
5759 val_resolve (out, val, vsrc, insn);
5760 }
5761 else if (VAL_NEEDS_RESOLUTION (loc))
5762 {
5763 gcc_assert (GET_CODE (uloc) == SET
5764 && GET_CODE (SET_SRC (uloc)) == REG);
5765 val_resolve (out, val, SET_SRC (uloc), insn);
5766 }
5767
5768 if (VAL_HOLDS_TRACK_EXPR (loc))
5769 {
5770 if (VAL_EXPR_IS_CLOBBERED (loc))
5771 {
5772 if (REG_P (uloc))
5773 var_reg_delete (out, uloc, true);
5774 else if (MEM_P (uloc))
5775 var_mem_delete (out, uloc, true);
5776 }
5777 else
5778 {
5779 bool copied_p = VAL_EXPR_IS_COPIED (loc);
5780 rtx set_src = NULL;
5781 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
5782
5783 if (GET_CODE (uloc) == SET)
5784 {
5785 set_src = SET_SRC (uloc);
5786 uloc = SET_DEST (uloc);
5787 }
5788
5789 if (copied_p)
5790 {
5791 if (flag_var_tracking_uninit)
5792 {
5793 status = find_src_status (in, set_src);
5794
5795 if (status == VAR_INIT_STATUS_UNKNOWN)
5796 status = find_src_status (out, set_src);
5797 }
5798
5799 set_src = find_src_set_src (in, set_src);
5800 }
5801
5802 if (REG_P (uloc))
5803 var_reg_delete_and_set (out, uloc, !copied_p,
5804 status, set_src);
5805 else if (MEM_P (uloc))
5806 var_mem_delete_and_set (out, uloc, !copied_p,
5807 status, set_src);
5808 }
5809 }
5810 else if (REG_P (uloc))
5811 var_regno_delete (out, REGNO (uloc));
5812
5813 val_store (out, val, vloc, insn, true);
5814
5815 if (reverse)
5816 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
5817 insn, false);
5818 }
5819 break;
5820
5821 case MO_SET:
5822 {
5823 rtx loc = mo->u.loc;
5824 rtx set_src = NULL;
5825
5826 if (GET_CODE (loc) == SET)
5827 {
5828 set_src = SET_SRC (loc);
5829 loc = SET_DEST (loc);
5830 }
5831
5832 if (REG_P (loc))
5833 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
5834 set_src);
5835 else if (MEM_P (loc))
5836 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
5837 set_src);
5838 }
5839 break;
5840
5841 case MO_COPY:
5842 {
5843 rtx loc = mo->u.loc;
5844 enum var_init_status src_status;
5845 rtx set_src = NULL;
5846
5847 if (GET_CODE (loc) == SET)
5848 {
5849 set_src = SET_SRC (loc);
5850 loc = SET_DEST (loc);
5851 }
5852
5853 if (! flag_var_tracking_uninit)
5854 src_status = VAR_INIT_STATUS_INITIALIZED;
5855 else
5856 {
5857 src_status = find_src_status (in, set_src);
5858
5859 if (src_status == VAR_INIT_STATUS_UNKNOWN)
5860 src_status = find_src_status (out, set_src);
5861 }
5862
5863 set_src = find_src_set_src (in, set_src);
5864
5865 if (REG_P (loc))
5866 var_reg_delete_and_set (out, loc, false, src_status, set_src);
5867 else if (MEM_P (loc))
5868 var_mem_delete_and_set (out, loc, false, src_status, set_src);
5869 }
5870 break;
5871
5872 case MO_USE_NO_VAR:
5873 {
5874 rtx loc = mo->u.loc;
5875
5876 if (REG_P (loc))
5877 var_reg_delete (out, loc, false);
5878 else if (MEM_P (loc))
5879 var_mem_delete (out, loc, false);
5880 }
5881 break;
5882
5883 case MO_CLOBBER:
5884 {
5885 rtx loc = mo->u.loc;
5886
5887 if (REG_P (loc))
5888 var_reg_delete (out, loc, true);
5889 else if (MEM_P (loc))
5890 var_mem_delete (out, loc, true);
5891 }
5892 break;
5893
5894 case MO_ADJUST:
5895 out->stack_adjust += mo->u.adjust;
5896 break;
5897 }
5898 }
5899
5900 if (MAY_HAVE_DEBUG_INSNS)
5901 {
5902 dataflow_set_equiv_regs (out);
5903 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
5904 out);
5905 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
5906 out);
5907 #if ENABLE_CHECKING
5908 htab_traverse (shared_hash_htab (out->vars),
5909 canonicalize_loc_order_check, out);
5910 #endif
5911 }
5912 changed = dataflow_set_different (&old_out, out);
5913 dataflow_set_destroy (&old_out);
5914 return changed;
5915 }
5916
5917 /* Find the locations of variables in the whole function. */
5918
5919 static bool
5920 vt_find_locations (void)
5921 {
5922 fibheap_t worklist, pending, fibheap_swap;
5923 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
5924 basic_block bb;
5925 edge e;
5926 int *bb_order;
5927 int *rc_order;
5928 int i;
5929 int htabsz = 0;
5930 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
5931 bool success = true;
5932
5933 /* Compute reverse completion order of depth first search of the CFG
5934 so that the data-flow runs faster. */
5935 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
5936 bb_order = XNEWVEC (int, last_basic_block);
5937 pre_and_rev_post_order_compute (NULL, rc_order, false);
5938 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
5939 bb_order[rc_order[i]] = i;
5940 free (rc_order);
5941
5942 worklist = fibheap_new ();
5943 pending = fibheap_new ();
5944 visited = sbitmap_alloc (last_basic_block);
5945 in_worklist = sbitmap_alloc (last_basic_block);
5946 in_pending = sbitmap_alloc (last_basic_block);
5947 sbitmap_zero (in_worklist);
5948
5949 FOR_EACH_BB (bb)
5950 fibheap_insert (pending, bb_order[bb->index], bb);
5951 sbitmap_ones (in_pending);
5952
5953 while (success && !fibheap_empty (pending))
5954 {
5955 fibheap_swap = pending;
5956 pending = worklist;
5957 worklist = fibheap_swap;
5958 sbitmap_swap = in_pending;
5959 in_pending = in_worklist;
5960 in_worklist = sbitmap_swap;
5961
5962 sbitmap_zero (visited);
5963
5964 while (!fibheap_empty (worklist))
5965 {
5966 bb = (basic_block) fibheap_extract_min (worklist);
5967 RESET_BIT (in_worklist, bb->index);
5968 if (!TEST_BIT (visited, bb->index))
5969 {
5970 bool changed;
5971 edge_iterator ei;
5972 int oldinsz, oldoutsz;
5973
5974 SET_BIT (visited, bb->index);
5975
5976 if (VTI (bb)->in.vars)
5977 {
5978 htabsz
5979 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
5980 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
5981 oldinsz
5982 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
5983 oldoutsz
5984 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
5985 }
5986 else
5987 oldinsz = oldoutsz = 0;
5988
5989 if (MAY_HAVE_DEBUG_INSNS)
5990 {
5991 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
5992 bool first = true, adjust = false;
5993
5994 /* Calculate the IN set as the intersection of
5995 predecessor OUT sets. */
5996
5997 dataflow_set_clear (in);
5998 dst_can_be_shared = true;
5999
6000 FOR_EACH_EDGE (e, ei, bb->preds)
6001 if (!VTI (e->src)->flooded)
6002 gcc_assert (bb_order[bb->index]
6003 <= bb_order[e->src->index]);
6004 else if (first)
6005 {
6006 dataflow_set_copy (in, &VTI (e->src)->out);
6007 first_out = &VTI (e->src)->out;
6008 first = false;
6009 }
6010 else
6011 {
6012 dataflow_set_merge (in, &VTI (e->src)->out);
6013 adjust = true;
6014 }
6015
6016 if (adjust)
6017 {
6018 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6019 #if ENABLE_CHECKING
6020 /* Merge and merge_adjust should keep entries in
6021 canonical order. */
6022 htab_traverse (shared_hash_htab (in->vars),
6023 canonicalize_loc_order_check,
6024 in);
6025 #endif
6026 if (dst_can_be_shared)
6027 {
6028 shared_hash_destroy (in->vars);
6029 in->vars = shared_hash_copy (first_out->vars);
6030 }
6031 }
6032
6033 VTI (bb)->flooded = true;
6034 }
6035 else
6036 {
6037 /* Calculate the IN set as union of predecessor OUT sets. */
6038 dataflow_set_clear (&VTI (bb)->in);
6039 FOR_EACH_EDGE (e, ei, bb->preds)
6040 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6041 }
6042
6043 changed = compute_bb_dataflow (bb);
6044 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6045 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6046
6047 if (htabmax && htabsz > htabmax)
6048 {
6049 if (MAY_HAVE_DEBUG_INSNS)
6050 inform (DECL_SOURCE_LOCATION (cfun->decl),
6051 "variable tracking size limit exceeded with "
6052 "-fvar-tracking-assignments, retrying without");
6053 else
6054 inform (DECL_SOURCE_LOCATION (cfun->decl),
6055 "variable tracking size limit exceeded");
6056 success = false;
6057 break;
6058 }
6059
6060 if (changed)
6061 {
6062 FOR_EACH_EDGE (e, ei, bb->succs)
6063 {
6064 if (e->dest == EXIT_BLOCK_PTR)
6065 continue;
6066
6067 if (TEST_BIT (visited, e->dest->index))
6068 {
6069 if (!TEST_BIT (in_pending, e->dest->index))
6070 {
6071 /* Send E->DEST to next round. */
6072 SET_BIT (in_pending, e->dest->index);
6073 fibheap_insert (pending,
6074 bb_order[e->dest->index],
6075 e->dest);
6076 }
6077 }
6078 else if (!TEST_BIT (in_worklist, e->dest->index))
6079 {
6080 /* Add E->DEST to current round. */
6081 SET_BIT (in_worklist, e->dest->index);
6082 fibheap_insert (worklist, bb_order[e->dest->index],
6083 e->dest);
6084 }
6085 }
6086 }
6087
6088 if (dump_file)
6089 fprintf (dump_file,
6090 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6091 bb->index,
6092 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6093 oldinsz,
6094 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6095 oldoutsz,
6096 (int)worklist->nodes, (int)pending->nodes, htabsz);
6097
6098 if (dump_file && (dump_flags & TDF_DETAILS))
6099 {
6100 fprintf (dump_file, "BB %i IN:\n", bb->index);
6101 dump_dataflow_set (&VTI (bb)->in);
6102 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6103 dump_dataflow_set (&VTI (bb)->out);
6104 }
6105 }
6106 }
6107 }
6108
6109 if (success && MAY_HAVE_DEBUG_INSNS)
6110 FOR_EACH_BB (bb)
6111 gcc_assert (VTI (bb)->flooded);
6112
6113 free (bb_order);
6114 fibheap_delete (worklist);
6115 fibheap_delete (pending);
6116 sbitmap_free (visited);
6117 sbitmap_free (in_worklist);
6118 sbitmap_free (in_pending);
6119
6120 return success;
6121 }
6122
6123 /* Print the content of the LIST to dump file. */
6124
6125 static void
6126 dump_attrs_list (attrs list)
6127 {
6128 for (; list; list = list->next)
6129 {
6130 if (dv_is_decl_p (list->dv))
6131 print_mem_expr (dump_file, dv_as_decl (list->dv));
6132 else
6133 print_rtl_single (dump_file, dv_as_value (list->dv));
6134 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6135 }
6136 fprintf (dump_file, "\n");
6137 }
6138
6139 /* Print the information about variable *SLOT to dump file. */
6140
6141 static int
6142 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6143 {
6144 variable var = (variable) *slot;
6145
6146 dump_var (var);
6147
6148 /* Continue traversing the hash table. */
6149 return 1;
6150 }
6151
6152 /* Print the information about variable VAR to dump file. */
6153
6154 static void
6155 dump_var (variable var)
6156 {
6157 int i;
6158 location_chain node;
6159
6160 if (dv_is_decl_p (var->dv))
6161 {
6162 const_tree decl = dv_as_decl (var->dv);
6163
6164 if (DECL_NAME (decl))
6165 {
6166 fprintf (dump_file, " name: %s",
6167 IDENTIFIER_POINTER (DECL_NAME (decl)));
6168 if (dump_flags & TDF_UID)
6169 fprintf (dump_file, "D.%u", DECL_UID (decl));
6170 }
6171 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6172 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6173 else
6174 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6175 fprintf (dump_file, "\n");
6176 }
6177 else
6178 {
6179 fputc (' ', dump_file);
6180 print_rtl_single (dump_file, dv_as_value (var->dv));
6181 }
6182
6183 for (i = 0; i < var->n_var_parts; i++)
6184 {
6185 fprintf (dump_file, " offset %ld\n",
6186 (long) var->var_part[i].offset);
6187 for (node = var->var_part[i].loc_chain; node; node = node->next)
6188 {
6189 fprintf (dump_file, " ");
6190 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6191 fprintf (dump_file, "[uninit]");
6192 print_rtl_single (dump_file, node->loc);
6193 }
6194 }
6195 }
6196
6197 /* Print the information about variables from hash table VARS to dump file. */
6198
6199 static void
6200 dump_vars (htab_t vars)
6201 {
6202 if (htab_elements (vars) > 0)
6203 {
6204 fprintf (dump_file, "Variables:\n");
6205 htab_traverse (vars, dump_var_slot, NULL);
6206 }
6207 }
6208
6209 /* Print the dataflow set SET to dump file. */
6210
6211 static void
6212 dump_dataflow_set (dataflow_set *set)
6213 {
6214 int i;
6215
6216 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6217 set->stack_adjust);
6218 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6219 {
6220 if (set->regs[i])
6221 {
6222 fprintf (dump_file, "Reg %d:", i);
6223 dump_attrs_list (set->regs[i]);
6224 }
6225 }
6226 dump_vars (shared_hash_htab (set->vars));
6227 fprintf (dump_file, "\n");
6228 }
6229
6230 /* Print the IN and OUT sets for each basic block to dump file. */
6231
6232 static void
6233 dump_dataflow_sets (void)
6234 {
6235 basic_block bb;
6236
6237 FOR_EACH_BB (bb)
6238 {
6239 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6240 fprintf (dump_file, "IN:\n");
6241 dump_dataflow_set (&VTI (bb)->in);
6242 fprintf (dump_file, "OUT:\n");
6243 dump_dataflow_set (&VTI (bb)->out);
6244 }
6245 }
6246
6247 /* Add variable VAR to the hash table of changed variables and
6248 if it has no locations delete it from SET's hash table. */
6249
6250 static void
6251 variable_was_changed (variable var, dataflow_set *set)
6252 {
6253 hashval_t hash = dv_htab_hash (var->dv);
6254
6255 if (emit_notes)
6256 {
6257 void **slot;
6258 bool old_cur_loc_changed = false;
6259
6260 /* Remember this decl or VALUE has been added to changed_variables. */
6261 set_dv_changed (var->dv, true);
6262
6263 slot = htab_find_slot_with_hash (changed_variables,
6264 var->dv,
6265 hash, INSERT);
6266
6267 if (*slot)
6268 {
6269 variable old_var = (variable) *slot;
6270 gcc_assert (old_var->in_changed_variables);
6271 old_var->in_changed_variables = false;
6272 old_cur_loc_changed = old_var->cur_loc_changed;
6273 variable_htab_free (*slot);
6274 }
6275 if (set && var->n_var_parts == 0)
6276 {
6277 variable empty_var;
6278
6279 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6280 empty_var->dv = var->dv;
6281 empty_var->refcount = 1;
6282 empty_var->n_var_parts = 0;
6283 empty_var->cur_loc_changed = true;
6284 empty_var->in_changed_variables = true;
6285 *slot = empty_var;
6286 goto drop_var;
6287 }
6288 else
6289 {
6290 var->refcount++;
6291 var->in_changed_variables = true;
6292 /* If within processing one uop a variable is deleted
6293 and then readded, we need to assume it has changed. */
6294 if (old_cur_loc_changed)
6295 var->cur_loc_changed = true;
6296 *slot = var;
6297 }
6298 }
6299 else
6300 {
6301 gcc_assert (set);
6302 if (var->n_var_parts == 0)
6303 {
6304 void **slot;
6305
6306 drop_var:
6307 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6308 if (slot)
6309 {
6310 if (shared_hash_shared (set->vars))
6311 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6312 NO_INSERT);
6313 htab_clear_slot (shared_hash_htab (set->vars), slot);
6314 }
6315 }
6316 }
6317 }
6318
6319 /* Look for the index in VAR->var_part corresponding to OFFSET.
6320 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6321 referenced int will be set to the index that the part has or should
6322 have, if it should be inserted. */
6323
6324 static inline int
6325 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6326 int *insertion_point)
6327 {
6328 int pos, low, high;
6329
6330 /* Find the location part. */
6331 low = 0;
6332 high = var->n_var_parts;
6333 while (low != high)
6334 {
6335 pos = (low + high) / 2;
6336 if (var->var_part[pos].offset < offset)
6337 low = pos + 1;
6338 else
6339 high = pos;
6340 }
6341 pos = low;
6342
6343 if (insertion_point)
6344 *insertion_point = pos;
6345
6346 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6347 return pos;
6348
6349 return -1;
6350 }
6351
6352 static void **
6353 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6354 decl_or_value dv, HOST_WIDE_INT offset,
6355 enum var_init_status initialized, rtx set_src)
6356 {
6357 int pos;
6358 location_chain node, next;
6359 location_chain *nextp;
6360 variable var;
6361 bool onepart = dv_onepart_p (dv);
6362
6363 gcc_assert (offset == 0 || !onepart);
6364 gcc_assert (loc != dv_as_opaque (dv));
6365
6366 var = (variable) *slot;
6367
6368 if (! flag_var_tracking_uninit)
6369 initialized = VAR_INIT_STATUS_INITIALIZED;
6370
6371 if (!var)
6372 {
6373 /* Create new variable information. */
6374 var = (variable) pool_alloc (dv_pool (dv));
6375 var->dv = dv;
6376 var->refcount = 1;
6377 var->n_var_parts = 1;
6378 var->cur_loc_changed = false;
6379 var->in_changed_variables = false;
6380 var->var_part[0].offset = offset;
6381 var->var_part[0].loc_chain = NULL;
6382 var->var_part[0].cur_loc = NULL;
6383 *slot = var;
6384 pos = 0;
6385 nextp = &var->var_part[0].loc_chain;
6386 }
6387 else if (onepart)
6388 {
6389 int r = -1, c = 0;
6390
6391 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6392
6393 pos = 0;
6394
6395 if (GET_CODE (loc) == VALUE)
6396 {
6397 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6398 nextp = &node->next)
6399 if (GET_CODE (node->loc) == VALUE)
6400 {
6401 if (node->loc == loc)
6402 {
6403 r = 0;
6404 break;
6405 }
6406 if (canon_value_cmp (node->loc, loc))
6407 c++;
6408 else
6409 {
6410 r = 1;
6411 break;
6412 }
6413 }
6414 else if (REG_P (node->loc) || MEM_P (node->loc))
6415 c++;
6416 else
6417 {
6418 r = 1;
6419 break;
6420 }
6421 }
6422 else if (REG_P (loc))
6423 {
6424 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6425 nextp = &node->next)
6426 if (REG_P (node->loc))
6427 {
6428 if (REGNO (node->loc) < REGNO (loc))
6429 c++;
6430 else
6431 {
6432 if (REGNO (node->loc) == REGNO (loc))
6433 r = 0;
6434 else
6435 r = 1;
6436 break;
6437 }
6438 }
6439 else
6440 {
6441 r = 1;
6442 break;
6443 }
6444 }
6445 else if (MEM_P (loc))
6446 {
6447 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6448 nextp = &node->next)
6449 if (REG_P (node->loc))
6450 c++;
6451 else if (MEM_P (node->loc))
6452 {
6453 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6454 break;
6455 else
6456 c++;
6457 }
6458 else
6459 {
6460 r = 1;
6461 break;
6462 }
6463 }
6464 else
6465 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6466 nextp = &node->next)
6467 if ((r = loc_cmp (node->loc, loc)) >= 0)
6468 break;
6469 else
6470 c++;
6471
6472 if (r == 0)
6473 return slot;
6474
6475 if (shared_var_p (var, set->vars))
6476 {
6477 slot = unshare_variable (set, slot, var, initialized);
6478 var = (variable)*slot;
6479 for (nextp = &var->var_part[0].loc_chain; c;
6480 nextp = &(*nextp)->next)
6481 c--;
6482 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6483 }
6484 }
6485 else
6486 {
6487 int inspos = 0;
6488
6489 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6490
6491 pos = find_variable_location_part (var, offset, &inspos);
6492
6493 if (pos >= 0)
6494 {
6495 node = var->var_part[pos].loc_chain;
6496
6497 if (node
6498 && ((REG_P (node->loc) && REG_P (loc)
6499 && REGNO (node->loc) == REGNO (loc))
6500 || rtx_equal_p (node->loc, loc)))
6501 {
6502 /* LOC is in the beginning of the chain so we have nothing
6503 to do. */
6504 if (node->init < initialized)
6505 node->init = initialized;
6506 if (set_src != NULL)
6507 node->set_src = set_src;
6508
6509 return slot;
6510 }
6511 else
6512 {
6513 /* We have to make a copy of a shared variable. */
6514 if (shared_var_p (var, set->vars))
6515 {
6516 slot = unshare_variable (set, slot, var, initialized);
6517 var = (variable)*slot;
6518 }
6519 }
6520 }
6521 else
6522 {
6523 /* We have not found the location part, new one will be created. */
6524
6525 /* We have to make a copy of the shared variable. */
6526 if (shared_var_p (var, set->vars))
6527 {
6528 slot = unshare_variable (set, slot, var, initialized);
6529 var = (variable)*slot;
6530 }
6531
6532 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6533 thus there are at most MAX_VAR_PARTS different offsets. */
6534 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6535 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6536
6537 /* We have to move the elements of array starting at index
6538 inspos to the next position. */
6539 for (pos = var->n_var_parts; pos > inspos; pos--)
6540 var->var_part[pos] = var->var_part[pos - 1];
6541
6542 var->n_var_parts++;
6543 var->var_part[pos].offset = offset;
6544 var->var_part[pos].loc_chain = NULL;
6545 var->var_part[pos].cur_loc = NULL;
6546 }
6547
6548 /* Delete the location from the list. */
6549 nextp = &var->var_part[pos].loc_chain;
6550 for (node = var->var_part[pos].loc_chain; node; node = next)
6551 {
6552 next = node->next;
6553 if ((REG_P (node->loc) && REG_P (loc)
6554 && REGNO (node->loc) == REGNO (loc))
6555 || rtx_equal_p (node->loc, loc))
6556 {
6557 /* Save these values, to assign to the new node, before
6558 deleting this one. */
6559 if (node->init > initialized)
6560 initialized = node->init;
6561 if (node->set_src != NULL && set_src == NULL)
6562 set_src = node->set_src;
6563 if (var->var_part[pos].cur_loc == node->loc)
6564 {
6565 var->var_part[pos].cur_loc = NULL;
6566 var->cur_loc_changed = true;
6567 }
6568 pool_free (loc_chain_pool, node);
6569 *nextp = next;
6570 break;
6571 }
6572 else
6573 nextp = &node->next;
6574 }
6575
6576 nextp = &var->var_part[pos].loc_chain;
6577 }
6578
6579 /* Add the location to the beginning. */
6580 node = (location_chain) pool_alloc (loc_chain_pool);
6581 node->loc = loc;
6582 node->init = initialized;
6583 node->set_src = set_src;
6584 node->next = *nextp;
6585 *nextp = node;
6586
6587 if (onepart && emit_notes)
6588 add_value_chains (var->dv, loc);
6589
6590 /* If no location was emitted do so. */
6591 if (var->var_part[pos].cur_loc == NULL)
6592 variable_was_changed (var, set);
6593
6594 return slot;
6595 }
6596
6597 /* Set the part of variable's location in the dataflow set SET. The
6598 variable part is specified by variable's declaration in DV and
6599 offset OFFSET and the part's location by LOC. IOPT should be
6600 NO_INSERT if the variable is known to be in SET already and the
6601 variable hash table must not be resized, and INSERT otherwise. */
6602
6603 static void
6604 set_variable_part (dataflow_set *set, rtx loc,
6605 decl_or_value dv, HOST_WIDE_INT offset,
6606 enum var_init_status initialized, rtx set_src,
6607 enum insert_option iopt)
6608 {
6609 void **slot;
6610
6611 if (iopt == NO_INSERT)
6612 slot = shared_hash_find_slot_noinsert (set->vars, dv);
6613 else
6614 {
6615 slot = shared_hash_find_slot (set->vars, dv);
6616 if (!slot)
6617 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
6618 }
6619 slot = set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
6620 }
6621
6622 /* Remove all recorded register locations for the given variable part
6623 from dataflow set SET, except for those that are identical to loc.
6624 The variable part is specified by variable's declaration or value
6625 DV and offset OFFSET. */
6626
6627 static void **
6628 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
6629 HOST_WIDE_INT offset, rtx set_src)
6630 {
6631 variable var = (variable) *slot;
6632 int pos = find_variable_location_part (var, offset, NULL);
6633
6634 if (pos >= 0)
6635 {
6636 location_chain node, next;
6637
6638 /* Remove the register locations from the dataflow set. */
6639 next = var->var_part[pos].loc_chain;
6640 for (node = next; node; node = next)
6641 {
6642 next = node->next;
6643 if (node->loc != loc
6644 && (!flag_var_tracking_uninit
6645 || !set_src
6646 || MEM_P (set_src)
6647 || !rtx_equal_p (set_src, node->set_src)))
6648 {
6649 if (REG_P (node->loc))
6650 {
6651 attrs anode, anext;
6652 attrs *anextp;
6653
6654 /* Remove the variable part from the register's
6655 list, but preserve any other variable parts
6656 that might be regarded as live in that same
6657 register. */
6658 anextp = &set->regs[REGNO (node->loc)];
6659 for (anode = *anextp; anode; anode = anext)
6660 {
6661 anext = anode->next;
6662 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
6663 && anode->offset == offset)
6664 {
6665 pool_free (attrs_pool, anode);
6666 *anextp = anext;
6667 }
6668 else
6669 anextp = &anode->next;
6670 }
6671 }
6672
6673 slot = delete_slot_part (set, node->loc, slot, offset);
6674 }
6675 }
6676 }
6677
6678 return slot;
6679 }
6680
6681 /* Remove all recorded register locations for the given variable part
6682 from dataflow set SET, except for those that are identical to loc.
6683 The variable part is specified by variable's declaration or value
6684 DV and offset OFFSET. */
6685
6686 static void
6687 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
6688 HOST_WIDE_INT offset, rtx set_src)
6689 {
6690 void **slot;
6691
6692 if (!dv_as_opaque (dv)
6693 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
6694 return;
6695
6696 slot = shared_hash_find_slot_noinsert (set->vars, dv);
6697 if (!slot)
6698 return;
6699
6700 slot = clobber_slot_part (set, loc, slot, offset, set_src);
6701 }
6702
6703 /* Delete the part of variable's location from dataflow set SET. The
6704 variable part is specified by its SET->vars slot SLOT and offset
6705 OFFSET and the part's location by LOC. */
6706
6707 static void **
6708 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
6709 HOST_WIDE_INT offset)
6710 {
6711 variable var = (variable) *slot;
6712 int pos = find_variable_location_part (var, offset, NULL);
6713
6714 if (pos >= 0)
6715 {
6716 location_chain node, next;
6717 location_chain *nextp;
6718 bool changed;
6719
6720 if (shared_var_p (var, set->vars))
6721 {
6722 /* If the variable contains the location part we have to
6723 make a copy of the variable. */
6724 for (node = var->var_part[pos].loc_chain; node;
6725 node = node->next)
6726 {
6727 if ((REG_P (node->loc) && REG_P (loc)
6728 && REGNO (node->loc) == REGNO (loc))
6729 || rtx_equal_p (node->loc, loc))
6730 {
6731 slot = unshare_variable (set, slot, var,
6732 VAR_INIT_STATUS_UNKNOWN);
6733 var = (variable)*slot;
6734 break;
6735 }
6736 }
6737 }
6738
6739 /* Delete the location part. */
6740 changed = false;
6741 nextp = &var->var_part[pos].loc_chain;
6742 for (node = *nextp; node; node = next)
6743 {
6744 next = node->next;
6745 if ((REG_P (node->loc) && REG_P (loc)
6746 && REGNO (node->loc) == REGNO (loc))
6747 || rtx_equal_p (node->loc, loc))
6748 {
6749 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
6750 remove_value_chains (var->dv, node->loc);
6751 /* If we have deleted the location which was last emitted
6752 we have to emit new location so add the variable to set
6753 of changed variables. */
6754 if (var->var_part[pos].cur_loc == node->loc)
6755 {
6756 changed = true;
6757 var->var_part[pos].cur_loc = NULL;
6758 var->cur_loc_changed = true;
6759 }
6760 pool_free (loc_chain_pool, node);
6761 *nextp = next;
6762 break;
6763 }
6764 else
6765 nextp = &node->next;
6766 }
6767
6768 if (var->var_part[pos].loc_chain == NULL)
6769 {
6770 changed = true;
6771 var->n_var_parts--;
6772 if (emit_notes)
6773 var->cur_loc_changed = true;
6774 while (pos < var->n_var_parts)
6775 {
6776 var->var_part[pos] = var->var_part[pos + 1];
6777 pos++;
6778 }
6779 }
6780 if (changed)
6781 variable_was_changed (var, set);
6782 }
6783
6784 return slot;
6785 }
6786
6787 /* Delete the part of variable's location from dataflow set SET. The
6788 variable part is specified by variable's declaration or value DV
6789 and offset OFFSET and the part's location by LOC. */
6790
6791 static void
6792 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
6793 HOST_WIDE_INT offset)
6794 {
6795 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
6796 if (!slot)
6797 return;
6798
6799 slot = delete_slot_part (set, loc, slot, offset);
6800 }
6801
6802 /* Structure for passing some other parameters to function
6803 vt_expand_loc_callback. */
6804 struct expand_loc_callback_data
6805 {
6806 /* The variables and values active at this point. */
6807 htab_t vars;
6808
6809 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
6810 Non-NULL should be returned if vt_expand_loc would return
6811 non-NULL in that case, NULL otherwise. cur_loc_changed should be
6812 computed and cur_loc recomputed when possible (but just once
6813 per emit_notes_for_changes call). */
6814 bool dummy;
6815
6816 /* True if expansion of subexpressions had to recompute some
6817 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
6818 whose cur_loc has been already recomputed during current
6819 emit_notes_for_changes call. */
6820 bool cur_loc_changed;
6821 };
6822
6823 /* Callback for cselib_expand_value, that looks for expressions
6824 holding the value in the var-tracking hash tables. Return X for
6825 standard processing, anything else is to be used as-is. */
6826
6827 static rtx
6828 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
6829 {
6830 struct expand_loc_callback_data *elcd
6831 = (struct expand_loc_callback_data *) data;
6832 bool dummy = elcd->dummy;
6833 bool cur_loc_changed = elcd->cur_loc_changed;
6834 decl_or_value dv;
6835 variable var;
6836 location_chain loc;
6837 rtx result, subreg, xret;
6838
6839 switch (GET_CODE (x))
6840 {
6841 case SUBREG:
6842 if (dummy)
6843 {
6844 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
6845 max_depth - 1,
6846 vt_expand_loc_callback, data))
6847 return pc_rtx;
6848 else
6849 return NULL;
6850 }
6851
6852 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
6853 max_depth - 1,
6854 vt_expand_loc_callback, data);
6855
6856 if (!subreg)
6857 return NULL;
6858
6859 result = simplify_gen_subreg (GET_MODE (x), subreg,
6860 GET_MODE (SUBREG_REG (x)),
6861 SUBREG_BYTE (x));
6862
6863 /* Invalid SUBREGs are ok in debug info. ??? We could try
6864 alternate expansions for the VALUE as well. */
6865 if (!result)
6866 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
6867
6868 return result;
6869
6870 case DEBUG_EXPR:
6871 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
6872 xret = NULL;
6873 break;
6874
6875 case VALUE:
6876 dv = dv_from_value (x);
6877 xret = x;
6878 break;
6879
6880 default:
6881 return x;
6882 }
6883
6884 if (VALUE_RECURSED_INTO (x))
6885 return NULL;
6886
6887 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
6888
6889 if (!var)
6890 {
6891 if (dummy && dv_changed_p (dv))
6892 elcd->cur_loc_changed = true;
6893 return xret;
6894 }
6895
6896 if (var->n_var_parts == 0)
6897 {
6898 if (dummy)
6899 elcd->cur_loc_changed = true;
6900 return xret;
6901 }
6902
6903 gcc_assert (var->n_var_parts == 1);
6904
6905 VALUE_RECURSED_INTO (x) = true;
6906 result = NULL;
6907
6908 if (var->var_part[0].cur_loc)
6909 {
6910 if (dummy)
6911 {
6912 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
6913 max_depth,
6914 vt_expand_loc_callback, data))
6915 result = pc_rtx;
6916 }
6917 else
6918 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
6919 max_depth,
6920 vt_expand_loc_callback, data);
6921 if (result)
6922 set_dv_changed (dv, false);
6923 }
6924 if (!result && dv_changed_p (dv))
6925 {
6926 set_dv_changed (dv, false);
6927 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
6928 if (loc->loc == var->var_part[0].cur_loc)
6929 continue;
6930 else if (dummy)
6931 {
6932 elcd->cur_loc_changed = cur_loc_changed;
6933 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
6934 vt_expand_loc_callback,
6935 data))
6936 {
6937 result = pc_rtx;
6938 break;
6939 }
6940 }
6941 else
6942 {
6943 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
6944 vt_expand_loc_callback, data);
6945 if (result)
6946 break;
6947 }
6948 if (dummy && (result || var->var_part[0].cur_loc))
6949 var->cur_loc_changed = true;
6950 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
6951 }
6952 if (dummy)
6953 {
6954 if (var->cur_loc_changed)
6955 elcd->cur_loc_changed = true;
6956 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
6957 elcd->cur_loc_changed = cur_loc_changed;
6958 }
6959
6960 VALUE_RECURSED_INTO (x) = false;
6961 if (result)
6962 return result;
6963 else
6964 return xret;
6965 }
6966
6967 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
6968 tables. */
6969
6970 static rtx
6971 vt_expand_loc (rtx loc, htab_t vars)
6972 {
6973 struct expand_loc_callback_data data;
6974
6975 if (!MAY_HAVE_DEBUG_INSNS)
6976 return loc;
6977
6978 data.vars = vars;
6979 data.dummy = false;
6980 data.cur_loc_changed = false;
6981 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, 5,
6982 vt_expand_loc_callback, &data);
6983
6984 if (loc && MEM_P (loc))
6985 loc = targetm.delegitimize_address (loc);
6986 return loc;
6987 }
6988
6989 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
6990 would succeed or not, without actually allocating new rtxes. */
6991
6992 static bool
6993 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
6994 {
6995 struct expand_loc_callback_data data;
6996 bool ret;
6997
6998 gcc_assert (MAY_HAVE_DEBUG_INSNS);
6999 data.vars = vars;
7000 data.dummy = true;
7001 data.cur_loc_changed = false;
7002 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, 5,
7003 vt_expand_loc_callback, &data);
7004 *pcur_loc_changed = data.cur_loc_changed;
7005 return ret;
7006 }
7007
7008 #ifdef ENABLE_RTL_CHECKING
7009 /* Used to verify that cur_loc_changed updating is safe. */
7010 static struct pointer_map_t *emitted_notes;
7011 #endif
7012
7013 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7014 additional parameters: WHERE specifies whether the note shall be emitted
7015 before or after instruction INSN. */
7016
7017 static int
7018 emit_note_insn_var_location (void **varp, void *data)
7019 {
7020 variable var = (variable) *varp;
7021 rtx insn = ((emit_note_data *)data)->insn;
7022 enum emit_note_where where = ((emit_note_data *)data)->where;
7023 htab_t vars = ((emit_note_data *)data)->vars;
7024 rtx note, note_vl;
7025 int i, j, n_var_parts;
7026 bool complete;
7027 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7028 HOST_WIDE_INT last_limit;
7029 tree type_size_unit;
7030 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7031 rtx loc[MAX_VAR_PARTS];
7032 tree decl;
7033 location_chain lc;
7034
7035 if (dv_is_value_p (var->dv))
7036 goto value_or_debug_decl;
7037
7038 decl = dv_as_decl (var->dv);
7039
7040 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7041 goto value_or_debug_decl;
7042
7043 complete = true;
7044 last_limit = 0;
7045 n_var_parts = 0;
7046 if (!MAY_HAVE_DEBUG_INSNS)
7047 {
7048 for (i = 0; i < var->n_var_parts; i++)
7049 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7050 {
7051 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7052 var->cur_loc_changed = true;
7053 }
7054 if (var->n_var_parts == 0)
7055 var->cur_loc_changed = true;
7056 }
7057 #ifndef ENABLE_RTL_CHECKING
7058 if (!var->cur_loc_changed)
7059 goto clear;
7060 #endif
7061 for (i = 0; i < var->n_var_parts; i++)
7062 {
7063 enum machine_mode mode, wider_mode;
7064 rtx loc2;
7065
7066 if (last_limit < var->var_part[i].offset)
7067 {
7068 complete = false;
7069 break;
7070 }
7071 else if (last_limit > var->var_part[i].offset)
7072 continue;
7073 offsets[n_var_parts] = var->var_part[i].offset;
7074 if (!var->var_part[i].cur_loc)
7075 {
7076 complete = false;
7077 continue;
7078 }
7079 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars);
7080 if (!loc2)
7081 {
7082 complete = false;
7083 continue;
7084 }
7085 loc[n_var_parts] = loc2;
7086 mode = GET_MODE (var->var_part[i].cur_loc);
7087 if (mode == VOIDmode && dv_onepart_p (var->dv))
7088 mode = DECL_MODE (decl);
7089 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7090 if (var->var_part[i].cur_loc == lc->loc)
7091 {
7092 initialized = lc->init;
7093 break;
7094 }
7095 gcc_assert (lc);
7096 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7097
7098 /* Attempt to merge adjacent registers or memory. */
7099 wider_mode = GET_MODE_WIDER_MODE (mode);
7100 for (j = i + 1; j < var->n_var_parts; j++)
7101 if (last_limit <= var->var_part[j].offset)
7102 break;
7103 if (j < var->n_var_parts
7104 && wider_mode != VOIDmode
7105 && var->var_part[j].cur_loc
7106 && mode == GET_MODE (var->var_part[j].cur_loc)
7107 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7108 && last_limit == var->var_part[j].offset
7109 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
7110 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7111 {
7112 rtx new_loc = NULL;
7113
7114 if (REG_P (loc[n_var_parts])
7115 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7116 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7117 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7118 == REGNO (loc2))
7119 {
7120 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7121 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7122 mode, 0);
7123 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7124 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7125 if (new_loc)
7126 {
7127 if (!REG_P (new_loc)
7128 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7129 new_loc = NULL;
7130 else
7131 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7132 }
7133 }
7134 else if (MEM_P (loc[n_var_parts])
7135 && GET_CODE (XEXP (loc2, 0)) == PLUS
7136 && REG_P (XEXP (XEXP (loc2, 0), 0))
7137 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7138 {
7139 if ((REG_P (XEXP (loc[n_var_parts], 0))
7140 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7141 XEXP (XEXP (loc2, 0), 0))
7142 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7143 == GET_MODE_SIZE (mode))
7144 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7145 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7146 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7147 XEXP (XEXP (loc2, 0), 0))
7148 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7149 + GET_MODE_SIZE (mode)
7150 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7151 new_loc = adjust_address_nv (loc[n_var_parts],
7152 wider_mode, 0);
7153 }
7154
7155 if (new_loc)
7156 {
7157 loc[n_var_parts] = new_loc;
7158 mode = wider_mode;
7159 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7160 i = j;
7161 }
7162 }
7163 ++n_var_parts;
7164 }
7165 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7166 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7167 complete = false;
7168
7169 if (! flag_var_tracking_uninit)
7170 initialized = VAR_INIT_STATUS_INITIALIZED;
7171
7172 note_vl = NULL_RTX;
7173 if (!complete)
7174 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7175 (int) initialized);
7176 else if (n_var_parts == 1)
7177 {
7178 rtx expr_list;
7179
7180 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7181 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7182 else
7183 expr_list = loc[0];
7184
7185 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7186 (int) initialized);
7187 }
7188 else if (n_var_parts)
7189 {
7190 rtx parallel;
7191
7192 for (i = 0; i < n_var_parts; i++)
7193 loc[i]
7194 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7195
7196 parallel = gen_rtx_PARALLEL (VOIDmode,
7197 gen_rtvec_v (n_var_parts, loc));
7198 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7199 parallel, (int) initialized);
7200 }
7201
7202 #ifdef ENABLE_RTL_CHECKING
7203 if (note_vl)
7204 {
7205 void **note_slot = pointer_map_insert (emitted_notes, decl);
7206 rtx pnote = (rtx) *note_slot;
7207 if (!var->cur_loc_changed && (pnote || PAT_VAR_LOCATION_LOC (note_vl)))
7208 {
7209 gcc_assert (pnote);
7210 gcc_assert (rtx_equal_p (PAT_VAR_LOCATION_LOC (pnote),
7211 PAT_VAR_LOCATION_LOC (note_vl)));
7212 }
7213 *note_slot = (void *) note_vl;
7214 }
7215 if (!var->cur_loc_changed)
7216 goto clear;
7217 #endif
7218
7219 if (where != EMIT_NOTE_BEFORE_INSN)
7220 {
7221 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7222 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7223 NOTE_DURING_CALL_P (note) = true;
7224 }
7225 else
7226 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7227 NOTE_VAR_LOCATION (note) = note_vl;
7228
7229 clear:
7230 set_dv_changed (var->dv, false);
7231 var->cur_loc_changed = false;
7232 gcc_assert (var->in_changed_variables);
7233 var->in_changed_variables = false;
7234 htab_clear_slot (changed_variables, varp);
7235
7236 /* Continue traversing the hash table. */
7237 return 1;
7238
7239 value_or_debug_decl:
7240 if (dv_changed_p (var->dv) && var->n_var_parts)
7241 {
7242 location_chain lc;
7243 bool cur_loc_changed;
7244
7245 if (var->var_part[0].cur_loc
7246 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7247 &cur_loc_changed))
7248 goto clear;
7249 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7250 if (lc->loc != var->var_part[0].cur_loc
7251 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7252 break;
7253 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7254 }
7255 goto clear;
7256 }
7257
7258 DEF_VEC_P (variable);
7259 DEF_VEC_ALLOC_P (variable, heap);
7260
7261 /* Stack of variable_def pointers that need processing with
7262 check_changed_vars_2. */
7263
7264 static VEC (variable, heap) *changed_variables_stack;
7265
7266 /* VALUEs with no variables that need set_dv_changed (val, false)
7267 called before check_changed_vars_3. */
7268
7269 static VEC (rtx, heap) *changed_values_stack;
7270
7271 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7272
7273 static void
7274 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7275 {
7276 value_chain vc
7277 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7278
7279 if (vc == NULL)
7280 return;
7281 for (vc = vc->next; vc; vc = vc->next)
7282 if (!dv_changed_p (vc->dv))
7283 {
7284 variable vcvar
7285 = (variable) htab_find_with_hash (htab, vc->dv,
7286 dv_htab_hash (vc->dv));
7287 if (vcvar)
7288 {
7289 set_dv_changed (vc->dv, true);
7290 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7291 }
7292 else if (dv_is_value_p (vc->dv))
7293 {
7294 set_dv_changed (vc->dv, true);
7295 VEC_safe_push (rtx, heap, changed_values_stack,
7296 dv_as_value (vc->dv));
7297 check_changed_vars_0 (vc->dv, htab);
7298 }
7299 }
7300 }
7301
7302 /* Populate changed_variables_stack with variable_def pointers
7303 that need variable_was_changed called on them. */
7304
7305 static int
7306 check_changed_vars_1 (void **slot, void *data)
7307 {
7308 variable var = (variable) *slot;
7309 htab_t htab = (htab_t) data;
7310
7311 if (dv_is_value_p (var->dv)
7312 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7313 check_changed_vars_0 (var->dv, htab);
7314 return 1;
7315 }
7316
7317 /* Add VAR to changed_variables and also for VALUEs add recursively
7318 all DVs that aren't in changed_variables yet but reference the
7319 VALUE from its loc_chain. */
7320
7321 static void
7322 check_changed_vars_2 (variable var, htab_t htab)
7323 {
7324 variable_was_changed (var, NULL);
7325 if (dv_is_value_p (var->dv)
7326 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7327 check_changed_vars_0 (var->dv, htab);
7328 }
7329
7330 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7331 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7332 it needs and are also in changed variables) and track whether
7333 cur_loc (or anything it uses to compute location) had to change
7334 during the current emit_notes_for_changes call. */
7335
7336 static int
7337 check_changed_vars_3 (void **slot, void *data)
7338 {
7339 variable var = (variable) *slot;
7340 htab_t vars = (htab_t) data;
7341 int i;
7342 location_chain lc;
7343 bool cur_loc_changed;
7344
7345 if (dv_is_value_p (var->dv)
7346 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7347 return 1;
7348
7349 for (i = 0; i < var->n_var_parts; i++)
7350 {
7351 if (var->var_part[i].cur_loc
7352 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7353 &cur_loc_changed))
7354 {
7355 if (cur_loc_changed)
7356 var->cur_loc_changed = true;
7357 continue;
7358 }
7359 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7360 if (lc->loc != var->var_part[i].cur_loc
7361 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7362 break;
7363 if (lc || var->var_part[i].cur_loc)
7364 var->cur_loc_changed = true;
7365 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7366 }
7367 if (var->n_var_parts == 0)
7368 var->cur_loc_changed = true;
7369 return 1;
7370 }
7371
7372 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7373 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7374 shall be emitted before of after instruction INSN. */
7375
7376 static void
7377 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7378 shared_hash vars)
7379 {
7380 emit_note_data data;
7381 htab_t htab = shared_hash_htab (vars);
7382
7383 if (!htab_elements (changed_variables))
7384 return;
7385
7386 if (MAY_HAVE_DEBUG_INSNS)
7387 {
7388 /* Unfortunately this has to be done in two steps, because
7389 we can't traverse a hashtab into which we are inserting
7390 through variable_was_changed. */
7391 htab_traverse (changed_variables, check_changed_vars_1, htab);
7392 while (VEC_length (variable, changed_variables_stack) > 0)
7393 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7394 htab);
7395 while (VEC_length (rtx, changed_values_stack) > 0)
7396 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7397 false);
7398 htab_traverse (changed_variables, check_changed_vars_3, htab);
7399 }
7400
7401 data.insn = insn;
7402 data.where = where;
7403 data.vars = htab;
7404
7405 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7406 }
7407
7408 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7409 same variable in hash table DATA or is not there at all. */
7410
7411 static int
7412 emit_notes_for_differences_1 (void **slot, void *data)
7413 {
7414 htab_t new_vars = (htab_t) data;
7415 variable old_var, new_var;
7416
7417 old_var = (variable) *slot;
7418 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7419 dv_htab_hash (old_var->dv));
7420
7421 if (!new_var)
7422 {
7423 /* Variable has disappeared. */
7424 variable empty_var;
7425
7426 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7427 empty_var->dv = old_var->dv;
7428 empty_var->refcount = 0;
7429 empty_var->n_var_parts = 0;
7430 empty_var->cur_loc_changed = false;
7431 empty_var->in_changed_variables = false;
7432 if (dv_onepart_p (old_var->dv))
7433 {
7434 location_chain lc;
7435
7436 gcc_assert (old_var->n_var_parts == 1);
7437 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7438 remove_value_chains (old_var->dv, lc->loc);
7439 }
7440 variable_was_changed (empty_var, NULL);
7441 /* Continue traversing the hash table. */
7442 return 1;
7443 }
7444 if (variable_different_p (old_var, new_var))
7445 {
7446 if (dv_onepart_p (old_var->dv))
7447 {
7448 location_chain lc1, lc2;
7449
7450 gcc_assert (old_var->n_var_parts == 1);
7451 gcc_assert (new_var->n_var_parts == 1);
7452 lc1 = old_var->var_part[0].loc_chain;
7453 lc2 = new_var->var_part[0].loc_chain;
7454 while (lc1
7455 && lc2
7456 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7457 || rtx_equal_p (lc1->loc, lc2->loc)))
7458 {
7459 lc1 = lc1->next;
7460 lc2 = lc2->next;
7461 }
7462 for (; lc2; lc2 = lc2->next)
7463 add_value_chains (old_var->dv, lc2->loc);
7464 for (; lc1; lc1 = lc1->next)
7465 remove_value_chains (old_var->dv, lc1->loc);
7466 }
7467 variable_was_changed (new_var, NULL);
7468 }
7469 /* Update cur_loc. */
7470 if (old_var != new_var)
7471 {
7472 int i;
7473 for (i = 0; i < new_var->n_var_parts; i++)
7474 {
7475 new_var->var_part[i].cur_loc = NULL;
7476 if (old_var->n_var_parts != new_var->n_var_parts
7477 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7478 new_var->cur_loc_changed = true;
7479 else if (old_var->var_part[i].cur_loc != NULL)
7480 {
7481 location_chain lc;
7482 rtx cur_loc = old_var->var_part[i].cur_loc;
7483
7484 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7485 if (lc->loc == cur_loc
7486 || rtx_equal_p (cur_loc, lc->loc))
7487 {
7488 new_var->var_part[i].cur_loc = lc->loc;
7489 break;
7490 }
7491 if (lc == NULL)
7492 new_var->cur_loc_changed = true;
7493 }
7494 }
7495 }
7496
7497 /* Continue traversing the hash table. */
7498 return 1;
7499 }
7500
7501 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7502 table DATA. */
7503
7504 static int
7505 emit_notes_for_differences_2 (void **slot, void *data)
7506 {
7507 htab_t old_vars = (htab_t) data;
7508 variable old_var, new_var;
7509
7510 new_var = (variable) *slot;
7511 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7512 dv_htab_hash (new_var->dv));
7513 if (!old_var)
7514 {
7515 int i;
7516 /* Variable has appeared. */
7517 if (dv_onepart_p (new_var->dv))
7518 {
7519 location_chain lc;
7520
7521 gcc_assert (new_var->n_var_parts == 1);
7522 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7523 add_value_chains (new_var->dv, lc->loc);
7524 }
7525 for (i = 0; i < new_var->n_var_parts; i++)
7526 new_var->var_part[i].cur_loc = NULL;
7527 variable_was_changed (new_var, NULL);
7528 }
7529
7530 /* Continue traversing the hash table. */
7531 return 1;
7532 }
7533
7534 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7535 NEW_SET. */
7536
7537 static void
7538 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7539 dataflow_set *new_set)
7540 {
7541 htab_traverse (shared_hash_htab (old_set->vars),
7542 emit_notes_for_differences_1,
7543 shared_hash_htab (new_set->vars));
7544 htab_traverse (shared_hash_htab (new_set->vars),
7545 emit_notes_for_differences_2,
7546 shared_hash_htab (old_set->vars));
7547 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7548 }
7549
7550 /* Emit the notes for changes of location parts in the basic block BB. */
7551
7552 static void
7553 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7554 {
7555 unsigned int i;
7556 micro_operation *mo;
7557
7558 dataflow_set_clear (set);
7559 dataflow_set_copy (set, &VTI (bb)->in);
7560
7561 for (i = 0; VEC_iterate (micro_operation, VTI (bb)->mos, i, mo); i++)
7562 {
7563 rtx insn = mo->insn;
7564
7565 switch (mo->type)
7566 {
7567 case MO_CALL:
7568 dataflow_set_clear_at_call (set);
7569 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
7570 break;
7571
7572 case MO_USE:
7573 {
7574 rtx loc = mo->u.loc;
7575
7576 if (REG_P (loc))
7577 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
7578 else
7579 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
7580
7581 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7582 }
7583 break;
7584
7585 case MO_VAL_LOC:
7586 {
7587 rtx loc = mo->u.loc;
7588 rtx val, vloc;
7589 tree var;
7590
7591 if (GET_CODE (loc) == CONCAT)
7592 {
7593 val = XEXP (loc, 0);
7594 vloc = XEXP (loc, 1);
7595 }
7596 else
7597 {
7598 val = NULL_RTX;
7599 vloc = loc;
7600 }
7601
7602 var = PAT_VAR_LOCATION_DECL (vloc);
7603
7604 clobber_variable_part (set, NULL_RTX,
7605 dv_from_decl (var), 0, NULL_RTX);
7606 if (val)
7607 {
7608 if (VAL_NEEDS_RESOLUTION (loc))
7609 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
7610 set_variable_part (set, val, dv_from_decl (var), 0,
7611 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
7612 INSERT);
7613 }
7614 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
7615 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
7616 dv_from_decl (var), 0,
7617 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
7618 INSERT);
7619
7620 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7621 }
7622 break;
7623
7624 case MO_VAL_USE:
7625 {
7626 rtx loc = mo->u.loc;
7627 rtx val, vloc, uloc;
7628
7629 vloc = uloc = XEXP (loc, 1);
7630 val = XEXP (loc, 0);
7631
7632 if (GET_CODE (val) == CONCAT)
7633 {
7634 uloc = XEXP (val, 1);
7635 val = XEXP (val, 0);
7636 }
7637
7638 if (VAL_NEEDS_RESOLUTION (loc))
7639 val_resolve (set, val, vloc, insn);
7640 else
7641 val_store (set, val, uloc, insn, false);
7642
7643 if (VAL_HOLDS_TRACK_EXPR (loc))
7644 {
7645 if (GET_CODE (uloc) == REG)
7646 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
7647 NULL);
7648 else if (GET_CODE (uloc) == MEM)
7649 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
7650 NULL);
7651 }
7652
7653 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
7654 }
7655 break;
7656
7657 case MO_VAL_SET:
7658 {
7659 rtx loc = mo->u.loc;
7660 rtx val, vloc, uloc, reverse = NULL_RTX;
7661
7662 vloc = loc;
7663 if (VAL_EXPR_HAS_REVERSE (loc))
7664 {
7665 reverse = XEXP (loc, 1);
7666 vloc = XEXP (loc, 0);
7667 }
7668 uloc = XEXP (vloc, 1);
7669 val = XEXP (vloc, 0);
7670 vloc = uloc;
7671
7672 if (GET_CODE (val) == CONCAT)
7673 {
7674 vloc = XEXP (val, 1);
7675 val = XEXP (val, 0);
7676 }
7677
7678 if (GET_CODE (vloc) == SET)
7679 {
7680 rtx vsrc = SET_SRC (vloc);
7681
7682 gcc_assert (val != vsrc);
7683 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
7684
7685 vloc = SET_DEST (vloc);
7686
7687 if (VAL_NEEDS_RESOLUTION (loc))
7688 val_resolve (set, val, vsrc, insn);
7689 }
7690 else if (VAL_NEEDS_RESOLUTION (loc))
7691 {
7692 gcc_assert (GET_CODE (uloc) == SET
7693 && GET_CODE (SET_SRC (uloc)) == REG);
7694 val_resolve (set, val, SET_SRC (uloc), insn);
7695 }
7696
7697 if (VAL_HOLDS_TRACK_EXPR (loc))
7698 {
7699 if (VAL_EXPR_IS_CLOBBERED (loc))
7700 {
7701 if (REG_P (uloc))
7702 var_reg_delete (set, uloc, true);
7703 else if (MEM_P (uloc))
7704 var_mem_delete (set, uloc, true);
7705 }
7706 else
7707 {
7708 bool copied_p = VAL_EXPR_IS_COPIED (loc);
7709 rtx set_src = NULL;
7710 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
7711
7712 if (GET_CODE (uloc) == SET)
7713 {
7714 set_src = SET_SRC (uloc);
7715 uloc = SET_DEST (uloc);
7716 }
7717
7718 if (copied_p)
7719 {
7720 status = find_src_status (set, set_src);
7721
7722 set_src = find_src_set_src (set, set_src);
7723 }
7724
7725 if (REG_P (uloc))
7726 var_reg_delete_and_set (set, uloc, !copied_p,
7727 status, set_src);
7728 else if (MEM_P (uloc))
7729 var_mem_delete_and_set (set, uloc, !copied_p,
7730 status, set_src);
7731 }
7732 }
7733 else if (REG_P (uloc))
7734 var_regno_delete (set, REGNO (uloc));
7735
7736 val_store (set, val, vloc, insn, true);
7737
7738 if (reverse)
7739 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
7740 insn, false);
7741
7742 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7743 set->vars);
7744 }
7745 break;
7746
7747 case MO_SET:
7748 {
7749 rtx loc = mo->u.loc;
7750 rtx set_src = NULL;
7751
7752 if (GET_CODE (loc) == SET)
7753 {
7754 set_src = SET_SRC (loc);
7755 loc = SET_DEST (loc);
7756 }
7757
7758 if (REG_P (loc))
7759 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
7760 set_src);
7761 else
7762 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
7763 set_src);
7764
7765 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7766 set->vars);
7767 }
7768 break;
7769
7770 case MO_COPY:
7771 {
7772 rtx loc = mo->u.loc;
7773 enum var_init_status src_status;
7774 rtx set_src = NULL;
7775
7776 if (GET_CODE (loc) == SET)
7777 {
7778 set_src = SET_SRC (loc);
7779 loc = SET_DEST (loc);
7780 }
7781
7782 src_status = find_src_status (set, set_src);
7783 set_src = find_src_set_src (set, set_src);
7784
7785 if (REG_P (loc))
7786 var_reg_delete_and_set (set, loc, false, src_status, set_src);
7787 else
7788 var_mem_delete_and_set (set, loc, false, src_status, set_src);
7789
7790 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7791 set->vars);
7792 }
7793 break;
7794
7795 case MO_USE_NO_VAR:
7796 {
7797 rtx loc = mo->u.loc;
7798
7799 if (REG_P (loc))
7800 var_reg_delete (set, loc, false);
7801 else
7802 var_mem_delete (set, loc, false);
7803
7804 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
7805 }
7806 break;
7807
7808 case MO_CLOBBER:
7809 {
7810 rtx loc = mo->u.loc;
7811
7812 if (REG_P (loc))
7813 var_reg_delete (set, loc, true);
7814 else
7815 var_mem_delete (set, loc, true);
7816
7817 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
7818 set->vars);
7819 }
7820 break;
7821
7822 case MO_ADJUST:
7823 set->stack_adjust += mo->u.adjust;
7824 break;
7825 }
7826 }
7827 }
7828
7829 /* Emit notes for the whole function. */
7830
7831 static void
7832 vt_emit_notes (void)
7833 {
7834 basic_block bb;
7835 dataflow_set cur;
7836
7837 #ifdef ENABLE_RTL_CHECKING
7838 emitted_notes = pointer_map_create ();
7839 #endif
7840 gcc_assert (!htab_elements (changed_variables));
7841
7842 /* Free memory occupied by the out hash tables, as they aren't used
7843 anymore. */
7844 FOR_EACH_BB (bb)
7845 dataflow_set_clear (&VTI (bb)->out);
7846
7847 /* Enable emitting notes by functions (mainly by set_variable_part and
7848 delete_variable_part). */
7849 emit_notes = true;
7850
7851 if (MAY_HAVE_DEBUG_INSNS)
7852 {
7853 unsigned int i;
7854 rtx val;
7855
7856 for (i = 0; VEC_iterate (rtx, preserved_values, i, val); i++)
7857 add_cselib_value_chains (dv_from_value (val));
7858 changed_variables_stack = VEC_alloc (variable, heap, 40);
7859 changed_values_stack = VEC_alloc (rtx, heap, 40);
7860 }
7861
7862 dataflow_set_init (&cur);
7863
7864 FOR_EACH_BB (bb)
7865 {
7866 /* Emit the notes for changes of variable locations between two
7867 subsequent basic blocks. */
7868 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
7869
7870 /* Emit the notes for the changes in the basic block itself. */
7871 emit_notes_in_bb (bb, &cur);
7872
7873 /* Free memory occupied by the in hash table, we won't need it
7874 again. */
7875 dataflow_set_clear (&VTI (bb)->in);
7876 }
7877 #ifdef ENABLE_CHECKING
7878 htab_traverse (shared_hash_htab (cur.vars),
7879 emit_notes_for_differences_1,
7880 shared_hash_htab (empty_shared_hash));
7881 if (MAY_HAVE_DEBUG_INSNS)
7882 {
7883 unsigned int i;
7884 rtx val;
7885
7886 for (i = 0; VEC_iterate (rtx, preserved_values, i, val); i++)
7887 remove_cselib_value_chains (dv_from_value (val));
7888 gcc_assert (htab_elements (value_chains) == 0);
7889 }
7890 #endif
7891 dataflow_set_destroy (&cur);
7892
7893 if (MAY_HAVE_DEBUG_INSNS)
7894 {
7895 VEC_free (variable, heap, changed_variables_stack);
7896 VEC_free (rtx, heap, changed_values_stack);
7897 }
7898
7899 #ifdef ENABLE_RTL_CHECKING
7900 pointer_map_destroy (emitted_notes);
7901 #endif
7902 emit_notes = false;
7903 }
7904
7905 /* If there is a declaration and offset associated with register/memory RTL
7906 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
7907
7908 static bool
7909 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
7910 {
7911 if (REG_P (rtl))
7912 {
7913 if (REG_ATTRS (rtl))
7914 {
7915 *declp = REG_EXPR (rtl);
7916 *offsetp = REG_OFFSET (rtl);
7917 return true;
7918 }
7919 }
7920 else if (MEM_P (rtl))
7921 {
7922 if (MEM_ATTRS (rtl))
7923 {
7924 *declp = MEM_EXPR (rtl);
7925 *offsetp = INT_MEM_OFFSET (rtl);
7926 return true;
7927 }
7928 }
7929 return false;
7930 }
7931
7932 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
7933
7934 static void
7935 vt_add_function_parameters (void)
7936 {
7937 tree parm;
7938
7939 for (parm = DECL_ARGUMENTS (current_function_decl);
7940 parm; parm = TREE_CHAIN (parm))
7941 {
7942 rtx decl_rtl = DECL_RTL_IF_SET (parm);
7943 rtx incoming = DECL_INCOMING_RTL (parm);
7944 tree decl;
7945 enum machine_mode mode;
7946 HOST_WIDE_INT offset;
7947 dataflow_set *out;
7948 decl_or_value dv;
7949
7950 if (TREE_CODE (parm) != PARM_DECL)
7951 continue;
7952
7953 if (!DECL_NAME (parm))
7954 continue;
7955
7956 if (!decl_rtl || !incoming)
7957 continue;
7958
7959 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
7960 continue;
7961
7962 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
7963 {
7964 if (REG_P (incoming) || MEM_P (incoming))
7965 {
7966 /* This means argument is passed by invisible reference. */
7967 offset = 0;
7968 decl = parm;
7969 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
7970 }
7971 else
7972 {
7973 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
7974 continue;
7975 offset += byte_lowpart_offset (GET_MODE (incoming),
7976 GET_MODE (decl_rtl));
7977 }
7978 }
7979
7980 if (!decl)
7981 continue;
7982
7983 if (parm != decl)
7984 {
7985 /* Assume that DECL_RTL was a pseudo that got spilled to
7986 memory. The spill slot sharing code will force the
7987 memory to reference spill_slot_decl (%sfp), so we don't
7988 match above. That's ok, the pseudo must have referenced
7989 the entire parameter, so just reset OFFSET. */
7990 gcc_assert (decl == get_spill_slot_decl (false));
7991 offset = 0;
7992 }
7993
7994 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
7995 continue;
7996
7997 out = &VTI (ENTRY_BLOCK_PTR)->out;
7998
7999 dv = dv_from_decl (parm);
8000
8001 if (target_for_debug_bind (parm)
8002 /* We can't deal with these right now, because this kind of
8003 variable is single-part. ??? We could handle parallels
8004 that describe multiple locations for the same single
8005 value, but ATM we don't. */
8006 && GET_CODE (incoming) != PARALLEL)
8007 {
8008 cselib_val *val;
8009
8010 /* ??? We shouldn't ever hit this, but it may happen because
8011 arguments passed by invisible reference aren't dealt with
8012 above: incoming-rtl will have Pmode rather than the
8013 expected mode for the type. */
8014 if (offset)
8015 continue;
8016
8017 val = cselib_lookup (var_lowpart (mode, incoming), mode, true);
8018
8019 /* ??? Float-typed values in memory are not handled by
8020 cselib. */
8021 if (val)
8022 {
8023 preserve_value (val);
8024 set_variable_part (out, val->val_rtx, dv, offset,
8025 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8026 dv = dv_from_value (val->val_rtx);
8027 }
8028 }
8029
8030 if (REG_P (incoming))
8031 {
8032 incoming = var_lowpart (mode, incoming);
8033 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8034 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8035 incoming);
8036 set_variable_part (out, incoming, dv, offset,
8037 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8038 }
8039 else if (MEM_P (incoming))
8040 {
8041 incoming = var_lowpart (mode, incoming);
8042 set_variable_part (out, incoming, dv, offset,
8043 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8044 }
8045 }
8046
8047 if (MAY_HAVE_DEBUG_INSNS)
8048 {
8049 cselib_preserve_only_values ();
8050 cselib_reset_table (cselib_get_next_uid ());
8051 }
8052
8053 }
8054
8055 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8056
8057 static bool
8058 fp_setter (rtx insn)
8059 {
8060 rtx pat = PATTERN (insn);
8061 if (RTX_FRAME_RELATED_P (insn))
8062 {
8063 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8064 if (expr)
8065 pat = XEXP (expr, 0);
8066 }
8067 if (GET_CODE (pat) == SET)
8068 return SET_DEST (pat) == hard_frame_pointer_rtx;
8069 else if (GET_CODE (pat) == PARALLEL)
8070 {
8071 int i;
8072 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8073 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8074 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8075 return true;
8076 }
8077 return false;
8078 }
8079
8080 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8081 ensure it isn't flushed during cselib_reset_table.
8082 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8083 has been eliminated. */
8084
8085 static void
8086 vt_init_cfa_base (void)
8087 {
8088 cselib_val *val;
8089
8090 #ifdef FRAME_POINTER_CFA_OFFSET
8091 cfa_base_rtx = frame_pointer_rtx;
8092 #else
8093 cfa_base_rtx = arg_pointer_rtx;
8094 #endif
8095 if (cfa_base_rtx == hard_frame_pointer_rtx
8096 || !fixed_regs[REGNO (cfa_base_rtx)])
8097 {
8098 cfa_base_rtx = NULL_RTX;
8099 return;
8100 }
8101 if (!MAY_HAVE_DEBUG_INSNS)
8102 return;
8103
8104 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8105 get_insns ());
8106 preserve_value (val);
8107 cselib_preserve_cfa_base_value (val);
8108 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8109 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8110 0, NULL_RTX, INSERT);
8111 }
8112
8113 /* Allocate and initialize the data structures for variable tracking
8114 and parse the RTL to get the micro operations. */
8115
8116 static bool
8117 vt_initialize (void)
8118 {
8119 basic_block bb, prologue_bb = NULL;
8120 HOST_WIDE_INT fp_cfa_offset = -1;
8121
8122 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8123
8124 attrs_pool = create_alloc_pool ("attrs_def pool",
8125 sizeof (struct attrs_def), 1024);
8126 var_pool = create_alloc_pool ("variable_def pool",
8127 sizeof (struct variable_def)
8128 + (MAX_VAR_PARTS - 1)
8129 * sizeof (((variable)NULL)->var_part[0]), 64);
8130 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8131 sizeof (struct location_chain_def),
8132 1024);
8133 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8134 sizeof (struct shared_hash_def), 256);
8135 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8136 empty_shared_hash->refcount = 1;
8137 empty_shared_hash->htab
8138 = htab_create (1, variable_htab_hash, variable_htab_eq,
8139 variable_htab_free);
8140 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8141 variable_htab_free);
8142 if (MAY_HAVE_DEBUG_INSNS)
8143 {
8144 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8145 sizeof (struct value_chain_def),
8146 1024);
8147 value_chains = htab_create (32, value_chain_htab_hash,
8148 value_chain_htab_eq, NULL);
8149 }
8150
8151 /* Init the IN and OUT sets. */
8152 FOR_ALL_BB (bb)
8153 {
8154 VTI (bb)->visited = false;
8155 VTI (bb)->flooded = false;
8156 dataflow_set_init (&VTI (bb)->in);
8157 dataflow_set_init (&VTI (bb)->out);
8158 VTI (bb)->permp = NULL;
8159 }
8160
8161 if (MAY_HAVE_DEBUG_INSNS)
8162 {
8163 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8164 scratch_regs = BITMAP_ALLOC (NULL);
8165 valvar_pool = create_alloc_pool ("small variable_def pool",
8166 sizeof (struct variable_def), 256);
8167 preserved_values = VEC_alloc (rtx, heap, 256);
8168 }
8169 else
8170 {
8171 scratch_regs = NULL;
8172 valvar_pool = NULL;
8173 }
8174
8175 if (!frame_pointer_needed)
8176 {
8177 rtx reg, elim;
8178
8179 if (!vt_stack_adjustments ())
8180 return false;
8181
8182 #ifdef FRAME_POINTER_CFA_OFFSET
8183 reg = frame_pointer_rtx;
8184 #else
8185 reg = arg_pointer_rtx;
8186 #endif
8187 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8188 if (elim != reg)
8189 {
8190 if (GET_CODE (elim) == PLUS)
8191 elim = XEXP (elim, 0);
8192 if (elim == stack_pointer_rtx)
8193 vt_init_cfa_base ();
8194 }
8195 }
8196 else if (!crtl->stack_realign_tried)
8197 {
8198 rtx reg, elim;
8199
8200 #ifdef FRAME_POINTER_CFA_OFFSET
8201 reg = frame_pointer_rtx;
8202 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8203 #else
8204 reg = arg_pointer_rtx;
8205 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8206 #endif
8207 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8208 if (elim != reg)
8209 {
8210 if (GET_CODE (elim) == PLUS)
8211 {
8212 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8213 elim = XEXP (elim, 0);
8214 }
8215 if (elim != hard_frame_pointer_rtx)
8216 fp_cfa_offset = -1;
8217 else
8218 prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8219 }
8220 }
8221
8222 hard_frame_pointer_adjustment = -1;
8223
8224 FOR_EACH_BB (bb)
8225 {
8226 rtx insn;
8227 HOST_WIDE_INT pre, post = 0;
8228 basic_block first_bb, last_bb;
8229
8230 if (MAY_HAVE_DEBUG_INSNS)
8231 {
8232 cselib_record_sets_hook = add_with_sets;
8233 if (dump_file && (dump_flags & TDF_DETAILS))
8234 fprintf (dump_file, "first value: %i\n",
8235 cselib_get_next_uid ());
8236 }
8237
8238 first_bb = bb;
8239 for (;;)
8240 {
8241 edge e;
8242 if (bb->next_bb == EXIT_BLOCK_PTR
8243 || ! single_pred_p (bb->next_bb))
8244 break;
8245 e = find_edge (bb, bb->next_bb);
8246 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8247 break;
8248 bb = bb->next_bb;
8249 }
8250 last_bb = bb;
8251
8252 /* Add the micro-operations to the vector. */
8253 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8254 {
8255 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8256 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8257 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8258 insn = NEXT_INSN (insn))
8259 {
8260 if (INSN_P (insn))
8261 {
8262 if (!frame_pointer_needed)
8263 {
8264 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8265 if (pre)
8266 {
8267 micro_operation mo;
8268 mo.type = MO_ADJUST;
8269 mo.u.adjust = pre;
8270 mo.insn = insn;
8271 if (dump_file && (dump_flags & TDF_DETAILS))
8272 log_op_type (PATTERN (insn), bb, insn,
8273 MO_ADJUST, dump_file);
8274 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8275 &mo);
8276 VTI (bb)->out.stack_adjust += pre;
8277 }
8278 }
8279
8280 cselib_hook_called = false;
8281 adjust_insn (bb, insn);
8282 if (MAY_HAVE_DEBUG_INSNS)
8283 {
8284 cselib_process_insn (insn);
8285 if (dump_file && (dump_flags & TDF_DETAILS))
8286 {
8287 print_rtl_single (dump_file, insn);
8288 dump_cselib_table (dump_file);
8289 }
8290 }
8291 if (!cselib_hook_called)
8292 add_with_sets (insn, 0, 0);
8293 cancel_changes (0);
8294
8295 if (!frame_pointer_needed && post)
8296 {
8297 micro_operation mo;
8298 mo.type = MO_ADJUST;
8299 mo.u.adjust = post;
8300 mo.insn = insn;
8301 if (dump_file && (dump_flags & TDF_DETAILS))
8302 log_op_type (PATTERN (insn), bb, insn,
8303 MO_ADJUST, dump_file);
8304 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8305 &mo);
8306 VTI (bb)->out.stack_adjust += post;
8307 }
8308
8309 if (bb == prologue_bb
8310 && hard_frame_pointer_adjustment == -1
8311 && RTX_FRAME_RELATED_P (insn)
8312 && fp_setter (insn))
8313 {
8314 vt_init_cfa_base ();
8315 hard_frame_pointer_adjustment = fp_cfa_offset;
8316 }
8317 }
8318 }
8319 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8320 }
8321
8322 bb = last_bb;
8323
8324 if (MAY_HAVE_DEBUG_INSNS)
8325 {
8326 cselib_preserve_only_values ();
8327 cselib_reset_table (cselib_get_next_uid ());
8328 cselib_record_sets_hook = NULL;
8329 }
8330 }
8331
8332 hard_frame_pointer_adjustment = -1;
8333 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8334 vt_add_function_parameters ();
8335 cfa_base_rtx = NULL_RTX;
8336 return true;
8337 }
8338
8339 /* Get rid of all debug insns from the insn stream. */
8340
8341 static void
8342 delete_debug_insns (void)
8343 {
8344 basic_block bb;
8345 rtx insn, next;
8346
8347 if (!MAY_HAVE_DEBUG_INSNS)
8348 return;
8349
8350 FOR_EACH_BB (bb)
8351 {
8352 FOR_BB_INSNS_SAFE (bb, insn, next)
8353 if (DEBUG_INSN_P (insn))
8354 delete_insn (insn);
8355 }
8356 }
8357
8358 /* Run a fast, BB-local only version of var tracking, to take care of
8359 information that we don't do global analysis on, such that not all
8360 information is lost. If SKIPPED holds, we're skipping the global
8361 pass entirely, so we should try to use information it would have
8362 handled as well.. */
8363
8364 static void
8365 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8366 {
8367 /* ??? Just skip it all for now. */
8368 delete_debug_insns ();
8369 }
8370
8371 /* Free the data structures needed for variable tracking. */
8372
8373 static void
8374 vt_finalize (void)
8375 {
8376 basic_block bb;
8377
8378 FOR_EACH_BB (bb)
8379 {
8380 VEC_free (micro_operation, heap, VTI (bb)->mos);
8381 }
8382
8383 FOR_ALL_BB (bb)
8384 {
8385 dataflow_set_destroy (&VTI (bb)->in);
8386 dataflow_set_destroy (&VTI (bb)->out);
8387 if (VTI (bb)->permp)
8388 {
8389 dataflow_set_destroy (VTI (bb)->permp);
8390 XDELETE (VTI (bb)->permp);
8391 }
8392 }
8393 free_aux_for_blocks ();
8394 htab_delete (empty_shared_hash->htab);
8395 htab_delete (changed_variables);
8396 free_alloc_pool (attrs_pool);
8397 free_alloc_pool (var_pool);
8398 free_alloc_pool (loc_chain_pool);
8399 free_alloc_pool (shared_hash_pool);
8400
8401 if (MAY_HAVE_DEBUG_INSNS)
8402 {
8403 htab_delete (value_chains);
8404 free_alloc_pool (value_chain_pool);
8405 free_alloc_pool (valvar_pool);
8406 VEC_free (rtx, heap, preserved_values);
8407 cselib_finish ();
8408 BITMAP_FREE (scratch_regs);
8409 scratch_regs = NULL;
8410 }
8411
8412 if (vui_vec)
8413 XDELETEVEC (vui_vec);
8414 vui_vec = NULL;
8415 vui_allocated = 0;
8416 }
8417
8418 /* The entry point to variable tracking pass. */
8419
8420 static inline unsigned int
8421 variable_tracking_main_1 (void)
8422 {
8423 bool success;
8424
8425 if (flag_var_tracking_assignments < 0)
8426 {
8427 delete_debug_insns ();
8428 return 0;
8429 }
8430
8431 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
8432 {
8433 vt_debug_insns_local (true);
8434 return 0;
8435 }
8436
8437 mark_dfs_back_edges ();
8438 if (!vt_initialize ())
8439 {
8440 vt_finalize ();
8441 vt_debug_insns_local (true);
8442 return 0;
8443 }
8444
8445 success = vt_find_locations ();
8446
8447 if (!success && flag_var_tracking_assignments > 0)
8448 {
8449 vt_finalize ();
8450
8451 delete_debug_insns ();
8452
8453 /* This is later restored by our caller. */
8454 flag_var_tracking_assignments = 0;
8455
8456 success = vt_initialize ();
8457 gcc_assert (success);
8458
8459 success = vt_find_locations ();
8460 }
8461
8462 if (!success)
8463 {
8464 vt_finalize ();
8465 vt_debug_insns_local (false);
8466 return 0;
8467 }
8468
8469 if (dump_file && (dump_flags & TDF_DETAILS))
8470 {
8471 dump_dataflow_sets ();
8472 dump_flow_info (dump_file, dump_flags);
8473 }
8474
8475 vt_emit_notes ();
8476
8477 vt_finalize ();
8478 vt_debug_insns_local (false);
8479 return 0;
8480 }
8481
8482 unsigned int
8483 variable_tracking_main (void)
8484 {
8485 unsigned int ret;
8486 int save = flag_var_tracking_assignments;
8487
8488 ret = variable_tracking_main_1 ();
8489
8490 flag_var_tracking_assignments = save;
8491
8492 return ret;
8493 }
8494 \f
8495 static bool
8496 gate_handle_var_tracking (void)
8497 {
8498 return (flag_var_tracking);
8499 }
8500
8501
8502
8503 struct rtl_opt_pass pass_variable_tracking =
8504 {
8505 {
8506 RTL_PASS,
8507 "vartrack", /* name */
8508 gate_handle_var_tracking, /* gate */
8509 variable_tracking_main, /* execute */
8510 NULL, /* sub */
8511 NULL, /* next */
8512 0, /* static_pass_number */
8513 TV_VAR_TRACKING, /* tv_id */
8514 0, /* properties_required */
8515 0, /* properties_provided */
8516 0, /* properties_destroyed */
8517 0, /* todo_flags_start */
8518 TODO_dump_func | TODO_verify_rtl_sharing/* todo_flags_finish */
8519 }
8520 };