usage.adb: Change "pragma inline" to "pragma Inline" in information and error messages
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 59 Temple Place - Suite 330, Boston, MA
19 02111-1307, USA. */
20
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
28
29 How does the variable tracking pass work?
30
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
38
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
45
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
55
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
61
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
71
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
79
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
86
87 */
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
105
106 /* Type of micro operation. */
107 enum micro_operation_type
108 {
109 MO_USE, /* Use location (REG or MEM). */
110 MO_USE_NO_VAR,/* Use location which is not associated with a variable
111 or the variable is not trackable. */
112 MO_SET, /* Set location. */
113 MO_CLOBBER, /* Clobber location. */
114 MO_CALL, /* Call insn. */
115 MO_ADJUST /* Adjust stack pointer. */
116 };
117
118 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
119 enum emit_note_where
120 {
121 EMIT_NOTE_BEFORE_INSN,
122 EMIT_NOTE_AFTER_INSN
123 };
124
125 /* Structure holding information about micro operation. */
126 typedef struct micro_operation_def
127 {
128 /* Type of micro operation. */
129 enum micro_operation_type type;
130
131 union {
132 /* Location. */
133 rtx loc;
134
135 /* Stack adjustment. */
136 HOST_WIDE_INT adjust;
137 } u;
138
139 /* The instruction which the micro operation is in. */
140 rtx insn;
141 } micro_operation;
142
143 /* Structure for passing some other parameters to function
144 emit_note_insn_var_location. */
145 typedef struct emit_note_data_def
146 {
147 /* The instruction which the note will be emitted before/after. */
148 rtx insn;
149
150 /* Where the note will be emitted (before/after insn)? */
151 enum emit_note_where where;
152 } emit_note_data;
153
154 /* Description of location of a part of a variable. The content of a physical
155 register is described by a chain of these structures.
156 The chains are pretty short (usually 1 or 2 elements) and thus
157 chain is the best data structure. */
158 typedef struct attrs_def
159 {
160 /* Pointer to next member of the list. */
161 struct attrs_def *next;
162
163 /* The rtx of register. */
164 rtx loc;
165
166 /* The declaration corresponding to LOC. */
167 tree decl;
168
169 /* Offset from start of DECL. */
170 HOST_WIDE_INT offset;
171 } *attrs;
172
173 /* Structure holding the IN or OUT set for a basic block. */
174 typedef struct dataflow_set_def
175 {
176 /* Adjustment of stack offset. */
177 HOST_WIDE_INT stack_adjust;
178
179 /* Attributes for registers (lists of attrs). */
180 attrs regs[FIRST_PSEUDO_REGISTER];
181
182 /* Variable locations. */
183 htab_t vars;
184 } dataflow_set;
185
186 /* The structure (one for each basic block) containing the information
187 needed for variable tracking. */
188 typedef struct variable_tracking_info_def
189 {
190 /* Number of micro operations stored in the MOS array. */
191 int n_mos;
192
193 /* The array of micro operations. */
194 micro_operation *mos;
195
196 /* The IN and OUT set for dataflow analysis. */
197 dataflow_set in;
198 dataflow_set out;
199
200 /* Has the block been visited in DFS? */
201 bool visited;
202 } *variable_tracking_info;
203
204 /* Structure for chaining the locations. */
205 typedef struct location_chain_def
206 {
207 /* Next element in the chain. */
208 struct location_chain_def *next;
209
210 /* The location (REG or MEM). */
211 rtx loc;
212 } *location_chain;
213
214 /* Structure describing one part of variable. */
215 typedef struct variable_part_def
216 {
217 /* Chain of locations of the part. */
218 location_chain loc_chain;
219
220 /* Location which was last emitted to location list. */
221 rtx cur_loc;
222
223 /* The offset in the variable. */
224 HOST_WIDE_INT offset;
225 } variable_part;
226
227 /* Maximum number of location parts. */
228 #define MAX_VAR_PARTS 16
229
230 /* Structure describing where the variable is located. */
231 typedef struct variable_def
232 {
233 /* The declaration of the variable. */
234 tree decl;
235
236 /* Reference count. */
237 int refcount;
238
239 /* Number of variable parts. */
240 int n_var_parts;
241
242 /* The variable parts. */
243 variable_part var_part[MAX_VAR_PARTS];
244 } *variable;
245
246 /* Hash function for DECL for VARIABLE_HTAB. */
247 #define VARIABLE_HASH_VAL(decl) ((size_t) (decl))
248
249 /* Pointer to the BB's information specific to variable tracking pass. */
250 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
251
252 /* Alloc pool for struct attrs_def. */
253 static alloc_pool attrs_pool;
254
255 /* Alloc pool for struct variable_def. */
256 static alloc_pool var_pool;
257
258 /* Alloc pool for struct location_chain_def. */
259 static alloc_pool loc_chain_pool;
260
261 /* Changed variables, notes will be emitted for them. */
262 static htab_t changed_variables;
263
264 /* Shall notes be emitted? */
265 static bool emit_notes;
266
267 /* Fake variable for stack pointer. */
268 tree frame_base_decl;
269
270 /* Stack adjust caused by function prologue. */
271 static HOST_WIDE_INT frame_stack_adjust;
272
273 /* Local function prototypes. */
274 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
275 HOST_WIDE_INT *);
276 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
277 HOST_WIDE_INT *);
278 static void bb_stack_adjust_offset (basic_block);
279 static HOST_WIDE_INT prologue_stack_adjust (void);
280 static bool vt_stack_adjustments (void);
281 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
282 static hashval_t variable_htab_hash (const void *);
283 static int variable_htab_eq (const void *, const void *);
284 static void variable_htab_free (void *);
285
286 static void init_attrs_list_set (attrs *);
287 static void attrs_list_clear (attrs *);
288 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
289 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
290 static void attrs_list_copy (attrs *, attrs);
291 static void attrs_list_union (attrs *, attrs);
292
293 static void vars_clear (htab_t);
294 static variable unshare_variable (dataflow_set *set, variable var);
295 static int vars_copy_1 (void **, void *);
296 static void vars_copy (htab_t, htab_t);
297 static void var_reg_delete_and_set (dataflow_set *, rtx);
298 static void var_reg_delete (dataflow_set *, rtx);
299 static void var_regno_delete (dataflow_set *, int);
300 static void var_mem_delete_and_set (dataflow_set *, rtx);
301 static void var_mem_delete (dataflow_set *, rtx);
302
303 static void dataflow_set_init (dataflow_set *, int);
304 static void dataflow_set_clear (dataflow_set *);
305 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
306 static int variable_union_info_cmp_pos (const void *, const void *);
307 static int variable_union (void **, void *);
308 static void dataflow_set_union (dataflow_set *, dataflow_set *);
309 static bool variable_part_different_p (variable_part *, variable_part *);
310 static bool variable_different_p (variable, variable, bool);
311 static int dataflow_set_different_1 (void **, void *);
312 static int dataflow_set_different_2 (void **, void *);
313 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
314 static void dataflow_set_destroy (dataflow_set *);
315
316 static bool contains_symbol_ref (rtx);
317 static bool track_expr_p (tree);
318 static int count_uses (rtx *, void *);
319 static void count_uses_1 (rtx *, void *);
320 static void count_stores (rtx, rtx, void *);
321 static int add_uses (rtx *, void *);
322 static void add_uses_1 (rtx *, void *);
323 static void add_stores (rtx, rtx, void *);
324 static bool compute_bb_dataflow (basic_block);
325 static void vt_find_locations (void);
326
327 static void dump_attrs_list (attrs);
328 static int dump_variable (void **, void *);
329 static void dump_vars (htab_t);
330 static void dump_dataflow_set (dataflow_set *);
331 static void dump_dataflow_sets (void);
332
333 static void variable_was_changed (variable, htab_t);
334 static void set_frame_base_location (dataflow_set *, rtx);
335 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
336 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
337 static int emit_note_insn_var_location (void **, void *);
338 static void emit_notes_for_changes (rtx, enum emit_note_where);
339 static int emit_notes_for_differences_1 (void **, void *);
340 static int emit_notes_for_differences_2 (void **, void *);
341 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
342 static void emit_notes_in_bb (basic_block);
343 static void vt_emit_notes (void);
344
345 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
346 static void vt_add_function_parameters (void);
347 static void vt_initialize (void);
348 static void vt_finalize (void);
349
350 /* Given a SET, calculate the amount of stack adjustment it contains
351 PRE- and POST-modifying stack pointer.
352 This function is similar to stack_adjust_offset. */
353
354 static void
355 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
356 HOST_WIDE_INT *post)
357 {
358 rtx src = SET_SRC (pattern);
359 rtx dest = SET_DEST (pattern);
360 enum rtx_code code;
361
362 if (dest == stack_pointer_rtx)
363 {
364 /* (set (reg sp) (plus (reg sp) (const_int))) */
365 code = GET_CODE (src);
366 if (! (code == PLUS || code == MINUS)
367 || XEXP (src, 0) != stack_pointer_rtx
368 || GET_CODE (XEXP (src, 1)) != CONST_INT)
369 return;
370
371 if (code == MINUS)
372 *post += INTVAL (XEXP (src, 1));
373 else
374 *post -= INTVAL (XEXP (src, 1));
375 }
376 else if (MEM_P (dest))
377 {
378 /* (set (mem (pre_dec (reg sp))) (foo)) */
379 src = XEXP (dest, 0);
380 code = GET_CODE (src);
381
382 switch (code)
383 {
384 case PRE_MODIFY:
385 case POST_MODIFY:
386 if (XEXP (src, 0) == stack_pointer_rtx)
387 {
388 rtx val = XEXP (XEXP (src, 1), 1);
389 /* We handle only adjustments by constant amount. */
390 if (GET_CODE (XEXP (src, 1)) != PLUS ||
391 GET_CODE (val) != CONST_INT)
392 abort ();
393 if (code == PRE_MODIFY)
394 *pre -= INTVAL (val);
395 else
396 *post -= INTVAL (val);
397 break;
398 }
399 return;
400
401 case PRE_DEC:
402 if (XEXP (src, 0) == stack_pointer_rtx)
403 {
404 *pre += GET_MODE_SIZE (GET_MODE (dest));
405 break;
406 }
407 return;
408
409 case POST_DEC:
410 if (XEXP (src, 0) == stack_pointer_rtx)
411 {
412 *post += GET_MODE_SIZE (GET_MODE (dest));
413 break;
414 }
415 return;
416
417 case PRE_INC:
418 if (XEXP (src, 0) == stack_pointer_rtx)
419 {
420 *pre -= GET_MODE_SIZE (GET_MODE (dest));
421 break;
422 }
423 return;
424
425 case POST_INC:
426 if (XEXP (src, 0) == stack_pointer_rtx)
427 {
428 *post -= GET_MODE_SIZE (GET_MODE (dest));
429 break;
430 }
431 return;
432
433 default:
434 return;
435 }
436 }
437 }
438
439 /* Given an INSN, calculate the amount of stack adjustment it contains
440 PRE- and POST-modifying stack pointer. */
441
442 static void
443 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
444 HOST_WIDE_INT *post)
445 {
446 *pre = 0;
447 *post = 0;
448
449 if (GET_CODE (PATTERN (insn)) == SET)
450 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
451 else if (GET_CODE (PATTERN (insn)) == PARALLEL
452 || GET_CODE (PATTERN (insn)) == SEQUENCE)
453 {
454 int i;
455
456 /* There may be stack adjustments inside compound insns. Search
457 for them. */
458 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
459 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
460 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
461 pre, post);
462 }
463 }
464
465 /* Compute stack adjustment in basic block BB. */
466
467 static void
468 bb_stack_adjust_offset (basic_block bb)
469 {
470 HOST_WIDE_INT offset;
471 int i;
472
473 offset = VTI (bb)->in.stack_adjust;
474 for (i = 0; i < VTI (bb)->n_mos; i++)
475 {
476 if (VTI (bb)->mos[i].type == MO_ADJUST)
477 offset += VTI (bb)->mos[i].u.adjust;
478 else if (VTI (bb)->mos[i].type != MO_CALL)
479 {
480 if (MEM_P (VTI (bb)->mos[i].u.loc))
481 {
482 VTI (bb)->mos[i].u.loc
483 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
484 }
485 }
486 }
487 VTI (bb)->out.stack_adjust = offset;
488 }
489
490 /* Compute stack adjustment caused by function prologue. */
491
492 static HOST_WIDE_INT
493 prologue_stack_adjust (void)
494 {
495 HOST_WIDE_INT offset = 0;
496 basic_block bb = ENTRY_BLOCK_PTR->next_bb;
497 rtx insn;
498 rtx end;
499
500 if (!BB_END (bb))
501 return 0;
502
503 end = NEXT_INSN (BB_END (bb));
504 for (insn = BB_HEAD (bb); insn != end; insn = NEXT_INSN (insn))
505 {
506 if (NOTE_P (insn)
507 && NOTE_LINE_NUMBER (insn) == NOTE_INSN_PROLOGUE_END)
508 break;
509
510 if (INSN_P (insn))
511 {
512 HOST_WIDE_INT tmp;
513
514 insn_stack_adjust_offset_pre_post (insn, &tmp, &tmp);
515 offset += tmp;
516 }
517 }
518
519 return offset;
520 }
521
522 /* Compute stack adjustments for all blocks by traversing DFS tree.
523 Return true when the adjustments on all incoming edges are consistent.
524 Heavily borrowed from flow_depth_first_order_compute. */
525
526 static bool
527 vt_stack_adjustments (void)
528 {
529 edge_iterator *stack;
530 int sp;
531
532 /* Initialize entry block. */
533 VTI (ENTRY_BLOCK_PTR)->visited = true;
534 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = frame_stack_adjust;
535
536 /* Allocate stack for back-tracking up CFG. */
537 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
538 sp = 0;
539
540 /* Push the first edge on to the stack. */
541 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
542
543 while (sp)
544 {
545 edge_iterator ei;
546 basic_block src;
547 basic_block dest;
548
549 /* Look at the edge on the top of the stack. */
550 ei = stack[sp - 1];
551 src = ei_edge (ei)->src;
552 dest = ei_edge (ei)->dest;
553
554 /* Check if the edge destination has been visited yet. */
555 if (!VTI (dest)->visited)
556 {
557 VTI (dest)->visited = true;
558 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
559 bb_stack_adjust_offset (dest);
560
561 if (EDGE_COUNT (dest->succs) > 0)
562 /* Since the DEST node has been visited for the first
563 time, check its successors. */
564 stack[sp++] = ei_start (dest->succs);
565 }
566 else
567 {
568 /* Check whether the adjustments on the edges are the same. */
569 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
570 {
571 free (stack);
572 return false;
573 }
574
575 if (! ei_one_before_end_p (ei))
576 /* Go to the next edge. */
577 ei_next (&stack[sp - 1]);
578 else
579 /* Return to previous level if there are no more edges. */
580 sp--;
581 }
582 }
583
584 free (stack);
585 return true;
586 }
587
588 /* Adjust stack reference MEM by ADJUSTMENT bytes and return the new rtx. */
589
590 static rtx
591 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
592 {
593 rtx adjusted_mem;
594 rtx tmp;
595
596 if (adjustment == 0)
597 return mem;
598
599 adjusted_mem = copy_rtx (mem);
600 XEXP (adjusted_mem, 0) = replace_rtx (XEXP (adjusted_mem, 0),
601 stack_pointer_rtx,
602 gen_rtx_PLUS (Pmode, stack_pointer_rtx,
603 GEN_INT (adjustment)));
604 tmp = simplify_rtx (XEXP (adjusted_mem, 0));
605 if (tmp)
606 XEXP (adjusted_mem, 0) = tmp;
607
608 return adjusted_mem;
609 }
610
611 /* The hash function for variable_htab, computes the hash value
612 from the declaration of variable X. */
613
614 static hashval_t
615 variable_htab_hash (const void *x)
616 {
617 const variable v = (const variable) x;
618
619 return (VARIABLE_HASH_VAL (v->decl));
620 }
621
622 /* Compare the declaration of variable X with declaration Y. */
623
624 static int
625 variable_htab_eq (const void *x, const void *y)
626 {
627 const variable v = (const variable) x;
628 const tree decl = (const tree) y;
629
630 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
631 }
632
633 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
634
635 static void
636 variable_htab_free (void *elem)
637 {
638 int i;
639 variable var = (variable) elem;
640 location_chain node, next;
641
642 #ifdef ENABLE_CHECKING
643 if (var->refcount <= 0)
644 abort ();
645 #endif
646
647 var->refcount--;
648 if (var->refcount > 0)
649 return;
650
651 for (i = 0; i < var->n_var_parts; i++)
652 {
653 for (node = var->var_part[i].loc_chain; node; node = next)
654 {
655 next = node->next;
656 pool_free (loc_chain_pool, node);
657 }
658 var->var_part[i].loc_chain = NULL;
659 }
660 pool_free (var_pool, var);
661 }
662
663 /* Initialize the set (array) SET of attrs to empty lists. */
664
665 static void
666 init_attrs_list_set (attrs *set)
667 {
668 int i;
669
670 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
671 set[i] = NULL;
672 }
673
674 /* Make the list *LISTP empty. */
675
676 static void
677 attrs_list_clear (attrs *listp)
678 {
679 attrs list, next;
680
681 for (list = *listp; list; list = next)
682 {
683 next = list->next;
684 pool_free (attrs_pool, list);
685 }
686 *listp = NULL;
687 }
688
689 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
690
691 static attrs
692 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
693 {
694 for (; list; list = list->next)
695 if (list->decl == decl && list->offset == offset)
696 return list;
697 return NULL;
698 }
699
700 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
701
702 static void
703 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
704 {
705 attrs list;
706
707 list = pool_alloc (attrs_pool);
708 list->loc = loc;
709 list->decl = decl;
710 list->offset = offset;
711 list->next = *listp;
712 *listp = list;
713 }
714
715 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
716
717 static void
718 attrs_list_copy (attrs *dstp, attrs src)
719 {
720 attrs n;
721
722 attrs_list_clear (dstp);
723 for (; src; src = src->next)
724 {
725 n = pool_alloc (attrs_pool);
726 n->loc = src->loc;
727 n->decl = src->decl;
728 n->offset = src->offset;
729 n->next = *dstp;
730 *dstp = n;
731 }
732 }
733
734 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
735
736 static void
737 attrs_list_union (attrs *dstp, attrs src)
738 {
739 for (; src; src = src->next)
740 {
741 if (!attrs_list_member (*dstp, src->decl, src->offset))
742 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
743 }
744 }
745
746 /* Delete all variables from hash table VARS. */
747
748 static void
749 vars_clear (htab_t vars)
750 {
751 htab_empty (vars);
752 }
753
754 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
755
756 static variable
757 unshare_variable (dataflow_set *set, variable var)
758 {
759 void **slot;
760 variable new_var;
761 int i;
762
763 new_var = pool_alloc (var_pool);
764 new_var->decl = var->decl;
765 new_var->refcount = 1;
766 var->refcount--;
767 new_var->n_var_parts = var->n_var_parts;
768
769 for (i = 0; i < var->n_var_parts; i++)
770 {
771 location_chain node;
772 location_chain *nextp;
773
774 new_var->var_part[i].offset = var->var_part[i].offset;
775 nextp = &new_var->var_part[i].loc_chain;
776 for (node = var->var_part[i].loc_chain; node; node = node->next)
777 {
778 location_chain new_lc;
779
780 new_lc = pool_alloc (loc_chain_pool);
781 new_lc->next = NULL;
782 new_lc->loc = node->loc;
783
784 *nextp = new_lc;
785 nextp = &new_lc->next;
786 }
787
788 /* We are at the basic block boundary when copying variable description
789 so set the CUR_LOC to be the first element of the chain. */
790 if (new_var->var_part[i].loc_chain)
791 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
792 else
793 new_var->var_part[i].cur_loc = NULL;
794 }
795
796 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
797 VARIABLE_HASH_VAL (new_var->decl),
798 INSERT);
799 *slot = new_var;
800 return new_var;
801 }
802
803 /* Add a variable from *SLOT to hash table DATA and increase its reference
804 count. */
805
806 static int
807 vars_copy_1 (void **slot, void *data)
808 {
809 htab_t dst = (htab_t) data;
810 variable src, *dstp;
811
812 src = *(variable *) slot;
813 src->refcount++;
814
815 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
816 VARIABLE_HASH_VAL (src->decl),
817 INSERT);
818 *dstp = src;
819
820 /* Continue traversing the hash table. */
821 return 1;
822 }
823
824 /* Copy all variables from hash table SRC to hash table DST. */
825
826 static void
827 vars_copy (htab_t dst, htab_t src)
828 {
829 vars_clear (dst);
830 htab_traverse (src, vars_copy_1, dst);
831 }
832
833 /* Delete current content of register LOC in dataflow set SET
834 and set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
835
836 static void
837 var_reg_delete_and_set (dataflow_set *set, rtx loc)
838 {
839 tree decl = REG_EXPR (loc);
840 HOST_WIDE_INT offset = REG_OFFSET (loc);
841 attrs node, next;
842 attrs *nextp;
843
844 nextp = &set->regs[REGNO (loc)];
845 for (node = *nextp; node; node = next)
846 {
847 next = node->next;
848 if (node->decl != decl || node->offset != offset)
849 {
850 delete_variable_part (set, node->loc, node->decl, node->offset);
851 pool_free (attrs_pool, node);
852 *nextp = next;
853 }
854 else
855 {
856 node->loc = loc;
857 nextp = &node->next;
858 }
859 }
860 if (set->regs[REGNO (loc)] == NULL)
861 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
862 set_variable_part (set, loc, decl, offset);
863 }
864
865 /* Delete current content of register LOC in dataflow set SET. */
866
867 static void
868 var_reg_delete (dataflow_set *set, rtx loc)
869 {
870 attrs *reg = &set->regs[REGNO (loc)];
871 attrs node, next;
872
873 for (node = *reg; node; node = next)
874 {
875 next = node->next;
876 delete_variable_part (set, node->loc, node->decl, node->offset);
877 pool_free (attrs_pool, node);
878 }
879 *reg = NULL;
880 }
881
882 /* Delete content of register with number REGNO in dataflow set SET. */
883
884 static void
885 var_regno_delete (dataflow_set *set, int regno)
886 {
887 attrs *reg = &set->regs[regno];
888 attrs node, next;
889
890 for (node = *reg; node; node = next)
891 {
892 next = node->next;
893 delete_variable_part (set, node->loc, node->decl, node->offset);
894 pool_free (attrs_pool, node);
895 }
896 *reg = NULL;
897 }
898
899 /* Delete and set the location part of variable MEM_EXPR (LOC)
900 in dataflow set SET to LOC.
901 Adjust the address first if it is stack pointer based. */
902
903 static void
904 var_mem_delete_and_set (dataflow_set *set, rtx loc)
905 {
906 tree decl = MEM_EXPR (loc);
907 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
908
909 set_variable_part (set, loc, decl, offset);
910 }
911
912 /* Delete the location part LOC from dataflow set SET.
913 Adjust the address first if it is stack pointer based. */
914
915 static void
916 var_mem_delete (dataflow_set *set, rtx loc)
917 {
918 tree decl = MEM_EXPR (loc);
919 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
920
921 delete_variable_part (set, loc, decl, offset);
922 }
923
924 /* Initialize dataflow set SET to be empty.
925 VARS_SIZE is the initial size of hash table VARS. */
926
927 static void
928 dataflow_set_init (dataflow_set *set, int vars_size)
929 {
930 init_attrs_list_set (set->regs);
931 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
932 variable_htab_free);
933 set->stack_adjust = 0;
934 }
935
936 /* Delete the contents of dataflow set SET. */
937
938 static void
939 dataflow_set_clear (dataflow_set *set)
940 {
941 int i;
942
943 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
944 attrs_list_clear (&set->regs[i]);
945
946 vars_clear (set->vars);
947 }
948
949 /* Copy the contents of dataflow set SRC to DST. */
950
951 static void
952 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
953 {
954 int i;
955
956 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
957 attrs_list_copy (&dst->regs[i], src->regs[i]);
958
959 vars_copy (dst->vars, src->vars);
960 dst->stack_adjust = src->stack_adjust;
961 }
962
963 /* Information for merging lists of locations for a given offset of variable.
964 */
965 struct variable_union_info
966 {
967 /* Node of the location chain. */
968 location_chain lc;
969
970 /* The sum of positions in the input chains. */
971 int pos;
972
973 /* The position in the chains of SRC and DST dataflow sets. */
974 int pos_src;
975 int pos_dst;
976 };
977
978 /* Compare function for qsort, order the structures by POS element. */
979
980 static int
981 variable_union_info_cmp_pos (const void *n1, const void *n2)
982 {
983 const struct variable_union_info *i1 = n1;
984 const struct variable_union_info *i2 = n2;
985
986 if (i1->pos != i2->pos)
987 return i1->pos - i2->pos;
988
989 return (i1->pos_dst - i2->pos_dst);
990 }
991
992 /* Compute union of location parts of variable *SLOT and the same variable
993 from hash table DATA. Compute "sorted" union of the location chains
994 for common offsets, i.e. the locations of a variable part are sorted by
995 a priority where the priority is the sum of the positions in the 2 chains
996 (if a location is only in one list the position in the second list is
997 defined to be larger than the length of the chains).
998 When we are updating the location parts the newest location is in the
999 beginning of the chain, so when we do the described "sorted" union
1000 we keep the newest locations in the beginning. */
1001
1002 static int
1003 variable_union (void **slot, void *data)
1004 {
1005 variable src, dst, *dstp;
1006 dataflow_set *set = (dataflow_set *) data;
1007 int i, j, k;
1008
1009 src = *(variable *) slot;
1010 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
1011 VARIABLE_HASH_VAL (src->decl),
1012 INSERT);
1013 if (!*dstp)
1014 {
1015 src->refcount++;
1016
1017 /* If CUR_LOC of some variable part is not the first element of
1018 the location chain we are going to change it so we have to make
1019 a copy of the variable. */
1020 for (k = 0; k < src->n_var_parts; k++)
1021 {
1022 if (src->var_part[k].loc_chain)
1023 {
1024 #ifdef ENABLE_CHECKING
1025 if (src->var_part[k].cur_loc == NULL)
1026 abort ();
1027 #endif
1028 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
1029 break;
1030 }
1031 #ifdef ENABLE_CHECKING
1032 else
1033 {
1034 if (src->var_part[k].cur_loc != NULL)
1035 abort ();
1036 }
1037 #endif
1038 }
1039 if (k < src->n_var_parts)
1040 unshare_variable (set, src);
1041 else
1042 *dstp = src;
1043
1044 /* Continue traversing the hash table. */
1045 return 1;
1046 }
1047 else
1048 dst = *dstp;
1049
1050 #ifdef ENABLE_CHECKING
1051 if (src->n_var_parts == 0)
1052 abort ();
1053 #endif
1054
1055 /* Count the number of location parts, result is K. */
1056 for (i = 0, j = 0, k = 0;
1057 i < src->n_var_parts && j < dst->n_var_parts; k++)
1058 {
1059 if (src->var_part[i].offset == dst->var_part[j].offset)
1060 {
1061 i++;
1062 j++;
1063 }
1064 else if (src->var_part[i].offset < dst->var_part[j].offset)
1065 i++;
1066 else
1067 j++;
1068 }
1069 k += src->n_var_parts - i;
1070 k += dst->n_var_parts - j;
1071 #ifdef ENABLE_CHECKING
1072 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1073 thus there are at most MAX_VAR_PARTS different offsets. */
1074 if (k > MAX_VAR_PARTS)
1075 abort ();
1076 #endif
1077
1078 if (dst->refcount > 1 && dst->n_var_parts != k)
1079 dst = unshare_variable (set, dst);
1080
1081 i = src->n_var_parts - 1;
1082 j = dst->n_var_parts - 1;
1083 dst->n_var_parts = k;
1084
1085 for (k--; k >= 0; k--)
1086 {
1087 location_chain node, node2;
1088
1089 if (i >= 0 && j >= 0
1090 && src->var_part[i].offset == dst->var_part[j].offset)
1091 {
1092 /* Compute the "sorted" union of the chains, i.e. the locations which
1093 are in both chains go first, they are sorted by the sum of
1094 positions in the chains. */
1095 int dst_l, src_l;
1096 int ii, jj, n;
1097 struct variable_union_info *vui;
1098
1099 /* If DST is shared compare the location chains.
1100 If they are different we will modify the chain in DST with
1101 high probability so make a copy of DST. */
1102 if (dst->refcount > 1)
1103 {
1104 for (node = src->var_part[i].loc_chain,
1105 node2 = dst->var_part[j].loc_chain; node && node2;
1106 node = node->next, node2 = node2->next)
1107 {
1108 if (!((REG_P (node2->loc)
1109 && REG_P (node->loc)
1110 && REGNO (node2->loc) == REGNO (node->loc))
1111 || rtx_equal_p (node2->loc, node->loc)))
1112 break;
1113 }
1114 if (node || node2)
1115 dst = unshare_variable (set, dst);
1116 }
1117
1118 src_l = 0;
1119 for (node = src->var_part[i].loc_chain; node; node = node->next)
1120 src_l++;
1121 dst_l = 0;
1122 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1123 dst_l++;
1124 vui = xcalloc (src_l + dst_l, sizeof (struct variable_union_info));
1125
1126 /* Fill in the locations from DST. */
1127 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1128 node = node->next, jj++)
1129 {
1130 vui[jj].lc = node;
1131 vui[jj].pos_dst = jj;
1132
1133 /* Value larger than a sum of 2 valid positions. */
1134 vui[jj].pos_src = src_l + dst_l;
1135 }
1136
1137 /* Fill in the locations from SRC. */
1138 n = dst_l;
1139 for (node = src->var_part[i].loc_chain, ii = 0; node;
1140 node = node->next, ii++)
1141 {
1142 /* Find location from NODE. */
1143 for (jj = 0; jj < dst_l; jj++)
1144 {
1145 if ((REG_P (vui[jj].lc->loc)
1146 && REG_P (node->loc)
1147 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1148 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1149 {
1150 vui[jj].pos_src = ii;
1151 break;
1152 }
1153 }
1154 if (jj >= dst_l) /* The location has not been found. */
1155 {
1156 location_chain new_node;
1157
1158 /* Copy the location from SRC. */
1159 new_node = pool_alloc (loc_chain_pool);
1160 new_node->loc = node->loc;
1161 vui[n].lc = new_node;
1162 vui[n].pos_src = ii;
1163 vui[n].pos_dst = src_l + dst_l;
1164 n++;
1165 }
1166 }
1167
1168 for (ii = 0; ii < src_l + dst_l; ii++)
1169 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1170
1171 qsort (vui, n, sizeof (struct variable_union_info),
1172 variable_union_info_cmp_pos);
1173
1174 /* Reconnect the nodes in sorted order. */
1175 for (ii = 1; ii < n; ii++)
1176 vui[ii - 1].lc->next = vui[ii].lc;
1177 vui[n - 1].lc->next = NULL;
1178
1179 dst->var_part[k].loc_chain = vui[0].lc;
1180 dst->var_part[k].offset = dst->var_part[j].offset;
1181
1182 free (vui);
1183 i--;
1184 j--;
1185 }
1186 else if ((i >= 0 && j >= 0
1187 && src->var_part[i].offset < dst->var_part[j].offset)
1188 || i < 0)
1189 {
1190 dst->var_part[k] = dst->var_part[j];
1191 j--;
1192 }
1193 else if ((i >= 0 && j >= 0
1194 && src->var_part[i].offset > dst->var_part[j].offset)
1195 || j < 0)
1196 {
1197 location_chain *nextp;
1198
1199 /* Copy the chain from SRC. */
1200 nextp = &dst->var_part[k].loc_chain;
1201 for (node = src->var_part[i].loc_chain; node; node = node->next)
1202 {
1203 location_chain new_lc;
1204
1205 new_lc = pool_alloc (loc_chain_pool);
1206 new_lc->next = NULL;
1207 new_lc->loc = node->loc;
1208
1209 *nextp = new_lc;
1210 nextp = &new_lc->next;
1211 }
1212
1213 dst->var_part[k].offset = src->var_part[i].offset;
1214 i--;
1215 }
1216
1217 /* We are at the basic block boundary when computing union
1218 so set the CUR_LOC to be the first element of the chain. */
1219 if (dst->var_part[k].loc_chain)
1220 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1221 else
1222 dst->var_part[k].cur_loc = NULL;
1223 }
1224
1225 /* Continue traversing the hash table. */
1226 return 1;
1227 }
1228
1229 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1230
1231 static void
1232 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1233 {
1234 int i;
1235
1236 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1237 attrs_list_union (&dst->regs[i], src->regs[i]);
1238
1239 htab_traverse (src->vars, variable_union, dst);
1240 }
1241
1242 /* Flag whether two dataflow sets being compared contain different data. */
1243 static bool
1244 dataflow_set_different_value;
1245
1246 static bool
1247 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1248 {
1249 location_chain lc1, lc2;
1250
1251 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1252 {
1253 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1254 {
1255 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1256 {
1257 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1258 break;
1259 }
1260 if (rtx_equal_p (lc1->loc, lc2->loc))
1261 break;
1262 }
1263 if (!lc2)
1264 return true;
1265 }
1266 return false;
1267 }
1268
1269 /* Return true if variables VAR1 and VAR2 are different.
1270 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1271 variable part. */
1272
1273 static bool
1274 variable_different_p (variable var1, variable var2,
1275 bool compare_current_location)
1276 {
1277 int i;
1278
1279 if (var1 == var2)
1280 return false;
1281
1282 if (var1->n_var_parts != var2->n_var_parts)
1283 return true;
1284
1285 for (i = 0; i < var1->n_var_parts; i++)
1286 {
1287 if (var1->var_part[i].offset != var2->var_part[i].offset)
1288 return true;
1289 if (compare_current_location)
1290 {
1291 if (!((REG_P (var1->var_part[i].cur_loc)
1292 && REG_P (var2->var_part[i].cur_loc)
1293 && (REGNO (var1->var_part[i].cur_loc)
1294 == REGNO (var2->var_part[i].cur_loc)))
1295 || rtx_equal_p (var1->var_part[i].cur_loc,
1296 var2->var_part[i].cur_loc)))
1297 return true;
1298 }
1299 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1300 return true;
1301 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1302 return true;
1303 }
1304 return false;
1305 }
1306
1307 /* Compare variable *SLOT with the same variable in hash table DATA
1308 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1309
1310 static int
1311 dataflow_set_different_1 (void **slot, void *data)
1312 {
1313 htab_t htab = (htab_t) data;
1314 variable var1, var2;
1315
1316 var1 = *(variable *) slot;
1317 var2 = htab_find_with_hash (htab, var1->decl,
1318 VARIABLE_HASH_VAL (var1->decl));
1319 if (!var2)
1320 {
1321 dataflow_set_different_value = true;
1322
1323 /* Stop traversing the hash table. */
1324 return 0;
1325 }
1326
1327 if (variable_different_p (var1, var2, false))
1328 {
1329 dataflow_set_different_value = true;
1330
1331 /* Stop traversing the hash table. */
1332 return 0;
1333 }
1334
1335 /* Continue traversing the hash table. */
1336 return 1;
1337 }
1338
1339 /* Compare variable *SLOT with the same variable in hash table DATA
1340 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1341
1342 static int
1343 dataflow_set_different_2 (void **slot, void *data)
1344 {
1345 htab_t htab = (htab_t) data;
1346 variable var1, var2;
1347
1348 var1 = *(variable *) slot;
1349 var2 = htab_find_with_hash (htab, var1->decl,
1350 VARIABLE_HASH_VAL (var1->decl));
1351 if (!var2)
1352 {
1353 dataflow_set_different_value = true;
1354
1355 /* Stop traversing the hash table. */
1356 return 0;
1357 }
1358
1359 #ifdef ENABLE_CHECKING
1360 /* If both variables are defined they have been already checked for
1361 equivalence. */
1362 if (variable_different_p (var1, var2, false))
1363 abort ();
1364 #endif
1365
1366 /* Continue traversing the hash table. */
1367 return 1;
1368 }
1369
1370 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1371
1372 static bool
1373 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1374 {
1375 dataflow_set_different_value = false;
1376
1377 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1378 if (!dataflow_set_different_value)
1379 {
1380 /* We have compared the variables which are in both hash tables
1381 so now only check whether there are some variables in NEW_SET->VARS
1382 which are not in OLD_SET->VARS. */
1383 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1384 }
1385 return dataflow_set_different_value;
1386 }
1387
1388 /* Free the contents of dataflow set SET. */
1389
1390 static void
1391 dataflow_set_destroy (dataflow_set *set)
1392 {
1393 int i;
1394
1395 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1396 attrs_list_clear (&set->regs[i]);
1397
1398 htab_delete (set->vars);
1399 set->vars = NULL;
1400 }
1401
1402 /* Return true if RTL X contains a SYMBOL_REF. */
1403
1404 static bool
1405 contains_symbol_ref (rtx x)
1406 {
1407 const char *fmt;
1408 RTX_CODE code;
1409 int i;
1410
1411 if (!x)
1412 return false;
1413
1414 code = GET_CODE (x);
1415 if (code == SYMBOL_REF)
1416 return true;
1417
1418 fmt = GET_RTX_FORMAT (code);
1419 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1420 {
1421 if (fmt[i] == 'e')
1422 {
1423 if (contains_symbol_ref (XEXP (x, i)))
1424 return true;
1425 }
1426 else if (fmt[i] == 'E')
1427 {
1428 int j;
1429 for (j = 0; j < XVECLEN (x, i); j++)
1430 if (contains_symbol_ref (XVECEXP (x, i, j)))
1431 return true;
1432 }
1433 }
1434
1435 return false;
1436 }
1437
1438 /* Shall EXPR be tracked? */
1439
1440 static bool
1441 track_expr_p (tree expr)
1442 {
1443 rtx decl_rtl;
1444
1445 /* If EXPR is not a parameter or a variable do not track it. */
1446 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1447 return 0;
1448
1449 /* It also must have a name... */
1450 if (!DECL_NAME (expr))
1451 return 0;
1452
1453 /* ... and a RTL assigned to it. */
1454 decl_rtl = DECL_RTL_IF_SET (expr);
1455 if (!decl_rtl)
1456 return 0;
1457
1458 /* Do not track EXPR if it should be ignored for debugging purposes. */
1459 if (DECL_IGNORED_P (expr))
1460 return 0;
1461
1462 /* Do not track global variables until we are able to emit correct location
1463 list for them. */
1464 if (TREE_STATIC (expr))
1465 return 0;
1466
1467 /* When the EXPR is a DECL for alias of some variable (see example)
1468 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1469 DECL_RTL contains SYMBOL_REF.
1470
1471 Example:
1472 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1473 char **_dl_argv;
1474 */
1475 if (MEM_P (decl_rtl)
1476 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1477 return 0;
1478
1479 /* If RTX is a memory it should not be very large (because it would be
1480 an array or struct). */
1481 if (MEM_P (decl_rtl))
1482 {
1483 /* Do not track structures and arrays. */
1484 if (GET_MODE (decl_rtl) == BLKmode)
1485 return 0;
1486 if (MEM_SIZE (decl_rtl)
1487 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1488 return 0;
1489 }
1490
1491 return 1;
1492 }
1493
1494 /* Count uses (register and memory references) LOC which will be tracked.
1495 INSN is instruction which the LOC is part of. */
1496
1497 static int
1498 count_uses (rtx *loc, void *insn)
1499 {
1500 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1501
1502 if (REG_P (*loc))
1503 {
1504 #ifdef ENABLE_CHECKING
1505 if (REGNO (*loc) >= FIRST_PSEUDO_REGISTER)
1506 abort ();
1507 #endif
1508 VTI (bb)->n_mos++;
1509 }
1510 else if (MEM_P (*loc)
1511 && MEM_EXPR (*loc)
1512 && track_expr_p (MEM_EXPR (*loc)))
1513 {
1514 VTI (bb)->n_mos++;
1515 }
1516
1517 return 0;
1518 }
1519
1520 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1521
1522 static void
1523 count_uses_1 (rtx *x, void *insn)
1524 {
1525 for_each_rtx (x, count_uses, insn);
1526 }
1527
1528 /* Count stores (register and memory references) LOC which will be tracked.
1529 INSN is instruction which the LOC is part of. */
1530
1531 static void
1532 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1533 {
1534 count_uses (&loc, insn);
1535 }
1536
1537 /* Add uses (register and memory references) LOC which will be tracked
1538 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1539
1540 static int
1541 add_uses (rtx *loc, void *insn)
1542 {
1543 if (REG_P (*loc))
1544 {
1545 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1546 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1547
1548 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1549 ? MO_USE : MO_USE_NO_VAR);
1550 mo->u.loc = *loc;
1551 mo->insn = (rtx) insn;
1552 }
1553 else if (MEM_P (*loc)
1554 && MEM_EXPR (*loc)
1555 && track_expr_p (MEM_EXPR (*loc)))
1556 {
1557 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1558 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1559
1560 mo->type = MO_USE;
1561 mo->u.loc = *loc;
1562 mo->insn = (rtx) insn;
1563 }
1564
1565 return 0;
1566 }
1567
1568 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1569
1570 static void
1571 add_uses_1 (rtx *x, void *insn)
1572 {
1573 for_each_rtx (x, add_uses, insn);
1574 }
1575
1576 /* Add stores (register and memory references) LOC which will be tracked
1577 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1578 INSN is instruction which the LOC is part of. */
1579
1580 static void
1581 add_stores (rtx loc, rtx expr, void *insn)
1582 {
1583 if (REG_P (loc))
1584 {
1585 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1586 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1587
1588 mo->type = ((GET_CODE (expr) != CLOBBER && REG_EXPR (loc)
1589 && track_expr_p (REG_EXPR (loc)))
1590 ? MO_SET : MO_CLOBBER);
1591 mo->u.loc = loc;
1592 mo->insn = (rtx) insn;
1593 }
1594 else if (MEM_P (loc)
1595 && MEM_EXPR (loc)
1596 && track_expr_p (MEM_EXPR (loc)))
1597 {
1598 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1599 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1600
1601 mo->type = GET_CODE (expr) == CLOBBER ? MO_CLOBBER : MO_SET;
1602 mo->u.loc = loc;
1603 mo->insn = (rtx) insn;
1604 }
1605 }
1606
1607 /* Compute the changes of variable locations in the basic block BB. */
1608
1609 static bool
1610 compute_bb_dataflow (basic_block bb)
1611 {
1612 int i, n, r;
1613 bool changed;
1614 dataflow_set old_out;
1615 dataflow_set *in = &VTI (bb)->in;
1616 dataflow_set *out = &VTI (bb)->out;
1617
1618 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1619 dataflow_set_copy (&old_out, out);
1620 dataflow_set_copy (out, in);
1621
1622 n = VTI (bb)->n_mos;
1623 for (i = 0; i < n; i++)
1624 {
1625 switch (VTI (bb)->mos[i].type)
1626 {
1627 case MO_CALL:
1628 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1629 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1630 var_regno_delete (out, r);
1631 break;
1632
1633 case MO_USE:
1634 case MO_SET:
1635 {
1636 rtx loc = VTI (bb)->mos[i].u.loc;
1637
1638 if (REG_P (loc))
1639 var_reg_delete_and_set (out, loc);
1640 else if (MEM_P (loc))
1641 var_mem_delete_and_set (out, loc);
1642 }
1643 break;
1644
1645 case MO_USE_NO_VAR:
1646 case MO_CLOBBER:
1647 {
1648 rtx loc = VTI (bb)->mos[i].u.loc;
1649
1650 if (REG_P (loc))
1651 var_reg_delete (out, loc);
1652 else if (MEM_P (loc))
1653 var_mem_delete (out, loc);
1654 }
1655 break;
1656
1657 case MO_ADJUST:
1658 {
1659 rtx base;
1660
1661 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
1662 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
1663 out->stack_adjust));
1664 set_frame_base_location (out, base);
1665 }
1666 break;
1667 }
1668 }
1669
1670 changed = dataflow_set_different (&old_out, out);
1671 dataflow_set_destroy (&old_out);
1672 return changed;
1673 }
1674
1675 /* Find the locations of variables in the whole function. */
1676
1677 static void
1678 vt_find_locations (void)
1679 {
1680 fibheap_t worklist, pending, fibheap_swap;
1681 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
1682 basic_block bb;
1683 edge e;
1684 int *bb_order;
1685 int *rc_order;
1686 int i;
1687
1688 /* Compute reverse completion order of depth first search of the CFG
1689 so that the data-flow runs faster. */
1690 rc_order = xmalloc (n_basic_blocks * sizeof (int));
1691 bb_order = xmalloc (last_basic_block * sizeof (int));
1692 flow_depth_first_order_compute (NULL, rc_order);
1693 for (i = 0; i < n_basic_blocks; i++)
1694 bb_order[rc_order[i]] = i;
1695 free (rc_order);
1696
1697 worklist = fibheap_new ();
1698 pending = fibheap_new ();
1699 visited = sbitmap_alloc (last_basic_block);
1700 in_worklist = sbitmap_alloc (last_basic_block);
1701 in_pending = sbitmap_alloc (last_basic_block);
1702 sbitmap_zero (in_worklist);
1703
1704 FOR_EACH_BB (bb)
1705 fibheap_insert (pending, bb_order[bb->index], bb);
1706 sbitmap_ones (in_pending);
1707
1708 while (!fibheap_empty (pending))
1709 {
1710 fibheap_swap = pending;
1711 pending = worklist;
1712 worklist = fibheap_swap;
1713 sbitmap_swap = in_pending;
1714 in_pending = in_worklist;
1715 in_worklist = sbitmap_swap;
1716
1717 sbitmap_zero (visited);
1718
1719 while (!fibheap_empty (worklist))
1720 {
1721 bb = fibheap_extract_min (worklist);
1722 RESET_BIT (in_worklist, bb->index);
1723 if (!TEST_BIT (visited, bb->index))
1724 {
1725 bool changed;
1726 edge_iterator ei;
1727
1728 SET_BIT (visited, bb->index);
1729
1730 /* Calculate the IN set as union of predecessor OUT sets. */
1731 dataflow_set_clear (&VTI (bb)->in);
1732 FOR_EACH_EDGE (e, ei, bb->preds)
1733 {
1734 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
1735 }
1736
1737 changed = compute_bb_dataflow (bb);
1738 if (changed)
1739 {
1740 FOR_EACH_EDGE (e, ei, bb->succs)
1741 {
1742 if (e->dest == EXIT_BLOCK_PTR)
1743 continue;
1744
1745 if (e->dest == bb)
1746 continue;
1747
1748 if (TEST_BIT (visited, e->dest->index))
1749 {
1750 if (!TEST_BIT (in_pending, e->dest->index))
1751 {
1752 /* Send E->DEST to next round. */
1753 SET_BIT (in_pending, e->dest->index);
1754 fibheap_insert (pending,
1755 bb_order[e->dest->index],
1756 e->dest);
1757 }
1758 }
1759 else if (!TEST_BIT (in_worklist, e->dest->index))
1760 {
1761 /* Add E->DEST to current round. */
1762 SET_BIT (in_worklist, e->dest->index);
1763 fibheap_insert (worklist, bb_order[e->dest->index],
1764 e->dest);
1765 }
1766 }
1767 }
1768 }
1769 }
1770 }
1771
1772 free (bb_order);
1773 fibheap_delete (worklist);
1774 fibheap_delete (pending);
1775 sbitmap_free (visited);
1776 sbitmap_free (in_worklist);
1777 sbitmap_free (in_pending);
1778 }
1779
1780 /* Print the content of the LIST to dump file. */
1781
1782 static void
1783 dump_attrs_list (attrs list)
1784 {
1785 for (; list; list = list->next)
1786 {
1787 print_mem_expr (dump_file, list->decl);
1788 fprintf (dump_file, "+");
1789 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, list->offset);
1790 }
1791 fprintf (dump_file, "\n");
1792 }
1793
1794 /* Print the information about variable *SLOT to dump file. */
1795
1796 static int
1797 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1798 {
1799 variable var = *(variable *) slot;
1800 int i;
1801 location_chain node;
1802
1803 fprintf (dump_file, " name: %s\n",
1804 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
1805 for (i = 0; i < var->n_var_parts; i++)
1806 {
1807 fprintf (dump_file, " offset %ld\n",
1808 (long) var->var_part[i].offset);
1809 for (node = var->var_part[i].loc_chain; node; node = node->next)
1810 {
1811 fprintf (dump_file, " ");
1812 print_rtl_single (dump_file, node->loc);
1813 }
1814 }
1815
1816 /* Continue traversing the hash table. */
1817 return 1;
1818 }
1819
1820 /* Print the information about variables from hash table VARS to dump file. */
1821
1822 static void
1823 dump_vars (htab_t vars)
1824 {
1825 if (htab_elements (vars) > 0)
1826 {
1827 fprintf (dump_file, "Variables:\n");
1828 htab_traverse (vars, dump_variable, NULL);
1829 }
1830 }
1831
1832 /* Print the dataflow set SET to dump file. */
1833
1834 static void
1835 dump_dataflow_set (dataflow_set *set)
1836 {
1837 int i;
1838
1839 fprintf (dump_file, "Stack adjustment: ");
1840 fprintf (dump_file, HOST_WIDE_INT_PRINT_DEC, set->stack_adjust);
1841 fprintf (dump_file, "\n");
1842 for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
1843 {
1844 if (set->regs[i])
1845 {
1846 fprintf (dump_file, "Reg %d:", i);
1847 dump_attrs_list (set->regs[i]);
1848 }
1849 }
1850 dump_vars (set->vars);
1851 fprintf (dump_file, "\n");
1852 }
1853
1854 /* Print the IN and OUT sets for each basic block to dump file. */
1855
1856 static void
1857 dump_dataflow_sets (void)
1858 {
1859 basic_block bb;
1860
1861 FOR_EACH_BB (bb)
1862 {
1863 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
1864 fprintf (dump_file, "IN:\n");
1865 dump_dataflow_set (&VTI (bb)->in);
1866 fprintf (dump_file, "OUT:\n");
1867 dump_dataflow_set (&VTI (bb)->out);
1868 }
1869 }
1870
1871 /* Add variable VAR to the hash table of changed variables and
1872 if it has no locations delete it from hash table HTAB. */
1873
1874 static void
1875 variable_was_changed (variable var, htab_t htab)
1876 {
1877 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
1878
1879 if (emit_notes)
1880 {
1881 variable *slot;
1882
1883 slot = (variable *) htab_find_slot_with_hash (changed_variables,
1884 var->decl, hash, INSERT);
1885
1886 if (htab && var->n_var_parts == 0)
1887 {
1888 variable empty_var;
1889 void **old;
1890
1891 empty_var = pool_alloc (var_pool);
1892 empty_var->decl = var->decl;
1893 empty_var->refcount = 1;
1894 empty_var->n_var_parts = 0;
1895 *slot = empty_var;
1896
1897 old = htab_find_slot_with_hash (htab, var->decl, hash,
1898 NO_INSERT);
1899 if (old)
1900 htab_clear_slot (htab, old);
1901 }
1902 else
1903 {
1904 *slot = var;
1905 }
1906 }
1907 else
1908 {
1909 #ifdef ENABLE_CHECKING
1910 if (!htab)
1911 abort ();
1912 #endif
1913 if (var->n_var_parts == 0)
1914 {
1915 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
1916 NO_INSERT);
1917 if (slot)
1918 htab_clear_slot (htab, slot);
1919 }
1920 }
1921 }
1922
1923 /* Set the location of frame_base_decl to LOC in dataflow set SET. This
1924 function expects that frame_base_decl has already one location for offset 0
1925 in the variable table. */
1926
1927 static void
1928 set_frame_base_location (dataflow_set *set, rtx loc)
1929 {
1930 variable var;
1931
1932 var = htab_find_with_hash (set->vars, frame_base_decl,
1933 VARIABLE_HASH_VAL (frame_base_decl));
1934 #ifdef ENABLE_CHECKING
1935 if (!var)
1936 abort ();
1937 if (var->n_var_parts != 1)
1938 abort ();
1939 if (var->var_part[0].offset != 0)
1940 abort ();
1941 if (!var->var_part[0].loc_chain)
1942 abort ();
1943 #endif
1944
1945 /* If frame_base_decl is shared unshare it first. */
1946 if (var->refcount > 1)
1947 var = unshare_variable (set, var);
1948
1949 var->var_part[0].loc_chain->loc = loc;
1950 var->var_part[0].cur_loc = loc;
1951 variable_was_changed (var, set->vars);
1952 }
1953
1954 /* Set the part of variable's location in the dataflow set SET. The variable
1955 part is specified by variable's declaration DECL and offset OFFSET and the
1956 part's location by LOC. */
1957
1958 static void
1959 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset)
1960 {
1961 int pos, low, high;
1962 location_chain node, next;
1963 location_chain *nextp;
1964 variable var;
1965 void **slot;
1966
1967 slot = htab_find_slot_with_hash (set->vars, decl,
1968 VARIABLE_HASH_VAL (decl), INSERT);
1969 if (!*slot)
1970 {
1971 /* Create new variable information. */
1972 var = pool_alloc (var_pool);
1973 var->decl = decl;
1974 var->refcount = 1;
1975 var->n_var_parts = 1;
1976 var->var_part[0].offset = offset;
1977 var->var_part[0].loc_chain = NULL;
1978 var->var_part[0].cur_loc = NULL;
1979 *slot = var;
1980 pos = 0;
1981 }
1982 else
1983 {
1984 var = (variable) *slot;
1985
1986 /* Find the location part. */
1987 low = 0;
1988 high = var->n_var_parts;
1989 while (low != high)
1990 {
1991 pos = (low + high) / 2;
1992 if (var->var_part[pos].offset < offset)
1993 low = pos + 1;
1994 else
1995 high = pos;
1996 }
1997 pos = low;
1998
1999 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2000 {
2001 node = var->var_part[pos].loc_chain;
2002
2003 if (node
2004 && ((REG_P (node->loc) && REG_P (loc)
2005 && REGNO (node->loc) == REGNO (loc))
2006 || rtx_equal_p (node->loc, loc)))
2007 {
2008 /* LOC is in the beginning of the chain so we have nothing
2009 to do. */
2010 return;
2011 }
2012 else
2013 {
2014 /* We have to make a copy of a shared variable. */
2015 if (var->refcount > 1)
2016 var = unshare_variable (set, var);
2017 }
2018 }
2019 else
2020 {
2021 /* We have not found the location part, new one will be created. */
2022
2023 /* We have to make a copy of the shared variable. */
2024 if (var->refcount > 1)
2025 var = unshare_variable (set, var);
2026
2027 #ifdef ENABLE_CHECKING
2028 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2029 thus there are at most MAX_VAR_PARTS different offsets. */
2030 if (var->n_var_parts >= MAX_VAR_PARTS)
2031 abort ();
2032 #endif
2033
2034 /* We have to move the elements of array starting at index low to the
2035 next position. */
2036 for (high = var->n_var_parts; high > low; high--)
2037 var->var_part[high] = var->var_part[high - 1];
2038
2039 var->n_var_parts++;
2040 var->var_part[pos].offset = offset;
2041 var->var_part[pos].loc_chain = NULL;
2042 var->var_part[pos].cur_loc = NULL;
2043 }
2044 }
2045
2046 /* Delete the location from the list. */
2047 nextp = &var->var_part[pos].loc_chain;
2048 for (node = var->var_part[pos].loc_chain; node; node = next)
2049 {
2050 next = node->next;
2051 if ((REG_P (node->loc) && REG_P (loc)
2052 && REGNO (node->loc) == REGNO (loc))
2053 || rtx_equal_p (node->loc, loc))
2054 {
2055 pool_free (loc_chain_pool, node);
2056 *nextp = next;
2057 break;
2058 }
2059 else
2060 nextp = &node->next;
2061 }
2062
2063 /* Add the location to the beginning. */
2064 node = pool_alloc (loc_chain_pool);
2065 node->loc = loc;
2066 node->next = var->var_part[pos].loc_chain;
2067 var->var_part[pos].loc_chain = node;
2068
2069 /* If no location was emitted do so. */
2070 if (var->var_part[pos].cur_loc == NULL)
2071 {
2072 var->var_part[pos].cur_loc = loc;
2073 variable_was_changed (var, set->vars);
2074 }
2075 }
2076
2077 /* Delete the part of variable's location from dataflow set SET. The variable
2078 part is specified by variable's declaration DECL and offset OFFSET and the
2079 part's location by LOC. */
2080
2081 static void
2082 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
2083 HOST_WIDE_INT offset)
2084 {
2085 int pos, low, high;
2086 void **slot;
2087
2088 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2089 NO_INSERT);
2090 if (slot)
2091 {
2092 variable var = (variable) *slot;
2093
2094 /* Find the location part. */
2095 low = 0;
2096 high = var->n_var_parts;
2097 while (low != high)
2098 {
2099 pos = (low + high) / 2;
2100 if (var->var_part[pos].offset < offset)
2101 low = pos + 1;
2102 else
2103 high = pos;
2104 }
2105 pos = low;
2106
2107 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2108 {
2109 location_chain node, next;
2110 location_chain *nextp;
2111 bool changed;
2112
2113 if (var->refcount > 1)
2114 {
2115 /* If the variable contains the location part we have to
2116 make a copy of the variable. */
2117 for (node = var->var_part[pos].loc_chain; node;
2118 node = node->next)
2119 {
2120 if ((REG_P (node->loc) && REG_P (loc)
2121 && REGNO (node->loc) == REGNO (loc))
2122 || rtx_equal_p (node->loc, loc))
2123 {
2124 var = unshare_variable (set, var);
2125 break;
2126 }
2127 }
2128 }
2129
2130 /* Delete the location part. */
2131 nextp = &var->var_part[pos].loc_chain;
2132 for (node = *nextp; node; node = next)
2133 {
2134 next = node->next;
2135 if ((REG_P (node->loc) && REG_P (loc)
2136 && REGNO (node->loc) == REGNO (loc))
2137 || rtx_equal_p (node->loc, loc))
2138 {
2139 pool_free (loc_chain_pool, node);
2140 *nextp = next;
2141 break;
2142 }
2143 else
2144 nextp = &node->next;
2145 }
2146
2147 /* If we have deleted the location which was last emitted
2148 we have to emit new location so add the variable to set
2149 of changed variables. */
2150 if (var->var_part[pos].cur_loc
2151 && ((REG_P (loc)
2152 && REG_P (var->var_part[pos].cur_loc)
2153 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2154 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2155 {
2156 changed = true;
2157 if (var->var_part[pos].loc_chain)
2158 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2159 }
2160 else
2161 changed = false;
2162
2163 if (var->var_part[pos].loc_chain == NULL)
2164 {
2165 var->n_var_parts--;
2166 while (pos < var->n_var_parts)
2167 {
2168 var->var_part[pos] = var->var_part[pos + 1];
2169 pos++;
2170 }
2171 }
2172 if (changed)
2173 variable_was_changed (var, set->vars);
2174 }
2175 }
2176 }
2177
2178 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2179 additional parameters: WHERE specifies whether the note shall be emitted
2180 before of after instruction INSN. */
2181
2182 static int
2183 emit_note_insn_var_location (void **varp, void *data)
2184 {
2185 variable var = *(variable *) varp;
2186 rtx insn = ((emit_note_data *)data)->insn;
2187 enum emit_note_where where = ((emit_note_data *)data)->where;
2188 rtx note;
2189 int i;
2190 bool complete;
2191 HOST_WIDE_INT last_limit;
2192 tree type_size_unit;
2193
2194 #ifdef ENABLE_CHECKING
2195 if (!var->decl)
2196 abort ();
2197 #endif
2198
2199 complete = true;
2200 last_limit = 0;
2201 for (i = 0; i < var->n_var_parts; i++)
2202 {
2203 if (last_limit < var->var_part[i].offset)
2204 {
2205 complete = false;
2206 break;
2207 }
2208 last_limit
2209 = (var->var_part[i].offset
2210 + GET_MODE_SIZE (GET_MODE (var->var_part[i].loc_chain->loc)));
2211 }
2212 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2213 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2214 complete = false;
2215
2216 if (where == EMIT_NOTE_AFTER_INSN)
2217 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2218 else
2219 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2220
2221 if (!complete)
2222 {
2223 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2224 NULL_RTX);
2225 }
2226 else if (var->n_var_parts == 1)
2227 {
2228 rtx expr_list
2229 = gen_rtx_EXPR_LIST (VOIDmode,
2230 var->var_part[0].loc_chain->loc,
2231 GEN_INT (var->var_part[0].offset));
2232
2233 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2234 expr_list);
2235 }
2236 else if (var->n_var_parts)
2237 {
2238 rtx argp[MAX_VAR_PARTS];
2239 rtx parallel;
2240
2241 for (i = 0; i < var->n_var_parts; i++)
2242 argp[i] = gen_rtx_EXPR_LIST (VOIDmode, var->var_part[i].loc_chain->loc,
2243 GEN_INT (var->var_part[i].offset));
2244 parallel = gen_rtx_PARALLEL (VOIDmode,
2245 gen_rtvec_v (var->n_var_parts, argp));
2246 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2247 parallel);
2248 }
2249
2250 htab_clear_slot (changed_variables, varp);
2251
2252 /* When there are no location parts the variable has been already
2253 removed from hash table and a new empty variable was created.
2254 Free the empty variable. */
2255 if (var->n_var_parts == 0)
2256 {
2257 pool_free (var_pool, var);
2258 }
2259
2260 /* Continue traversing the hash table. */
2261 return 1;
2262 }
2263
2264 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2265 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2266 shall be emitted before of after instruction INSN. */
2267
2268 static void
2269 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2270 {
2271 emit_note_data data;
2272
2273 data.insn = insn;
2274 data.where = where;
2275 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2276 }
2277
2278 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2279 same variable in hash table DATA or is not there at all. */
2280
2281 static int
2282 emit_notes_for_differences_1 (void **slot, void *data)
2283 {
2284 htab_t new_vars = (htab_t) data;
2285 variable old_var, new_var;
2286
2287 old_var = *(variable *) slot;
2288 new_var = htab_find_with_hash (new_vars, old_var->decl,
2289 VARIABLE_HASH_VAL (old_var->decl));
2290
2291 if (!new_var)
2292 {
2293 /* Variable has disappeared. */
2294 variable empty_var;
2295
2296 empty_var = pool_alloc (var_pool);
2297 empty_var->decl = old_var->decl;
2298 empty_var->refcount = 1;
2299 empty_var->n_var_parts = 0;
2300 variable_was_changed (empty_var, NULL);
2301 }
2302 else if (variable_different_p (old_var, new_var, true))
2303 {
2304 variable_was_changed (new_var, NULL);
2305 }
2306
2307 /* Continue traversing the hash table. */
2308 return 1;
2309 }
2310
2311 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2312 table DATA. */
2313
2314 static int
2315 emit_notes_for_differences_2 (void **slot, void *data)
2316 {
2317 htab_t old_vars = (htab_t) data;
2318 variable old_var, new_var;
2319
2320 new_var = *(variable *) slot;
2321 old_var = htab_find_with_hash (old_vars, new_var->decl,
2322 VARIABLE_HASH_VAL (new_var->decl));
2323 if (!old_var)
2324 {
2325 /* Variable has appeared. */
2326 variable_was_changed (new_var, NULL);
2327 }
2328
2329 /* Continue traversing the hash table. */
2330 return 1;
2331 }
2332
2333 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2334 NEW_SET. */
2335
2336 static void
2337 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2338 dataflow_set *new_set)
2339 {
2340 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2341 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2342 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2343 }
2344
2345 /* Emit the notes for changes of location parts in the basic block BB. */
2346
2347 static void
2348 emit_notes_in_bb (basic_block bb)
2349 {
2350 int i;
2351 dataflow_set set;
2352
2353 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2354 dataflow_set_copy (&set, &VTI (bb)->in);
2355
2356 for (i = 0; i < VTI (bb)->n_mos; i++)
2357 {
2358 rtx insn = VTI (bb)->mos[i].insn;
2359
2360 switch (VTI (bb)->mos[i].type)
2361 {
2362 case MO_CALL:
2363 {
2364 int r;
2365
2366 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2367 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2368 {
2369 var_regno_delete (&set, r);
2370 }
2371 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2372 }
2373 break;
2374
2375 case MO_USE:
2376 case MO_SET:
2377 {
2378 rtx loc = VTI (bb)->mos[i].u.loc;
2379
2380 if (REG_P (loc))
2381 var_reg_delete_and_set (&set, loc);
2382 else
2383 var_mem_delete_and_set (&set, loc);
2384
2385 if (VTI (bb)->mos[i].type == MO_USE)
2386 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2387 else
2388 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2389 }
2390 break;
2391
2392 case MO_USE_NO_VAR:
2393 case MO_CLOBBER:
2394 {
2395 rtx loc = VTI (bb)->mos[i].u.loc;
2396
2397 if (REG_P (loc))
2398 var_reg_delete (&set, loc);
2399 else
2400 var_mem_delete (&set, loc);
2401
2402 if (VTI (bb)->mos[i].type == MO_USE_NO_VAR)
2403 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2404 else
2405 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2406 }
2407 break;
2408
2409 case MO_ADJUST:
2410 {
2411 rtx base;
2412
2413 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2414 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
2415 set.stack_adjust));
2416 set_frame_base_location (&set, base);
2417 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2418 }
2419 break;
2420 }
2421 }
2422 dataflow_set_destroy (&set);
2423 }
2424
2425 /* Emit notes for the whole function. */
2426
2427 static void
2428 vt_emit_notes (void)
2429 {
2430 basic_block bb;
2431 dataflow_set *last_out;
2432 dataflow_set empty;
2433
2434 #ifdef ENABLE_CHECKING
2435 if (htab_elements (changed_variables))
2436 abort ();
2437 #endif
2438
2439 /* Enable emitting notes by functions (mainly by set_variable_part and
2440 delete_variable_part). */
2441 emit_notes = true;
2442
2443 dataflow_set_init (&empty, 7);
2444 last_out = &empty;
2445
2446 FOR_EACH_BB (bb)
2447 {
2448 /* Emit the notes for changes of variable locations between two
2449 subsequent basic blocks. */
2450 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2451
2452 /* Emit the notes for the changes in the basic block itself. */
2453 emit_notes_in_bb (bb);
2454
2455 last_out = &VTI (bb)->out;
2456 }
2457 dataflow_set_destroy (&empty);
2458 emit_notes = false;
2459 }
2460
2461 /* If there is a declaration and offset associated with register/memory RTL
2462 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2463
2464 static bool
2465 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
2466 {
2467 if (REG_P (rtl))
2468 {
2469 if (REG_ATTRS (rtl))
2470 {
2471 *declp = REG_EXPR (rtl);
2472 *offsetp = REG_OFFSET (rtl);
2473 return true;
2474 }
2475 }
2476 else if (MEM_P (rtl))
2477 {
2478 if (MEM_ATTRS (rtl))
2479 {
2480 *declp = MEM_EXPR (rtl);
2481 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
2482 return true;
2483 }
2484 }
2485 return false;
2486 }
2487
2488 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2489
2490 static void
2491 vt_add_function_parameters (void)
2492 {
2493 tree parm;
2494
2495 for (parm = DECL_ARGUMENTS (current_function_decl);
2496 parm; parm = TREE_CHAIN (parm))
2497 {
2498 rtx decl_rtl = DECL_RTL_IF_SET (parm);
2499 rtx incoming = DECL_INCOMING_RTL (parm);
2500 tree decl;
2501 HOST_WIDE_INT offset;
2502 dataflow_set *out;
2503
2504 if (TREE_CODE (parm) != PARM_DECL)
2505 continue;
2506
2507 if (!DECL_NAME (parm))
2508 continue;
2509
2510 if (!decl_rtl || !incoming)
2511 continue;
2512
2513 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
2514 continue;
2515
2516 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
2517 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
2518 continue;
2519
2520 if (!decl)
2521 continue;
2522
2523 #ifdef ENABLE_CHECKING
2524 if (parm != decl)
2525 abort ();
2526 #endif
2527
2528 incoming = eliminate_regs (incoming, 0, NULL_RTX);
2529 out = &VTI (ENTRY_BLOCK_PTR)->out;
2530
2531 if (REG_P (incoming))
2532 {
2533 #ifdef ENABLE_CHECKING
2534 if (REGNO (incoming) >= FIRST_PSEUDO_REGISTER)
2535 abort ();
2536 #endif
2537 attrs_list_insert (&out->regs[REGNO (incoming)],
2538 parm, offset, incoming);
2539 set_variable_part (out, incoming, parm, offset);
2540 }
2541 else if (MEM_P (incoming))
2542 {
2543 set_variable_part (out, incoming, parm, offset);
2544 }
2545 }
2546 }
2547
2548 /* Allocate and initialize the data structures for variable tracking
2549 and parse the RTL to get the micro operations. */
2550
2551 static void
2552 vt_initialize (void)
2553 {
2554 basic_block bb;
2555
2556 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
2557
2558 FOR_EACH_BB (bb)
2559 {
2560 rtx insn;
2561 HOST_WIDE_INT pre, post;
2562
2563 /* Count the number of micro operations. */
2564 VTI (bb)->n_mos = 0;
2565 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2566 insn = NEXT_INSN (insn))
2567 {
2568 if (INSN_P (insn))
2569 {
2570 if (!frame_pointer_needed)
2571 {
2572 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2573 if (pre)
2574 VTI (bb)->n_mos++;
2575 if (post)
2576 VTI (bb)->n_mos++;
2577 }
2578 note_uses (&PATTERN (insn), count_uses_1, insn);
2579 note_stores (PATTERN (insn), count_stores, insn);
2580 if (CALL_P (insn))
2581 VTI (bb)->n_mos++;
2582 }
2583 }
2584
2585 /* Add the micro-operations to the array. */
2586 VTI (bb)->mos = xmalloc (VTI (bb)->n_mos
2587 * sizeof (struct micro_operation_def));
2588 VTI (bb)->n_mos = 0;
2589 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2590 insn = NEXT_INSN (insn))
2591 {
2592 if (INSN_P (insn))
2593 {
2594 int n1, n2;
2595
2596 if (!frame_pointer_needed)
2597 {
2598 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2599 if (pre)
2600 {
2601 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2602
2603 mo->type = MO_ADJUST;
2604 mo->u.adjust = pre;
2605 mo->insn = insn;
2606 }
2607 }
2608
2609 n1 = VTI (bb)->n_mos;
2610 note_uses (&PATTERN (insn), add_uses_1, insn);
2611 n2 = VTI (bb)->n_mos - 1;
2612
2613 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2614 while (n1 < n2)
2615 {
2616 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
2617 n1++;
2618 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
2619 n2--;
2620 if (n1 < n2)
2621 {
2622 micro_operation sw;
2623
2624 sw = VTI (bb)->mos[n1];
2625 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2626 VTI (bb)->mos[n2] = sw;
2627 }
2628 }
2629
2630 if (CALL_P (insn))
2631 {
2632 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2633
2634 mo->type = MO_CALL;
2635 mo->insn = insn;
2636 }
2637
2638 n1 = VTI (bb)->n_mos;
2639 note_stores (PATTERN (insn), add_stores, insn);
2640 n2 = VTI (bb)->n_mos - 1;
2641
2642 /* Order the MO_SETs to be before MO_CLOBBERs. */
2643 while (n1 < n2)
2644 {
2645 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_SET)
2646 n1++;
2647 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_CLOBBER)
2648 n2--;
2649 if (n1 < n2)
2650 {
2651 micro_operation sw;
2652
2653 sw = VTI (bb)->mos[n1];
2654 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2655 VTI (bb)->mos[n2] = sw;
2656 }
2657 }
2658
2659 if (!frame_pointer_needed && post)
2660 {
2661 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2662
2663 mo->type = MO_ADJUST;
2664 mo->u.adjust = post;
2665 mo->insn = insn;
2666 }
2667 }
2668 }
2669 }
2670
2671 /* Init the IN and OUT sets. */
2672 FOR_ALL_BB (bb)
2673 {
2674 VTI (bb)->visited = false;
2675 dataflow_set_init (&VTI (bb)->in, 7);
2676 dataflow_set_init (&VTI (bb)->out, 7);
2677 }
2678
2679 attrs_pool = create_alloc_pool ("attrs_def pool",
2680 sizeof (struct attrs_def), 1024);
2681 var_pool = create_alloc_pool ("variable_def pool",
2682 sizeof (struct variable_def), 64);
2683 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
2684 sizeof (struct location_chain_def),
2685 1024);
2686 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
2687 NULL);
2688 vt_add_function_parameters ();
2689
2690 if (!frame_pointer_needed)
2691 {
2692 rtx base;
2693
2694 /* Create fake variable for tracking stack pointer changes. */
2695 frame_base_decl = make_node (VAR_DECL);
2696 DECL_NAME (frame_base_decl) = get_identifier ("___frame_base_decl");
2697 TREE_TYPE (frame_base_decl) = char_type_node;
2698 DECL_ARTIFICIAL (frame_base_decl) = 1;
2699
2700 /* Set its initial "location". */
2701 frame_stack_adjust = -prologue_stack_adjust ();
2702 base = gen_rtx_MEM (Pmode, plus_constant (stack_pointer_rtx,
2703 frame_stack_adjust));
2704 set_variable_part (&VTI (ENTRY_BLOCK_PTR)->out, base, frame_base_decl, 0);
2705 }
2706 else
2707 {
2708 frame_base_decl = NULL;
2709 }
2710 }
2711
2712 /* Free the data structures needed for variable tracking. */
2713
2714 static void
2715 vt_finalize (void)
2716 {
2717 basic_block bb;
2718
2719 FOR_EACH_BB (bb)
2720 {
2721 free (VTI (bb)->mos);
2722 }
2723
2724 FOR_ALL_BB (bb)
2725 {
2726 dataflow_set_destroy (&VTI (bb)->in);
2727 dataflow_set_destroy (&VTI (bb)->out);
2728 }
2729 free_aux_for_blocks ();
2730 free_alloc_pool (attrs_pool);
2731 free_alloc_pool (var_pool);
2732 free_alloc_pool (loc_chain_pool);
2733 htab_delete (changed_variables);
2734 }
2735
2736 /* The entry point to variable tracking pass. */
2737
2738 void
2739 variable_tracking_main (void)
2740 {
2741 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
2742 return;
2743
2744 mark_dfs_back_edges ();
2745 vt_initialize ();
2746 if (!frame_pointer_needed)
2747 {
2748 if (!vt_stack_adjustments ())
2749 {
2750 vt_finalize ();
2751 return;
2752 }
2753 }
2754
2755 vt_find_locations ();
2756 vt_emit_notes ();
2757
2758 if (dump_file)
2759 {
2760 dump_dataflow_sets ();
2761 dump_flow_info (dump_file);
2762 }
2763
2764 vt_finalize ();
2765 }