PR c++/68795: fix uninitialized close_paren_loc in cp_parser_postfix_expression
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2016 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "backend.h"
92 #include "target.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "cfghooks.h"
96 #include "alloc-pool.h"
97 #include "tree-pass.h"
98 #include "tm_p.h"
99 #include "insn-config.h"
100 #include "regs.h"
101 #include "emit-rtl.h"
102 #include "recog.h"
103 #include "diagnostic.h"
104 #include "varasm.h"
105 #include "stor-layout.h"
106 #include "cfgrtl.h"
107 #include "cfganal.h"
108 #include "reload.h"
109 #include "calls.h"
110 #include "tree-dfa.h"
111 #include "tree-ssa.h"
112 #include "cselib.h"
113 #include "params.h"
114 #include "tree-pretty-print.h"
115 #include "rtl-iter.h"
116 #include "fibonacci_heap.h"
117
118 typedef fibonacci_heap <long, basic_block_def> bb_heap_t;
119 typedef fibonacci_node <long, basic_block_def> bb_heap_node_t;
120
121 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
122 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
123 Currently the value is the same as IDENTIFIER_NODE, which has such
124 a property. If this compile time assertion ever fails, make sure that
125 the new tree code that equals (int) VALUE has the same property. */
126 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
127
128 /* Type of micro operation. */
129 enum micro_operation_type
130 {
131 MO_USE, /* Use location (REG or MEM). */
132 MO_USE_NO_VAR,/* Use location which is not associated with a variable
133 or the variable is not trackable. */
134 MO_VAL_USE, /* Use location which is associated with a value. */
135 MO_VAL_LOC, /* Use location which appears in a debug insn. */
136 MO_VAL_SET, /* Set location associated with a value. */
137 MO_SET, /* Set location. */
138 MO_COPY, /* Copy the same portion of a variable from one
139 location to another. */
140 MO_CLOBBER, /* Clobber location. */
141 MO_CALL, /* Call insn. */
142 MO_ADJUST /* Adjust stack pointer. */
143
144 };
145
146 static const char * const ATTRIBUTE_UNUSED
147 micro_operation_type_name[] = {
148 "MO_USE",
149 "MO_USE_NO_VAR",
150 "MO_VAL_USE",
151 "MO_VAL_LOC",
152 "MO_VAL_SET",
153 "MO_SET",
154 "MO_COPY",
155 "MO_CLOBBER",
156 "MO_CALL",
157 "MO_ADJUST"
158 };
159
160 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
161 Notes emitted as AFTER_CALL are to take effect during the call,
162 rather than after the call. */
163 enum emit_note_where
164 {
165 EMIT_NOTE_BEFORE_INSN,
166 EMIT_NOTE_AFTER_INSN,
167 EMIT_NOTE_AFTER_CALL_INSN
168 };
169
170 /* Structure holding information about micro operation. */
171 struct micro_operation
172 {
173 /* Type of micro operation. */
174 enum micro_operation_type type;
175
176 /* The instruction which the micro operation is in, for MO_USE,
177 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
178 instruction or note in the original flow (before any var-tracking
179 notes are inserted, to simplify emission of notes), for MO_SET
180 and MO_CLOBBER. */
181 rtx_insn *insn;
182
183 union {
184 /* Location. For MO_SET and MO_COPY, this is the SET that
185 performs the assignment, if known, otherwise it is the target
186 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
187 CONCAT of the VALUE and the LOC associated with it. For
188 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
189 associated with it. */
190 rtx loc;
191
192 /* Stack adjustment. */
193 HOST_WIDE_INT adjust;
194 } u;
195 };
196
197
198 /* A declaration of a variable, or an RTL value being handled like a
199 declaration. */
200 typedef void *decl_or_value;
201
202 /* Return true if a decl_or_value DV is a DECL or NULL. */
203 static inline bool
204 dv_is_decl_p (decl_or_value dv)
205 {
206 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
207 }
208
209 /* Return true if a decl_or_value is a VALUE rtl. */
210 static inline bool
211 dv_is_value_p (decl_or_value dv)
212 {
213 return dv && !dv_is_decl_p (dv);
214 }
215
216 /* Return the decl in the decl_or_value. */
217 static inline tree
218 dv_as_decl (decl_or_value dv)
219 {
220 gcc_checking_assert (dv_is_decl_p (dv));
221 return (tree) dv;
222 }
223
224 /* Return the value in the decl_or_value. */
225 static inline rtx
226 dv_as_value (decl_or_value dv)
227 {
228 gcc_checking_assert (dv_is_value_p (dv));
229 return (rtx)dv;
230 }
231
232 /* Return the opaque pointer in the decl_or_value. */
233 static inline void *
234 dv_as_opaque (decl_or_value dv)
235 {
236 return dv;
237 }
238
239
240 /* Description of location of a part of a variable. The content of a physical
241 register is described by a chain of these structures.
242 The chains are pretty short (usually 1 or 2 elements) and thus
243 chain is the best data structure. */
244 struct attrs
245 {
246 /* Pointer to next member of the list. */
247 attrs *next;
248
249 /* The rtx of register. */
250 rtx loc;
251
252 /* The declaration corresponding to LOC. */
253 decl_or_value dv;
254
255 /* Offset from start of DECL. */
256 HOST_WIDE_INT offset;
257 };
258
259 /* Structure for chaining the locations. */
260 struct location_chain
261 {
262 /* Next element in the chain. */
263 location_chain *next;
264
265 /* The location (REG, MEM or VALUE). */
266 rtx loc;
267
268 /* The "value" stored in this location. */
269 rtx set_src;
270
271 /* Initialized? */
272 enum var_init_status init;
273 };
274
275 /* A vector of loc_exp_dep holds the active dependencies of a one-part
276 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
277 location of DV. Each entry is also part of VALUE' s linked-list of
278 backlinks back to DV. */
279 struct loc_exp_dep
280 {
281 /* The dependent DV. */
282 decl_or_value dv;
283 /* The dependency VALUE or DECL_DEBUG. */
284 rtx value;
285 /* The next entry in VALUE's backlinks list. */
286 struct loc_exp_dep *next;
287 /* A pointer to the pointer to this entry (head or prev's next) in
288 the doubly-linked list. */
289 struct loc_exp_dep **pprev;
290 };
291
292
293 /* This data structure holds information about the depth of a variable
294 expansion. */
295 struct expand_depth
296 {
297 /* This measures the complexity of the expanded expression. It
298 grows by one for each level of expansion that adds more than one
299 operand. */
300 int complexity;
301 /* This counts the number of ENTRY_VALUE expressions in an
302 expansion. We want to minimize their use. */
303 int entryvals;
304 };
305
306 /* This data structure is allocated for one-part variables at the time
307 of emitting notes. */
308 struct onepart_aux
309 {
310 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
311 computation used the expansion of this variable, and that ought
312 to be notified should this variable change. If the DV's cur_loc
313 expanded to NULL, all components of the loc list are regarded as
314 active, so that any changes in them give us a chance to get a
315 location. Otherwise, only components of the loc that expanded to
316 non-NULL are regarded as active dependencies. */
317 loc_exp_dep *backlinks;
318 /* This holds the LOC that was expanded into cur_loc. We need only
319 mark a one-part variable as changed if the FROM loc is removed,
320 or if it has no known location and a loc is added, or if it gets
321 a change notification from any of its active dependencies. */
322 rtx from;
323 /* The depth of the cur_loc expression. */
324 expand_depth depth;
325 /* Dependencies actively used when expand FROM into cur_loc. */
326 vec<loc_exp_dep, va_heap, vl_embed> deps;
327 };
328
329 /* Structure describing one part of variable. */
330 struct variable_part
331 {
332 /* Chain of locations of the part. */
333 location_chain *loc_chain;
334
335 /* Location which was last emitted to location list. */
336 rtx cur_loc;
337
338 union variable_aux
339 {
340 /* The offset in the variable, if !var->onepart. */
341 HOST_WIDE_INT offset;
342
343 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
344 struct onepart_aux *onepaux;
345 } aux;
346 };
347
348 /* Maximum number of location parts. */
349 #define MAX_VAR_PARTS 16
350
351 /* Enumeration type used to discriminate various types of one-part
352 variables. */
353 enum onepart_enum
354 {
355 /* Not a one-part variable. */
356 NOT_ONEPART = 0,
357 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
358 ONEPART_VDECL = 1,
359 /* A DEBUG_EXPR_DECL. */
360 ONEPART_DEXPR = 2,
361 /* A VALUE. */
362 ONEPART_VALUE = 3
363 };
364
365 /* Structure describing where the variable is located. */
366 struct variable
367 {
368 /* The declaration of the variable, or an RTL value being handled
369 like a declaration. */
370 decl_or_value dv;
371
372 /* Reference count. */
373 int refcount;
374
375 /* Number of variable parts. */
376 char n_var_parts;
377
378 /* What type of DV this is, according to enum onepart_enum. */
379 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
380
381 /* True if this variable_def struct is currently in the
382 changed_variables hash table. */
383 bool in_changed_variables;
384
385 /* The variable parts. */
386 variable_part var_part[1];
387 };
388
389 /* Pointer to the BB's information specific to variable tracking pass. */
390 #define VTI(BB) ((variable_tracking_info *) (BB)->aux)
391
392 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
393 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
394
395 #if CHECKING_P && (GCC_VERSION >= 2007)
396
397 /* Access VAR's Ith part's offset, checking that it's not a one-part
398 variable. */
399 #define VAR_PART_OFFSET(var, i) __extension__ \
400 (*({ variable *const __v = (var); \
401 gcc_checking_assert (!__v->onepart); \
402 &__v->var_part[(i)].aux.offset; }))
403
404 /* Access VAR's one-part auxiliary data, checking that it is a
405 one-part variable. */
406 #define VAR_LOC_1PAUX(var) __extension__ \
407 (*({ variable *const __v = (var); \
408 gcc_checking_assert (__v->onepart); \
409 &__v->var_part[0].aux.onepaux; }))
410
411 #else
412 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
413 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
414 #endif
415
416 /* These are accessor macros for the one-part auxiliary data. When
417 convenient for users, they're guarded by tests that the data was
418 allocated. */
419 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
420 ? VAR_LOC_1PAUX (var)->backlinks \
421 : NULL)
422 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
423 ? &VAR_LOC_1PAUX (var)->backlinks \
424 : NULL)
425 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
426 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
427 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
428 ? &VAR_LOC_1PAUX (var)->deps \
429 : NULL)
430
431
432
433 typedef unsigned int dvuid;
434
435 /* Return the uid of DV. */
436
437 static inline dvuid
438 dv_uid (decl_or_value dv)
439 {
440 if (dv_is_value_p (dv))
441 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
442 else
443 return DECL_UID (dv_as_decl (dv));
444 }
445
446 /* Compute the hash from the uid. */
447
448 static inline hashval_t
449 dv_uid2hash (dvuid uid)
450 {
451 return uid;
452 }
453
454 /* The hash function for a mask table in a shared_htab chain. */
455
456 static inline hashval_t
457 dv_htab_hash (decl_or_value dv)
458 {
459 return dv_uid2hash (dv_uid (dv));
460 }
461
462 static void variable_htab_free (void *);
463
464 /* Variable hashtable helpers. */
465
466 struct variable_hasher : pointer_hash <variable>
467 {
468 typedef void *compare_type;
469 static inline hashval_t hash (const variable *);
470 static inline bool equal (const variable *, const void *);
471 static inline void remove (variable *);
472 };
473
474 /* The hash function for variable_htab, computes the hash value
475 from the declaration of variable X. */
476
477 inline hashval_t
478 variable_hasher::hash (const variable *v)
479 {
480 return dv_htab_hash (v->dv);
481 }
482
483 /* Compare the declaration of variable X with declaration Y. */
484
485 inline bool
486 variable_hasher::equal (const variable *v, const void *y)
487 {
488 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
489
490 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
491 }
492
493 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
494
495 inline void
496 variable_hasher::remove (variable *var)
497 {
498 variable_htab_free (var);
499 }
500
501 typedef hash_table<variable_hasher> variable_table_type;
502 typedef variable_table_type::iterator variable_iterator_type;
503
504 /* Structure for passing some other parameters to function
505 emit_note_insn_var_location. */
506 struct emit_note_data
507 {
508 /* The instruction which the note will be emitted before/after. */
509 rtx_insn *insn;
510
511 /* Where the note will be emitted (before/after insn)? */
512 enum emit_note_where where;
513
514 /* The variables and values active at this point. */
515 variable_table_type *vars;
516 };
517
518 /* Structure holding a refcounted hash table. If refcount > 1,
519 it must be first unshared before modified. */
520 struct shared_hash
521 {
522 /* Reference count. */
523 int refcount;
524
525 /* Actual hash table. */
526 variable_table_type *htab;
527 };
528
529 /* Structure holding the IN or OUT set for a basic block. */
530 struct dataflow_set
531 {
532 /* Adjustment of stack offset. */
533 HOST_WIDE_INT stack_adjust;
534
535 /* Attributes for registers (lists of attrs). */
536 attrs *regs[FIRST_PSEUDO_REGISTER];
537
538 /* Variable locations. */
539 shared_hash *vars;
540
541 /* Vars that is being traversed. */
542 shared_hash *traversed_vars;
543 };
544
545 /* The structure (one for each basic block) containing the information
546 needed for variable tracking. */
547 struct variable_tracking_info
548 {
549 /* The vector of micro operations. */
550 vec<micro_operation> mos;
551
552 /* The IN and OUT set for dataflow analysis. */
553 dataflow_set in;
554 dataflow_set out;
555
556 /* The permanent-in dataflow set for this block. This is used to
557 hold values for which we had to compute entry values. ??? This
558 should probably be dynamically allocated, to avoid using more
559 memory in non-debug builds. */
560 dataflow_set *permp;
561
562 /* Has the block been visited in DFS? */
563 bool visited;
564
565 /* Has the block been flooded in VTA? */
566 bool flooded;
567
568 };
569
570 /* Alloc pool for struct attrs_def. */
571 object_allocator<attrs> attrs_pool ("attrs pool");
572
573 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
574
575 static pool_allocator var_pool
576 ("variable_def pool", sizeof (variable) +
577 (MAX_VAR_PARTS - 1) * sizeof (((variable *)NULL)->var_part[0]));
578
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static pool_allocator valvar_pool
581 ("small variable_def pool", sizeof (variable));
582
583 /* Alloc pool for struct location_chain. */
584 static object_allocator<location_chain> location_chain_pool
585 ("location_chain pool");
586
587 /* Alloc pool for struct shared_hash. */
588 static object_allocator<shared_hash> shared_hash_pool ("shared_hash pool");
589
590 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
591 object_allocator<loc_exp_dep> loc_exp_dep_pool ("loc_exp_dep pool");
592
593 /* Changed variables, notes will be emitted for them. */
594 static variable_table_type *changed_variables;
595
596 /* Shall notes be emitted? */
597 static bool emit_notes;
598
599 /* Values whose dynamic location lists have gone empty, but whose
600 cselib location lists are still usable. Use this to hold the
601 current location, the backlinks, etc, during emit_notes. */
602 static variable_table_type *dropped_values;
603
604 /* Empty shared hashtable. */
605 static shared_hash *empty_shared_hash;
606
607 /* Scratch register bitmap used by cselib_expand_value_rtx. */
608 static bitmap scratch_regs = NULL;
609
610 #ifdef HAVE_window_save
611 struct GTY(()) parm_reg {
612 rtx outgoing;
613 rtx incoming;
614 };
615
616
617 /* Vector of windowed parameter registers, if any. */
618 static vec<parm_reg, va_gc> *windowed_parm_regs = NULL;
619 #endif
620
621 /* Variable used to tell whether cselib_process_insn called our hook. */
622 static bool cselib_hook_called;
623
624 /* Local function prototypes. */
625 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
628 HOST_WIDE_INT *);
629 static bool vt_stack_adjustments (void);
630
631 static void init_attrs_list_set (attrs **);
632 static void attrs_list_clear (attrs **);
633 static attrs *attrs_list_member (attrs *, decl_or_value, HOST_WIDE_INT);
634 static void attrs_list_insert (attrs **, decl_or_value, HOST_WIDE_INT, rtx);
635 static void attrs_list_copy (attrs **, attrs *);
636 static void attrs_list_union (attrs **, attrs *);
637
638 static variable **unshare_variable (dataflow_set *set, variable **slot,
639 variable *var, enum var_init_status);
640 static void vars_copy (variable_table_type *, variable_table_type *);
641 static tree var_debug_decl (tree);
642 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
643 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
644 enum var_init_status, rtx);
645 static void var_reg_delete (dataflow_set *, rtx, bool);
646 static void var_regno_delete (dataflow_set *, int);
647 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
648 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
649 enum var_init_status, rtx);
650 static void var_mem_delete (dataflow_set *, rtx, bool);
651
652 static void dataflow_set_init (dataflow_set *);
653 static void dataflow_set_clear (dataflow_set *);
654 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
655 static int variable_union_info_cmp_pos (const void *, const void *);
656 static void dataflow_set_union (dataflow_set *, dataflow_set *);
657 static location_chain *find_loc_in_1pdv (rtx, variable *,
658 variable_table_type *);
659 static bool canon_value_cmp (rtx, rtx);
660 static int loc_cmp (rtx, rtx);
661 static bool variable_part_different_p (variable_part *, variable_part *);
662 static bool onepart_variable_different_p (variable *, variable *);
663 static bool variable_different_p (variable *, variable *);
664 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
665 static void dataflow_set_destroy (dataflow_set *);
666
667 static bool track_expr_p (tree, bool);
668 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
669 static void add_uses_1 (rtx *, void *);
670 static void add_stores (rtx, const_rtx, void *);
671 static bool compute_bb_dataflow (basic_block);
672 static bool vt_find_locations (void);
673
674 static void dump_attrs_list (attrs *);
675 static void dump_var (variable *);
676 static void dump_vars (variable_table_type *);
677 static void dump_dataflow_set (dataflow_set *);
678 static void dump_dataflow_sets (void);
679
680 static void set_dv_changed (decl_or_value, bool);
681 static void variable_was_changed (variable *, dataflow_set *);
682 static variable **set_slot_part (dataflow_set *, rtx, variable **,
683 decl_or_value, HOST_WIDE_INT,
684 enum var_init_status, rtx);
685 static void set_variable_part (dataflow_set *, rtx,
686 decl_or_value, HOST_WIDE_INT,
687 enum var_init_status, rtx, enum insert_option);
688 static variable **clobber_slot_part (dataflow_set *, rtx,
689 variable **, HOST_WIDE_INT, rtx);
690 static void clobber_variable_part (dataflow_set *, rtx,
691 decl_or_value, HOST_WIDE_INT, rtx);
692 static variable **delete_slot_part (dataflow_set *, rtx, variable **,
693 HOST_WIDE_INT);
694 static void delete_variable_part (dataflow_set *, rtx,
695 decl_or_value, HOST_WIDE_INT);
696 static void emit_notes_in_bb (basic_block, dataflow_set *);
697 static void vt_emit_notes (void);
698
699 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
700 static void vt_add_function_parameters (void);
701 static bool vt_initialize (void);
702 static void vt_finalize (void);
703
704 /* Callback for stack_adjust_offset_pre_post, called via for_each_inc_dec. */
705
706 static int
707 stack_adjust_offset_pre_post_cb (rtx, rtx op, rtx dest, rtx src, rtx srcoff,
708 void *arg)
709 {
710 if (dest != stack_pointer_rtx)
711 return 0;
712
713 switch (GET_CODE (op))
714 {
715 case PRE_INC:
716 case PRE_DEC:
717 ((HOST_WIDE_INT *)arg)[0] -= INTVAL (srcoff);
718 return 0;
719 case POST_INC:
720 case POST_DEC:
721 ((HOST_WIDE_INT *)arg)[1] -= INTVAL (srcoff);
722 return 0;
723 case PRE_MODIFY:
724 case POST_MODIFY:
725 /* We handle only adjustments by constant amount. */
726 gcc_assert (GET_CODE (src) == PLUS
727 && CONST_INT_P (XEXP (src, 1))
728 && XEXP (src, 0) == stack_pointer_rtx);
729 ((HOST_WIDE_INT *)arg)[GET_CODE (op) == POST_MODIFY]
730 -= INTVAL (XEXP (src, 1));
731 return 0;
732 default:
733 gcc_unreachable ();
734 }
735 }
736
737 /* Given a SET, calculate the amount of stack adjustment it contains
738 PRE- and POST-modifying stack pointer.
739 This function is similar to stack_adjust_offset. */
740
741 static void
742 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
743 HOST_WIDE_INT *post)
744 {
745 rtx src = SET_SRC (pattern);
746 rtx dest = SET_DEST (pattern);
747 enum rtx_code code;
748
749 if (dest == stack_pointer_rtx)
750 {
751 /* (set (reg sp) (plus (reg sp) (const_int))) */
752 code = GET_CODE (src);
753 if (! (code == PLUS || code == MINUS)
754 || XEXP (src, 0) != stack_pointer_rtx
755 || !CONST_INT_P (XEXP (src, 1)))
756 return;
757
758 if (code == MINUS)
759 *post += INTVAL (XEXP (src, 1));
760 else
761 *post -= INTVAL (XEXP (src, 1));
762 return;
763 }
764 HOST_WIDE_INT res[2] = { 0, 0 };
765 for_each_inc_dec (pattern, stack_adjust_offset_pre_post_cb, res);
766 *pre += res[0];
767 *post += res[1];
768 }
769
770 /* Given an INSN, calculate the amount of stack adjustment it contains
771 PRE- and POST-modifying stack pointer. */
772
773 static void
774 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
775 HOST_WIDE_INT *post)
776 {
777 rtx pattern;
778
779 *pre = 0;
780 *post = 0;
781
782 pattern = PATTERN (insn);
783 if (RTX_FRAME_RELATED_P (insn))
784 {
785 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
786 if (expr)
787 pattern = XEXP (expr, 0);
788 }
789
790 if (GET_CODE (pattern) == SET)
791 stack_adjust_offset_pre_post (pattern, pre, post);
792 else if (GET_CODE (pattern) == PARALLEL
793 || GET_CODE (pattern) == SEQUENCE)
794 {
795 int i;
796
797 /* There may be stack adjustments inside compound insns. Search
798 for them. */
799 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
800 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
801 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
802 }
803 }
804
805 /* Compute stack adjustments for all blocks by traversing DFS tree.
806 Return true when the adjustments on all incoming edges are consistent.
807 Heavily borrowed from pre_and_rev_post_order_compute. */
808
809 static bool
810 vt_stack_adjustments (void)
811 {
812 edge_iterator *stack;
813 int sp;
814
815 /* Initialize entry block. */
816 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
817 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust
818 = INCOMING_FRAME_SP_OFFSET;
819 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust
820 = INCOMING_FRAME_SP_OFFSET;
821
822 /* Allocate stack for back-tracking up CFG. */
823 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
824 sp = 0;
825
826 /* Push the first edge on to the stack. */
827 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
828
829 while (sp)
830 {
831 edge_iterator ei;
832 basic_block src;
833 basic_block dest;
834
835 /* Look at the edge on the top of the stack. */
836 ei = stack[sp - 1];
837 src = ei_edge (ei)->src;
838 dest = ei_edge (ei)->dest;
839
840 /* Check if the edge destination has been visited yet. */
841 if (!VTI (dest)->visited)
842 {
843 rtx_insn *insn;
844 HOST_WIDE_INT pre, post, offset;
845 VTI (dest)->visited = true;
846 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
847
848 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
849 for (insn = BB_HEAD (dest);
850 insn != NEXT_INSN (BB_END (dest));
851 insn = NEXT_INSN (insn))
852 if (INSN_P (insn))
853 {
854 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
855 offset += pre + post;
856 }
857
858 VTI (dest)->out.stack_adjust = offset;
859
860 if (EDGE_COUNT (dest->succs) > 0)
861 /* Since the DEST node has been visited for the first
862 time, check its successors. */
863 stack[sp++] = ei_start (dest->succs);
864 }
865 else
866 {
867 /* We can end up with different stack adjustments for the exit block
868 of a shrink-wrapped function if stack_adjust_offset_pre_post
869 doesn't understand the rtx pattern used to restore the stack
870 pointer in the epilogue. For example, on s390(x), the stack
871 pointer is often restored via a load-multiple instruction
872 and so no stack_adjust offset is recorded for it. This means
873 that the stack offset at the end of the epilogue block is the
874 the same as the offset before the epilogue, whereas other paths
875 to the exit block will have the correct stack_adjust.
876
877 It is safe to ignore these differences because (a) we never
878 use the stack_adjust for the exit block in this pass and
879 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
880 function are correct.
881
882 We must check whether the adjustments on other edges are
883 the same though. */
884 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
885 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
886 {
887 free (stack);
888 return false;
889 }
890
891 if (! ei_one_before_end_p (ei))
892 /* Go to the next edge. */
893 ei_next (&stack[sp - 1]);
894 else
895 /* Return to previous level if there are no more edges. */
896 sp--;
897 }
898 }
899
900 free (stack);
901 return true;
902 }
903
904 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
905 hard_frame_pointer_rtx is being mapped to it and offset for it. */
906 static rtx cfa_base_rtx;
907 static HOST_WIDE_INT cfa_base_offset;
908
909 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
910 or hard_frame_pointer_rtx. */
911
912 static inline rtx
913 compute_cfa_pointer (HOST_WIDE_INT adjustment)
914 {
915 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
916 }
917
918 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
919 or -1 if the replacement shouldn't be done. */
920 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
921
922 /* Data for adjust_mems callback. */
923
924 struct adjust_mem_data
925 {
926 bool store;
927 machine_mode mem_mode;
928 HOST_WIDE_INT stack_adjust;
929 rtx_expr_list *side_effects;
930 };
931
932 /* Helper for adjust_mems. Return true if X is suitable for
933 transformation of wider mode arithmetics to narrower mode. */
934
935 static bool
936 use_narrower_mode_test (rtx x, const_rtx subreg)
937 {
938 subrtx_var_iterator::array_type array;
939 FOR_EACH_SUBRTX_VAR (iter, array, x, NONCONST)
940 {
941 rtx x = *iter;
942 if (CONSTANT_P (x))
943 iter.skip_subrtxes ();
944 else
945 switch (GET_CODE (x))
946 {
947 case REG:
948 if (cselib_lookup (x, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
949 return false;
950 if (!validate_subreg (GET_MODE (subreg), GET_MODE (x), x,
951 subreg_lowpart_offset (GET_MODE (subreg),
952 GET_MODE (x))))
953 return false;
954 break;
955 case PLUS:
956 case MINUS:
957 case MULT:
958 break;
959 case ASHIFT:
960 iter.substitute (XEXP (x, 0));
961 break;
962 default:
963 return false;
964 }
965 }
966 return true;
967 }
968
969 /* Transform X into narrower mode MODE from wider mode WMODE. */
970
971 static rtx
972 use_narrower_mode (rtx x, machine_mode mode, machine_mode wmode)
973 {
974 rtx op0, op1;
975 if (CONSTANT_P (x))
976 return lowpart_subreg (mode, x, wmode);
977 switch (GET_CODE (x))
978 {
979 case REG:
980 return lowpart_subreg (mode, x, wmode);
981 case PLUS:
982 case MINUS:
983 case MULT:
984 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
985 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
986 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
987 case ASHIFT:
988 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
989 op1 = XEXP (x, 1);
990 /* Ensure shift amount is not wider than mode. */
991 if (GET_MODE (op1) == VOIDmode)
992 op1 = lowpart_subreg (mode, op1, wmode);
993 else if (GET_MODE_PRECISION (mode) < GET_MODE_PRECISION (GET_MODE (op1)))
994 op1 = lowpart_subreg (mode, op1, GET_MODE (op1));
995 return simplify_gen_binary (ASHIFT, mode, op0, op1);
996 default:
997 gcc_unreachable ();
998 }
999 }
1000
1001 /* Helper function for adjusting used MEMs. */
1002
1003 static rtx
1004 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1005 {
1006 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1007 rtx mem, addr = loc, tem;
1008 machine_mode mem_mode_save;
1009 bool store_save;
1010 switch (GET_CODE (loc))
1011 {
1012 case REG:
1013 /* Don't do any sp or fp replacements outside of MEM addresses
1014 on the LHS. */
1015 if (amd->mem_mode == VOIDmode && amd->store)
1016 return loc;
1017 if (loc == stack_pointer_rtx
1018 && !frame_pointer_needed
1019 && cfa_base_rtx)
1020 return compute_cfa_pointer (amd->stack_adjust);
1021 else if (loc == hard_frame_pointer_rtx
1022 && frame_pointer_needed
1023 && hard_frame_pointer_adjustment != -1
1024 && cfa_base_rtx)
1025 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1026 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1027 return loc;
1028 case MEM:
1029 mem = loc;
1030 if (!amd->store)
1031 {
1032 mem = targetm.delegitimize_address (mem);
1033 if (mem != loc && !MEM_P (mem))
1034 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1035 }
1036
1037 addr = XEXP (mem, 0);
1038 mem_mode_save = amd->mem_mode;
1039 amd->mem_mode = GET_MODE (mem);
1040 store_save = amd->store;
1041 amd->store = false;
1042 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1043 amd->store = store_save;
1044 amd->mem_mode = mem_mode_save;
1045 if (mem == loc)
1046 addr = targetm.delegitimize_address (addr);
1047 if (addr != XEXP (mem, 0))
1048 mem = replace_equiv_address_nv (mem, addr);
1049 if (!amd->store)
1050 mem = avoid_constant_pool_reference (mem);
1051 return mem;
1052 case PRE_INC:
1053 case PRE_DEC:
1054 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1055 gen_int_mode (GET_CODE (loc) == PRE_INC
1056 ? GET_MODE_SIZE (amd->mem_mode)
1057 : -GET_MODE_SIZE (amd->mem_mode),
1058 GET_MODE (loc)));
1059 case POST_INC:
1060 case POST_DEC:
1061 if (addr == loc)
1062 addr = XEXP (loc, 0);
1063 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1064 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1065 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1066 gen_int_mode ((GET_CODE (loc) == PRE_INC
1067 || GET_CODE (loc) == POST_INC)
1068 ? GET_MODE_SIZE (amd->mem_mode)
1069 : -GET_MODE_SIZE (amd->mem_mode),
1070 GET_MODE (loc)));
1071 store_save = amd->store;
1072 amd->store = false;
1073 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1074 amd->store = store_save;
1075 amd->side_effects = alloc_EXPR_LIST (0,
1076 gen_rtx_SET (XEXP (loc, 0), tem),
1077 amd->side_effects);
1078 return addr;
1079 case PRE_MODIFY:
1080 addr = XEXP (loc, 1);
1081 case POST_MODIFY:
1082 if (addr == loc)
1083 addr = XEXP (loc, 0);
1084 gcc_assert (amd->mem_mode != VOIDmode);
1085 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1086 store_save = amd->store;
1087 amd->store = false;
1088 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1089 adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (XEXP (loc, 0), tem),
1093 amd->side_effects);
1094 return addr;
1095 case SUBREG:
1096 /* First try without delegitimization of whole MEMs and
1097 avoid_constant_pool_reference, which is more likely to succeed. */
1098 store_save = amd->store;
1099 amd->store = true;
1100 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1101 data);
1102 amd->store = store_save;
1103 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1104 if (mem == SUBREG_REG (loc))
1105 {
1106 tem = loc;
1107 goto finish_subreg;
1108 }
1109 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1110 GET_MODE (SUBREG_REG (loc)),
1111 SUBREG_BYTE (loc));
1112 if (tem)
1113 goto finish_subreg;
1114 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1115 GET_MODE (SUBREG_REG (loc)),
1116 SUBREG_BYTE (loc));
1117 if (tem == NULL_RTX)
1118 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1119 finish_subreg:
1120 if (MAY_HAVE_DEBUG_INSNS
1121 && GET_CODE (tem) == SUBREG
1122 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1123 || GET_CODE (SUBREG_REG (tem)) == MINUS
1124 || GET_CODE (SUBREG_REG (tem)) == MULT
1125 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1126 && (GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1127 || GET_MODE_CLASS (GET_MODE (tem)) == MODE_PARTIAL_INT)
1128 && (GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1129 || GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_PARTIAL_INT)
1130 && GET_MODE_PRECISION (GET_MODE (tem))
1131 < GET_MODE_PRECISION (GET_MODE (SUBREG_REG (tem)))
1132 && subreg_lowpart_p (tem)
1133 && use_narrower_mode_test (SUBREG_REG (tem), tem))
1134 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1135 GET_MODE (SUBREG_REG (tem)));
1136 return tem;
1137 case ASM_OPERANDS:
1138 /* Don't do any replacements in second and following
1139 ASM_OPERANDS of inline-asm with multiple sets.
1140 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1141 and ASM_OPERANDS_LABEL_VEC need to be equal between
1142 all the ASM_OPERANDs in the insn and adjust_insn will
1143 fix this up. */
1144 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1145 return loc;
1146 break;
1147 default:
1148 break;
1149 }
1150 return NULL_RTX;
1151 }
1152
1153 /* Helper function for replacement of uses. */
1154
1155 static void
1156 adjust_mem_uses (rtx *x, void *data)
1157 {
1158 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1159 if (new_x != *x)
1160 validate_change (NULL_RTX, x, new_x, true);
1161 }
1162
1163 /* Helper function for replacement of stores. */
1164
1165 static void
1166 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1167 {
1168 if (MEM_P (loc))
1169 {
1170 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1171 adjust_mems, data);
1172 if (new_dest != SET_DEST (expr))
1173 {
1174 rtx xexpr = CONST_CAST_RTX (expr);
1175 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1176 }
1177 }
1178 }
1179
1180 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1181 replace them with their value in the insn and add the side-effects
1182 as other sets to the insn. */
1183
1184 static void
1185 adjust_insn (basic_block bb, rtx_insn *insn)
1186 {
1187 struct adjust_mem_data amd;
1188 rtx set;
1189
1190 #ifdef HAVE_window_save
1191 /* If the target machine has an explicit window save instruction, the
1192 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1193 if (RTX_FRAME_RELATED_P (insn)
1194 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1195 {
1196 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1197 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1198 parm_reg *p;
1199
1200 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1201 {
1202 XVECEXP (rtl, 0, i * 2)
1203 = gen_rtx_SET (p->incoming, p->outgoing);
1204 /* Do not clobber the attached DECL, but only the REG. */
1205 XVECEXP (rtl, 0, i * 2 + 1)
1206 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1207 gen_raw_REG (GET_MODE (p->outgoing),
1208 REGNO (p->outgoing)));
1209 }
1210
1211 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1212 return;
1213 }
1214 #endif
1215
1216 amd.mem_mode = VOIDmode;
1217 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1218 amd.side_effects = NULL;
1219
1220 amd.store = true;
1221 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1222
1223 amd.store = false;
1224 if (GET_CODE (PATTERN (insn)) == PARALLEL
1225 && asm_noperands (PATTERN (insn)) > 0
1226 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1227 {
1228 rtx body, set0;
1229 int i;
1230
1231 /* inline-asm with multiple sets is tiny bit more complicated,
1232 because the 3 vectors in ASM_OPERANDS need to be shared between
1233 all ASM_OPERANDS in the instruction. adjust_mems will
1234 not touch ASM_OPERANDS other than the first one, asm_noperands
1235 test above needs to be called before that (otherwise it would fail)
1236 and afterwards this code fixes it up. */
1237 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1238 body = PATTERN (insn);
1239 set0 = XVECEXP (body, 0, 0);
1240 gcc_checking_assert (GET_CODE (set0) == SET
1241 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1243 for (i = 1; i < XVECLEN (body, 0); i++)
1244 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1245 break;
1246 else
1247 {
1248 set = XVECEXP (body, 0, i);
1249 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1250 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1251 == i);
1252 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1253 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1254 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1255 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1256 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1257 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1258 {
1259 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1260 ASM_OPERANDS_INPUT_VEC (newsrc)
1261 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1262 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1263 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1264 ASM_OPERANDS_LABEL_VEC (newsrc)
1265 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1266 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1267 }
1268 }
1269 }
1270 else
1271 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1272
1273 /* For read-only MEMs containing some constant, prefer those
1274 constants. */
1275 set = single_set (insn);
1276 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1277 {
1278 rtx note = find_reg_equal_equiv_note (insn);
1279
1280 if (note && CONSTANT_P (XEXP (note, 0)))
1281 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1282 }
1283
1284 if (amd.side_effects)
1285 {
1286 rtx *pat, new_pat, s;
1287 int i, oldn, newn;
1288
1289 pat = &PATTERN (insn);
1290 if (GET_CODE (*pat) == COND_EXEC)
1291 pat = &COND_EXEC_CODE (*pat);
1292 if (GET_CODE (*pat) == PARALLEL)
1293 oldn = XVECLEN (*pat, 0);
1294 else
1295 oldn = 1;
1296 for (s = amd.side_effects, newn = 0; s; newn++)
1297 s = XEXP (s, 1);
1298 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1299 if (GET_CODE (*pat) == PARALLEL)
1300 for (i = 0; i < oldn; i++)
1301 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1302 else
1303 XVECEXP (new_pat, 0, 0) = *pat;
1304 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1305 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1306 free_EXPR_LIST_list (&amd.side_effects);
1307 validate_change (NULL_RTX, pat, new_pat, true);
1308 }
1309 }
1310
1311 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1312 static inline rtx
1313 dv_as_rtx (decl_or_value dv)
1314 {
1315 tree decl;
1316
1317 if (dv_is_value_p (dv))
1318 return dv_as_value (dv);
1319
1320 decl = dv_as_decl (dv);
1321
1322 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1323 return DECL_RTL_KNOWN_SET (decl);
1324 }
1325
1326 /* Return nonzero if a decl_or_value must not have more than one
1327 variable part. The returned value discriminates among various
1328 kinds of one-part DVs ccording to enum onepart_enum. */
1329 static inline onepart_enum
1330 dv_onepart_p (decl_or_value dv)
1331 {
1332 tree decl;
1333
1334 if (!MAY_HAVE_DEBUG_INSNS)
1335 return NOT_ONEPART;
1336
1337 if (dv_is_value_p (dv))
1338 return ONEPART_VALUE;
1339
1340 decl = dv_as_decl (dv);
1341
1342 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1343 return ONEPART_DEXPR;
1344
1345 if (target_for_debug_bind (decl) != NULL_TREE)
1346 return ONEPART_VDECL;
1347
1348 return NOT_ONEPART;
1349 }
1350
1351 /* Return the variable pool to be used for a dv of type ONEPART. */
1352 static inline pool_allocator &
1353 onepart_pool (onepart_enum onepart)
1354 {
1355 return onepart ? valvar_pool : var_pool;
1356 }
1357
1358 /* Allocate a variable_def from the corresponding variable pool. */
1359 static inline variable *
1360 onepart_pool_allocate (onepart_enum onepart)
1361 {
1362 return (variable*) onepart_pool (onepart).allocate ();
1363 }
1364
1365 /* Build a decl_or_value out of a decl. */
1366 static inline decl_or_value
1367 dv_from_decl (tree decl)
1368 {
1369 decl_or_value dv;
1370 dv = decl;
1371 gcc_checking_assert (dv_is_decl_p (dv));
1372 return dv;
1373 }
1374
1375 /* Build a decl_or_value out of a value. */
1376 static inline decl_or_value
1377 dv_from_value (rtx value)
1378 {
1379 decl_or_value dv;
1380 dv = value;
1381 gcc_checking_assert (dv_is_value_p (dv));
1382 return dv;
1383 }
1384
1385 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1386 static inline decl_or_value
1387 dv_from_rtx (rtx x)
1388 {
1389 decl_or_value dv;
1390
1391 switch (GET_CODE (x))
1392 {
1393 case DEBUG_EXPR:
1394 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1395 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1396 break;
1397
1398 case VALUE:
1399 dv = dv_from_value (x);
1400 break;
1401
1402 default:
1403 gcc_unreachable ();
1404 }
1405
1406 return dv;
1407 }
1408
1409 extern void debug_dv (decl_or_value dv);
1410
1411 DEBUG_FUNCTION void
1412 debug_dv (decl_or_value dv)
1413 {
1414 if (dv_is_value_p (dv))
1415 debug_rtx (dv_as_value (dv));
1416 else
1417 debug_generic_stmt (dv_as_decl (dv));
1418 }
1419
1420 static void loc_exp_dep_clear (variable *var);
1421
1422 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1423
1424 static void
1425 variable_htab_free (void *elem)
1426 {
1427 int i;
1428 variable *var = (variable *) elem;
1429 location_chain *node, *next;
1430
1431 gcc_checking_assert (var->refcount > 0);
1432
1433 var->refcount--;
1434 if (var->refcount > 0)
1435 return;
1436
1437 for (i = 0; i < var->n_var_parts; i++)
1438 {
1439 for (node = var->var_part[i].loc_chain; node; node = next)
1440 {
1441 next = node->next;
1442 delete node;
1443 }
1444 var->var_part[i].loc_chain = NULL;
1445 }
1446 if (var->onepart && VAR_LOC_1PAUX (var))
1447 {
1448 loc_exp_dep_clear (var);
1449 if (VAR_LOC_DEP_LST (var))
1450 VAR_LOC_DEP_LST (var)->pprev = NULL;
1451 XDELETE (VAR_LOC_1PAUX (var));
1452 /* These may be reused across functions, so reset
1453 e.g. NO_LOC_P. */
1454 if (var->onepart == ONEPART_DEXPR)
1455 set_dv_changed (var->dv, true);
1456 }
1457 onepart_pool (var->onepart).remove (var);
1458 }
1459
1460 /* Initialize the set (array) SET of attrs to empty lists. */
1461
1462 static void
1463 init_attrs_list_set (attrs **set)
1464 {
1465 int i;
1466
1467 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1468 set[i] = NULL;
1469 }
1470
1471 /* Make the list *LISTP empty. */
1472
1473 static void
1474 attrs_list_clear (attrs **listp)
1475 {
1476 attrs *list, *next;
1477
1478 for (list = *listp; list; list = next)
1479 {
1480 next = list->next;
1481 delete list;
1482 }
1483 *listp = NULL;
1484 }
1485
1486 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1487
1488 static attrs *
1489 attrs_list_member (attrs *list, decl_or_value dv, HOST_WIDE_INT offset)
1490 {
1491 for (; list; list = list->next)
1492 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1493 return list;
1494 return NULL;
1495 }
1496
1497 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1498
1499 static void
1500 attrs_list_insert (attrs **listp, decl_or_value dv,
1501 HOST_WIDE_INT offset, rtx loc)
1502 {
1503 attrs *list = new attrs;
1504 list->loc = loc;
1505 list->dv = dv;
1506 list->offset = offset;
1507 list->next = *listp;
1508 *listp = list;
1509 }
1510
1511 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1512
1513 static void
1514 attrs_list_copy (attrs **dstp, attrs *src)
1515 {
1516 attrs_list_clear (dstp);
1517 for (; src; src = src->next)
1518 {
1519 attrs *n = new attrs;
1520 n->loc = src->loc;
1521 n->dv = src->dv;
1522 n->offset = src->offset;
1523 n->next = *dstp;
1524 *dstp = n;
1525 }
1526 }
1527
1528 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1529
1530 static void
1531 attrs_list_union (attrs **dstp, attrs *src)
1532 {
1533 for (; src; src = src->next)
1534 {
1535 if (!attrs_list_member (*dstp, src->dv, src->offset))
1536 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1537 }
1538 }
1539
1540 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1541 *DSTP. */
1542
1543 static void
1544 attrs_list_mpdv_union (attrs **dstp, attrs *src, attrs *src2)
1545 {
1546 gcc_assert (!*dstp);
1547 for (; src; src = src->next)
1548 {
1549 if (!dv_onepart_p (src->dv))
1550 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1551 }
1552 for (src = src2; src; src = src->next)
1553 {
1554 if (!dv_onepart_p (src->dv)
1555 && !attrs_list_member (*dstp, src->dv, src->offset))
1556 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1557 }
1558 }
1559
1560 /* Shared hashtable support. */
1561
1562 /* Return true if VARS is shared. */
1563
1564 static inline bool
1565 shared_hash_shared (shared_hash *vars)
1566 {
1567 return vars->refcount > 1;
1568 }
1569
1570 /* Return the hash table for VARS. */
1571
1572 static inline variable_table_type *
1573 shared_hash_htab (shared_hash *vars)
1574 {
1575 return vars->htab;
1576 }
1577
1578 /* Return true if VAR is shared, or maybe because VARS is shared. */
1579
1580 static inline bool
1581 shared_var_p (variable *var, shared_hash *vars)
1582 {
1583 /* Don't count an entry in the changed_variables table as a duplicate. */
1584 return ((var->refcount > 1 + (int) var->in_changed_variables)
1585 || shared_hash_shared (vars));
1586 }
1587
1588 /* Copy variables into a new hash table. */
1589
1590 static shared_hash *
1591 shared_hash_unshare (shared_hash *vars)
1592 {
1593 shared_hash *new_vars = new shared_hash;
1594 gcc_assert (vars->refcount > 1);
1595 new_vars->refcount = 1;
1596 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1597 vars_copy (new_vars->htab, vars->htab);
1598 vars->refcount--;
1599 return new_vars;
1600 }
1601
1602 /* Increment reference counter on VARS and return it. */
1603
1604 static inline shared_hash *
1605 shared_hash_copy (shared_hash *vars)
1606 {
1607 vars->refcount++;
1608 return vars;
1609 }
1610
1611 /* Decrement reference counter and destroy hash table if not shared
1612 anymore. */
1613
1614 static void
1615 shared_hash_destroy (shared_hash *vars)
1616 {
1617 gcc_checking_assert (vars->refcount > 0);
1618 if (--vars->refcount == 0)
1619 {
1620 delete vars->htab;
1621 delete vars;
1622 }
1623 }
1624
1625 /* Unshare *PVARS if shared and return slot for DV. If INS is
1626 INSERT, insert it if not already present. */
1627
1628 static inline variable **
1629 shared_hash_find_slot_unshare_1 (shared_hash **pvars, decl_or_value dv,
1630 hashval_t dvhash, enum insert_option ins)
1631 {
1632 if (shared_hash_shared (*pvars))
1633 *pvars = shared_hash_unshare (*pvars);
1634 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1635 }
1636
1637 static inline variable **
1638 shared_hash_find_slot_unshare (shared_hash **pvars, decl_or_value dv,
1639 enum insert_option ins)
1640 {
1641 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1642 }
1643
1644 /* Return slot for DV, if it is already present in the hash table.
1645 If it is not present, insert it only VARS is not shared, otherwise
1646 return NULL. */
1647
1648 static inline variable **
1649 shared_hash_find_slot_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1650 {
1651 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1652 shared_hash_shared (vars)
1653 ? NO_INSERT : INSERT);
1654 }
1655
1656 static inline variable **
1657 shared_hash_find_slot (shared_hash *vars, decl_or_value dv)
1658 {
1659 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1660 }
1661
1662 /* Return slot for DV only if it is already present in the hash table. */
1663
1664 static inline variable **
1665 shared_hash_find_slot_noinsert_1 (shared_hash *vars, decl_or_value dv,
1666 hashval_t dvhash)
1667 {
1668 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1669 }
1670
1671 static inline variable **
1672 shared_hash_find_slot_noinsert (shared_hash *vars, decl_or_value dv)
1673 {
1674 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1675 }
1676
1677 /* Return variable for DV or NULL if not already present in the hash
1678 table. */
1679
1680 static inline variable *
1681 shared_hash_find_1 (shared_hash *vars, decl_or_value dv, hashval_t dvhash)
1682 {
1683 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1684 }
1685
1686 static inline variable *
1687 shared_hash_find (shared_hash *vars, decl_or_value dv)
1688 {
1689 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1690 }
1691
1692 /* Return true if TVAL is better than CVAL as a canonival value. We
1693 choose lowest-numbered VALUEs, using the RTX address as a
1694 tie-breaker. The idea is to arrange them into a star topology,
1695 such that all of them are at most one step away from the canonical
1696 value, and the canonical value has backlinks to all of them, in
1697 addition to all the actual locations. We don't enforce this
1698 topology throughout the entire dataflow analysis, though.
1699 */
1700
1701 static inline bool
1702 canon_value_cmp (rtx tval, rtx cval)
1703 {
1704 return !cval
1705 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1706 }
1707
1708 static bool dst_can_be_shared;
1709
1710 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1711
1712 static variable **
1713 unshare_variable (dataflow_set *set, variable **slot, variable *var,
1714 enum var_init_status initialized)
1715 {
1716 variable *new_var;
1717 int i;
1718
1719 new_var = onepart_pool_allocate (var->onepart);
1720 new_var->dv = var->dv;
1721 new_var->refcount = 1;
1722 var->refcount--;
1723 new_var->n_var_parts = var->n_var_parts;
1724 new_var->onepart = var->onepart;
1725 new_var->in_changed_variables = false;
1726
1727 if (! flag_var_tracking_uninit)
1728 initialized = VAR_INIT_STATUS_INITIALIZED;
1729
1730 for (i = 0; i < var->n_var_parts; i++)
1731 {
1732 location_chain *node;
1733 location_chain **nextp;
1734
1735 if (i == 0 && var->onepart)
1736 {
1737 /* One-part auxiliary data is only used while emitting
1738 notes, so propagate it to the new variable in the active
1739 dataflow set. If we're not emitting notes, this will be
1740 a no-op. */
1741 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1742 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1743 VAR_LOC_1PAUX (var) = NULL;
1744 }
1745 else
1746 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1747 nextp = &new_var->var_part[i].loc_chain;
1748 for (node = var->var_part[i].loc_chain; node; node = node->next)
1749 {
1750 location_chain *new_lc;
1751
1752 new_lc = new location_chain;
1753 new_lc->next = NULL;
1754 if (node->init > initialized)
1755 new_lc->init = node->init;
1756 else
1757 new_lc->init = initialized;
1758 if (node->set_src && !(MEM_P (node->set_src)))
1759 new_lc->set_src = node->set_src;
1760 else
1761 new_lc->set_src = NULL;
1762 new_lc->loc = node->loc;
1763
1764 *nextp = new_lc;
1765 nextp = &new_lc->next;
1766 }
1767
1768 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1769 }
1770
1771 dst_can_be_shared = false;
1772 if (shared_hash_shared (set->vars))
1773 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1774 else if (set->traversed_vars && set->vars != set->traversed_vars)
1775 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1776 *slot = new_var;
1777 if (var->in_changed_variables)
1778 {
1779 variable **cslot
1780 = changed_variables->find_slot_with_hash (var->dv,
1781 dv_htab_hash (var->dv),
1782 NO_INSERT);
1783 gcc_assert (*cslot == (void *) var);
1784 var->in_changed_variables = false;
1785 variable_htab_free (var);
1786 *cslot = new_var;
1787 new_var->in_changed_variables = true;
1788 }
1789 return slot;
1790 }
1791
1792 /* Copy all variables from hash table SRC to hash table DST. */
1793
1794 static void
1795 vars_copy (variable_table_type *dst, variable_table_type *src)
1796 {
1797 variable_iterator_type hi;
1798 variable *var;
1799
1800 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1801 {
1802 variable **dstp;
1803 var->refcount++;
1804 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1805 INSERT);
1806 *dstp = var;
1807 }
1808 }
1809
1810 /* Map a decl to its main debug decl. */
1811
1812 static inline tree
1813 var_debug_decl (tree decl)
1814 {
1815 if (decl && TREE_CODE (decl) == VAR_DECL
1816 && DECL_HAS_DEBUG_EXPR_P (decl))
1817 {
1818 tree debugdecl = DECL_DEBUG_EXPR (decl);
1819 if (DECL_P (debugdecl))
1820 decl = debugdecl;
1821 }
1822
1823 return decl;
1824 }
1825
1826 /* Set the register LOC to contain DV, OFFSET. */
1827
1828 static void
1829 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1830 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1831 enum insert_option iopt)
1832 {
1833 attrs *node;
1834 bool decl_p = dv_is_decl_p (dv);
1835
1836 if (decl_p)
1837 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1838
1839 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1840 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1841 && node->offset == offset)
1842 break;
1843 if (!node)
1844 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1845 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1846 }
1847
1848 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1849
1850 static void
1851 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1852 rtx set_src)
1853 {
1854 tree decl = REG_EXPR (loc);
1855 HOST_WIDE_INT offset = REG_OFFSET (loc);
1856
1857 var_reg_decl_set (set, loc, initialized,
1858 dv_from_decl (decl), offset, set_src, INSERT);
1859 }
1860
1861 static enum var_init_status
1862 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1863 {
1864 variable *var;
1865 int i;
1866 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1867
1868 if (! flag_var_tracking_uninit)
1869 return VAR_INIT_STATUS_INITIALIZED;
1870
1871 var = shared_hash_find (set->vars, dv);
1872 if (var)
1873 {
1874 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1875 {
1876 location_chain *nextp;
1877 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1878 if (rtx_equal_p (nextp->loc, loc))
1879 {
1880 ret_val = nextp->init;
1881 break;
1882 }
1883 }
1884 }
1885
1886 return ret_val;
1887 }
1888
1889 /* Delete current content of register LOC in dataflow set SET and set
1890 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1891 MODIFY is true, any other live copies of the same variable part are
1892 also deleted from the dataflow set, otherwise the variable part is
1893 assumed to be copied from another location holding the same
1894 part. */
1895
1896 static void
1897 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1898 enum var_init_status initialized, rtx set_src)
1899 {
1900 tree decl = REG_EXPR (loc);
1901 HOST_WIDE_INT offset = REG_OFFSET (loc);
1902 attrs *node, *next;
1903 attrs **nextp;
1904
1905 decl = var_debug_decl (decl);
1906
1907 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1908 initialized = get_init_value (set, loc, dv_from_decl (decl));
1909
1910 nextp = &set->regs[REGNO (loc)];
1911 for (node = *nextp; node; node = next)
1912 {
1913 next = node->next;
1914 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1915 {
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 delete node;
1918 *nextp = next;
1919 }
1920 else
1921 {
1922 node->loc = loc;
1923 nextp = &node->next;
1924 }
1925 }
1926 if (modify)
1927 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1928 var_reg_set (set, loc, initialized, set_src);
1929 }
1930
1931 /* Delete the association of register LOC in dataflow set SET with any
1932 variables that aren't onepart. If CLOBBER is true, also delete any
1933 other live copies of the same variable part, and delete the
1934 association with onepart dvs too. */
1935
1936 static void
1937 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1938 {
1939 attrs **nextp = &set->regs[REGNO (loc)];
1940 attrs *node, *next;
1941
1942 if (clobber)
1943 {
1944 tree decl = REG_EXPR (loc);
1945 HOST_WIDE_INT offset = REG_OFFSET (loc);
1946
1947 decl = var_debug_decl (decl);
1948
1949 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1950 }
1951
1952 for (node = *nextp; node; node = next)
1953 {
1954 next = node->next;
1955 if (clobber || !dv_onepart_p (node->dv))
1956 {
1957 delete_variable_part (set, node->loc, node->dv, node->offset);
1958 delete node;
1959 *nextp = next;
1960 }
1961 else
1962 nextp = &node->next;
1963 }
1964 }
1965
1966 /* Delete content of register with number REGNO in dataflow set SET. */
1967
1968 static void
1969 var_regno_delete (dataflow_set *set, int regno)
1970 {
1971 attrs **reg = &set->regs[regno];
1972 attrs *node, *next;
1973
1974 for (node = *reg; node; node = next)
1975 {
1976 next = node->next;
1977 delete_variable_part (set, node->loc, node->dv, node->offset);
1978 delete node;
1979 }
1980 *reg = NULL;
1981 }
1982
1983 /* Return true if I is the negated value of a power of two. */
1984 static bool
1985 negative_power_of_two_p (HOST_WIDE_INT i)
1986 {
1987 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1988 return x == (x & -x);
1989 }
1990
1991 /* Strip constant offsets and alignments off of LOC. Return the base
1992 expression. */
1993
1994 static rtx
1995 vt_get_canonicalize_base (rtx loc)
1996 {
1997 while ((GET_CODE (loc) == PLUS
1998 || GET_CODE (loc) == AND)
1999 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2000 && (GET_CODE (loc) != AND
2001 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2002 loc = XEXP (loc, 0);
2003
2004 return loc;
2005 }
2006
2007 /* This caches canonicalized addresses for VALUEs, computed using
2008 information in the global cselib table. */
2009 static hash_map<rtx, rtx> *global_get_addr_cache;
2010
2011 /* This caches canonicalized addresses for VALUEs, computed using
2012 information from the global cache and information pertaining to a
2013 basic block being analyzed. */
2014 static hash_map<rtx, rtx> *local_get_addr_cache;
2015
2016 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2017
2018 /* Return the canonical address for LOC, that must be a VALUE, using a
2019 cached global equivalence or computing it and storing it in the
2020 global cache. */
2021
2022 static rtx
2023 get_addr_from_global_cache (rtx const loc)
2024 {
2025 rtx x;
2026
2027 gcc_checking_assert (GET_CODE (loc) == VALUE);
2028
2029 bool existed;
2030 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2031 if (existed)
2032 return *slot;
2033
2034 x = canon_rtx (get_addr (loc));
2035
2036 /* Tentative, avoiding infinite recursion. */
2037 *slot = x;
2038
2039 if (x != loc)
2040 {
2041 rtx nx = vt_canonicalize_addr (NULL, x);
2042 if (nx != x)
2043 {
2044 /* The table may have moved during recursion, recompute
2045 SLOT. */
2046 *global_get_addr_cache->get (loc) = x = nx;
2047 }
2048 }
2049
2050 return x;
2051 }
2052
2053 /* Return the canonical address for LOC, that must be a VALUE, using a
2054 cached local equivalence or computing it and storing it in the
2055 local cache. */
2056
2057 static rtx
2058 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2059 {
2060 rtx x;
2061 decl_or_value dv;
2062 variable *var;
2063 location_chain *l;
2064
2065 gcc_checking_assert (GET_CODE (loc) == VALUE);
2066
2067 bool existed;
2068 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2069 if (existed)
2070 return *slot;
2071
2072 x = get_addr_from_global_cache (loc);
2073
2074 /* Tentative, avoiding infinite recursion. */
2075 *slot = x;
2076
2077 /* Recurse to cache local expansion of X, or if we need to search
2078 for a VALUE in the expansion. */
2079 if (x != loc)
2080 {
2081 rtx nx = vt_canonicalize_addr (set, x);
2082 if (nx != x)
2083 {
2084 slot = local_get_addr_cache->get (loc);
2085 *slot = x = nx;
2086 }
2087 return x;
2088 }
2089
2090 dv = dv_from_rtx (x);
2091 var = shared_hash_find (set->vars, dv);
2092 if (!var)
2093 return x;
2094
2095 /* Look for an improved equivalent expression. */
2096 for (l = var->var_part[0].loc_chain; l; l = l->next)
2097 {
2098 rtx base = vt_get_canonicalize_base (l->loc);
2099 if (GET_CODE (base) == VALUE
2100 && canon_value_cmp (base, loc))
2101 {
2102 rtx nx = vt_canonicalize_addr (set, l->loc);
2103 if (x != nx)
2104 {
2105 slot = local_get_addr_cache->get (loc);
2106 *slot = x = nx;
2107 }
2108 break;
2109 }
2110 }
2111
2112 return x;
2113 }
2114
2115 /* Canonicalize LOC using equivalences from SET in addition to those
2116 in the cselib static table. It expects a VALUE-based expression,
2117 and it will only substitute VALUEs with other VALUEs or
2118 function-global equivalences, so that, if two addresses have base
2119 VALUEs that are locally or globally related in ways that
2120 memrefs_conflict_p cares about, they will both canonicalize to
2121 expressions that have the same base VALUE.
2122
2123 The use of VALUEs as canonical base addresses enables the canonical
2124 RTXs to remain unchanged globally, if they resolve to a constant,
2125 or throughout a basic block otherwise, so that they can be cached
2126 and the cache needs not be invalidated when REGs, MEMs or such
2127 change. */
2128
2129 static rtx
2130 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2131 {
2132 HOST_WIDE_INT ofst = 0;
2133 machine_mode mode = GET_MODE (oloc);
2134 rtx loc = oloc;
2135 rtx x;
2136 bool retry = true;
2137
2138 while (retry)
2139 {
2140 while (GET_CODE (loc) == PLUS
2141 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2142 {
2143 ofst += INTVAL (XEXP (loc, 1));
2144 loc = XEXP (loc, 0);
2145 }
2146
2147 /* Alignment operations can't normally be combined, so just
2148 canonicalize the base and we're done. We'll normally have
2149 only one stack alignment anyway. */
2150 if (GET_CODE (loc) == AND
2151 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2152 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2153 {
2154 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2155 if (x != XEXP (loc, 0))
2156 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2157 retry = false;
2158 }
2159
2160 if (GET_CODE (loc) == VALUE)
2161 {
2162 if (set)
2163 loc = get_addr_from_local_cache (set, loc);
2164 else
2165 loc = get_addr_from_global_cache (loc);
2166
2167 /* Consolidate plus_constants. */
2168 while (ofst && GET_CODE (loc) == PLUS
2169 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2170 {
2171 ofst += INTVAL (XEXP (loc, 1));
2172 loc = XEXP (loc, 0);
2173 }
2174
2175 retry = false;
2176 }
2177 else
2178 {
2179 x = canon_rtx (loc);
2180 if (retry)
2181 retry = (x != loc);
2182 loc = x;
2183 }
2184 }
2185
2186 /* Add OFST back in. */
2187 if (ofst)
2188 {
2189 /* Don't build new RTL if we can help it. */
2190 if (GET_CODE (oloc) == PLUS
2191 && XEXP (oloc, 0) == loc
2192 && INTVAL (XEXP (oloc, 1)) == ofst)
2193 return oloc;
2194
2195 loc = plus_constant (mode, loc, ofst);
2196 }
2197
2198 return loc;
2199 }
2200
2201 /* Return true iff there's a true dependence between MLOC and LOC.
2202 MADDR must be a canonicalized version of MLOC's address. */
2203
2204 static inline bool
2205 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2206 {
2207 if (GET_CODE (loc) != MEM)
2208 return false;
2209
2210 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2211 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2212 return false;
2213
2214 return true;
2215 }
2216
2217 /* Hold parameters for the hashtab traversal function
2218 drop_overlapping_mem_locs, see below. */
2219
2220 struct overlapping_mems
2221 {
2222 dataflow_set *set;
2223 rtx loc, addr;
2224 };
2225
2226 /* Remove all MEMs that overlap with COMS->LOC from the location list
2227 of a hash table entry for a onepart variable. COMS->ADDR must be a
2228 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2229 canonicalized itself. */
2230
2231 int
2232 drop_overlapping_mem_locs (variable **slot, overlapping_mems *coms)
2233 {
2234 dataflow_set *set = coms->set;
2235 rtx mloc = coms->loc, addr = coms->addr;
2236 variable *var = *slot;
2237
2238 if (var->onepart != NOT_ONEPART)
2239 {
2240 location_chain *loc, **locp;
2241 bool changed = false;
2242 rtx cur_loc;
2243
2244 gcc_assert (var->n_var_parts == 1);
2245
2246 if (shared_var_p (var, set->vars))
2247 {
2248 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2249 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2250 break;
2251
2252 if (!loc)
2253 return 1;
2254
2255 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2256 var = *slot;
2257 gcc_assert (var->n_var_parts == 1);
2258 }
2259
2260 if (VAR_LOC_1PAUX (var))
2261 cur_loc = VAR_LOC_FROM (var);
2262 else
2263 cur_loc = var->var_part[0].cur_loc;
2264
2265 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2266 loc; loc = *locp)
2267 {
2268 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2269 {
2270 locp = &loc->next;
2271 continue;
2272 }
2273
2274 *locp = loc->next;
2275 /* If we have deleted the location which was last emitted
2276 we have to emit new location so add the variable to set
2277 of changed variables. */
2278 if (cur_loc == loc->loc)
2279 {
2280 changed = true;
2281 var->var_part[0].cur_loc = NULL;
2282 if (VAR_LOC_1PAUX (var))
2283 VAR_LOC_FROM (var) = NULL;
2284 }
2285 delete loc;
2286 }
2287
2288 if (!var->var_part[0].loc_chain)
2289 {
2290 var->n_var_parts--;
2291 changed = true;
2292 }
2293 if (changed)
2294 variable_was_changed (var, set);
2295 }
2296
2297 return 1;
2298 }
2299
2300 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2301
2302 static void
2303 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2304 {
2305 struct overlapping_mems coms;
2306
2307 gcc_checking_assert (GET_CODE (loc) == MEM);
2308
2309 coms.set = set;
2310 coms.loc = canon_rtx (loc);
2311 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2312
2313 set->traversed_vars = set->vars;
2314 shared_hash_htab (set->vars)
2315 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2316 set->traversed_vars = NULL;
2317 }
2318
2319 /* Set the location of DV, OFFSET as the MEM LOC. */
2320
2321 static void
2322 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2323 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2324 enum insert_option iopt)
2325 {
2326 if (dv_is_decl_p (dv))
2327 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2328
2329 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2330 }
2331
2332 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2333 SET to LOC.
2334 Adjust the address first if it is stack pointer based. */
2335
2336 static void
2337 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2338 rtx set_src)
2339 {
2340 tree decl = MEM_EXPR (loc);
2341 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2342
2343 var_mem_decl_set (set, loc, initialized,
2344 dv_from_decl (decl), offset, set_src, INSERT);
2345 }
2346
2347 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2348 dataflow set SET to LOC. If MODIFY is true, any other live copies
2349 of the same variable part are also deleted from the dataflow set,
2350 otherwise the variable part is assumed to be copied from another
2351 location holding the same part.
2352 Adjust the address first if it is stack pointer based. */
2353
2354 static void
2355 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2356 enum var_init_status initialized, rtx set_src)
2357 {
2358 tree decl = MEM_EXPR (loc);
2359 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2360
2361 clobber_overlapping_mems (set, loc);
2362 decl = var_debug_decl (decl);
2363
2364 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2365 initialized = get_init_value (set, loc, dv_from_decl (decl));
2366
2367 if (modify)
2368 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2369 var_mem_set (set, loc, initialized, set_src);
2370 }
2371
2372 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2373 true, also delete any other live copies of the same variable part.
2374 Adjust the address first if it is stack pointer based. */
2375
2376 static void
2377 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2378 {
2379 tree decl = MEM_EXPR (loc);
2380 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2381
2382 clobber_overlapping_mems (set, loc);
2383 decl = var_debug_decl (decl);
2384 if (clobber)
2385 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2386 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2387 }
2388
2389 /* Return true if LOC should not be expanded for location expressions,
2390 or used in them. */
2391
2392 static inline bool
2393 unsuitable_loc (rtx loc)
2394 {
2395 switch (GET_CODE (loc))
2396 {
2397 case PC:
2398 case SCRATCH:
2399 case CC0:
2400 case ASM_INPUT:
2401 case ASM_OPERANDS:
2402 return true;
2403
2404 default:
2405 return false;
2406 }
2407 }
2408
2409 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2410 bound to it. */
2411
2412 static inline void
2413 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2414 {
2415 if (REG_P (loc))
2416 {
2417 if (modified)
2418 var_regno_delete (set, REGNO (loc));
2419 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2420 dv_from_value (val), 0, NULL_RTX, INSERT);
2421 }
2422 else if (MEM_P (loc))
2423 {
2424 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2425
2426 if (modified)
2427 clobber_overlapping_mems (set, loc);
2428
2429 if (l && GET_CODE (l->loc) == VALUE)
2430 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2431
2432 /* If this MEM is a global constant, we don't need it in the
2433 dynamic tables. ??? We should test this before emitting the
2434 micro-op in the first place. */
2435 while (l)
2436 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2437 break;
2438 else
2439 l = l->next;
2440
2441 if (!l)
2442 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2443 dv_from_value (val), 0, NULL_RTX, INSERT);
2444 }
2445 else
2446 {
2447 /* Other kinds of equivalences are necessarily static, at least
2448 so long as we do not perform substitutions while merging
2449 expressions. */
2450 gcc_unreachable ();
2451 set_variable_part (set, loc, dv_from_value (val), 0,
2452 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2453 }
2454 }
2455
2456 /* Bind a value to a location it was just stored in. If MODIFIED
2457 holds, assume the location was modified, detaching it from any
2458 values bound to it. */
2459
2460 static void
2461 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2462 bool modified)
2463 {
2464 cselib_val *v = CSELIB_VAL_PTR (val);
2465
2466 gcc_assert (cselib_preserved_value_p (v));
2467
2468 if (dump_file)
2469 {
2470 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2471 print_inline_rtx (dump_file, loc, 0);
2472 fprintf (dump_file, " evaluates to ");
2473 print_inline_rtx (dump_file, val, 0);
2474 if (v->locs)
2475 {
2476 struct elt_loc_list *l;
2477 for (l = v->locs; l; l = l->next)
2478 {
2479 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2480 print_inline_rtx (dump_file, l->loc, 0);
2481 }
2482 }
2483 fprintf (dump_file, "\n");
2484 }
2485
2486 gcc_checking_assert (!unsuitable_loc (loc));
2487
2488 val_bind (set, val, loc, modified);
2489 }
2490
2491 /* Clear (canonical address) slots that reference X. */
2492
2493 bool
2494 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2495 {
2496 if (vt_get_canonicalize_base (*slot) == x)
2497 *slot = NULL;
2498 return true;
2499 }
2500
2501 /* Reset this node, detaching all its equivalences. Return the slot
2502 in the variable hash table that holds dv, if there is one. */
2503
2504 static void
2505 val_reset (dataflow_set *set, decl_or_value dv)
2506 {
2507 variable *var = shared_hash_find (set->vars, dv) ;
2508 location_chain *node;
2509 rtx cval;
2510
2511 if (!var || !var->n_var_parts)
2512 return;
2513
2514 gcc_assert (var->n_var_parts == 1);
2515
2516 if (var->onepart == ONEPART_VALUE)
2517 {
2518 rtx x = dv_as_value (dv);
2519
2520 /* Relationships in the global cache don't change, so reset the
2521 local cache entry only. */
2522 rtx *slot = local_get_addr_cache->get (x);
2523 if (slot)
2524 {
2525 /* If the value resolved back to itself, odds are that other
2526 values may have cached it too. These entries now refer
2527 to the old X, so detach them too. Entries that used the
2528 old X but resolved to something else remain ok as long as
2529 that something else isn't also reset. */
2530 if (*slot == x)
2531 local_get_addr_cache
2532 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2533 *slot = NULL;
2534 }
2535 }
2536
2537 cval = NULL;
2538 for (node = var->var_part[0].loc_chain; node; node = node->next)
2539 if (GET_CODE (node->loc) == VALUE
2540 && canon_value_cmp (node->loc, cval))
2541 cval = node->loc;
2542
2543 for (node = var->var_part[0].loc_chain; node; node = node->next)
2544 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2545 {
2546 /* Redirect the equivalence link to the new canonical
2547 value, or simply remove it if it would point at
2548 itself. */
2549 if (cval)
2550 set_variable_part (set, cval, dv_from_value (node->loc),
2551 0, node->init, node->set_src, NO_INSERT);
2552 delete_variable_part (set, dv_as_value (dv),
2553 dv_from_value (node->loc), 0);
2554 }
2555
2556 if (cval)
2557 {
2558 decl_or_value cdv = dv_from_value (cval);
2559
2560 /* Keep the remaining values connected, accummulating links
2561 in the canonical value. */
2562 for (node = var->var_part[0].loc_chain; node; node = node->next)
2563 {
2564 if (node->loc == cval)
2565 continue;
2566 else if (GET_CODE (node->loc) == REG)
2567 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2568 node->set_src, NO_INSERT);
2569 else if (GET_CODE (node->loc) == MEM)
2570 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2571 node->set_src, NO_INSERT);
2572 else
2573 set_variable_part (set, node->loc, cdv, 0,
2574 node->init, node->set_src, NO_INSERT);
2575 }
2576 }
2577
2578 /* We remove this last, to make sure that the canonical value is not
2579 removed to the point of requiring reinsertion. */
2580 if (cval)
2581 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2582
2583 clobber_variable_part (set, NULL, dv, 0, NULL);
2584 }
2585
2586 /* Find the values in a given location and map the val to another
2587 value, if it is unique, or add the location as one holding the
2588 value. */
2589
2590 static void
2591 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2592 {
2593 decl_or_value dv = dv_from_value (val);
2594
2595 if (dump_file && (dump_flags & TDF_DETAILS))
2596 {
2597 if (insn)
2598 fprintf (dump_file, "%i: ", INSN_UID (insn));
2599 else
2600 fprintf (dump_file, "head: ");
2601 print_inline_rtx (dump_file, val, 0);
2602 fputs (" is at ", dump_file);
2603 print_inline_rtx (dump_file, loc, 0);
2604 fputc ('\n', dump_file);
2605 }
2606
2607 val_reset (set, dv);
2608
2609 gcc_checking_assert (!unsuitable_loc (loc));
2610
2611 if (REG_P (loc))
2612 {
2613 attrs *node, *found = NULL;
2614
2615 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2616 if (dv_is_value_p (node->dv)
2617 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2618 {
2619 found = node;
2620
2621 /* Map incoming equivalences. ??? Wouldn't it be nice if
2622 we just started sharing the location lists? Maybe a
2623 circular list ending at the value itself or some
2624 such. */
2625 set_variable_part (set, dv_as_value (node->dv),
2626 dv_from_value (val), node->offset,
2627 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2628 set_variable_part (set, val, node->dv, node->offset,
2629 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2630 }
2631
2632 /* If we didn't find any equivalence, we need to remember that
2633 this value is held in the named register. */
2634 if (found)
2635 return;
2636 }
2637 /* ??? Attempt to find and merge equivalent MEMs or other
2638 expressions too. */
2639
2640 val_bind (set, val, loc, false);
2641 }
2642
2643 /* Initialize dataflow set SET to be empty.
2644 VARS_SIZE is the initial size of hash table VARS. */
2645
2646 static void
2647 dataflow_set_init (dataflow_set *set)
2648 {
2649 init_attrs_list_set (set->regs);
2650 set->vars = shared_hash_copy (empty_shared_hash);
2651 set->stack_adjust = 0;
2652 set->traversed_vars = NULL;
2653 }
2654
2655 /* Delete the contents of dataflow set SET. */
2656
2657 static void
2658 dataflow_set_clear (dataflow_set *set)
2659 {
2660 int i;
2661
2662 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2663 attrs_list_clear (&set->regs[i]);
2664
2665 shared_hash_destroy (set->vars);
2666 set->vars = shared_hash_copy (empty_shared_hash);
2667 }
2668
2669 /* Copy the contents of dataflow set SRC to DST. */
2670
2671 static void
2672 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2673 {
2674 int i;
2675
2676 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2677 attrs_list_copy (&dst->regs[i], src->regs[i]);
2678
2679 shared_hash_destroy (dst->vars);
2680 dst->vars = shared_hash_copy (src->vars);
2681 dst->stack_adjust = src->stack_adjust;
2682 }
2683
2684 /* Information for merging lists of locations for a given offset of variable.
2685 */
2686 struct variable_union_info
2687 {
2688 /* Node of the location chain. */
2689 location_chain *lc;
2690
2691 /* The sum of positions in the input chains. */
2692 int pos;
2693
2694 /* The position in the chain of DST dataflow set. */
2695 int pos_dst;
2696 };
2697
2698 /* Buffer for location list sorting and its allocated size. */
2699 static struct variable_union_info *vui_vec;
2700 static int vui_allocated;
2701
2702 /* Compare function for qsort, order the structures by POS element. */
2703
2704 static int
2705 variable_union_info_cmp_pos (const void *n1, const void *n2)
2706 {
2707 const struct variable_union_info *const i1 =
2708 (const struct variable_union_info *) n1;
2709 const struct variable_union_info *const i2 =
2710 ( const struct variable_union_info *) n2;
2711
2712 if (i1->pos != i2->pos)
2713 return i1->pos - i2->pos;
2714
2715 return (i1->pos_dst - i2->pos_dst);
2716 }
2717
2718 /* Compute union of location parts of variable *SLOT and the same variable
2719 from hash table DATA. Compute "sorted" union of the location chains
2720 for common offsets, i.e. the locations of a variable part are sorted by
2721 a priority where the priority is the sum of the positions in the 2 chains
2722 (if a location is only in one list the position in the second list is
2723 defined to be larger than the length of the chains).
2724 When we are updating the location parts the newest location is in the
2725 beginning of the chain, so when we do the described "sorted" union
2726 we keep the newest locations in the beginning. */
2727
2728 static int
2729 variable_union (variable *src, dataflow_set *set)
2730 {
2731 variable *dst;
2732 variable **dstp;
2733 int i, j, k;
2734
2735 dstp = shared_hash_find_slot (set->vars, src->dv);
2736 if (!dstp || !*dstp)
2737 {
2738 src->refcount++;
2739
2740 dst_can_be_shared = false;
2741 if (!dstp)
2742 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2743
2744 *dstp = src;
2745
2746 /* Continue traversing the hash table. */
2747 return 1;
2748 }
2749 else
2750 dst = *dstp;
2751
2752 gcc_assert (src->n_var_parts);
2753 gcc_checking_assert (src->onepart == dst->onepart);
2754
2755 /* We can combine one-part variables very efficiently, because their
2756 entries are in canonical order. */
2757 if (src->onepart)
2758 {
2759 location_chain **nodep, *dnode, *snode;
2760
2761 gcc_assert (src->n_var_parts == 1
2762 && dst->n_var_parts == 1);
2763
2764 snode = src->var_part[0].loc_chain;
2765 gcc_assert (snode);
2766
2767 restart_onepart_unshared:
2768 nodep = &dst->var_part[0].loc_chain;
2769 dnode = *nodep;
2770 gcc_assert (dnode);
2771
2772 while (snode)
2773 {
2774 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2775
2776 if (r > 0)
2777 {
2778 location_chain *nnode;
2779
2780 if (shared_var_p (dst, set->vars))
2781 {
2782 dstp = unshare_variable (set, dstp, dst,
2783 VAR_INIT_STATUS_INITIALIZED);
2784 dst = *dstp;
2785 goto restart_onepart_unshared;
2786 }
2787
2788 *nodep = nnode = new location_chain;
2789 nnode->loc = snode->loc;
2790 nnode->init = snode->init;
2791 if (!snode->set_src || MEM_P (snode->set_src))
2792 nnode->set_src = NULL;
2793 else
2794 nnode->set_src = snode->set_src;
2795 nnode->next = dnode;
2796 dnode = nnode;
2797 }
2798 else if (r == 0)
2799 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2800
2801 if (r >= 0)
2802 snode = snode->next;
2803
2804 nodep = &dnode->next;
2805 dnode = *nodep;
2806 }
2807
2808 return 1;
2809 }
2810
2811 gcc_checking_assert (!src->onepart);
2812
2813 /* Count the number of location parts, result is K. */
2814 for (i = 0, j = 0, k = 0;
2815 i < src->n_var_parts && j < dst->n_var_parts; k++)
2816 {
2817 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2818 {
2819 i++;
2820 j++;
2821 }
2822 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2823 i++;
2824 else
2825 j++;
2826 }
2827 k += src->n_var_parts - i;
2828 k += dst->n_var_parts - j;
2829
2830 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2831 thus there are at most MAX_VAR_PARTS different offsets. */
2832 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2833
2834 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2835 {
2836 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2837 dst = *dstp;
2838 }
2839
2840 i = src->n_var_parts - 1;
2841 j = dst->n_var_parts - 1;
2842 dst->n_var_parts = k;
2843
2844 for (k--; k >= 0; k--)
2845 {
2846 location_chain *node, *node2;
2847
2848 if (i >= 0 && j >= 0
2849 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2850 {
2851 /* Compute the "sorted" union of the chains, i.e. the locations which
2852 are in both chains go first, they are sorted by the sum of
2853 positions in the chains. */
2854 int dst_l, src_l;
2855 int ii, jj, n;
2856 struct variable_union_info *vui;
2857
2858 /* If DST is shared compare the location chains.
2859 If they are different we will modify the chain in DST with
2860 high probability so make a copy of DST. */
2861 if (shared_var_p (dst, set->vars))
2862 {
2863 for (node = src->var_part[i].loc_chain,
2864 node2 = dst->var_part[j].loc_chain; node && node2;
2865 node = node->next, node2 = node2->next)
2866 {
2867 if (!((REG_P (node2->loc)
2868 && REG_P (node->loc)
2869 && REGNO (node2->loc) == REGNO (node->loc))
2870 || rtx_equal_p (node2->loc, node->loc)))
2871 {
2872 if (node2->init < node->init)
2873 node2->init = node->init;
2874 break;
2875 }
2876 }
2877 if (node || node2)
2878 {
2879 dstp = unshare_variable (set, dstp, dst,
2880 VAR_INIT_STATUS_UNKNOWN);
2881 dst = (variable *)*dstp;
2882 }
2883 }
2884
2885 src_l = 0;
2886 for (node = src->var_part[i].loc_chain; node; node = node->next)
2887 src_l++;
2888 dst_l = 0;
2889 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2890 dst_l++;
2891
2892 if (dst_l == 1)
2893 {
2894 /* The most common case, much simpler, no qsort is needed. */
2895 location_chain *dstnode = dst->var_part[j].loc_chain;
2896 dst->var_part[k].loc_chain = dstnode;
2897 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2898 node2 = dstnode;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 if (!((REG_P (dstnode->loc)
2901 && REG_P (node->loc)
2902 && REGNO (dstnode->loc) == REGNO (node->loc))
2903 || rtx_equal_p (dstnode->loc, node->loc)))
2904 {
2905 location_chain *new_node;
2906
2907 /* Copy the location from SRC. */
2908 new_node = new location_chain;
2909 new_node->loc = node->loc;
2910 new_node->init = node->init;
2911 if (!node->set_src || MEM_P (node->set_src))
2912 new_node->set_src = NULL;
2913 else
2914 new_node->set_src = node->set_src;
2915 node2->next = new_node;
2916 node2 = new_node;
2917 }
2918 node2->next = NULL;
2919 }
2920 else
2921 {
2922 if (src_l + dst_l > vui_allocated)
2923 {
2924 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2925 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2926 vui_allocated);
2927 }
2928 vui = vui_vec;
2929
2930 /* Fill in the locations from DST. */
2931 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2932 node = node->next, jj++)
2933 {
2934 vui[jj].lc = node;
2935 vui[jj].pos_dst = jj;
2936
2937 /* Pos plus value larger than a sum of 2 valid positions. */
2938 vui[jj].pos = jj + src_l + dst_l;
2939 }
2940
2941 /* Fill in the locations from SRC. */
2942 n = dst_l;
2943 for (node = src->var_part[i].loc_chain, ii = 0; node;
2944 node = node->next, ii++)
2945 {
2946 /* Find location from NODE. */
2947 for (jj = 0; jj < dst_l; jj++)
2948 {
2949 if ((REG_P (vui[jj].lc->loc)
2950 && REG_P (node->loc)
2951 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2952 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2953 {
2954 vui[jj].pos = jj + ii;
2955 break;
2956 }
2957 }
2958 if (jj >= dst_l) /* The location has not been found. */
2959 {
2960 location_chain *new_node;
2961
2962 /* Copy the location from SRC. */
2963 new_node = new location_chain;
2964 new_node->loc = node->loc;
2965 new_node->init = node->init;
2966 if (!node->set_src || MEM_P (node->set_src))
2967 new_node->set_src = NULL;
2968 else
2969 new_node->set_src = node->set_src;
2970 vui[n].lc = new_node;
2971 vui[n].pos_dst = src_l + dst_l;
2972 vui[n].pos = ii + src_l + dst_l;
2973 n++;
2974 }
2975 }
2976
2977 if (dst_l == 2)
2978 {
2979 /* Special case still very common case. For dst_l == 2
2980 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2981 vui[i].pos == i + src_l + dst_l. */
2982 if (vui[0].pos > vui[1].pos)
2983 {
2984 /* Order should be 1, 0, 2... */
2985 dst->var_part[k].loc_chain = vui[1].lc;
2986 vui[1].lc->next = vui[0].lc;
2987 if (n >= 3)
2988 {
2989 vui[0].lc->next = vui[2].lc;
2990 vui[n - 1].lc->next = NULL;
2991 }
2992 else
2993 vui[0].lc->next = NULL;
2994 ii = 3;
2995 }
2996 else
2997 {
2998 dst->var_part[k].loc_chain = vui[0].lc;
2999 if (n >= 3 && vui[2].pos < vui[1].pos)
3000 {
3001 /* Order should be 0, 2, 1, 3... */
3002 vui[0].lc->next = vui[2].lc;
3003 vui[2].lc->next = vui[1].lc;
3004 if (n >= 4)
3005 {
3006 vui[1].lc->next = vui[3].lc;
3007 vui[n - 1].lc->next = NULL;
3008 }
3009 else
3010 vui[1].lc->next = NULL;
3011 ii = 4;
3012 }
3013 else
3014 {
3015 /* Order should be 0, 1, 2... */
3016 ii = 1;
3017 vui[n - 1].lc->next = NULL;
3018 }
3019 }
3020 for (; ii < n; ii++)
3021 vui[ii - 1].lc->next = vui[ii].lc;
3022 }
3023 else
3024 {
3025 qsort (vui, n, sizeof (struct variable_union_info),
3026 variable_union_info_cmp_pos);
3027
3028 /* Reconnect the nodes in sorted order. */
3029 for (ii = 1; ii < n; ii++)
3030 vui[ii - 1].lc->next = vui[ii].lc;
3031 vui[n - 1].lc->next = NULL;
3032 dst->var_part[k].loc_chain = vui[0].lc;
3033 }
3034
3035 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3036 }
3037 i--;
3038 j--;
3039 }
3040 else if ((i >= 0 && j >= 0
3041 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3042 || i < 0)
3043 {
3044 dst->var_part[k] = dst->var_part[j];
3045 j--;
3046 }
3047 else if ((i >= 0 && j >= 0
3048 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3049 || j < 0)
3050 {
3051 location_chain **nextp;
3052
3053 /* Copy the chain from SRC. */
3054 nextp = &dst->var_part[k].loc_chain;
3055 for (node = src->var_part[i].loc_chain; node; node = node->next)
3056 {
3057 location_chain *new_lc;
3058
3059 new_lc = new location_chain;
3060 new_lc->next = NULL;
3061 new_lc->init = node->init;
3062 if (!node->set_src || MEM_P (node->set_src))
3063 new_lc->set_src = NULL;
3064 else
3065 new_lc->set_src = node->set_src;
3066 new_lc->loc = node->loc;
3067
3068 *nextp = new_lc;
3069 nextp = &new_lc->next;
3070 }
3071
3072 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3073 i--;
3074 }
3075 dst->var_part[k].cur_loc = NULL;
3076 }
3077
3078 if (flag_var_tracking_uninit)
3079 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3080 {
3081 location_chain *node, *node2;
3082 for (node = src->var_part[i].loc_chain; node; node = node->next)
3083 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3084 if (rtx_equal_p (node->loc, node2->loc))
3085 {
3086 if (node->init > node2->init)
3087 node2->init = node->init;
3088 }
3089 }
3090
3091 /* Continue traversing the hash table. */
3092 return 1;
3093 }
3094
3095 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3096
3097 static void
3098 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3099 {
3100 int i;
3101
3102 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3103 attrs_list_union (&dst->regs[i], src->regs[i]);
3104
3105 if (dst->vars == empty_shared_hash)
3106 {
3107 shared_hash_destroy (dst->vars);
3108 dst->vars = shared_hash_copy (src->vars);
3109 }
3110 else
3111 {
3112 variable_iterator_type hi;
3113 variable *var;
3114
3115 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3116 var, variable, hi)
3117 variable_union (var, dst);
3118 }
3119 }
3120
3121 /* Whether the value is currently being expanded. */
3122 #define VALUE_RECURSED_INTO(x) \
3123 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3124
3125 /* Whether no expansion was found, saving useless lookups.
3126 It must only be set when VALUE_CHANGED is clear. */
3127 #define NO_LOC_P(x) \
3128 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3129
3130 /* Whether cur_loc in the value needs to be (re)computed. */
3131 #define VALUE_CHANGED(x) \
3132 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3133 /* Whether cur_loc in the decl needs to be (re)computed. */
3134 #define DECL_CHANGED(x) TREE_VISITED (x)
3135
3136 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3137 user DECLs, this means they're in changed_variables. Values and
3138 debug exprs may be left with this flag set if no user variable
3139 requires them to be evaluated. */
3140
3141 static inline void
3142 set_dv_changed (decl_or_value dv, bool newv)
3143 {
3144 switch (dv_onepart_p (dv))
3145 {
3146 case ONEPART_VALUE:
3147 if (newv)
3148 NO_LOC_P (dv_as_value (dv)) = false;
3149 VALUE_CHANGED (dv_as_value (dv)) = newv;
3150 break;
3151
3152 case ONEPART_DEXPR:
3153 if (newv)
3154 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3155 /* Fall through... */
3156
3157 default:
3158 DECL_CHANGED (dv_as_decl (dv)) = newv;
3159 break;
3160 }
3161 }
3162
3163 /* Return true if DV needs to have its cur_loc recomputed. */
3164
3165 static inline bool
3166 dv_changed_p (decl_or_value dv)
3167 {
3168 return (dv_is_value_p (dv)
3169 ? VALUE_CHANGED (dv_as_value (dv))
3170 : DECL_CHANGED (dv_as_decl (dv)));
3171 }
3172
3173 /* Return a location list node whose loc is rtx_equal to LOC, in the
3174 location list of a one-part variable or value VAR, or in that of
3175 any values recursively mentioned in the location lists. VARS must
3176 be in star-canonical form. */
3177
3178 static location_chain *
3179 find_loc_in_1pdv (rtx loc, variable *var, variable_table_type *vars)
3180 {
3181 location_chain *node;
3182 enum rtx_code loc_code;
3183
3184 if (!var)
3185 return NULL;
3186
3187 gcc_checking_assert (var->onepart);
3188
3189 if (!var->n_var_parts)
3190 return NULL;
3191
3192 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3193
3194 loc_code = GET_CODE (loc);
3195 for (node = var->var_part[0].loc_chain; node; node = node->next)
3196 {
3197 decl_or_value dv;
3198 variable *rvar;
3199
3200 if (GET_CODE (node->loc) != loc_code)
3201 {
3202 if (GET_CODE (node->loc) != VALUE)
3203 continue;
3204 }
3205 else if (loc == node->loc)
3206 return node;
3207 else if (loc_code != VALUE)
3208 {
3209 if (rtx_equal_p (loc, node->loc))
3210 return node;
3211 continue;
3212 }
3213
3214 /* Since we're in star-canonical form, we don't need to visit
3215 non-canonical nodes: one-part variables and non-canonical
3216 values would only point back to the canonical node. */
3217 if (dv_is_value_p (var->dv)
3218 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3219 {
3220 /* Skip all subsequent VALUEs. */
3221 while (node->next && GET_CODE (node->next->loc) == VALUE)
3222 {
3223 node = node->next;
3224 gcc_checking_assert (!canon_value_cmp (node->loc,
3225 dv_as_value (var->dv)));
3226 if (loc == node->loc)
3227 return node;
3228 }
3229 continue;
3230 }
3231
3232 gcc_checking_assert (node == var->var_part[0].loc_chain);
3233 gcc_checking_assert (!node->next);
3234
3235 dv = dv_from_value (node->loc);
3236 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3237 return find_loc_in_1pdv (loc, rvar, vars);
3238 }
3239
3240 /* ??? Gotta look in cselib_val locations too. */
3241
3242 return NULL;
3243 }
3244
3245 /* Hash table iteration argument passed to variable_merge. */
3246 struct dfset_merge
3247 {
3248 /* The set in which the merge is to be inserted. */
3249 dataflow_set *dst;
3250 /* The set that we're iterating in. */
3251 dataflow_set *cur;
3252 /* The set that may contain the other dv we are to merge with. */
3253 dataflow_set *src;
3254 /* Number of onepart dvs in src. */
3255 int src_onepart_cnt;
3256 };
3257
3258 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3259 loc_cmp order, and it is maintained as such. */
3260
3261 static void
3262 insert_into_intersection (location_chain **nodep, rtx loc,
3263 enum var_init_status status)
3264 {
3265 location_chain *node;
3266 int r;
3267
3268 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3269 if ((r = loc_cmp (node->loc, loc)) == 0)
3270 {
3271 node->init = MIN (node->init, status);
3272 return;
3273 }
3274 else if (r > 0)
3275 break;
3276
3277 node = new location_chain;
3278
3279 node->loc = loc;
3280 node->set_src = NULL;
3281 node->init = status;
3282 node->next = *nodep;
3283 *nodep = node;
3284 }
3285
3286 /* Insert in DEST the intersection of the locations present in both
3287 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3288 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3289 DSM->dst. */
3290
3291 static void
3292 intersect_loc_chains (rtx val, location_chain **dest, struct dfset_merge *dsm,
3293 location_chain *s1node, variable *s2var)
3294 {
3295 dataflow_set *s1set = dsm->cur;
3296 dataflow_set *s2set = dsm->src;
3297 location_chain *found;
3298
3299 if (s2var)
3300 {
3301 location_chain *s2node;
3302
3303 gcc_checking_assert (s2var->onepart);
3304
3305 if (s2var->n_var_parts)
3306 {
3307 s2node = s2var->var_part[0].loc_chain;
3308
3309 for (; s1node && s2node;
3310 s1node = s1node->next, s2node = s2node->next)
3311 if (s1node->loc != s2node->loc)
3312 break;
3313 else if (s1node->loc == val)
3314 continue;
3315 else
3316 insert_into_intersection (dest, s1node->loc,
3317 MIN (s1node->init, s2node->init));
3318 }
3319 }
3320
3321 for (; s1node; s1node = s1node->next)
3322 {
3323 if (s1node->loc == val)
3324 continue;
3325
3326 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3327 shared_hash_htab (s2set->vars))))
3328 {
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, found->init));
3331 continue;
3332 }
3333
3334 if (GET_CODE (s1node->loc) == VALUE
3335 && !VALUE_RECURSED_INTO (s1node->loc))
3336 {
3337 decl_or_value dv = dv_from_value (s1node->loc);
3338 variable *svar = shared_hash_find (s1set->vars, dv);
3339 if (svar)
3340 {
3341 if (svar->n_var_parts == 1)
3342 {
3343 VALUE_RECURSED_INTO (s1node->loc) = true;
3344 intersect_loc_chains (val, dest, dsm,
3345 svar->var_part[0].loc_chain,
3346 s2var);
3347 VALUE_RECURSED_INTO (s1node->loc) = false;
3348 }
3349 }
3350 }
3351
3352 /* ??? gotta look in cselib_val locations too. */
3353
3354 /* ??? if the location is equivalent to any location in src,
3355 searched recursively
3356
3357 add to dst the values needed to represent the equivalence
3358
3359 telling whether locations S is equivalent to another dv's
3360 location list:
3361
3362 for each location D in the list
3363
3364 if S and D satisfy rtx_equal_p, then it is present
3365
3366 else if D is a value, recurse without cycles
3367
3368 else if S and D have the same CODE and MODE
3369
3370 for each operand oS and the corresponding oD
3371
3372 if oS and oD are not equivalent, then S an D are not equivalent
3373
3374 else if they are RTX vectors
3375
3376 if any vector oS element is not equivalent to its respective oD,
3377 then S and D are not equivalent
3378
3379 */
3380
3381
3382 }
3383 }
3384
3385 /* Return -1 if X should be before Y in a location list for a 1-part
3386 variable, 1 if Y should be before X, and 0 if they're equivalent
3387 and should not appear in the list. */
3388
3389 static int
3390 loc_cmp (rtx x, rtx y)
3391 {
3392 int i, j, r;
3393 RTX_CODE code = GET_CODE (x);
3394 const char *fmt;
3395
3396 if (x == y)
3397 return 0;
3398
3399 if (REG_P (x))
3400 {
3401 if (!REG_P (y))
3402 return -1;
3403 gcc_assert (GET_MODE (x) == GET_MODE (y));
3404 if (REGNO (x) == REGNO (y))
3405 return 0;
3406 else if (REGNO (x) < REGNO (y))
3407 return -1;
3408 else
3409 return 1;
3410 }
3411
3412 if (REG_P (y))
3413 return 1;
3414
3415 if (MEM_P (x))
3416 {
3417 if (!MEM_P (y))
3418 return -1;
3419 gcc_assert (GET_MODE (x) == GET_MODE (y));
3420 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3421 }
3422
3423 if (MEM_P (y))
3424 return 1;
3425
3426 if (GET_CODE (x) == VALUE)
3427 {
3428 if (GET_CODE (y) != VALUE)
3429 return -1;
3430 /* Don't assert the modes are the same, that is true only
3431 when not recursing. (subreg:QI (value:SI 1:1) 0)
3432 and (subreg:QI (value:DI 2:2) 0) can be compared,
3433 even when the modes are different. */
3434 if (canon_value_cmp (x, y))
3435 return -1;
3436 else
3437 return 1;
3438 }
3439
3440 if (GET_CODE (y) == VALUE)
3441 return 1;
3442
3443 /* Entry value is the least preferable kind of expression. */
3444 if (GET_CODE (x) == ENTRY_VALUE)
3445 {
3446 if (GET_CODE (y) != ENTRY_VALUE)
3447 return 1;
3448 gcc_assert (GET_MODE (x) == GET_MODE (y));
3449 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3450 }
3451
3452 if (GET_CODE (y) == ENTRY_VALUE)
3453 return -1;
3454
3455 if (GET_CODE (x) == GET_CODE (y))
3456 /* Compare operands below. */;
3457 else if (GET_CODE (x) < GET_CODE (y))
3458 return -1;
3459 else
3460 return 1;
3461
3462 gcc_assert (GET_MODE (x) == GET_MODE (y));
3463
3464 if (GET_CODE (x) == DEBUG_EXPR)
3465 {
3466 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3467 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3468 return -1;
3469 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3470 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3471 return 1;
3472 }
3473
3474 fmt = GET_RTX_FORMAT (code);
3475 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3476 switch (fmt[i])
3477 {
3478 case 'w':
3479 if (XWINT (x, i) == XWINT (y, i))
3480 break;
3481 else if (XWINT (x, i) < XWINT (y, i))
3482 return -1;
3483 else
3484 return 1;
3485
3486 case 'n':
3487 case 'i':
3488 if (XINT (x, i) == XINT (y, i))
3489 break;
3490 else if (XINT (x, i) < XINT (y, i))
3491 return -1;
3492 else
3493 return 1;
3494
3495 case 'V':
3496 case 'E':
3497 /* Compare the vector length first. */
3498 if (XVECLEN (x, i) == XVECLEN (y, i))
3499 /* Compare the vectors elements. */;
3500 else if (XVECLEN (x, i) < XVECLEN (y, i))
3501 return -1;
3502 else
3503 return 1;
3504
3505 for (j = 0; j < XVECLEN (x, i); j++)
3506 if ((r = loc_cmp (XVECEXP (x, i, j),
3507 XVECEXP (y, i, j))))
3508 return r;
3509 break;
3510
3511 case 'e':
3512 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3513 return r;
3514 break;
3515
3516 case 'S':
3517 case 's':
3518 if (XSTR (x, i) == XSTR (y, i))
3519 break;
3520 if (!XSTR (x, i))
3521 return -1;
3522 if (!XSTR (y, i))
3523 return 1;
3524 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3525 break;
3526 else if (r < 0)
3527 return -1;
3528 else
3529 return 1;
3530
3531 case 'u':
3532 /* These are just backpointers, so they don't matter. */
3533 break;
3534
3535 case '0':
3536 case 't':
3537 break;
3538
3539 /* It is believed that rtx's at this level will never
3540 contain anything but integers and other rtx's,
3541 except for within LABEL_REFs and SYMBOL_REFs. */
3542 default:
3543 gcc_unreachable ();
3544 }
3545 if (CONST_WIDE_INT_P (x))
3546 {
3547 /* Compare the vector length first. */
3548 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3549 return 1;
3550 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3551 return -1;
3552
3553 /* Compare the vectors elements. */;
3554 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3555 {
3556 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3557 return -1;
3558 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3559 return 1;
3560 }
3561 }
3562
3563 return 0;
3564 }
3565
3566 /* Check the order of entries in one-part variables. */
3567
3568 int
3569 canonicalize_loc_order_check (variable **slot,
3570 dataflow_set *data ATTRIBUTE_UNUSED)
3571 {
3572 variable *var = *slot;
3573 location_chain *node, *next;
3574
3575 #ifdef ENABLE_RTL_CHECKING
3576 int i;
3577 for (i = 0; i < var->n_var_parts; i++)
3578 gcc_assert (var->var_part[0].cur_loc == NULL);
3579 gcc_assert (!var->in_changed_variables);
3580 #endif
3581
3582 if (!var->onepart)
3583 return 1;
3584
3585 gcc_assert (var->n_var_parts == 1);
3586 node = var->var_part[0].loc_chain;
3587 gcc_assert (node);
3588
3589 while ((next = node->next))
3590 {
3591 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3592 node = next;
3593 }
3594
3595 return 1;
3596 }
3597
3598 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3599 more likely to be chosen as canonical for an equivalence set.
3600 Ensure less likely values can reach more likely neighbors, making
3601 the connections bidirectional. */
3602
3603 int
3604 canonicalize_values_mark (variable **slot, dataflow_set *set)
3605 {
3606 variable *var = *slot;
3607 decl_or_value dv = var->dv;
3608 rtx val;
3609 location_chain *node;
3610
3611 if (!dv_is_value_p (dv))
3612 return 1;
3613
3614 gcc_checking_assert (var->n_var_parts == 1);
3615
3616 val = dv_as_value (dv);
3617
3618 for (node = var->var_part[0].loc_chain; node; node = node->next)
3619 if (GET_CODE (node->loc) == VALUE)
3620 {
3621 if (canon_value_cmp (node->loc, val))
3622 VALUE_RECURSED_INTO (val) = true;
3623 else
3624 {
3625 decl_or_value odv = dv_from_value (node->loc);
3626 variable **oslot;
3627 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3628
3629 set_slot_part (set, val, oslot, odv, 0,
3630 node->init, NULL_RTX);
3631
3632 VALUE_RECURSED_INTO (node->loc) = true;
3633 }
3634 }
3635
3636 return 1;
3637 }
3638
3639 /* Remove redundant entries from equivalence lists in onepart
3640 variables, canonicalizing equivalence sets into star shapes. */
3641
3642 int
3643 canonicalize_values_star (variable **slot, dataflow_set *set)
3644 {
3645 variable *var = *slot;
3646 decl_or_value dv = var->dv;
3647 location_chain *node;
3648 decl_or_value cdv;
3649 rtx val, cval;
3650 variable **cslot;
3651 bool has_value;
3652 bool has_marks;
3653
3654 if (!var->onepart)
3655 return 1;
3656
3657 gcc_checking_assert (var->n_var_parts == 1);
3658
3659 if (dv_is_value_p (dv))
3660 {
3661 cval = dv_as_value (dv);
3662 if (!VALUE_RECURSED_INTO (cval))
3663 return 1;
3664 VALUE_RECURSED_INTO (cval) = false;
3665 }
3666 else
3667 cval = NULL_RTX;
3668
3669 restart:
3670 val = cval;
3671 has_value = false;
3672 has_marks = false;
3673
3674 gcc_assert (var->n_var_parts == 1);
3675
3676 for (node = var->var_part[0].loc_chain; node; node = node->next)
3677 if (GET_CODE (node->loc) == VALUE)
3678 {
3679 has_value = true;
3680 if (VALUE_RECURSED_INTO (node->loc))
3681 has_marks = true;
3682 if (canon_value_cmp (node->loc, cval))
3683 cval = node->loc;
3684 }
3685
3686 if (!has_value)
3687 return 1;
3688
3689 if (cval == val)
3690 {
3691 if (!has_marks || dv_is_decl_p (dv))
3692 return 1;
3693
3694 /* Keep it marked so that we revisit it, either after visiting a
3695 child node, or after visiting a new parent that might be
3696 found out. */
3697 VALUE_RECURSED_INTO (val) = true;
3698
3699 for (node = var->var_part[0].loc_chain; node; node = node->next)
3700 if (GET_CODE (node->loc) == VALUE
3701 && VALUE_RECURSED_INTO (node->loc))
3702 {
3703 cval = node->loc;
3704 restart_with_cval:
3705 VALUE_RECURSED_INTO (cval) = false;
3706 dv = dv_from_value (cval);
3707 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3708 if (!slot)
3709 {
3710 gcc_assert (dv_is_decl_p (var->dv));
3711 /* The canonical value was reset and dropped.
3712 Remove it. */
3713 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3714 return 1;
3715 }
3716 var = *slot;
3717 gcc_assert (dv_is_value_p (var->dv));
3718 if (var->n_var_parts == 0)
3719 return 1;
3720 gcc_assert (var->n_var_parts == 1);
3721 goto restart;
3722 }
3723
3724 VALUE_RECURSED_INTO (val) = false;
3725
3726 return 1;
3727 }
3728
3729 /* Push values to the canonical one. */
3730 cdv = dv_from_value (cval);
3731 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3732
3733 for (node = var->var_part[0].loc_chain; node; node = node->next)
3734 if (node->loc != cval)
3735 {
3736 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3737 node->init, NULL_RTX);
3738 if (GET_CODE (node->loc) == VALUE)
3739 {
3740 decl_or_value ndv = dv_from_value (node->loc);
3741
3742 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3743 NO_INSERT);
3744
3745 if (canon_value_cmp (node->loc, val))
3746 {
3747 /* If it could have been a local minimum, it's not any more,
3748 since it's now neighbor to cval, so it may have to push
3749 to it. Conversely, if it wouldn't have prevailed over
3750 val, then whatever mark it has is fine: if it was to
3751 push, it will now push to a more canonical node, but if
3752 it wasn't, then it has already pushed any values it might
3753 have to. */
3754 VALUE_RECURSED_INTO (node->loc) = true;
3755 /* Make sure we visit node->loc by ensuring we cval is
3756 visited too. */
3757 VALUE_RECURSED_INTO (cval) = true;
3758 }
3759 else if (!VALUE_RECURSED_INTO (node->loc))
3760 /* If we have no need to "recurse" into this node, it's
3761 already "canonicalized", so drop the link to the old
3762 parent. */
3763 clobber_variable_part (set, cval, ndv, 0, NULL);
3764 }
3765 else if (GET_CODE (node->loc) == REG)
3766 {
3767 attrs *list = set->regs[REGNO (node->loc)], **listp;
3768
3769 /* Change an existing attribute referring to dv so that it
3770 refers to cdv, removing any duplicate this might
3771 introduce, and checking that no previous duplicates
3772 existed, all in a single pass. */
3773
3774 while (list)
3775 {
3776 if (list->offset == 0
3777 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3778 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3779 break;
3780
3781 list = list->next;
3782 }
3783
3784 gcc_assert (list);
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3786 {
3787 list->dv = cdv;
3788 for (listp = &list->next; (list = *listp); listp = &list->next)
3789 {
3790 if (list->offset)
3791 continue;
3792
3793 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3794 {
3795 *listp = list->next;
3796 delete list;
3797 list = *listp;
3798 break;
3799 }
3800
3801 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3802 }
3803 }
3804 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3805 {
3806 for (listp = &list->next; (list = *listp); listp = &list->next)
3807 {
3808 if (list->offset)
3809 continue;
3810
3811 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3812 {
3813 *listp = list->next;
3814 delete list;
3815 list = *listp;
3816 break;
3817 }
3818
3819 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3820 }
3821 }
3822 else
3823 gcc_unreachable ();
3824
3825 if (flag_checking)
3826 while (list)
3827 {
3828 if (list->offset == 0
3829 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3830 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3831 gcc_unreachable ();
3832
3833 list = list->next;
3834 }
3835 }
3836 }
3837
3838 if (val)
3839 set_slot_part (set, val, cslot, cdv, 0,
3840 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3841
3842 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3843
3844 /* Variable may have been unshared. */
3845 var = *slot;
3846 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3847 && var->var_part[0].loc_chain->next == NULL);
3848
3849 if (VALUE_RECURSED_INTO (cval))
3850 goto restart_with_cval;
3851
3852 return 1;
3853 }
3854
3855 /* Bind one-part variables to the canonical value in an equivalence
3856 set. Not doing this causes dataflow convergence failure in rare
3857 circumstances, see PR42873. Unfortunately we can't do this
3858 efficiently as part of canonicalize_values_star, since we may not
3859 have determined or even seen the canonical value of a set when we
3860 get to a variable that references another member of the set. */
3861
3862 int
3863 canonicalize_vars_star (variable **slot, dataflow_set *set)
3864 {
3865 variable *var = *slot;
3866 decl_or_value dv = var->dv;
3867 location_chain *node;
3868 rtx cval;
3869 decl_or_value cdv;
3870 variable **cslot;
3871 variable *cvar;
3872 location_chain *cnode;
3873
3874 if (!var->onepart || var->onepart == ONEPART_VALUE)
3875 return 1;
3876
3877 gcc_assert (var->n_var_parts == 1);
3878
3879 node = var->var_part[0].loc_chain;
3880
3881 if (GET_CODE (node->loc) != VALUE)
3882 return 1;
3883
3884 gcc_assert (!node->next);
3885 cval = node->loc;
3886
3887 /* Push values to the canonical one. */
3888 cdv = dv_from_value (cval);
3889 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3890 if (!cslot)
3891 return 1;
3892 cvar = *cslot;
3893 gcc_assert (cvar->n_var_parts == 1);
3894
3895 cnode = cvar->var_part[0].loc_chain;
3896
3897 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3898 that are not “more canonical” than it. */
3899 if (GET_CODE (cnode->loc) != VALUE
3900 || !canon_value_cmp (cnode->loc, cval))
3901 return 1;
3902
3903 /* CVAL was found to be non-canonical. Change the variable to point
3904 to the canonical VALUE. */
3905 gcc_assert (!cnode->next);
3906 cval = cnode->loc;
3907
3908 slot = set_slot_part (set, cval, slot, dv, 0,
3909 node->init, node->set_src);
3910 clobber_slot_part (set, cval, slot, 0, node->set_src);
3911
3912 return 1;
3913 }
3914
3915 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3916 corresponding entry in DSM->src. Multi-part variables are combined
3917 with variable_union, whereas onepart dvs are combined with
3918 intersection. */
3919
3920 static int
3921 variable_merge_over_cur (variable *s1var, struct dfset_merge *dsm)
3922 {
3923 dataflow_set *dst = dsm->dst;
3924 variable **dstslot;
3925 variable *s2var, *dvar = NULL;
3926 decl_or_value dv = s1var->dv;
3927 onepart_enum onepart = s1var->onepart;
3928 rtx val;
3929 hashval_t dvhash;
3930 location_chain *node, **nodep;
3931
3932 /* If the incoming onepart variable has an empty location list, then
3933 the intersection will be just as empty. For other variables,
3934 it's always union. */
3935 gcc_checking_assert (s1var->n_var_parts
3936 && s1var->var_part[0].loc_chain);
3937
3938 if (!onepart)
3939 return variable_union (s1var, dst);
3940
3941 gcc_checking_assert (s1var->n_var_parts == 1);
3942
3943 dvhash = dv_htab_hash (dv);
3944 if (dv_is_value_p (dv))
3945 val = dv_as_value (dv);
3946 else
3947 val = NULL;
3948
3949 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3950 if (!s2var)
3951 {
3952 dst_can_be_shared = false;
3953 return 1;
3954 }
3955
3956 dsm->src_onepart_cnt--;
3957 gcc_assert (s2var->var_part[0].loc_chain
3958 && s2var->onepart == onepart
3959 && s2var->n_var_parts == 1);
3960
3961 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3962 if (dstslot)
3963 {
3964 dvar = *dstslot;
3965 gcc_assert (dvar->refcount == 1
3966 && dvar->onepart == onepart
3967 && dvar->n_var_parts == 1);
3968 nodep = &dvar->var_part[0].loc_chain;
3969 }
3970 else
3971 {
3972 nodep = &node;
3973 node = NULL;
3974 }
3975
3976 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3977 {
3978 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3979 dvhash, INSERT);
3980 *dstslot = dvar = s2var;
3981 dvar->refcount++;
3982 }
3983 else
3984 {
3985 dst_can_be_shared = false;
3986
3987 intersect_loc_chains (val, nodep, dsm,
3988 s1var->var_part[0].loc_chain, s2var);
3989
3990 if (!dstslot)
3991 {
3992 if (node)
3993 {
3994 dvar = onepart_pool_allocate (onepart);
3995 dvar->dv = dv;
3996 dvar->refcount = 1;
3997 dvar->n_var_parts = 1;
3998 dvar->onepart = onepart;
3999 dvar->in_changed_variables = false;
4000 dvar->var_part[0].loc_chain = node;
4001 dvar->var_part[0].cur_loc = NULL;
4002 if (onepart)
4003 VAR_LOC_1PAUX (dvar) = NULL;
4004 else
4005 VAR_PART_OFFSET (dvar, 0) = 0;
4006
4007 dstslot
4008 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4009 INSERT);
4010 gcc_assert (!*dstslot);
4011 *dstslot = dvar;
4012 }
4013 else
4014 return 1;
4015 }
4016 }
4017
4018 nodep = &dvar->var_part[0].loc_chain;
4019 while ((node = *nodep))
4020 {
4021 location_chain **nextp = &node->next;
4022
4023 if (GET_CODE (node->loc) == REG)
4024 {
4025 attrs *list;
4026
4027 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4028 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4029 && dv_is_value_p (list->dv))
4030 break;
4031
4032 if (!list)
4033 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4034 dv, 0, node->loc);
4035 /* If this value became canonical for another value that had
4036 this register, we want to leave it alone. */
4037 else if (dv_as_value (list->dv) != val)
4038 {
4039 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4040 dstslot, dv, 0,
4041 node->init, NULL_RTX);
4042 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4043
4044 /* Since nextp points into the removed node, we can't
4045 use it. The pointer to the next node moved to nodep.
4046 However, if the variable we're walking is unshared
4047 during our walk, we'll keep walking the location list
4048 of the previously-shared variable, in which case the
4049 node won't have been removed, and we'll want to skip
4050 it. That's why we test *nodep here. */
4051 if (*nodep != node)
4052 nextp = nodep;
4053 }
4054 }
4055 else
4056 /* Canonicalization puts registers first, so we don't have to
4057 walk it all. */
4058 break;
4059 nodep = nextp;
4060 }
4061
4062 if (dvar != *dstslot)
4063 dvar = *dstslot;
4064 nodep = &dvar->var_part[0].loc_chain;
4065
4066 if (val)
4067 {
4068 /* Mark all referenced nodes for canonicalization, and make sure
4069 we have mutual equivalence links. */
4070 VALUE_RECURSED_INTO (val) = true;
4071 for (node = *nodep; node; node = node->next)
4072 if (GET_CODE (node->loc) == VALUE)
4073 {
4074 VALUE_RECURSED_INTO (node->loc) = true;
4075 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4076 node->init, NULL, INSERT);
4077 }
4078
4079 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4080 gcc_assert (*dstslot == dvar);
4081 canonicalize_values_star (dstslot, dst);
4082 gcc_checking_assert (dstslot
4083 == shared_hash_find_slot_noinsert_1 (dst->vars,
4084 dv, dvhash));
4085 dvar = *dstslot;
4086 }
4087 else
4088 {
4089 bool has_value = false, has_other = false;
4090
4091 /* If we have one value and anything else, we're going to
4092 canonicalize this, so make sure all values have an entry in
4093 the table and are marked for canonicalization. */
4094 for (node = *nodep; node; node = node->next)
4095 {
4096 if (GET_CODE (node->loc) == VALUE)
4097 {
4098 /* If this was marked during register canonicalization,
4099 we know we have to canonicalize values. */
4100 if (has_value)
4101 has_other = true;
4102 has_value = true;
4103 if (has_other)
4104 break;
4105 }
4106 else
4107 {
4108 has_other = true;
4109 if (has_value)
4110 break;
4111 }
4112 }
4113
4114 if (has_value && has_other)
4115 {
4116 for (node = *nodep; node; node = node->next)
4117 {
4118 if (GET_CODE (node->loc) == VALUE)
4119 {
4120 decl_or_value dv = dv_from_value (node->loc);
4121 variable **slot = NULL;
4122
4123 if (shared_hash_shared (dst->vars))
4124 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4125 if (!slot)
4126 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4127 INSERT);
4128 if (!*slot)
4129 {
4130 variable *var = onepart_pool_allocate (ONEPART_VALUE);
4131 var->dv = dv;
4132 var->refcount = 1;
4133 var->n_var_parts = 1;
4134 var->onepart = ONEPART_VALUE;
4135 var->in_changed_variables = false;
4136 var->var_part[0].loc_chain = NULL;
4137 var->var_part[0].cur_loc = NULL;
4138 VAR_LOC_1PAUX (var) = NULL;
4139 *slot = var;
4140 }
4141
4142 VALUE_RECURSED_INTO (node->loc) = true;
4143 }
4144 }
4145
4146 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4147 gcc_assert (*dstslot == dvar);
4148 canonicalize_values_star (dstslot, dst);
4149 gcc_checking_assert (dstslot
4150 == shared_hash_find_slot_noinsert_1 (dst->vars,
4151 dv, dvhash));
4152 dvar = *dstslot;
4153 }
4154 }
4155
4156 if (!onepart_variable_different_p (dvar, s2var))
4157 {
4158 variable_htab_free (dvar);
4159 *dstslot = dvar = s2var;
4160 dvar->refcount++;
4161 }
4162 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4163 {
4164 variable_htab_free (dvar);
4165 *dstslot = dvar = s1var;
4166 dvar->refcount++;
4167 dst_can_be_shared = false;
4168 }
4169 else
4170 dst_can_be_shared = false;
4171
4172 return 1;
4173 }
4174
4175 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4176 multi-part variable. Unions of multi-part variables and
4177 intersections of one-part ones will be handled in
4178 variable_merge_over_cur(). */
4179
4180 static int
4181 variable_merge_over_src (variable *s2var, struct dfset_merge *dsm)
4182 {
4183 dataflow_set *dst = dsm->dst;
4184 decl_or_value dv = s2var->dv;
4185
4186 if (!s2var->onepart)
4187 {
4188 variable **dstp = shared_hash_find_slot (dst->vars, dv);
4189 *dstp = s2var;
4190 s2var->refcount++;
4191 return 1;
4192 }
4193
4194 dsm->src_onepart_cnt++;
4195 return 1;
4196 }
4197
4198 /* Combine dataflow set information from SRC2 into DST, using PDST
4199 to carry over information across passes. */
4200
4201 static void
4202 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4203 {
4204 dataflow_set cur = *dst;
4205 dataflow_set *src1 = &cur;
4206 struct dfset_merge dsm;
4207 int i;
4208 size_t src1_elems, src2_elems;
4209 variable_iterator_type hi;
4210 variable *var;
4211
4212 src1_elems = shared_hash_htab (src1->vars)->elements ();
4213 src2_elems = shared_hash_htab (src2->vars)->elements ();
4214 dataflow_set_init (dst);
4215 dst->stack_adjust = cur.stack_adjust;
4216 shared_hash_destroy (dst->vars);
4217 dst->vars = new shared_hash;
4218 dst->vars->refcount = 1;
4219 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4220
4221 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4222 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4223
4224 dsm.dst = dst;
4225 dsm.src = src2;
4226 dsm.cur = src1;
4227 dsm.src_onepart_cnt = 0;
4228
4229 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4230 var, variable, hi)
4231 variable_merge_over_src (var, &dsm);
4232 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4233 var, variable, hi)
4234 variable_merge_over_cur (var, &dsm);
4235
4236 if (dsm.src_onepart_cnt)
4237 dst_can_be_shared = false;
4238
4239 dataflow_set_destroy (src1);
4240 }
4241
4242 /* Mark register equivalences. */
4243
4244 static void
4245 dataflow_set_equiv_regs (dataflow_set *set)
4246 {
4247 int i;
4248 attrs *list, **listp;
4249
4250 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4251 {
4252 rtx canon[NUM_MACHINE_MODES];
4253
4254 /* If the list is empty or one entry, no need to canonicalize
4255 anything. */
4256 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4257 continue;
4258
4259 memset (canon, 0, sizeof (canon));
4260
4261 for (list = set->regs[i]; list; list = list->next)
4262 if (list->offset == 0 && dv_is_value_p (list->dv))
4263 {
4264 rtx val = dv_as_value (list->dv);
4265 rtx *cvalp = &canon[(int)GET_MODE (val)];
4266 rtx cval = *cvalp;
4267
4268 if (canon_value_cmp (val, cval))
4269 *cvalp = val;
4270 }
4271
4272 for (list = set->regs[i]; list; list = list->next)
4273 if (list->offset == 0 && dv_onepart_p (list->dv))
4274 {
4275 rtx cval = canon[(int)GET_MODE (list->loc)];
4276
4277 if (!cval)
4278 continue;
4279
4280 if (dv_is_value_p (list->dv))
4281 {
4282 rtx val = dv_as_value (list->dv);
4283
4284 if (val == cval)
4285 continue;
4286
4287 VALUE_RECURSED_INTO (val) = true;
4288 set_variable_part (set, val, dv_from_value (cval), 0,
4289 VAR_INIT_STATUS_INITIALIZED,
4290 NULL, NO_INSERT);
4291 }
4292
4293 VALUE_RECURSED_INTO (cval) = true;
4294 set_variable_part (set, cval, list->dv, 0,
4295 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4296 }
4297
4298 for (listp = &set->regs[i]; (list = *listp);
4299 listp = list ? &list->next : listp)
4300 if (list->offset == 0 && dv_onepart_p (list->dv))
4301 {
4302 rtx cval = canon[(int)GET_MODE (list->loc)];
4303 variable **slot;
4304
4305 if (!cval)
4306 continue;
4307
4308 if (dv_is_value_p (list->dv))
4309 {
4310 rtx val = dv_as_value (list->dv);
4311 if (!VALUE_RECURSED_INTO (val))
4312 continue;
4313 }
4314
4315 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4316 canonicalize_values_star (slot, set);
4317 if (*listp != list)
4318 list = NULL;
4319 }
4320 }
4321 }
4322
4323 /* Remove any redundant values in the location list of VAR, which must
4324 be unshared and 1-part. */
4325
4326 static void
4327 remove_duplicate_values (variable *var)
4328 {
4329 location_chain *node, **nodep;
4330
4331 gcc_assert (var->onepart);
4332 gcc_assert (var->n_var_parts == 1);
4333 gcc_assert (var->refcount == 1);
4334
4335 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4336 {
4337 if (GET_CODE (node->loc) == VALUE)
4338 {
4339 if (VALUE_RECURSED_INTO (node->loc))
4340 {
4341 /* Remove duplicate value node. */
4342 *nodep = node->next;
4343 delete node;
4344 continue;
4345 }
4346 else
4347 VALUE_RECURSED_INTO (node->loc) = true;
4348 }
4349 nodep = &node->next;
4350 }
4351
4352 for (node = var->var_part[0].loc_chain; node; node = node->next)
4353 if (GET_CODE (node->loc) == VALUE)
4354 {
4355 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4356 VALUE_RECURSED_INTO (node->loc) = false;
4357 }
4358 }
4359
4360
4361 /* Hash table iteration argument passed to variable_post_merge. */
4362 struct dfset_post_merge
4363 {
4364 /* The new input set for the current block. */
4365 dataflow_set *set;
4366 /* Pointer to the permanent input set for the current block, or
4367 NULL. */
4368 dataflow_set **permp;
4369 };
4370
4371 /* Create values for incoming expressions associated with one-part
4372 variables that don't have value numbers for them. */
4373
4374 int
4375 variable_post_merge_new_vals (variable **slot, dfset_post_merge *dfpm)
4376 {
4377 dataflow_set *set = dfpm->set;
4378 variable *var = *slot;
4379 location_chain *node;
4380
4381 if (!var->onepart || !var->n_var_parts)
4382 return 1;
4383
4384 gcc_assert (var->n_var_parts == 1);
4385
4386 if (dv_is_decl_p (var->dv))
4387 {
4388 bool check_dupes = false;
4389
4390 restart:
4391 for (node = var->var_part[0].loc_chain; node; node = node->next)
4392 {
4393 if (GET_CODE (node->loc) == VALUE)
4394 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4395 else if (GET_CODE (node->loc) == REG)
4396 {
4397 attrs *att, **attp, **curp = NULL;
4398
4399 if (var->refcount != 1)
4400 {
4401 slot = unshare_variable (set, slot, var,
4402 VAR_INIT_STATUS_INITIALIZED);
4403 var = *slot;
4404 goto restart;
4405 }
4406
4407 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4408 attp = &att->next)
4409 if (att->offset == 0
4410 && GET_MODE (att->loc) == GET_MODE (node->loc))
4411 {
4412 if (dv_is_value_p (att->dv))
4413 {
4414 rtx cval = dv_as_value (att->dv);
4415 node->loc = cval;
4416 check_dupes = true;
4417 break;
4418 }
4419 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4420 curp = attp;
4421 }
4422
4423 if (!curp)
4424 {
4425 curp = attp;
4426 while (*curp)
4427 if ((*curp)->offset == 0
4428 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4429 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4430 break;
4431 else
4432 curp = &(*curp)->next;
4433 gcc_assert (*curp);
4434 }
4435
4436 if (!att)
4437 {
4438 decl_or_value cdv;
4439 rtx cval;
4440
4441 if (!*dfpm->permp)
4442 {
4443 *dfpm->permp = XNEW (dataflow_set);
4444 dataflow_set_init (*dfpm->permp);
4445 }
4446
4447 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4448 att; att = att->next)
4449 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4450 {
4451 gcc_assert (att->offset == 0
4452 && dv_is_value_p (att->dv));
4453 val_reset (set, att->dv);
4454 break;
4455 }
4456
4457 if (att)
4458 {
4459 cdv = att->dv;
4460 cval = dv_as_value (cdv);
4461 }
4462 else
4463 {
4464 /* Create a unique value to hold this register,
4465 that ought to be found and reused in
4466 subsequent rounds. */
4467 cselib_val *v;
4468 gcc_assert (!cselib_lookup (node->loc,
4469 GET_MODE (node->loc), 0,
4470 VOIDmode));
4471 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4472 VOIDmode);
4473 cselib_preserve_value (v);
4474 cselib_invalidate_rtx (node->loc);
4475 cval = v->val_rtx;
4476 cdv = dv_from_value (cval);
4477 if (dump_file)
4478 fprintf (dump_file,
4479 "Created new value %u:%u for reg %i\n",
4480 v->uid, v->hash, REGNO (node->loc));
4481 }
4482
4483 var_reg_decl_set (*dfpm->permp, node->loc,
4484 VAR_INIT_STATUS_INITIALIZED,
4485 cdv, 0, NULL, INSERT);
4486
4487 node->loc = cval;
4488 check_dupes = true;
4489 }
4490
4491 /* Remove attribute referring to the decl, which now
4492 uses the value for the register, already existing or
4493 to be added when we bring perm in. */
4494 att = *curp;
4495 *curp = att->next;
4496 delete att;
4497 }
4498 }
4499
4500 if (check_dupes)
4501 remove_duplicate_values (var);
4502 }
4503
4504 return 1;
4505 }
4506
4507 /* Reset values in the permanent set that are not associated with the
4508 chosen expression. */
4509
4510 int
4511 variable_post_merge_perm_vals (variable **pslot, dfset_post_merge *dfpm)
4512 {
4513 dataflow_set *set = dfpm->set;
4514 variable *pvar = *pslot, *var;
4515 location_chain *pnode;
4516 decl_or_value dv;
4517 attrs *att;
4518
4519 gcc_assert (dv_is_value_p (pvar->dv)
4520 && pvar->n_var_parts == 1);
4521 pnode = pvar->var_part[0].loc_chain;
4522 gcc_assert (pnode
4523 && !pnode->next
4524 && REG_P (pnode->loc));
4525
4526 dv = pvar->dv;
4527
4528 var = shared_hash_find (set->vars, dv);
4529 if (var)
4530 {
4531 /* Although variable_post_merge_new_vals may have made decls
4532 non-star-canonical, values that pre-existed in canonical form
4533 remain canonical, and newly-created values reference a single
4534 REG, so they are canonical as well. Since VAR has the
4535 location list for a VALUE, using find_loc_in_1pdv for it is
4536 fine, since VALUEs don't map back to DECLs. */
4537 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4538 return 1;
4539 val_reset (set, dv);
4540 }
4541
4542 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4543 if (att->offset == 0
4544 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4545 && dv_is_value_p (att->dv))
4546 break;
4547
4548 /* If there is a value associated with this register already, create
4549 an equivalence. */
4550 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4551 {
4552 rtx cval = dv_as_value (att->dv);
4553 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4554 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4555 NULL, INSERT);
4556 }
4557 else if (!att)
4558 {
4559 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4560 dv, 0, pnode->loc);
4561 variable_union (pvar, set);
4562 }
4563
4564 return 1;
4565 }
4566
4567 /* Just checking stuff and registering register attributes for
4568 now. */
4569
4570 static void
4571 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4572 {
4573 struct dfset_post_merge dfpm;
4574
4575 dfpm.set = set;
4576 dfpm.permp = permp;
4577
4578 shared_hash_htab (set->vars)
4579 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4580 if (*permp)
4581 shared_hash_htab ((*permp)->vars)
4582 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4583 shared_hash_htab (set->vars)
4584 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4585 shared_hash_htab (set->vars)
4586 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4587 }
4588
4589 /* Return a node whose loc is a MEM that refers to EXPR in the
4590 location list of a one-part variable or value VAR, or in that of
4591 any values recursively mentioned in the location lists. */
4592
4593 static location_chain *
4594 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4595 {
4596 location_chain *node;
4597 decl_or_value dv;
4598 variable *var;
4599 location_chain *where = NULL;
4600
4601 if (!val)
4602 return NULL;
4603
4604 gcc_assert (GET_CODE (val) == VALUE
4605 && !VALUE_RECURSED_INTO (val));
4606
4607 dv = dv_from_value (val);
4608 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4609
4610 if (!var)
4611 return NULL;
4612
4613 gcc_assert (var->onepart);
4614
4615 if (!var->n_var_parts)
4616 return NULL;
4617
4618 VALUE_RECURSED_INTO (val) = true;
4619
4620 for (node = var->var_part[0].loc_chain; node; node = node->next)
4621 if (MEM_P (node->loc)
4622 && MEM_EXPR (node->loc) == expr
4623 && INT_MEM_OFFSET (node->loc) == 0)
4624 {
4625 where = node;
4626 break;
4627 }
4628 else if (GET_CODE (node->loc) == VALUE
4629 && !VALUE_RECURSED_INTO (node->loc)
4630 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4631 break;
4632
4633 VALUE_RECURSED_INTO (val) = false;
4634
4635 return where;
4636 }
4637
4638 /* Return TRUE if the value of MEM may vary across a call. */
4639
4640 static bool
4641 mem_dies_at_call (rtx mem)
4642 {
4643 tree expr = MEM_EXPR (mem);
4644 tree decl;
4645
4646 if (!expr)
4647 return true;
4648
4649 decl = get_base_address (expr);
4650
4651 if (!decl)
4652 return true;
4653
4654 if (!DECL_P (decl))
4655 return true;
4656
4657 return (may_be_aliased (decl)
4658 || (!TREE_READONLY (decl) && is_global_var (decl)));
4659 }
4660
4661 /* Remove all MEMs from the location list of a hash table entry for a
4662 one-part variable, except those whose MEM attributes map back to
4663 the variable itself, directly or within a VALUE. */
4664
4665 int
4666 dataflow_set_preserve_mem_locs (variable **slot, dataflow_set *set)
4667 {
4668 variable *var = *slot;
4669
4670 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4671 {
4672 tree decl = dv_as_decl (var->dv);
4673 location_chain *loc, **locp;
4674 bool changed = false;
4675
4676 if (!var->n_var_parts)
4677 return 1;
4678
4679 gcc_assert (var->n_var_parts == 1);
4680
4681 if (shared_var_p (var, set->vars))
4682 {
4683 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4684 {
4685 /* We want to remove dying MEMs that don't refer to DECL. */
4686 if (GET_CODE (loc->loc) == MEM
4687 && (MEM_EXPR (loc->loc) != decl
4688 || INT_MEM_OFFSET (loc->loc) != 0)
4689 && mem_dies_at_call (loc->loc))
4690 break;
4691 /* We want to move here MEMs that do refer to DECL. */
4692 else if (GET_CODE (loc->loc) == VALUE
4693 && find_mem_expr_in_1pdv (decl, loc->loc,
4694 shared_hash_htab (set->vars)))
4695 break;
4696 }
4697
4698 if (!loc)
4699 return 1;
4700
4701 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4702 var = *slot;
4703 gcc_assert (var->n_var_parts == 1);
4704 }
4705
4706 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4707 loc; loc = *locp)
4708 {
4709 rtx old_loc = loc->loc;
4710 if (GET_CODE (old_loc) == VALUE)
4711 {
4712 location_chain *mem_node
4713 = find_mem_expr_in_1pdv (decl, loc->loc,
4714 shared_hash_htab (set->vars));
4715
4716 /* ??? This picks up only one out of multiple MEMs that
4717 refer to the same variable. Do we ever need to be
4718 concerned about dealing with more than one, or, given
4719 that they should all map to the same variable
4720 location, their addresses will have been merged and
4721 they will be regarded as equivalent? */
4722 if (mem_node)
4723 {
4724 loc->loc = mem_node->loc;
4725 loc->set_src = mem_node->set_src;
4726 loc->init = MIN (loc->init, mem_node->init);
4727 }
4728 }
4729
4730 if (GET_CODE (loc->loc) != MEM
4731 || (MEM_EXPR (loc->loc) == decl
4732 && INT_MEM_OFFSET (loc->loc) == 0)
4733 || !mem_dies_at_call (loc->loc))
4734 {
4735 if (old_loc != loc->loc && emit_notes)
4736 {
4737 if (old_loc == var->var_part[0].cur_loc)
4738 {
4739 changed = true;
4740 var->var_part[0].cur_loc = NULL;
4741 }
4742 }
4743 locp = &loc->next;
4744 continue;
4745 }
4746
4747 if (emit_notes)
4748 {
4749 if (old_loc == var->var_part[0].cur_loc)
4750 {
4751 changed = true;
4752 var->var_part[0].cur_loc = NULL;
4753 }
4754 }
4755 *locp = loc->next;
4756 delete loc;
4757 }
4758
4759 if (!var->var_part[0].loc_chain)
4760 {
4761 var->n_var_parts--;
4762 changed = true;
4763 }
4764 if (changed)
4765 variable_was_changed (var, set);
4766 }
4767
4768 return 1;
4769 }
4770
4771 /* Remove all MEMs from the location list of a hash table entry for a
4772 onepart variable. */
4773
4774 int
4775 dataflow_set_remove_mem_locs (variable **slot, dataflow_set *set)
4776 {
4777 variable *var = *slot;
4778
4779 if (var->onepart != NOT_ONEPART)
4780 {
4781 location_chain *loc, **locp;
4782 bool changed = false;
4783 rtx cur_loc;
4784
4785 gcc_assert (var->n_var_parts == 1);
4786
4787 if (shared_var_p (var, set->vars))
4788 {
4789 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4790 if (GET_CODE (loc->loc) == MEM
4791 && mem_dies_at_call (loc->loc))
4792 break;
4793
4794 if (!loc)
4795 return 1;
4796
4797 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4798 var = *slot;
4799 gcc_assert (var->n_var_parts == 1);
4800 }
4801
4802 if (VAR_LOC_1PAUX (var))
4803 cur_loc = VAR_LOC_FROM (var);
4804 else
4805 cur_loc = var->var_part[0].cur_loc;
4806
4807 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4808 loc; loc = *locp)
4809 {
4810 if (GET_CODE (loc->loc) != MEM
4811 || !mem_dies_at_call (loc->loc))
4812 {
4813 locp = &loc->next;
4814 continue;
4815 }
4816
4817 *locp = loc->next;
4818 /* If we have deleted the location which was last emitted
4819 we have to emit new location so add the variable to set
4820 of changed variables. */
4821 if (cur_loc == loc->loc)
4822 {
4823 changed = true;
4824 var->var_part[0].cur_loc = NULL;
4825 if (VAR_LOC_1PAUX (var))
4826 VAR_LOC_FROM (var) = NULL;
4827 }
4828 delete loc;
4829 }
4830
4831 if (!var->var_part[0].loc_chain)
4832 {
4833 var->n_var_parts--;
4834 changed = true;
4835 }
4836 if (changed)
4837 variable_was_changed (var, set);
4838 }
4839
4840 return 1;
4841 }
4842
4843 /* Remove all variable-location information about call-clobbered
4844 registers, as well as associations between MEMs and VALUEs. */
4845
4846 static void
4847 dataflow_set_clear_at_call (dataflow_set *set, rtx_insn *call_insn)
4848 {
4849 unsigned int r;
4850 hard_reg_set_iterator hrsi;
4851 HARD_REG_SET invalidated_regs;
4852
4853 get_call_reg_set_usage (call_insn, &invalidated_regs,
4854 regs_invalidated_by_call);
4855
4856 EXECUTE_IF_SET_IN_HARD_REG_SET (invalidated_regs, 0, r, hrsi)
4857 var_regno_delete (set, r);
4858
4859 if (MAY_HAVE_DEBUG_INSNS)
4860 {
4861 set->traversed_vars = set->vars;
4862 shared_hash_htab (set->vars)
4863 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4864 set->traversed_vars = set->vars;
4865 shared_hash_htab (set->vars)
4866 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4867 set->traversed_vars = NULL;
4868 }
4869 }
4870
4871 static bool
4872 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4873 {
4874 location_chain *lc1, *lc2;
4875
4876 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4877 {
4878 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4879 {
4880 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4881 {
4882 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4883 break;
4884 }
4885 if (rtx_equal_p (lc1->loc, lc2->loc))
4886 break;
4887 }
4888 if (!lc2)
4889 return true;
4890 }
4891 return false;
4892 }
4893
4894 /* Return true if one-part variables VAR1 and VAR2 are different.
4895 They must be in canonical order. */
4896
4897 static bool
4898 onepart_variable_different_p (variable *var1, variable *var2)
4899 {
4900 location_chain *lc1, *lc2;
4901
4902 if (var1 == var2)
4903 return false;
4904
4905 gcc_assert (var1->n_var_parts == 1
4906 && var2->n_var_parts == 1);
4907
4908 lc1 = var1->var_part[0].loc_chain;
4909 lc2 = var2->var_part[0].loc_chain;
4910
4911 gcc_assert (lc1 && lc2);
4912
4913 while (lc1 && lc2)
4914 {
4915 if (loc_cmp (lc1->loc, lc2->loc))
4916 return true;
4917 lc1 = lc1->next;
4918 lc2 = lc2->next;
4919 }
4920
4921 return lc1 != lc2;
4922 }
4923
4924 /* Return true if one-part variables VAR1 and VAR2 are different.
4925 They must be in canonical order. */
4926
4927 static void
4928 dump_onepart_variable_differences (variable *var1, variable *var2)
4929 {
4930 location_chain *lc1, *lc2;
4931
4932 gcc_assert (var1 != var2);
4933 gcc_assert (dump_file);
4934 gcc_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4935 gcc_assert (var1->n_var_parts == 1
4936 && var2->n_var_parts == 1);
4937
4938 lc1 = var1->var_part[0].loc_chain;
4939 lc2 = var2->var_part[0].loc_chain;
4940
4941 gcc_assert (lc1 && lc2);
4942
4943 while (lc1 && lc2)
4944 {
4945 switch (loc_cmp (lc1->loc, lc2->loc))
4946 {
4947 case -1:
4948 fprintf (dump_file, "removed: ");
4949 print_rtl_single (dump_file, lc1->loc);
4950 lc1 = lc1->next;
4951 continue;
4952 case 0:
4953 break;
4954 case 1:
4955 fprintf (dump_file, "added: ");
4956 print_rtl_single (dump_file, lc2->loc);
4957 lc2 = lc2->next;
4958 continue;
4959 default:
4960 gcc_unreachable ();
4961 }
4962 lc1 = lc1->next;
4963 lc2 = lc2->next;
4964 }
4965
4966 while (lc1)
4967 {
4968 fprintf (dump_file, "removed: ");
4969 print_rtl_single (dump_file, lc1->loc);
4970 lc1 = lc1->next;
4971 }
4972
4973 while (lc2)
4974 {
4975 fprintf (dump_file, "added: ");
4976 print_rtl_single (dump_file, lc2->loc);
4977 lc2 = lc2->next;
4978 }
4979 }
4980
4981 /* Return true if variables VAR1 and VAR2 are different. */
4982
4983 static bool
4984 variable_different_p (variable *var1, variable *var2)
4985 {
4986 int i;
4987
4988 if (var1 == var2)
4989 return false;
4990
4991 if (var1->onepart != var2->onepart)
4992 return true;
4993
4994 if (var1->n_var_parts != var2->n_var_parts)
4995 return true;
4996
4997 if (var1->onepart && var1->n_var_parts)
4998 {
4999 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
5000 && var1->n_var_parts == 1);
5001 /* One-part values have locations in a canonical order. */
5002 return onepart_variable_different_p (var1, var2);
5003 }
5004
5005 for (i = 0; i < var1->n_var_parts; i++)
5006 {
5007 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
5008 return true;
5009 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
5010 return true;
5011 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
5012 return true;
5013 }
5014 return false;
5015 }
5016
5017 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
5018
5019 static bool
5020 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
5021 {
5022 variable_iterator_type hi;
5023 variable *var1;
5024 bool diffound = false;
5025 bool details = (dump_file && (dump_flags & TDF_DETAILS));
5026
5027 #define RETRUE \
5028 do \
5029 { \
5030 if (!details) \
5031 return true; \
5032 else \
5033 diffound = true; \
5034 } \
5035 while (0)
5036
5037 if (old_set->vars == new_set->vars)
5038 return false;
5039
5040 if (shared_hash_htab (old_set->vars)->elements ()
5041 != shared_hash_htab (new_set->vars)->elements ())
5042 RETRUE;
5043
5044 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
5045 var1, variable, hi)
5046 {
5047 variable_table_type *htab = shared_hash_htab (new_set->vars);
5048 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5049
5050 if (!var2)
5051 {
5052 if (dump_file && (dump_flags & TDF_DETAILS))
5053 {
5054 fprintf (dump_file, "dataflow difference found: removal of:\n");
5055 dump_var (var1);
5056 }
5057 RETRUE;
5058 }
5059 else if (variable_different_p (var1, var2))
5060 {
5061 if (details)
5062 {
5063 fprintf (dump_file, "dataflow difference found: "
5064 "old and new follow:\n");
5065 dump_var (var1);
5066 if (dv_onepart_p (var1->dv))
5067 dump_onepart_variable_differences (var1, var2);
5068 dump_var (var2);
5069 }
5070 RETRUE;
5071 }
5072 }
5073
5074 /* There's no need to traverse the second hashtab unless we want to
5075 print the details. If both have the same number of elements and
5076 the second one had all entries found in the first one, then the
5077 second can't have any extra entries. */
5078 if (!details)
5079 return diffound;
5080
5081 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (new_set->vars),
5082 var1, variable, hi)
5083 {
5084 variable_table_type *htab = shared_hash_htab (old_set->vars);
5085 variable *var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
5086 if (!var2)
5087 {
5088 if (details)
5089 {
5090 fprintf (dump_file, "dataflow difference found: addition of:\n");
5091 dump_var (var1);
5092 }
5093 RETRUE;
5094 }
5095 }
5096
5097 #undef RETRUE
5098
5099 return diffound;
5100 }
5101
5102 /* Free the contents of dataflow set SET. */
5103
5104 static void
5105 dataflow_set_destroy (dataflow_set *set)
5106 {
5107 int i;
5108
5109 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5110 attrs_list_clear (&set->regs[i]);
5111
5112 shared_hash_destroy (set->vars);
5113 set->vars = NULL;
5114 }
5115
5116 /* Return true if T is a tracked parameter with non-degenerate record type. */
5117
5118 static bool
5119 tracked_record_parameter_p (tree t)
5120 {
5121 if (TREE_CODE (t) != PARM_DECL)
5122 return false;
5123
5124 if (DECL_MODE (t) == BLKmode)
5125 return false;
5126
5127 tree type = TREE_TYPE (t);
5128 if (TREE_CODE (type) != RECORD_TYPE)
5129 return false;
5130
5131 if (DECL_CHAIN (TYPE_FIELDS (type)) == NULL_TREE)
5132 return false;
5133
5134 return true;
5135 }
5136
5137 /* Shall EXPR be tracked? */
5138
5139 static bool
5140 track_expr_p (tree expr, bool need_rtl)
5141 {
5142 rtx decl_rtl;
5143 tree realdecl;
5144
5145 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5146 return DECL_RTL_SET_P (expr);
5147
5148 /* If EXPR is not a parameter or a variable do not track it. */
5149 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5150 return 0;
5151
5152 /* It also must have a name... */
5153 if (!DECL_NAME (expr) && need_rtl)
5154 return 0;
5155
5156 /* ... and a RTL assigned to it. */
5157 decl_rtl = DECL_RTL_IF_SET (expr);
5158 if (!decl_rtl && need_rtl)
5159 return 0;
5160
5161 /* If this expression is really a debug alias of some other declaration, we
5162 don't need to track this expression if the ultimate declaration is
5163 ignored. */
5164 realdecl = expr;
5165 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5166 {
5167 realdecl = DECL_DEBUG_EXPR (realdecl);
5168 if (!DECL_P (realdecl))
5169 {
5170 if (handled_component_p (realdecl)
5171 || (TREE_CODE (realdecl) == MEM_REF
5172 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5173 {
5174 HOST_WIDE_INT bitsize, bitpos, maxsize;
5175 bool reverse;
5176 tree innerdecl
5177 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5178 &maxsize, &reverse);
5179 if (!DECL_P (innerdecl)
5180 || DECL_IGNORED_P (innerdecl)
5181 /* Do not track declarations for parts of tracked record
5182 parameters since we want to track them as a whole. */
5183 || tracked_record_parameter_p (innerdecl)
5184 || TREE_STATIC (innerdecl)
5185 || bitsize <= 0
5186 || bitpos + bitsize > 256
5187 || bitsize != maxsize)
5188 return 0;
5189 else
5190 realdecl = expr;
5191 }
5192 else
5193 return 0;
5194 }
5195 }
5196
5197 /* Do not track EXPR if REALDECL it should be ignored for debugging
5198 purposes. */
5199 if (DECL_IGNORED_P (realdecl))
5200 return 0;
5201
5202 /* Do not track global variables until we are able to emit correct location
5203 list for them. */
5204 if (TREE_STATIC (realdecl))
5205 return 0;
5206
5207 /* When the EXPR is a DECL for alias of some variable (see example)
5208 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5209 DECL_RTL contains SYMBOL_REF.
5210
5211 Example:
5212 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5213 char **_dl_argv;
5214 */
5215 if (decl_rtl && MEM_P (decl_rtl)
5216 && contains_symbol_ref_p (XEXP (decl_rtl, 0)))
5217 return 0;
5218
5219 /* If RTX is a memory it should not be very large (because it would be
5220 an array or struct). */
5221 if (decl_rtl && MEM_P (decl_rtl))
5222 {
5223 /* Do not track structures and arrays. */
5224 if (GET_MODE (decl_rtl) == BLKmode
5225 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5226 return 0;
5227 if (MEM_SIZE_KNOWN_P (decl_rtl)
5228 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5229 return 0;
5230 }
5231
5232 DECL_CHANGED (expr) = 0;
5233 DECL_CHANGED (realdecl) = 0;
5234 return 1;
5235 }
5236
5237 /* Determine whether a given LOC refers to the same variable part as
5238 EXPR+OFFSET. */
5239
5240 static bool
5241 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5242 {
5243 tree expr2;
5244 HOST_WIDE_INT offset2;
5245
5246 if (! DECL_P (expr))
5247 return false;
5248
5249 if (REG_P (loc))
5250 {
5251 expr2 = REG_EXPR (loc);
5252 offset2 = REG_OFFSET (loc);
5253 }
5254 else if (MEM_P (loc))
5255 {
5256 expr2 = MEM_EXPR (loc);
5257 offset2 = INT_MEM_OFFSET (loc);
5258 }
5259 else
5260 return false;
5261
5262 if (! expr2 || ! DECL_P (expr2))
5263 return false;
5264
5265 expr = var_debug_decl (expr);
5266 expr2 = var_debug_decl (expr2);
5267
5268 return (expr == expr2 && offset == offset2);
5269 }
5270
5271 /* LOC is a REG or MEM that we would like to track if possible.
5272 If EXPR is null, we don't know what expression LOC refers to,
5273 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5274 LOC is an lvalue register.
5275
5276 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5277 is something we can track. When returning true, store the mode of
5278 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5279 from EXPR in *OFFSET_OUT (if nonnull). */
5280
5281 static bool
5282 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5283 machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5284 {
5285 machine_mode mode;
5286
5287 if (expr == NULL || !track_expr_p (expr, true))
5288 return false;
5289
5290 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5291 whole subreg, but only the old inner part is really relevant. */
5292 mode = GET_MODE (loc);
5293 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5294 {
5295 machine_mode pseudo_mode;
5296
5297 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5298 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5299 {
5300 offset += byte_lowpart_offset (pseudo_mode, mode);
5301 mode = pseudo_mode;
5302 }
5303 }
5304
5305 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5306 Do the same if we are storing to a register and EXPR occupies
5307 the whole of register LOC; in that case, the whole of EXPR is
5308 being changed. We exclude complex modes from the second case
5309 because the real and imaginary parts are represented as separate
5310 pseudo registers, even if the whole complex value fits into one
5311 hard register. */
5312 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5313 || (store_reg_p
5314 && !COMPLEX_MODE_P (DECL_MODE (expr))
5315 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5316 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5317 {
5318 mode = DECL_MODE (expr);
5319 offset = 0;
5320 }
5321
5322 if (offset < 0 || offset >= MAX_VAR_PARTS)
5323 return false;
5324
5325 if (mode_out)
5326 *mode_out = mode;
5327 if (offset_out)
5328 *offset_out = offset;
5329 return true;
5330 }
5331
5332 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5333 want to track. When returning nonnull, make sure that the attributes
5334 on the returned value are updated. */
5335
5336 static rtx
5337 var_lowpart (machine_mode mode, rtx loc)
5338 {
5339 unsigned int offset, reg_offset, regno;
5340
5341 if (GET_MODE (loc) == mode)
5342 return loc;
5343
5344 if (!REG_P (loc) && !MEM_P (loc))
5345 return NULL;
5346
5347 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5348
5349 if (MEM_P (loc))
5350 return adjust_address_nv (loc, mode, offset);
5351
5352 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5353 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5354 reg_offset, mode);
5355 return gen_rtx_REG_offset (loc, mode, regno, offset);
5356 }
5357
5358 /* Carry information about uses and stores while walking rtx. */
5359
5360 struct count_use_info
5361 {
5362 /* The insn where the RTX is. */
5363 rtx_insn *insn;
5364
5365 /* The basic block where insn is. */
5366 basic_block bb;
5367
5368 /* The array of n_sets sets in the insn, as determined by cselib. */
5369 struct cselib_set *sets;
5370 int n_sets;
5371
5372 /* True if we're counting stores, false otherwise. */
5373 bool store_p;
5374 };
5375
5376 /* Find a VALUE corresponding to X. */
5377
5378 static inline cselib_val *
5379 find_use_val (rtx x, machine_mode mode, struct count_use_info *cui)
5380 {
5381 int i;
5382
5383 if (cui->sets)
5384 {
5385 /* This is called after uses are set up and before stores are
5386 processed by cselib, so it's safe to look up srcs, but not
5387 dsts. So we look up expressions that appear in srcs or in
5388 dest expressions, but we search the sets array for dests of
5389 stores. */
5390 if (cui->store_p)
5391 {
5392 /* Some targets represent memset and memcpy patterns
5393 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5394 (set (mem:BLK ...) (const_int ...)) or
5395 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5396 in that case, otherwise we end up with mode mismatches. */
5397 if (mode == BLKmode && MEM_P (x))
5398 return NULL;
5399 for (i = 0; i < cui->n_sets; i++)
5400 if (cui->sets[i].dest == x)
5401 return cui->sets[i].src_elt;
5402 }
5403 else
5404 return cselib_lookup (x, mode, 0, VOIDmode);
5405 }
5406
5407 return NULL;
5408 }
5409
5410 /* Replace all registers and addresses in an expression with VALUE
5411 expressions that map back to them, unless the expression is a
5412 register. If no mapping is or can be performed, returns NULL. */
5413
5414 static rtx
5415 replace_expr_with_values (rtx loc)
5416 {
5417 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5418 return NULL;
5419 else if (MEM_P (loc))
5420 {
5421 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5422 get_address_mode (loc), 0,
5423 GET_MODE (loc));
5424 if (addr)
5425 return replace_equiv_address_nv (loc, addr->val_rtx);
5426 else
5427 return NULL;
5428 }
5429 else
5430 return cselib_subst_to_values (loc, VOIDmode);
5431 }
5432
5433 /* Return true if X contains a DEBUG_EXPR. */
5434
5435 static bool
5436 rtx_debug_expr_p (const_rtx x)
5437 {
5438 subrtx_iterator::array_type array;
5439 FOR_EACH_SUBRTX (iter, array, x, ALL)
5440 if (GET_CODE (*iter) == DEBUG_EXPR)
5441 return true;
5442 return false;
5443 }
5444
5445 /* Determine what kind of micro operation to choose for a USE. Return
5446 MO_CLOBBER if no micro operation is to be generated. */
5447
5448 static enum micro_operation_type
5449 use_type (rtx loc, struct count_use_info *cui, machine_mode *modep)
5450 {
5451 tree expr;
5452
5453 if (cui && cui->sets)
5454 {
5455 if (GET_CODE (loc) == VAR_LOCATION)
5456 {
5457 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5458 {
5459 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5460 if (! VAR_LOC_UNKNOWN_P (ploc))
5461 {
5462 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5463 VOIDmode);
5464
5465 /* ??? flag_float_store and volatile mems are never
5466 given values, but we could in theory use them for
5467 locations. */
5468 gcc_assert (val || 1);
5469 }
5470 return MO_VAL_LOC;
5471 }
5472 else
5473 return MO_CLOBBER;
5474 }
5475
5476 if (REG_P (loc) || MEM_P (loc))
5477 {
5478 if (modep)
5479 *modep = GET_MODE (loc);
5480 if (cui->store_p)
5481 {
5482 if (REG_P (loc)
5483 || (find_use_val (loc, GET_MODE (loc), cui)
5484 && cselib_lookup (XEXP (loc, 0),
5485 get_address_mode (loc), 0,
5486 GET_MODE (loc))))
5487 return MO_VAL_SET;
5488 }
5489 else
5490 {
5491 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5492
5493 if (val && !cselib_preserved_value_p (val))
5494 return MO_VAL_USE;
5495 }
5496 }
5497 }
5498
5499 if (REG_P (loc))
5500 {
5501 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5502
5503 if (loc == cfa_base_rtx)
5504 return MO_CLOBBER;
5505 expr = REG_EXPR (loc);
5506
5507 if (!expr)
5508 return MO_USE_NO_VAR;
5509 else if (target_for_debug_bind (var_debug_decl (expr)))
5510 return MO_CLOBBER;
5511 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5512 false, modep, NULL))
5513 return MO_USE;
5514 else
5515 return MO_USE_NO_VAR;
5516 }
5517 else if (MEM_P (loc))
5518 {
5519 expr = MEM_EXPR (loc);
5520
5521 if (!expr)
5522 return MO_CLOBBER;
5523 else if (target_for_debug_bind (var_debug_decl (expr)))
5524 return MO_CLOBBER;
5525 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5526 false, modep, NULL)
5527 /* Multi-part variables shouldn't refer to one-part
5528 variable names such as VALUEs (never happens) or
5529 DEBUG_EXPRs (only happens in the presence of debug
5530 insns). */
5531 && (!MAY_HAVE_DEBUG_INSNS
5532 || !rtx_debug_expr_p (XEXP (loc, 0))))
5533 return MO_USE;
5534 else
5535 return MO_CLOBBER;
5536 }
5537
5538 return MO_CLOBBER;
5539 }
5540
5541 /* Log to OUT information about micro-operation MOPT involving X in
5542 INSN of BB. */
5543
5544 static inline void
5545 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5546 enum micro_operation_type mopt, FILE *out)
5547 {
5548 fprintf (out, "bb %i op %i insn %i %s ",
5549 bb->index, VTI (bb)->mos.length (),
5550 INSN_UID (insn), micro_operation_type_name[mopt]);
5551 print_inline_rtx (out, x, 2);
5552 fputc ('\n', out);
5553 }
5554
5555 /* Tell whether the CONCAT used to holds a VALUE and its location
5556 needs value resolution, i.e., an attempt of mapping the location
5557 back to other incoming values. */
5558 #define VAL_NEEDS_RESOLUTION(x) \
5559 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5560 /* Whether the location in the CONCAT is a tracked expression, that
5561 should also be handled like a MO_USE. */
5562 #define VAL_HOLDS_TRACK_EXPR(x) \
5563 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5564 /* Whether the location in the CONCAT should be handled like a MO_COPY
5565 as well. */
5566 #define VAL_EXPR_IS_COPIED(x) \
5567 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5568 /* Whether the location in the CONCAT should be handled like a
5569 MO_CLOBBER as well. */
5570 #define VAL_EXPR_IS_CLOBBERED(x) \
5571 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5572
5573 /* All preserved VALUEs. */
5574 static vec<rtx> preserved_values;
5575
5576 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5577
5578 static void
5579 preserve_value (cselib_val *val)
5580 {
5581 cselib_preserve_value (val);
5582 preserved_values.safe_push (val->val_rtx);
5583 }
5584
5585 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5586 any rtxes not suitable for CONST use not replaced by VALUEs
5587 are discovered. */
5588
5589 static bool
5590 non_suitable_const (const_rtx x)
5591 {
5592 subrtx_iterator::array_type array;
5593 FOR_EACH_SUBRTX (iter, array, x, ALL)
5594 {
5595 const_rtx x = *iter;
5596 switch (GET_CODE (x))
5597 {
5598 case REG:
5599 case DEBUG_EXPR:
5600 case PC:
5601 case SCRATCH:
5602 case CC0:
5603 case ASM_INPUT:
5604 case ASM_OPERANDS:
5605 return true;
5606 case MEM:
5607 if (!MEM_READONLY_P (x))
5608 return true;
5609 break;
5610 default:
5611 break;
5612 }
5613 }
5614 return false;
5615 }
5616
5617 /* Add uses (register and memory references) LOC which will be tracked
5618 to VTI (bb)->mos. */
5619
5620 static void
5621 add_uses (rtx loc, struct count_use_info *cui)
5622 {
5623 machine_mode mode = VOIDmode;
5624 enum micro_operation_type type = use_type (loc, cui, &mode);
5625
5626 if (type != MO_CLOBBER)
5627 {
5628 basic_block bb = cui->bb;
5629 micro_operation mo;
5630
5631 mo.type = type;
5632 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5633 mo.insn = cui->insn;
5634
5635 if (type == MO_VAL_LOC)
5636 {
5637 rtx oloc = loc;
5638 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5639 cselib_val *val;
5640
5641 gcc_assert (cui->sets);
5642
5643 if (MEM_P (vloc)
5644 && !REG_P (XEXP (vloc, 0))
5645 && !MEM_P (XEXP (vloc, 0)))
5646 {
5647 rtx mloc = vloc;
5648 machine_mode address_mode = get_address_mode (mloc);
5649 cselib_val *val
5650 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5651 GET_MODE (mloc));
5652
5653 if (val && !cselib_preserved_value_p (val))
5654 preserve_value (val);
5655 }
5656
5657 if (CONSTANT_P (vloc)
5658 && (GET_CODE (vloc) != CONST || non_suitable_const (vloc)))
5659 /* For constants don't look up any value. */;
5660 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5661 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5662 {
5663 machine_mode mode2;
5664 enum micro_operation_type type2;
5665 rtx nloc = NULL;
5666 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5667
5668 if (resolvable)
5669 nloc = replace_expr_with_values (vloc);
5670
5671 if (nloc)
5672 {
5673 oloc = shallow_copy_rtx (oloc);
5674 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5675 }
5676
5677 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5678
5679 type2 = use_type (vloc, 0, &mode2);
5680
5681 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5682 || type2 == MO_CLOBBER);
5683
5684 if (type2 == MO_CLOBBER
5685 && !cselib_preserved_value_p (val))
5686 {
5687 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5688 preserve_value (val);
5689 }
5690 }
5691 else if (!VAR_LOC_UNKNOWN_P (vloc))
5692 {
5693 oloc = shallow_copy_rtx (oloc);
5694 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5695 }
5696
5697 mo.u.loc = oloc;
5698 }
5699 else if (type == MO_VAL_USE)
5700 {
5701 machine_mode mode2 = VOIDmode;
5702 enum micro_operation_type type2;
5703 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5704 rtx vloc, oloc = loc, nloc;
5705
5706 gcc_assert (cui->sets);
5707
5708 if (MEM_P (oloc)
5709 && !REG_P (XEXP (oloc, 0))
5710 && !MEM_P (XEXP (oloc, 0)))
5711 {
5712 rtx mloc = oloc;
5713 machine_mode address_mode = get_address_mode (mloc);
5714 cselib_val *val
5715 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5716 GET_MODE (mloc));
5717
5718 if (val && !cselib_preserved_value_p (val))
5719 preserve_value (val);
5720 }
5721
5722 type2 = use_type (loc, 0, &mode2);
5723
5724 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5725 || type2 == MO_CLOBBER);
5726
5727 if (type2 == MO_USE)
5728 vloc = var_lowpart (mode2, loc);
5729 else
5730 vloc = oloc;
5731
5732 /* The loc of a MO_VAL_USE may have two forms:
5733
5734 (concat val src): val is at src, a value-based
5735 representation.
5736
5737 (concat (concat val use) src): same as above, with use as
5738 the MO_USE tracked value, if it differs from src.
5739
5740 */
5741
5742 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5743 nloc = replace_expr_with_values (loc);
5744 if (!nloc)
5745 nloc = oloc;
5746
5747 if (vloc != nloc)
5748 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5749 else
5750 oloc = val->val_rtx;
5751
5752 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5753
5754 if (type2 == MO_USE)
5755 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5756 if (!cselib_preserved_value_p (val))
5757 {
5758 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5759 preserve_value (val);
5760 }
5761 }
5762 else
5763 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5764
5765 if (dump_file && (dump_flags & TDF_DETAILS))
5766 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5767 VTI (bb)->mos.safe_push (mo);
5768 }
5769 }
5770
5771 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5772
5773 static void
5774 add_uses_1 (rtx *x, void *cui)
5775 {
5776 subrtx_var_iterator::array_type array;
5777 FOR_EACH_SUBRTX_VAR (iter, array, *x, NONCONST)
5778 add_uses (*iter, (struct count_use_info *) cui);
5779 }
5780
5781 /* This is the value used during expansion of locations. We want it
5782 to be unbounded, so that variables expanded deep in a recursion
5783 nest are fully evaluated, so that their values are cached
5784 correctly. We avoid recursion cycles through other means, and we
5785 don't unshare RTL, so excess complexity is not a problem. */
5786 #define EXPR_DEPTH (INT_MAX)
5787 /* We use this to keep too-complex expressions from being emitted as
5788 location notes, and then to debug information. Users can trade
5789 compile time for ridiculously complex expressions, although they're
5790 seldom useful, and they may often have to be discarded as not
5791 representable anyway. */
5792 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5793
5794 /* Attempt to reverse the EXPR operation in the debug info and record
5795 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5796 no longer live we can express its value as VAL - 6. */
5797
5798 static void
5799 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5800 {
5801 rtx src, arg, ret;
5802 cselib_val *v;
5803 struct elt_loc_list *l;
5804 enum rtx_code code;
5805 int count;
5806
5807 if (GET_CODE (expr) != SET)
5808 return;
5809
5810 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5811 return;
5812
5813 src = SET_SRC (expr);
5814 switch (GET_CODE (src))
5815 {
5816 case PLUS:
5817 case MINUS:
5818 case XOR:
5819 case NOT:
5820 case NEG:
5821 if (!REG_P (XEXP (src, 0)))
5822 return;
5823 break;
5824 case SIGN_EXTEND:
5825 case ZERO_EXTEND:
5826 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5827 return;
5828 break;
5829 default:
5830 return;
5831 }
5832
5833 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5834 return;
5835
5836 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5837 if (!v || !cselib_preserved_value_p (v))
5838 return;
5839
5840 /* Use canonical V to avoid creating multiple redundant expressions
5841 for different VALUES equivalent to V. */
5842 v = canonical_cselib_val (v);
5843
5844 /* Adding a reverse op isn't useful if V already has an always valid
5845 location. Ignore ENTRY_VALUE, while it is always constant, we should
5846 prefer non-ENTRY_VALUE locations whenever possible. */
5847 for (l = v->locs, count = 0; l; l = l->next, count++)
5848 if (CONSTANT_P (l->loc)
5849 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5850 return;
5851 /* Avoid creating too large locs lists. */
5852 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5853 return;
5854
5855 switch (GET_CODE (src))
5856 {
5857 case NOT:
5858 case NEG:
5859 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5860 return;
5861 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5862 break;
5863 case SIGN_EXTEND:
5864 case ZERO_EXTEND:
5865 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5866 break;
5867 case XOR:
5868 code = XOR;
5869 goto binary;
5870 case PLUS:
5871 code = MINUS;
5872 goto binary;
5873 case MINUS:
5874 code = PLUS;
5875 goto binary;
5876 binary:
5877 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5878 return;
5879 arg = XEXP (src, 1);
5880 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5881 {
5882 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5883 if (arg == NULL_RTX)
5884 return;
5885 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5886 return;
5887 }
5888 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5889 break;
5890 default:
5891 gcc_unreachable ();
5892 }
5893
5894 cselib_add_permanent_equiv (v, ret, insn);
5895 }
5896
5897 /* Add stores (register and memory references) LOC which will be tracked
5898 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5899 CUIP->insn is instruction which the LOC is part of. */
5900
5901 static void
5902 add_stores (rtx loc, const_rtx expr, void *cuip)
5903 {
5904 machine_mode mode = VOIDmode, mode2;
5905 struct count_use_info *cui = (struct count_use_info *)cuip;
5906 basic_block bb = cui->bb;
5907 micro_operation mo;
5908 rtx oloc = loc, nloc, src = NULL;
5909 enum micro_operation_type type = use_type (loc, cui, &mode);
5910 bool track_p = false;
5911 cselib_val *v;
5912 bool resolve, preserve;
5913
5914 if (type == MO_CLOBBER)
5915 return;
5916
5917 mode2 = mode;
5918
5919 if (REG_P (loc))
5920 {
5921 gcc_assert (loc != cfa_base_rtx);
5922 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5923 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5924 || GET_CODE (expr) == CLOBBER)
5925 {
5926 mo.type = MO_CLOBBER;
5927 mo.u.loc = loc;
5928 if (GET_CODE (expr) == SET
5929 && SET_DEST (expr) == loc
5930 && !unsuitable_loc (SET_SRC (expr))
5931 && find_use_val (loc, mode, cui))
5932 {
5933 gcc_checking_assert (type == MO_VAL_SET);
5934 mo.u.loc = gen_rtx_SET (loc, SET_SRC (expr));
5935 }
5936 }
5937 else
5938 {
5939 if (GET_CODE (expr) == SET
5940 && SET_DEST (expr) == loc
5941 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5942 src = var_lowpart (mode2, SET_SRC (expr));
5943 loc = var_lowpart (mode2, loc);
5944
5945 if (src == NULL)
5946 {
5947 mo.type = MO_SET;
5948 mo.u.loc = loc;
5949 }
5950 else
5951 {
5952 rtx xexpr = gen_rtx_SET (loc, src);
5953 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5954 {
5955 /* If this is an instruction copying (part of) a parameter
5956 passed by invisible reference to its register location,
5957 pretend it's a SET so that the initial memory location
5958 is discarded, as the parameter register can be reused
5959 for other purposes and we do not track locations based
5960 on generic registers. */
5961 if (MEM_P (src)
5962 && REG_EXPR (loc)
5963 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5964 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5965 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5966 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5967 != arg_pointer_rtx)
5968 mo.type = MO_SET;
5969 else
5970 mo.type = MO_COPY;
5971 }
5972 else
5973 mo.type = MO_SET;
5974 mo.u.loc = xexpr;
5975 }
5976 }
5977 mo.insn = cui->insn;
5978 }
5979 else if (MEM_P (loc)
5980 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5981 || cui->sets))
5982 {
5983 if (MEM_P (loc) && type == MO_VAL_SET
5984 && !REG_P (XEXP (loc, 0))
5985 && !MEM_P (XEXP (loc, 0)))
5986 {
5987 rtx mloc = loc;
5988 machine_mode address_mode = get_address_mode (mloc);
5989 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5990 address_mode, 0,
5991 GET_MODE (mloc));
5992
5993 if (val && !cselib_preserved_value_p (val))
5994 preserve_value (val);
5995 }
5996
5997 if (GET_CODE (expr) == CLOBBER || !track_p)
5998 {
5999 mo.type = MO_CLOBBER;
6000 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
6001 }
6002 else
6003 {
6004 if (GET_CODE (expr) == SET
6005 && SET_DEST (expr) == loc
6006 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
6007 src = var_lowpart (mode2, SET_SRC (expr));
6008 loc = var_lowpart (mode2, loc);
6009
6010 if (src == NULL)
6011 {
6012 mo.type = MO_SET;
6013 mo.u.loc = loc;
6014 }
6015 else
6016 {
6017 rtx xexpr = gen_rtx_SET (loc, src);
6018 if (same_variable_part_p (SET_SRC (xexpr),
6019 MEM_EXPR (loc),
6020 INT_MEM_OFFSET (loc)))
6021 mo.type = MO_COPY;
6022 else
6023 mo.type = MO_SET;
6024 mo.u.loc = xexpr;
6025 }
6026 }
6027 mo.insn = cui->insn;
6028 }
6029 else
6030 return;
6031
6032 if (type != MO_VAL_SET)
6033 goto log_and_return;
6034
6035 v = find_use_val (oloc, mode, cui);
6036
6037 if (!v)
6038 goto log_and_return;
6039
6040 resolve = preserve = !cselib_preserved_value_p (v);
6041
6042 /* We cannot track values for multiple-part variables, so we track only
6043 locations for tracked record parameters. */
6044 if (track_p
6045 && REG_P (loc)
6046 && REG_EXPR (loc)
6047 && tracked_record_parameter_p (REG_EXPR (loc)))
6048 {
6049 /* Although we don't use the value here, it could be used later by the
6050 mere virtue of its existence as the operand of the reverse operation
6051 that gave rise to it (typically extension/truncation). Make sure it
6052 is preserved as required by vt_expand_var_loc_chain. */
6053 if (preserve)
6054 preserve_value (v);
6055 goto log_and_return;
6056 }
6057
6058 if (loc == stack_pointer_rtx
6059 && hard_frame_pointer_adjustment != -1
6060 && preserve)
6061 cselib_set_value_sp_based (v);
6062
6063 nloc = replace_expr_with_values (oloc);
6064 if (nloc)
6065 oloc = nloc;
6066
6067 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6068 {
6069 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6070
6071 if (oval == v)
6072 return;
6073 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6074
6075 if (oval && !cselib_preserved_value_p (oval))
6076 {
6077 micro_operation moa;
6078
6079 preserve_value (oval);
6080
6081 moa.type = MO_VAL_USE;
6082 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6083 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6084 moa.insn = cui->insn;
6085
6086 if (dump_file && (dump_flags & TDF_DETAILS))
6087 log_op_type (moa.u.loc, cui->bb, cui->insn,
6088 moa.type, dump_file);
6089 VTI (bb)->mos.safe_push (moa);
6090 }
6091
6092 resolve = false;
6093 }
6094 else if (resolve && GET_CODE (mo.u.loc) == SET)
6095 {
6096 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6097 nloc = replace_expr_with_values (SET_SRC (expr));
6098 else
6099 nloc = NULL_RTX;
6100
6101 /* Avoid the mode mismatch between oexpr and expr. */
6102 if (!nloc && mode != mode2)
6103 {
6104 nloc = SET_SRC (expr);
6105 gcc_assert (oloc == SET_DEST (expr));
6106 }
6107
6108 if (nloc && nloc != SET_SRC (mo.u.loc))
6109 oloc = gen_rtx_SET (oloc, nloc);
6110 else
6111 {
6112 if (oloc == SET_DEST (mo.u.loc))
6113 /* No point in duplicating. */
6114 oloc = mo.u.loc;
6115 if (!REG_P (SET_SRC (mo.u.loc)))
6116 resolve = false;
6117 }
6118 }
6119 else if (!resolve)
6120 {
6121 if (GET_CODE (mo.u.loc) == SET
6122 && oloc == SET_DEST (mo.u.loc))
6123 /* No point in duplicating. */
6124 oloc = mo.u.loc;
6125 }
6126 else
6127 resolve = false;
6128
6129 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6130
6131 if (mo.u.loc != oloc)
6132 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6133
6134 /* The loc of a MO_VAL_SET may have various forms:
6135
6136 (concat val dst): dst now holds val
6137
6138 (concat val (set dst src)): dst now holds val, copied from src
6139
6140 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6141 after replacing mems and non-top-level regs with values.
6142
6143 (concat (concat val dstv) (set dst src)): dst now holds val,
6144 copied from src. dstv is a value-based representation of dst, if
6145 it differs from dst. If resolution is needed, src is a REG, and
6146 its mode is the same as that of val.
6147
6148 (concat (concat val (set dstv srcv)) (set dst src)): src
6149 copied to dst, holding val. dstv and srcv are value-based
6150 representations of dst and src, respectively.
6151
6152 */
6153
6154 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6155 reverse_op (v->val_rtx, expr, cui->insn);
6156
6157 mo.u.loc = loc;
6158
6159 if (track_p)
6160 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6161 if (preserve)
6162 {
6163 VAL_NEEDS_RESOLUTION (loc) = resolve;
6164 preserve_value (v);
6165 }
6166 if (mo.type == MO_CLOBBER)
6167 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6168 if (mo.type == MO_COPY)
6169 VAL_EXPR_IS_COPIED (loc) = 1;
6170
6171 mo.type = MO_VAL_SET;
6172
6173 log_and_return:
6174 if (dump_file && (dump_flags & TDF_DETAILS))
6175 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6176 VTI (bb)->mos.safe_push (mo);
6177 }
6178
6179 /* Arguments to the call. */
6180 static rtx call_arguments;
6181
6182 /* Compute call_arguments. */
6183
6184 static void
6185 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6186 {
6187 rtx link, x, call;
6188 rtx prev, cur, next;
6189 rtx this_arg = NULL_RTX;
6190 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6191 tree obj_type_ref = NULL_TREE;
6192 CUMULATIVE_ARGS args_so_far_v;
6193 cumulative_args_t args_so_far;
6194
6195 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6196 args_so_far = pack_cumulative_args (&args_so_far_v);
6197 call = get_call_rtx_from (insn);
6198 if (call)
6199 {
6200 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6201 {
6202 rtx symbol = XEXP (XEXP (call, 0), 0);
6203 if (SYMBOL_REF_DECL (symbol))
6204 fndecl = SYMBOL_REF_DECL (symbol);
6205 }
6206 if (fndecl == NULL_TREE)
6207 fndecl = MEM_EXPR (XEXP (call, 0));
6208 if (fndecl
6209 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6210 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6211 fndecl = NULL_TREE;
6212 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6213 type = TREE_TYPE (fndecl);
6214 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6215 {
6216 if (TREE_CODE (fndecl) == INDIRECT_REF
6217 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6218 obj_type_ref = TREE_OPERAND (fndecl, 0);
6219 fndecl = NULL_TREE;
6220 }
6221 if (type)
6222 {
6223 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6224 t = TREE_CHAIN (t))
6225 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6226 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6227 break;
6228 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6229 type = NULL;
6230 else
6231 {
6232 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6233 link = CALL_INSN_FUNCTION_USAGE (insn);
6234 #ifndef PCC_STATIC_STRUCT_RETURN
6235 if (aggregate_value_p (TREE_TYPE (type), type)
6236 && targetm.calls.struct_value_rtx (type, 0) == 0)
6237 {
6238 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6239 machine_mode mode = TYPE_MODE (struct_addr);
6240 rtx reg;
6241 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6242 nargs + 1);
6243 reg = targetm.calls.function_arg (args_so_far, mode,
6244 struct_addr, true);
6245 targetm.calls.function_arg_advance (args_so_far, mode,
6246 struct_addr, true);
6247 if (reg == NULL_RTX)
6248 {
6249 for (; link; link = XEXP (link, 1))
6250 if (GET_CODE (XEXP (link, 0)) == USE
6251 && MEM_P (XEXP (XEXP (link, 0), 0)))
6252 {
6253 link = XEXP (link, 1);
6254 break;
6255 }
6256 }
6257 }
6258 else
6259 #endif
6260 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6261 nargs);
6262 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6263 {
6264 machine_mode mode;
6265 t = TYPE_ARG_TYPES (type);
6266 mode = TYPE_MODE (TREE_VALUE (t));
6267 this_arg = targetm.calls.function_arg (args_so_far, mode,
6268 TREE_VALUE (t), true);
6269 if (this_arg && !REG_P (this_arg))
6270 this_arg = NULL_RTX;
6271 else if (this_arg == NULL_RTX)
6272 {
6273 for (; link; link = XEXP (link, 1))
6274 if (GET_CODE (XEXP (link, 0)) == USE
6275 && MEM_P (XEXP (XEXP (link, 0), 0)))
6276 {
6277 this_arg = XEXP (XEXP (link, 0), 0);
6278 break;
6279 }
6280 }
6281 }
6282 }
6283 }
6284 }
6285 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6286
6287 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6288 if (GET_CODE (XEXP (link, 0)) == USE)
6289 {
6290 rtx item = NULL_RTX;
6291 x = XEXP (XEXP (link, 0), 0);
6292 if (GET_MODE (link) == VOIDmode
6293 || GET_MODE (link) == BLKmode
6294 || (GET_MODE (link) != GET_MODE (x)
6295 && ((GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6296 && GET_MODE_CLASS (GET_MODE (link)) != MODE_PARTIAL_INT)
6297 || (GET_MODE_CLASS (GET_MODE (x)) != MODE_INT
6298 && GET_MODE_CLASS (GET_MODE (x)) != MODE_PARTIAL_INT))))
6299 /* Can't do anything for these, if the original type mode
6300 isn't known or can't be converted. */;
6301 else if (REG_P (x))
6302 {
6303 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6304 if (val && cselib_preserved_value_p (val))
6305 item = val->val_rtx;
6306 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT
6307 || GET_MODE_CLASS (GET_MODE (x)) == MODE_PARTIAL_INT)
6308 {
6309 machine_mode mode = GET_MODE (x);
6310
6311 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6312 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6313 {
6314 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6315
6316 if (reg == NULL_RTX || !REG_P (reg))
6317 continue;
6318 val = cselib_lookup (reg, mode, 0, VOIDmode);
6319 if (val && cselib_preserved_value_p (val))
6320 {
6321 item = val->val_rtx;
6322 break;
6323 }
6324 }
6325 }
6326 }
6327 else if (MEM_P (x))
6328 {
6329 rtx mem = x;
6330 cselib_val *val;
6331
6332 if (!frame_pointer_needed)
6333 {
6334 struct adjust_mem_data amd;
6335 amd.mem_mode = VOIDmode;
6336 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6337 amd.side_effects = NULL;
6338 amd.store = true;
6339 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6340 &amd);
6341 gcc_assert (amd.side_effects == NULL_RTX);
6342 }
6343 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6344 if (val && cselib_preserved_value_p (val))
6345 item = val->val_rtx;
6346 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT
6347 && GET_MODE_CLASS (GET_MODE (mem)) != MODE_PARTIAL_INT)
6348 {
6349 /* For non-integer stack argument see also if they weren't
6350 initialized by integers. */
6351 machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6352 if (imode != GET_MODE (mem) && imode != BLKmode)
6353 {
6354 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6355 imode, 0, VOIDmode);
6356 if (val && cselib_preserved_value_p (val))
6357 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6358 imode);
6359 }
6360 }
6361 }
6362 if (item)
6363 {
6364 rtx x2 = x;
6365 if (GET_MODE (item) != GET_MODE (link))
6366 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6367 if (GET_MODE (x2) != GET_MODE (link))
6368 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6369 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6370 call_arguments
6371 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6372 }
6373 if (t && t != void_list_node)
6374 {
6375 tree argtype = TREE_VALUE (t);
6376 machine_mode mode = TYPE_MODE (argtype);
6377 rtx reg;
6378 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6379 {
6380 argtype = build_pointer_type (argtype);
6381 mode = TYPE_MODE (argtype);
6382 }
6383 reg = targetm.calls.function_arg (args_so_far, mode,
6384 argtype, true);
6385 if (TREE_CODE (argtype) == REFERENCE_TYPE
6386 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6387 && reg
6388 && REG_P (reg)
6389 && GET_MODE (reg) == mode
6390 && (GET_MODE_CLASS (mode) == MODE_INT
6391 || GET_MODE_CLASS (mode) == MODE_PARTIAL_INT)
6392 && REG_P (x)
6393 && REGNO (x) == REGNO (reg)
6394 && GET_MODE (x) == mode
6395 && item)
6396 {
6397 machine_mode indmode
6398 = TYPE_MODE (TREE_TYPE (argtype));
6399 rtx mem = gen_rtx_MEM (indmode, x);
6400 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6401 if (val && cselib_preserved_value_p (val))
6402 {
6403 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6404 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6405 call_arguments);
6406 }
6407 else
6408 {
6409 struct elt_loc_list *l;
6410 tree initial;
6411
6412 /* Try harder, when passing address of a constant
6413 pool integer it can be easily read back. */
6414 item = XEXP (item, 1);
6415 if (GET_CODE (item) == SUBREG)
6416 item = SUBREG_REG (item);
6417 gcc_assert (GET_CODE (item) == VALUE);
6418 val = CSELIB_VAL_PTR (item);
6419 for (l = val->locs; l; l = l->next)
6420 if (GET_CODE (l->loc) == SYMBOL_REF
6421 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6422 && SYMBOL_REF_DECL (l->loc)
6423 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6424 {
6425 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6426 if (tree_fits_shwi_p (initial))
6427 {
6428 item = GEN_INT (tree_to_shwi (initial));
6429 item = gen_rtx_CONCAT (indmode, mem, item);
6430 call_arguments
6431 = gen_rtx_EXPR_LIST (VOIDmode, item,
6432 call_arguments);
6433 }
6434 break;
6435 }
6436 }
6437 }
6438 targetm.calls.function_arg_advance (args_so_far, mode,
6439 argtype, true);
6440 t = TREE_CHAIN (t);
6441 }
6442 }
6443
6444 /* Add debug arguments. */
6445 if (fndecl
6446 && TREE_CODE (fndecl) == FUNCTION_DECL
6447 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6448 {
6449 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6450 if (debug_args)
6451 {
6452 unsigned int ix;
6453 tree param;
6454 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6455 {
6456 rtx item;
6457 tree dtemp = (**debug_args)[ix + 1];
6458 machine_mode mode = DECL_MODE (dtemp);
6459 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6460 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6461 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6462 call_arguments);
6463 }
6464 }
6465 }
6466
6467 /* Reverse call_arguments chain. */
6468 prev = NULL_RTX;
6469 for (cur = call_arguments; cur; cur = next)
6470 {
6471 next = XEXP (cur, 1);
6472 XEXP (cur, 1) = prev;
6473 prev = cur;
6474 }
6475 call_arguments = prev;
6476
6477 x = get_call_rtx_from (insn);
6478 if (x)
6479 {
6480 x = XEXP (XEXP (x, 0), 0);
6481 if (GET_CODE (x) == SYMBOL_REF)
6482 /* Don't record anything. */;
6483 else if (CONSTANT_P (x))
6484 {
6485 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6486 pc_rtx, x);
6487 call_arguments
6488 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6489 }
6490 else
6491 {
6492 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6493 if (val && cselib_preserved_value_p (val))
6494 {
6495 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6496 call_arguments
6497 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6498 }
6499 }
6500 }
6501 if (this_arg)
6502 {
6503 machine_mode mode
6504 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6505 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6506 HOST_WIDE_INT token
6507 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6508 if (token)
6509 clobbered = plus_constant (mode, clobbered,
6510 token * GET_MODE_SIZE (mode));
6511 clobbered = gen_rtx_MEM (mode, clobbered);
6512 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6513 call_arguments
6514 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6515 }
6516 }
6517
6518 /* Callback for cselib_record_sets_hook, that records as micro
6519 operations uses and stores in an insn after cselib_record_sets has
6520 analyzed the sets in an insn, but before it modifies the stored
6521 values in the internal tables, unless cselib_record_sets doesn't
6522 call it directly (perhaps because we're not doing cselib in the
6523 first place, in which case sets and n_sets will be 0). */
6524
6525 static void
6526 add_with_sets (rtx_insn *insn, struct cselib_set *sets, int n_sets)
6527 {
6528 basic_block bb = BLOCK_FOR_INSN (insn);
6529 int n1, n2;
6530 struct count_use_info cui;
6531 micro_operation *mos;
6532
6533 cselib_hook_called = true;
6534
6535 cui.insn = insn;
6536 cui.bb = bb;
6537 cui.sets = sets;
6538 cui.n_sets = n_sets;
6539
6540 n1 = VTI (bb)->mos.length ();
6541 cui.store_p = false;
6542 note_uses (&PATTERN (insn), add_uses_1, &cui);
6543 n2 = VTI (bb)->mos.length () - 1;
6544 mos = VTI (bb)->mos.address ();
6545
6546 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6547 MO_VAL_LOC last. */
6548 while (n1 < n2)
6549 {
6550 while (n1 < n2 && mos[n1].type == MO_USE)
6551 n1++;
6552 while (n1 < n2 && mos[n2].type != MO_USE)
6553 n2--;
6554 if (n1 < n2)
6555 std::swap (mos[n1], mos[n2]);
6556 }
6557
6558 n2 = VTI (bb)->mos.length () - 1;
6559 while (n1 < n2)
6560 {
6561 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6562 n1++;
6563 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6564 n2--;
6565 if (n1 < n2)
6566 std::swap (mos[n1], mos[n2]);
6567 }
6568
6569 if (CALL_P (insn))
6570 {
6571 micro_operation mo;
6572
6573 mo.type = MO_CALL;
6574 mo.insn = insn;
6575 mo.u.loc = call_arguments;
6576 call_arguments = NULL_RTX;
6577
6578 if (dump_file && (dump_flags & TDF_DETAILS))
6579 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6580 VTI (bb)->mos.safe_push (mo);
6581 }
6582
6583 n1 = VTI (bb)->mos.length ();
6584 /* This will record NEXT_INSN (insn), such that we can
6585 insert notes before it without worrying about any
6586 notes that MO_USEs might emit after the insn. */
6587 cui.store_p = true;
6588 note_stores (PATTERN (insn), add_stores, &cui);
6589 n2 = VTI (bb)->mos.length () - 1;
6590 mos = VTI (bb)->mos.address ();
6591
6592 /* Order the MO_VAL_USEs first (note_stores does nothing
6593 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6594 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6595 while (n1 < n2)
6596 {
6597 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6598 n1++;
6599 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6600 n2--;
6601 if (n1 < n2)
6602 std::swap (mos[n1], mos[n2]);
6603 }
6604
6605 n2 = VTI (bb)->mos.length () - 1;
6606 while (n1 < n2)
6607 {
6608 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6609 n1++;
6610 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6611 n2--;
6612 if (n1 < n2)
6613 std::swap (mos[n1], mos[n2]);
6614 }
6615 }
6616
6617 static enum var_init_status
6618 find_src_status (dataflow_set *in, rtx src)
6619 {
6620 tree decl = NULL_TREE;
6621 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6622
6623 if (! flag_var_tracking_uninit)
6624 status = VAR_INIT_STATUS_INITIALIZED;
6625
6626 if (src && REG_P (src))
6627 decl = var_debug_decl (REG_EXPR (src));
6628 else if (src && MEM_P (src))
6629 decl = var_debug_decl (MEM_EXPR (src));
6630
6631 if (src && decl)
6632 status = get_init_value (in, src, dv_from_decl (decl));
6633
6634 return status;
6635 }
6636
6637 /* SRC is the source of an assignment. Use SET to try to find what
6638 was ultimately assigned to SRC. Return that value if known,
6639 otherwise return SRC itself. */
6640
6641 static rtx
6642 find_src_set_src (dataflow_set *set, rtx src)
6643 {
6644 tree decl = NULL_TREE; /* The variable being copied around. */
6645 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6646 variable *var;
6647 location_chain *nextp;
6648 int i;
6649 bool found;
6650
6651 if (src && REG_P (src))
6652 decl = var_debug_decl (REG_EXPR (src));
6653 else if (src && MEM_P (src))
6654 decl = var_debug_decl (MEM_EXPR (src));
6655
6656 if (src && decl)
6657 {
6658 decl_or_value dv = dv_from_decl (decl);
6659
6660 var = shared_hash_find (set->vars, dv);
6661 if (var)
6662 {
6663 found = false;
6664 for (i = 0; i < var->n_var_parts && !found; i++)
6665 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6666 nextp = nextp->next)
6667 if (rtx_equal_p (nextp->loc, src))
6668 {
6669 set_src = nextp->set_src;
6670 found = true;
6671 }
6672
6673 }
6674 }
6675
6676 return set_src;
6677 }
6678
6679 /* Compute the changes of variable locations in the basic block BB. */
6680
6681 static bool
6682 compute_bb_dataflow (basic_block bb)
6683 {
6684 unsigned int i;
6685 micro_operation *mo;
6686 bool changed;
6687 dataflow_set old_out;
6688 dataflow_set *in = &VTI (bb)->in;
6689 dataflow_set *out = &VTI (bb)->out;
6690
6691 dataflow_set_init (&old_out);
6692 dataflow_set_copy (&old_out, out);
6693 dataflow_set_copy (out, in);
6694
6695 if (MAY_HAVE_DEBUG_INSNS)
6696 local_get_addr_cache = new hash_map<rtx, rtx>;
6697
6698 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6699 {
6700 rtx_insn *insn = mo->insn;
6701
6702 switch (mo->type)
6703 {
6704 case MO_CALL:
6705 dataflow_set_clear_at_call (out, insn);
6706 break;
6707
6708 case MO_USE:
6709 {
6710 rtx loc = mo->u.loc;
6711
6712 if (REG_P (loc))
6713 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6714 else if (MEM_P (loc))
6715 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6716 }
6717 break;
6718
6719 case MO_VAL_LOC:
6720 {
6721 rtx loc = mo->u.loc;
6722 rtx val, vloc;
6723 tree var;
6724
6725 if (GET_CODE (loc) == CONCAT)
6726 {
6727 val = XEXP (loc, 0);
6728 vloc = XEXP (loc, 1);
6729 }
6730 else
6731 {
6732 val = NULL_RTX;
6733 vloc = loc;
6734 }
6735
6736 var = PAT_VAR_LOCATION_DECL (vloc);
6737
6738 clobber_variable_part (out, NULL_RTX,
6739 dv_from_decl (var), 0, NULL_RTX);
6740 if (val)
6741 {
6742 if (VAL_NEEDS_RESOLUTION (loc))
6743 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6744 set_variable_part (out, val, dv_from_decl (var), 0,
6745 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6746 INSERT);
6747 }
6748 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6749 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6750 dv_from_decl (var), 0,
6751 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6752 INSERT);
6753 }
6754 break;
6755
6756 case MO_VAL_USE:
6757 {
6758 rtx loc = mo->u.loc;
6759 rtx val, vloc, uloc;
6760
6761 vloc = uloc = XEXP (loc, 1);
6762 val = XEXP (loc, 0);
6763
6764 if (GET_CODE (val) == CONCAT)
6765 {
6766 uloc = XEXP (val, 1);
6767 val = XEXP (val, 0);
6768 }
6769
6770 if (VAL_NEEDS_RESOLUTION (loc))
6771 val_resolve (out, val, vloc, insn);
6772 else
6773 val_store (out, val, uloc, insn, false);
6774
6775 if (VAL_HOLDS_TRACK_EXPR (loc))
6776 {
6777 if (GET_CODE (uloc) == REG)
6778 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6779 NULL);
6780 else if (GET_CODE (uloc) == MEM)
6781 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6782 NULL);
6783 }
6784 }
6785 break;
6786
6787 case MO_VAL_SET:
6788 {
6789 rtx loc = mo->u.loc;
6790 rtx val, vloc, uloc;
6791 rtx dstv, srcv;
6792
6793 vloc = loc;
6794 uloc = XEXP (vloc, 1);
6795 val = XEXP (vloc, 0);
6796 vloc = uloc;
6797
6798 if (GET_CODE (uloc) == SET)
6799 {
6800 dstv = SET_DEST (uloc);
6801 srcv = SET_SRC (uloc);
6802 }
6803 else
6804 {
6805 dstv = uloc;
6806 srcv = NULL;
6807 }
6808
6809 if (GET_CODE (val) == CONCAT)
6810 {
6811 dstv = vloc = XEXP (val, 1);
6812 val = XEXP (val, 0);
6813 }
6814
6815 if (GET_CODE (vloc) == SET)
6816 {
6817 srcv = SET_SRC (vloc);
6818
6819 gcc_assert (val != srcv);
6820 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6821
6822 dstv = vloc = SET_DEST (vloc);
6823
6824 if (VAL_NEEDS_RESOLUTION (loc))
6825 val_resolve (out, val, srcv, insn);
6826 }
6827 else if (VAL_NEEDS_RESOLUTION (loc))
6828 {
6829 gcc_assert (GET_CODE (uloc) == SET
6830 && GET_CODE (SET_SRC (uloc)) == REG);
6831 val_resolve (out, val, SET_SRC (uloc), insn);
6832 }
6833
6834 if (VAL_HOLDS_TRACK_EXPR (loc))
6835 {
6836 if (VAL_EXPR_IS_CLOBBERED (loc))
6837 {
6838 if (REG_P (uloc))
6839 var_reg_delete (out, uloc, true);
6840 else if (MEM_P (uloc))
6841 {
6842 gcc_assert (MEM_P (dstv));
6843 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6844 var_mem_delete (out, dstv, true);
6845 }
6846 }
6847 else
6848 {
6849 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6850 rtx src = NULL, dst = uloc;
6851 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6852
6853 if (GET_CODE (uloc) == SET)
6854 {
6855 src = SET_SRC (uloc);
6856 dst = SET_DEST (uloc);
6857 }
6858
6859 if (copied_p)
6860 {
6861 if (flag_var_tracking_uninit)
6862 {
6863 status = find_src_status (in, src);
6864
6865 if (status == VAR_INIT_STATUS_UNKNOWN)
6866 status = find_src_status (out, src);
6867 }
6868
6869 src = find_src_set_src (in, src);
6870 }
6871
6872 if (REG_P (dst))
6873 var_reg_delete_and_set (out, dst, !copied_p,
6874 status, srcv);
6875 else if (MEM_P (dst))
6876 {
6877 gcc_assert (MEM_P (dstv));
6878 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6879 var_mem_delete_and_set (out, dstv, !copied_p,
6880 status, srcv);
6881 }
6882 }
6883 }
6884 else if (REG_P (uloc))
6885 var_regno_delete (out, REGNO (uloc));
6886 else if (MEM_P (uloc))
6887 {
6888 gcc_checking_assert (GET_CODE (vloc) == MEM);
6889 gcc_checking_assert (dstv == vloc);
6890 if (dstv != vloc)
6891 clobber_overlapping_mems (out, vloc);
6892 }
6893
6894 val_store (out, val, dstv, insn, true);
6895 }
6896 break;
6897
6898 case MO_SET:
6899 {
6900 rtx loc = mo->u.loc;
6901 rtx set_src = NULL;
6902
6903 if (GET_CODE (loc) == SET)
6904 {
6905 set_src = SET_SRC (loc);
6906 loc = SET_DEST (loc);
6907 }
6908
6909 if (REG_P (loc))
6910 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6911 set_src);
6912 else if (MEM_P (loc))
6913 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6914 set_src);
6915 }
6916 break;
6917
6918 case MO_COPY:
6919 {
6920 rtx loc = mo->u.loc;
6921 enum var_init_status src_status;
6922 rtx set_src = NULL;
6923
6924 if (GET_CODE (loc) == SET)
6925 {
6926 set_src = SET_SRC (loc);
6927 loc = SET_DEST (loc);
6928 }
6929
6930 if (! flag_var_tracking_uninit)
6931 src_status = VAR_INIT_STATUS_INITIALIZED;
6932 else
6933 {
6934 src_status = find_src_status (in, set_src);
6935
6936 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6937 src_status = find_src_status (out, set_src);
6938 }
6939
6940 set_src = find_src_set_src (in, set_src);
6941
6942 if (REG_P (loc))
6943 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6944 else if (MEM_P (loc))
6945 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6946 }
6947 break;
6948
6949 case MO_USE_NO_VAR:
6950 {
6951 rtx loc = mo->u.loc;
6952
6953 if (REG_P (loc))
6954 var_reg_delete (out, loc, false);
6955 else if (MEM_P (loc))
6956 var_mem_delete (out, loc, false);
6957 }
6958 break;
6959
6960 case MO_CLOBBER:
6961 {
6962 rtx loc = mo->u.loc;
6963
6964 if (REG_P (loc))
6965 var_reg_delete (out, loc, true);
6966 else if (MEM_P (loc))
6967 var_mem_delete (out, loc, true);
6968 }
6969 break;
6970
6971 case MO_ADJUST:
6972 out->stack_adjust += mo->u.adjust;
6973 break;
6974 }
6975 }
6976
6977 if (MAY_HAVE_DEBUG_INSNS)
6978 {
6979 delete local_get_addr_cache;
6980 local_get_addr_cache = NULL;
6981
6982 dataflow_set_equiv_regs (out);
6983 shared_hash_htab (out->vars)
6984 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6985 shared_hash_htab (out->vars)
6986 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6987 if (flag_checking)
6988 shared_hash_htab (out->vars)
6989 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6990 }
6991 changed = dataflow_set_different (&old_out, out);
6992 dataflow_set_destroy (&old_out);
6993 return changed;
6994 }
6995
6996 /* Find the locations of variables in the whole function. */
6997
6998 static bool
6999 vt_find_locations (void)
7000 {
7001 bb_heap_t *worklist = new bb_heap_t (LONG_MIN);
7002 bb_heap_t *pending = new bb_heap_t (LONG_MIN);
7003 sbitmap visited, in_worklist, in_pending;
7004 basic_block bb;
7005 edge e;
7006 int *bb_order;
7007 int *rc_order;
7008 int i;
7009 int htabsz = 0;
7010 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
7011 bool success = true;
7012
7013 timevar_push (TV_VAR_TRACKING_DATAFLOW);
7014 /* Compute reverse completion order of depth first search of the CFG
7015 so that the data-flow runs faster. */
7016 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
7017 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
7018 pre_and_rev_post_order_compute (NULL, rc_order, false);
7019 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
7020 bb_order[rc_order[i]] = i;
7021 free (rc_order);
7022
7023 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
7024 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
7025 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
7026 bitmap_clear (in_worklist);
7027
7028 FOR_EACH_BB_FN (bb, cfun)
7029 pending->insert (bb_order[bb->index], bb);
7030 bitmap_ones (in_pending);
7031
7032 while (success && !pending->empty ())
7033 {
7034 std::swap (worklist, pending);
7035 std::swap (in_worklist, in_pending);
7036
7037 bitmap_clear (visited);
7038
7039 while (!worklist->empty ())
7040 {
7041 bb = worklist->extract_min ();
7042 bitmap_clear_bit (in_worklist, bb->index);
7043 gcc_assert (!bitmap_bit_p (visited, bb->index));
7044 if (!bitmap_bit_p (visited, bb->index))
7045 {
7046 bool changed;
7047 edge_iterator ei;
7048 int oldinsz, oldoutsz;
7049
7050 bitmap_set_bit (visited, bb->index);
7051
7052 if (VTI (bb)->in.vars)
7053 {
7054 htabsz
7055 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7056 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7057 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7058 oldoutsz
7059 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7060 }
7061 else
7062 oldinsz = oldoutsz = 0;
7063
7064 if (MAY_HAVE_DEBUG_INSNS)
7065 {
7066 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7067 bool first = true, adjust = false;
7068
7069 /* Calculate the IN set as the intersection of
7070 predecessor OUT sets. */
7071
7072 dataflow_set_clear (in);
7073 dst_can_be_shared = true;
7074
7075 FOR_EACH_EDGE (e, ei, bb->preds)
7076 if (!VTI (e->src)->flooded)
7077 gcc_assert (bb_order[bb->index]
7078 <= bb_order[e->src->index]);
7079 else if (first)
7080 {
7081 dataflow_set_copy (in, &VTI (e->src)->out);
7082 first_out = &VTI (e->src)->out;
7083 first = false;
7084 }
7085 else
7086 {
7087 dataflow_set_merge (in, &VTI (e->src)->out);
7088 adjust = true;
7089 }
7090
7091 if (adjust)
7092 {
7093 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7094
7095 if (flag_checking)
7096 /* Merge and merge_adjust should keep entries in
7097 canonical order. */
7098 shared_hash_htab (in->vars)
7099 ->traverse <dataflow_set *,
7100 canonicalize_loc_order_check> (in);
7101
7102 if (dst_can_be_shared)
7103 {
7104 shared_hash_destroy (in->vars);
7105 in->vars = shared_hash_copy (first_out->vars);
7106 }
7107 }
7108
7109 VTI (bb)->flooded = true;
7110 }
7111 else
7112 {
7113 /* Calculate the IN set as union of predecessor OUT sets. */
7114 dataflow_set_clear (&VTI (bb)->in);
7115 FOR_EACH_EDGE (e, ei, bb->preds)
7116 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7117 }
7118
7119 changed = compute_bb_dataflow (bb);
7120 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7121 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7122
7123 if (htabmax && htabsz > htabmax)
7124 {
7125 if (MAY_HAVE_DEBUG_INSNS)
7126 inform (DECL_SOURCE_LOCATION (cfun->decl),
7127 "variable tracking size limit exceeded with "
7128 "-fvar-tracking-assignments, retrying without");
7129 else
7130 inform (DECL_SOURCE_LOCATION (cfun->decl),
7131 "variable tracking size limit exceeded");
7132 success = false;
7133 break;
7134 }
7135
7136 if (changed)
7137 {
7138 FOR_EACH_EDGE (e, ei, bb->succs)
7139 {
7140 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7141 continue;
7142
7143 if (bitmap_bit_p (visited, e->dest->index))
7144 {
7145 if (!bitmap_bit_p (in_pending, e->dest->index))
7146 {
7147 /* Send E->DEST to next round. */
7148 bitmap_set_bit (in_pending, e->dest->index);
7149 pending->insert (bb_order[e->dest->index],
7150 e->dest);
7151 }
7152 }
7153 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7154 {
7155 /* Add E->DEST to current round. */
7156 bitmap_set_bit (in_worklist, e->dest->index);
7157 worklist->insert (bb_order[e->dest->index],
7158 e->dest);
7159 }
7160 }
7161 }
7162
7163 if (dump_file)
7164 fprintf (dump_file,
7165 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7166 bb->index,
7167 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7168 oldinsz,
7169 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7170 oldoutsz,
7171 (int)worklist->nodes (), (int)pending->nodes (),
7172 htabsz);
7173
7174 if (dump_file && (dump_flags & TDF_DETAILS))
7175 {
7176 fprintf (dump_file, "BB %i IN:\n", bb->index);
7177 dump_dataflow_set (&VTI (bb)->in);
7178 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7179 dump_dataflow_set (&VTI (bb)->out);
7180 }
7181 }
7182 }
7183 }
7184
7185 if (success && MAY_HAVE_DEBUG_INSNS)
7186 FOR_EACH_BB_FN (bb, cfun)
7187 gcc_assert (VTI (bb)->flooded);
7188
7189 free (bb_order);
7190 delete worklist;
7191 delete pending;
7192 sbitmap_free (visited);
7193 sbitmap_free (in_worklist);
7194 sbitmap_free (in_pending);
7195
7196 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7197 return success;
7198 }
7199
7200 /* Print the content of the LIST to dump file. */
7201
7202 static void
7203 dump_attrs_list (attrs *list)
7204 {
7205 for (; list; list = list->next)
7206 {
7207 if (dv_is_decl_p (list->dv))
7208 print_mem_expr (dump_file, dv_as_decl (list->dv));
7209 else
7210 print_rtl_single (dump_file, dv_as_value (list->dv));
7211 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7212 }
7213 fprintf (dump_file, "\n");
7214 }
7215
7216 /* Print the information about variable *SLOT to dump file. */
7217
7218 int
7219 dump_var_tracking_slot (variable **slot, void *data ATTRIBUTE_UNUSED)
7220 {
7221 variable *var = *slot;
7222
7223 dump_var (var);
7224
7225 /* Continue traversing the hash table. */
7226 return 1;
7227 }
7228
7229 /* Print the information about variable VAR to dump file. */
7230
7231 static void
7232 dump_var (variable *var)
7233 {
7234 int i;
7235 location_chain *node;
7236
7237 if (dv_is_decl_p (var->dv))
7238 {
7239 const_tree decl = dv_as_decl (var->dv);
7240
7241 if (DECL_NAME (decl))
7242 {
7243 fprintf (dump_file, " name: %s",
7244 IDENTIFIER_POINTER (DECL_NAME (decl)));
7245 if (dump_flags & TDF_UID)
7246 fprintf (dump_file, "D.%u", DECL_UID (decl));
7247 }
7248 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7249 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7250 else
7251 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7252 fprintf (dump_file, "\n");
7253 }
7254 else
7255 {
7256 fputc (' ', dump_file);
7257 print_rtl_single (dump_file, dv_as_value (var->dv));
7258 }
7259
7260 for (i = 0; i < var->n_var_parts; i++)
7261 {
7262 fprintf (dump_file, " offset %ld\n",
7263 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7264 for (node = var->var_part[i].loc_chain; node; node = node->next)
7265 {
7266 fprintf (dump_file, " ");
7267 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7268 fprintf (dump_file, "[uninit]");
7269 print_rtl_single (dump_file, node->loc);
7270 }
7271 }
7272 }
7273
7274 /* Print the information about variables from hash table VARS to dump file. */
7275
7276 static void
7277 dump_vars (variable_table_type *vars)
7278 {
7279 if (vars->elements () > 0)
7280 {
7281 fprintf (dump_file, "Variables:\n");
7282 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7283 }
7284 }
7285
7286 /* Print the dataflow set SET to dump file. */
7287
7288 static void
7289 dump_dataflow_set (dataflow_set *set)
7290 {
7291 int i;
7292
7293 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7294 set->stack_adjust);
7295 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7296 {
7297 if (set->regs[i])
7298 {
7299 fprintf (dump_file, "Reg %d:", i);
7300 dump_attrs_list (set->regs[i]);
7301 }
7302 }
7303 dump_vars (shared_hash_htab (set->vars));
7304 fprintf (dump_file, "\n");
7305 }
7306
7307 /* Print the IN and OUT sets for each basic block to dump file. */
7308
7309 static void
7310 dump_dataflow_sets (void)
7311 {
7312 basic_block bb;
7313
7314 FOR_EACH_BB_FN (bb, cfun)
7315 {
7316 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7317 fprintf (dump_file, "IN:\n");
7318 dump_dataflow_set (&VTI (bb)->in);
7319 fprintf (dump_file, "OUT:\n");
7320 dump_dataflow_set (&VTI (bb)->out);
7321 }
7322 }
7323
7324 /* Return the variable for DV in dropped_values, inserting one if
7325 requested with INSERT. */
7326
7327 static inline variable *
7328 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7329 {
7330 variable **slot;
7331 variable *empty_var;
7332 onepart_enum onepart;
7333
7334 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7335
7336 if (!slot)
7337 return NULL;
7338
7339 if (*slot)
7340 return *slot;
7341
7342 gcc_checking_assert (insert == INSERT);
7343
7344 onepart = dv_onepart_p (dv);
7345
7346 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7347
7348 empty_var = onepart_pool_allocate (onepart);
7349 empty_var->dv = dv;
7350 empty_var->refcount = 1;
7351 empty_var->n_var_parts = 0;
7352 empty_var->onepart = onepart;
7353 empty_var->in_changed_variables = false;
7354 empty_var->var_part[0].loc_chain = NULL;
7355 empty_var->var_part[0].cur_loc = NULL;
7356 VAR_LOC_1PAUX (empty_var) = NULL;
7357 set_dv_changed (dv, true);
7358
7359 *slot = empty_var;
7360
7361 return empty_var;
7362 }
7363
7364 /* Recover the one-part aux from dropped_values. */
7365
7366 static struct onepart_aux *
7367 recover_dropped_1paux (variable *var)
7368 {
7369 variable *dvar;
7370
7371 gcc_checking_assert (var->onepart);
7372
7373 if (VAR_LOC_1PAUX (var))
7374 return VAR_LOC_1PAUX (var);
7375
7376 if (var->onepart == ONEPART_VDECL)
7377 return NULL;
7378
7379 dvar = variable_from_dropped (var->dv, NO_INSERT);
7380
7381 if (!dvar)
7382 return NULL;
7383
7384 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7385 VAR_LOC_1PAUX (dvar) = NULL;
7386
7387 return VAR_LOC_1PAUX (var);
7388 }
7389
7390 /* Add variable VAR to the hash table of changed variables and
7391 if it has no locations delete it from SET's hash table. */
7392
7393 static void
7394 variable_was_changed (variable *var, dataflow_set *set)
7395 {
7396 hashval_t hash = dv_htab_hash (var->dv);
7397
7398 if (emit_notes)
7399 {
7400 variable **slot;
7401
7402 /* Remember this decl or VALUE has been added to changed_variables. */
7403 set_dv_changed (var->dv, true);
7404
7405 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7406
7407 if (*slot)
7408 {
7409 variable *old_var = *slot;
7410 gcc_assert (old_var->in_changed_variables);
7411 old_var->in_changed_variables = false;
7412 if (var != old_var && var->onepart)
7413 {
7414 /* Restore the auxiliary info from an empty variable
7415 previously created for changed_variables, so it is
7416 not lost. */
7417 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7418 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7419 VAR_LOC_1PAUX (old_var) = NULL;
7420 }
7421 variable_htab_free (*slot);
7422 }
7423
7424 if (set && var->n_var_parts == 0)
7425 {
7426 onepart_enum onepart = var->onepart;
7427 variable *empty_var = NULL;
7428 variable **dslot = NULL;
7429
7430 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7431 {
7432 dslot = dropped_values->find_slot_with_hash (var->dv,
7433 dv_htab_hash (var->dv),
7434 INSERT);
7435 empty_var = *dslot;
7436
7437 if (empty_var)
7438 {
7439 gcc_checking_assert (!empty_var->in_changed_variables);
7440 if (!VAR_LOC_1PAUX (var))
7441 {
7442 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7443 VAR_LOC_1PAUX (empty_var) = NULL;
7444 }
7445 else
7446 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7447 }
7448 }
7449
7450 if (!empty_var)
7451 {
7452 empty_var = onepart_pool_allocate (onepart);
7453 empty_var->dv = var->dv;
7454 empty_var->refcount = 1;
7455 empty_var->n_var_parts = 0;
7456 empty_var->onepart = onepart;
7457 if (dslot)
7458 {
7459 empty_var->refcount++;
7460 *dslot = empty_var;
7461 }
7462 }
7463 else
7464 empty_var->refcount++;
7465 empty_var->in_changed_variables = true;
7466 *slot = empty_var;
7467 if (onepart)
7468 {
7469 empty_var->var_part[0].loc_chain = NULL;
7470 empty_var->var_part[0].cur_loc = NULL;
7471 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7472 VAR_LOC_1PAUX (var) = NULL;
7473 }
7474 goto drop_var;
7475 }
7476 else
7477 {
7478 if (var->onepart && !VAR_LOC_1PAUX (var))
7479 recover_dropped_1paux (var);
7480 var->refcount++;
7481 var->in_changed_variables = true;
7482 *slot = var;
7483 }
7484 }
7485 else
7486 {
7487 gcc_assert (set);
7488 if (var->n_var_parts == 0)
7489 {
7490 variable **slot;
7491
7492 drop_var:
7493 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7494 if (slot)
7495 {
7496 if (shared_hash_shared (set->vars))
7497 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7498 NO_INSERT);
7499 shared_hash_htab (set->vars)->clear_slot (slot);
7500 }
7501 }
7502 }
7503 }
7504
7505 /* Look for the index in VAR->var_part corresponding to OFFSET.
7506 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7507 referenced int will be set to the index that the part has or should
7508 have, if it should be inserted. */
7509
7510 static inline int
7511 find_variable_location_part (variable *var, HOST_WIDE_INT offset,
7512 int *insertion_point)
7513 {
7514 int pos, low, high;
7515
7516 if (var->onepart)
7517 {
7518 if (offset != 0)
7519 return -1;
7520
7521 if (insertion_point)
7522 *insertion_point = 0;
7523
7524 return var->n_var_parts - 1;
7525 }
7526
7527 /* Find the location part. */
7528 low = 0;
7529 high = var->n_var_parts;
7530 while (low != high)
7531 {
7532 pos = (low + high) / 2;
7533 if (VAR_PART_OFFSET (var, pos) < offset)
7534 low = pos + 1;
7535 else
7536 high = pos;
7537 }
7538 pos = low;
7539
7540 if (insertion_point)
7541 *insertion_point = pos;
7542
7543 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7544 return pos;
7545
7546 return -1;
7547 }
7548
7549 static variable **
7550 set_slot_part (dataflow_set *set, rtx loc, variable **slot,
7551 decl_or_value dv, HOST_WIDE_INT offset,
7552 enum var_init_status initialized, rtx set_src)
7553 {
7554 int pos;
7555 location_chain *node, *next;
7556 location_chain **nextp;
7557 variable *var;
7558 onepart_enum onepart;
7559
7560 var = *slot;
7561
7562 if (var)
7563 onepart = var->onepart;
7564 else
7565 onepart = dv_onepart_p (dv);
7566
7567 gcc_checking_assert (offset == 0 || !onepart);
7568 gcc_checking_assert (loc != dv_as_opaque (dv));
7569
7570 if (! flag_var_tracking_uninit)
7571 initialized = VAR_INIT_STATUS_INITIALIZED;
7572
7573 if (!var)
7574 {
7575 /* Create new variable information. */
7576 var = onepart_pool_allocate (onepart);
7577 var->dv = dv;
7578 var->refcount = 1;
7579 var->n_var_parts = 1;
7580 var->onepart = onepart;
7581 var->in_changed_variables = false;
7582 if (var->onepart)
7583 VAR_LOC_1PAUX (var) = NULL;
7584 else
7585 VAR_PART_OFFSET (var, 0) = offset;
7586 var->var_part[0].loc_chain = NULL;
7587 var->var_part[0].cur_loc = NULL;
7588 *slot = var;
7589 pos = 0;
7590 nextp = &var->var_part[0].loc_chain;
7591 }
7592 else if (onepart)
7593 {
7594 int r = -1, c = 0;
7595
7596 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7597
7598 pos = 0;
7599
7600 if (GET_CODE (loc) == VALUE)
7601 {
7602 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7603 nextp = &node->next)
7604 if (GET_CODE (node->loc) == VALUE)
7605 {
7606 if (node->loc == loc)
7607 {
7608 r = 0;
7609 break;
7610 }
7611 if (canon_value_cmp (node->loc, loc))
7612 c++;
7613 else
7614 {
7615 r = 1;
7616 break;
7617 }
7618 }
7619 else if (REG_P (node->loc) || MEM_P (node->loc))
7620 c++;
7621 else
7622 {
7623 r = 1;
7624 break;
7625 }
7626 }
7627 else if (REG_P (loc))
7628 {
7629 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7630 nextp = &node->next)
7631 if (REG_P (node->loc))
7632 {
7633 if (REGNO (node->loc) < REGNO (loc))
7634 c++;
7635 else
7636 {
7637 if (REGNO (node->loc) == REGNO (loc))
7638 r = 0;
7639 else
7640 r = 1;
7641 break;
7642 }
7643 }
7644 else
7645 {
7646 r = 1;
7647 break;
7648 }
7649 }
7650 else if (MEM_P (loc))
7651 {
7652 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7653 nextp = &node->next)
7654 if (REG_P (node->loc))
7655 c++;
7656 else if (MEM_P (node->loc))
7657 {
7658 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7659 break;
7660 else
7661 c++;
7662 }
7663 else
7664 {
7665 r = 1;
7666 break;
7667 }
7668 }
7669 else
7670 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7671 nextp = &node->next)
7672 if ((r = loc_cmp (node->loc, loc)) >= 0)
7673 break;
7674 else
7675 c++;
7676
7677 if (r == 0)
7678 return slot;
7679
7680 if (shared_var_p (var, set->vars))
7681 {
7682 slot = unshare_variable (set, slot, var, initialized);
7683 var = *slot;
7684 for (nextp = &var->var_part[0].loc_chain; c;
7685 nextp = &(*nextp)->next)
7686 c--;
7687 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7688 }
7689 }
7690 else
7691 {
7692 int inspos = 0;
7693
7694 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7695
7696 pos = find_variable_location_part (var, offset, &inspos);
7697
7698 if (pos >= 0)
7699 {
7700 node = var->var_part[pos].loc_chain;
7701
7702 if (node
7703 && ((REG_P (node->loc) && REG_P (loc)
7704 && REGNO (node->loc) == REGNO (loc))
7705 || rtx_equal_p (node->loc, loc)))
7706 {
7707 /* LOC is in the beginning of the chain so we have nothing
7708 to do. */
7709 if (node->init < initialized)
7710 node->init = initialized;
7711 if (set_src != NULL)
7712 node->set_src = set_src;
7713
7714 return slot;
7715 }
7716 else
7717 {
7718 /* We have to make a copy of a shared variable. */
7719 if (shared_var_p (var, set->vars))
7720 {
7721 slot = unshare_variable (set, slot, var, initialized);
7722 var = *slot;
7723 }
7724 }
7725 }
7726 else
7727 {
7728 /* We have not found the location part, new one will be created. */
7729
7730 /* We have to make a copy of the shared variable. */
7731 if (shared_var_p (var, set->vars))
7732 {
7733 slot = unshare_variable (set, slot, var, initialized);
7734 var = *slot;
7735 }
7736
7737 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7738 thus there are at most MAX_VAR_PARTS different offsets. */
7739 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7740 && (!var->n_var_parts || !onepart));
7741
7742 /* We have to move the elements of array starting at index
7743 inspos to the next position. */
7744 for (pos = var->n_var_parts; pos > inspos; pos--)
7745 var->var_part[pos] = var->var_part[pos - 1];
7746
7747 var->n_var_parts++;
7748 gcc_checking_assert (!onepart);
7749 VAR_PART_OFFSET (var, pos) = offset;
7750 var->var_part[pos].loc_chain = NULL;
7751 var->var_part[pos].cur_loc = NULL;
7752 }
7753
7754 /* Delete the location from the list. */
7755 nextp = &var->var_part[pos].loc_chain;
7756 for (node = var->var_part[pos].loc_chain; node; node = next)
7757 {
7758 next = node->next;
7759 if ((REG_P (node->loc) && REG_P (loc)
7760 && REGNO (node->loc) == REGNO (loc))
7761 || rtx_equal_p (node->loc, loc))
7762 {
7763 /* Save these values, to assign to the new node, before
7764 deleting this one. */
7765 if (node->init > initialized)
7766 initialized = node->init;
7767 if (node->set_src != NULL && set_src == NULL)
7768 set_src = node->set_src;
7769 if (var->var_part[pos].cur_loc == node->loc)
7770 var->var_part[pos].cur_loc = NULL;
7771 delete node;
7772 *nextp = next;
7773 break;
7774 }
7775 else
7776 nextp = &node->next;
7777 }
7778
7779 nextp = &var->var_part[pos].loc_chain;
7780 }
7781
7782 /* Add the location to the beginning. */
7783 node = new location_chain;
7784 node->loc = loc;
7785 node->init = initialized;
7786 node->set_src = set_src;
7787 node->next = *nextp;
7788 *nextp = node;
7789
7790 /* If no location was emitted do so. */
7791 if (var->var_part[pos].cur_loc == NULL)
7792 variable_was_changed (var, set);
7793
7794 return slot;
7795 }
7796
7797 /* Set the part of variable's location in the dataflow set SET. The
7798 variable part is specified by variable's declaration in DV and
7799 offset OFFSET and the part's location by LOC. IOPT should be
7800 NO_INSERT if the variable is known to be in SET already and the
7801 variable hash table must not be resized, and INSERT otherwise. */
7802
7803 static void
7804 set_variable_part (dataflow_set *set, rtx loc,
7805 decl_or_value dv, HOST_WIDE_INT offset,
7806 enum var_init_status initialized, rtx set_src,
7807 enum insert_option iopt)
7808 {
7809 variable **slot;
7810
7811 if (iopt == NO_INSERT)
7812 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7813 else
7814 {
7815 slot = shared_hash_find_slot (set->vars, dv);
7816 if (!slot)
7817 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7818 }
7819 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7820 }
7821
7822 /* Remove all recorded register locations for the given variable part
7823 from dataflow set SET, except for those that are identical to loc.
7824 The variable part is specified by variable's declaration or value
7825 DV and offset OFFSET. */
7826
7827 static variable **
7828 clobber_slot_part (dataflow_set *set, rtx loc, variable **slot,
7829 HOST_WIDE_INT offset, rtx set_src)
7830 {
7831 variable *var = *slot;
7832 int pos = find_variable_location_part (var, offset, NULL);
7833
7834 if (pos >= 0)
7835 {
7836 location_chain *node, *next;
7837
7838 /* Remove the register locations from the dataflow set. */
7839 next = var->var_part[pos].loc_chain;
7840 for (node = next; node; node = next)
7841 {
7842 next = node->next;
7843 if (node->loc != loc
7844 && (!flag_var_tracking_uninit
7845 || !set_src
7846 || MEM_P (set_src)
7847 || !rtx_equal_p (set_src, node->set_src)))
7848 {
7849 if (REG_P (node->loc))
7850 {
7851 attrs *anode, *anext;
7852 attrs **anextp;
7853
7854 /* Remove the variable part from the register's
7855 list, but preserve any other variable parts
7856 that might be regarded as live in that same
7857 register. */
7858 anextp = &set->regs[REGNO (node->loc)];
7859 for (anode = *anextp; anode; anode = anext)
7860 {
7861 anext = anode->next;
7862 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7863 && anode->offset == offset)
7864 {
7865 delete anode;
7866 *anextp = anext;
7867 }
7868 else
7869 anextp = &anode->next;
7870 }
7871 }
7872
7873 slot = delete_slot_part (set, node->loc, slot, offset);
7874 }
7875 }
7876 }
7877
7878 return slot;
7879 }
7880
7881 /* Remove all recorded register locations for the given variable part
7882 from dataflow set SET, except for those that are identical to loc.
7883 The variable part is specified by variable's declaration or value
7884 DV and offset OFFSET. */
7885
7886 static void
7887 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7888 HOST_WIDE_INT offset, rtx set_src)
7889 {
7890 variable **slot;
7891
7892 if (!dv_as_opaque (dv)
7893 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7894 return;
7895
7896 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7897 if (!slot)
7898 return;
7899
7900 clobber_slot_part (set, loc, slot, offset, set_src);
7901 }
7902
7903 /* Delete the part of variable's location from dataflow set SET. The
7904 variable part is specified by its SET->vars slot SLOT and offset
7905 OFFSET and the part's location by LOC. */
7906
7907 static variable **
7908 delete_slot_part (dataflow_set *set, rtx loc, variable **slot,
7909 HOST_WIDE_INT offset)
7910 {
7911 variable *var = *slot;
7912 int pos = find_variable_location_part (var, offset, NULL);
7913
7914 if (pos >= 0)
7915 {
7916 location_chain *node, *next;
7917 location_chain **nextp;
7918 bool changed;
7919 rtx cur_loc;
7920
7921 if (shared_var_p (var, set->vars))
7922 {
7923 /* If the variable contains the location part we have to
7924 make a copy of the variable. */
7925 for (node = var->var_part[pos].loc_chain; node;
7926 node = node->next)
7927 {
7928 if ((REG_P (node->loc) && REG_P (loc)
7929 && REGNO (node->loc) == REGNO (loc))
7930 || rtx_equal_p (node->loc, loc))
7931 {
7932 slot = unshare_variable (set, slot, var,
7933 VAR_INIT_STATUS_UNKNOWN);
7934 var = *slot;
7935 break;
7936 }
7937 }
7938 }
7939
7940 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7941 cur_loc = VAR_LOC_FROM (var);
7942 else
7943 cur_loc = var->var_part[pos].cur_loc;
7944
7945 /* Delete the location part. */
7946 changed = false;
7947 nextp = &var->var_part[pos].loc_chain;
7948 for (node = *nextp; node; node = next)
7949 {
7950 next = node->next;
7951 if ((REG_P (node->loc) && REG_P (loc)
7952 && REGNO (node->loc) == REGNO (loc))
7953 || rtx_equal_p (node->loc, loc))
7954 {
7955 /* If we have deleted the location which was last emitted
7956 we have to emit new location so add the variable to set
7957 of changed variables. */
7958 if (cur_loc == node->loc)
7959 {
7960 changed = true;
7961 var->var_part[pos].cur_loc = NULL;
7962 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7963 VAR_LOC_FROM (var) = NULL;
7964 }
7965 delete node;
7966 *nextp = next;
7967 break;
7968 }
7969 else
7970 nextp = &node->next;
7971 }
7972
7973 if (var->var_part[pos].loc_chain == NULL)
7974 {
7975 changed = true;
7976 var->n_var_parts--;
7977 while (pos < var->n_var_parts)
7978 {
7979 var->var_part[pos] = var->var_part[pos + 1];
7980 pos++;
7981 }
7982 }
7983 if (changed)
7984 variable_was_changed (var, set);
7985 }
7986
7987 return slot;
7988 }
7989
7990 /* Delete the part of variable's location from dataflow set SET. The
7991 variable part is specified by variable's declaration or value DV
7992 and offset OFFSET and the part's location by LOC. */
7993
7994 static void
7995 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7996 HOST_WIDE_INT offset)
7997 {
7998 variable **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7999 if (!slot)
8000 return;
8001
8002 delete_slot_part (set, loc, slot, offset);
8003 }
8004
8005
8006 /* Structure for passing some other parameters to function
8007 vt_expand_loc_callback. */
8008 struct expand_loc_callback_data
8009 {
8010 /* The variables and values active at this point. */
8011 variable_table_type *vars;
8012
8013 /* Stack of values and debug_exprs under expansion, and their
8014 children. */
8015 auto_vec<rtx, 4> expanding;
8016
8017 /* Stack of values and debug_exprs whose expansion hit recursion
8018 cycles. They will have VALUE_RECURSED_INTO marked when added to
8019 this list. This flag will be cleared if any of its dependencies
8020 resolves to a valid location. So, if the flag remains set at the
8021 end of the search, we know no valid location for this one can
8022 possibly exist. */
8023 auto_vec<rtx, 4> pending;
8024
8025 /* The maximum depth among the sub-expressions under expansion.
8026 Zero indicates no expansion so far. */
8027 expand_depth depth;
8028 };
8029
8030 /* Allocate the one-part auxiliary data structure for VAR, with enough
8031 room for COUNT dependencies. */
8032
8033 static void
8034 loc_exp_dep_alloc (variable *var, int count)
8035 {
8036 size_t allocsize;
8037
8038 gcc_checking_assert (var->onepart);
8039
8040 /* We can be called with COUNT == 0 to allocate the data structure
8041 without any dependencies, e.g. for the backlinks only. However,
8042 if we are specifying a COUNT, then the dependency list must have
8043 been emptied before. It would be possible to adjust pointers or
8044 force it empty here, but this is better done at an earlier point
8045 in the algorithm, so we instead leave an assertion to catch
8046 errors. */
8047 gcc_checking_assert (!count
8048 || VAR_LOC_DEP_VEC (var) == NULL
8049 || VAR_LOC_DEP_VEC (var)->is_empty ());
8050
8051 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8052 return;
8053
8054 allocsize = offsetof (struct onepart_aux, deps)
8055 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8056
8057 if (VAR_LOC_1PAUX (var))
8058 {
8059 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8060 VAR_LOC_1PAUX (var), allocsize);
8061 /* If the reallocation moves the onepaux structure, the
8062 back-pointer to BACKLINKS in the first list member will still
8063 point to its old location. Adjust it. */
8064 if (VAR_LOC_DEP_LST (var))
8065 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8066 }
8067 else
8068 {
8069 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8070 *VAR_LOC_DEP_LSTP (var) = NULL;
8071 VAR_LOC_FROM (var) = NULL;
8072 VAR_LOC_DEPTH (var).complexity = 0;
8073 VAR_LOC_DEPTH (var).entryvals = 0;
8074 }
8075 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8076 }
8077
8078 /* Remove all entries from the vector of active dependencies of VAR,
8079 removing them from the back-links lists too. */
8080
8081 static void
8082 loc_exp_dep_clear (variable *var)
8083 {
8084 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8085 {
8086 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8087 if (led->next)
8088 led->next->pprev = led->pprev;
8089 if (led->pprev)
8090 *led->pprev = led->next;
8091 VAR_LOC_DEP_VEC (var)->pop ();
8092 }
8093 }
8094
8095 /* Insert an active dependency from VAR on X to the vector of
8096 dependencies, and add the corresponding back-link to X's list of
8097 back-links in VARS. */
8098
8099 static void
8100 loc_exp_insert_dep (variable *var, rtx x, variable_table_type *vars)
8101 {
8102 decl_or_value dv;
8103 variable *xvar;
8104 loc_exp_dep *led;
8105
8106 dv = dv_from_rtx (x);
8107
8108 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8109 an additional look up? */
8110 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8111
8112 if (!xvar)
8113 {
8114 xvar = variable_from_dropped (dv, NO_INSERT);
8115 gcc_checking_assert (xvar);
8116 }
8117
8118 /* No point in adding the same backlink more than once. This may
8119 arise if say the same value appears in two complex expressions in
8120 the same loc_list, or even more than once in a single
8121 expression. */
8122 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8123 return;
8124
8125 if (var->onepart == NOT_ONEPART)
8126 led = new loc_exp_dep;
8127 else
8128 {
8129 loc_exp_dep empty;
8130 memset (&empty, 0, sizeof (empty));
8131 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8132 led = &VAR_LOC_DEP_VEC (var)->last ();
8133 }
8134 led->dv = var->dv;
8135 led->value = x;
8136
8137 loc_exp_dep_alloc (xvar, 0);
8138 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8139 led->next = *led->pprev;
8140 if (led->next)
8141 led->next->pprev = &led->next;
8142 *led->pprev = led;
8143 }
8144
8145 /* Create active dependencies of VAR on COUNT values starting at
8146 VALUE, and corresponding back-links to the entries in VARS. Return
8147 true if we found any pending-recursion results. */
8148
8149 static bool
8150 loc_exp_dep_set (variable *var, rtx result, rtx *value, int count,
8151 variable_table_type *vars)
8152 {
8153 bool pending_recursion = false;
8154
8155 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8156 || VAR_LOC_DEP_VEC (var)->is_empty ());
8157
8158 /* Set up all dependencies from last_child (as set up at the end of
8159 the loop above) to the end. */
8160 loc_exp_dep_alloc (var, count);
8161
8162 while (count--)
8163 {
8164 rtx x = *value++;
8165
8166 if (!pending_recursion)
8167 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8168
8169 loc_exp_insert_dep (var, x, vars);
8170 }
8171
8172 return pending_recursion;
8173 }
8174
8175 /* Notify the back-links of IVAR that are pending recursion that we
8176 have found a non-NIL value for it, so they are cleared for another
8177 attempt to compute a current location. */
8178
8179 static void
8180 notify_dependents_of_resolved_value (variable *ivar, variable_table_type *vars)
8181 {
8182 loc_exp_dep *led, *next;
8183
8184 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8185 {
8186 decl_or_value dv = led->dv;
8187 variable *var;
8188
8189 next = led->next;
8190
8191 if (dv_is_value_p (dv))
8192 {
8193 rtx value = dv_as_value (dv);
8194
8195 /* If we have already resolved it, leave it alone. */
8196 if (!VALUE_RECURSED_INTO (value))
8197 continue;
8198
8199 /* Check that VALUE_RECURSED_INTO, true from the test above,
8200 implies NO_LOC_P. */
8201 gcc_checking_assert (NO_LOC_P (value));
8202
8203 /* We won't notify variables that are being expanded,
8204 because their dependency list is cleared before
8205 recursing. */
8206 NO_LOC_P (value) = false;
8207 VALUE_RECURSED_INTO (value) = false;
8208
8209 gcc_checking_assert (dv_changed_p (dv));
8210 }
8211 else
8212 {
8213 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8214 if (!dv_changed_p (dv))
8215 continue;
8216 }
8217
8218 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8219
8220 if (!var)
8221 var = variable_from_dropped (dv, NO_INSERT);
8222
8223 if (var)
8224 notify_dependents_of_resolved_value (var, vars);
8225
8226 if (next)
8227 next->pprev = led->pprev;
8228 if (led->pprev)
8229 *led->pprev = next;
8230 led->next = NULL;
8231 led->pprev = NULL;
8232 }
8233 }
8234
8235 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8236 int max_depth, void *data);
8237
8238 /* Return the combined depth, when one sub-expression evaluated to
8239 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8240
8241 static inline expand_depth
8242 update_depth (expand_depth saved_depth, expand_depth best_depth)
8243 {
8244 /* If we didn't find anything, stick with what we had. */
8245 if (!best_depth.complexity)
8246 return saved_depth;
8247
8248 /* If we found hadn't found anything, use the depth of the current
8249 expression. Do NOT add one extra level, we want to compute the
8250 maximum depth among sub-expressions. We'll increment it later,
8251 if appropriate. */
8252 if (!saved_depth.complexity)
8253 return best_depth;
8254
8255 /* Combine the entryval count so that regardless of which one we
8256 return, the entryval count is accurate. */
8257 best_depth.entryvals = saved_depth.entryvals
8258 = best_depth.entryvals + saved_depth.entryvals;
8259
8260 if (saved_depth.complexity < best_depth.complexity)
8261 return best_depth;
8262 else
8263 return saved_depth;
8264 }
8265
8266 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8267 DATA for cselib expand callback. If PENDRECP is given, indicate in
8268 it whether any sub-expression couldn't be fully evaluated because
8269 it is pending recursion resolution. */
8270
8271 static inline rtx
8272 vt_expand_var_loc_chain (variable *var, bitmap regs, void *data,
8273 bool *pendrecp)
8274 {
8275 struct expand_loc_callback_data *elcd
8276 = (struct expand_loc_callback_data *) data;
8277 location_chain *loc, *next;
8278 rtx result = NULL;
8279 int first_child, result_first_child, last_child;
8280 bool pending_recursion;
8281 rtx loc_from = NULL;
8282 struct elt_loc_list *cloc = NULL;
8283 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8284 int wanted_entryvals, found_entryvals = 0;
8285
8286 /* Clear all backlinks pointing at this, so that we're not notified
8287 while we're active. */
8288 loc_exp_dep_clear (var);
8289
8290 retry:
8291 if (var->onepart == ONEPART_VALUE)
8292 {
8293 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8294
8295 gcc_checking_assert (cselib_preserved_value_p (val));
8296
8297 cloc = val->locs;
8298 }
8299
8300 first_child = result_first_child = last_child
8301 = elcd->expanding.length ();
8302
8303 wanted_entryvals = found_entryvals;
8304
8305 /* Attempt to expand each available location in turn. */
8306 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8307 loc || cloc; loc = next)
8308 {
8309 result_first_child = last_child;
8310
8311 if (!loc)
8312 {
8313 loc_from = cloc->loc;
8314 next = loc;
8315 cloc = cloc->next;
8316 if (unsuitable_loc (loc_from))
8317 continue;
8318 }
8319 else
8320 {
8321 loc_from = loc->loc;
8322 next = loc->next;
8323 }
8324
8325 gcc_checking_assert (!unsuitable_loc (loc_from));
8326
8327 elcd->depth.complexity = elcd->depth.entryvals = 0;
8328 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8329 vt_expand_loc_callback, data);
8330 last_child = elcd->expanding.length ();
8331
8332 if (result)
8333 {
8334 depth = elcd->depth;
8335
8336 gcc_checking_assert (depth.complexity
8337 || result_first_child == last_child);
8338
8339 if (last_child - result_first_child != 1)
8340 {
8341 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8342 depth.entryvals++;
8343 depth.complexity++;
8344 }
8345
8346 if (depth.complexity <= EXPR_USE_DEPTH)
8347 {
8348 if (depth.entryvals <= wanted_entryvals)
8349 break;
8350 else if (!found_entryvals || depth.entryvals < found_entryvals)
8351 found_entryvals = depth.entryvals;
8352 }
8353
8354 result = NULL;
8355 }
8356
8357 /* Set it up in case we leave the loop. */
8358 depth.complexity = depth.entryvals = 0;
8359 loc_from = NULL;
8360 result_first_child = first_child;
8361 }
8362
8363 if (!loc_from && wanted_entryvals < found_entryvals)
8364 {
8365 /* We found entries with ENTRY_VALUEs and skipped them. Since
8366 we could not find any expansions without ENTRY_VALUEs, but we
8367 found at least one with them, go back and get an entry with
8368 the minimum number ENTRY_VALUE count that we found. We could
8369 avoid looping, but since each sub-loc is already resolved,
8370 the re-expansion should be trivial. ??? Should we record all
8371 attempted locs as dependencies, so that we retry the
8372 expansion should any of them change, in the hope it can give
8373 us a new entry without an ENTRY_VALUE? */
8374 elcd->expanding.truncate (first_child);
8375 goto retry;
8376 }
8377
8378 /* Register all encountered dependencies as active. */
8379 pending_recursion = loc_exp_dep_set
8380 (var, result, elcd->expanding.address () + result_first_child,
8381 last_child - result_first_child, elcd->vars);
8382
8383 elcd->expanding.truncate (first_child);
8384
8385 /* Record where the expansion came from. */
8386 gcc_checking_assert (!result || !pending_recursion);
8387 VAR_LOC_FROM (var) = loc_from;
8388 VAR_LOC_DEPTH (var) = depth;
8389
8390 gcc_checking_assert (!depth.complexity == !result);
8391
8392 elcd->depth = update_depth (saved_depth, depth);
8393
8394 /* Indicate whether any of the dependencies are pending recursion
8395 resolution. */
8396 if (pendrecp)
8397 *pendrecp = pending_recursion;
8398
8399 if (!pendrecp || !pending_recursion)
8400 var->var_part[0].cur_loc = result;
8401
8402 return result;
8403 }
8404
8405 /* Callback for cselib_expand_value, that looks for expressions
8406 holding the value in the var-tracking hash tables. Return X for
8407 standard processing, anything else is to be used as-is. */
8408
8409 static rtx
8410 vt_expand_loc_callback (rtx x, bitmap regs,
8411 int max_depth ATTRIBUTE_UNUSED,
8412 void *data)
8413 {
8414 struct expand_loc_callback_data *elcd
8415 = (struct expand_loc_callback_data *) data;
8416 decl_or_value dv;
8417 variable *var;
8418 rtx result, subreg;
8419 bool pending_recursion = false;
8420 bool from_empty = false;
8421
8422 switch (GET_CODE (x))
8423 {
8424 case SUBREG:
8425 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8426 EXPR_DEPTH,
8427 vt_expand_loc_callback, data);
8428
8429 if (!subreg)
8430 return NULL;
8431
8432 result = simplify_gen_subreg (GET_MODE (x), subreg,
8433 GET_MODE (SUBREG_REG (x)),
8434 SUBREG_BYTE (x));
8435
8436 /* Invalid SUBREGs are ok in debug info. ??? We could try
8437 alternate expansions for the VALUE as well. */
8438 if (!result)
8439 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8440
8441 return result;
8442
8443 case DEBUG_EXPR:
8444 case VALUE:
8445 dv = dv_from_rtx (x);
8446 break;
8447
8448 default:
8449 return x;
8450 }
8451
8452 elcd->expanding.safe_push (x);
8453
8454 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8455 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8456
8457 if (NO_LOC_P (x))
8458 {
8459 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8460 return NULL;
8461 }
8462
8463 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8464
8465 if (!var)
8466 {
8467 from_empty = true;
8468 var = variable_from_dropped (dv, INSERT);
8469 }
8470
8471 gcc_checking_assert (var);
8472
8473 if (!dv_changed_p (dv))
8474 {
8475 gcc_checking_assert (!NO_LOC_P (x));
8476 gcc_checking_assert (var->var_part[0].cur_loc);
8477 gcc_checking_assert (VAR_LOC_1PAUX (var));
8478 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8479
8480 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8481
8482 return var->var_part[0].cur_loc;
8483 }
8484
8485 VALUE_RECURSED_INTO (x) = true;
8486 /* This is tentative, but it makes some tests simpler. */
8487 NO_LOC_P (x) = true;
8488
8489 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8490
8491 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8492
8493 if (pending_recursion)
8494 {
8495 gcc_checking_assert (!result);
8496 elcd->pending.safe_push (x);
8497 }
8498 else
8499 {
8500 NO_LOC_P (x) = !result;
8501 VALUE_RECURSED_INTO (x) = false;
8502 set_dv_changed (dv, false);
8503
8504 if (result)
8505 notify_dependents_of_resolved_value (var, elcd->vars);
8506 }
8507
8508 return result;
8509 }
8510
8511 /* While expanding variables, we may encounter recursion cycles
8512 because of mutual (possibly indirect) dependencies between two
8513 particular variables (or values), say A and B. If we're trying to
8514 expand A when we get to B, which in turn attempts to expand A, if
8515 we can't find any other expansion for B, we'll add B to this
8516 pending-recursion stack, and tentatively return NULL for its
8517 location. This tentative value will be used for any other
8518 occurrences of B, unless A gets some other location, in which case
8519 it will notify B that it is worth another try at computing a
8520 location for it, and it will use the location computed for A then.
8521 At the end of the expansion, the tentative NULL locations become
8522 final for all members of PENDING that didn't get a notification.
8523 This function performs this finalization of NULL locations. */
8524
8525 static void
8526 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8527 {
8528 while (!pending->is_empty ())
8529 {
8530 rtx x = pending->pop ();
8531 decl_or_value dv;
8532
8533 if (!VALUE_RECURSED_INTO (x))
8534 continue;
8535
8536 gcc_checking_assert (NO_LOC_P (x));
8537 VALUE_RECURSED_INTO (x) = false;
8538 dv = dv_from_rtx (x);
8539 gcc_checking_assert (dv_changed_p (dv));
8540 set_dv_changed (dv, false);
8541 }
8542 }
8543
8544 /* Initialize expand_loc_callback_data D with variable hash table V.
8545 It must be a macro because of alloca (vec stack). */
8546 #define INIT_ELCD(d, v) \
8547 do \
8548 { \
8549 (d).vars = (v); \
8550 (d).depth.complexity = (d).depth.entryvals = 0; \
8551 } \
8552 while (0)
8553 /* Finalize expand_loc_callback_data D, resolved to location L. */
8554 #define FINI_ELCD(d, l) \
8555 do \
8556 { \
8557 resolve_expansions_pending_recursion (&(d).pending); \
8558 (d).pending.release (); \
8559 (d).expanding.release (); \
8560 \
8561 if ((l) && MEM_P (l)) \
8562 (l) = targetm.delegitimize_address (l); \
8563 } \
8564 while (0)
8565
8566 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8567 equivalences in VARS, updating their CUR_LOCs in the process. */
8568
8569 static rtx
8570 vt_expand_loc (rtx loc, variable_table_type *vars)
8571 {
8572 struct expand_loc_callback_data data;
8573 rtx result;
8574
8575 if (!MAY_HAVE_DEBUG_INSNS)
8576 return loc;
8577
8578 INIT_ELCD (data, vars);
8579
8580 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8581 vt_expand_loc_callback, &data);
8582
8583 FINI_ELCD (data, result);
8584
8585 return result;
8586 }
8587
8588 /* Expand the one-part VARiable to a location, using the equivalences
8589 in VARS, updating their CUR_LOCs in the process. */
8590
8591 static rtx
8592 vt_expand_1pvar (variable *var, variable_table_type *vars)
8593 {
8594 struct expand_loc_callback_data data;
8595 rtx loc;
8596
8597 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8598
8599 if (!dv_changed_p (var->dv))
8600 return var->var_part[0].cur_loc;
8601
8602 INIT_ELCD (data, vars);
8603
8604 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8605
8606 gcc_checking_assert (data.expanding.is_empty ());
8607
8608 FINI_ELCD (data, loc);
8609
8610 return loc;
8611 }
8612
8613 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8614 additional parameters: WHERE specifies whether the note shall be emitted
8615 before or after instruction INSN. */
8616
8617 int
8618 emit_note_insn_var_location (variable **varp, emit_note_data *data)
8619 {
8620 variable *var = *varp;
8621 rtx_insn *insn = data->insn;
8622 enum emit_note_where where = data->where;
8623 variable_table_type *vars = data->vars;
8624 rtx_note *note;
8625 rtx note_vl;
8626 int i, j, n_var_parts;
8627 bool complete;
8628 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8629 HOST_WIDE_INT last_limit;
8630 tree type_size_unit;
8631 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8632 rtx loc[MAX_VAR_PARTS];
8633 tree decl;
8634 location_chain *lc;
8635
8636 gcc_checking_assert (var->onepart == NOT_ONEPART
8637 || var->onepart == ONEPART_VDECL);
8638
8639 decl = dv_as_decl (var->dv);
8640
8641 complete = true;
8642 last_limit = 0;
8643 n_var_parts = 0;
8644 if (!var->onepart)
8645 for (i = 0; i < var->n_var_parts; i++)
8646 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8647 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8648 for (i = 0; i < var->n_var_parts; i++)
8649 {
8650 machine_mode mode, wider_mode;
8651 rtx loc2;
8652 HOST_WIDE_INT offset;
8653
8654 if (i == 0 && var->onepart)
8655 {
8656 gcc_checking_assert (var->n_var_parts == 1);
8657 offset = 0;
8658 initialized = VAR_INIT_STATUS_INITIALIZED;
8659 loc2 = vt_expand_1pvar (var, vars);
8660 }
8661 else
8662 {
8663 if (last_limit < VAR_PART_OFFSET (var, i))
8664 {
8665 complete = false;
8666 break;
8667 }
8668 else if (last_limit > VAR_PART_OFFSET (var, i))
8669 continue;
8670 offset = VAR_PART_OFFSET (var, i);
8671 loc2 = var->var_part[i].cur_loc;
8672 if (loc2 && GET_CODE (loc2) == MEM
8673 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8674 {
8675 rtx depval = XEXP (loc2, 0);
8676
8677 loc2 = vt_expand_loc (loc2, vars);
8678
8679 if (loc2)
8680 loc_exp_insert_dep (var, depval, vars);
8681 }
8682 if (!loc2)
8683 {
8684 complete = false;
8685 continue;
8686 }
8687 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8688 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8689 if (var->var_part[i].cur_loc == lc->loc)
8690 {
8691 initialized = lc->init;
8692 break;
8693 }
8694 gcc_assert (lc);
8695 }
8696
8697 offsets[n_var_parts] = offset;
8698 if (!loc2)
8699 {
8700 complete = false;
8701 continue;
8702 }
8703 loc[n_var_parts] = loc2;
8704 mode = GET_MODE (var->var_part[i].cur_loc);
8705 if (mode == VOIDmode && var->onepart)
8706 mode = DECL_MODE (decl);
8707 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8708
8709 /* Attempt to merge adjacent registers or memory. */
8710 wider_mode = GET_MODE_WIDER_MODE (mode);
8711 for (j = i + 1; j < var->n_var_parts; j++)
8712 if (last_limit <= VAR_PART_OFFSET (var, j))
8713 break;
8714 if (j < var->n_var_parts
8715 && wider_mode != VOIDmode
8716 && var->var_part[j].cur_loc
8717 && mode == GET_MODE (var->var_part[j].cur_loc)
8718 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8719 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8720 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8721 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8722 {
8723 rtx new_loc = NULL;
8724
8725 if (REG_P (loc[n_var_parts])
8726 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8727 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8728 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8729 == REGNO (loc2))
8730 {
8731 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8732 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8733 mode, 0);
8734 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8735 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8736 if (new_loc)
8737 {
8738 if (!REG_P (new_loc)
8739 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8740 new_loc = NULL;
8741 else
8742 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8743 }
8744 }
8745 else if (MEM_P (loc[n_var_parts])
8746 && GET_CODE (XEXP (loc2, 0)) == PLUS
8747 && REG_P (XEXP (XEXP (loc2, 0), 0))
8748 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8749 {
8750 if ((REG_P (XEXP (loc[n_var_parts], 0))
8751 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8752 XEXP (XEXP (loc2, 0), 0))
8753 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8754 == GET_MODE_SIZE (mode))
8755 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8756 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8757 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8758 XEXP (XEXP (loc2, 0), 0))
8759 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8760 + GET_MODE_SIZE (mode)
8761 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8762 new_loc = adjust_address_nv (loc[n_var_parts],
8763 wider_mode, 0);
8764 }
8765
8766 if (new_loc)
8767 {
8768 loc[n_var_parts] = new_loc;
8769 mode = wider_mode;
8770 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8771 i = j;
8772 }
8773 }
8774 ++n_var_parts;
8775 }
8776 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8777 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8778 complete = false;
8779
8780 if (! flag_var_tracking_uninit)
8781 initialized = VAR_INIT_STATUS_INITIALIZED;
8782
8783 note_vl = NULL_RTX;
8784 if (!complete)
8785 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8786 else if (n_var_parts == 1)
8787 {
8788 rtx expr_list;
8789
8790 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8791 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8792 else
8793 expr_list = loc[0];
8794
8795 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8796 }
8797 else if (n_var_parts)
8798 {
8799 rtx parallel;
8800
8801 for (i = 0; i < n_var_parts; i++)
8802 loc[i]
8803 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8804
8805 parallel = gen_rtx_PARALLEL (VOIDmode,
8806 gen_rtvec_v (n_var_parts, loc));
8807 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8808 parallel, initialized);
8809 }
8810
8811 if (where != EMIT_NOTE_BEFORE_INSN)
8812 {
8813 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8814 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8815 NOTE_DURING_CALL_P (note) = true;
8816 }
8817 else
8818 {
8819 /* Make sure that the call related notes come first. */
8820 while (NEXT_INSN (insn)
8821 && NOTE_P (insn)
8822 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8823 && NOTE_DURING_CALL_P (insn))
8824 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8825 insn = NEXT_INSN (insn);
8826 if (NOTE_P (insn)
8827 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8828 && NOTE_DURING_CALL_P (insn))
8829 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8830 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8831 else
8832 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8833 }
8834 NOTE_VAR_LOCATION (note) = note_vl;
8835
8836 set_dv_changed (var->dv, false);
8837 gcc_assert (var->in_changed_variables);
8838 var->in_changed_variables = false;
8839 changed_variables->clear_slot (varp);
8840
8841 /* Continue traversing the hash table. */
8842 return 1;
8843 }
8844
8845 /* While traversing changed_variables, push onto DATA (a stack of RTX
8846 values) entries that aren't user variables. */
8847
8848 int
8849 var_track_values_to_stack (variable **slot,
8850 vec<rtx, va_heap> *changed_values_stack)
8851 {
8852 variable *var = *slot;
8853
8854 if (var->onepart == ONEPART_VALUE)
8855 changed_values_stack->safe_push (dv_as_value (var->dv));
8856 else if (var->onepart == ONEPART_DEXPR)
8857 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8858
8859 return 1;
8860 }
8861
8862 /* Remove from changed_variables the entry whose DV corresponds to
8863 value or debug_expr VAL. */
8864 static void
8865 remove_value_from_changed_variables (rtx val)
8866 {
8867 decl_or_value dv = dv_from_rtx (val);
8868 variable **slot;
8869 variable *var;
8870
8871 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8872 NO_INSERT);
8873 var = *slot;
8874 var->in_changed_variables = false;
8875 changed_variables->clear_slot (slot);
8876 }
8877
8878 /* If VAL (a value or debug_expr) has backlinks to variables actively
8879 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8880 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8881 have dependencies of their own to notify. */
8882
8883 static void
8884 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8885 vec<rtx, va_heap> *changed_values_stack)
8886 {
8887 variable **slot;
8888 variable *var;
8889 loc_exp_dep *led;
8890 decl_or_value dv = dv_from_rtx (val);
8891
8892 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8893 NO_INSERT);
8894 if (!slot)
8895 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8896 if (!slot)
8897 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8898 NO_INSERT);
8899 var = *slot;
8900
8901 while ((led = VAR_LOC_DEP_LST (var)))
8902 {
8903 decl_or_value ldv = led->dv;
8904 variable *ivar;
8905
8906 /* Deactivate and remove the backlink, as it was “used up”. It
8907 makes no sense to attempt to notify the same entity again:
8908 either it will be recomputed and re-register an active
8909 dependency, or it will still have the changed mark. */
8910 if (led->next)
8911 led->next->pprev = led->pprev;
8912 if (led->pprev)
8913 *led->pprev = led->next;
8914 led->next = NULL;
8915 led->pprev = NULL;
8916
8917 if (dv_changed_p (ldv))
8918 continue;
8919
8920 switch (dv_onepart_p (ldv))
8921 {
8922 case ONEPART_VALUE:
8923 case ONEPART_DEXPR:
8924 set_dv_changed (ldv, true);
8925 changed_values_stack->safe_push (dv_as_rtx (ldv));
8926 break;
8927
8928 case ONEPART_VDECL:
8929 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8930 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8931 variable_was_changed (ivar, NULL);
8932 break;
8933
8934 case NOT_ONEPART:
8935 delete led;
8936 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8937 if (ivar)
8938 {
8939 int i = ivar->n_var_parts;
8940 while (i--)
8941 {
8942 rtx loc = ivar->var_part[i].cur_loc;
8943
8944 if (loc && GET_CODE (loc) == MEM
8945 && XEXP (loc, 0) == val)
8946 {
8947 variable_was_changed (ivar, NULL);
8948 break;
8949 }
8950 }
8951 }
8952 break;
8953
8954 default:
8955 gcc_unreachable ();
8956 }
8957 }
8958 }
8959
8960 /* Take out of changed_variables any entries that don't refer to use
8961 variables. Back-propagate change notifications from values and
8962 debug_exprs to their active dependencies in HTAB or in
8963 CHANGED_VARIABLES. */
8964
8965 static void
8966 process_changed_values (variable_table_type *htab)
8967 {
8968 int i, n;
8969 rtx val;
8970 auto_vec<rtx, 20> changed_values_stack;
8971
8972 /* Move values from changed_variables to changed_values_stack. */
8973 changed_variables
8974 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8975 (&changed_values_stack);
8976
8977 /* Back-propagate change notifications in values while popping
8978 them from the stack. */
8979 for (n = i = changed_values_stack.length ();
8980 i > 0; i = changed_values_stack.length ())
8981 {
8982 val = changed_values_stack.pop ();
8983 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8984
8985 /* This condition will hold when visiting each of the entries
8986 originally in changed_variables. We can't remove them
8987 earlier because this could drop the backlinks before we got a
8988 chance to use them. */
8989 if (i == n)
8990 {
8991 remove_value_from_changed_variables (val);
8992 n--;
8993 }
8994 }
8995 }
8996
8997 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8998 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8999 the notes shall be emitted before of after instruction INSN. */
9000
9001 static void
9002 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
9003 shared_hash *vars)
9004 {
9005 emit_note_data data;
9006 variable_table_type *htab = shared_hash_htab (vars);
9007
9008 if (!changed_variables->elements ())
9009 return;
9010
9011 if (MAY_HAVE_DEBUG_INSNS)
9012 process_changed_values (htab);
9013
9014 data.insn = insn;
9015 data.where = where;
9016 data.vars = htab;
9017
9018 changed_variables
9019 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
9020 }
9021
9022 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
9023 same variable in hash table DATA or is not there at all. */
9024
9025 int
9026 emit_notes_for_differences_1 (variable **slot, variable_table_type *new_vars)
9027 {
9028 variable *old_var, *new_var;
9029
9030 old_var = *slot;
9031 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9032
9033 if (!new_var)
9034 {
9035 /* Variable has disappeared. */
9036 variable *empty_var = NULL;
9037
9038 if (old_var->onepart == ONEPART_VALUE
9039 || old_var->onepart == ONEPART_DEXPR)
9040 {
9041 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9042 if (empty_var)
9043 {
9044 gcc_checking_assert (!empty_var->in_changed_variables);
9045 if (!VAR_LOC_1PAUX (old_var))
9046 {
9047 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9048 VAR_LOC_1PAUX (empty_var) = NULL;
9049 }
9050 else
9051 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9052 }
9053 }
9054
9055 if (!empty_var)
9056 {
9057 empty_var = onepart_pool_allocate (old_var->onepart);
9058 empty_var->dv = old_var->dv;
9059 empty_var->refcount = 0;
9060 empty_var->n_var_parts = 0;
9061 empty_var->onepart = old_var->onepart;
9062 empty_var->in_changed_variables = false;
9063 }
9064
9065 if (empty_var->onepart)
9066 {
9067 /* Propagate the auxiliary data to (ultimately)
9068 changed_variables. */
9069 empty_var->var_part[0].loc_chain = NULL;
9070 empty_var->var_part[0].cur_loc = NULL;
9071 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9072 VAR_LOC_1PAUX (old_var) = NULL;
9073 }
9074 variable_was_changed (empty_var, NULL);
9075 /* Continue traversing the hash table. */
9076 return 1;
9077 }
9078 /* Update cur_loc and one-part auxiliary data, before new_var goes
9079 through variable_was_changed. */
9080 if (old_var != new_var && new_var->onepart)
9081 {
9082 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9083 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9084 VAR_LOC_1PAUX (old_var) = NULL;
9085 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9086 }
9087 if (variable_different_p (old_var, new_var))
9088 variable_was_changed (new_var, NULL);
9089
9090 /* Continue traversing the hash table. */
9091 return 1;
9092 }
9093
9094 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9095 table DATA. */
9096
9097 int
9098 emit_notes_for_differences_2 (variable **slot, variable_table_type *old_vars)
9099 {
9100 variable *old_var, *new_var;
9101
9102 new_var = *slot;
9103 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9104 if (!old_var)
9105 {
9106 int i;
9107 for (i = 0; i < new_var->n_var_parts; i++)
9108 new_var->var_part[i].cur_loc = NULL;
9109 variable_was_changed (new_var, NULL);
9110 }
9111
9112 /* Continue traversing the hash table. */
9113 return 1;
9114 }
9115
9116 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9117 NEW_SET. */
9118
9119 static void
9120 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9121 dataflow_set *new_set)
9122 {
9123 shared_hash_htab (old_set->vars)
9124 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9125 (shared_hash_htab (new_set->vars));
9126 shared_hash_htab (new_set->vars)
9127 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9128 (shared_hash_htab (old_set->vars));
9129 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9130 }
9131
9132 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9133
9134 static rtx_insn *
9135 next_non_note_insn_var_location (rtx_insn *insn)
9136 {
9137 while (insn)
9138 {
9139 insn = NEXT_INSN (insn);
9140 if (insn == 0
9141 || !NOTE_P (insn)
9142 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9143 break;
9144 }
9145
9146 return insn;
9147 }
9148
9149 /* Emit the notes for changes of location parts in the basic block BB. */
9150
9151 static void
9152 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9153 {
9154 unsigned int i;
9155 micro_operation *mo;
9156
9157 dataflow_set_clear (set);
9158 dataflow_set_copy (set, &VTI (bb)->in);
9159
9160 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9161 {
9162 rtx_insn *insn = mo->insn;
9163 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9164
9165 switch (mo->type)
9166 {
9167 case MO_CALL:
9168 dataflow_set_clear_at_call (set, insn);
9169 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9170 {
9171 rtx arguments = mo->u.loc, *p = &arguments;
9172 rtx_note *note;
9173 while (*p)
9174 {
9175 XEXP (XEXP (*p, 0), 1)
9176 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9177 shared_hash_htab (set->vars));
9178 /* If expansion is successful, keep it in the list. */
9179 if (XEXP (XEXP (*p, 0), 1))
9180 p = &XEXP (*p, 1);
9181 /* Otherwise, if the following item is data_value for it,
9182 drop it too too. */
9183 else if (XEXP (*p, 1)
9184 && REG_P (XEXP (XEXP (*p, 0), 0))
9185 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9186 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9187 0))
9188 && REGNO (XEXP (XEXP (*p, 0), 0))
9189 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9190 0), 0)))
9191 *p = XEXP (XEXP (*p, 1), 1);
9192 /* Just drop this item. */
9193 else
9194 *p = XEXP (*p, 1);
9195 }
9196 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9197 NOTE_VAR_LOCATION (note) = arguments;
9198 }
9199 break;
9200
9201 case MO_USE:
9202 {
9203 rtx loc = mo->u.loc;
9204
9205 if (REG_P (loc))
9206 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9207 else
9208 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9209
9210 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9211 }
9212 break;
9213
9214 case MO_VAL_LOC:
9215 {
9216 rtx loc = mo->u.loc;
9217 rtx val, vloc;
9218 tree var;
9219
9220 if (GET_CODE (loc) == CONCAT)
9221 {
9222 val = XEXP (loc, 0);
9223 vloc = XEXP (loc, 1);
9224 }
9225 else
9226 {
9227 val = NULL_RTX;
9228 vloc = loc;
9229 }
9230
9231 var = PAT_VAR_LOCATION_DECL (vloc);
9232
9233 clobber_variable_part (set, NULL_RTX,
9234 dv_from_decl (var), 0, NULL_RTX);
9235 if (val)
9236 {
9237 if (VAL_NEEDS_RESOLUTION (loc))
9238 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9239 set_variable_part (set, val, dv_from_decl (var), 0,
9240 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9241 INSERT);
9242 }
9243 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9244 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9245 dv_from_decl (var), 0,
9246 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9247 INSERT);
9248
9249 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9250 }
9251 break;
9252
9253 case MO_VAL_USE:
9254 {
9255 rtx loc = mo->u.loc;
9256 rtx val, vloc, uloc;
9257
9258 vloc = uloc = XEXP (loc, 1);
9259 val = XEXP (loc, 0);
9260
9261 if (GET_CODE (val) == CONCAT)
9262 {
9263 uloc = XEXP (val, 1);
9264 val = XEXP (val, 0);
9265 }
9266
9267 if (VAL_NEEDS_RESOLUTION (loc))
9268 val_resolve (set, val, vloc, insn);
9269 else
9270 val_store (set, val, uloc, insn, false);
9271
9272 if (VAL_HOLDS_TRACK_EXPR (loc))
9273 {
9274 if (GET_CODE (uloc) == REG)
9275 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9276 NULL);
9277 else if (GET_CODE (uloc) == MEM)
9278 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9279 NULL);
9280 }
9281
9282 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9283 }
9284 break;
9285
9286 case MO_VAL_SET:
9287 {
9288 rtx loc = mo->u.loc;
9289 rtx val, vloc, uloc;
9290 rtx dstv, srcv;
9291
9292 vloc = loc;
9293 uloc = XEXP (vloc, 1);
9294 val = XEXP (vloc, 0);
9295 vloc = uloc;
9296
9297 if (GET_CODE (uloc) == SET)
9298 {
9299 dstv = SET_DEST (uloc);
9300 srcv = SET_SRC (uloc);
9301 }
9302 else
9303 {
9304 dstv = uloc;
9305 srcv = NULL;
9306 }
9307
9308 if (GET_CODE (val) == CONCAT)
9309 {
9310 dstv = vloc = XEXP (val, 1);
9311 val = XEXP (val, 0);
9312 }
9313
9314 if (GET_CODE (vloc) == SET)
9315 {
9316 srcv = SET_SRC (vloc);
9317
9318 gcc_assert (val != srcv);
9319 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9320
9321 dstv = vloc = SET_DEST (vloc);
9322
9323 if (VAL_NEEDS_RESOLUTION (loc))
9324 val_resolve (set, val, srcv, insn);
9325 }
9326 else if (VAL_NEEDS_RESOLUTION (loc))
9327 {
9328 gcc_assert (GET_CODE (uloc) == SET
9329 && GET_CODE (SET_SRC (uloc)) == REG);
9330 val_resolve (set, val, SET_SRC (uloc), insn);
9331 }
9332
9333 if (VAL_HOLDS_TRACK_EXPR (loc))
9334 {
9335 if (VAL_EXPR_IS_CLOBBERED (loc))
9336 {
9337 if (REG_P (uloc))
9338 var_reg_delete (set, uloc, true);
9339 else if (MEM_P (uloc))
9340 {
9341 gcc_assert (MEM_P (dstv));
9342 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9343 var_mem_delete (set, dstv, true);
9344 }
9345 }
9346 else
9347 {
9348 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9349 rtx src = NULL, dst = uloc;
9350 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9351
9352 if (GET_CODE (uloc) == SET)
9353 {
9354 src = SET_SRC (uloc);
9355 dst = SET_DEST (uloc);
9356 }
9357
9358 if (copied_p)
9359 {
9360 status = find_src_status (set, src);
9361
9362 src = find_src_set_src (set, src);
9363 }
9364
9365 if (REG_P (dst))
9366 var_reg_delete_and_set (set, dst, !copied_p,
9367 status, srcv);
9368 else if (MEM_P (dst))
9369 {
9370 gcc_assert (MEM_P (dstv));
9371 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9372 var_mem_delete_and_set (set, dstv, !copied_p,
9373 status, srcv);
9374 }
9375 }
9376 }
9377 else if (REG_P (uloc))
9378 var_regno_delete (set, REGNO (uloc));
9379 else if (MEM_P (uloc))
9380 {
9381 gcc_checking_assert (GET_CODE (vloc) == MEM);
9382 gcc_checking_assert (vloc == dstv);
9383 if (vloc != dstv)
9384 clobber_overlapping_mems (set, vloc);
9385 }
9386
9387 val_store (set, val, dstv, insn, true);
9388
9389 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9390 set->vars);
9391 }
9392 break;
9393
9394 case MO_SET:
9395 {
9396 rtx loc = mo->u.loc;
9397 rtx set_src = NULL;
9398
9399 if (GET_CODE (loc) == SET)
9400 {
9401 set_src = SET_SRC (loc);
9402 loc = SET_DEST (loc);
9403 }
9404
9405 if (REG_P (loc))
9406 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9407 set_src);
9408 else
9409 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9410 set_src);
9411
9412 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9413 set->vars);
9414 }
9415 break;
9416
9417 case MO_COPY:
9418 {
9419 rtx loc = mo->u.loc;
9420 enum var_init_status src_status;
9421 rtx set_src = NULL;
9422
9423 if (GET_CODE (loc) == SET)
9424 {
9425 set_src = SET_SRC (loc);
9426 loc = SET_DEST (loc);
9427 }
9428
9429 src_status = find_src_status (set, set_src);
9430 set_src = find_src_set_src (set, set_src);
9431
9432 if (REG_P (loc))
9433 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9434 else
9435 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9436
9437 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9438 set->vars);
9439 }
9440 break;
9441
9442 case MO_USE_NO_VAR:
9443 {
9444 rtx loc = mo->u.loc;
9445
9446 if (REG_P (loc))
9447 var_reg_delete (set, loc, false);
9448 else
9449 var_mem_delete (set, loc, false);
9450
9451 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9452 }
9453 break;
9454
9455 case MO_CLOBBER:
9456 {
9457 rtx loc = mo->u.loc;
9458
9459 if (REG_P (loc))
9460 var_reg_delete (set, loc, true);
9461 else
9462 var_mem_delete (set, loc, true);
9463
9464 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9465 set->vars);
9466 }
9467 break;
9468
9469 case MO_ADJUST:
9470 set->stack_adjust += mo->u.adjust;
9471 break;
9472 }
9473 }
9474 }
9475
9476 /* Emit notes for the whole function. */
9477
9478 static void
9479 vt_emit_notes (void)
9480 {
9481 basic_block bb;
9482 dataflow_set cur;
9483
9484 gcc_assert (!changed_variables->elements ());
9485
9486 /* Free memory occupied by the out hash tables, as they aren't used
9487 anymore. */
9488 FOR_EACH_BB_FN (bb, cfun)
9489 dataflow_set_clear (&VTI (bb)->out);
9490
9491 /* Enable emitting notes by functions (mainly by set_variable_part and
9492 delete_variable_part). */
9493 emit_notes = true;
9494
9495 if (MAY_HAVE_DEBUG_INSNS)
9496 {
9497 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9498 }
9499
9500 dataflow_set_init (&cur);
9501
9502 FOR_EACH_BB_FN (bb, cfun)
9503 {
9504 /* Emit the notes for changes of variable locations between two
9505 subsequent basic blocks. */
9506 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9507
9508 if (MAY_HAVE_DEBUG_INSNS)
9509 local_get_addr_cache = new hash_map<rtx, rtx>;
9510
9511 /* Emit the notes for the changes in the basic block itself. */
9512 emit_notes_in_bb (bb, &cur);
9513
9514 if (MAY_HAVE_DEBUG_INSNS)
9515 delete local_get_addr_cache;
9516 local_get_addr_cache = NULL;
9517
9518 /* Free memory occupied by the in hash table, we won't need it
9519 again. */
9520 dataflow_set_clear (&VTI (bb)->in);
9521 }
9522
9523 if (flag_checking)
9524 shared_hash_htab (cur.vars)
9525 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9526 (shared_hash_htab (empty_shared_hash));
9527
9528 dataflow_set_destroy (&cur);
9529
9530 if (MAY_HAVE_DEBUG_INSNS)
9531 delete dropped_values;
9532 dropped_values = NULL;
9533
9534 emit_notes = false;
9535 }
9536
9537 /* If there is a declaration and offset associated with register/memory RTL
9538 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9539
9540 static bool
9541 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9542 {
9543 if (REG_P (rtl))
9544 {
9545 if (REG_ATTRS (rtl))
9546 {
9547 *declp = REG_EXPR (rtl);
9548 *offsetp = REG_OFFSET (rtl);
9549 return true;
9550 }
9551 }
9552 else if (GET_CODE (rtl) == PARALLEL)
9553 {
9554 tree decl = NULL_TREE;
9555 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9556 int len = XVECLEN (rtl, 0), i;
9557
9558 for (i = 0; i < len; i++)
9559 {
9560 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9561 if (!REG_P (reg) || !REG_ATTRS (reg))
9562 break;
9563 if (!decl)
9564 decl = REG_EXPR (reg);
9565 if (REG_EXPR (reg) != decl)
9566 break;
9567 if (REG_OFFSET (reg) < offset)
9568 offset = REG_OFFSET (reg);
9569 }
9570
9571 if (i == len)
9572 {
9573 *declp = decl;
9574 *offsetp = offset;
9575 return true;
9576 }
9577 }
9578 else if (MEM_P (rtl))
9579 {
9580 if (MEM_ATTRS (rtl))
9581 {
9582 *declp = MEM_EXPR (rtl);
9583 *offsetp = INT_MEM_OFFSET (rtl);
9584 return true;
9585 }
9586 }
9587 return false;
9588 }
9589
9590 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9591 of VAL. */
9592
9593 static void
9594 record_entry_value (cselib_val *val, rtx rtl)
9595 {
9596 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9597
9598 ENTRY_VALUE_EXP (ev) = rtl;
9599
9600 cselib_add_permanent_equiv (val, ev, get_insns ());
9601 }
9602
9603 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9604
9605 static void
9606 vt_add_function_parameter (tree parm)
9607 {
9608 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9609 rtx incoming = DECL_INCOMING_RTL (parm);
9610 tree decl;
9611 machine_mode mode;
9612 HOST_WIDE_INT offset;
9613 dataflow_set *out;
9614 decl_or_value dv;
9615
9616 if (TREE_CODE (parm) != PARM_DECL)
9617 return;
9618
9619 if (!decl_rtl || !incoming)
9620 return;
9621
9622 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9623 return;
9624
9625 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9626 rewrite the incoming location of parameters passed on the stack
9627 into MEMs based on the argument pointer, so that incoming doesn't
9628 depend on a pseudo. */
9629 if (MEM_P (incoming)
9630 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9631 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9632 && XEXP (XEXP (incoming, 0), 0)
9633 == crtl->args.internal_arg_pointer
9634 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9635 {
9636 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9637 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9638 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9639 incoming
9640 = replace_equiv_address_nv (incoming,
9641 plus_constant (Pmode,
9642 arg_pointer_rtx, off));
9643 }
9644
9645 #ifdef HAVE_window_save
9646 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9647 If the target machine has an explicit window save instruction, the
9648 actual entry value is the corresponding OUTGOING_REGNO instead. */
9649 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9650 {
9651 if (REG_P (incoming)
9652 && HARD_REGISTER_P (incoming)
9653 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9654 {
9655 parm_reg p;
9656 p.incoming = incoming;
9657 incoming
9658 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9659 OUTGOING_REGNO (REGNO (incoming)), 0);
9660 p.outgoing = incoming;
9661 vec_safe_push (windowed_parm_regs, p);
9662 }
9663 else if (GET_CODE (incoming) == PARALLEL)
9664 {
9665 rtx outgoing
9666 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9667 int i;
9668
9669 for (i = 0; i < XVECLEN (incoming, 0); i++)
9670 {
9671 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9672 parm_reg p;
9673 p.incoming = reg;
9674 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9675 OUTGOING_REGNO (REGNO (reg)), 0);
9676 p.outgoing = reg;
9677 XVECEXP (outgoing, 0, i)
9678 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9679 XEXP (XVECEXP (incoming, 0, i), 1));
9680 vec_safe_push (windowed_parm_regs, p);
9681 }
9682
9683 incoming = outgoing;
9684 }
9685 else if (MEM_P (incoming)
9686 && REG_P (XEXP (incoming, 0))
9687 && HARD_REGISTER_P (XEXP (incoming, 0)))
9688 {
9689 rtx reg = XEXP (incoming, 0);
9690 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9691 {
9692 parm_reg p;
9693 p.incoming = reg;
9694 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9695 p.outgoing = reg;
9696 vec_safe_push (windowed_parm_regs, p);
9697 incoming = replace_equiv_address_nv (incoming, reg);
9698 }
9699 }
9700 }
9701 #endif
9702
9703 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9704 {
9705 if (MEM_P (incoming))
9706 {
9707 /* This means argument is passed by invisible reference. */
9708 offset = 0;
9709 decl = parm;
9710 }
9711 else
9712 {
9713 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9714 return;
9715 offset += byte_lowpart_offset (GET_MODE (incoming),
9716 GET_MODE (decl_rtl));
9717 }
9718 }
9719
9720 if (!decl)
9721 return;
9722
9723 if (parm != decl)
9724 {
9725 /* If that DECL_RTL wasn't a pseudo that got spilled to
9726 memory, bail out. Otherwise, the spill slot sharing code
9727 will force the memory to reference spill_slot_decl (%sfp),
9728 so we don't match above. That's ok, the pseudo must have
9729 referenced the entire parameter, so just reset OFFSET. */
9730 if (decl != get_spill_slot_decl (false))
9731 return;
9732 offset = 0;
9733 }
9734
9735 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9736 return;
9737
9738 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9739
9740 dv = dv_from_decl (parm);
9741
9742 if (target_for_debug_bind (parm)
9743 /* We can't deal with these right now, because this kind of
9744 variable is single-part. ??? We could handle parallels
9745 that describe multiple locations for the same single
9746 value, but ATM we don't. */
9747 && GET_CODE (incoming) != PARALLEL)
9748 {
9749 cselib_val *val;
9750 rtx lowpart;
9751
9752 /* ??? We shouldn't ever hit this, but it may happen because
9753 arguments passed by invisible reference aren't dealt with
9754 above: incoming-rtl will have Pmode rather than the
9755 expected mode for the type. */
9756 if (offset)
9757 return;
9758
9759 lowpart = var_lowpart (mode, incoming);
9760 if (!lowpart)
9761 return;
9762
9763 val = cselib_lookup_from_insn (lowpart, mode, true,
9764 VOIDmode, get_insns ());
9765
9766 /* ??? Float-typed values in memory are not handled by
9767 cselib. */
9768 if (val)
9769 {
9770 preserve_value (val);
9771 set_variable_part (out, val->val_rtx, dv, offset,
9772 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9773 dv = dv_from_value (val->val_rtx);
9774 }
9775
9776 if (MEM_P (incoming))
9777 {
9778 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9779 VOIDmode, get_insns ());
9780 if (val)
9781 {
9782 preserve_value (val);
9783 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9784 }
9785 }
9786 }
9787
9788 if (REG_P (incoming))
9789 {
9790 incoming = var_lowpart (mode, incoming);
9791 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9792 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9793 incoming);
9794 set_variable_part (out, incoming, dv, offset,
9795 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9796 if (dv_is_value_p (dv))
9797 {
9798 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9799 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9800 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9801 {
9802 machine_mode indmode
9803 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9804 rtx mem = gen_rtx_MEM (indmode, incoming);
9805 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9806 VOIDmode,
9807 get_insns ());
9808 if (val)
9809 {
9810 preserve_value (val);
9811 record_entry_value (val, mem);
9812 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9813 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9814 }
9815 }
9816 }
9817 }
9818 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9819 {
9820 int i;
9821
9822 for (i = 0; i < XVECLEN (incoming, 0); i++)
9823 {
9824 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9825 offset = REG_OFFSET (reg);
9826 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9827 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9828 set_variable_part (out, reg, dv, offset,
9829 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9830 }
9831 }
9832 else if (MEM_P (incoming))
9833 {
9834 incoming = var_lowpart (mode, incoming);
9835 set_variable_part (out, incoming, dv, offset,
9836 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9837 }
9838 }
9839
9840 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9841
9842 static void
9843 vt_add_function_parameters (void)
9844 {
9845 tree parm;
9846
9847 for (parm = DECL_ARGUMENTS (current_function_decl);
9848 parm; parm = DECL_CHAIN (parm))
9849 if (!POINTER_BOUNDS_P (parm))
9850 vt_add_function_parameter (parm);
9851
9852 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9853 {
9854 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9855
9856 if (TREE_CODE (vexpr) == INDIRECT_REF)
9857 vexpr = TREE_OPERAND (vexpr, 0);
9858
9859 if (TREE_CODE (vexpr) == PARM_DECL
9860 && DECL_ARTIFICIAL (vexpr)
9861 && !DECL_IGNORED_P (vexpr)
9862 && DECL_NAMELESS (vexpr))
9863 vt_add_function_parameter (vexpr);
9864 }
9865 }
9866
9867 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9868 ensure it isn't flushed during cselib_reset_table.
9869 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9870 has been eliminated. */
9871
9872 static void
9873 vt_init_cfa_base (void)
9874 {
9875 cselib_val *val;
9876
9877 #ifdef FRAME_POINTER_CFA_OFFSET
9878 cfa_base_rtx = frame_pointer_rtx;
9879 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9880 #else
9881 cfa_base_rtx = arg_pointer_rtx;
9882 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9883 #endif
9884 if (cfa_base_rtx == hard_frame_pointer_rtx
9885 || !fixed_regs[REGNO (cfa_base_rtx)])
9886 {
9887 cfa_base_rtx = NULL_RTX;
9888 return;
9889 }
9890 if (!MAY_HAVE_DEBUG_INSNS)
9891 return;
9892
9893 /* Tell alias analysis that cfa_base_rtx should share
9894 find_base_term value with stack pointer or hard frame pointer. */
9895 if (!frame_pointer_needed)
9896 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9897 else if (!crtl->stack_realign_tried)
9898 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9899
9900 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9901 VOIDmode, get_insns ());
9902 preserve_value (val);
9903 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9904 }
9905
9906 /* Allocate and initialize the data structures for variable tracking
9907 and parse the RTL to get the micro operations. */
9908
9909 static bool
9910 vt_initialize (void)
9911 {
9912 basic_block bb;
9913 HOST_WIDE_INT fp_cfa_offset = -1;
9914
9915 alloc_aux_for_blocks (sizeof (variable_tracking_info));
9916
9917 empty_shared_hash = shared_hash_pool.allocate ();
9918 empty_shared_hash->refcount = 1;
9919 empty_shared_hash->htab = new variable_table_type (1);
9920 changed_variables = new variable_table_type (10);
9921
9922 /* Init the IN and OUT sets. */
9923 FOR_ALL_BB_FN (bb, cfun)
9924 {
9925 VTI (bb)->visited = false;
9926 VTI (bb)->flooded = false;
9927 dataflow_set_init (&VTI (bb)->in);
9928 dataflow_set_init (&VTI (bb)->out);
9929 VTI (bb)->permp = NULL;
9930 }
9931
9932 if (MAY_HAVE_DEBUG_INSNS)
9933 {
9934 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9935 scratch_regs = BITMAP_ALLOC (NULL);
9936 preserved_values.create (256);
9937 global_get_addr_cache = new hash_map<rtx, rtx>;
9938 }
9939 else
9940 {
9941 scratch_regs = NULL;
9942 global_get_addr_cache = NULL;
9943 }
9944
9945 if (MAY_HAVE_DEBUG_INSNS)
9946 {
9947 rtx reg, expr;
9948 int ofst;
9949 cselib_val *val;
9950
9951 #ifdef FRAME_POINTER_CFA_OFFSET
9952 reg = frame_pointer_rtx;
9953 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9954 #else
9955 reg = arg_pointer_rtx;
9956 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9957 #endif
9958
9959 ofst -= INCOMING_FRAME_SP_OFFSET;
9960
9961 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9962 VOIDmode, get_insns ());
9963 preserve_value (val);
9964 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9965 cselib_preserve_cfa_base_value (val, REGNO (reg));
9966 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9967 stack_pointer_rtx, -ofst);
9968 cselib_add_permanent_equiv (val, expr, get_insns ());
9969
9970 if (ofst)
9971 {
9972 val = cselib_lookup_from_insn (stack_pointer_rtx,
9973 GET_MODE (stack_pointer_rtx), 1,
9974 VOIDmode, get_insns ());
9975 preserve_value (val);
9976 expr = plus_constant (GET_MODE (reg), reg, ofst);
9977 cselib_add_permanent_equiv (val, expr, get_insns ());
9978 }
9979 }
9980
9981 /* In order to factor out the adjustments made to the stack pointer or to
9982 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9983 instead of individual location lists, we're going to rewrite MEMs based
9984 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9985 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9986 resp. arg_pointer_rtx. We can do this either when there is no frame
9987 pointer in the function and stack adjustments are consistent for all
9988 basic blocks or when there is a frame pointer and no stack realignment.
9989 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9990 has been eliminated. */
9991 if (!frame_pointer_needed)
9992 {
9993 rtx reg, elim;
9994
9995 if (!vt_stack_adjustments ())
9996 return false;
9997
9998 #ifdef FRAME_POINTER_CFA_OFFSET
9999 reg = frame_pointer_rtx;
10000 #else
10001 reg = arg_pointer_rtx;
10002 #endif
10003 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10004 if (elim != reg)
10005 {
10006 if (GET_CODE (elim) == PLUS)
10007 elim = XEXP (elim, 0);
10008 if (elim == stack_pointer_rtx)
10009 vt_init_cfa_base ();
10010 }
10011 }
10012 else if (!crtl->stack_realign_tried)
10013 {
10014 rtx reg, elim;
10015
10016 #ifdef FRAME_POINTER_CFA_OFFSET
10017 reg = frame_pointer_rtx;
10018 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10019 #else
10020 reg = arg_pointer_rtx;
10021 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10022 #endif
10023 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10024 if (elim != reg)
10025 {
10026 if (GET_CODE (elim) == PLUS)
10027 {
10028 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10029 elim = XEXP (elim, 0);
10030 }
10031 if (elim != hard_frame_pointer_rtx)
10032 fp_cfa_offset = -1;
10033 }
10034 else
10035 fp_cfa_offset = -1;
10036 }
10037
10038 /* If the stack is realigned and a DRAP register is used, we're going to
10039 rewrite MEMs based on it representing incoming locations of parameters
10040 passed on the stack into MEMs based on the argument pointer. Although
10041 we aren't going to rewrite other MEMs, we still need to initialize the
10042 virtual CFA pointer in order to ensure that the argument pointer will
10043 be seen as a constant throughout the function.
10044
10045 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10046 else if (stack_realign_drap)
10047 {
10048 rtx reg, elim;
10049
10050 #ifdef FRAME_POINTER_CFA_OFFSET
10051 reg = frame_pointer_rtx;
10052 #else
10053 reg = arg_pointer_rtx;
10054 #endif
10055 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10056 if (elim != reg)
10057 {
10058 if (GET_CODE (elim) == PLUS)
10059 elim = XEXP (elim, 0);
10060 if (elim == hard_frame_pointer_rtx)
10061 vt_init_cfa_base ();
10062 }
10063 }
10064
10065 hard_frame_pointer_adjustment = -1;
10066
10067 vt_add_function_parameters ();
10068
10069 FOR_EACH_BB_FN (bb, cfun)
10070 {
10071 rtx_insn *insn;
10072 HOST_WIDE_INT pre, post = 0;
10073 basic_block first_bb, last_bb;
10074
10075 if (MAY_HAVE_DEBUG_INSNS)
10076 {
10077 cselib_record_sets_hook = add_with_sets;
10078 if (dump_file && (dump_flags & TDF_DETAILS))
10079 fprintf (dump_file, "first value: %i\n",
10080 cselib_get_next_uid ());
10081 }
10082
10083 first_bb = bb;
10084 for (;;)
10085 {
10086 edge e;
10087 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10088 || ! single_pred_p (bb->next_bb))
10089 break;
10090 e = find_edge (bb, bb->next_bb);
10091 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10092 break;
10093 bb = bb->next_bb;
10094 }
10095 last_bb = bb;
10096
10097 /* Add the micro-operations to the vector. */
10098 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10099 {
10100 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10101 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10102 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10103 insn = NEXT_INSN (insn))
10104 {
10105 if (INSN_P (insn))
10106 {
10107 if (!frame_pointer_needed)
10108 {
10109 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10110 if (pre)
10111 {
10112 micro_operation mo;
10113 mo.type = MO_ADJUST;
10114 mo.u.adjust = pre;
10115 mo.insn = insn;
10116 if (dump_file && (dump_flags & TDF_DETAILS))
10117 log_op_type (PATTERN (insn), bb, insn,
10118 MO_ADJUST, dump_file);
10119 VTI (bb)->mos.safe_push (mo);
10120 VTI (bb)->out.stack_adjust += pre;
10121 }
10122 }
10123
10124 cselib_hook_called = false;
10125 adjust_insn (bb, insn);
10126 if (MAY_HAVE_DEBUG_INSNS)
10127 {
10128 if (CALL_P (insn))
10129 prepare_call_arguments (bb, insn);
10130 cselib_process_insn (insn);
10131 if (dump_file && (dump_flags & TDF_DETAILS))
10132 {
10133 print_rtl_single (dump_file, insn);
10134 dump_cselib_table (dump_file);
10135 }
10136 }
10137 if (!cselib_hook_called)
10138 add_with_sets (insn, 0, 0);
10139 cancel_changes (0);
10140
10141 if (!frame_pointer_needed && post)
10142 {
10143 micro_operation mo;
10144 mo.type = MO_ADJUST;
10145 mo.u.adjust = post;
10146 mo.insn = insn;
10147 if (dump_file && (dump_flags & TDF_DETAILS))
10148 log_op_type (PATTERN (insn), bb, insn,
10149 MO_ADJUST, dump_file);
10150 VTI (bb)->mos.safe_push (mo);
10151 VTI (bb)->out.stack_adjust += post;
10152 }
10153
10154 if (fp_cfa_offset != -1
10155 && hard_frame_pointer_adjustment == -1
10156 && fp_setter_insn (insn))
10157 {
10158 vt_init_cfa_base ();
10159 hard_frame_pointer_adjustment = fp_cfa_offset;
10160 /* Disassociate sp from fp now. */
10161 if (MAY_HAVE_DEBUG_INSNS)
10162 {
10163 cselib_val *v;
10164 cselib_invalidate_rtx (stack_pointer_rtx);
10165 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10166 VOIDmode);
10167 if (v && !cselib_preserved_value_p (v))
10168 {
10169 cselib_set_value_sp_based (v);
10170 preserve_value (v);
10171 }
10172 }
10173 }
10174 }
10175 }
10176 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10177 }
10178
10179 bb = last_bb;
10180
10181 if (MAY_HAVE_DEBUG_INSNS)
10182 {
10183 cselib_preserve_only_values ();
10184 cselib_reset_table (cselib_get_next_uid ());
10185 cselib_record_sets_hook = NULL;
10186 }
10187 }
10188
10189 hard_frame_pointer_adjustment = -1;
10190 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10191 cfa_base_rtx = NULL_RTX;
10192 return true;
10193 }
10194
10195 /* This is *not* reset after each function. It gives each
10196 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10197 a unique label number. */
10198
10199 static int debug_label_num = 1;
10200
10201 /* Get rid of all debug insns from the insn stream. */
10202
10203 static void
10204 delete_debug_insns (void)
10205 {
10206 basic_block bb;
10207 rtx_insn *insn, *next;
10208
10209 if (!MAY_HAVE_DEBUG_INSNS)
10210 return;
10211
10212 FOR_EACH_BB_FN (bb, cfun)
10213 {
10214 FOR_BB_INSNS_SAFE (bb, insn, next)
10215 if (DEBUG_INSN_P (insn))
10216 {
10217 tree decl = INSN_VAR_LOCATION_DECL (insn);
10218 if (TREE_CODE (decl) == LABEL_DECL
10219 && DECL_NAME (decl)
10220 && !DECL_RTL_SET_P (decl))
10221 {
10222 PUT_CODE (insn, NOTE);
10223 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10224 NOTE_DELETED_LABEL_NAME (insn)
10225 = IDENTIFIER_POINTER (DECL_NAME (decl));
10226 SET_DECL_RTL (decl, insn);
10227 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10228 }
10229 else
10230 delete_insn (insn);
10231 }
10232 }
10233 }
10234
10235 /* Run a fast, BB-local only version of var tracking, to take care of
10236 information that we don't do global analysis on, such that not all
10237 information is lost. If SKIPPED holds, we're skipping the global
10238 pass entirely, so we should try to use information it would have
10239 handled as well.. */
10240
10241 static void
10242 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10243 {
10244 /* ??? Just skip it all for now. */
10245 delete_debug_insns ();
10246 }
10247
10248 /* Free the data structures needed for variable tracking. */
10249
10250 static void
10251 vt_finalize (void)
10252 {
10253 basic_block bb;
10254
10255 FOR_EACH_BB_FN (bb, cfun)
10256 {
10257 VTI (bb)->mos.release ();
10258 }
10259
10260 FOR_ALL_BB_FN (bb, cfun)
10261 {
10262 dataflow_set_destroy (&VTI (bb)->in);
10263 dataflow_set_destroy (&VTI (bb)->out);
10264 if (VTI (bb)->permp)
10265 {
10266 dataflow_set_destroy (VTI (bb)->permp);
10267 XDELETE (VTI (bb)->permp);
10268 }
10269 }
10270 free_aux_for_blocks ();
10271 delete empty_shared_hash->htab;
10272 empty_shared_hash->htab = NULL;
10273 delete changed_variables;
10274 changed_variables = NULL;
10275 attrs_pool.release ();
10276 var_pool.release ();
10277 location_chain_pool.release ();
10278 shared_hash_pool.release ();
10279
10280 if (MAY_HAVE_DEBUG_INSNS)
10281 {
10282 if (global_get_addr_cache)
10283 delete global_get_addr_cache;
10284 global_get_addr_cache = NULL;
10285 loc_exp_dep_pool.release ();
10286 valvar_pool.release ();
10287 preserved_values.release ();
10288 cselib_finish ();
10289 BITMAP_FREE (scratch_regs);
10290 scratch_regs = NULL;
10291 }
10292
10293 #ifdef HAVE_window_save
10294 vec_free (windowed_parm_regs);
10295 #endif
10296
10297 if (vui_vec)
10298 XDELETEVEC (vui_vec);
10299 vui_vec = NULL;
10300 vui_allocated = 0;
10301 }
10302
10303 /* The entry point to variable tracking pass. */
10304
10305 static inline unsigned int
10306 variable_tracking_main_1 (void)
10307 {
10308 bool success;
10309
10310 if (flag_var_tracking_assignments < 0
10311 /* Var-tracking right now assumes the IR doesn't contain
10312 any pseudos at this point. */
10313 || targetm.no_register_allocation)
10314 {
10315 delete_debug_insns ();
10316 return 0;
10317 }
10318
10319 if (n_basic_blocks_for_fn (cfun) > 500 &&
10320 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10321 {
10322 vt_debug_insns_local (true);
10323 return 0;
10324 }
10325
10326 mark_dfs_back_edges ();
10327 if (!vt_initialize ())
10328 {
10329 vt_finalize ();
10330 vt_debug_insns_local (true);
10331 return 0;
10332 }
10333
10334 success = vt_find_locations ();
10335
10336 if (!success && flag_var_tracking_assignments > 0)
10337 {
10338 vt_finalize ();
10339
10340 delete_debug_insns ();
10341
10342 /* This is later restored by our caller. */
10343 flag_var_tracking_assignments = 0;
10344
10345 success = vt_initialize ();
10346 gcc_assert (success);
10347
10348 success = vt_find_locations ();
10349 }
10350
10351 if (!success)
10352 {
10353 vt_finalize ();
10354 vt_debug_insns_local (false);
10355 return 0;
10356 }
10357
10358 if (dump_file && (dump_flags & TDF_DETAILS))
10359 {
10360 dump_dataflow_sets ();
10361 dump_reg_info (dump_file);
10362 dump_flow_info (dump_file, dump_flags);
10363 }
10364
10365 timevar_push (TV_VAR_TRACKING_EMIT);
10366 vt_emit_notes ();
10367 timevar_pop (TV_VAR_TRACKING_EMIT);
10368
10369 vt_finalize ();
10370 vt_debug_insns_local (false);
10371 return 0;
10372 }
10373
10374 unsigned int
10375 variable_tracking_main (void)
10376 {
10377 unsigned int ret;
10378 int save = flag_var_tracking_assignments;
10379
10380 ret = variable_tracking_main_1 ();
10381
10382 flag_var_tracking_assignments = save;
10383
10384 return ret;
10385 }
10386 \f
10387 namespace {
10388
10389 const pass_data pass_data_variable_tracking =
10390 {
10391 RTL_PASS, /* type */
10392 "vartrack", /* name */
10393 OPTGROUP_NONE, /* optinfo_flags */
10394 TV_VAR_TRACKING, /* tv_id */
10395 0, /* properties_required */
10396 0, /* properties_provided */
10397 0, /* properties_destroyed */
10398 0, /* todo_flags_start */
10399 0, /* todo_flags_finish */
10400 };
10401
10402 class pass_variable_tracking : public rtl_opt_pass
10403 {
10404 public:
10405 pass_variable_tracking (gcc::context *ctxt)
10406 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10407 {}
10408
10409 /* opt_pass methods: */
10410 virtual bool gate (function *)
10411 {
10412 return (flag_var_tracking && !targetm.delay_vartrack);
10413 }
10414
10415 virtual unsigned int execute (function *)
10416 {
10417 return variable_tracking_main ();
10418 }
10419
10420 }; // class pass_variable_tracking
10421
10422 } // anon namespace
10423
10424 rtl_opt_pass *
10425 make_pass_variable_tracking (gcc::context *ctxt)
10426 {
10427 return new pass_variable_tracking (ctxt);
10428 }