Daily bump.
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011, 2012
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
28
29 How does the variable tracking pass work?
30
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < clobber < set < post-modifying stack adjustment
38
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
45
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
55
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
61
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
71
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
79
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
86
87 */
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
118 #include "tm_p.h"
119
120 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
121 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
122 Currently the value is the same as IDENTIFIER_NODE, which has such
123 a property. If this compile time assertion ever fails, make sure that
124 the new tree code that equals (int) VALUE has the same property. */
125 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
126
127 /* Type of micro operation. */
128 enum micro_operation_type
129 {
130 MO_USE, /* Use location (REG or MEM). */
131 MO_USE_NO_VAR,/* Use location which is not associated with a variable
132 or the variable is not trackable. */
133 MO_VAL_USE, /* Use location which is associated with a value. */
134 MO_VAL_LOC, /* Use location which appears in a debug insn. */
135 MO_VAL_SET, /* Set location associated with a value. */
136 MO_SET, /* Set location. */
137 MO_COPY, /* Copy the same portion of a variable from one
138 location to another. */
139 MO_CLOBBER, /* Clobber location. */
140 MO_CALL, /* Call insn. */
141 MO_ADJUST /* Adjust stack pointer. */
142
143 };
144
145 static const char * const ATTRIBUTE_UNUSED
146 micro_operation_type_name[] = {
147 "MO_USE",
148 "MO_USE_NO_VAR",
149 "MO_VAL_USE",
150 "MO_VAL_LOC",
151 "MO_VAL_SET",
152 "MO_SET",
153 "MO_COPY",
154 "MO_CLOBBER",
155 "MO_CALL",
156 "MO_ADJUST"
157 };
158
159 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
160 Notes emitted as AFTER_CALL are to take effect during the call,
161 rather than after the call. */
162 enum emit_note_where
163 {
164 EMIT_NOTE_BEFORE_INSN,
165 EMIT_NOTE_AFTER_INSN,
166 EMIT_NOTE_AFTER_CALL_INSN
167 };
168
169 /* Structure holding information about micro operation. */
170 typedef struct micro_operation_def
171 {
172 /* Type of micro operation. */
173 enum micro_operation_type type;
174
175 /* The instruction which the micro operation is in, for MO_USE,
176 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
177 instruction or note in the original flow (before any var-tracking
178 notes are inserted, to simplify emission of notes), for MO_SET
179 and MO_CLOBBER. */
180 rtx insn;
181
182 union {
183 /* Location. For MO_SET and MO_COPY, this is the SET that
184 performs the assignment, if known, otherwise it is the target
185 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
186 CONCAT of the VALUE and the LOC associated with it. For
187 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
188 associated with it. */
189 rtx loc;
190
191 /* Stack adjustment. */
192 HOST_WIDE_INT adjust;
193 } u;
194 } micro_operation;
195
196 DEF_VEC_O(micro_operation);
197 DEF_VEC_ALLOC_O(micro_operation,heap);
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Structure for passing some other parameters to function
204 emit_note_insn_var_location. */
205 typedef struct emit_note_data_def
206 {
207 /* The instruction which the note will be emitted before/after. */
208 rtx insn;
209
210 /* Where the note will be emitted (before/after insn)? */
211 enum emit_note_where where;
212
213 /* The variables and values active at this point. */
214 htab_t vars;
215 } emit_note_data;
216
217 /* Description of location of a part of a variable. The content of a physical
218 register is described by a chain of these structures.
219 The chains are pretty short (usually 1 or 2 elements) and thus
220 chain is the best data structure. */
221 typedef struct attrs_def
222 {
223 /* Pointer to next member of the list. */
224 struct attrs_def *next;
225
226 /* The rtx of register. */
227 rtx loc;
228
229 /* The declaration corresponding to LOC. */
230 decl_or_value dv;
231
232 /* Offset from start of DECL. */
233 HOST_WIDE_INT offset;
234 } *attrs;
235
236 /* Structure holding a refcounted hash table. If refcount > 1,
237 it must be first unshared before modified. */
238 typedef struct shared_hash_def
239 {
240 /* Reference count. */
241 int refcount;
242
243 /* Actual hash table. */
244 htab_t htab;
245 } *shared_hash;
246
247 /* Structure holding the IN or OUT set for a basic block. */
248 typedef struct dataflow_set_def
249 {
250 /* Adjustment of stack offset. */
251 HOST_WIDE_INT stack_adjust;
252
253 /* Attributes for registers (lists of attrs). */
254 attrs regs[FIRST_PSEUDO_REGISTER];
255
256 /* Variable locations. */
257 shared_hash vars;
258
259 /* Vars that is being traversed. */
260 shared_hash traversed_vars;
261 } dataflow_set;
262
263 /* The structure (one for each basic block) containing the information
264 needed for variable tracking. */
265 typedef struct variable_tracking_info_def
266 {
267 /* The vector of micro operations. */
268 VEC(micro_operation, heap) *mos;
269
270 /* The IN and OUT set for dataflow analysis. */
271 dataflow_set in;
272 dataflow_set out;
273
274 /* The permanent-in dataflow set for this block. This is used to
275 hold values for which we had to compute entry values. ??? This
276 should probably be dynamically allocated, to avoid using more
277 memory in non-debug builds. */
278 dataflow_set *permp;
279
280 /* Has the block been visited in DFS? */
281 bool visited;
282
283 /* Has the block been flooded in VTA? */
284 bool flooded;
285
286 } *variable_tracking_info;
287
288 /* Structure for chaining the locations. */
289 typedef struct location_chain_def
290 {
291 /* Next element in the chain. */
292 struct location_chain_def *next;
293
294 /* The location (REG, MEM or VALUE). */
295 rtx loc;
296
297 /* The "value" stored in this location. */
298 rtx set_src;
299
300 /* Initialized? */
301 enum var_init_status init;
302 } *location_chain;
303
304 /* A vector of loc_exp_dep holds the active dependencies of a one-part
305 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
306 location of DV. Each entry is also part of VALUE' s linked-list of
307 backlinks back to DV. */
308 typedef struct loc_exp_dep_s
309 {
310 /* The dependent DV. */
311 decl_or_value dv;
312 /* The dependency VALUE or DECL_DEBUG. */
313 rtx value;
314 /* The next entry in VALUE's backlinks list. */
315 struct loc_exp_dep_s *next;
316 /* A pointer to the pointer to this entry (head or prev's next) in
317 the doubly-linked list. */
318 struct loc_exp_dep_s **pprev;
319 } loc_exp_dep;
320
321 DEF_VEC_O (loc_exp_dep);
322
323 /* This data structure is allocated for one-part variables at the time
324 of emitting notes. */
325 struct onepart_aux
326 {
327 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
328 computation used the expansion of this variable, and that ought
329 to be notified should this variable change. If the DV's cur_loc
330 expanded to NULL, all components of the loc list are regarded as
331 active, so that any changes in them give us a chance to get a
332 location. Otherwise, only components of the loc that expanded to
333 non-NULL are regarded as active dependencies. */
334 loc_exp_dep *backlinks;
335 /* This holds the LOC that was expanded into cur_loc. We need only
336 mark a one-part variable as changed if the FROM loc is removed,
337 or if it has no known location and a loc is added, or if it gets
338 a change notification from any of its active dependencies. */
339 rtx from;
340 /* The depth of the cur_loc expression. */
341 int depth;
342 /* Dependencies actively used when expand FROM into cur_loc. */
343 VEC (loc_exp_dep, none) deps;
344 };
345
346 /* Structure describing one part of variable. */
347 typedef struct variable_part_def
348 {
349 /* Chain of locations of the part. */
350 location_chain loc_chain;
351
352 /* Location which was last emitted to location list. */
353 rtx cur_loc;
354
355 union variable_aux
356 {
357 /* The offset in the variable, if !var->onepart. */
358 HOST_WIDE_INT offset;
359
360 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
361 struct onepart_aux *onepaux;
362 } aux;
363 } variable_part;
364
365 /* Maximum number of location parts. */
366 #define MAX_VAR_PARTS 16
367
368 /* Enumeration type used to discriminate various types of one-part
369 variables. */
370 typedef enum onepart_enum
371 {
372 /* Not a one-part variable. */
373 NOT_ONEPART = 0,
374 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
375 ONEPART_VDECL = 1,
376 /* A DEBUG_EXPR_DECL. */
377 ONEPART_DEXPR = 2,
378 /* A VALUE. */
379 ONEPART_VALUE = 3
380 } onepart_enum_t;
381
382 /* Structure describing where the variable is located. */
383 typedef struct variable_def
384 {
385 /* The declaration of the variable, or an RTL value being handled
386 like a declaration. */
387 decl_or_value dv;
388
389 /* Reference count. */
390 int refcount;
391
392 /* Number of variable parts. */
393 char n_var_parts;
394
395 /* What type of DV this is, according to enum onepart_enum. */
396 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
397
398 /* True if this variable_def struct is currently in the
399 changed_variables hash table. */
400 bool in_changed_variables;
401
402 /* The variable parts. */
403 variable_part var_part[1];
404 } *variable;
405 typedef const struct variable_def *const_variable;
406
407 /* Pointer to the BB's information specific to variable tracking pass. */
408 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
409
410 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
411 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
412
413 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
414
415 /* Access VAR's Ith part's offset, checking that it's not a one-part
416 variable. */
417 #define VAR_PART_OFFSET(var, i) __extension__ \
418 (*({ variable const __v = (var); \
419 gcc_checking_assert (!__v->onepart); \
420 &__v->var_part[(i)].aux.offset; }))
421
422 /* Access VAR's one-part auxiliary data, checking that it is a
423 one-part variable. */
424 #define VAR_LOC_1PAUX(var) __extension__ \
425 (*({ variable const __v = (var); \
426 gcc_checking_assert (__v->onepart); \
427 &__v->var_part[0].aux.onepaux; }))
428
429 #else
430 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
431 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
432 #endif
433
434 /* These are accessor macros for the one-part auxiliary data. When
435 convenient for users, they're guarded by tests that the data was
436 allocated. */
437 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
438 ? VAR_LOC_1PAUX (var)->backlinks \
439 : NULL)
440 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
441 ? &VAR_LOC_1PAUX (var)->backlinks \
442 : NULL)
443 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
444 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
445 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
446 ? &VAR_LOC_1PAUX (var)->deps \
447 : NULL)
448
449 /* Alloc pool for struct attrs_def. */
450 static alloc_pool attrs_pool;
451
452 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
453 static alloc_pool var_pool;
454
455 /* Alloc pool for struct variable_def with a single var_part entry. */
456 static alloc_pool valvar_pool;
457
458 /* Alloc pool for struct location_chain_def. */
459 static alloc_pool loc_chain_pool;
460
461 /* Alloc pool for struct shared_hash_def. */
462 static alloc_pool shared_hash_pool;
463
464 /* Changed variables, notes will be emitted for them. */
465 static htab_t changed_variables;
466
467 /* Shall notes be emitted? */
468 static bool emit_notes;
469
470 /* Values whose dynamic location lists have gone empty, but whose
471 cselib location lists are still usable. Use this to hold the
472 current location, the backlinks, etc, during emit_notes. */
473 static htab_t dropped_values;
474
475 /* Empty shared hashtable. */
476 static shared_hash empty_shared_hash;
477
478 /* Scratch register bitmap used by cselib_expand_value_rtx. */
479 static bitmap scratch_regs = NULL;
480
481 #ifdef HAVE_window_save
482 typedef struct GTY(()) parm_reg {
483 rtx outgoing;
484 rtx incoming;
485 } parm_reg_t;
486
487 DEF_VEC_O(parm_reg_t);
488 DEF_VEC_ALLOC_O(parm_reg_t, gc);
489
490 /* Vector of windowed parameter registers, if any. */
491 static VEC(parm_reg_t, gc) *windowed_parm_regs = NULL;
492 #endif
493
494 /* Variable used to tell whether cselib_process_insn called our hook. */
495 static bool cselib_hook_called;
496
497 /* Local function prototypes. */
498 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
499 HOST_WIDE_INT *);
500 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
501 HOST_WIDE_INT *);
502 static bool vt_stack_adjustments (void);
503 static hashval_t variable_htab_hash (const void *);
504 static int variable_htab_eq (const void *, const void *);
505 static void variable_htab_free (void *);
506
507 static void init_attrs_list_set (attrs *);
508 static void attrs_list_clear (attrs *);
509 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
510 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
511 static void attrs_list_copy (attrs *, attrs);
512 static void attrs_list_union (attrs *, attrs);
513
514 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
515 enum var_init_status);
516 static void vars_copy (htab_t, htab_t);
517 static tree var_debug_decl (tree);
518 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
519 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
520 enum var_init_status, rtx);
521 static void var_reg_delete (dataflow_set *, rtx, bool);
522 static void var_regno_delete (dataflow_set *, int);
523 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
524 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
525 enum var_init_status, rtx);
526 static void var_mem_delete (dataflow_set *, rtx, bool);
527
528 static void dataflow_set_init (dataflow_set *);
529 static void dataflow_set_clear (dataflow_set *);
530 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
531 static int variable_union_info_cmp_pos (const void *, const void *);
532 static void dataflow_set_union (dataflow_set *, dataflow_set *);
533 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
534 static bool canon_value_cmp (rtx, rtx);
535 static int loc_cmp (rtx, rtx);
536 static bool variable_part_different_p (variable_part *, variable_part *);
537 static bool onepart_variable_different_p (variable, variable);
538 static bool variable_different_p (variable, variable);
539 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
540 static void dataflow_set_destroy (dataflow_set *);
541
542 static bool contains_symbol_ref (rtx);
543 static bool track_expr_p (tree, bool);
544 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
545 static int add_uses (rtx *, void *);
546 static void add_uses_1 (rtx *, void *);
547 static void add_stores (rtx, const_rtx, void *);
548 static bool compute_bb_dataflow (basic_block);
549 static bool vt_find_locations (void);
550
551 static void dump_attrs_list (attrs);
552 static int dump_var_slot (void **, void *);
553 static void dump_var (variable);
554 static void dump_vars (htab_t);
555 static void dump_dataflow_set (dataflow_set *);
556 static void dump_dataflow_sets (void);
557
558 static void set_dv_changed (decl_or_value, bool);
559 static void variable_was_changed (variable, dataflow_set *);
560 static void **set_slot_part (dataflow_set *, rtx, void **,
561 decl_or_value, HOST_WIDE_INT,
562 enum var_init_status, rtx);
563 static void set_variable_part (dataflow_set *, rtx,
564 decl_or_value, HOST_WIDE_INT,
565 enum var_init_status, rtx, enum insert_option);
566 static void **clobber_slot_part (dataflow_set *, rtx,
567 void **, HOST_WIDE_INT, rtx);
568 static void clobber_variable_part (dataflow_set *, rtx,
569 decl_or_value, HOST_WIDE_INT, rtx);
570 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
571 static void delete_variable_part (dataflow_set *, rtx,
572 decl_or_value, HOST_WIDE_INT);
573 static int emit_note_insn_var_location (void **, void *);
574 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
575 static int emit_notes_for_differences_1 (void **, void *);
576 static int emit_notes_for_differences_2 (void **, void *);
577 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
578 static void emit_notes_in_bb (basic_block, dataflow_set *);
579 static void vt_emit_notes (void);
580
581 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
582 static void vt_add_function_parameters (void);
583 static bool vt_initialize (void);
584 static void vt_finalize (void);
585
586 /* Given a SET, calculate the amount of stack adjustment it contains
587 PRE- and POST-modifying stack pointer.
588 This function is similar to stack_adjust_offset. */
589
590 static void
591 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
592 HOST_WIDE_INT *post)
593 {
594 rtx src = SET_SRC (pattern);
595 rtx dest = SET_DEST (pattern);
596 enum rtx_code code;
597
598 if (dest == stack_pointer_rtx)
599 {
600 /* (set (reg sp) (plus (reg sp) (const_int))) */
601 code = GET_CODE (src);
602 if (! (code == PLUS || code == MINUS)
603 || XEXP (src, 0) != stack_pointer_rtx
604 || !CONST_INT_P (XEXP (src, 1)))
605 return;
606
607 if (code == MINUS)
608 *post += INTVAL (XEXP (src, 1));
609 else
610 *post -= INTVAL (XEXP (src, 1));
611 }
612 else if (MEM_P (dest))
613 {
614 /* (set (mem (pre_dec (reg sp))) (foo)) */
615 src = XEXP (dest, 0);
616 code = GET_CODE (src);
617
618 switch (code)
619 {
620 case PRE_MODIFY:
621 case POST_MODIFY:
622 if (XEXP (src, 0) == stack_pointer_rtx)
623 {
624 rtx val = XEXP (XEXP (src, 1), 1);
625 /* We handle only adjustments by constant amount. */
626 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
627 CONST_INT_P (val));
628
629 if (code == PRE_MODIFY)
630 *pre -= INTVAL (val);
631 else
632 *post -= INTVAL (val);
633 break;
634 }
635 return;
636
637 case PRE_DEC:
638 if (XEXP (src, 0) == stack_pointer_rtx)
639 {
640 *pre += GET_MODE_SIZE (GET_MODE (dest));
641 break;
642 }
643 return;
644
645 case POST_DEC:
646 if (XEXP (src, 0) == stack_pointer_rtx)
647 {
648 *post += GET_MODE_SIZE (GET_MODE (dest));
649 break;
650 }
651 return;
652
653 case PRE_INC:
654 if (XEXP (src, 0) == stack_pointer_rtx)
655 {
656 *pre -= GET_MODE_SIZE (GET_MODE (dest));
657 break;
658 }
659 return;
660
661 case POST_INC:
662 if (XEXP (src, 0) == stack_pointer_rtx)
663 {
664 *post -= GET_MODE_SIZE (GET_MODE (dest));
665 break;
666 }
667 return;
668
669 default:
670 return;
671 }
672 }
673 }
674
675 /* Given an INSN, calculate the amount of stack adjustment it contains
676 PRE- and POST-modifying stack pointer. */
677
678 static void
679 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
680 HOST_WIDE_INT *post)
681 {
682 rtx pattern;
683
684 *pre = 0;
685 *post = 0;
686
687 pattern = PATTERN (insn);
688 if (RTX_FRAME_RELATED_P (insn))
689 {
690 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
691 if (expr)
692 pattern = XEXP (expr, 0);
693 }
694
695 if (GET_CODE (pattern) == SET)
696 stack_adjust_offset_pre_post (pattern, pre, post);
697 else if (GET_CODE (pattern) == PARALLEL
698 || GET_CODE (pattern) == SEQUENCE)
699 {
700 int i;
701
702 /* There may be stack adjustments inside compound insns. Search
703 for them. */
704 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
705 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
706 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
707 }
708 }
709
710 /* Compute stack adjustments for all blocks by traversing DFS tree.
711 Return true when the adjustments on all incoming edges are consistent.
712 Heavily borrowed from pre_and_rev_post_order_compute. */
713
714 static bool
715 vt_stack_adjustments (void)
716 {
717 edge_iterator *stack;
718 int sp;
719
720 /* Initialize entry block. */
721 VTI (ENTRY_BLOCK_PTR)->visited = true;
722 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
723 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
724
725 /* Allocate stack for back-tracking up CFG. */
726 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
727 sp = 0;
728
729 /* Push the first edge on to the stack. */
730 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
731
732 while (sp)
733 {
734 edge_iterator ei;
735 basic_block src;
736 basic_block dest;
737
738 /* Look at the edge on the top of the stack. */
739 ei = stack[sp - 1];
740 src = ei_edge (ei)->src;
741 dest = ei_edge (ei)->dest;
742
743 /* Check if the edge destination has been visited yet. */
744 if (!VTI (dest)->visited)
745 {
746 rtx insn;
747 HOST_WIDE_INT pre, post, offset;
748 VTI (dest)->visited = true;
749 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
750
751 if (dest != EXIT_BLOCK_PTR)
752 for (insn = BB_HEAD (dest);
753 insn != NEXT_INSN (BB_END (dest));
754 insn = NEXT_INSN (insn))
755 if (INSN_P (insn))
756 {
757 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
758 offset += pre + post;
759 }
760
761 VTI (dest)->out.stack_adjust = offset;
762
763 if (EDGE_COUNT (dest->succs) > 0)
764 /* Since the DEST node has been visited for the first
765 time, check its successors. */
766 stack[sp++] = ei_start (dest->succs);
767 }
768 else
769 {
770 /* Check whether the adjustments on the edges are the same. */
771 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
772 {
773 free (stack);
774 return false;
775 }
776
777 if (! ei_one_before_end_p (ei))
778 /* Go to the next edge. */
779 ei_next (&stack[sp - 1]);
780 else
781 /* Return to previous level if there are no more edges. */
782 sp--;
783 }
784 }
785
786 free (stack);
787 return true;
788 }
789
790 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
791 hard_frame_pointer_rtx is being mapped to it and offset for it. */
792 static rtx cfa_base_rtx;
793 static HOST_WIDE_INT cfa_base_offset;
794
795 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
796 or hard_frame_pointer_rtx. */
797
798 static inline rtx
799 compute_cfa_pointer (HOST_WIDE_INT adjustment)
800 {
801 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
802 }
803
804 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
805 or -1 if the replacement shouldn't be done. */
806 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
807
808 /* Data for adjust_mems callback. */
809
810 struct adjust_mem_data
811 {
812 bool store;
813 enum machine_mode mem_mode;
814 HOST_WIDE_INT stack_adjust;
815 rtx side_effects;
816 };
817
818 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
819 transformation of wider mode arithmetics to narrower mode,
820 -1 if it is suitable and subexpressions shouldn't be
821 traversed and 0 if it is suitable and subexpressions should
822 be traversed. Called through for_each_rtx. */
823
824 static int
825 use_narrower_mode_test (rtx *loc, void *data)
826 {
827 rtx subreg = (rtx) data;
828
829 if (CONSTANT_P (*loc))
830 return -1;
831 switch (GET_CODE (*loc))
832 {
833 case REG:
834 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
835 return 1;
836 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
837 *loc, subreg_lowpart_offset (GET_MODE (subreg),
838 GET_MODE (*loc))))
839 return 1;
840 return -1;
841 case PLUS:
842 case MINUS:
843 case MULT:
844 return 0;
845 case ASHIFT:
846 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
847 return 1;
848 else
849 return -1;
850 default:
851 return 1;
852 }
853 }
854
855 /* Transform X into narrower mode MODE from wider mode WMODE. */
856
857 static rtx
858 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
859 {
860 rtx op0, op1;
861 if (CONSTANT_P (x))
862 return lowpart_subreg (mode, x, wmode);
863 switch (GET_CODE (x))
864 {
865 case REG:
866 return lowpart_subreg (mode, x, wmode);
867 case PLUS:
868 case MINUS:
869 case MULT:
870 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
871 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
872 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
873 case ASHIFT:
874 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
875 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
876 default:
877 gcc_unreachable ();
878 }
879 }
880
881 /* Helper function for adjusting used MEMs. */
882
883 static rtx
884 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
885 {
886 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
887 rtx mem, addr = loc, tem;
888 enum machine_mode mem_mode_save;
889 bool store_save;
890 switch (GET_CODE (loc))
891 {
892 case REG:
893 /* Don't do any sp or fp replacements outside of MEM addresses
894 on the LHS. */
895 if (amd->mem_mode == VOIDmode && amd->store)
896 return loc;
897 if (loc == stack_pointer_rtx
898 && !frame_pointer_needed
899 && cfa_base_rtx)
900 return compute_cfa_pointer (amd->stack_adjust);
901 else if (loc == hard_frame_pointer_rtx
902 && frame_pointer_needed
903 && hard_frame_pointer_adjustment != -1
904 && cfa_base_rtx)
905 return compute_cfa_pointer (hard_frame_pointer_adjustment);
906 gcc_checking_assert (loc != virtual_incoming_args_rtx);
907 return loc;
908 case MEM:
909 mem = loc;
910 if (!amd->store)
911 {
912 mem = targetm.delegitimize_address (mem);
913 if (mem != loc && !MEM_P (mem))
914 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
915 }
916
917 addr = XEXP (mem, 0);
918 mem_mode_save = amd->mem_mode;
919 amd->mem_mode = GET_MODE (mem);
920 store_save = amd->store;
921 amd->store = false;
922 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
923 amd->store = store_save;
924 amd->mem_mode = mem_mode_save;
925 if (mem == loc)
926 addr = targetm.delegitimize_address (addr);
927 if (addr != XEXP (mem, 0))
928 mem = replace_equiv_address_nv (mem, addr);
929 if (!amd->store)
930 mem = avoid_constant_pool_reference (mem);
931 return mem;
932 case PRE_INC:
933 case PRE_DEC:
934 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
935 GEN_INT (GET_CODE (loc) == PRE_INC
936 ? GET_MODE_SIZE (amd->mem_mode)
937 : -GET_MODE_SIZE (amd->mem_mode)));
938 case POST_INC:
939 case POST_DEC:
940 if (addr == loc)
941 addr = XEXP (loc, 0);
942 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
943 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
944 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
945 GEN_INT ((GET_CODE (loc) == PRE_INC
946 || GET_CODE (loc) == POST_INC)
947 ? GET_MODE_SIZE (amd->mem_mode)
948 : -GET_MODE_SIZE (amd->mem_mode)));
949 amd->side_effects = alloc_EXPR_LIST (0,
950 gen_rtx_SET (VOIDmode,
951 XEXP (loc, 0),
952 tem),
953 amd->side_effects);
954 return addr;
955 case PRE_MODIFY:
956 addr = XEXP (loc, 1);
957 case POST_MODIFY:
958 if (addr == loc)
959 addr = XEXP (loc, 0);
960 gcc_assert (amd->mem_mode != VOIDmode);
961 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
962 amd->side_effects = alloc_EXPR_LIST (0,
963 gen_rtx_SET (VOIDmode,
964 XEXP (loc, 0),
965 XEXP (loc, 1)),
966 amd->side_effects);
967 return addr;
968 case SUBREG:
969 /* First try without delegitimization of whole MEMs and
970 avoid_constant_pool_reference, which is more likely to succeed. */
971 store_save = amd->store;
972 amd->store = true;
973 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
974 data);
975 amd->store = store_save;
976 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
977 if (mem == SUBREG_REG (loc))
978 {
979 tem = loc;
980 goto finish_subreg;
981 }
982 tem = simplify_gen_subreg (GET_MODE (loc), mem,
983 GET_MODE (SUBREG_REG (loc)),
984 SUBREG_BYTE (loc));
985 if (tem)
986 goto finish_subreg;
987 tem = simplify_gen_subreg (GET_MODE (loc), addr,
988 GET_MODE (SUBREG_REG (loc)),
989 SUBREG_BYTE (loc));
990 if (tem == NULL_RTX)
991 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
992 finish_subreg:
993 if (MAY_HAVE_DEBUG_INSNS
994 && GET_CODE (tem) == SUBREG
995 && (GET_CODE (SUBREG_REG (tem)) == PLUS
996 || GET_CODE (SUBREG_REG (tem)) == MINUS
997 || GET_CODE (SUBREG_REG (tem)) == MULT
998 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
999 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1000 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1001 && GET_MODE_SIZE (GET_MODE (tem))
1002 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1003 && subreg_lowpart_p (tem)
1004 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1005 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1006 GET_MODE (SUBREG_REG (tem)));
1007 return tem;
1008 case ASM_OPERANDS:
1009 /* Don't do any replacements in second and following
1010 ASM_OPERANDS of inline-asm with multiple sets.
1011 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1012 and ASM_OPERANDS_LABEL_VEC need to be equal between
1013 all the ASM_OPERANDs in the insn and adjust_insn will
1014 fix this up. */
1015 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1016 return loc;
1017 break;
1018 default:
1019 break;
1020 }
1021 return NULL_RTX;
1022 }
1023
1024 /* Helper function for replacement of uses. */
1025
1026 static void
1027 adjust_mem_uses (rtx *x, void *data)
1028 {
1029 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1030 if (new_x != *x)
1031 validate_change (NULL_RTX, x, new_x, true);
1032 }
1033
1034 /* Helper function for replacement of stores. */
1035
1036 static void
1037 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1038 {
1039 if (MEM_P (loc))
1040 {
1041 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1042 adjust_mems, data);
1043 if (new_dest != SET_DEST (expr))
1044 {
1045 rtx xexpr = CONST_CAST_RTX (expr);
1046 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1047 }
1048 }
1049 }
1050
1051 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1052 replace them with their value in the insn and add the side-effects
1053 as other sets to the insn. */
1054
1055 static void
1056 adjust_insn (basic_block bb, rtx insn)
1057 {
1058 struct adjust_mem_data amd;
1059 rtx set;
1060
1061 #ifdef HAVE_window_save
1062 /* If the target machine has an explicit window save instruction, the
1063 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1064 if (RTX_FRAME_RELATED_P (insn)
1065 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1066 {
1067 unsigned int i, nregs = VEC_length(parm_reg_t, windowed_parm_regs);
1068 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1069 parm_reg_t *p;
1070
1071 FOR_EACH_VEC_ELT (parm_reg_t, windowed_parm_regs, i, p)
1072 {
1073 XVECEXP (rtl, 0, i * 2)
1074 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1075 /* Do not clobber the attached DECL, but only the REG. */
1076 XVECEXP (rtl, 0, i * 2 + 1)
1077 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1078 gen_raw_REG (GET_MODE (p->outgoing),
1079 REGNO (p->outgoing)));
1080 }
1081
1082 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1083 return;
1084 }
1085 #endif
1086
1087 amd.mem_mode = VOIDmode;
1088 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1089 amd.side_effects = NULL_RTX;
1090
1091 amd.store = true;
1092 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1093
1094 amd.store = false;
1095 if (GET_CODE (PATTERN (insn)) == PARALLEL
1096 && asm_noperands (PATTERN (insn)) > 0
1097 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1098 {
1099 rtx body, set0;
1100 int i;
1101
1102 /* inline-asm with multiple sets is tiny bit more complicated,
1103 because the 3 vectors in ASM_OPERANDS need to be shared between
1104 all ASM_OPERANDS in the instruction. adjust_mems will
1105 not touch ASM_OPERANDS other than the first one, asm_noperands
1106 test above needs to be called before that (otherwise it would fail)
1107 and afterwards this code fixes it up. */
1108 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1109 body = PATTERN (insn);
1110 set0 = XVECEXP (body, 0, 0);
1111 gcc_checking_assert (GET_CODE (set0) == SET
1112 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1113 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1114 for (i = 1; i < XVECLEN (body, 0); i++)
1115 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1116 break;
1117 else
1118 {
1119 set = XVECEXP (body, 0, i);
1120 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1121 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1122 == i);
1123 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1124 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1125 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1126 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1127 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1128 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1129 {
1130 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1131 ASM_OPERANDS_INPUT_VEC (newsrc)
1132 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1133 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1134 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1135 ASM_OPERANDS_LABEL_VEC (newsrc)
1136 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1137 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1138 }
1139 }
1140 }
1141 else
1142 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1143
1144 /* For read-only MEMs containing some constant, prefer those
1145 constants. */
1146 set = single_set (insn);
1147 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1148 {
1149 rtx note = find_reg_equal_equiv_note (insn);
1150
1151 if (note && CONSTANT_P (XEXP (note, 0)))
1152 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1153 }
1154
1155 if (amd.side_effects)
1156 {
1157 rtx *pat, new_pat, s;
1158 int i, oldn, newn;
1159
1160 pat = &PATTERN (insn);
1161 if (GET_CODE (*pat) == COND_EXEC)
1162 pat = &COND_EXEC_CODE (*pat);
1163 if (GET_CODE (*pat) == PARALLEL)
1164 oldn = XVECLEN (*pat, 0);
1165 else
1166 oldn = 1;
1167 for (s = amd.side_effects, newn = 0; s; newn++)
1168 s = XEXP (s, 1);
1169 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1170 if (GET_CODE (*pat) == PARALLEL)
1171 for (i = 0; i < oldn; i++)
1172 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1173 else
1174 XVECEXP (new_pat, 0, 0) = *pat;
1175 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1176 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1177 free_EXPR_LIST_list (&amd.side_effects);
1178 validate_change (NULL_RTX, pat, new_pat, true);
1179 }
1180 }
1181
1182 /* Return true if a decl_or_value DV is a DECL or NULL. */
1183 static inline bool
1184 dv_is_decl_p (decl_or_value dv)
1185 {
1186 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1187 }
1188
1189 /* Return true if a decl_or_value is a VALUE rtl. */
1190 static inline bool
1191 dv_is_value_p (decl_or_value dv)
1192 {
1193 return dv && !dv_is_decl_p (dv);
1194 }
1195
1196 /* Return the decl in the decl_or_value. */
1197 static inline tree
1198 dv_as_decl (decl_or_value dv)
1199 {
1200 gcc_checking_assert (dv_is_decl_p (dv));
1201 return (tree) dv;
1202 }
1203
1204 /* Return the value in the decl_or_value. */
1205 static inline rtx
1206 dv_as_value (decl_or_value dv)
1207 {
1208 gcc_checking_assert (dv_is_value_p (dv));
1209 return (rtx)dv;
1210 }
1211
1212 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1213 static inline rtx
1214 dv_as_rtx (decl_or_value dv)
1215 {
1216 tree decl;
1217
1218 if (dv_is_value_p (dv))
1219 return dv_as_value (dv);
1220
1221 decl = dv_as_decl (dv);
1222
1223 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1224 return DECL_RTL_KNOWN_SET (decl);
1225 }
1226
1227 /* Return the opaque pointer in the decl_or_value. */
1228 static inline void *
1229 dv_as_opaque (decl_or_value dv)
1230 {
1231 return dv;
1232 }
1233
1234 /* Return nonzero if a decl_or_value must not have more than one
1235 variable part. The returned value discriminates among various
1236 kinds of one-part DVs ccording to enum onepart_enum. */
1237 static inline onepart_enum_t
1238 dv_onepart_p (decl_or_value dv)
1239 {
1240 tree decl;
1241
1242 if (!MAY_HAVE_DEBUG_INSNS)
1243 return NOT_ONEPART;
1244
1245 if (dv_is_value_p (dv))
1246 return ONEPART_VALUE;
1247
1248 decl = dv_as_decl (dv);
1249
1250 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1251 return ONEPART_DEXPR;
1252
1253 if (target_for_debug_bind (decl) != NULL_TREE)
1254 return ONEPART_VDECL;
1255
1256 return NOT_ONEPART;
1257 }
1258
1259 /* Return the variable pool to be used for a dv of type ONEPART. */
1260 static inline alloc_pool
1261 onepart_pool (onepart_enum_t onepart)
1262 {
1263 return onepart ? valvar_pool : var_pool;
1264 }
1265
1266 /* Build a decl_or_value out of a decl. */
1267 static inline decl_or_value
1268 dv_from_decl (tree decl)
1269 {
1270 decl_or_value dv;
1271 dv = decl;
1272 gcc_checking_assert (dv_is_decl_p (dv));
1273 return dv;
1274 }
1275
1276 /* Build a decl_or_value out of a value. */
1277 static inline decl_or_value
1278 dv_from_value (rtx value)
1279 {
1280 decl_or_value dv;
1281 dv = value;
1282 gcc_checking_assert (dv_is_value_p (dv));
1283 return dv;
1284 }
1285
1286 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1287 static inline decl_or_value
1288 dv_from_rtx (rtx x)
1289 {
1290 decl_or_value dv;
1291
1292 switch (GET_CODE (x))
1293 {
1294 case DEBUG_EXPR:
1295 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1296 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1297 break;
1298
1299 case VALUE:
1300 dv = dv_from_value (x);
1301 break;
1302
1303 default:
1304 gcc_unreachable ();
1305 }
1306
1307 return dv;
1308 }
1309
1310 extern void debug_dv (decl_or_value dv);
1311
1312 DEBUG_FUNCTION void
1313 debug_dv (decl_or_value dv)
1314 {
1315 if (dv_is_value_p (dv))
1316 debug_rtx (dv_as_value (dv));
1317 else
1318 debug_generic_stmt (dv_as_decl (dv));
1319 }
1320
1321 typedef unsigned int dvuid;
1322
1323 /* Return the uid of DV. */
1324
1325 static inline dvuid
1326 dv_uid (decl_or_value dv)
1327 {
1328 if (dv_is_value_p (dv))
1329 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1330 else
1331 return DECL_UID (dv_as_decl (dv));
1332 }
1333
1334 /* Compute the hash from the uid. */
1335
1336 static inline hashval_t
1337 dv_uid2hash (dvuid uid)
1338 {
1339 return uid;
1340 }
1341
1342 /* The hash function for a mask table in a shared_htab chain. */
1343
1344 static inline hashval_t
1345 dv_htab_hash (decl_or_value dv)
1346 {
1347 return dv_uid2hash (dv_uid (dv));
1348 }
1349
1350 /* The hash function for variable_htab, computes the hash value
1351 from the declaration of variable X. */
1352
1353 static hashval_t
1354 variable_htab_hash (const void *x)
1355 {
1356 const_variable const v = (const_variable) x;
1357
1358 return dv_htab_hash (v->dv);
1359 }
1360
1361 /* Compare the declaration of variable X with declaration Y. */
1362
1363 static int
1364 variable_htab_eq (const void *x, const void *y)
1365 {
1366 const_variable const v = (const_variable) x;
1367 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1368
1369 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1370 }
1371
1372 static void loc_exp_dep_clear (variable var);
1373
1374 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1375
1376 static void
1377 variable_htab_free (void *elem)
1378 {
1379 int i;
1380 variable var = (variable) elem;
1381 location_chain node, next;
1382
1383 gcc_checking_assert (var->refcount > 0);
1384
1385 var->refcount--;
1386 if (var->refcount > 0)
1387 return;
1388
1389 for (i = 0; i < var->n_var_parts; i++)
1390 {
1391 for (node = var->var_part[i].loc_chain; node; node = next)
1392 {
1393 next = node->next;
1394 pool_free (loc_chain_pool, node);
1395 }
1396 var->var_part[i].loc_chain = NULL;
1397 }
1398 if (var->onepart && VAR_LOC_1PAUX (var))
1399 {
1400 loc_exp_dep_clear (var);
1401 if (VAR_LOC_DEP_LST (var))
1402 VAR_LOC_DEP_LST (var)->pprev = NULL;
1403 XDELETE (VAR_LOC_1PAUX (var));
1404 /* These may be reused across functions, so reset
1405 e.g. NO_LOC_P. */
1406 if (var->onepart == ONEPART_DEXPR)
1407 set_dv_changed (var->dv, true);
1408 }
1409 pool_free (onepart_pool (var->onepart), var);
1410 }
1411
1412 /* Initialize the set (array) SET of attrs to empty lists. */
1413
1414 static void
1415 init_attrs_list_set (attrs *set)
1416 {
1417 int i;
1418
1419 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1420 set[i] = NULL;
1421 }
1422
1423 /* Make the list *LISTP empty. */
1424
1425 static void
1426 attrs_list_clear (attrs *listp)
1427 {
1428 attrs list, next;
1429
1430 for (list = *listp; list; list = next)
1431 {
1432 next = list->next;
1433 pool_free (attrs_pool, list);
1434 }
1435 *listp = NULL;
1436 }
1437
1438 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1439
1440 static attrs
1441 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1442 {
1443 for (; list; list = list->next)
1444 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1445 return list;
1446 return NULL;
1447 }
1448
1449 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1450
1451 static void
1452 attrs_list_insert (attrs *listp, decl_or_value dv,
1453 HOST_WIDE_INT offset, rtx loc)
1454 {
1455 attrs list;
1456
1457 list = (attrs) pool_alloc (attrs_pool);
1458 list->loc = loc;
1459 list->dv = dv;
1460 list->offset = offset;
1461 list->next = *listp;
1462 *listp = list;
1463 }
1464
1465 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1466
1467 static void
1468 attrs_list_copy (attrs *dstp, attrs src)
1469 {
1470 attrs n;
1471
1472 attrs_list_clear (dstp);
1473 for (; src; src = src->next)
1474 {
1475 n = (attrs) pool_alloc (attrs_pool);
1476 n->loc = src->loc;
1477 n->dv = src->dv;
1478 n->offset = src->offset;
1479 n->next = *dstp;
1480 *dstp = n;
1481 }
1482 }
1483
1484 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1485
1486 static void
1487 attrs_list_union (attrs *dstp, attrs src)
1488 {
1489 for (; src; src = src->next)
1490 {
1491 if (!attrs_list_member (*dstp, src->dv, src->offset))
1492 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1493 }
1494 }
1495
1496 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1497 *DSTP. */
1498
1499 static void
1500 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1501 {
1502 gcc_assert (!*dstp);
1503 for (; src; src = src->next)
1504 {
1505 if (!dv_onepart_p (src->dv))
1506 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1507 }
1508 for (src = src2; src; src = src->next)
1509 {
1510 if (!dv_onepart_p (src->dv)
1511 && !attrs_list_member (*dstp, src->dv, src->offset))
1512 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1513 }
1514 }
1515
1516 /* Shared hashtable support. */
1517
1518 /* Return true if VARS is shared. */
1519
1520 static inline bool
1521 shared_hash_shared (shared_hash vars)
1522 {
1523 return vars->refcount > 1;
1524 }
1525
1526 /* Return the hash table for VARS. */
1527
1528 static inline htab_t
1529 shared_hash_htab (shared_hash vars)
1530 {
1531 return vars->htab;
1532 }
1533
1534 /* Return true if VAR is shared, or maybe because VARS is shared. */
1535
1536 static inline bool
1537 shared_var_p (variable var, shared_hash vars)
1538 {
1539 /* Don't count an entry in the changed_variables table as a duplicate. */
1540 return ((var->refcount > 1 + (int) var->in_changed_variables)
1541 || shared_hash_shared (vars));
1542 }
1543
1544 /* Copy variables into a new hash table. */
1545
1546 static shared_hash
1547 shared_hash_unshare (shared_hash vars)
1548 {
1549 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1550 gcc_assert (vars->refcount > 1);
1551 new_vars->refcount = 1;
1552 new_vars->htab
1553 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1554 variable_htab_eq, variable_htab_free);
1555 vars_copy (new_vars->htab, vars->htab);
1556 vars->refcount--;
1557 return new_vars;
1558 }
1559
1560 /* Increment reference counter on VARS and return it. */
1561
1562 static inline shared_hash
1563 shared_hash_copy (shared_hash vars)
1564 {
1565 vars->refcount++;
1566 return vars;
1567 }
1568
1569 /* Decrement reference counter and destroy hash table if not shared
1570 anymore. */
1571
1572 static void
1573 shared_hash_destroy (shared_hash vars)
1574 {
1575 gcc_checking_assert (vars->refcount > 0);
1576 if (--vars->refcount == 0)
1577 {
1578 htab_delete (vars->htab);
1579 pool_free (shared_hash_pool, vars);
1580 }
1581 }
1582
1583 /* Unshare *PVARS if shared and return slot for DV. If INS is
1584 INSERT, insert it if not already present. */
1585
1586 static inline void **
1587 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1588 hashval_t dvhash, enum insert_option ins)
1589 {
1590 if (shared_hash_shared (*pvars))
1591 *pvars = shared_hash_unshare (*pvars);
1592 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1593 }
1594
1595 static inline void **
1596 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1597 enum insert_option ins)
1598 {
1599 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1600 }
1601
1602 /* Return slot for DV, if it is already present in the hash table.
1603 If it is not present, insert it only VARS is not shared, otherwise
1604 return NULL. */
1605
1606 static inline void **
1607 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1608 {
1609 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1610 shared_hash_shared (vars)
1611 ? NO_INSERT : INSERT);
1612 }
1613
1614 static inline void **
1615 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1616 {
1617 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1618 }
1619
1620 /* Return slot for DV only if it is already present in the hash table. */
1621
1622 static inline void **
1623 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1624 hashval_t dvhash)
1625 {
1626 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1627 NO_INSERT);
1628 }
1629
1630 static inline void **
1631 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1632 {
1633 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1634 }
1635
1636 /* Return variable for DV or NULL if not already present in the hash
1637 table. */
1638
1639 static inline variable
1640 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1641 {
1642 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1643 }
1644
1645 static inline variable
1646 shared_hash_find (shared_hash vars, decl_or_value dv)
1647 {
1648 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1649 }
1650
1651 /* Return true if TVAL is better than CVAL as a canonival value. We
1652 choose lowest-numbered VALUEs, using the RTX address as a
1653 tie-breaker. The idea is to arrange them into a star topology,
1654 such that all of them are at most one step away from the canonical
1655 value, and the canonical value has backlinks to all of them, in
1656 addition to all the actual locations. We don't enforce this
1657 topology throughout the entire dataflow analysis, though.
1658 */
1659
1660 static inline bool
1661 canon_value_cmp (rtx tval, rtx cval)
1662 {
1663 return !cval
1664 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1665 }
1666
1667 static bool dst_can_be_shared;
1668
1669 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1670
1671 static void **
1672 unshare_variable (dataflow_set *set, void **slot, variable var,
1673 enum var_init_status initialized)
1674 {
1675 variable new_var;
1676 int i;
1677
1678 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1679 new_var->dv = var->dv;
1680 new_var->refcount = 1;
1681 var->refcount--;
1682 new_var->n_var_parts = var->n_var_parts;
1683 new_var->onepart = var->onepart;
1684 new_var->in_changed_variables = false;
1685
1686 if (! flag_var_tracking_uninit)
1687 initialized = VAR_INIT_STATUS_INITIALIZED;
1688
1689 for (i = 0; i < var->n_var_parts; i++)
1690 {
1691 location_chain node;
1692 location_chain *nextp;
1693
1694 if (i == 0 && var->onepart)
1695 {
1696 /* One-part auxiliary data is only used while emitting
1697 notes, so propagate it to the new variable in the active
1698 dataflow set. If we're not emitting notes, this will be
1699 a no-op. */
1700 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1701 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1702 VAR_LOC_1PAUX (var) = NULL;
1703 }
1704 else
1705 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1706 nextp = &new_var->var_part[i].loc_chain;
1707 for (node = var->var_part[i].loc_chain; node; node = node->next)
1708 {
1709 location_chain new_lc;
1710
1711 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1712 new_lc->next = NULL;
1713 if (node->init > initialized)
1714 new_lc->init = node->init;
1715 else
1716 new_lc->init = initialized;
1717 if (node->set_src && !(MEM_P (node->set_src)))
1718 new_lc->set_src = node->set_src;
1719 else
1720 new_lc->set_src = NULL;
1721 new_lc->loc = node->loc;
1722
1723 *nextp = new_lc;
1724 nextp = &new_lc->next;
1725 }
1726
1727 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1728 }
1729
1730 dst_can_be_shared = false;
1731 if (shared_hash_shared (set->vars))
1732 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1733 else if (set->traversed_vars && set->vars != set->traversed_vars)
1734 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1735 *slot = new_var;
1736 if (var->in_changed_variables)
1737 {
1738 void **cslot
1739 = htab_find_slot_with_hash (changed_variables, var->dv,
1740 dv_htab_hash (var->dv), NO_INSERT);
1741 gcc_assert (*cslot == (void *) var);
1742 var->in_changed_variables = false;
1743 variable_htab_free (var);
1744 *cslot = new_var;
1745 new_var->in_changed_variables = true;
1746 }
1747 return slot;
1748 }
1749
1750 /* Copy all variables from hash table SRC to hash table DST. */
1751
1752 static void
1753 vars_copy (htab_t dst, htab_t src)
1754 {
1755 htab_iterator hi;
1756 variable var;
1757
1758 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1759 {
1760 void **dstp;
1761 var->refcount++;
1762 dstp = htab_find_slot_with_hash (dst, var->dv,
1763 dv_htab_hash (var->dv),
1764 INSERT);
1765 *dstp = var;
1766 }
1767 }
1768
1769 /* Map a decl to its main debug decl. */
1770
1771 static inline tree
1772 var_debug_decl (tree decl)
1773 {
1774 if (decl && DECL_P (decl)
1775 && DECL_DEBUG_EXPR_IS_FROM (decl))
1776 {
1777 tree debugdecl = DECL_DEBUG_EXPR (decl);
1778 if (debugdecl && DECL_P (debugdecl))
1779 decl = debugdecl;
1780 }
1781
1782 return decl;
1783 }
1784
1785 /* Set the register LOC to contain DV, OFFSET. */
1786
1787 static void
1788 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1789 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1790 enum insert_option iopt)
1791 {
1792 attrs node;
1793 bool decl_p = dv_is_decl_p (dv);
1794
1795 if (decl_p)
1796 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1797
1798 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1799 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1800 && node->offset == offset)
1801 break;
1802 if (!node)
1803 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1804 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1805 }
1806
1807 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1808
1809 static void
1810 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1811 rtx set_src)
1812 {
1813 tree decl = REG_EXPR (loc);
1814 HOST_WIDE_INT offset = REG_OFFSET (loc);
1815
1816 var_reg_decl_set (set, loc, initialized,
1817 dv_from_decl (decl), offset, set_src, INSERT);
1818 }
1819
1820 static enum var_init_status
1821 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1822 {
1823 variable var;
1824 int i;
1825 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1826
1827 if (! flag_var_tracking_uninit)
1828 return VAR_INIT_STATUS_INITIALIZED;
1829
1830 var = shared_hash_find (set->vars, dv);
1831 if (var)
1832 {
1833 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1834 {
1835 location_chain nextp;
1836 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1837 if (rtx_equal_p (nextp->loc, loc))
1838 {
1839 ret_val = nextp->init;
1840 break;
1841 }
1842 }
1843 }
1844
1845 return ret_val;
1846 }
1847
1848 /* Delete current content of register LOC in dataflow set SET and set
1849 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1850 MODIFY is true, any other live copies of the same variable part are
1851 also deleted from the dataflow set, otherwise the variable part is
1852 assumed to be copied from another location holding the same
1853 part. */
1854
1855 static void
1856 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1857 enum var_init_status initialized, rtx set_src)
1858 {
1859 tree decl = REG_EXPR (loc);
1860 HOST_WIDE_INT offset = REG_OFFSET (loc);
1861 attrs node, next;
1862 attrs *nextp;
1863
1864 decl = var_debug_decl (decl);
1865
1866 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1867 initialized = get_init_value (set, loc, dv_from_decl (decl));
1868
1869 nextp = &set->regs[REGNO (loc)];
1870 for (node = *nextp; node; node = next)
1871 {
1872 next = node->next;
1873 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1874 {
1875 delete_variable_part (set, node->loc, node->dv, node->offset);
1876 pool_free (attrs_pool, node);
1877 *nextp = next;
1878 }
1879 else
1880 {
1881 node->loc = loc;
1882 nextp = &node->next;
1883 }
1884 }
1885 if (modify)
1886 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1887 var_reg_set (set, loc, initialized, set_src);
1888 }
1889
1890 /* Delete the association of register LOC in dataflow set SET with any
1891 variables that aren't onepart. If CLOBBER is true, also delete any
1892 other live copies of the same variable part, and delete the
1893 association with onepart dvs too. */
1894
1895 static void
1896 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1897 {
1898 attrs *nextp = &set->regs[REGNO (loc)];
1899 attrs node, next;
1900
1901 if (clobber)
1902 {
1903 tree decl = REG_EXPR (loc);
1904 HOST_WIDE_INT offset = REG_OFFSET (loc);
1905
1906 decl = var_debug_decl (decl);
1907
1908 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1909 }
1910
1911 for (node = *nextp; node; node = next)
1912 {
1913 next = node->next;
1914 if (clobber || !dv_onepart_p (node->dv))
1915 {
1916 delete_variable_part (set, node->loc, node->dv, node->offset);
1917 pool_free (attrs_pool, node);
1918 *nextp = next;
1919 }
1920 else
1921 nextp = &node->next;
1922 }
1923 }
1924
1925 /* Delete content of register with number REGNO in dataflow set SET. */
1926
1927 static void
1928 var_regno_delete (dataflow_set *set, int regno)
1929 {
1930 attrs *reg = &set->regs[regno];
1931 attrs node, next;
1932
1933 for (node = *reg; node; node = next)
1934 {
1935 next = node->next;
1936 delete_variable_part (set, node->loc, node->dv, node->offset);
1937 pool_free (attrs_pool, node);
1938 }
1939 *reg = NULL;
1940 }
1941
1942 /* Set the location of DV, OFFSET as the MEM LOC. */
1943
1944 static void
1945 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1946 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1947 enum insert_option iopt)
1948 {
1949 if (dv_is_decl_p (dv))
1950 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1951
1952 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1953 }
1954
1955 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1956 SET to LOC.
1957 Adjust the address first if it is stack pointer based. */
1958
1959 static void
1960 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1961 rtx set_src)
1962 {
1963 tree decl = MEM_EXPR (loc);
1964 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1965
1966 var_mem_decl_set (set, loc, initialized,
1967 dv_from_decl (decl), offset, set_src, INSERT);
1968 }
1969
1970 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1971 dataflow set SET to LOC. If MODIFY is true, any other live copies
1972 of the same variable part are also deleted from the dataflow set,
1973 otherwise the variable part is assumed to be copied from another
1974 location holding the same part.
1975 Adjust the address first if it is stack pointer based. */
1976
1977 static void
1978 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1979 enum var_init_status initialized, rtx set_src)
1980 {
1981 tree decl = MEM_EXPR (loc);
1982 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1983
1984 decl = var_debug_decl (decl);
1985
1986 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1987 initialized = get_init_value (set, loc, dv_from_decl (decl));
1988
1989 if (modify)
1990 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1991 var_mem_set (set, loc, initialized, set_src);
1992 }
1993
1994 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1995 true, also delete any other live copies of the same variable part.
1996 Adjust the address first if it is stack pointer based. */
1997
1998 static void
1999 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2000 {
2001 tree decl = MEM_EXPR (loc);
2002 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2003
2004 decl = var_debug_decl (decl);
2005 if (clobber)
2006 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2007 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2008 }
2009
2010 /* Return true if LOC should not be expanded for location expressions,
2011 or used in them. */
2012
2013 static inline bool
2014 unsuitable_loc (rtx loc)
2015 {
2016 switch (GET_CODE (loc))
2017 {
2018 case PC:
2019 case SCRATCH:
2020 case CC0:
2021 case ASM_INPUT:
2022 case ASM_OPERANDS:
2023 return true;
2024
2025 default:
2026 return false;
2027 }
2028 }
2029
2030 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2031 bound to it. */
2032
2033 static inline void
2034 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2035 {
2036 if (REG_P (loc))
2037 {
2038 if (modified)
2039 var_regno_delete (set, REGNO (loc));
2040 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2041 dv_from_value (val), 0, NULL_RTX, INSERT);
2042 }
2043 else if (MEM_P (loc))
2044 {
2045 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2046
2047 if (l && GET_CODE (l->loc) == VALUE)
2048 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2049
2050 /* If this MEM is a global constant, we don't need it in the
2051 dynamic tables. ??? We should test this before emitting the
2052 micro-op in the first place. */
2053 while (l)
2054 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2055 break;
2056 else
2057 l = l->next;
2058
2059 if (!l)
2060 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2061 dv_from_value (val), 0, NULL_RTX, INSERT);
2062 }
2063 else
2064 {
2065 /* Other kinds of equivalences are necessarily static, at least
2066 so long as we do not perform substitutions while merging
2067 expressions. */
2068 gcc_unreachable ();
2069 set_variable_part (set, loc, dv_from_value (val), 0,
2070 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2071 }
2072 }
2073
2074 /* Bind a value to a location it was just stored in. If MODIFIED
2075 holds, assume the location was modified, detaching it from any
2076 values bound to it. */
2077
2078 static void
2079 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2080 {
2081 cselib_val *v = CSELIB_VAL_PTR (val);
2082
2083 gcc_assert (cselib_preserved_value_p (v));
2084
2085 if (dump_file)
2086 {
2087 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2088 print_inline_rtx (dump_file, loc, 0);
2089 fprintf (dump_file, " evaluates to ");
2090 print_inline_rtx (dump_file, val, 0);
2091 if (v->locs)
2092 {
2093 struct elt_loc_list *l;
2094 for (l = v->locs; l; l = l->next)
2095 {
2096 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2097 print_inline_rtx (dump_file, l->loc, 0);
2098 }
2099 }
2100 fprintf (dump_file, "\n");
2101 }
2102
2103 gcc_checking_assert (!unsuitable_loc (loc));
2104
2105 val_bind (set, val, loc, modified);
2106 }
2107
2108 /* Reset this node, detaching all its equivalences. Return the slot
2109 in the variable hash table that holds dv, if there is one. */
2110
2111 static void
2112 val_reset (dataflow_set *set, decl_or_value dv)
2113 {
2114 variable var = shared_hash_find (set->vars, dv) ;
2115 location_chain node;
2116 rtx cval;
2117
2118 if (!var || !var->n_var_parts)
2119 return;
2120
2121 gcc_assert (var->n_var_parts == 1);
2122
2123 cval = NULL;
2124 for (node = var->var_part[0].loc_chain; node; node = node->next)
2125 if (GET_CODE (node->loc) == VALUE
2126 && canon_value_cmp (node->loc, cval))
2127 cval = node->loc;
2128
2129 for (node = var->var_part[0].loc_chain; node; node = node->next)
2130 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2131 {
2132 /* Redirect the equivalence link to the new canonical
2133 value, or simply remove it if it would point at
2134 itself. */
2135 if (cval)
2136 set_variable_part (set, cval, dv_from_value (node->loc),
2137 0, node->init, node->set_src, NO_INSERT);
2138 delete_variable_part (set, dv_as_value (dv),
2139 dv_from_value (node->loc), 0);
2140 }
2141
2142 if (cval)
2143 {
2144 decl_or_value cdv = dv_from_value (cval);
2145
2146 /* Keep the remaining values connected, accummulating links
2147 in the canonical value. */
2148 for (node = var->var_part[0].loc_chain; node; node = node->next)
2149 {
2150 if (node->loc == cval)
2151 continue;
2152 else if (GET_CODE (node->loc) == REG)
2153 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2154 node->set_src, NO_INSERT);
2155 else if (GET_CODE (node->loc) == MEM)
2156 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2157 node->set_src, NO_INSERT);
2158 else
2159 set_variable_part (set, node->loc, cdv, 0,
2160 node->init, node->set_src, NO_INSERT);
2161 }
2162 }
2163
2164 /* We remove this last, to make sure that the canonical value is not
2165 removed to the point of requiring reinsertion. */
2166 if (cval)
2167 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2168
2169 clobber_variable_part (set, NULL, dv, 0, NULL);
2170 }
2171
2172 /* Find the values in a given location and map the val to another
2173 value, if it is unique, or add the location as one holding the
2174 value. */
2175
2176 static void
2177 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2178 {
2179 decl_or_value dv = dv_from_value (val);
2180
2181 if (dump_file && (dump_flags & TDF_DETAILS))
2182 {
2183 if (insn)
2184 fprintf (dump_file, "%i: ", INSN_UID (insn));
2185 else
2186 fprintf (dump_file, "head: ");
2187 print_inline_rtx (dump_file, val, 0);
2188 fputs (" is at ", dump_file);
2189 print_inline_rtx (dump_file, loc, 0);
2190 fputc ('\n', dump_file);
2191 }
2192
2193 val_reset (set, dv);
2194
2195 gcc_checking_assert (!unsuitable_loc (loc));
2196
2197 if (REG_P (loc))
2198 {
2199 attrs node, found = NULL;
2200
2201 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2202 if (dv_is_value_p (node->dv)
2203 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2204 {
2205 found = node;
2206
2207 /* Map incoming equivalences. ??? Wouldn't it be nice if
2208 we just started sharing the location lists? Maybe a
2209 circular list ending at the value itself or some
2210 such. */
2211 set_variable_part (set, dv_as_value (node->dv),
2212 dv_from_value (val), node->offset,
2213 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2214 set_variable_part (set, val, node->dv, node->offset,
2215 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2216 }
2217
2218 /* If we didn't find any equivalence, we need to remember that
2219 this value is held in the named register. */
2220 if (found)
2221 return;
2222 }
2223 /* ??? Attempt to find and merge equivalent MEMs or other
2224 expressions too. */
2225
2226 val_bind (set, val, loc, false);
2227 }
2228
2229 /* Initialize dataflow set SET to be empty.
2230 VARS_SIZE is the initial size of hash table VARS. */
2231
2232 static void
2233 dataflow_set_init (dataflow_set *set)
2234 {
2235 init_attrs_list_set (set->regs);
2236 set->vars = shared_hash_copy (empty_shared_hash);
2237 set->stack_adjust = 0;
2238 set->traversed_vars = NULL;
2239 }
2240
2241 /* Delete the contents of dataflow set SET. */
2242
2243 static void
2244 dataflow_set_clear (dataflow_set *set)
2245 {
2246 int i;
2247
2248 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2249 attrs_list_clear (&set->regs[i]);
2250
2251 shared_hash_destroy (set->vars);
2252 set->vars = shared_hash_copy (empty_shared_hash);
2253 }
2254
2255 /* Copy the contents of dataflow set SRC to DST. */
2256
2257 static void
2258 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2259 {
2260 int i;
2261
2262 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2263 attrs_list_copy (&dst->regs[i], src->regs[i]);
2264
2265 shared_hash_destroy (dst->vars);
2266 dst->vars = shared_hash_copy (src->vars);
2267 dst->stack_adjust = src->stack_adjust;
2268 }
2269
2270 /* Information for merging lists of locations for a given offset of variable.
2271 */
2272 struct variable_union_info
2273 {
2274 /* Node of the location chain. */
2275 location_chain lc;
2276
2277 /* The sum of positions in the input chains. */
2278 int pos;
2279
2280 /* The position in the chain of DST dataflow set. */
2281 int pos_dst;
2282 };
2283
2284 /* Buffer for location list sorting and its allocated size. */
2285 static struct variable_union_info *vui_vec;
2286 static int vui_allocated;
2287
2288 /* Compare function for qsort, order the structures by POS element. */
2289
2290 static int
2291 variable_union_info_cmp_pos (const void *n1, const void *n2)
2292 {
2293 const struct variable_union_info *const i1 =
2294 (const struct variable_union_info *) n1;
2295 const struct variable_union_info *const i2 =
2296 ( const struct variable_union_info *) n2;
2297
2298 if (i1->pos != i2->pos)
2299 return i1->pos - i2->pos;
2300
2301 return (i1->pos_dst - i2->pos_dst);
2302 }
2303
2304 /* Compute union of location parts of variable *SLOT and the same variable
2305 from hash table DATA. Compute "sorted" union of the location chains
2306 for common offsets, i.e. the locations of a variable part are sorted by
2307 a priority where the priority is the sum of the positions in the 2 chains
2308 (if a location is only in one list the position in the second list is
2309 defined to be larger than the length of the chains).
2310 When we are updating the location parts the newest location is in the
2311 beginning of the chain, so when we do the described "sorted" union
2312 we keep the newest locations in the beginning. */
2313
2314 static int
2315 variable_union (variable src, dataflow_set *set)
2316 {
2317 variable dst;
2318 void **dstp;
2319 int i, j, k;
2320
2321 dstp = shared_hash_find_slot (set->vars, src->dv);
2322 if (!dstp || !*dstp)
2323 {
2324 src->refcount++;
2325
2326 dst_can_be_shared = false;
2327 if (!dstp)
2328 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2329
2330 *dstp = src;
2331
2332 /* Continue traversing the hash table. */
2333 return 1;
2334 }
2335 else
2336 dst = (variable) *dstp;
2337
2338 gcc_assert (src->n_var_parts);
2339 gcc_checking_assert (src->onepart == dst->onepart);
2340
2341 /* We can combine one-part variables very efficiently, because their
2342 entries are in canonical order. */
2343 if (src->onepart)
2344 {
2345 location_chain *nodep, dnode, snode;
2346
2347 gcc_assert (src->n_var_parts == 1
2348 && dst->n_var_parts == 1);
2349
2350 snode = src->var_part[0].loc_chain;
2351 gcc_assert (snode);
2352
2353 restart_onepart_unshared:
2354 nodep = &dst->var_part[0].loc_chain;
2355 dnode = *nodep;
2356 gcc_assert (dnode);
2357
2358 while (snode)
2359 {
2360 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2361
2362 if (r > 0)
2363 {
2364 location_chain nnode;
2365
2366 if (shared_var_p (dst, set->vars))
2367 {
2368 dstp = unshare_variable (set, dstp, dst,
2369 VAR_INIT_STATUS_INITIALIZED);
2370 dst = (variable)*dstp;
2371 goto restart_onepart_unshared;
2372 }
2373
2374 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2375 nnode->loc = snode->loc;
2376 nnode->init = snode->init;
2377 if (!snode->set_src || MEM_P (snode->set_src))
2378 nnode->set_src = NULL;
2379 else
2380 nnode->set_src = snode->set_src;
2381 nnode->next = dnode;
2382 dnode = nnode;
2383 }
2384 else if (r == 0)
2385 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2386
2387 if (r >= 0)
2388 snode = snode->next;
2389
2390 nodep = &dnode->next;
2391 dnode = *nodep;
2392 }
2393
2394 return 1;
2395 }
2396
2397 gcc_checking_assert (!src->onepart);
2398
2399 /* Count the number of location parts, result is K. */
2400 for (i = 0, j = 0, k = 0;
2401 i < src->n_var_parts && j < dst->n_var_parts; k++)
2402 {
2403 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2404 {
2405 i++;
2406 j++;
2407 }
2408 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2409 i++;
2410 else
2411 j++;
2412 }
2413 k += src->n_var_parts - i;
2414 k += dst->n_var_parts - j;
2415
2416 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2417 thus there are at most MAX_VAR_PARTS different offsets. */
2418 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2419
2420 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2421 {
2422 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2423 dst = (variable)*dstp;
2424 }
2425
2426 i = src->n_var_parts - 1;
2427 j = dst->n_var_parts - 1;
2428 dst->n_var_parts = k;
2429
2430 for (k--; k >= 0; k--)
2431 {
2432 location_chain node, node2;
2433
2434 if (i >= 0 && j >= 0
2435 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2436 {
2437 /* Compute the "sorted" union of the chains, i.e. the locations which
2438 are in both chains go first, they are sorted by the sum of
2439 positions in the chains. */
2440 int dst_l, src_l;
2441 int ii, jj, n;
2442 struct variable_union_info *vui;
2443
2444 /* If DST is shared compare the location chains.
2445 If they are different we will modify the chain in DST with
2446 high probability so make a copy of DST. */
2447 if (shared_var_p (dst, set->vars))
2448 {
2449 for (node = src->var_part[i].loc_chain,
2450 node2 = dst->var_part[j].loc_chain; node && node2;
2451 node = node->next, node2 = node2->next)
2452 {
2453 if (!((REG_P (node2->loc)
2454 && REG_P (node->loc)
2455 && REGNO (node2->loc) == REGNO (node->loc))
2456 || rtx_equal_p (node2->loc, node->loc)))
2457 {
2458 if (node2->init < node->init)
2459 node2->init = node->init;
2460 break;
2461 }
2462 }
2463 if (node || node2)
2464 {
2465 dstp = unshare_variable (set, dstp, dst,
2466 VAR_INIT_STATUS_UNKNOWN);
2467 dst = (variable)*dstp;
2468 }
2469 }
2470
2471 src_l = 0;
2472 for (node = src->var_part[i].loc_chain; node; node = node->next)
2473 src_l++;
2474 dst_l = 0;
2475 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2476 dst_l++;
2477
2478 if (dst_l == 1)
2479 {
2480 /* The most common case, much simpler, no qsort is needed. */
2481 location_chain dstnode = dst->var_part[j].loc_chain;
2482 dst->var_part[k].loc_chain = dstnode;
2483 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET(dst, j);
2484 node2 = dstnode;
2485 for (node = src->var_part[i].loc_chain; node; node = node->next)
2486 if (!((REG_P (dstnode->loc)
2487 && REG_P (node->loc)
2488 && REGNO (dstnode->loc) == REGNO (node->loc))
2489 || rtx_equal_p (dstnode->loc, node->loc)))
2490 {
2491 location_chain new_node;
2492
2493 /* Copy the location from SRC. */
2494 new_node = (location_chain) pool_alloc (loc_chain_pool);
2495 new_node->loc = node->loc;
2496 new_node->init = node->init;
2497 if (!node->set_src || MEM_P (node->set_src))
2498 new_node->set_src = NULL;
2499 else
2500 new_node->set_src = node->set_src;
2501 node2->next = new_node;
2502 node2 = new_node;
2503 }
2504 node2->next = NULL;
2505 }
2506 else
2507 {
2508 if (src_l + dst_l > vui_allocated)
2509 {
2510 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2511 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2512 vui_allocated);
2513 }
2514 vui = vui_vec;
2515
2516 /* Fill in the locations from DST. */
2517 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2518 node = node->next, jj++)
2519 {
2520 vui[jj].lc = node;
2521 vui[jj].pos_dst = jj;
2522
2523 /* Pos plus value larger than a sum of 2 valid positions. */
2524 vui[jj].pos = jj + src_l + dst_l;
2525 }
2526
2527 /* Fill in the locations from SRC. */
2528 n = dst_l;
2529 for (node = src->var_part[i].loc_chain, ii = 0; node;
2530 node = node->next, ii++)
2531 {
2532 /* Find location from NODE. */
2533 for (jj = 0; jj < dst_l; jj++)
2534 {
2535 if ((REG_P (vui[jj].lc->loc)
2536 && REG_P (node->loc)
2537 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2538 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2539 {
2540 vui[jj].pos = jj + ii;
2541 break;
2542 }
2543 }
2544 if (jj >= dst_l) /* The location has not been found. */
2545 {
2546 location_chain new_node;
2547
2548 /* Copy the location from SRC. */
2549 new_node = (location_chain) pool_alloc (loc_chain_pool);
2550 new_node->loc = node->loc;
2551 new_node->init = node->init;
2552 if (!node->set_src || MEM_P (node->set_src))
2553 new_node->set_src = NULL;
2554 else
2555 new_node->set_src = node->set_src;
2556 vui[n].lc = new_node;
2557 vui[n].pos_dst = src_l + dst_l;
2558 vui[n].pos = ii + src_l + dst_l;
2559 n++;
2560 }
2561 }
2562
2563 if (dst_l == 2)
2564 {
2565 /* Special case still very common case. For dst_l == 2
2566 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2567 vui[i].pos == i + src_l + dst_l. */
2568 if (vui[0].pos > vui[1].pos)
2569 {
2570 /* Order should be 1, 0, 2... */
2571 dst->var_part[k].loc_chain = vui[1].lc;
2572 vui[1].lc->next = vui[0].lc;
2573 if (n >= 3)
2574 {
2575 vui[0].lc->next = vui[2].lc;
2576 vui[n - 1].lc->next = NULL;
2577 }
2578 else
2579 vui[0].lc->next = NULL;
2580 ii = 3;
2581 }
2582 else
2583 {
2584 dst->var_part[k].loc_chain = vui[0].lc;
2585 if (n >= 3 && vui[2].pos < vui[1].pos)
2586 {
2587 /* Order should be 0, 2, 1, 3... */
2588 vui[0].lc->next = vui[2].lc;
2589 vui[2].lc->next = vui[1].lc;
2590 if (n >= 4)
2591 {
2592 vui[1].lc->next = vui[3].lc;
2593 vui[n - 1].lc->next = NULL;
2594 }
2595 else
2596 vui[1].lc->next = NULL;
2597 ii = 4;
2598 }
2599 else
2600 {
2601 /* Order should be 0, 1, 2... */
2602 ii = 1;
2603 vui[n - 1].lc->next = NULL;
2604 }
2605 }
2606 for (; ii < n; ii++)
2607 vui[ii - 1].lc->next = vui[ii].lc;
2608 }
2609 else
2610 {
2611 qsort (vui, n, sizeof (struct variable_union_info),
2612 variable_union_info_cmp_pos);
2613
2614 /* Reconnect the nodes in sorted order. */
2615 for (ii = 1; ii < n; ii++)
2616 vui[ii - 1].lc->next = vui[ii].lc;
2617 vui[n - 1].lc->next = NULL;
2618 dst->var_part[k].loc_chain = vui[0].lc;
2619 }
2620
2621 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2622 }
2623 i--;
2624 j--;
2625 }
2626 else if ((i >= 0 && j >= 0
2627 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2628 || i < 0)
2629 {
2630 dst->var_part[k] = dst->var_part[j];
2631 j--;
2632 }
2633 else if ((i >= 0 && j >= 0
2634 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
2635 || j < 0)
2636 {
2637 location_chain *nextp;
2638
2639 /* Copy the chain from SRC. */
2640 nextp = &dst->var_part[k].loc_chain;
2641 for (node = src->var_part[i].loc_chain; node; node = node->next)
2642 {
2643 location_chain new_lc;
2644
2645 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2646 new_lc->next = NULL;
2647 new_lc->init = node->init;
2648 if (!node->set_src || MEM_P (node->set_src))
2649 new_lc->set_src = NULL;
2650 else
2651 new_lc->set_src = node->set_src;
2652 new_lc->loc = node->loc;
2653
2654 *nextp = new_lc;
2655 nextp = &new_lc->next;
2656 }
2657
2658 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
2659 i--;
2660 }
2661 dst->var_part[k].cur_loc = NULL;
2662 }
2663
2664 if (flag_var_tracking_uninit)
2665 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2666 {
2667 location_chain node, node2;
2668 for (node = src->var_part[i].loc_chain; node; node = node->next)
2669 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2670 if (rtx_equal_p (node->loc, node2->loc))
2671 {
2672 if (node->init > node2->init)
2673 node2->init = node->init;
2674 }
2675 }
2676
2677 /* Continue traversing the hash table. */
2678 return 1;
2679 }
2680
2681 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2682
2683 static void
2684 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2685 {
2686 int i;
2687
2688 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2689 attrs_list_union (&dst->regs[i], src->regs[i]);
2690
2691 if (dst->vars == empty_shared_hash)
2692 {
2693 shared_hash_destroy (dst->vars);
2694 dst->vars = shared_hash_copy (src->vars);
2695 }
2696 else
2697 {
2698 htab_iterator hi;
2699 variable var;
2700
2701 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2702 variable_union (var, dst);
2703 }
2704 }
2705
2706 /* Whether the value is currently being expanded. */
2707 #define VALUE_RECURSED_INTO(x) \
2708 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2709
2710 /* Whether no expansion was found, saving useless lookups.
2711 It must only be set when VALUE_CHANGED is clear. */
2712 #define NO_LOC_P(x) \
2713 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
2714
2715 /* Whether cur_loc in the value needs to be (re)computed. */
2716 #define VALUE_CHANGED(x) \
2717 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2718 /* Whether cur_loc in the decl needs to be (re)computed. */
2719 #define DECL_CHANGED(x) TREE_VISITED (x)
2720
2721 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
2722 user DECLs, this means they're in changed_variables. Values and
2723 debug exprs may be left with this flag set if no user variable
2724 requires them to be evaluated. */
2725
2726 static inline void
2727 set_dv_changed (decl_or_value dv, bool newv)
2728 {
2729 switch (dv_onepart_p (dv))
2730 {
2731 case ONEPART_VALUE:
2732 if (newv)
2733 NO_LOC_P (dv_as_value (dv)) = false;
2734 VALUE_CHANGED (dv_as_value (dv)) = newv;
2735 break;
2736
2737 case ONEPART_DEXPR:
2738 if (newv)
2739 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
2740 /* Fall through... */
2741
2742 default:
2743 DECL_CHANGED (dv_as_decl (dv)) = newv;
2744 break;
2745 }
2746 }
2747
2748 /* Return true if DV needs to have its cur_loc recomputed. */
2749
2750 static inline bool
2751 dv_changed_p (decl_or_value dv)
2752 {
2753 return (dv_is_value_p (dv)
2754 ? VALUE_CHANGED (dv_as_value (dv))
2755 : DECL_CHANGED (dv_as_decl (dv)));
2756 }
2757
2758 /* Return a location list node whose loc is rtx_equal to LOC, in the
2759 location list of a one-part variable or value VAR, or in that of
2760 any values recursively mentioned in the location lists. VARS must
2761 be in star-canonical form. */
2762
2763 static location_chain
2764 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2765 {
2766 location_chain node;
2767 enum rtx_code loc_code;
2768
2769 if (!var)
2770 return NULL;
2771
2772 gcc_checking_assert (var->onepart);
2773
2774 if (!var->n_var_parts)
2775 return NULL;
2776
2777 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2778
2779 loc_code = GET_CODE (loc);
2780 for (node = var->var_part[0].loc_chain; node; node = node->next)
2781 {
2782 decl_or_value dv;
2783 variable rvar;
2784
2785 if (GET_CODE (node->loc) != loc_code)
2786 {
2787 if (GET_CODE (node->loc) != VALUE)
2788 continue;
2789 }
2790 else if (loc == node->loc)
2791 return node;
2792 else if (loc_code != VALUE)
2793 {
2794 if (rtx_equal_p (loc, node->loc))
2795 return node;
2796 continue;
2797 }
2798
2799 /* Since we're in star-canonical form, we don't need to visit
2800 non-canonical nodes: one-part variables and non-canonical
2801 values would only point back to the canonical node. */
2802 if (dv_is_value_p (var->dv)
2803 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2804 {
2805 /* Skip all subsequent VALUEs. */
2806 while (node->next && GET_CODE (node->next->loc) == VALUE)
2807 {
2808 node = node->next;
2809 gcc_checking_assert (!canon_value_cmp (node->loc,
2810 dv_as_value (var->dv)));
2811 if (loc == node->loc)
2812 return node;
2813 }
2814 continue;
2815 }
2816
2817 gcc_checking_assert (node == var->var_part[0].loc_chain);
2818 gcc_checking_assert (!node->next);
2819
2820 dv = dv_from_value (node->loc);
2821 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2822 return find_loc_in_1pdv (loc, rvar, vars);
2823 }
2824
2825 /* ??? Gotta look in cselib_val locations too. */
2826
2827 return NULL;
2828 }
2829
2830 /* Hash table iteration argument passed to variable_merge. */
2831 struct dfset_merge
2832 {
2833 /* The set in which the merge is to be inserted. */
2834 dataflow_set *dst;
2835 /* The set that we're iterating in. */
2836 dataflow_set *cur;
2837 /* The set that may contain the other dv we are to merge with. */
2838 dataflow_set *src;
2839 /* Number of onepart dvs in src. */
2840 int src_onepart_cnt;
2841 };
2842
2843 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2844 loc_cmp order, and it is maintained as such. */
2845
2846 static void
2847 insert_into_intersection (location_chain *nodep, rtx loc,
2848 enum var_init_status status)
2849 {
2850 location_chain node;
2851 int r;
2852
2853 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2854 if ((r = loc_cmp (node->loc, loc)) == 0)
2855 {
2856 node->init = MIN (node->init, status);
2857 return;
2858 }
2859 else if (r > 0)
2860 break;
2861
2862 node = (location_chain) pool_alloc (loc_chain_pool);
2863
2864 node->loc = loc;
2865 node->set_src = NULL;
2866 node->init = status;
2867 node->next = *nodep;
2868 *nodep = node;
2869 }
2870
2871 /* Insert in DEST the intersection of the locations present in both
2872 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2873 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2874 DSM->dst. */
2875
2876 static void
2877 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2878 location_chain s1node, variable s2var)
2879 {
2880 dataflow_set *s1set = dsm->cur;
2881 dataflow_set *s2set = dsm->src;
2882 location_chain found;
2883
2884 if (s2var)
2885 {
2886 location_chain s2node;
2887
2888 gcc_checking_assert (s2var->onepart);
2889
2890 if (s2var->n_var_parts)
2891 {
2892 s2node = s2var->var_part[0].loc_chain;
2893
2894 for (; s1node && s2node;
2895 s1node = s1node->next, s2node = s2node->next)
2896 if (s1node->loc != s2node->loc)
2897 break;
2898 else if (s1node->loc == val)
2899 continue;
2900 else
2901 insert_into_intersection (dest, s1node->loc,
2902 MIN (s1node->init, s2node->init));
2903 }
2904 }
2905
2906 for (; s1node; s1node = s1node->next)
2907 {
2908 if (s1node->loc == val)
2909 continue;
2910
2911 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2912 shared_hash_htab (s2set->vars))))
2913 {
2914 insert_into_intersection (dest, s1node->loc,
2915 MIN (s1node->init, found->init));
2916 continue;
2917 }
2918
2919 if (GET_CODE (s1node->loc) == VALUE
2920 && !VALUE_RECURSED_INTO (s1node->loc))
2921 {
2922 decl_or_value dv = dv_from_value (s1node->loc);
2923 variable svar = shared_hash_find (s1set->vars, dv);
2924 if (svar)
2925 {
2926 if (svar->n_var_parts == 1)
2927 {
2928 VALUE_RECURSED_INTO (s1node->loc) = true;
2929 intersect_loc_chains (val, dest, dsm,
2930 svar->var_part[0].loc_chain,
2931 s2var);
2932 VALUE_RECURSED_INTO (s1node->loc) = false;
2933 }
2934 }
2935 }
2936
2937 /* ??? gotta look in cselib_val locations too. */
2938
2939 /* ??? if the location is equivalent to any location in src,
2940 searched recursively
2941
2942 add to dst the values needed to represent the equivalence
2943
2944 telling whether locations S is equivalent to another dv's
2945 location list:
2946
2947 for each location D in the list
2948
2949 if S and D satisfy rtx_equal_p, then it is present
2950
2951 else if D is a value, recurse without cycles
2952
2953 else if S and D have the same CODE and MODE
2954
2955 for each operand oS and the corresponding oD
2956
2957 if oS and oD are not equivalent, then S an D are not equivalent
2958
2959 else if they are RTX vectors
2960
2961 if any vector oS element is not equivalent to its respective oD,
2962 then S and D are not equivalent
2963
2964 */
2965
2966
2967 }
2968 }
2969
2970 /* Return -1 if X should be before Y in a location list for a 1-part
2971 variable, 1 if Y should be before X, and 0 if they're equivalent
2972 and should not appear in the list. */
2973
2974 static int
2975 loc_cmp (rtx x, rtx y)
2976 {
2977 int i, j, r;
2978 RTX_CODE code = GET_CODE (x);
2979 const char *fmt;
2980
2981 if (x == y)
2982 return 0;
2983
2984 if (REG_P (x))
2985 {
2986 if (!REG_P (y))
2987 return -1;
2988 gcc_assert (GET_MODE (x) == GET_MODE (y));
2989 if (REGNO (x) == REGNO (y))
2990 return 0;
2991 else if (REGNO (x) < REGNO (y))
2992 return -1;
2993 else
2994 return 1;
2995 }
2996
2997 if (REG_P (y))
2998 return 1;
2999
3000 if (MEM_P (x))
3001 {
3002 if (!MEM_P (y))
3003 return -1;
3004 gcc_assert (GET_MODE (x) == GET_MODE (y));
3005 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3006 }
3007
3008 if (MEM_P (y))
3009 return 1;
3010
3011 if (GET_CODE (x) == VALUE)
3012 {
3013 if (GET_CODE (y) != VALUE)
3014 return -1;
3015 /* Don't assert the modes are the same, that is true only
3016 when not recursing. (subreg:QI (value:SI 1:1) 0)
3017 and (subreg:QI (value:DI 2:2) 0) can be compared,
3018 even when the modes are different. */
3019 if (canon_value_cmp (x, y))
3020 return -1;
3021 else
3022 return 1;
3023 }
3024
3025 if (GET_CODE (y) == VALUE)
3026 return 1;
3027
3028 /* Entry value is the least preferable kind of expression. */
3029 if (GET_CODE (x) == ENTRY_VALUE)
3030 {
3031 if (GET_CODE (y) != ENTRY_VALUE)
3032 return 1;
3033 gcc_assert (GET_MODE (x) == GET_MODE (y));
3034 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3035 }
3036
3037 if (GET_CODE (y) == ENTRY_VALUE)
3038 return -1;
3039
3040 if (GET_CODE (x) == GET_CODE (y))
3041 /* Compare operands below. */;
3042 else if (GET_CODE (x) < GET_CODE (y))
3043 return -1;
3044 else
3045 return 1;
3046
3047 gcc_assert (GET_MODE (x) == GET_MODE (y));
3048
3049 if (GET_CODE (x) == DEBUG_EXPR)
3050 {
3051 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3052 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3053 return -1;
3054 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3055 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3056 return 1;
3057 }
3058
3059 fmt = GET_RTX_FORMAT (code);
3060 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3061 switch (fmt[i])
3062 {
3063 case 'w':
3064 if (XWINT (x, i) == XWINT (y, i))
3065 break;
3066 else if (XWINT (x, i) < XWINT (y, i))
3067 return -1;
3068 else
3069 return 1;
3070
3071 case 'n':
3072 case 'i':
3073 if (XINT (x, i) == XINT (y, i))
3074 break;
3075 else if (XINT (x, i) < XINT (y, i))
3076 return -1;
3077 else
3078 return 1;
3079
3080 case 'V':
3081 case 'E':
3082 /* Compare the vector length first. */
3083 if (XVECLEN (x, i) == XVECLEN (y, i))
3084 /* Compare the vectors elements. */;
3085 else if (XVECLEN (x, i) < XVECLEN (y, i))
3086 return -1;
3087 else
3088 return 1;
3089
3090 for (j = 0; j < XVECLEN (x, i); j++)
3091 if ((r = loc_cmp (XVECEXP (x, i, j),
3092 XVECEXP (y, i, j))))
3093 return r;
3094 break;
3095
3096 case 'e':
3097 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3098 return r;
3099 break;
3100
3101 case 'S':
3102 case 's':
3103 if (XSTR (x, i) == XSTR (y, i))
3104 break;
3105 if (!XSTR (x, i))
3106 return -1;
3107 if (!XSTR (y, i))
3108 return 1;
3109 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3110 break;
3111 else if (r < 0)
3112 return -1;
3113 else
3114 return 1;
3115
3116 case 'u':
3117 /* These are just backpointers, so they don't matter. */
3118 break;
3119
3120 case '0':
3121 case 't':
3122 break;
3123
3124 /* It is believed that rtx's at this level will never
3125 contain anything but integers and other rtx's,
3126 except for within LABEL_REFs and SYMBOL_REFs. */
3127 default:
3128 gcc_unreachable ();
3129 }
3130
3131 return 0;
3132 }
3133
3134 #if ENABLE_CHECKING
3135 /* Check the order of entries in one-part variables. */
3136
3137 static int
3138 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3139 {
3140 variable var = (variable) *slot;
3141 location_chain node, next;
3142
3143 #ifdef ENABLE_RTL_CHECKING
3144 int i;
3145 for (i = 0; i < var->n_var_parts; i++)
3146 gcc_assert (var->var_part[0].cur_loc == NULL);
3147 gcc_assert (!var->in_changed_variables);
3148 #endif
3149
3150 if (!var->onepart)
3151 return 1;
3152
3153 gcc_assert (var->n_var_parts == 1);
3154 node = var->var_part[0].loc_chain;
3155 gcc_assert (node);
3156
3157 while ((next = node->next))
3158 {
3159 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3160 node = next;
3161 }
3162
3163 return 1;
3164 }
3165 #endif
3166
3167 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3168 more likely to be chosen as canonical for an equivalence set.
3169 Ensure less likely values can reach more likely neighbors, making
3170 the connections bidirectional. */
3171
3172 static int
3173 canonicalize_values_mark (void **slot, void *data)
3174 {
3175 dataflow_set *set = (dataflow_set *)data;
3176 variable var = (variable) *slot;
3177 decl_or_value dv = var->dv;
3178 rtx val;
3179 location_chain node;
3180
3181 if (!dv_is_value_p (dv))
3182 return 1;
3183
3184 gcc_checking_assert (var->n_var_parts == 1);
3185
3186 val = dv_as_value (dv);
3187
3188 for (node = var->var_part[0].loc_chain; node; node = node->next)
3189 if (GET_CODE (node->loc) == VALUE)
3190 {
3191 if (canon_value_cmp (node->loc, val))
3192 VALUE_RECURSED_INTO (val) = true;
3193 else
3194 {
3195 decl_or_value odv = dv_from_value (node->loc);
3196 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3197
3198 set_slot_part (set, val, oslot, odv, 0,
3199 node->init, NULL_RTX);
3200
3201 VALUE_RECURSED_INTO (node->loc) = true;
3202 }
3203 }
3204
3205 return 1;
3206 }
3207
3208 /* Remove redundant entries from equivalence lists in onepart
3209 variables, canonicalizing equivalence sets into star shapes. */
3210
3211 static int
3212 canonicalize_values_star (void **slot, void *data)
3213 {
3214 dataflow_set *set = (dataflow_set *)data;
3215 variable var = (variable) *slot;
3216 decl_or_value dv = var->dv;
3217 location_chain node;
3218 decl_or_value cdv;
3219 rtx val, cval;
3220 void **cslot;
3221 bool has_value;
3222 bool has_marks;
3223
3224 if (!var->onepart)
3225 return 1;
3226
3227 gcc_checking_assert (var->n_var_parts == 1);
3228
3229 if (dv_is_value_p (dv))
3230 {
3231 cval = dv_as_value (dv);
3232 if (!VALUE_RECURSED_INTO (cval))
3233 return 1;
3234 VALUE_RECURSED_INTO (cval) = false;
3235 }
3236 else
3237 cval = NULL_RTX;
3238
3239 restart:
3240 val = cval;
3241 has_value = false;
3242 has_marks = false;
3243
3244 gcc_assert (var->n_var_parts == 1);
3245
3246 for (node = var->var_part[0].loc_chain; node; node = node->next)
3247 if (GET_CODE (node->loc) == VALUE)
3248 {
3249 has_value = true;
3250 if (VALUE_RECURSED_INTO (node->loc))
3251 has_marks = true;
3252 if (canon_value_cmp (node->loc, cval))
3253 cval = node->loc;
3254 }
3255
3256 if (!has_value)
3257 return 1;
3258
3259 if (cval == val)
3260 {
3261 if (!has_marks || dv_is_decl_p (dv))
3262 return 1;
3263
3264 /* Keep it marked so that we revisit it, either after visiting a
3265 child node, or after visiting a new parent that might be
3266 found out. */
3267 VALUE_RECURSED_INTO (val) = true;
3268
3269 for (node = var->var_part[0].loc_chain; node; node = node->next)
3270 if (GET_CODE (node->loc) == VALUE
3271 && VALUE_RECURSED_INTO (node->loc))
3272 {
3273 cval = node->loc;
3274 restart_with_cval:
3275 VALUE_RECURSED_INTO (cval) = false;
3276 dv = dv_from_value (cval);
3277 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3278 if (!slot)
3279 {
3280 gcc_assert (dv_is_decl_p (var->dv));
3281 /* The canonical value was reset and dropped.
3282 Remove it. */
3283 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3284 return 1;
3285 }
3286 var = (variable)*slot;
3287 gcc_assert (dv_is_value_p (var->dv));
3288 if (var->n_var_parts == 0)
3289 return 1;
3290 gcc_assert (var->n_var_parts == 1);
3291 goto restart;
3292 }
3293
3294 VALUE_RECURSED_INTO (val) = false;
3295
3296 return 1;
3297 }
3298
3299 /* Push values to the canonical one. */
3300 cdv = dv_from_value (cval);
3301 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3302
3303 for (node = var->var_part[0].loc_chain; node; node = node->next)
3304 if (node->loc != cval)
3305 {
3306 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3307 node->init, NULL_RTX);
3308 if (GET_CODE (node->loc) == VALUE)
3309 {
3310 decl_or_value ndv = dv_from_value (node->loc);
3311
3312 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3313 NO_INSERT);
3314
3315 if (canon_value_cmp (node->loc, val))
3316 {
3317 /* If it could have been a local minimum, it's not any more,
3318 since it's now neighbor to cval, so it may have to push
3319 to it. Conversely, if it wouldn't have prevailed over
3320 val, then whatever mark it has is fine: if it was to
3321 push, it will now push to a more canonical node, but if
3322 it wasn't, then it has already pushed any values it might
3323 have to. */
3324 VALUE_RECURSED_INTO (node->loc) = true;
3325 /* Make sure we visit node->loc by ensuring we cval is
3326 visited too. */
3327 VALUE_RECURSED_INTO (cval) = true;
3328 }
3329 else if (!VALUE_RECURSED_INTO (node->loc))
3330 /* If we have no need to "recurse" into this node, it's
3331 already "canonicalized", so drop the link to the old
3332 parent. */
3333 clobber_variable_part (set, cval, ndv, 0, NULL);
3334 }
3335 else if (GET_CODE (node->loc) == REG)
3336 {
3337 attrs list = set->regs[REGNO (node->loc)], *listp;
3338
3339 /* Change an existing attribute referring to dv so that it
3340 refers to cdv, removing any duplicate this might
3341 introduce, and checking that no previous duplicates
3342 existed, all in a single pass. */
3343
3344 while (list)
3345 {
3346 if (list->offset == 0
3347 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3348 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3349 break;
3350
3351 list = list->next;
3352 }
3353
3354 gcc_assert (list);
3355 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3356 {
3357 list->dv = cdv;
3358 for (listp = &list->next; (list = *listp); listp = &list->next)
3359 {
3360 if (list->offset)
3361 continue;
3362
3363 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3364 {
3365 *listp = list->next;
3366 pool_free (attrs_pool, list);
3367 list = *listp;
3368 break;
3369 }
3370
3371 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3372 }
3373 }
3374 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3375 {
3376 for (listp = &list->next; (list = *listp); listp = &list->next)
3377 {
3378 if (list->offset)
3379 continue;
3380
3381 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3382 {
3383 *listp = list->next;
3384 pool_free (attrs_pool, list);
3385 list = *listp;
3386 break;
3387 }
3388
3389 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3390 }
3391 }
3392 else
3393 gcc_unreachable ();
3394
3395 #if ENABLE_CHECKING
3396 while (list)
3397 {
3398 if (list->offset == 0
3399 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3400 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3401 gcc_unreachable ();
3402
3403 list = list->next;
3404 }
3405 #endif
3406 }
3407 }
3408
3409 if (val)
3410 set_slot_part (set, val, cslot, cdv, 0,
3411 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3412
3413 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3414
3415 /* Variable may have been unshared. */
3416 var = (variable)*slot;
3417 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3418 && var->var_part[0].loc_chain->next == NULL);
3419
3420 if (VALUE_RECURSED_INTO (cval))
3421 goto restart_with_cval;
3422
3423 return 1;
3424 }
3425
3426 /* Bind one-part variables to the canonical value in an equivalence
3427 set. Not doing this causes dataflow convergence failure in rare
3428 circumstances, see PR42873. Unfortunately we can't do this
3429 efficiently as part of canonicalize_values_star, since we may not
3430 have determined or even seen the canonical value of a set when we
3431 get to a variable that references another member of the set. */
3432
3433 static int
3434 canonicalize_vars_star (void **slot, void *data)
3435 {
3436 dataflow_set *set = (dataflow_set *)data;
3437 variable var = (variable) *slot;
3438 decl_or_value dv = var->dv;
3439 location_chain node;
3440 rtx cval;
3441 decl_or_value cdv;
3442 void **cslot;
3443 variable cvar;
3444 location_chain cnode;
3445
3446 if (!var->onepart || var->onepart == ONEPART_VALUE)
3447 return 1;
3448
3449 gcc_assert (var->n_var_parts == 1);
3450
3451 node = var->var_part[0].loc_chain;
3452
3453 if (GET_CODE (node->loc) != VALUE)
3454 return 1;
3455
3456 gcc_assert (!node->next);
3457 cval = node->loc;
3458
3459 /* Push values to the canonical one. */
3460 cdv = dv_from_value (cval);
3461 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3462 if (!cslot)
3463 return 1;
3464 cvar = (variable)*cslot;
3465 gcc_assert (cvar->n_var_parts == 1);
3466
3467 cnode = cvar->var_part[0].loc_chain;
3468
3469 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3470 that are not “more canonical” than it. */
3471 if (GET_CODE (cnode->loc) != VALUE
3472 || !canon_value_cmp (cnode->loc, cval))
3473 return 1;
3474
3475 /* CVAL was found to be non-canonical. Change the variable to point
3476 to the canonical VALUE. */
3477 gcc_assert (!cnode->next);
3478 cval = cnode->loc;
3479
3480 slot = set_slot_part (set, cval, slot, dv, 0,
3481 node->init, node->set_src);
3482 clobber_slot_part (set, cval, slot, 0, node->set_src);
3483
3484 return 1;
3485 }
3486
3487 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3488 corresponding entry in DSM->src. Multi-part variables are combined
3489 with variable_union, whereas onepart dvs are combined with
3490 intersection. */
3491
3492 static int
3493 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3494 {
3495 dataflow_set *dst = dsm->dst;
3496 void **dstslot;
3497 variable s2var, dvar = NULL;
3498 decl_or_value dv = s1var->dv;
3499 onepart_enum_t onepart = s1var->onepart;
3500 rtx val;
3501 hashval_t dvhash;
3502 location_chain node, *nodep;
3503
3504 /* If the incoming onepart variable has an empty location list, then
3505 the intersection will be just as empty. For other variables,
3506 it's always union. */
3507 gcc_checking_assert (s1var->n_var_parts
3508 && s1var->var_part[0].loc_chain);
3509
3510 if (!onepart)
3511 return variable_union (s1var, dst);
3512
3513 gcc_checking_assert (s1var->n_var_parts == 1);
3514
3515 dvhash = dv_htab_hash (dv);
3516 if (dv_is_value_p (dv))
3517 val = dv_as_value (dv);
3518 else
3519 val = NULL;
3520
3521 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3522 if (!s2var)
3523 {
3524 dst_can_be_shared = false;
3525 return 1;
3526 }
3527
3528 dsm->src_onepart_cnt--;
3529 gcc_assert (s2var->var_part[0].loc_chain
3530 && s2var->onepart == onepart
3531 && s2var->n_var_parts == 1);
3532
3533 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3534 if (dstslot)
3535 {
3536 dvar = (variable)*dstslot;
3537 gcc_assert (dvar->refcount == 1
3538 && dvar->onepart == onepart
3539 && dvar->n_var_parts == 1);
3540 nodep = &dvar->var_part[0].loc_chain;
3541 }
3542 else
3543 {
3544 nodep = &node;
3545 node = NULL;
3546 }
3547
3548 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3549 {
3550 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3551 dvhash, INSERT);
3552 *dstslot = dvar = s2var;
3553 dvar->refcount++;
3554 }
3555 else
3556 {
3557 dst_can_be_shared = false;
3558
3559 intersect_loc_chains (val, nodep, dsm,
3560 s1var->var_part[0].loc_chain, s2var);
3561
3562 if (!dstslot)
3563 {
3564 if (node)
3565 {
3566 dvar = (variable) pool_alloc (onepart_pool (onepart));
3567 dvar->dv = dv;
3568 dvar->refcount = 1;
3569 dvar->n_var_parts = 1;
3570 dvar->onepart = onepart;
3571 dvar->in_changed_variables = false;
3572 dvar->var_part[0].loc_chain = node;
3573 dvar->var_part[0].cur_loc = NULL;
3574 if (onepart)
3575 VAR_LOC_1PAUX (dvar) = NULL;
3576 else
3577 VAR_PART_OFFSET (dvar, 0) = 0;
3578
3579 dstslot
3580 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3581 INSERT);
3582 gcc_assert (!*dstslot);
3583 *dstslot = dvar;
3584 }
3585 else
3586 return 1;
3587 }
3588 }
3589
3590 nodep = &dvar->var_part[0].loc_chain;
3591 while ((node = *nodep))
3592 {
3593 location_chain *nextp = &node->next;
3594
3595 if (GET_CODE (node->loc) == REG)
3596 {
3597 attrs list;
3598
3599 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3600 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3601 && dv_is_value_p (list->dv))
3602 break;
3603
3604 if (!list)
3605 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3606 dv, 0, node->loc);
3607 /* If this value became canonical for another value that had
3608 this register, we want to leave it alone. */
3609 else if (dv_as_value (list->dv) != val)
3610 {
3611 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3612 dstslot, dv, 0,
3613 node->init, NULL_RTX);
3614 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3615
3616 /* Since nextp points into the removed node, we can't
3617 use it. The pointer to the next node moved to nodep.
3618 However, if the variable we're walking is unshared
3619 during our walk, we'll keep walking the location list
3620 of the previously-shared variable, in which case the
3621 node won't have been removed, and we'll want to skip
3622 it. That's why we test *nodep here. */
3623 if (*nodep != node)
3624 nextp = nodep;
3625 }
3626 }
3627 else
3628 /* Canonicalization puts registers first, so we don't have to
3629 walk it all. */
3630 break;
3631 nodep = nextp;
3632 }
3633
3634 if (dvar != (variable)*dstslot)
3635 dvar = (variable)*dstslot;
3636 nodep = &dvar->var_part[0].loc_chain;
3637
3638 if (val)
3639 {
3640 /* Mark all referenced nodes for canonicalization, and make sure
3641 we have mutual equivalence links. */
3642 VALUE_RECURSED_INTO (val) = true;
3643 for (node = *nodep; node; node = node->next)
3644 if (GET_CODE (node->loc) == VALUE)
3645 {
3646 VALUE_RECURSED_INTO (node->loc) = true;
3647 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3648 node->init, NULL, INSERT);
3649 }
3650
3651 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3652 gcc_assert (*dstslot == dvar);
3653 canonicalize_values_star (dstslot, dst);
3654 gcc_checking_assert (dstslot
3655 == shared_hash_find_slot_noinsert_1 (dst->vars,
3656 dv, dvhash));
3657 dvar = (variable)*dstslot;
3658 }
3659 else
3660 {
3661 bool has_value = false, has_other = false;
3662
3663 /* If we have one value and anything else, we're going to
3664 canonicalize this, so make sure all values have an entry in
3665 the table and are marked for canonicalization. */
3666 for (node = *nodep; node; node = node->next)
3667 {
3668 if (GET_CODE (node->loc) == VALUE)
3669 {
3670 /* If this was marked during register canonicalization,
3671 we know we have to canonicalize values. */
3672 if (has_value)
3673 has_other = true;
3674 has_value = true;
3675 if (has_other)
3676 break;
3677 }
3678 else
3679 {
3680 has_other = true;
3681 if (has_value)
3682 break;
3683 }
3684 }
3685
3686 if (has_value && has_other)
3687 {
3688 for (node = *nodep; node; node = node->next)
3689 {
3690 if (GET_CODE (node->loc) == VALUE)
3691 {
3692 decl_or_value dv = dv_from_value (node->loc);
3693 void **slot = NULL;
3694
3695 if (shared_hash_shared (dst->vars))
3696 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3697 if (!slot)
3698 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3699 INSERT);
3700 if (!*slot)
3701 {
3702 variable var = (variable) pool_alloc (onepart_pool
3703 (ONEPART_VALUE));
3704 var->dv = dv;
3705 var->refcount = 1;
3706 var->n_var_parts = 1;
3707 var->onepart = ONEPART_VALUE;
3708 var->in_changed_variables = false;
3709 var->var_part[0].loc_chain = NULL;
3710 var->var_part[0].cur_loc = NULL;
3711 VAR_LOC_1PAUX (var) = NULL;
3712 *slot = var;
3713 }
3714
3715 VALUE_RECURSED_INTO (node->loc) = true;
3716 }
3717 }
3718
3719 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3720 gcc_assert (*dstslot == dvar);
3721 canonicalize_values_star (dstslot, dst);
3722 gcc_checking_assert (dstslot
3723 == shared_hash_find_slot_noinsert_1 (dst->vars,
3724 dv, dvhash));
3725 dvar = (variable)*dstslot;
3726 }
3727 }
3728
3729 if (!onepart_variable_different_p (dvar, s2var))
3730 {
3731 variable_htab_free (dvar);
3732 *dstslot = dvar = s2var;
3733 dvar->refcount++;
3734 }
3735 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3736 {
3737 variable_htab_free (dvar);
3738 *dstslot = dvar = s1var;
3739 dvar->refcount++;
3740 dst_can_be_shared = false;
3741 }
3742 else
3743 dst_can_be_shared = false;
3744
3745 return 1;
3746 }
3747
3748 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3749 multi-part variable. Unions of multi-part variables and
3750 intersections of one-part ones will be handled in
3751 variable_merge_over_cur(). */
3752
3753 static int
3754 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3755 {
3756 dataflow_set *dst = dsm->dst;
3757 decl_or_value dv = s2var->dv;
3758
3759 if (!s2var->onepart)
3760 {
3761 void **dstp = shared_hash_find_slot (dst->vars, dv);
3762 *dstp = s2var;
3763 s2var->refcount++;
3764 return 1;
3765 }
3766
3767 dsm->src_onepart_cnt++;
3768 return 1;
3769 }
3770
3771 /* Combine dataflow set information from SRC2 into DST, using PDST
3772 to carry over information across passes. */
3773
3774 static void
3775 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3776 {
3777 dataflow_set cur = *dst;
3778 dataflow_set *src1 = &cur;
3779 struct dfset_merge dsm;
3780 int i;
3781 size_t src1_elems, src2_elems;
3782 htab_iterator hi;
3783 variable var;
3784
3785 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3786 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3787 dataflow_set_init (dst);
3788 dst->stack_adjust = cur.stack_adjust;
3789 shared_hash_destroy (dst->vars);
3790 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3791 dst->vars->refcount = 1;
3792 dst->vars->htab
3793 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3794 variable_htab_eq, variable_htab_free);
3795
3796 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3797 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3798
3799 dsm.dst = dst;
3800 dsm.src = src2;
3801 dsm.cur = src1;
3802 dsm.src_onepart_cnt = 0;
3803
3804 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3805 variable_merge_over_src (var, &dsm);
3806 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3807 variable_merge_over_cur (var, &dsm);
3808
3809 if (dsm.src_onepart_cnt)
3810 dst_can_be_shared = false;
3811
3812 dataflow_set_destroy (src1);
3813 }
3814
3815 /* Mark register equivalences. */
3816
3817 static void
3818 dataflow_set_equiv_regs (dataflow_set *set)
3819 {
3820 int i;
3821 attrs list, *listp;
3822
3823 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3824 {
3825 rtx canon[NUM_MACHINE_MODES];
3826
3827 /* If the list is empty or one entry, no need to canonicalize
3828 anything. */
3829 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3830 continue;
3831
3832 memset (canon, 0, sizeof (canon));
3833
3834 for (list = set->regs[i]; list; list = list->next)
3835 if (list->offset == 0 && dv_is_value_p (list->dv))
3836 {
3837 rtx val = dv_as_value (list->dv);
3838 rtx *cvalp = &canon[(int)GET_MODE (val)];
3839 rtx cval = *cvalp;
3840
3841 if (canon_value_cmp (val, cval))
3842 *cvalp = val;
3843 }
3844
3845 for (list = set->regs[i]; list; list = list->next)
3846 if (list->offset == 0 && dv_onepart_p (list->dv))
3847 {
3848 rtx cval = canon[(int)GET_MODE (list->loc)];
3849
3850 if (!cval)
3851 continue;
3852
3853 if (dv_is_value_p (list->dv))
3854 {
3855 rtx val = dv_as_value (list->dv);
3856
3857 if (val == cval)
3858 continue;
3859
3860 VALUE_RECURSED_INTO (val) = true;
3861 set_variable_part (set, val, dv_from_value (cval), 0,
3862 VAR_INIT_STATUS_INITIALIZED,
3863 NULL, NO_INSERT);
3864 }
3865
3866 VALUE_RECURSED_INTO (cval) = true;
3867 set_variable_part (set, cval, list->dv, 0,
3868 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3869 }
3870
3871 for (listp = &set->regs[i]; (list = *listp);
3872 listp = list ? &list->next : listp)
3873 if (list->offset == 0 && dv_onepart_p (list->dv))
3874 {
3875 rtx cval = canon[(int)GET_MODE (list->loc)];
3876 void **slot;
3877
3878 if (!cval)
3879 continue;
3880
3881 if (dv_is_value_p (list->dv))
3882 {
3883 rtx val = dv_as_value (list->dv);
3884 if (!VALUE_RECURSED_INTO (val))
3885 continue;
3886 }
3887
3888 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3889 canonicalize_values_star (slot, set);
3890 if (*listp != list)
3891 list = NULL;
3892 }
3893 }
3894 }
3895
3896 /* Remove any redundant values in the location list of VAR, which must
3897 be unshared and 1-part. */
3898
3899 static void
3900 remove_duplicate_values (variable var)
3901 {
3902 location_chain node, *nodep;
3903
3904 gcc_assert (var->onepart);
3905 gcc_assert (var->n_var_parts == 1);
3906 gcc_assert (var->refcount == 1);
3907
3908 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3909 {
3910 if (GET_CODE (node->loc) == VALUE)
3911 {
3912 if (VALUE_RECURSED_INTO (node->loc))
3913 {
3914 /* Remove duplicate value node. */
3915 *nodep = node->next;
3916 pool_free (loc_chain_pool, node);
3917 continue;
3918 }
3919 else
3920 VALUE_RECURSED_INTO (node->loc) = true;
3921 }
3922 nodep = &node->next;
3923 }
3924
3925 for (node = var->var_part[0].loc_chain; node; node = node->next)
3926 if (GET_CODE (node->loc) == VALUE)
3927 {
3928 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3929 VALUE_RECURSED_INTO (node->loc) = false;
3930 }
3931 }
3932
3933
3934 /* Hash table iteration argument passed to variable_post_merge. */
3935 struct dfset_post_merge
3936 {
3937 /* The new input set for the current block. */
3938 dataflow_set *set;
3939 /* Pointer to the permanent input set for the current block, or
3940 NULL. */
3941 dataflow_set **permp;
3942 };
3943
3944 /* Create values for incoming expressions associated with one-part
3945 variables that don't have value numbers for them. */
3946
3947 static int
3948 variable_post_merge_new_vals (void **slot, void *info)
3949 {
3950 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3951 dataflow_set *set = dfpm->set;
3952 variable var = (variable)*slot;
3953 location_chain node;
3954
3955 if (!var->onepart || !var->n_var_parts)
3956 return 1;
3957
3958 gcc_assert (var->n_var_parts == 1);
3959
3960 if (dv_is_decl_p (var->dv))
3961 {
3962 bool check_dupes = false;
3963
3964 restart:
3965 for (node = var->var_part[0].loc_chain; node; node = node->next)
3966 {
3967 if (GET_CODE (node->loc) == VALUE)
3968 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3969 else if (GET_CODE (node->loc) == REG)
3970 {
3971 attrs att, *attp, *curp = NULL;
3972
3973 if (var->refcount != 1)
3974 {
3975 slot = unshare_variable (set, slot, var,
3976 VAR_INIT_STATUS_INITIALIZED);
3977 var = (variable)*slot;
3978 goto restart;
3979 }
3980
3981 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3982 attp = &att->next)
3983 if (att->offset == 0
3984 && GET_MODE (att->loc) == GET_MODE (node->loc))
3985 {
3986 if (dv_is_value_p (att->dv))
3987 {
3988 rtx cval = dv_as_value (att->dv);
3989 node->loc = cval;
3990 check_dupes = true;
3991 break;
3992 }
3993 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3994 curp = attp;
3995 }
3996
3997 if (!curp)
3998 {
3999 curp = attp;
4000 while (*curp)
4001 if ((*curp)->offset == 0
4002 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4003 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4004 break;
4005 else
4006 curp = &(*curp)->next;
4007 gcc_assert (*curp);
4008 }
4009
4010 if (!att)
4011 {
4012 decl_or_value cdv;
4013 rtx cval;
4014
4015 if (!*dfpm->permp)
4016 {
4017 *dfpm->permp = XNEW (dataflow_set);
4018 dataflow_set_init (*dfpm->permp);
4019 }
4020
4021 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4022 att; att = att->next)
4023 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4024 {
4025 gcc_assert (att->offset == 0
4026 && dv_is_value_p (att->dv));
4027 val_reset (set, att->dv);
4028 break;
4029 }
4030
4031 if (att)
4032 {
4033 cdv = att->dv;
4034 cval = dv_as_value (cdv);
4035 }
4036 else
4037 {
4038 /* Create a unique value to hold this register,
4039 that ought to be found and reused in
4040 subsequent rounds. */
4041 cselib_val *v;
4042 gcc_assert (!cselib_lookup (node->loc,
4043 GET_MODE (node->loc), 0,
4044 VOIDmode));
4045 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4046 VOIDmode);
4047 cselib_preserve_value (v);
4048 cselib_invalidate_rtx (node->loc);
4049 cval = v->val_rtx;
4050 cdv = dv_from_value (cval);
4051 if (dump_file)
4052 fprintf (dump_file,
4053 "Created new value %u:%u for reg %i\n",
4054 v->uid, v->hash, REGNO (node->loc));
4055 }
4056
4057 var_reg_decl_set (*dfpm->permp, node->loc,
4058 VAR_INIT_STATUS_INITIALIZED,
4059 cdv, 0, NULL, INSERT);
4060
4061 node->loc = cval;
4062 check_dupes = true;
4063 }
4064
4065 /* Remove attribute referring to the decl, which now
4066 uses the value for the register, already existing or
4067 to be added when we bring perm in. */
4068 att = *curp;
4069 *curp = att->next;
4070 pool_free (attrs_pool, att);
4071 }
4072 }
4073
4074 if (check_dupes)
4075 remove_duplicate_values (var);
4076 }
4077
4078 return 1;
4079 }
4080
4081 /* Reset values in the permanent set that are not associated with the
4082 chosen expression. */
4083
4084 static int
4085 variable_post_merge_perm_vals (void **pslot, void *info)
4086 {
4087 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4088 dataflow_set *set = dfpm->set;
4089 variable pvar = (variable)*pslot, var;
4090 location_chain pnode;
4091 decl_or_value dv;
4092 attrs att;
4093
4094 gcc_assert (dv_is_value_p (pvar->dv)
4095 && pvar->n_var_parts == 1);
4096 pnode = pvar->var_part[0].loc_chain;
4097 gcc_assert (pnode
4098 && !pnode->next
4099 && REG_P (pnode->loc));
4100
4101 dv = pvar->dv;
4102
4103 var = shared_hash_find (set->vars, dv);
4104 if (var)
4105 {
4106 /* Although variable_post_merge_new_vals may have made decls
4107 non-star-canonical, values that pre-existed in canonical form
4108 remain canonical, and newly-created values reference a single
4109 REG, so they are canonical as well. Since VAR has the
4110 location list for a VALUE, using find_loc_in_1pdv for it is
4111 fine, since VALUEs don't map back to DECLs. */
4112 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4113 return 1;
4114 val_reset (set, dv);
4115 }
4116
4117 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4118 if (att->offset == 0
4119 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4120 && dv_is_value_p (att->dv))
4121 break;
4122
4123 /* If there is a value associated with this register already, create
4124 an equivalence. */
4125 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4126 {
4127 rtx cval = dv_as_value (att->dv);
4128 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4129 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4130 NULL, INSERT);
4131 }
4132 else if (!att)
4133 {
4134 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4135 dv, 0, pnode->loc);
4136 variable_union (pvar, set);
4137 }
4138
4139 return 1;
4140 }
4141
4142 /* Just checking stuff and registering register attributes for
4143 now. */
4144
4145 static void
4146 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4147 {
4148 struct dfset_post_merge dfpm;
4149
4150 dfpm.set = set;
4151 dfpm.permp = permp;
4152
4153 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4154 &dfpm);
4155 if (*permp)
4156 htab_traverse (shared_hash_htab ((*permp)->vars),
4157 variable_post_merge_perm_vals, &dfpm);
4158 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4159 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4160 }
4161
4162 /* Return a node whose loc is a MEM that refers to EXPR in the
4163 location list of a one-part variable or value VAR, or in that of
4164 any values recursively mentioned in the location lists. */
4165
4166 static location_chain
4167 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4168 {
4169 location_chain node;
4170 decl_or_value dv;
4171 variable var;
4172 location_chain where = NULL;
4173
4174 if (!val)
4175 return NULL;
4176
4177 gcc_assert (GET_CODE (val) == VALUE
4178 && !VALUE_RECURSED_INTO (val));
4179
4180 dv = dv_from_value (val);
4181 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4182
4183 if (!var)
4184 return NULL;
4185
4186 gcc_assert (var->onepart);
4187
4188 if (!var->n_var_parts)
4189 return NULL;
4190
4191 VALUE_RECURSED_INTO (val) = true;
4192
4193 for (node = var->var_part[0].loc_chain; node; node = node->next)
4194 if (MEM_P (node->loc)
4195 && MEM_EXPR (node->loc) == expr
4196 && INT_MEM_OFFSET (node->loc) == 0)
4197 {
4198 where = node;
4199 break;
4200 }
4201 else if (GET_CODE (node->loc) == VALUE
4202 && !VALUE_RECURSED_INTO (node->loc)
4203 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4204 break;
4205
4206 VALUE_RECURSED_INTO (val) = false;
4207
4208 return where;
4209 }
4210
4211 /* Return TRUE if the value of MEM may vary across a call. */
4212
4213 static bool
4214 mem_dies_at_call (rtx mem)
4215 {
4216 tree expr = MEM_EXPR (mem);
4217 tree decl;
4218
4219 if (!expr)
4220 return true;
4221
4222 decl = get_base_address (expr);
4223
4224 if (!decl)
4225 return true;
4226
4227 if (!DECL_P (decl))
4228 return true;
4229
4230 return (may_be_aliased (decl)
4231 || (!TREE_READONLY (decl) && is_global_var (decl)));
4232 }
4233
4234 /* Remove all MEMs from the location list of a hash table entry for a
4235 one-part variable, except those whose MEM attributes map back to
4236 the variable itself, directly or within a VALUE. */
4237
4238 static int
4239 dataflow_set_preserve_mem_locs (void **slot, void *data)
4240 {
4241 dataflow_set *set = (dataflow_set *) data;
4242 variable var = (variable) *slot;
4243
4244 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4245 {
4246 tree decl = dv_as_decl (var->dv);
4247 location_chain loc, *locp;
4248 bool changed = false;
4249
4250 if (!var->n_var_parts)
4251 return 1;
4252
4253 gcc_assert (var->n_var_parts == 1);
4254
4255 if (shared_var_p (var, set->vars))
4256 {
4257 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4258 {
4259 /* We want to remove dying MEMs that doesn't refer to DECL. */
4260 if (GET_CODE (loc->loc) == MEM
4261 && (MEM_EXPR (loc->loc) != decl
4262 || INT_MEM_OFFSET (loc->loc) != 0)
4263 && !mem_dies_at_call (loc->loc))
4264 break;
4265 /* We want to move here MEMs that do refer to DECL. */
4266 else if (GET_CODE (loc->loc) == VALUE
4267 && find_mem_expr_in_1pdv (decl, loc->loc,
4268 shared_hash_htab (set->vars)))
4269 break;
4270 }
4271
4272 if (!loc)
4273 return 1;
4274
4275 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4276 var = (variable)*slot;
4277 gcc_assert (var->n_var_parts == 1);
4278 }
4279
4280 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4281 loc; loc = *locp)
4282 {
4283 rtx old_loc = loc->loc;
4284 if (GET_CODE (old_loc) == VALUE)
4285 {
4286 location_chain mem_node
4287 = find_mem_expr_in_1pdv (decl, loc->loc,
4288 shared_hash_htab (set->vars));
4289
4290 /* ??? This picks up only one out of multiple MEMs that
4291 refer to the same variable. Do we ever need to be
4292 concerned about dealing with more than one, or, given
4293 that they should all map to the same variable
4294 location, their addresses will have been merged and
4295 they will be regarded as equivalent? */
4296 if (mem_node)
4297 {
4298 loc->loc = mem_node->loc;
4299 loc->set_src = mem_node->set_src;
4300 loc->init = MIN (loc->init, mem_node->init);
4301 }
4302 }
4303
4304 if (GET_CODE (loc->loc) != MEM
4305 || (MEM_EXPR (loc->loc) == decl
4306 && INT_MEM_OFFSET (loc->loc) == 0)
4307 || !mem_dies_at_call (loc->loc))
4308 {
4309 if (old_loc != loc->loc && emit_notes)
4310 {
4311 if (old_loc == var->var_part[0].cur_loc)
4312 {
4313 changed = true;
4314 var->var_part[0].cur_loc = NULL;
4315 }
4316 }
4317 locp = &loc->next;
4318 continue;
4319 }
4320
4321 if (emit_notes)
4322 {
4323 if (old_loc == var->var_part[0].cur_loc)
4324 {
4325 changed = true;
4326 var->var_part[0].cur_loc = NULL;
4327 }
4328 }
4329 *locp = loc->next;
4330 pool_free (loc_chain_pool, loc);
4331 }
4332
4333 if (!var->var_part[0].loc_chain)
4334 {
4335 var->n_var_parts--;
4336 changed = true;
4337 }
4338 if (changed)
4339 variable_was_changed (var, set);
4340 }
4341
4342 return 1;
4343 }
4344
4345 /* Remove all MEMs from the location list of a hash table entry for a
4346 value. */
4347
4348 static int
4349 dataflow_set_remove_mem_locs (void **slot, void *data)
4350 {
4351 dataflow_set *set = (dataflow_set *) data;
4352 variable var = (variable) *slot;
4353
4354 if (var->onepart == ONEPART_VALUE)
4355 {
4356 location_chain loc, *locp;
4357 bool changed = false;
4358 rtx cur_loc;
4359
4360 gcc_assert (var->n_var_parts == 1);
4361
4362 if (shared_var_p (var, set->vars))
4363 {
4364 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4365 if (GET_CODE (loc->loc) == MEM
4366 && mem_dies_at_call (loc->loc))
4367 break;
4368
4369 if (!loc)
4370 return 1;
4371
4372 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4373 var = (variable)*slot;
4374 gcc_assert (var->n_var_parts == 1);
4375 }
4376
4377 if (VAR_LOC_1PAUX (var))
4378 cur_loc = VAR_LOC_FROM (var);
4379 else
4380 cur_loc = var->var_part[0].cur_loc;
4381
4382 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4383 loc; loc = *locp)
4384 {
4385 if (GET_CODE (loc->loc) != MEM
4386 || !mem_dies_at_call (loc->loc))
4387 {
4388 locp = &loc->next;
4389 continue;
4390 }
4391
4392 *locp = loc->next;
4393 /* If we have deleted the location which was last emitted
4394 we have to emit new location so add the variable to set
4395 of changed variables. */
4396 if (cur_loc == loc->loc)
4397 {
4398 changed = true;
4399 var->var_part[0].cur_loc = NULL;
4400 if (VAR_LOC_1PAUX (var))
4401 VAR_LOC_FROM (var) = NULL;
4402 }
4403 pool_free (loc_chain_pool, loc);
4404 }
4405
4406 if (!var->var_part[0].loc_chain)
4407 {
4408 var->n_var_parts--;
4409 changed = true;
4410 }
4411 if (changed)
4412 variable_was_changed (var, set);
4413 }
4414
4415 return 1;
4416 }
4417
4418 /* Remove all variable-location information about call-clobbered
4419 registers, as well as associations between MEMs and VALUEs. */
4420
4421 static void
4422 dataflow_set_clear_at_call (dataflow_set *set)
4423 {
4424 int r;
4425
4426 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4427 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4428 var_regno_delete (set, r);
4429
4430 if (MAY_HAVE_DEBUG_INSNS)
4431 {
4432 set->traversed_vars = set->vars;
4433 htab_traverse (shared_hash_htab (set->vars),
4434 dataflow_set_preserve_mem_locs, set);
4435 set->traversed_vars = set->vars;
4436 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4437 set);
4438 set->traversed_vars = NULL;
4439 }
4440 }
4441
4442 static bool
4443 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4444 {
4445 location_chain lc1, lc2;
4446
4447 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4448 {
4449 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4450 {
4451 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4452 {
4453 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4454 break;
4455 }
4456 if (rtx_equal_p (lc1->loc, lc2->loc))
4457 break;
4458 }
4459 if (!lc2)
4460 return true;
4461 }
4462 return false;
4463 }
4464
4465 /* Return true if one-part variables VAR1 and VAR2 are different.
4466 They must be in canonical order. */
4467
4468 static bool
4469 onepart_variable_different_p (variable var1, variable var2)
4470 {
4471 location_chain lc1, lc2;
4472
4473 if (var1 == var2)
4474 return false;
4475
4476 gcc_assert (var1->n_var_parts == 1
4477 && var2->n_var_parts == 1);
4478
4479 lc1 = var1->var_part[0].loc_chain;
4480 lc2 = var2->var_part[0].loc_chain;
4481
4482 gcc_assert (lc1 && lc2);
4483
4484 while (lc1 && lc2)
4485 {
4486 if (loc_cmp (lc1->loc, lc2->loc))
4487 return true;
4488 lc1 = lc1->next;
4489 lc2 = lc2->next;
4490 }
4491
4492 return lc1 != lc2;
4493 }
4494
4495 /* Return true if variables VAR1 and VAR2 are different. */
4496
4497 static bool
4498 variable_different_p (variable var1, variable var2)
4499 {
4500 int i;
4501
4502 if (var1 == var2)
4503 return false;
4504
4505 if (var1->onepart != var2->onepart)
4506 return true;
4507
4508 if (var1->n_var_parts != var2->n_var_parts)
4509 return true;
4510
4511 if (var1->onepart && var1->n_var_parts)
4512 {
4513 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4514 && var1->n_var_parts == 1);
4515 /* One-part values have locations in a canonical order. */
4516 return onepart_variable_different_p (var1, var2);
4517 }
4518
4519 for (i = 0; i < var1->n_var_parts; i++)
4520 {
4521 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4522 return true;
4523 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4524 return true;
4525 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4526 return true;
4527 }
4528 return false;
4529 }
4530
4531 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4532
4533 static bool
4534 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4535 {
4536 htab_iterator hi;
4537 variable var1;
4538
4539 if (old_set->vars == new_set->vars)
4540 return false;
4541
4542 if (htab_elements (shared_hash_htab (old_set->vars))
4543 != htab_elements (shared_hash_htab (new_set->vars)))
4544 return true;
4545
4546 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4547 {
4548 htab_t htab = shared_hash_htab (new_set->vars);
4549 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4550 dv_htab_hash (var1->dv));
4551 if (!var2)
4552 {
4553 if (dump_file && (dump_flags & TDF_DETAILS))
4554 {
4555 fprintf (dump_file, "dataflow difference found: removal of:\n");
4556 dump_var (var1);
4557 }
4558 return true;
4559 }
4560
4561 if (variable_different_p (var1, var2))
4562 {
4563 if (dump_file && (dump_flags & TDF_DETAILS))
4564 {
4565 fprintf (dump_file, "dataflow difference found: "
4566 "old and new follow:\n");
4567 dump_var (var1);
4568 dump_var (var2);
4569 }
4570 return true;
4571 }
4572 }
4573
4574 /* No need to traverse the second hashtab, if both have the same number
4575 of elements and the second one had all entries found in the first one,
4576 then it can't have any extra entries. */
4577 return false;
4578 }
4579
4580 /* Free the contents of dataflow set SET. */
4581
4582 static void
4583 dataflow_set_destroy (dataflow_set *set)
4584 {
4585 int i;
4586
4587 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4588 attrs_list_clear (&set->regs[i]);
4589
4590 shared_hash_destroy (set->vars);
4591 set->vars = NULL;
4592 }
4593
4594 /* Return true if RTL X contains a SYMBOL_REF. */
4595
4596 static bool
4597 contains_symbol_ref (rtx x)
4598 {
4599 const char *fmt;
4600 RTX_CODE code;
4601 int i;
4602
4603 if (!x)
4604 return false;
4605
4606 code = GET_CODE (x);
4607 if (code == SYMBOL_REF)
4608 return true;
4609
4610 fmt = GET_RTX_FORMAT (code);
4611 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4612 {
4613 if (fmt[i] == 'e')
4614 {
4615 if (contains_symbol_ref (XEXP (x, i)))
4616 return true;
4617 }
4618 else if (fmt[i] == 'E')
4619 {
4620 int j;
4621 for (j = 0; j < XVECLEN (x, i); j++)
4622 if (contains_symbol_ref (XVECEXP (x, i, j)))
4623 return true;
4624 }
4625 }
4626
4627 return false;
4628 }
4629
4630 /* Shall EXPR be tracked? */
4631
4632 static bool
4633 track_expr_p (tree expr, bool need_rtl)
4634 {
4635 rtx decl_rtl;
4636 tree realdecl;
4637
4638 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4639 return DECL_RTL_SET_P (expr);
4640
4641 /* If EXPR is not a parameter or a variable do not track it. */
4642 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4643 return 0;
4644
4645 /* It also must have a name... */
4646 if (!DECL_NAME (expr) && need_rtl)
4647 return 0;
4648
4649 /* ... and a RTL assigned to it. */
4650 decl_rtl = DECL_RTL_IF_SET (expr);
4651 if (!decl_rtl && need_rtl)
4652 return 0;
4653
4654 /* If this expression is really a debug alias of some other declaration, we
4655 don't need to track this expression if the ultimate declaration is
4656 ignored. */
4657 realdecl = expr;
4658 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4659 {
4660 realdecl = DECL_DEBUG_EXPR (realdecl);
4661 if (realdecl == NULL_TREE)
4662 realdecl = expr;
4663 else if (!DECL_P (realdecl))
4664 {
4665 if (handled_component_p (realdecl))
4666 {
4667 HOST_WIDE_INT bitsize, bitpos, maxsize;
4668 tree innerdecl
4669 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4670 &maxsize);
4671 if (!DECL_P (innerdecl)
4672 || DECL_IGNORED_P (innerdecl)
4673 || TREE_STATIC (innerdecl)
4674 || bitsize <= 0
4675 || bitpos + bitsize > 256
4676 || bitsize != maxsize)
4677 return 0;
4678 else
4679 realdecl = expr;
4680 }
4681 else
4682 return 0;
4683 }
4684 }
4685
4686 /* Do not track EXPR if REALDECL it should be ignored for debugging
4687 purposes. */
4688 if (DECL_IGNORED_P (realdecl))
4689 return 0;
4690
4691 /* Do not track global variables until we are able to emit correct location
4692 list for them. */
4693 if (TREE_STATIC (realdecl))
4694 return 0;
4695
4696 /* When the EXPR is a DECL for alias of some variable (see example)
4697 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4698 DECL_RTL contains SYMBOL_REF.
4699
4700 Example:
4701 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4702 char **_dl_argv;
4703 */
4704 if (decl_rtl && MEM_P (decl_rtl)
4705 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4706 return 0;
4707
4708 /* If RTX is a memory it should not be very large (because it would be
4709 an array or struct). */
4710 if (decl_rtl && MEM_P (decl_rtl))
4711 {
4712 /* Do not track structures and arrays. */
4713 if (GET_MODE (decl_rtl) == BLKmode
4714 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4715 return 0;
4716 if (MEM_SIZE_KNOWN_P (decl_rtl)
4717 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
4718 return 0;
4719 }
4720
4721 DECL_CHANGED (expr) = 0;
4722 DECL_CHANGED (realdecl) = 0;
4723 return 1;
4724 }
4725
4726 /* Determine whether a given LOC refers to the same variable part as
4727 EXPR+OFFSET. */
4728
4729 static bool
4730 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4731 {
4732 tree expr2;
4733 HOST_WIDE_INT offset2;
4734
4735 if (! DECL_P (expr))
4736 return false;
4737
4738 if (REG_P (loc))
4739 {
4740 expr2 = REG_EXPR (loc);
4741 offset2 = REG_OFFSET (loc);
4742 }
4743 else if (MEM_P (loc))
4744 {
4745 expr2 = MEM_EXPR (loc);
4746 offset2 = INT_MEM_OFFSET (loc);
4747 }
4748 else
4749 return false;
4750
4751 if (! expr2 || ! DECL_P (expr2))
4752 return false;
4753
4754 expr = var_debug_decl (expr);
4755 expr2 = var_debug_decl (expr2);
4756
4757 return (expr == expr2 && offset == offset2);
4758 }
4759
4760 /* LOC is a REG or MEM that we would like to track if possible.
4761 If EXPR is null, we don't know what expression LOC refers to,
4762 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4763 LOC is an lvalue register.
4764
4765 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4766 is something we can track. When returning true, store the mode of
4767 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4768 from EXPR in *OFFSET_OUT (if nonnull). */
4769
4770 static bool
4771 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4772 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4773 {
4774 enum machine_mode mode;
4775
4776 if (expr == NULL || !track_expr_p (expr, true))
4777 return false;
4778
4779 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4780 whole subreg, but only the old inner part is really relevant. */
4781 mode = GET_MODE (loc);
4782 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4783 {
4784 enum machine_mode pseudo_mode;
4785
4786 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4787 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4788 {
4789 offset += byte_lowpart_offset (pseudo_mode, mode);
4790 mode = pseudo_mode;
4791 }
4792 }
4793
4794 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4795 Do the same if we are storing to a register and EXPR occupies
4796 the whole of register LOC; in that case, the whole of EXPR is
4797 being changed. We exclude complex modes from the second case
4798 because the real and imaginary parts are represented as separate
4799 pseudo registers, even if the whole complex value fits into one
4800 hard register. */
4801 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4802 || (store_reg_p
4803 && !COMPLEX_MODE_P (DECL_MODE (expr))
4804 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4805 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4806 {
4807 mode = DECL_MODE (expr);
4808 offset = 0;
4809 }
4810
4811 if (offset < 0 || offset >= MAX_VAR_PARTS)
4812 return false;
4813
4814 if (mode_out)
4815 *mode_out = mode;
4816 if (offset_out)
4817 *offset_out = offset;
4818 return true;
4819 }
4820
4821 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4822 want to track. When returning nonnull, make sure that the attributes
4823 on the returned value are updated. */
4824
4825 static rtx
4826 var_lowpart (enum machine_mode mode, rtx loc)
4827 {
4828 unsigned int offset, reg_offset, regno;
4829
4830 if (!REG_P (loc) && !MEM_P (loc))
4831 return NULL;
4832
4833 if (GET_MODE (loc) == mode)
4834 return loc;
4835
4836 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4837
4838 if (MEM_P (loc))
4839 return adjust_address_nv (loc, mode, offset);
4840
4841 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4842 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4843 reg_offset, mode);
4844 return gen_rtx_REG_offset (loc, mode, regno, offset);
4845 }
4846
4847 /* Carry information about uses and stores while walking rtx. */
4848
4849 struct count_use_info
4850 {
4851 /* The insn where the RTX is. */
4852 rtx insn;
4853
4854 /* The basic block where insn is. */
4855 basic_block bb;
4856
4857 /* The array of n_sets sets in the insn, as determined by cselib. */
4858 struct cselib_set *sets;
4859 int n_sets;
4860
4861 /* True if we're counting stores, false otherwise. */
4862 bool store_p;
4863 };
4864
4865 /* Find a VALUE corresponding to X. */
4866
4867 static inline cselib_val *
4868 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4869 {
4870 int i;
4871
4872 if (cui->sets)
4873 {
4874 /* This is called after uses are set up and before stores are
4875 processed by cselib, so it's safe to look up srcs, but not
4876 dsts. So we look up expressions that appear in srcs or in
4877 dest expressions, but we search the sets array for dests of
4878 stores. */
4879 if (cui->store_p)
4880 {
4881 /* Some targets represent memset and memcpy patterns
4882 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
4883 (set (mem:BLK ...) (const_int ...)) or
4884 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
4885 in that case, otherwise we end up with mode mismatches. */
4886 if (mode == BLKmode && MEM_P (x))
4887 return NULL;
4888 for (i = 0; i < cui->n_sets; i++)
4889 if (cui->sets[i].dest == x)
4890 return cui->sets[i].src_elt;
4891 }
4892 else
4893 return cselib_lookup (x, mode, 0, VOIDmode);
4894 }
4895
4896 return NULL;
4897 }
4898
4899 /* Helper function to get mode of MEM's address. */
4900
4901 static inline enum machine_mode
4902 get_address_mode (rtx mem)
4903 {
4904 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4905 if (mode != VOIDmode)
4906 return mode;
4907 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4908 }
4909
4910 /* Replace all registers and addresses in an expression with VALUE
4911 expressions that map back to them, unless the expression is a
4912 register. If no mapping is or can be performed, returns NULL. */
4913
4914 static rtx
4915 replace_expr_with_values (rtx loc)
4916 {
4917 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
4918 return NULL;
4919 else if (MEM_P (loc))
4920 {
4921 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4922 get_address_mode (loc), 0,
4923 GET_MODE (loc));
4924 if (addr)
4925 return replace_equiv_address_nv (loc, addr->val_rtx);
4926 else
4927 return NULL;
4928 }
4929 else
4930 return cselib_subst_to_values (loc, VOIDmode);
4931 }
4932
4933 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
4934 for_each_rtx to tell whether there are any DEBUG_EXPRs within
4935 RTX. */
4936
4937 static int
4938 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
4939 {
4940 rtx loc = *x;
4941
4942 return GET_CODE (loc) == DEBUG_EXPR;
4943 }
4944
4945 /* Determine what kind of micro operation to choose for a USE. Return
4946 MO_CLOBBER if no micro operation is to be generated. */
4947
4948 static enum micro_operation_type
4949 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4950 {
4951 tree expr;
4952
4953 if (cui && cui->sets)
4954 {
4955 if (GET_CODE (loc) == VAR_LOCATION)
4956 {
4957 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4958 {
4959 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4960 if (! VAR_LOC_UNKNOWN_P (ploc))
4961 {
4962 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4963 VOIDmode);
4964
4965 /* ??? flag_float_store and volatile mems are never
4966 given values, but we could in theory use them for
4967 locations. */
4968 gcc_assert (val || 1);
4969 }
4970 return MO_VAL_LOC;
4971 }
4972 else
4973 return MO_CLOBBER;
4974 }
4975
4976 if (REG_P (loc) || MEM_P (loc))
4977 {
4978 if (modep)
4979 *modep = GET_MODE (loc);
4980 if (cui->store_p)
4981 {
4982 if (REG_P (loc)
4983 || (find_use_val (loc, GET_MODE (loc), cui)
4984 && cselib_lookup (XEXP (loc, 0),
4985 get_address_mode (loc), 0,
4986 GET_MODE (loc))))
4987 return MO_VAL_SET;
4988 }
4989 else
4990 {
4991 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4992
4993 if (val && !cselib_preserved_value_p (val))
4994 return MO_VAL_USE;
4995 }
4996 }
4997 }
4998
4999 if (REG_P (loc))
5000 {
5001 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5002
5003 if (loc == cfa_base_rtx)
5004 return MO_CLOBBER;
5005 expr = REG_EXPR (loc);
5006
5007 if (!expr)
5008 return MO_USE_NO_VAR;
5009 else if (target_for_debug_bind (var_debug_decl (expr)))
5010 return MO_CLOBBER;
5011 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5012 false, modep, NULL))
5013 return MO_USE;
5014 else
5015 return MO_USE_NO_VAR;
5016 }
5017 else if (MEM_P (loc))
5018 {
5019 expr = MEM_EXPR (loc);
5020
5021 if (!expr)
5022 return MO_CLOBBER;
5023 else if (target_for_debug_bind (var_debug_decl (expr)))
5024 return MO_CLOBBER;
5025 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5026 false, modep, NULL)
5027 /* Multi-part variables shouldn't refer to one-part
5028 variable names such as VALUEs (never happens) or
5029 DEBUG_EXPRs (only happens in the presence of debug
5030 insns). */
5031 && (!MAY_HAVE_DEBUG_INSNS
5032 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5033 return MO_USE;
5034 else
5035 return MO_CLOBBER;
5036 }
5037
5038 return MO_CLOBBER;
5039 }
5040
5041 /* Log to OUT information about micro-operation MOPT involving X in
5042 INSN of BB. */
5043
5044 static inline void
5045 log_op_type (rtx x, basic_block bb, rtx insn,
5046 enum micro_operation_type mopt, FILE *out)
5047 {
5048 fprintf (out, "bb %i op %i insn %i %s ",
5049 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
5050 INSN_UID (insn), micro_operation_type_name[mopt]);
5051 print_inline_rtx (out, x, 2);
5052 fputc ('\n', out);
5053 }
5054
5055 /* Tell whether the CONCAT used to holds a VALUE and its location
5056 needs value resolution, i.e., an attempt of mapping the location
5057 back to other incoming values. */
5058 #define VAL_NEEDS_RESOLUTION(x) \
5059 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5060 /* Whether the location in the CONCAT is a tracked expression, that
5061 should also be handled like a MO_USE. */
5062 #define VAL_HOLDS_TRACK_EXPR(x) \
5063 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5064 /* Whether the location in the CONCAT should be handled like a MO_COPY
5065 as well. */
5066 #define VAL_EXPR_IS_COPIED(x) \
5067 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5068 /* Whether the location in the CONCAT should be handled like a
5069 MO_CLOBBER as well. */
5070 #define VAL_EXPR_IS_CLOBBERED(x) \
5071 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5072
5073 /* All preserved VALUEs. */
5074 static VEC (rtx, heap) *preserved_values;
5075
5076 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5077
5078 static void
5079 preserve_value (cselib_val *val)
5080 {
5081 cselib_preserve_value (val);
5082 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
5083 }
5084
5085 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5086 any rtxes not suitable for CONST use not replaced by VALUEs
5087 are discovered. */
5088
5089 static int
5090 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5091 {
5092 if (*x == NULL_RTX)
5093 return 0;
5094
5095 switch (GET_CODE (*x))
5096 {
5097 case REG:
5098 case DEBUG_EXPR:
5099 case PC:
5100 case SCRATCH:
5101 case CC0:
5102 case ASM_INPUT:
5103 case ASM_OPERANDS:
5104 return 1;
5105 case MEM:
5106 return !MEM_READONLY_P (*x);
5107 default:
5108 return 0;
5109 }
5110 }
5111
5112 /* Add uses (register and memory references) LOC which will be tracked
5113 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5114
5115 static int
5116 add_uses (rtx *ploc, void *data)
5117 {
5118 rtx loc = *ploc;
5119 enum machine_mode mode = VOIDmode;
5120 struct count_use_info *cui = (struct count_use_info *)data;
5121 enum micro_operation_type type = use_type (loc, cui, &mode);
5122
5123 if (type != MO_CLOBBER)
5124 {
5125 basic_block bb = cui->bb;
5126 micro_operation mo;
5127
5128 mo.type = type;
5129 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5130 mo.insn = cui->insn;
5131
5132 if (type == MO_VAL_LOC)
5133 {
5134 rtx oloc = loc;
5135 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5136 cselib_val *val;
5137
5138 gcc_assert (cui->sets);
5139
5140 if (MEM_P (vloc)
5141 && !REG_P (XEXP (vloc, 0))
5142 && !MEM_P (XEXP (vloc, 0)))
5143 {
5144 rtx mloc = vloc;
5145 enum machine_mode address_mode = get_address_mode (mloc);
5146 cselib_val *val
5147 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5148 GET_MODE (mloc));
5149
5150 if (val && !cselib_preserved_value_p (val))
5151 preserve_value (val);
5152 }
5153
5154 if (CONSTANT_P (vloc)
5155 && (GET_CODE (vloc) != CONST
5156 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5157 /* For constants don't look up any value. */;
5158 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5159 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5160 {
5161 enum machine_mode mode2;
5162 enum micro_operation_type type2;
5163 rtx nloc = NULL;
5164 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5165
5166 if (resolvable)
5167 nloc = replace_expr_with_values (vloc);
5168
5169 if (nloc)
5170 {
5171 oloc = shallow_copy_rtx (oloc);
5172 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5173 }
5174
5175 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5176
5177 type2 = use_type (vloc, 0, &mode2);
5178
5179 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5180 || type2 == MO_CLOBBER);
5181
5182 if (type2 == MO_CLOBBER
5183 && !cselib_preserved_value_p (val))
5184 {
5185 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5186 preserve_value (val);
5187 }
5188 }
5189 else if (!VAR_LOC_UNKNOWN_P (vloc))
5190 {
5191 oloc = shallow_copy_rtx (oloc);
5192 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5193 }
5194
5195 mo.u.loc = oloc;
5196 }
5197 else if (type == MO_VAL_USE)
5198 {
5199 enum machine_mode mode2 = VOIDmode;
5200 enum micro_operation_type type2;
5201 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5202 rtx vloc, oloc = loc, nloc;
5203
5204 gcc_assert (cui->sets);
5205
5206 if (MEM_P (oloc)
5207 && !REG_P (XEXP (oloc, 0))
5208 && !MEM_P (XEXP (oloc, 0)))
5209 {
5210 rtx mloc = oloc;
5211 enum machine_mode address_mode = get_address_mode (mloc);
5212 cselib_val *val
5213 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5214 GET_MODE (mloc));
5215
5216 if (val && !cselib_preserved_value_p (val))
5217 preserve_value (val);
5218 }
5219
5220 type2 = use_type (loc, 0, &mode2);
5221
5222 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5223 || type2 == MO_CLOBBER);
5224
5225 if (type2 == MO_USE)
5226 vloc = var_lowpart (mode2, loc);
5227 else
5228 vloc = oloc;
5229
5230 /* The loc of a MO_VAL_USE may have two forms:
5231
5232 (concat val src): val is at src, a value-based
5233 representation.
5234
5235 (concat (concat val use) src): same as above, with use as
5236 the MO_USE tracked value, if it differs from src.
5237
5238 */
5239
5240 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5241 nloc = replace_expr_with_values (loc);
5242 if (!nloc)
5243 nloc = oloc;
5244
5245 if (vloc != nloc)
5246 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5247 else
5248 oloc = val->val_rtx;
5249
5250 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5251
5252 if (type2 == MO_USE)
5253 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5254 if (!cselib_preserved_value_p (val))
5255 {
5256 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5257 preserve_value (val);
5258 }
5259 }
5260 else
5261 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5262
5263 if (dump_file && (dump_flags & TDF_DETAILS))
5264 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5265 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5266 }
5267
5268 return 0;
5269 }
5270
5271 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5272
5273 static void
5274 add_uses_1 (rtx *x, void *cui)
5275 {
5276 for_each_rtx (x, add_uses, cui);
5277 }
5278
5279 /* This is the value used during expansion of locations. We want it
5280 to be unbounded, so that variables expanded deep in a recursion
5281 nest are fully evaluated, so that their values are cached
5282 correctly. We avoid recursion cycles through other means, and we
5283 don't unshare RTL, so excess complexity is not a problem. */
5284 #define EXPR_DEPTH (INT_MAX)
5285 /* We use this to keep too-complex expressions from being emitted as
5286 location notes, and then to debug information. Users can trade
5287 compile time for ridiculously complex expressions, although they're
5288 seldom useful, and they may often have to be discarded as not
5289 representable anyway. */
5290 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5291
5292 /* Attempt to reverse the EXPR operation in the debug info and record
5293 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5294 no longer live we can express its value as VAL - 6. */
5295
5296 static void
5297 reverse_op (rtx val, const_rtx expr, rtx insn)
5298 {
5299 rtx src, arg, ret;
5300 cselib_val *v;
5301 struct elt_loc_list *l;
5302 enum rtx_code code;
5303
5304 if (GET_CODE (expr) != SET)
5305 return;
5306
5307 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5308 return;
5309
5310 src = SET_SRC (expr);
5311 switch (GET_CODE (src))
5312 {
5313 case PLUS:
5314 case MINUS:
5315 case XOR:
5316 case NOT:
5317 case NEG:
5318 if (!REG_P (XEXP (src, 0)))
5319 return;
5320 break;
5321 case SIGN_EXTEND:
5322 case ZERO_EXTEND:
5323 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5324 return;
5325 break;
5326 default:
5327 return;
5328 }
5329
5330 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5331 return;
5332
5333 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5334 if (!v || !cselib_preserved_value_p (v))
5335 return;
5336
5337 /* Use canonical V to avoid creating multiple redundant expressions
5338 for different VALUES equivalent to V. */
5339 v = canonical_cselib_val (v);
5340
5341 /* Adding a reverse op isn't useful if V already has an always valid
5342 location. Ignore ENTRY_VALUE, while it is always constant, we should
5343 prefer non-ENTRY_VALUE locations whenever possible. */
5344 for (l = v->locs; l; l = l->next)
5345 if (CONSTANT_P (l->loc)
5346 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5347 return;
5348
5349 switch (GET_CODE (src))
5350 {
5351 case NOT:
5352 case NEG:
5353 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5354 return;
5355 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5356 break;
5357 case SIGN_EXTEND:
5358 case ZERO_EXTEND:
5359 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5360 break;
5361 case XOR:
5362 code = XOR;
5363 goto binary;
5364 case PLUS:
5365 code = MINUS;
5366 goto binary;
5367 case MINUS:
5368 code = PLUS;
5369 goto binary;
5370 binary:
5371 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5372 return;
5373 arg = XEXP (src, 1);
5374 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5375 {
5376 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5377 if (arg == NULL_RTX)
5378 return;
5379 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5380 return;
5381 }
5382 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5383 if (ret == val)
5384 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5385 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5386 breaks a lot of routines during var-tracking. */
5387 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5388 break;
5389 default:
5390 gcc_unreachable ();
5391 }
5392
5393 cselib_add_permanent_equiv (v, ret, insn);
5394 }
5395
5396 /* Add stores (register and memory references) LOC which will be tracked
5397 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5398 CUIP->insn is instruction which the LOC is part of. */
5399
5400 static void
5401 add_stores (rtx loc, const_rtx expr, void *cuip)
5402 {
5403 enum machine_mode mode = VOIDmode, mode2;
5404 struct count_use_info *cui = (struct count_use_info *)cuip;
5405 basic_block bb = cui->bb;
5406 micro_operation mo;
5407 rtx oloc = loc, nloc, src = NULL;
5408 enum micro_operation_type type = use_type (loc, cui, &mode);
5409 bool track_p = false;
5410 cselib_val *v;
5411 bool resolve, preserve;
5412
5413 if (type == MO_CLOBBER)
5414 return;
5415
5416 mode2 = mode;
5417
5418 if (REG_P (loc))
5419 {
5420 gcc_assert (loc != cfa_base_rtx);
5421 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5422 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5423 || GET_CODE (expr) == CLOBBER)
5424 {
5425 mo.type = MO_CLOBBER;
5426 mo.u.loc = loc;
5427 if (GET_CODE (expr) == SET
5428 && SET_DEST (expr) == loc
5429 && !unsuitable_loc (SET_SRC (expr))
5430 && find_use_val (loc, mode, cui))
5431 {
5432 gcc_checking_assert (type == MO_VAL_SET);
5433 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5434 }
5435 }
5436 else
5437 {
5438 if (GET_CODE (expr) == SET
5439 && SET_DEST (expr) == loc
5440 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5441 src = var_lowpart (mode2, SET_SRC (expr));
5442 loc = var_lowpart (mode2, loc);
5443
5444 if (src == NULL)
5445 {
5446 mo.type = MO_SET;
5447 mo.u.loc = loc;
5448 }
5449 else
5450 {
5451 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5452 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5453 mo.type = MO_COPY;
5454 else
5455 mo.type = MO_SET;
5456 mo.u.loc = xexpr;
5457 }
5458 }
5459 mo.insn = cui->insn;
5460 }
5461 else if (MEM_P (loc)
5462 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5463 || cui->sets))
5464 {
5465 if (MEM_P (loc) && type == MO_VAL_SET
5466 && !REG_P (XEXP (loc, 0))
5467 && !MEM_P (XEXP (loc, 0)))
5468 {
5469 rtx mloc = loc;
5470 enum machine_mode address_mode = get_address_mode (mloc);
5471 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5472 address_mode, 0,
5473 GET_MODE (mloc));
5474
5475 if (val && !cselib_preserved_value_p (val))
5476 preserve_value (val);
5477 }
5478
5479 if (GET_CODE (expr) == CLOBBER || !track_p)
5480 {
5481 mo.type = MO_CLOBBER;
5482 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5483 }
5484 else
5485 {
5486 if (GET_CODE (expr) == SET
5487 && SET_DEST (expr) == loc
5488 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5489 src = var_lowpart (mode2, SET_SRC (expr));
5490 loc = var_lowpart (mode2, loc);
5491
5492 if (src == NULL)
5493 {
5494 mo.type = MO_SET;
5495 mo.u.loc = loc;
5496 }
5497 else
5498 {
5499 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5500 if (same_variable_part_p (SET_SRC (xexpr),
5501 MEM_EXPR (loc),
5502 INT_MEM_OFFSET (loc)))
5503 mo.type = MO_COPY;
5504 else
5505 mo.type = MO_SET;
5506 mo.u.loc = xexpr;
5507 }
5508 }
5509 mo.insn = cui->insn;
5510 }
5511 else
5512 return;
5513
5514 if (type != MO_VAL_SET)
5515 goto log_and_return;
5516
5517 v = find_use_val (oloc, mode, cui);
5518
5519 if (!v)
5520 goto log_and_return;
5521
5522 resolve = preserve = !cselib_preserved_value_p (v);
5523
5524 nloc = replace_expr_with_values (oloc);
5525 if (nloc)
5526 oloc = nloc;
5527
5528 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5529 {
5530 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5531
5532 gcc_assert (oval != v);
5533 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5534
5535 if (oval && !cselib_preserved_value_p (oval))
5536 {
5537 micro_operation moa;
5538
5539 preserve_value (oval);
5540
5541 moa.type = MO_VAL_USE;
5542 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5543 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5544 moa.insn = cui->insn;
5545
5546 if (dump_file && (dump_flags & TDF_DETAILS))
5547 log_op_type (moa.u.loc, cui->bb, cui->insn,
5548 moa.type, dump_file);
5549 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5550 }
5551
5552 resolve = false;
5553 }
5554 else if (resolve && GET_CODE (mo.u.loc) == SET)
5555 {
5556 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
5557 nloc = replace_expr_with_values (SET_SRC (expr));
5558 else
5559 nloc = NULL_RTX;
5560
5561 /* Avoid the mode mismatch between oexpr and expr. */
5562 if (!nloc && mode != mode2)
5563 {
5564 nloc = SET_SRC (expr);
5565 gcc_assert (oloc == SET_DEST (expr));
5566 }
5567
5568 if (nloc && nloc != SET_SRC (mo.u.loc))
5569 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5570 else
5571 {
5572 if (oloc == SET_DEST (mo.u.loc))
5573 /* No point in duplicating. */
5574 oloc = mo.u.loc;
5575 if (!REG_P (SET_SRC (mo.u.loc)))
5576 resolve = false;
5577 }
5578 }
5579 else if (!resolve)
5580 {
5581 if (GET_CODE (mo.u.loc) == SET
5582 && oloc == SET_DEST (mo.u.loc))
5583 /* No point in duplicating. */
5584 oloc = mo.u.loc;
5585 }
5586 else
5587 resolve = false;
5588
5589 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5590
5591 if (mo.u.loc != oloc)
5592 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5593
5594 /* The loc of a MO_VAL_SET may have various forms:
5595
5596 (concat val dst): dst now holds val
5597
5598 (concat val (set dst src)): dst now holds val, copied from src
5599
5600 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5601 after replacing mems and non-top-level regs with values.
5602
5603 (concat (concat val dstv) (set dst src)): dst now holds val,
5604 copied from src. dstv is a value-based representation of dst, if
5605 it differs from dst. If resolution is needed, src is a REG, and
5606 its mode is the same as that of val.
5607
5608 (concat (concat val (set dstv srcv)) (set dst src)): src
5609 copied to dst, holding val. dstv and srcv are value-based
5610 representations of dst and src, respectively.
5611
5612 */
5613
5614 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5615 reverse_op (v->val_rtx, expr, cui->insn);
5616
5617 mo.u.loc = loc;
5618
5619 if (track_p)
5620 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5621 if (preserve)
5622 {
5623 VAL_NEEDS_RESOLUTION (loc) = resolve;
5624 preserve_value (v);
5625 }
5626 if (mo.type == MO_CLOBBER)
5627 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5628 if (mo.type == MO_COPY)
5629 VAL_EXPR_IS_COPIED (loc) = 1;
5630
5631 mo.type = MO_VAL_SET;
5632
5633 log_and_return:
5634 if (dump_file && (dump_flags & TDF_DETAILS))
5635 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5636 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5637 }
5638
5639 /* Arguments to the call. */
5640 static rtx call_arguments;
5641
5642 /* Compute call_arguments. */
5643
5644 static void
5645 prepare_call_arguments (basic_block bb, rtx insn)
5646 {
5647 rtx link, x;
5648 rtx prev, cur, next;
5649 rtx call = PATTERN (insn);
5650 rtx this_arg = NULL_RTX;
5651 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5652 tree obj_type_ref = NULL_TREE;
5653 CUMULATIVE_ARGS args_so_far_v;
5654 cumulative_args_t args_so_far;
5655
5656 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
5657 args_so_far = pack_cumulative_args (&args_so_far_v);
5658 if (GET_CODE (call) == PARALLEL)
5659 call = XVECEXP (call, 0, 0);
5660 if (GET_CODE (call) == SET)
5661 call = SET_SRC (call);
5662 if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)))
5663 {
5664 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5665 {
5666 rtx symbol = XEXP (XEXP (call, 0), 0);
5667 if (SYMBOL_REF_DECL (symbol))
5668 fndecl = SYMBOL_REF_DECL (symbol);
5669 }
5670 if (fndecl == NULL_TREE)
5671 fndecl = MEM_EXPR (XEXP (call, 0));
5672 if (fndecl
5673 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5674 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5675 fndecl = NULL_TREE;
5676 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5677 type = TREE_TYPE (fndecl);
5678 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5679 {
5680 if (TREE_CODE (fndecl) == INDIRECT_REF
5681 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5682 obj_type_ref = TREE_OPERAND (fndecl, 0);
5683 fndecl = NULL_TREE;
5684 }
5685 if (type)
5686 {
5687 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5688 t = TREE_CHAIN (t))
5689 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5690 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5691 break;
5692 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5693 type = NULL;
5694 else
5695 {
5696 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5697 link = CALL_INSN_FUNCTION_USAGE (insn);
5698 #ifndef PCC_STATIC_STRUCT_RETURN
5699 if (aggregate_value_p (TREE_TYPE (type), type)
5700 && targetm.calls.struct_value_rtx (type, 0) == 0)
5701 {
5702 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5703 enum machine_mode mode = TYPE_MODE (struct_addr);
5704 rtx reg;
5705 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5706 nargs + 1);
5707 reg = targetm.calls.function_arg (args_so_far, mode,
5708 struct_addr, true);
5709 targetm.calls.function_arg_advance (args_so_far, mode,
5710 struct_addr, true);
5711 if (reg == NULL_RTX)
5712 {
5713 for (; link; link = XEXP (link, 1))
5714 if (GET_CODE (XEXP (link, 0)) == USE
5715 && MEM_P (XEXP (XEXP (link, 0), 0)))
5716 {
5717 link = XEXP (link, 1);
5718 break;
5719 }
5720 }
5721 }
5722 else
5723 #endif
5724 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5725 nargs);
5726 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5727 {
5728 enum machine_mode mode;
5729 t = TYPE_ARG_TYPES (type);
5730 mode = TYPE_MODE (TREE_VALUE (t));
5731 this_arg = targetm.calls.function_arg (args_so_far, mode,
5732 TREE_VALUE (t), true);
5733 if (this_arg && !REG_P (this_arg))
5734 this_arg = NULL_RTX;
5735 else if (this_arg == NULL_RTX)
5736 {
5737 for (; link; link = XEXP (link, 1))
5738 if (GET_CODE (XEXP (link, 0)) == USE
5739 && MEM_P (XEXP (XEXP (link, 0), 0)))
5740 {
5741 this_arg = XEXP (XEXP (link, 0), 0);
5742 break;
5743 }
5744 }
5745 }
5746 }
5747 }
5748 }
5749 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
5750
5751 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
5752 if (GET_CODE (XEXP (link, 0)) == USE)
5753 {
5754 rtx item = NULL_RTX;
5755 x = XEXP (XEXP (link, 0), 0);
5756 if (GET_MODE (link) == VOIDmode
5757 || GET_MODE (link) == BLKmode
5758 || (GET_MODE (link) != GET_MODE (x)
5759 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
5760 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
5761 /* Can't do anything for these, if the original type mode
5762 isn't known or can't be converted. */;
5763 else if (REG_P (x))
5764 {
5765 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5766 if (val && cselib_preserved_value_p (val))
5767 item = val->val_rtx;
5768 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
5769 {
5770 enum machine_mode mode = GET_MODE (x);
5771
5772 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
5773 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
5774 {
5775 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
5776
5777 if (reg == NULL_RTX || !REG_P (reg))
5778 continue;
5779 val = cselib_lookup (reg, mode, 0, VOIDmode);
5780 if (val && cselib_preserved_value_p (val))
5781 {
5782 item = val->val_rtx;
5783 break;
5784 }
5785 }
5786 }
5787 }
5788 else if (MEM_P (x))
5789 {
5790 rtx mem = x;
5791 cselib_val *val;
5792
5793 if (!frame_pointer_needed)
5794 {
5795 struct adjust_mem_data amd;
5796 amd.mem_mode = VOIDmode;
5797 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
5798 amd.side_effects = NULL_RTX;
5799 amd.store = true;
5800 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
5801 &amd);
5802 gcc_assert (amd.side_effects == NULL_RTX);
5803 }
5804 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
5805 if (val && cselib_preserved_value_p (val))
5806 item = val->val_rtx;
5807 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
5808 {
5809 /* For non-integer stack argument see also if they weren't
5810 initialized by integers. */
5811 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
5812 if (imode != GET_MODE (mem) && imode != BLKmode)
5813 {
5814 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
5815 imode, 0, VOIDmode);
5816 if (val && cselib_preserved_value_p (val))
5817 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
5818 imode);
5819 }
5820 }
5821 }
5822 if (item)
5823 {
5824 rtx x2 = x;
5825 if (GET_MODE (item) != GET_MODE (link))
5826 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
5827 if (GET_MODE (x2) != GET_MODE (link))
5828 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
5829 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
5830 call_arguments
5831 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
5832 }
5833 if (t && t != void_list_node)
5834 {
5835 tree argtype = TREE_VALUE (t);
5836 enum machine_mode mode = TYPE_MODE (argtype);
5837 rtx reg;
5838 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
5839 {
5840 argtype = build_pointer_type (argtype);
5841 mode = TYPE_MODE (argtype);
5842 }
5843 reg = targetm.calls.function_arg (args_so_far, mode,
5844 argtype, true);
5845 if (TREE_CODE (argtype) == REFERENCE_TYPE
5846 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
5847 && reg
5848 && REG_P (reg)
5849 && GET_MODE (reg) == mode
5850 && GET_MODE_CLASS (mode) == MODE_INT
5851 && REG_P (x)
5852 && REGNO (x) == REGNO (reg)
5853 && GET_MODE (x) == mode
5854 && item)
5855 {
5856 enum machine_mode indmode
5857 = TYPE_MODE (TREE_TYPE (argtype));
5858 rtx mem = gen_rtx_MEM (indmode, x);
5859 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
5860 if (val && cselib_preserved_value_p (val))
5861 {
5862 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
5863 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5864 call_arguments);
5865 }
5866 else
5867 {
5868 struct elt_loc_list *l;
5869 tree initial;
5870
5871 /* Try harder, when passing address of a constant
5872 pool integer it can be easily read back. */
5873 item = XEXP (item, 1);
5874 if (GET_CODE (item) == SUBREG)
5875 item = SUBREG_REG (item);
5876 gcc_assert (GET_CODE (item) == VALUE);
5877 val = CSELIB_VAL_PTR (item);
5878 for (l = val->locs; l; l = l->next)
5879 if (GET_CODE (l->loc) == SYMBOL_REF
5880 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
5881 && SYMBOL_REF_DECL (l->loc)
5882 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
5883 {
5884 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
5885 if (host_integerp (initial, 0))
5886 {
5887 item = GEN_INT (tree_low_cst (initial, 0));
5888 item = gen_rtx_CONCAT (indmode, mem, item);
5889 call_arguments
5890 = gen_rtx_EXPR_LIST (VOIDmode, item,
5891 call_arguments);
5892 }
5893 break;
5894 }
5895 }
5896 }
5897 targetm.calls.function_arg_advance (args_so_far, mode,
5898 argtype, true);
5899 t = TREE_CHAIN (t);
5900 }
5901 }
5902
5903 /* Add debug arguments. */
5904 if (fndecl
5905 && TREE_CODE (fndecl) == FUNCTION_DECL
5906 && DECL_HAS_DEBUG_ARGS_P (fndecl))
5907 {
5908 VEC(tree, gc) **debug_args = decl_debug_args_lookup (fndecl);
5909 if (debug_args)
5910 {
5911 unsigned int ix;
5912 tree param;
5913 for (ix = 0; VEC_iterate (tree, *debug_args, ix, param); ix += 2)
5914 {
5915 rtx item;
5916 tree dtemp = VEC_index (tree, *debug_args, ix + 1);
5917 enum machine_mode mode = DECL_MODE (dtemp);
5918 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
5919 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
5920 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5921 call_arguments);
5922 }
5923 }
5924 }
5925
5926 /* Reverse call_arguments chain. */
5927 prev = NULL_RTX;
5928 for (cur = call_arguments; cur; cur = next)
5929 {
5930 next = XEXP (cur, 1);
5931 XEXP (cur, 1) = prev;
5932 prev = cur;
5933 }
5934 call_arguments = prev;
5935
5936 x = PATTERN (insn);
5937 if (GET_CODE (x) == PARALLEL)
5938 x = XVECEXP (x, 0, 0);
5939 if (GET_CODE (x) == SET)
5940 x = SET_SRC (x);
5941 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
5942 {
5943 x = XEXP (XEXP (x, 0), 0);
5944 if (GET_CODE (x) == SYMBOL_REF)
5945 /* Don't record anything. */;
5946 else if (CONSTANT_P (x))
5947 {
5948 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
5949 pc_rtx, x);
5950 call_arguments
5951 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5952 }
5953 else
5954 {
5955 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5956 if (val && cselib_preserved_value_p (val))
5957 {
5958 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
5959 call_arguments
5960 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5961 }
5962 }
5963 }
5964 if (this_arg)
5965 {
5966 enum machine_mode mode
5967 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
5968 rtx clobbered = gen_rtx_MEM (mode, this_arg);
5969 HOST_WIDE_INT token
5970 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
5971 if (token)
5972 clobbered = plus_constant (clobbered, token * GET_MODE_SIZE (mode));
5973 clobbered = gen_rtx_MEM (mode, clobbered);
5974 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
5975 call_arguments
5976 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5977 }
5978 }
5979
5980 /* Callback for cselib_record_sets_hook, that records as micro
5981 operations uses and stores in an insn after cselib_record_sets has
5982 analyzed the sets in an insn, but before it modifies the stored
5983 values in the internal tables, unless cselib_record_sets doesn't
5984 call it directly (perhaps because we're not doing cselib in the
5985 first place, in which case sets and n_sets will be 0). */
5986
5987 static void
5988 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5989 {
5990 basic_block bb = BLOCK_FOR_INSN (insn);
5991 int n1, n2;
5992 struct count_use_info cui;
5993 micro_operation *mos;
5994
5995 cselib_hook_called = true;
5996
5997 cui.insn = insn;
5998 cui.bb = bb;
5999 cui.sets = sets;
6000 cui.n_sets = n_sets;
6001
6002 n1 = VEC_length (micro_operation, VTI (bb)->mos);
6003 cui.store_p = false;
6004 note_uses (&PATTERN (insn), add_uses_1, &cui);
6005 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6006 mos = VEC_address (micro_operation, VTI (bb)->mos);
6007
6008 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6009 MO_VAL_LOC last. */
6010 while (n1 < n2)
6011 {
6012 while (n1 < n2 && mos[n1].type == MO_USE)
6013 n1++;
6014 while (n1 < n2 && mos[n2].type != MO_USE)
6015 n2--;
6016 if (n1 < n2)
6017 {
6018 micro_operation sw;
6019
6020 sw = mos[n1];
6021 mos[n1] = mos[n2];
6022 mos[n2] = sw;
6023 }
6024 }
6025
6026 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6027 while (n1 < n2)
6028 {
6029 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6030 n1++;
6031 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6032 n2--;
6033 if (n1 < n2)
6034 {
6035 micro_operation sw;
6036
6037 sw = mos[n1];
6038 mos[n1] = mos[n2];
6039 mos[n2] = sw;
6040 }
6041 }
6042
6043 if (CALL_P (insn))
6044 {
6045 micro_operation mo;
6046
6047 mo.type = MO_CALL;
6048 mo.insn = insn;
6049 mo.u.loc = call_arguments;
6050 call_arguments = NULL_RTX;
6051
6052 if (dump_file && (dump_flags & TDF_DETAILS))
6053 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6054 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
6055 }
6056
6057 n1 = VEC_length (micro_operation, VTI (bb)->mos);
6058 /* This will record NEXT_INSN (insn), such that we can
6059 insert notes before it without worrying about any
6060 notes that MO_USEs might emit after the insn. */
6061 cui.store_p = true;
6062 note_stores (PATTERN (insn), add_stores, &cui);
6063 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6064 mos = VEC_address (micro_operation, VTI (bb)->mos);
6065
6066 /* Order the MO_VAL_USEs first (note_stores does nothing
6067 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6068 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6069 while (n1 < n2)
6070 {
6071 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6072 n1++;
6073 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6074 n2--;
6075 if (n1 < n2)
6076 {
6077 micro_operation sw;
6078
6079 sw = mos[n1];
6080 mos[n1] = mos[n2];
6081 mos[n2] = sw;
6082 }
6083 }
6084
6085 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
6086 while (n1 < n2)
6087 {
6088 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6089 n1++;
6090 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6091 n2--;
6092 if (n1 < n2)
6093 {
6094 micro_operation sw;
6095
6096 sw = mos[n1];
6097 mos[n1] = mos[n2];
6098 mos[n2] = sw;
6099 }
6100 }
6101 }
6102
6103 static enum var_init_status
6104 find_src_status (dataflow_set *in, rtx src)
6105 {
6106 tree decl = NULL_TREE;
6107 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6108
6109 if (! flag_var_tracking_uninit)
6110 status = VAR_INIT_STATUS_INITIALIZED;
6111
6112 if (src && REG_P (src))
6113 decl = var_debug_decl (REG_EXPR (src));
6114 else if (src && MEM_P (src))
6115 decl = var_debug_decl (MEM_EXPR (src));
6116
6117 if (src && decl)
6118 status = get_init_value (in, src, dv_from_decl (decl));
6119
6120 return status;
6121 }
6122
6123 /* SRC is the source of an assignment. Use SET to try to find what
6124 was ultimately assigned to SRC. Return that value if known,
6125 otherwise return SRC itself. */
6126
6127 static rtx
6128 find_src_set_src (dataflow_set *set, rtx src)
6129 {
6130 tree decl = NULL_TREE; /* The variable being copied around. */
6131 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6132 variable var;
6133 location_chain nextp;
6134 int i;
6135 bool found;
6136
6137 if (src && REG_P (src))
6138 decl = var_debug_decl (REG_EXPR (src));
6139 else if (src && MEM_P (src))
6140 decl = var_debug_decl (MEM_EXPR (src));
6141
6142 if (src && decl)
6143 {
6144 decl_or_value dv = dv_from_decl (decl);
6145
6146 var = shared_hash_find (set->vars, dv);
6147 if (var)
6148 {
6149 found = false;
6150 for (i = 0; i < var->n_var_parts && !found; i++)
6151 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6152 nextp = nextp->next)
6153 if (rtx_equal_p (nextp->loc, src))
6154 {
6155 set_src = nextp->set_src;
6156 found = true;
6157 }
6158
6159 }
6160 }
6161
6162 return set_src;
6163 }
6164
6165 /* Compute the changes of variable locations in the basic block BB. */
6166
6167 static bool
6168 compute_bb_dataflow (basic_block bb)
6169 {
6170 unsigned int i;
6171 micro_operation *mo;
6172 bool changed;
6173 dataflow_set old_out;
6174 dataflow_set *in = &VTI (bb)->in;
6175 dataflow_set *out = &VTI (bb)->out;
6176
6177 dataflow_set_init (&old_out);
6178 dataflow_set_copy (&old_out, out);
6179 dataflow_set_copy (out, in);
6180
6181 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6182 {
6183 rtx insn = mo->insn;
6184
6185 switch (mo->type)
6186 {
6187 case MO_CALL:
6188 dataflow_set_clear_at_call (out);
6189 break;
6190
6191 case MO_USE:
6192 {
6193 rtx loc = mo->u.loc;
6194
6195 if (REG_P (loc))
6196 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6197 else if (MEM_P (loc))
6198 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6199 }
6200 break;
6201
6202 case MO_VAL_LOC:
6203 {
6204 rtx loc = mo->u.loc;
6205 rtx val, vloc;
6206 tree var;
6207
6208 if (GET_CODE (loc) == CONCAT)
6209 {
6210 val = XEXP (loc, 0);
6211 vloc = XEXP (loc, 1);
6212 }
6213 else
6214 {
6215 val = NULL_RTX;
6216 vloc = loc;
6217 }
6218
6219 var = PAT_VAR_LOCATION_DECL (vloc);
6220
6221 clobber_variable_part (out, NULL_RTX,
6222 dv_from_decl (var), 0, NULL_RTX);
6223 if (val)
6224 {
6225 if (VAL_NEEDS_RESOLUTION (loc))
6226 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6227 set_variable_part (out, val, dv_from_decl (var), 0,
6228 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6229 INSERT);
6230 }
6231 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6232 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6233 dv_from_decl (var), 0,
6234 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6235 INSERT);
6236 }
6237 break;
6238
6239 case MO_VAL_USE:
6240 {
6241 rtx loc = mo->u.loc;
6242 rtx val, vloc, uloc;
6243
6244 vloc = uloc = XEXP (loc, 1);
6245 val = XEXP (loc, 0);
6246
6247 if (GET_CODE (val) == CONCAT)
6248 {
6249 uloc = XEXP (val, 1);
6250 val = XEXP (val, 0);
6251 }
6252
6253 if (VAL_NEEDS_RESOLUTION (loc))
6254 val_resolve (out, val, vloc, insn);
6255 else
6256 val_store (out, val, uloc, insn, false);
6257
6258 if (VAL_HOLDS_TRACK_EXPR (loc))
6259 {
6260 if (GET_CODE (uloc) == REG)
6261 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6262 NULL);
6263 else if (GET_CODE (uloc) == MEM)
6264 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6265 NULL);
6266 }
6267 }
6268 break;
6269
6270 case MO_VAL_SET:
6271 {
6272 rtx loc = mo->u.loc;
6273 rtx val, vloc, uloc;
6274
6275 vloc = loc;
6276 uloc = XEXP (vloc, 1);
6277 val = XEXP (vloc, 0);
6278 vloc = uloc;
6279
6280 if (GET_CODE (val) == CONCAT)
6281 {
6282 vloc = XEXP (val, 1);
6283 val = XEXP (val, 0);
6284 }
6285
6286 if (GET_CODE (vloc) == SET)
6287 {
6288 rtx vsrc = SET_SRC (vloc);
6289
6290 gcc_assert (val != vsrc);
6291 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6292
6293 vloc = SET_DEST (vloc);
6294
6295 if (VAL_NEEDS_RESOLUTION (loc))
6296 val_resolve (out, val, vsrc, insn);
6297 }
6298 else if (VAL_NEEDS_RESOLUTION (loc))
6299 {
6300 gcc_assert (GET_CODE (uloc) == SET
6301 && GET_CODE (SET_SRC (uloc)) == REG);
6302 val_resolve (out, val, SET_SRC (uloc), insn);
6303 }
6304
6305 if (VAL_HOLDS_TRACK_EXPR (loc))
6306 {
6307 if (VAL_EXPR_IS_CLOBBERED (loc))
6308 {
6309 if (REG_P (uloc))
6310 var_reg_delete (out, uloc, true);
6311 else if (MEM_P (uloc))
6312 var_mem_delete (out, uloc, true);
6313 }
6314 else
6315 {
6316 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6317 rtx set_src = NULL;
6318 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6319
6320 if (GET_CODE (uloc) == SET)
6321 {
6322 set_src = SET_SRC (uloc);
6323 uloc = SET_DEST (uloc);
6324 }
6325
6326 if (copied_p)
6327 {
6328 if (flag_var_tracking_uninit)
6329 {
6330 status = find_src_status (in, set_src);
6331
6332 if (status == VAR_INIT_STATUS_UNKNOWN)
6333 status = find_src_status (out, set_src);
6334 }
6335
6336 set_src = find_src_set_src (in, set_src);
6337 }
6338
6339 if (REG_P (uloc))
6340 var_reg_delete_and_set (out, uloc, !copied_p,
6341 status, set_src);
6342 else if (MEM_P (uloc))
6343 var_mem_delete_and_set (out, uloc, !copied_p,
6344 status, set_src);
6345 }
6346 }
6347 else if (REG_P (uloc))
6348 var_regno_delete (out, REGNO (uloc));
6349
6350 val_store (out, val, vloc, insn, true);
6351 }
6352 break;
6353
6354 case MO_SET:
6355 {
6356 rtx loc = mo->u.loc;
6357 rtx set_src = NULL;
6358
6359 if (GET_CODE (loc) == SET)
6360 {
6361 set_src = SET_SRC (loc);
6362 loc = SET_DEST (loc);
6363 }
6364
6365 if (REG_P (loc))
6366 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6367 set_src);
6368 else if (MEM_P (loc))
6369 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6370 set_src);
6371 }
6372 break;
6373
6374 case MO_COPY:
6375 {
6376 rtx loc = mo->u.loc;
6377 enum var_init_status src_status;
6378 rtx set_src = NULL;
6379
6380 if (GET_CODE (loc) == SET)
6381 {
6382 set_src = SET_SRC (loc);
6383 loc = SET_DEST (loc);
6384 }
6385
6386 if (! flag_var_tracking_uninit)
6387 src_status = VAR_INIT_STATUS_INITIALIZED;
6388 else
6389 {
6390 src_status = find_src_status (in, set_src);
6391
6392 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6393 src_status = find_src_status (out, set_src);
6394 }
6395
6396 set_src = find_src_set_src (in, set_src);
6397
6398 if (REG_P (loc))
6399 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6400 else if (MEM_P (loc))
6401 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6402 }
6403 break;
6404
6405 case MO_USE_NO_VAR:
6406 {
6407 rtx loc = mo->u.loc;
6408
6409 if (REG_P (loc))
6410 var_reg_delete (out, loc, false);
6411 else if (MEM_P (loc))
6412 var_mem_delete (out, loc, false);
6413 }
6414 break;
6415
6416 case MO_CLOBBER:
6417 {
6418 rtx loc = mo->u.loc;
6419
6420 if (REG_P (loc))
6421 var_reg_delete (out, loc, true);
6422 else if (MEM_P (loc))
6423 var_mem_delete (out, loc, true);
6424 }
6425 break;
6426
6427 case MO_ADJUST:
6428 out->stack_adjust += mo->u.adjust;
6429 break;
6430 }
6431 }
6432
6433 if (MAY_HAVE_DEBUG_INSNS)
6434 {
6435 dataflow_set_equiv_regs (out);
6436 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6437 out);
6438 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6439 out);
6440 #if ENABLE_CHECKING
6441 htab_traverse (shared_hash_htab (out->vars),
6442 canonicalize_loc_order_check, out);
6443 #endif
6444 }
6445 changed = dataflow_set_different (&old_out, out);
6446 dataflow_set_destroy (&old_out);
6447 return changed;
6448 }
6449
6450 /* Find the locations of variables in the whole function. */
6451
6452 static bool
6453 vt_find_locations (void)
6454 {
6455 fibheap_t worklist, pending, fibheap_swap;
6456 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6457 basic_block bb;
6458 edge e;
6459 int *bb_order;
6460 int *rc_order;
6461 int i;
6462 int htabsz = 0;
6463 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6464 bool success = true;
6465
6466 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6467 /* Compute reverse completion order of depth first search of the CFG
6468 so that the data-flow runs faster. */
6469 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6470 bb_order = XNEWVEC (int, last_basic_block);
6471 pre_and_rev_post_order_compute (NULL, rc_order, false);
6472 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6473 bb_order[rc_order[i]] = i;
6474 free (rc_order);
6475
6476 worklist = fibheap_new ();
6477 pending = fibheap_new ();
6478 visited = sbitmap_alloc (last_basic_block);
6479 in_worklist = sbitmap_alloc (last_basic_block);
6480 in_pending = sbitmap_alloc (last_basic_block);
6481 sbitmap_zero (in_worklist);
6482
6483 FOR_EACH_BB (bb)
6484 fibheap_insert (pending, bb_order[bb->index], bb);
6485 sbitmap_ones (in_pending);
6486
6487 while (success && !fibheap_empty (pending))
6488 {
6489 fibheap_swap = pending;
6490 pending = worklist;
6491 worklist = fibheap_swap;
6492 sbitmap_swap = in_pending;
6493 in_pending = in_worklist;
6494 in_worklist = sbitmap_swap;
6495
6496 sbitmap_zero (visited);
6497
6498 while (!fibheap_empty (worklist))
6499 {
6500 bb = (basic_block) fibheap_extract_min (worklist);
6501 RESET_BIT (in_worklist, bb->index);
6502 gcc_assert (!TEST_BIT (visited, bb->index));
6503 if (!TEST_BIT (visited, bb->index))
6504 {
6505 bool changed;
6506 edge_iterator ei;
6507 int oldinsz, oldoutsz;
6508
6509 SET_BIT (visited, bb->index);
6510
6511 if (VTI (bb)->in.vars)
6512 {
6513 htabsz
6514 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6515 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6516 oldinsz
6517 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6518 oldoutsz
6519 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6520 }
6521 else
6522 oldinsz = oldoutsz = 0;
6523
6524 if (MAY_HAVE_DEBUG_INSNS)
6525 {
6526 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6527 bool first = true, adjust = false;
6528
6529 /* Calculate the IN set as the intersection of
6530 predecessor OUT sets. */
6531
6532 dataflow_set_clear (in);
6533 dst_can_be_shared = true;
6534
6535 FOR_EACH_EDGE (e, ei, bb->preds)
6536 if (!VTI (e->src)->flooded)
6537 gcc_assert (bb_order[bb->index]
6538 <= bb_order[e->src->index]);
6539 else if (first)
6540 {
6541 dataflow_set_copy (in, &VTI (e->src)->out);
6542 first_out = &VTI (e->src)->out;
6543 first = false;
6544 }
6545 else
6546 {
6547 dataflow_set_merge (in, &VTI (e->src)->out);
6548 adjust = true;
6549 }
6550
6551 if (adjust)
6552 {
6553 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6554 #if ENABLE_CHECKING
6555 /* Merge and merge_adjust should keep entries in
6556 canonical order. */
6557 htab_traverse (shared_hash_htab (in->vars),
6558 canonicalize_loc_order_check,
6559 in);
6560 #endif
6561 if (dst_can_be_shared)
6562 {
6563 shared_hash_destroy (in->vars);
6564 in->vars = shared_hash_copy (first_out->vars);
6565 }
6566 }
6567
6568 VTI (bb)->flooded = true;
6569 }
6570 else
6571 {
6572 /* Calculate the IN set as union of predecessor OUT sets. */
6573 dataflow_set_clear (&VTI (bb)->in);
6574 FOR_EACH_EDGE (e, ei, bb->preds)
6575 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6576 }
6577
6578 changed = compute_bb_dataflow (bb);
6579 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6580 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6581
6582 if (htabmax && htabsz > htabmax)
6583 {
6584 if (MAY_HAVE_DEBUG_INSNS)
6585 inform (DECL_SOURCE_LOCATION (cfun->decl),
6586 "variable tracking size limit exceeded with "
6587 "-fvar-tracking-assignments, retrying without");
6588 else
6589 inform (DECL_SOURCE_LOCATION (cfun->decl),
6590 "variable tracking size limit exceeded");
6591 success = false;
6592 break;
6593 }
6594
6595 if (changed)
6596 {
6597 FOR_EACH_EDGE (e, ei, bb->succs)
6598 {
6599 if (e->dest == EXIT_BLOCK_PTR)
6600 continue;
6601
6602 if (TEST_BIT (visited, e->dest->index))
6603 {
6604 if (!TEST_BIT (in_pending, e->dest->index))
6605 {
6606 /* Send E->DEST to next round. */
6607 SET_BIT (in_pending, e->dest->index);
6608 fibheap_insert (pending,
6609 bb_order[e->dest->index],
6610 e->dest);
6611 }
6612 }
6613 else if (!TEST_BIT (in_worklist, e->dest->index))
6614 {
6615 /* Add E->DEST to current round. */
6616 SET_BIT (in_worklist, e->dest->index);
6617 fibheap_insert (worklist, bb_order[e->dest->index],
6618 e->dest);
6619 }
6620 }
6621 }
6622
6623 if (dump_file)
6624 fprintf (dump_file,
6625 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6626 bb->index,
6627 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6628 oldinsz,
6629 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6630 oldoutsz,
6631 (int)worklist->nodes, (int)pending->nodes, htabsz);
6632
6633 if (dump_file && (dump_flags & TDF_DETAILS))
6634 {
6635 fprintf (dump_file, "BB %i IN:\n", bb->index);
6636 dump_dataflow_set (&VTI (bb)->in);
6637 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6638 dump_dataflow_set (&VTI (bb)->out);
6639 }
6640 }
6641 }
6642 }
6643
6644 if (success && MAY_HAVE_DEBUG_INSNS)
6645 FOR_EACH_BB (bb)
6646 gcc_assert (VTI (bb)->flooded);
6647
6648 free (bb_order);
6649 fibheap_delete (worklist);
6650 fibheap_delete (pending);
6651 sbitmap_free (visited);
6652 sbitmap_free (in_worklist);
6653 sbitmap_free (in_pending);
6654
6655 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6656 return success;
6657 }
6658
6659 /* Print the content of the LIST to dump file. */
6660
6661 static void
6662 dump_attrs_list (attrs list)
6663 {
6664 for (; list; list = list->next)
6665 {
6666 if (dv_is_decl_p (list->dv))
6667 print_mem_expr (dump_file, dv_as_decl (list->dv));
6668 else
6669 print_rtl_single (dump_file, dv_as_value (list->dv));
6670 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6671 }
6672 fprintf (dump_file, "\n");
6673 }
6674
6675 /* Print the information about variable *SLOT to dump file. */
6676
6677 static int
6678 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6679 {
6680 variable var = (variable) *slot;
6681
6682 dump_var (var);
6683
6684 /* Continue traversing the hash table. */
6685 return 1;
6686 }
6687
6688 /* Print the information about variable VAR to dump file. */
6689
6690 static void
6691 dump_var (variable var)
6692 {
6693 int i;
6694 location_chain node;
6695
6696 if (dv_is_decl_p (var->dv))
6697 {
6698 const_tree decl = dv_as_decl (var->dv);
6699
6700 if (DECL_NAME (decl))
6701 {
6702 fprintf (dump_file, " name: %s",
6703 IDENTIFIER_POINTER (DECL_NAME (decl)));
6704 if (dump_flags & TDF_UID)
6705 fprintf (dump_file, "D.%u", DECL_UID (decl));
6706 }
6707 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6708 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6709 else
6710 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6711 fprintf (dump_file, "\n");
6712 }
6713 else
6714 {
6715 fputc (' ', dump_file);
6716 print_rtl_single (dump_file, dv_as_value (var->dv));
6717 }
6718
6719 for (i = 0; i < var->n_var_parts; i++)
6720 {
6721 fprintf (dump_file, " offset %ld\n",
6722 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
6723 for (node = var->var_part[i].loc_chain; node; node = node->next)
6724 {
6725 fprintf (dump_file, " ");
6726 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6727 fprintf (dump_file, "[uninit]");
6728 print_rtl_single (dump_file, node->loc);
6729 }
6730 }
6731 }
6732
6733 /* Print the information about variables from hash table VARS to dump file. */
6734
6735 static void
6736 dump_vars (htab_t vars)
6737 {
6738 if (htab_elements (vars) > 0)
6739 {
6740 fprintf (dump_file, "Variables:\n");
6741 htab_traverse (vars, dump_var_slot, NULL);
6742 }
6743 }
6744
6745 /* Print the dataflow set SET to dump file. */
6746
6747 static void
6748 dump_dataflow_set (dataflow_set *set)
6749 {
6750 int i;
6751
6752 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6753 set->stack_adjust);
6754 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6755 {
6756 if (set->regs[i])
6757 {
6758 fprintf (dump_file, "Reg %d:", i);
6759 dump_attrs_list (set->regs[i]);
6760 }
6761 }
6762 dump_vars (shared_hash_htab (set->vars));
6763 fprintf (dump_file, "\n");
6764 }
6765
6766 /* Print the IN and OUT sets for each basic block to dump file. */
6767
6768 static void
6769 dump_dataflow_sets (void)
6770 {
6771 basic_block bb;
6772
6773 FOR_EACH_BB (bb)
6774 {
6775 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6776 fprintf (dump_file, "IN:\n");
6777 dump_dataflow_set (&VTI (bb)->in);
6778 fprintf (dump_file, "OUT:\n");
6779 dump_dataflow_set (&VTI (bb)->out);
6780 }
6781 }
6782
6783 /* Return the variable for DV in dropped_values, inserting one if
6784 requested with INSERT. */
6785
6786 static inline variable
6787 variable_from_dropped (decl_or_value dv, enum insert_option insert)
6788 {
6789 void **slot;
6790 variable empty_var;
6791 onepart_enum_t onepart;
6792
6793 slot = htab_find_slot_with_hash (dropped_values, dv, dv_htab_hash (dv),
6794 insert);
6795
6796 if (!slot)
6797 return NULL;
6798
6799 if (*slot)
6800 return (variable) *slot;
6801
6802 gcc_checking_assert (insert == INSERT);
6803
6804 onepart = dv_onepart_p (dv);
6805
6806 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
6807
6808 empty_var = (variable) pool_alloc (onepart_pool (onepart));
6809 empty_var->dv = dv;
6810 empty_var->refcount = 1;
6811 empty_var->n_var_parts = 0;
6812 empty_var->onepart = onepart;
6813 empty_var->in_changed_variables = false;
6814 empty_var->var_part[0].loc_chain = NULL;
6815 empty_var->var_part[0].cur_loc = NULL;
6816 VAR_LOC_1PAUX (empty_var) = NULL;
6817 set_dv_changed (dv, true);
6818
6819 *slot = empty_var;
6820
6821 return empty_var;
6822 }
6823
6824 /* Recover the one-part aux from dropped_values. */
6825
6826 static struct onepart_aux *
6827 recover_dropped_1paux (variable var)
6828 {
6829 variable dvar;
6830
6831 gcc_checking_assert (var->onepart);
6832
6833 if (VAR_LOC_1PAUX (var))
6834 return VAR_LOC_1PAUX (var);
6835
6836 if (var->onepart == ONEPART_VDECL)
6837 return NULL;
6838
6839 dvar = variable_from_dropped (var->dv, NO_INSERT);
6840
6841 if (!dvar)
6842 return NULL;
6843
6844 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
6845 VAR_LOC_1PAUX (dvar) = NULL;
6846
6847 return VAR_LOC_1PAUX (var);
6848 }
6849
6850 /* Add variable VAR to the hash table of changed variables and
6851 if it has no locations delete it from SET's hash table. */
6852
6853 static void
6854 variable_was_changed (variable var, dataflow_set *set)
6855 {
6856 hashval_t hash = dv_htab_hash (var->dv);
6857
6858 if (emit_notes)
6859 {
6860 void **slot;
6861
6862 /* Remember this decl or VALUE has been added to changed_variables. */
6863 set_dv_changed (var->dv, true);
6864
6865 slot = htab_find_slot_with_hash (changed_variables,
6866 var->dv,
6867 hash, INSERT);
6868
6869 if (*slot)
6870 {
6871 variable old_var = (variable) *slot;
6872 gcc_assert (old_var->in_changed_variables);
6873 old_var->in_changed_variables = false;
6874 if (var != old_var && var->onepart)
6875 {
6876 /* Restore the auxiliary info from an empty variable
6877 previously created for changed_variables, so it is
6878 not lost. */
6879 gcc_checking_assert (!VAR_LOC_1PAUX (var));
6880 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
6881 VAR_LOC_1PAUX (old_var) = NULL;
6882 }
6883 variable_htab_free (*slot);
6884 }
6885
6886 if (set && var->n_var_parts == 0)
6887 {
6888 onepart_enum_t onepart = var->onepart;
6889 variable empty_var = NULL;
6890 void **dslot = NULL;
6891
6892 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
6893 {
6894 dslot = htab_find_slot_with_hash (dropped_values, var->dv,
6895 dv_htab_hash (var->dv),
6896 INSERT);
6897 empty_var = (variable) *dslot;
6898
6899 if (empty_var)
6900 {
6901 gcc_checking_assert (!empty_var->in_changed_variables);
6902 if (!VAR_LOC_1PAUX (var))
6903 {
6904 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
6905 VAR_LOC_1PAUX (empty_var) = NULL;
6906 }
6907 else
6908 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
6909 }
6910 }
6911
6912 if (!empty_var)
6913 {
6914 empty_var = (variable) pool_alloc (onepart_pool (onepart));
6915 empty_var->dv = var->dv;
6916 empty_var->refcount = 1;
6917 empty_var->n_var_parts = 0;
6918 empty_var->onepart = onepart;
6919 if (dslot)
6920 {
6921 empty_var->refcount++;
6922 *dslot = empty_var;
6923 }
6924 }
6925 else
6926 empty_var->refcount++;
6927 empty_var->in_changed_variables = true;
6928 *slot = empty_var;
6929 if (onepart)
6930 {
6931 empty_var->var_part[0].loc_chain = NULL;
6932 empty_var->var_part[0].cur_loc = NULL;
6933 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
6934 VAR_LOC_1PAUX (var) = NULL;
6935 }
6936 goto drop_var;
6937 }
6938 else
6939 {
6940 if (var->onepart && !VAR_LOC_1PAUX (var))
6941 recover_dropped_1paux (var);
6942 var->refcount++;
6943 var->in_changed_variables = true;
6944 *slot = var;
6945 }
6946 }
6947 else
6948 {
6949 gcc_assert (set);
6950 if (var->n_var_parts == 0)
6951 {
6952 void **slot;
6953
6954 drop_var:
6955 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6956 if (slot)
6957 {
6958 if (shared_hash_shared (set->vars))
6959 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6960 NO_INSERT);
6961 htab_clear_slot (shared_hash_htab (set->vars), slot);
6962 }
6963 }
6964 }
6965 }
6966
6967 /* Look for the index in VAR->var_part corresponding to OFFSET.
6968 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6969 referenced int will be set to the index that the part has or should
6970 have, if it should be inserted. */
6971
6972 static inline int
6973 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6974 int *insertion_point)
6975 {
6976 int pos, low, high;
6977
6978 if (var->onepart)
6979 {
6980 if (offset != 0)
6981 return -1;
6982
6983 if (insertion_point)
6984 *insertion_point = 0;
6985
6986 return var->n_var_parts - 1;
6987 }
6988
6989 /* Find the location part. */
6990 low = 0;
6991 high = var->n_var_parts;
6992 while (low != high)
6993 {
6994 pos = (low + high) / 2;
6995 if (VAR_PART_OFFSET (var, pos) < offset)
6996 low = pos + 1;
6997 else
6998 high = pos;
6999 }
7000 pos = low;
7001
7002 if (insertion_point)
7003 *insertion_point = pos;
7004
7005 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7006 return pos;
7007
7008 return -1;
7009 }
7010
7011 static void **
7012 set_slot_part (dataflow_set *set, rtx loc, void **slot,
7013 decl_or_value dv, HOST_WIDE_INT offset,
7014 enum var_init_status initialized, rtx set_src)
7015 {
7016 int pos;
7017 location_chain node, next;
7018 location_chain *nextp;
7019 variable var;
7020 onepart_enum_t onepart;
7021
7022 var = (variable) *slot;
7023
7024 if (var)
7025 onepart = var->onepart;
7026 else
7027 onepart = dv_onepart_p (dv);
7028
7029 gcc_checking_assert (offset == 0 || !onepart);
7030 gcc_checking_assert (loc != dv_as_opaque (dv));
7031
7032 if (! flag_var_tracking_uninit)
7033 initialized = VAR_INIT_STATUS_INITIALIZED;
7034
7035 if (!var)
7036 {
7037 /* Create new variable information. */
7038 var = (variable) pool_alloc (onepart_pool (onepart));
7039 var->dv = dv;
7040 var->refcount = 1;
7041 var->n_var_parts = 1;
7042 var->onepart = onepart;
7043 var->in_changed_variables = false;
7044 if (var->onepart)
7045 VAR_LOC_1PAUX (var) = NULL;
7046 else
7047 VAR_PART_OFFSET (var, 0) = offset;
7048 var->var_part[0].loc_chain = NULL;
7049 var->var_part[0].cur_loc = NULL;
7050 *slot = var;
7051 pos = 0;
7052 nextp = &var->var_part[0].loc_chain;
7053 }
7054 else if (onepart)
7055 {
7056 int r = -1, c = 0;
7057
7058 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7059
7060 pos = 0;
7061
7062 if (GET_CODE (loc) == VALUE)
7063 {
7064 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7065 nextp = &node->next)
7066 if (GET_CODE (node->loc) == VALUE)
7067 {
7068 if (node->loc == loc)
7069 {
7070 r = 0;
7071 break;
7072 }
7073 if (canon_value_cmp (node->loc, loc))
7074 c++;
7075 else
7076 {
7077 r = 1;
7078 break;
7079 }
7080 }
7081 else if (REG_P (node->loc) || MEM_P (node->loc))
7082 c++;
7083 else
7084 {
7085 r = 1;
7086 break;
7087 }
7088 }
7089 else if (REG_P (loc))
7090 {
7091 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7092 nextp = &node->next)
7093 if (REG_P (node->loc))
7094 {
7095 if (REGNO (node->loc) < REGNO (loc))
7096 c++;
7097 else
7098 {
7099 if (REGNO (node->loc) == REGNO (loc))
7100 r = 0;
7101 else
7102 r = 1;
7103 break;
7104 }
7105 }
7106 else
7107 {
7108 r = 1;
7109 break;
7110 }
7111 }
7112 else if (MEM_P (loc))
7113 {
7114 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7115 nextp = &node->next)
7116 if (REG_P (node->loc))
7117 c++;
7118 else if (MEM_P (node->loc))
7119 {
7120 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7121 break;
7122 else
7123 c++;
7124 }
7125 else
7126 {
7127 r = 1;
7128 break;
7129 }
7130 }
7131 else
7132 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7133 nextp = &node->next)
7134 if ((r = loc_cmp (node->loc, loc)) >= 0)
7135 break;
7136 else
7137 c++;
7138
7139 if (r == 0)
7140 return slot;
7141
7142 if (shared_var_p (var, set->vars))
7143 {
7144 slot = unshare_variable (set, slot, var, initialized);
7145 var = (variable)*slot;
7146 for (nextp = &var->var_part[0].loc_chain; c;
7147 nextp = &(*nextp)->next)
7148 c--;
7149 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7150 }
7151 }
7152 else
7153 {
7154 int inspos = 0;
7155
7156 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7157
7158 pos = find_variable_location_part (var, offset, &inspos);
7159
7160 if (pos >= 0)
7161 {
7162 node = var->var_part[pos].loc_chain;
7163
7164 if (node
7165 && ((REG_P (node->loc) && REG_P (loc)
7166 && REGNO (node->loc) == REGNO (loc))
7167 || rtx_equal_p (node->loc, loc)))
7168 {
7169 /* LOC is in the beginning of the chain so we have nothing
7170 to do. */
7171 if (node->init < initialized)
7172 node->init = initialized;
7173 if (set_src != NULL)
7174 node->set_src = set_src;
7175
7176 return slot;
7177 }
7178 else
7179 {
7180 /* We have to make a copy of a shared variable. */
7181 if (shared_var_p (var, set->vars))
7182 {
7183 slot = unshare_variable (set, slot, var, initialized);
7184 var = (variable)*slot;
7185 }
7186 }
7187 }
7188 else
7189 {
7190 /* We have not found the location part, new one will be created. */
7191
7192 /* We have to make a copy of the shared variable. */
7193 if (shared_var_p (var, set->vars))
7194 {
7195 slot = unshare_variable (set, slot, var, initialized);
7196 var = (variable)*slot;
7197 }
7198
7199 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7200 thus there are at most MAX_VAR_PARTS different offsets. */
7201 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7202 && (!var->n_var_parts || !onepart));
7203
7204 /* We have to move the elements of array starting at index
7205 inspos to the next position. */
7206 for (pos = var->n_var_parts; pos > inspos; pos--)
7207 var->var_part[pos] = var->var_part[pos - 1];
7208
7209 var->n_var_parts++;
7210 gcc_checking_assert (!onepart);
7211 VAR_PART_OFFSET (var, pos) = offset;
7212 var->var_part[pos].loc_chain = NULL;
7213 var->var_part[pos].cur_loc = NULL;
7214 }
7215
7216 /* Delete the location from the list. */
7217 nextp = &var->var_part[pos].loc_chain;
7218 for (node = var->var_part[pos].loc_chain; node; node = next)
7219 {
7220 next = node->next;
7221 if ((REG_P (node->loc) && REG_P (loc)
7222 && REGNO (node->loc) == REGNO (loc))
7223 || rtx_equal_p (node->loc, loc))
7224 {
7225 /* Save these values, to assign to the new node, before
7226 deleting this one. */
7227 if (node->init > initialized)
7228 initialized = node->init;
7229 if (node->set_src != NULL && set_src == NULL)
7230 set_src = node->set_src;
7231 if (var->var_part[pos].cur_loc == node->loc)
7232 var->var_part[pos].cur_loc = NULL;
7233 pool_free (loc_chain_pool, node);
7234 *nextp = next;
7235 break;
7236 }
7237 else
7238 nextp = &node->next;
7239 }
7240
7241 nextp = &var->var_part[pos].loc_chain;
7242 }
7243
7244 /* Add the location to the beginning. */
7245 node = (location_chain) pool_alloc (loc_chain_pool);
7246 node->loc = loc;
7247 node->init = initialized;
7248 node->set_src = set_src;
7249 node->next = *nextp;
7250 *nextp = node;
7251
7252 /* If no location was emitted do so. */
7253 if (var->var_part[pos].cur_loc == NULL)
7254 variable_was_changed (var, set);
7255
7256 return slot;
7257 }
7258
7259 /* Set the part of variable's location in the dataflow set SET. The
7260 variable part is specified by variable's declaration in DV and
7261 offset OFFSET and the part's location by LOC. IOPT should be
7262 NO_INSERT if the variable is known to be in SET already and the
7263 variable hash table must not be resized, and INSERT otherwise. */
7264
7265 static void
7266 set_variable_part (dataflow_set *set, rtx loc,
7267 decl_or_value dv, HOST_WIDE_INT offset,
7268 enum var_init_status initialized, rtx set_src,
7269 enum insert_option iopt)
7270 {
7271 void **slot;
7272
7273 if (iopt == NO_INSERT)
7274 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7275 else
7276 {
7277 slot = shared_hash_find_slot (set->vars, dv);
7278 if (!slot)
7279 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7280 }
7281 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7282 }
7283
7284 /* Remove all recorded register locations for the given variable part
7285 from dataflow set SET, except for those that are identical to loc.
7286 The variable part is specified by variable's declaration or value
7287 DV and offset OFFSET. */
7288
7289 static void **
7290 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7291 HOST_WIDE_INT offset, rtx set_src)
7292 {
7293 variable var = (variable) *slot;
7294 int pos = find_variable_location_part (var, offset, NULL);
7295
7296 if (pos >= 0)
7297 {
7298 location_chain node, next;
7299
7300 /* Remove the register locations from the dataflow set. */
7301 next = var->var_part[pos].loc_chain;
7302 for (node = next; node; node = next)
7303 {
7304 next = node->next;
7305 if (node->loc != loc
7306 && (!flag_var_tracking_uninit
7307 || !set_src
7308 || MEM_P (set_src)
7309 || !rtx_equal_p (set_src, node->set_src)))
7310 {
7311 if (REG_P (node->loc))
7312 {
7313 attrs anode, anext;
7314 attrs *anextp;
7315
7316 /* Remove the variable part from the register's
7317 list, but preserve any other variable parts
7318 that might be regarded as live in that same
7319 register. */
7320 anextp = &set->regs[REGNO (node->loc)];
7321 for (anode = *anextp; anode; anode = anext)
7322 {
7323 anext = anode->next;
7324 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7325 && anode->offset == offset)
7326 {
7327 pool_free (attrs_pool, anode);
7328 *anextp = anext;
7329 }
7330 else
7331 anextp = &anode->next;
7332 }
7333 }
7334
7335 slot = delete_slot_part (set, node->loc, slot, offset);
7336 }
7337 }
7338 }
7339
7340 return slot;
7341 }
7342
7343 /* Remove all recorded register locations for the given variable part
7344 from dataflow set SET, except for those that are identical to loc.
7345 The variable part is specified by variable's declaration or value
7346 DV and offset OFFSET. */
7347
7348 static void
7349 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7350 HOST_WIDE_INT offset, rtx set_src)
7351 {
7352 void **slot;
7353
7354 if (!dv_as_opaque (dv)
7355 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7356 return;
7357
7358 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7359 if (!slot)
7360 return;
7361
7362 clobber_slot_part (set, loc, slot, offset, set_src);
7363 }
7364
7365 /* Delete the part of variable's location from dataflow set SET. The
7366 variable part is specified by its SET->vars slot SLOT and offset
7367 OFFSET and the part's location by LOC. */
7368
7369 static void **
7370 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7371 HOST_WIDE_INT offset)
7372 {
7373 variable var = (variable) *slot;
7374 int pos = find_variable_location_part (var, offset, NULL);
7375
7376 if (pos >= 0)
7377 {
7378 location_chain node, next;
7379 location_chain *nextp;
7380 bool changed;
7381 rtx cur_loc;
7382
7383 if (shared_var_p (var, set->vars))
7384 {
7385 /* If the variable contains the location part we have to
7386 make a copy of the variable. */
7387 for (node = var->var_part[pos].loc_chain; node;
7388 node = node->next)
7389 {
7390 if ((REG_P (node->loc) && REG_P (loc)
7391 && REGNO (node->loc) == REGNO (loc))
7392 || rtx_equal_p (node->loc, loc))
7393 {
7394 slot = unshare_variable (set, slot, var,
7395 VAR_INIT_STATUS_UNKNOWN);
7396 var = (variable)*slot;
7397 break;
7398 }
7399 }
7400 }
7401
7402 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7403 cur_loc = VAR_LOC_FROM (var);
7404 else
7405 cur_loc = var->var_part[pos].cur_loc;
7406
7407 /* Delete the location part. */
7408 changed = false;
7409 nextp = &var->var_part[pos].loc_chain;
7410 for (node = *nextp; node; node = next)
7411 {
7412 next = node->next;
7413 if ((REG_P (node->loc) && REG_P (loc)
7414 && REGNO (node->loc) == REGNO (loc))
7415 || rtx_equal_p (node->loc, loc))
7416 {
7417 /* If we have deleted the location which was last emitted
7418 we have to emit new location so add the variable to set
7419 of changed variables. */
7420 if (cur_loc == node->loc)
7421 {
7422 changed = true;
7423 var->var_part[pos].cur_loc = NULL;
7424 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7425 VAR_LOC_FROM (var) = NULL;
7426 }
7427 pool_free (loc_chain_pool, node);
7428 *nextp = next;
7429 break;
7430 }
7431 else
7432 nextp = &node->next;
7433 }
7434
7435 if (var->var_part[pos].loc_chain == NULL)
7436 {
7437 changed = true;
7438 var->n_var_parts--;
7439 while (pos < var->n_var_parts)
7440 {
7441 var->var_part[pos] = var->var_part[pos + 1];
7442 pos++;
7443 }
7444 }
7445 if (changed)
7446 variable_was_changed (var, set);
7447 }
7448
7449 return slot;
7450 }
7451
7452 /* Delete the part of variable's location from dataflow set SET. The
7453 variable part is specified by variable's declaration or value DV
7454 and offset OFFSET and the part's location by LOC. */
7455
7456 static void
7457 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7458 HOST_WIDE_INT offset)
7459 {
7460 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7461 if (!slot)
7462 return;
7463
7464 delete_slot_part (set, loc, slot, offset);
7465 }
7466
7467 DEF_VEC_P (variable);
7468 DEF_VEC_ALLOC_P (variable, heap);
7469
7470 DEF_VEC_ALLOC_P_STACK (rtx);
7471 #define VEC_rtx_stack_alloc(alloc) VEC_stack_alloc (rtx, alloc)
7472
7473 /* Structure for passing some other parameters to function
7474 vt_expand_loc_callback. */
7475 struct expand_loc_callback_data
7476 {
7477 /* The variables and values active at this point. */
7478 htab_t vars;
7479
7480 /* Stack of values and debug_exprs under expansion, and their
7481 children. */
7482 VEC (rtx, stack) *expanding;
7483
7484 /* Stack of values and debug_exprs whose expansion hit recursion
7485 cycles. They will have VALUE_RECURSED_INTO marked when added to
7486 this list. This flag will be cleared if any of its dependencies
7487 resolves to a valid location. So, if the flag remains set at the
7488 end of the search, we know no valid location for this one can
7489 possibly exist. */
7490 VEC (rtx, stack) *pending;
7491
7492 /* The maximum depth among the sub-expressions under expansion.
7493 Zero indicates no expansion so far. */
7494 int depth;
7495 };
7496
7497 /* Allocate the one-part auxiliary data structure for VAR, with enough
7498 room for COUNT dependencies. */
7499
7500 static void
7501 loc_exp_dep_alloc (variable var, int count)
7502 {
7503 size_t allocsize;
7504
7505 gcc_checking_assert (var->onepart);
7506
7507 /* We can be called with COUNT == 0 to allocate the data structure
7508 without any dependencies, e.g. for the backlinks only. However,
7509 if we are specifying a COUNT, then the dependency list must have
7510 been emptied before. It would be possible to adjust pointers or
7511 force it empty here, but this is better done at an earlier point
7512 in the algorithm, so we instead leave an assertion to catch
7513 errors. */
7514 gcc_checking_assert (!count
7515 || VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)));
7516
7517 if (VAR_LOC_1PAUX (var)
7518 && VEC_space (loc_exp_dep, VAR_LOC_DEP_VEC (var), count))
7519 return;
7520
7521 allocsize = offsetof (struct onepart_aux, deps)
7522 + VEC_embedded_size (loc_exp_dep, count);
7523
7524 if (VAR_LOC_1PAUX (var))
7525 {
7526 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7527 VAR_LOC_1PAUX (var), allocsize);
7528 /* If the reallocation moves the onepaux structure, the
7529 back-pointer to BACKLINKS in the first list member will still
7530 point to its old location. Adjust it. */
7531 if (VAR_LOC_DEP_LST (var))
7532 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7533 }
7534 else
7535 {
7536 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7537 *VAR_LOC_DEP_LSTP (var) = NULL;
7538 VAR_LOC_FROM (var) = NULL;
7539 VAR_LOC_DEPTH (var) = 0;
7540 }
7541 VEC_embedded_init (loc_exp_dep, VAR_LOC_DEP_VEC (var), count);
7542 }
7543
7544 /* Remove all entries from the vector of active dependencies of VAR,
7545 removing them from the back-links lists too. */
7546
7547 static void
7548 loc_exp_dep_clear (variable var)
7549 {
7550 while (!VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)))
7551 {
7552 loc_exp_dep *led = VEC_last (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7553 if (led->next)
7554 led->next->pprev = led->pprev;
7555 if (led->pprev)
7556 *led->pprev = led->next;
7557 VEC_pop (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7558 }
7559 }
7560
7561 /* Insert an active dependency from VAR on X to the vector of
7562 dependencies, and add the corresponding back-link to X's list of
7563 back-links in VARS. */
7564
7565 static void
7566 loc_exp_insert_dep (variable var, rtx x, htab_t vars)
7567 {
7568 decl_or_value dv;
7569 variable xvar;
7570 loc_exp_dep *led;
7571
7572 dv = dv_from_rtx (x);
7573
7574 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
7575 an additional look up? */
7576 xvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
7577
7578 if (!xvar)
7579 {
7580 xvar = variable_from_dropped (dv, NO_INSERT);
7581 gcc_checking_assert (xvar);
7582 }
7583
7584 /* No point in adding the same backlink more than once. This may
7585 arise if say the same value appears in two complex expressions in
7586 the same loc_list, or even more than once in a single
7587 expression. */
7588 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
7589 return;
7590
7591 VEC_quick_push (loc_exp_dep, VAR_LOC_DEP_VEC (var), NULL);
7592 led = VEC_last (loc_exp_dep, VAR_LOC_DEP_VEC (var));
7593 led->dv = var->dv;
7594 led->value = x;
7595
7596 loc_exp_dep_alloc (xvar, 0);
7597 led->pprev = VAR_LOC_DEP_LSTP (xvar);
7598 led->next = *led->pprev;
7599 if (led->next)
7600 led->next->pprev = &led->next;
7601 *led->pprev = led;
7602 }
7603
7604 /* Create active dependencies of VAR on COUNT values starting at
7605 VALUE, and corresponding back-links to the entries in VARS. Return
7606 true if we found any pending-recursion results. */
7607
7608 static bool
7609 loc_exp_dep_set (variable var, rtx result, rtx *value, int count, htab_t vars)
7610 {
7611 bool pending_recursion = false;
7612
7613 gcc_checking_assert (VEC_empty (loc_exp_dep, VAR_LOC_DEP_VEC (var)));
7614
7615 /* Set up all dependencies from last_child (as set up at the end of
7616 the loop above) to the end. */
7617 loc_exp_dep_alloc (var, count);
7618
7619 while (count--)
7620 {
7621 rtx x = *value++;
7622
7623 if (!pending_recursion)
7624 pending_recursion = !result && VALUE_RECURSED_INTO (x);
7625
7626 loc_exp_insert_dep (var, x, vars);
7627 }
7628
7629 return pending_recursion;
7630 }
7631
7632 /* Notify the back-links of IVAR that are pending recursion that we
7633 have found a non-NIL value for it, so they are cleared for another
7634 attempt to compute a current location. */
7635
7636 static void
7637 notify_dependents_of_resolved_value (variable ivar, htab_t vars)
7638 {
7639 loc_exp_dep *led, *next;
7640
7641 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
7642 {
7643 decl_or_value dv = led->dv;
7644 variable var;
7645
7646 next = led->next;
7647
7648 if (dv_is_value_p (dv))
7649 {
7650 rtx value = dv_as_value (dv);
7651
7652 /* If we have already resolved it, leave it alone. */
7653 if (!VALUE_RECURSED_INTO (value))
7654 continue;
7655
7656 /* Check that VALUE_RECURSED_INTO, true from the test above,
7657 implies NO_LOC_P. */
7658 gcc_checking_assert (NO_LOC_P (value));
7659
7660 /* We won't notify variables that are being expanded,
7661 because their dependency list is cleared before
7662 recursing. */
7663 NO_LOC_P (value) = false;
7664 VALUE_RECURSED_INTO (value) = false;
7665
7666 gcc_checking_assert (dv_changed_p (dv));
7667 }
7668 else if (!dv_changed_p (dv))
7669 continue;
7670
7671 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
7672
7673 if (!var)
7674 var = variable_from_dropped (dv, NO_INSERT);
7675
7676 if (var)
7677 notify_dependents_of_resolved_value (var, vars);
7678
7679 if (next)
7680 next->pprev = led->pprev;
7681 if (led->pprev)
7682 *led->pprev = next;
7683 led->next = NULL;
7684 led->pprev = NULL;
7685 }
7686 }
7687
7688 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
7689 int max_depth, void *data);
7690
7691 /* Return the combined depth, when one sub-expression evaluated to
7692 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
7693
7694 static inline int
7695 update_depth (int saved_depth, int best_depth)
7696 {
7697 /* If we didn't find anything, stick with what we had. */
7698 if (!best_depth)
7699 return saved_depth;
7700
7701 /* If we found hadn't found anything, use the depth of the current
7702 expression. Do NOT add one extra level, we want to compute the
7703 maximum depth among sub-expressions. We'll increment it later,
7704 if appropriate. */
7705 if (!saved_depth)
7706 return best_depth;
7707
7708 if (saved_depth < best_depth)
7709 return best_depth;
7710 else
7711 return saved_depth;
7712 }
7713
7714 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
7715 DATA for cselib expand callback. If PENDRECP is given, indicate in
7716 it whether any sub-expression couldn't be fully evaluated because
7717 it is pending recursion resolution. */
7718
7719 static inline rtx
7720 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
7721 {
7722 struct expand_loc_callback_data *elcd
7723 = (struct expand_loc_callback_data *) data;
7724 location_chain loc, next;
7725 rtx result = NULL;
7726 int first_child, result_first_child, last_child;
7727 bool pending_recursion;
7728 rtx loc_from = NULL;
7729 struct elt_loc_list *cloc = NULL;
7730 int depth = 0, saved_depth = elcd->depth;
7731
7732 /* Clear all backlinks pointing at this, so that we're not notified
7733 while we're active. */
7734 loc_exp_dep_clear (var);
7735
7736 if (var->onepart == ONEPART_VALUE)
7737 {
7738 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
7739
7740 gcc_checking_assert (cselib_preserved_value_p (val));
7741
7742 cloc = val->locs;
7743 }
7744
7745 first_child = result_first_child = last_child
7746 = VEC_length (rtx, elcd->expanding);
7747
7748 /* Attempt to expand each available location in turn. */
7749 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
7750 loc || cloc; loc = next)
7751 {
7752 result_first_child = last_child;
7753
7754 if (!loc || (GET_CODE (loc->loc) == ENTRY_VALUE && cloc))
7755 {
7756 loc_from = cloc->loc;
7757 next = loc;
7758 cloc = cloc->next;
7759 if (unsuitable_loc (loc_from))
7760 continue;
7761 }
7762 else
7763 {
7764 loc_from = loc->loc;
7765 next = loc->next;
7766 }
7767
7768 gcc_checking_assert (!unsuitable_loc (loc_from));
7769
7770 elcd->depth = 0;
7771 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
7772 vt_expand_loc_callback, data);
7773 last_child = VEC_length (rtx, elcd->expanding);
7774
7775 if (result)
7776 {
7777 depth = elcd->depth;
7778
7779 gcc_checking_assert (depth || result_first_child == last_child);
7780
7781 if (last_child - result_first_child != 1)
7782 depth++;
7783
7784 if (depth <= EXPR_USE_DEPTH)
7785 break;
7786
7787 result = NULL;
7788 }
7789
7790 /* Set it up in case we leave the loop. */
7791 depth = 0;
7792 loc_from = NULL;
7793 result_first_child = first_child;
7794 }
7795
7796 /* Register all encountered dependencies as active. */
7797 pending_recursion = loc_exp_dep_set
7798 (var, result, VEC_address (rtx, elcd->expanding) + result_first_child,
7799 last_child - result_first_child, elcd->vars);
7800
7801 VEC_truncate (rtx, elcd->expanding, first_child);
7802
7803 /* Record where the expansion came from. */
7804 gcc_checking_assert (!result || !pending_recursion);
7805 VAR_LOC_FROM (var) = loc_from;
7806 VAR_LOC_DEPTH (var) = depth;
7807
7808 gcc_checking_assert (!depth == !result);
7809
7810 elcd->depth = update_depth (saved_depth, depth);
7811
7812 /* Indicate whether any of the dependencies are pending recursion
7813 resolution. */
7814 if (pendrecp)
7815 *pendrecp = pending_recursion;
7816
7817 if (!pendrecp || !pending_recursion)
7818 var->var_part[0].cur_loc = result;
7819
7820 return result;
7821 }
7822
7823 /* Callback for cselib_expand_value, that looks for expressions
7824 holding the value in the var-tracking hash tables. Return X for
7825 standard processing, anything else is to be used as-is. */
7826
7827 static rtx
7828 vt_expand_loc_callback (rtx x, bitmap regs,
7829 int max_depth ATTRIBUTE_UNUSED,
7830 void *data)
7831 {
7832 struct expand_loc_callback_data *elcd
7833 = (struct expand_loc_callback_data *) data;
7834 decl_or_value dv;
7835 variable var;
7836 rtx result, subreg;
7837 bool pending_recursion = false;
7838 bool from_empty = false;
7839
7840 switch (GET_CODE (x))
7841 {
7842 case SUBREG:
7843 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
7844 EXPR_DEPTH,
7845 vt_expand_loc_callback, data);
7846
7847 if (!subreg)
7848 return NULL;
7849
7850 result = simplify_gen_subreg (GET_MODE (x), subreg,
7851 GET_MODE (SUBREG_REG (x)),
7852 SUBREG_BYTE (x));
7853
7854 /* Invalid SUBREGs are ok in debug info. ??? We could try
7855 alternate expansions for the VALUE as well. */
7856 if (!result)
7857 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
7858
7859 return result;
7860
7861 case DEBUG_EXPR:
7862 case VALUE:
7863 dv = dv_from_rtx (x);
7864 break;
7865
7866 default:
7867 return x;
7868 }
7869
7870 VEC_safe_push (rtx, stack, elcd->expanding, x);
7871
7872 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
7873 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
7874
7875 if (NO_LOC_P (x))
7876 {
7877 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
7878 return NULL;
7879 }
7880
7881 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
7882
7883 if (!var)
7884 {
7885 from_empty = true;
7886 var = variable_from_dropped (dv, INSERT);
7887 }
7888
7889 gcc_checking_assert (var);
7890
7891 if (!dv_changed_p (dv))
7892 {
7893 gcc_checking_assert (!NO_LOC_P (x));
7894 gcc_checking_assert (var->var_part[0].cur_loc);
7895 gcc_checking_assert (VAR_LOC_1PAUX (var));
7896 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth);
7897
7898 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
7899
7900 return var->var_part[0].cur_loc;
7901 }
7902
7903 VALUE_RECURSED_INTO (x) = true;
7904 /* This is tentative, but it makes some tests simpler. */
7905 NO_LOC_P (x) = true;
7906
7907 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
7908
7909 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
7910
7911 if (pending_recursion)
7912 {
7913 gcc_checking_assert (!result);
7914 VEC_safe_push (rtx, stack, elcd->pending, x);
7915 }
7916 else
7917 {
7918 NO_LOC_P (x) = !result;
7919 VALUE_RECURSED_INTO (x) = false;
7920 set_dv_changed (dv, false);
7921
7922 if (result)
7923 notify_dependents_of_resolved_value (var, elcd->vars);
7924 }
7925
7926 return result;
7927 }
7928
7929 /* While expanding variables, we may encounter recursion cycles
7930 because of mutual (possibly indirect) dependencies between two
7931 particular variables (or values), say A and B. If we're trying to
7932 expand A when we get to B, which in turn attempts to expand A, if
7933 we can't find any other expansion for B, we'll add B to this
7934 pending-recursion stack, and tentatively return NULL for its
7935 location. This tentative value will be used for any other
7936 occurrences of B, unless A gets some other location, in which case
7937 it will notify B that it is worth another try at computing a
7938 location for it, and it will use the location computed for A then.
7939 At the end of the expansion, the tentative NULL locations become
7940 final for all members of PENDING that didn't get a notification.
7941 This function performs this finalization of NULL locations. */
7942
7943 static void
7944 resolve_expansions_pending_recursion (VEC (rtx, stack) *pending)
7945 {
7946 while (!VEC_empty (rtx, pending))
7947 {
7948 rtx x = VEC_pop (rtx, pending);
7949 decl_or_value dv;
7950
7951 if (!VALUE_RECURSED_INTO (x))
7952 continue;
7953
7954 gcc_checking_assert (NO_LOC_P (x));
7955 VALUE_RECURSED_INTO (x) = false;
7956 dv = dv_from_rtx (x);
7957 gcc_checking_assert (dv_changed_p (dv));
7958 set_dv_changed (dv, false);
7959 }
7960 }
7961
7962 /* Initialize expand_loc_callback_data D with variable hash table V.
7963 It must be a macro because of alloca (VEC stack). */
7964 #define INIT_ELCD(d, v) \
7965 do \
7966 { \
7967 (d).vars = (v); \
7968 (d).expanding = VEC_alloc (rtx, stack, 4); \
7969 (d).pending = VEC_alloc (rtx, stack, 4); \
7970 (d).depth = 0; \
7971 } \
7972 while (0)
7973 /* Finalize expand_loc_callback_data D, resolved to location L. */
7974 #define FINI_ELCD(d, l) \
7975 do \
7976 { \
7977 resolve_expansions_pending_recursion ((d).pending); \
7978 VEC_free (rtx, stack, (d).pending); \
7979 VEC_free (rtx, stack, (d).expanding); \
7980 \
7981 if ((l) && MEM_P (l)) \
7982 (l) = targetm.delegitimize_address (l); \
7983 } \
7984 while (0)
7985
7986 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
7987 equivalences in VARS, updating their CUR_LOCs in the process. */
7988
7989 static rtx
7990 vt_expand_loc (rtx loc, htab_t vars)
7991 {
7992 struct expand_loc_callback_data data;
7993 rtx result;
7994
7995 if (!MAY_HAVE_DEBUG_INSNS)
7996 return loc;
7997
7998 INIT_ELCD (data, vars);
7999
8000 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8001 vt_expand_loc_callback, &data);
8002
8003 FINI_ELCD (data, result);
8004
8005 return result;
8006 }
8007
8008 /* Expand the one-part VARiable to a location, using the equivalences
8009 in VARS, updating their CUR_LOCs in the process. */
8010
8011 static rtx
8012 vt_expand_1pvar (variable var, htab_t vars)
8013 {
8014 struct expand_loc_callback_data data;
8015 rtx loc;
8016
8017 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8018
8019 if (!dv_changed_p (var->dv))
8020 return var->var_part[0].cur_loc;
8021
8022 INIT_ELCD (data, vars);
8023
8024 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8025
8026 gcc_checking_assert (VEC_empty (rtx, data.expanding));
8027
8028 FINI_ELCD (data, loc);
8029
8030 return loc;
8031 }
8032
8033 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8034 additional parameters: WHERE specifies whether the note shall be emitted
8035 before or after instruction INSN. */
8036
8037 static int
8038 emit_note_insn_var_location (void **varp, void *data)
8039 {
8040 variable var = (variable) *varp;
8041 rtx insn = ((emit_note_data *)data)->insn;
8042 enum emit_note_where where = ((emit_note_data *)data)->where;
8043 htab_t vars = ((emit_note_data *)data)->vars;
8044 rtx note, note_vl;
8045 int i, j, n_var_parts;
8046 bool complete;
8047 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8048 HOST_WIDE_INT last_limit;
8049 tree type_size_unit;
8050 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8051 rtx loc[MAX_VAR_PARTS];
8052 tree decl;
8053 location_chain lc;
8054
8055 gcc_checking_assert (var->onepart == NOT_ONEPART
8056 || var->onepart == ONEPART_VDECL);
8057
8058 decl = dv_as_decl (var->dv);
8059
8060 complete = true;
8061 last_limit = 0;
8062 n_var_parts = 0;
8063 if (!var->onepart)
8064 for (i = 0; i < var->n_var_parts; i++)
8065 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8066 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8067 for (i = 0; i < var->n_var_parts; i++)
8068 {
8069 enum machine_mode mode, wider_mode;
8070 rtx loc2;
8071 HOST_WIDE_INT offset;
8072
8073 if (i == 0 && var->onepart)
8074 {
8075 gcc_checking_assert (var->n_var_parts == 1);
8076 offset = 0;
8077 initialized = VAR_INIT_STATUS_INITIALIZED;
8078 loc2 = vt_expand_1pvar (var, vars);
8079 }
8080 else
8081 {
8082 if (last_limit < VAR_PART_OFFSET (var, i))
8083 {
8084 complete = false;
8085 break;
8086 }
8087 else if (last_limit > VAR_PART_OFFSET (var, i))
8088 continue;
8089 offset = VAR_PART_OFFSET (var, i);
8090 if (!var->var_part[i].cur_loc)
8091 {
8092 complete = false;
8093 continue;
8094 }
8095 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8096 if (var->var_part[i].cur_loc == lc->loc)
8097 {
8098 initialized = lc->init;
8099 break;
8100 }
8101 gcc_assert (lc);
8102 loc2 = var->var_part[i].cur_loc;
8103 }
8104
8105 offsets[n_var_parts] = offset;
8106 if (!loc2)
8107 {
8108 complete = false;
8109 continue;
8110 }
8111 loc[n_var_parts] = loc2;
8112 mode = GET_MODE (var->var_part[i].cur_loc);
8113 if (mode == VOIDmode && var->onepart)
8114 mode = DECL_MODE (decl);
8115 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8116
8117 /* Attempt to merge adjacent registers or memory. */
8118 wider_mode = GET_MODE_WIDER_MODE (mode);
8119 for (j = i + 1; j < var->n_var_parts; j++)
8120 if (last_limit <= VAR_PART_OFFSET (var, j))
8121 break;
8122 if (j < var->n_var_parts
8123 && wider_mode != VOIDmode
8124 && var->var_part[j].cur_loc
8125 && mode == GET_MODE (var->var_part[j].cur_loc)
8126 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8127 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8128 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8129 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8130 {
8131 rtx new_loc = NULL;
8132
8133 if (REG_P (loc[n_var_parts])
8134 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8135 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8136 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8137 == REGNO (loc2))
8138 {
8139 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8140 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8141 mode, 0);
8142 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8143 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8144 if (new_loc)
8145 {
8146 if (!REG_P (new_loc)
8147 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8148 new_loc = NULL;
8149 else
8150 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8151 }
8152 }
8153 else if (MEM_P (loc[n_var_parts])
8154 && GET_CODE (XEXP (loc2, 0)) == PLUS
8155 && REG_P (XEXP (XEXP (loc2, 0), 0))
8156 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8157 {
8158 if ((REG_P (XEXP (loc[n_var_parts], 0))
8159 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8160 XEXP (XEXP (loc2, 0), 0))
8161 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8162 == GET_MODE_SIZE (mode))
8163 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8164 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8165 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8166 XEXP (XEXP (loc2, 0), 0))
8167 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8168 + GET_MODE_SIZE (mode)
8169 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8170 new_loc = adjust_address_nv (loc[n_var_parts],
8171 wider_mode, 0);
8172 }
8173
8174 if (new_loc)
8175 {
8176 loc[n_var_parts] = new_loc;
8177 mode = wider_mode;
8178 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8179 i = j;
8180 }
8181 }
8182 ++n_var_parts;
8183 }
8184 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8185 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8186 complete = false;
8187
8188 if (! flag_var_tracking_uninit)
8189 initialized = VAR_INIT_STATUS_INITIALIZED;
8190
8191 note_vl = NULL_RTX;
8192 if (!complete)
8193 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8194 (int) initialized);
8195 else if (n_var_parts == 1)
8196 {
8197 rtx expr_list;
8198
8199 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8200 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8201 else
8202 expr_list = loc[0];
8203
8204 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8205 (int) initialized);
8206 }
8207 else if (n_var_parts)
8208 {
8209 rtx parallel;
8210
8211 for (i = 0; i < n_var_parts; i++)
8212 loc[i]
8213 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8214
8215 parallel = gen_rtx_PARALLEL (VOIDmode,
8216 gen_rtvec_v (n_var_parts, loc));
8217 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8218 parallel, (int) initialized);
8219 }
8220
8221 if (where != EMIT_NOTE_BEFORE_INSN)
8222 {
8223 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8224 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8225 NOTE_DURING_CALL_P (note) = true;
8226 }
8227 else
8228 {
8229 /* Make sure that the call related notes come first. */
8230 while (NEXT_INSN (insn)
8231 && NOTE_P (insn)
8232 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8233 && NOTE_DURING_CALL_P (insn))
8234 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8235 insn = NEXT_INSN (insn);
8236 if (NOTE_P (insn)
8237 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8238 && NOTE_DURING_CALL_P (insn))
8239 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8240 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8241 else
8242 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8243 }
8244 NOTE_VAR_LOCATION (note) = note_vl;
8245
8246 set_dv_changed (var->dv, false);
8247 gcc_assert (var->in_changed_variables);
8248 var->in_changed_variables = false;
8249 htab_clear_slot (changed_variables, varp);
8250
8251 /* Continue traversing the hash table. */
8252 return 1;
8253 }
8254
8255 /* While traversing changed_variables, push onto DATA (a stack of RTX
8256 values) entries that aren't user variables. */
8257
8258 static int
8259 values_to_stack (void **slot, void *data)
8260 {
8261 VEC (rtx, stack) **changed_values_stack = (VEC (rtx, stack) **)data;
8262 variable var = (variable) *slot;
8263
8264 if (var->onepart == ONEPART_VALUE)
8265 VEC_safe_push (rtx, stack, *changed_values_stack, dv_as_value (var->dv));
8266 else if (var->onepart == ONEPART_DEXPR)
8267 VEC_safe_push (rtx, stack, *changed_values_stack,
8268 DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8269
8270 return 1;
8271 }
8272
8273 /* Remove from changed_variables the entry whose DV corresponds to
8274 value or debug_expr VAL. */
8275 static void
8276 remove_value_from_changed_variables (rtx val)
8277 {
8278 decl_or_value dv = dv_from_rtx (val);
8279 void **slot;
8280 variable var;
8281
8282 slot = htab_find_slot_with_hash (changed_variables,
8283 dv, dv_htab_hash (dv), NO_INSERT);
8284 var = (variable) *slot;
8285 var->in_changed_variables = false;
8286 htab_clear_slot (changed_variables, slot);
8287 }
8288
8289 /* If VAL (a value or debug_expr) has backlinks to variables actively
8290 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8291 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8292 have dependencies of their own to notify. */
8293
8294 static void
8295 notify_dependents_of_changed_value (rtx val, htab_t htab,
8296 VEC (rtx, stack) **changed_values_stack)
8297 {
8298 void **slot;
8299 variable var;
8300 loc_exp_dep *led;
8301 decl_or_value dv = dv_from_rtx (val);
8302
8303 slot = htab_find_slot_with_hash (changed_variables,
8304 dv, dv_htab_hash (dv), NO_INSERT);
8305 if (!slot)
8306 slot = htab_find_slot_with_hash (htab,
8307 dv, dv_htab_hash (dv), NO_INSERT);
8308 if (!slot)
8309 slot = htab_find_slot_with_hash (dropped_values,
8310 dv, dv_htab_hash (dv), NO_INSERT);
8311 var = (variable) *slot;
8312
8313 while ((led = VAR_LOC_DEP_LST (var)))
8314 {
8315 decl_or_value ldv = led->dv;
8316 void **islot;
8317 variable ivar;
8318
8319 /* Deactivate and remove the backlink, as it was “used up”. It
8320 makes no sense to attempt to notify the same entity again:
8321 either it will be recomputed and re-register an active
8322 dependency, or it will still have the changed mark. */
8323 if (led->next)
8324 led->next->pprev = led->pprev;
8325 if (led->pprev)
8326 *led->pprev = led->next;
8327 led->next = NULL;
8328 led->pprev = NULL;
8329
8330 if (dv_changed_p (ldv))
8331 continue;
8332
8333 switch (dv_onepart_p (ldv))
8334 {
8335 case ONEPART_VALUE:
8336 case ONEPART_DEXPR:
8337 set_dv_changed (ldv, true);
8338 VEC_safe_push (rtx, stack, *changed_values_stack, dv_as_rtx (ldv));
8339 break;
8340
8341 default:
8342 islot = htab_find_slot_with_hash (htab, ldv, dv_htab_hash (ldv),
8343 NO_INSERT);
8344 ivar = (variable) *islot;
8345 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8346 variable_was_changed (ivar, NULL);
8347 break;
8348 }
8349 }
8350 }
8351
8352 /* Take out of changed_variables any entries that don't refer to use
8353 variables. Back-propagate change notifications from values and
8354 debug_exprs to their active dependencies in HTAB or in
8355 CHANGED_VARIABLES. */
8356
8357 static void
8358 process_changed_values (htab_t htab)
8359 {
8360 int i, n;
8361 rtx val;
8362 VEC (rtx, stack) *changed_values_stack = VEC_alloc (rtx, stack, 20);
8363
8364 /* Move values from changed_variables to changed_values_stack. */
8365 htab_traverse (changed_variables, values_to_stack, &changed_values_stack);
8366
8367 /* Back-propagate change notifications in values while popping
8368 them from the stack. */
8369 for (n = i = VEC_length (rtx, changed_values_stack);
8370 i > 0; i = VEC_length (rtx, changed_values_stack))
8371 {
8372 val = VEC_pop (rtx, changed_values_stack);
8373 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8374
8375 /* This condition will hold when visiting each of the entries
8376 originally in changed_variables. We can't remove them
8377 earlier because this could drop the backlinks before we got a
8378 chance to use them. */
8379 if (i == n)
8380 {
8381 remove_value_from_changed_variables (val);
8382 n--;
8383 }
8384 }
8385
8386 VEC_free (rtx, stack, changed_values_stack);
8387 }
8388
8389 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8390 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8391 the notes shall be emitted before of after instruction INSN. */
8392
8393 static void
8394 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8395 shared_hash vars)
8396 {
8397 emit_note_data data;
8398 htab_t htab = shared_hash_htab (vars);
8399
8400 if (!htab_elements (changed_variables))
8401 return;
8402
8403 if (MAY_HAVE_DEBUG_INSNS)
8404 process_changed_values (htab);
8405
8406 data.insn = insn;
8407 data.where = where;
8408 data.vars = htab;
8409
8410 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
8411 }
8412
8413 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8414 same variable in hash table DATA or is not there at all. */
8415
8416 static int
8417 emit_notes_for_differences_1 (void **slot, void *data)
8418 {
8419 htab_t new_vars = (htab_t) data;
8420 variable old_var, new_var;
8421
8422 old_var = (variable) *slot;
8423 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
8424 dv_htab_hash (old_var->dv));
8425
8426 if (!new_var)
8427 {
8428 /* Variable has disappeared. */
8429 variable empty_var = NULL;
8430
8431 if (old_var->onepart == ONEPART_VALUE
8432 || old_var->onepart == ONEPART_DEXPR)
8433 {
8434 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8435 if (empty_var)
8436 {
8437 gcc_checking_assert (!empty_var->in_changed_variables);
8438 if (!VAR_LOC_1PAUX (old_var))
8439 {
8440 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8441 VAR_LOC_1PAUX (empty_var) = NULL;
8442 }
8443 else
8444 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8445 }
8446 }
8447
8448 if (!empty_var)
8449 {
8450 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8451 empty_var->dv = old_var->dv;
8452 empty_var->refcount = 0;
8453 empty_var->n_var_parts = 0;
8454 empty_var->onepart = old_var->onepart;
8455 empty_var->in_changed_variables = false;
8456 }
8457
8458 if (empty_var->onepart)
8459 {
8460 /* Propagate the auxiliary data to (ultimately)
8461 changed_variables. */
8462 empty_var->var_part[0].loc_chain = NULL;
8463 empty_var->var_part[0].cur_loc = NULL;
8464 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8465 VAR_LOC_1PAUX (old_var) = NULL;
8466 }
8467 variable_was_changed (empty_var, NULL);
8468 /* Continue traversing the hash table. */
8469 return 1;
8470 }
8471 /* Update cur_loc and one-part auxiliary data, before new_var goes
8472 through variable_was_changed. */
8473 if (old_var != new_var && new_var->onepart)
8474 {
8475 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
8476 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
8477 VAR_LOC_1PAUX (old_var) = NULL;
8478 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
8479 }
8480 if (variable_different_p (old_var, new_var))
8481 variable_was_changed (new_var, NULL);
8482
8483 /* Continue traversing the hash table. */
8484 return 1;
8485 }
8486
8487 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
8488 table DATA. */
8489
8490 static int
8491 emit_notes_for_differences_2 (void **slot, void *data)
8492 {
8493 htab_t old_vars = (htab_t) data;
8494 variable old_var, new_var;
8495
8496 new_var = (variable) *slot;
8497 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
8498 dv_htab_hash (new_var->dv));
8499 if (!old_var)
8500 {
8501 int i;
8502 for (i = 0; i < new_var->n_var_parts; i++)
8503 new_var->var_part[i].cur_loc = NULL;
8504 variable_was_changed (new_var, NULL);
8505 }
8506
8507 /* Continue traversing the hash table. */
8508 return 1;
8509 }
8510
8511 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
8512 NEW_SET. */
8513
8514 static void
8515 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
8516 dataflow_set *new_set)
8517 {
8518 htab_traverse (shared_hash_htab (old_set->vars),
8519 emit_notes_for_differences_1,
8520 shared_hash_htab (new_set->vars));
8521 htab_traverse (shared_hash_htab (new_set->vars),
8522 emit_notes_for_differences_2,
8523 shared_hash_htab (old_set->vars));
8524 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
8525 }
8526
8527 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
8528
8529 static rtx
8530 next_non_note_insn_var_location (rtx insn)
8531 {
8532 while (insn)
8533 {
8534 insn = NEXT_INSN (insn);
8535 if (insn == 0
8536 || !NOTE_P (insn)
8537 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
8538 break;
8539 }
8540
8541 return insn;
8542 }
8543
8544 /* Emit the notes for changes of location parts in the basic block BB. */
8545
8546 static void
8547 emit_notes_in_bb (basic_block bb, dataflow_set *set)
8548 {
8549 unsigned int i;
8550 micro_operation *mo;
8551
8552 dataflow_set_clear (set);
8553 dataflow_set_copy (set, &VTI (bb)->in);
8554
8555 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
8556 {
8557 rtx insn = mo->insn;
8558 rtx next_insn = next_non_note_insn_var_location (insn);
8559
8560 switch (mo->type)
8561 {
8562 case MO_CALL:
8563 dataflow_set_clear_at_call (set);
8564 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
8565 {
8566 rtx arguments = mo->u.loc, *p = &arguments, note;
8567 while (*p)
8568 {
8569 XEXP (XEXP (*p, 0), 1)
8570 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8571 shared_hash_htab (set->vars));
8572 /* If expansion is successful, keep it in the list. */
8573 if (XEXP (XEXP (*p, 0), 1))
8574 p = &XEXP (*p, 1);
8575 /* Otherwise, if the following item is data_value for it,
8576 drop it too too. */
8577 else if (XEXP (*p, 1)
8578 && REG_P (XEXP (XEXP (*p, 0), 0))
8579 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8580 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8581 0))
8582 && REGNO (XEXP (XEXP (*p, 0), 0))
8583 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8584 0), 0)))
8585 *p = XEXP (XEXP (*p, 1), 1);
8586 /* Just drop this item. */
8587 else
8588 *p = XEXP (*p, 1);
8589 }
8590 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8591 NOTE_VAR_LOCATION (note) = arguments;
8592 }
8593 break;
8594
8595 case MO_USE:
8596 {
8597 rtx loc = mo->u.loc;
8598
8599 if (REG_P (loc))
8600 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8601 else
8602 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8603
8604 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8605 }
8606 break;
8607
8608 case MO_VAL_LOC:
8609 {
8610 rtx loc = mo->u.loc;
8611 rtx val, vloc;
8612 tree var;
8613
8614 if (GET_CODE (loc) == CONCAT)
8615 {
8616 val = XEXP (loc, 0);
8617 vloc = XEXP (loc, 1);
8618 }
8619 else
8620 {
8621 val = NULL_RTX;
8622 vloc = loc;
8623 }
8624
8625 var = PAT_VAR_LOCATION_DECL (vloc);
8626
8627 clobber_variable_part (set, NULL_RTX,
8628 dv_from_decl (var), 0, NULL_RTX);
8629 if (val)
8630 {
8631 if (VAL_NEEDS_RESOLUTION (loc))
8632 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8633 set_variable_part (set, val, dv_from_decl (var), 0,
8634 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8635 INSERT);
8636 }
8637 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8638 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8639 dv_from_decl (var), 0,
8640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8641 INSERT);
8642
8643 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8644 }
8645 break;
8646
8647 case MO_VAL_USE:
8648 {
8649 rtx loc = mo->u.loc;
8650 rtx val, vloc, uloc;
8651
8652 vloc = uloc = XEXP (loc, 1);
8653 val = XEXP (loc, 0);
8654
8655 if (GET_CODE (val) == CONCAT)
8656 {
8657 uloc = XEXP (val, 1);
8658 val = XEXP (val, 0);
8659 }
8660
8661 if (VAL_NEEDS_RESOLUTION (loc))
8662 val_resolve (set, val, vloc, insn);
8663 else
8664 val_store (set, val, uloc, insn, false);
8665
8666 if (VAL_HOLDS_TRACK_EXPR (loc))
8667 {
8668 if (GET_CODE (uloc) == REG)
8669 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8670 NULL);
8671 else if (GET_CODE (uloc) == MEM)
8672 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8673 NULL);
8674 }
8675
8676 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
8677 }
8678 break;
8679
8680 case MO_VAL_SET:
8681 {
8682 rtx loc = mo->u.loc;
8683 rtx val, vloc, uloc;
8684
8685 vloc = loc;
8686 uloc = XEXP (vloc, 1);
8687 val = XEXP (vloc, 0);
8688 vloc = uloc;
8689
8690 if (GET_CODE (val) == CONCAT)
8691 {
8692 vloc = XEXP (val, 1);
8693 val = XEXP (val, 0);
8694 }
8695
8696 if (GET_CODE (vloc) == SET)
8697 {
8698 rtx vsrc = SET_SRC (vloc);
8699
8700 gcc_assert (val != vsrc);
8701 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
8702
8703 vloc = SET_DEST (vloc);
8704
8705 if (VAL_NEEDS_RESOLUTION (loc))
8706 val_resolve (set, val, vsrc, insn);
8707 }
8708 else if (VAL_NEEDS_RESOLUTION (loc))
8709 {
8710 gcc_assert (GET_CODE (uloc) == SET
8711 && GET_CODE (SET_SRC (uloc)) == REG);
8712 val_resolve (set, val, SET_SRC (uloc), insn);
8713 }
8714
8715 if (VAL_HOLDS_TRACK_EXPR (loc))
8716 {
8717 if (VAL_EXPR_IS_CLOBBERED (loc))
8718 {
8719 if (REG_P (uloc))
8720 var_reg_delete (set, uloc, true);
8721 else if (MEM_P (uloc))
8722 var_mem_delete (set, uloc, true);
8723 }
8724 else
8725 {
8726 bool copied_p = VAL_EXPR_IS_COPIED (loc);
8727 rtx set_src = NULL;
8728 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
8729
8730 if (GET_CODE (uloc) == SET)
8731 {
8732 set_src = SET_SRC (uloc);
8733 uloc = SET_DEST (uloc);
8734 }
8735
8736 if (copied_p)
8737 {
8738 status = find_src_status (set, set_src);
8739
8740 set_src = find_src_set_src (set, set_src);
8741 }
8742
8743 if (REG_P (uloc))
8744 var_reg_delete_and_set (set, uloc, !copied_p,
8745 status, set_src);
8746 else if (MEM_P (uloc))
8747 var_mem_delete_and_set (set, uloc, !copied_p,
8748 status, set_src);
8749 }
8750 }
8751 else if (REG_P (uloc))
8752 var_regno_delete (set, REGNO (uloc));
8753
8754 val_store (set, val, vloc, insn, true);
8755
8756 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8757 set->vars);
8758 }
8759 break;
8760
8761 case MO_SET:
8762 {
8763 rtx loc = mo->u.loc;
8764 rtx set_src = NULL;
8765
8766 if (GET_CODE (loc) == SET)
8767 {
8768 set_src = SET_SRC (loc);
8769 loc = SET_DEST (loc);
8770 }
8771
8772 if (REG_P (loc))
8773 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8774 set_src);
8775 else
8776 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8777 set_src);
8778
8779 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8780 set->vars);
8781 }
8782 break;
8783
8784 case MO_COPY:
8785 {
8786 rtx loc = mo->u.loc;
8787 enum var_init_status src_status;
8788 rtx set_src = NULL;
8789
8790 if (GET_CODE (loc) == SET)
8791 {
8792 set_src = SET_SRC (loc);
8793 loc = SET_DEST (loc);
8794 }
8795
8796 src_status = find_src_status (set, set_src);
8797 set_src = find_src_set_src (set, set_src);
8798
8799 if (REG_P (loc))
8800 var_reg_delete_and_set (set, loc, false, src_status, set_src);
8801 else
8802 var_mem_delete_and_set (set, loc, false, src_status, set_src);
8803
8804 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8805 set->vars);
8806 }
8807 break;
8808
8809 case MO_USE_NO_VAR:
8810 {
8811 rtx loc = mo->u.loc;
8812
8813 if (REG_P (loc))
8814 var_reg_delete (set, loc, false);
8815 else
8816 var_mem_delete (set, loc, false);
8817
8818 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8819 }
8820 break;
8821
8822 case MO_CLOBBER:
8823 {
8824 rtx loc = mo->u.loc;
8825
8826 if (REG_P (loc))
8827 var_reg_delete (set, loc, true);
8828 else
8829 var_mem_delete (set, loc, true);
8830
8831 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
8832 set->vars);
8833 }
8834 break;
8835
8836 case MO_ADJUST:
8837 set->stack_adjust += mo->u.adjust;
8838 break;
8839 }
8840 }
8841 }
8842
8843 /* Emit notes for the whole function. */
8844
8845 static void
8846 vt_emit_notes (void)
8847 {
8848 basic_block bb;
8849 dataflow_set cur;
8850
8851 gcc_assert (!htab_elements (changed_variables));
8852
8853 /* Free memory occupied by the out hash tables, as they aren't used
8854 anymore. */
8855 FOR_EACH_BB (bb)
8856 dataflow_set_clear (&VTI (bb)->out);
8857
8858 /* Enable emitting notes by functions (mainly by set_variable_part and
8859 delete_variable_part). */
8860 emit_notes = true;
8861
8862 if (MAY_HAVE_DEBUG_INSNS)
8863 dropped_values = htab_create (cselib_get_next_uid () * 2,
8864 variable_htab_hash, variable_htab_eq,
8865 variable_htab_free);
8866
8867 dataflow_set_init (&cur);
8868
8869 FOR_EACH_BB (bb)
8870 {
8871 /* Emit the notes for changes of variable locations between two
8872 subsequent basic blocks. */
8873 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
8874
8875 /* Emit the notes for the changes in the basic block itself. */
8876 emit_notes_in_bb (bb, &cur);
8877
8878 /* Free memory occupied by the in hash table, we won't need it
8879 again. */
8880 dataflow_set_clear (&VTI (bb)->in);
8881 }
8882 #ifdef ENABLE_CHECKING
8883 htab_traverse (shared_hash_htab (cur.vars),
8884 emit_notes_for_differences_1,
8885 shared_hash_htab (empty_shared_hash));
8886 #endif
8887 dataflow_set_destroy (&cur);
8888
8889 if (MAY_HAVE_DEBUG_INSNS)
8890 htab_delete (dropped_values);
8891
8892 emit_notes = false;
8893 }
8894
8895 /* If there is a declaration and offset associated with register/memory RTL
8896 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8897
8898 static bool
8899 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
8900 {
8901 if (REG_P (rtl))
8902 {
8903 if (REG_ATTRS (rtl))
8904 {
8905 *declp = REG_EXPR (rtl);
8906 *offsetp = REG_OFFSET (rtl);
8907 return true;
8908 }
8909 }
8910 else if (MEM_P (rtl))
8911 {
8912 if (MEM_ATTRS (rtl))
8913 {
8914 *declp = MEM_EXPR (rtl);
8915 *offsetp = INT_MEM_OFFSET (rtl);
8916 return true;
8917 }
8918 }
8919 return false;
8920 }
8921
8922 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
8923 of VAL. */
8924
8925 static void
8926 record_entry_value (cselib_val *val, rtx rtl)
8927 {
8928 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
8929
8930 ENTRY_VALUE_EXP (ev) = rtl;
8931
8932 cselib_add_permanent_equiv (val, ev, get_insns ());
8933 }
8934
8935 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8936
8937 static void
8938 vt_add_function_parameter (tree parm)
8939 {
8940 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8941 rtx incoming = DECL_INCOMING_RTL (parm);
8942 tree decl;
8943 enum machine_mode mode;
8944 HOST_WIDE_INT offset;
8945 dataflow_set *out;
8946 decl_or_value dv;
8947
8948 if (TREE_CODE (parm) != PARM_DECL)
8949 return;
8950
8951 if (!decl_rtl || !incoming)
8952 return;
8953
8954 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8955 return;
8956
8957 /* If there is a DRAP register, rewrite the incoming location of parameters
8958 passed on the stack into MEMs based on the argument pointer, as the DRAP
8959 register can be reused for other purposes and we do not track locations
8960 based on generic registers. But the prerequisite is that this argument
8961 pointer be also the virtual CFA pointer, see vt_initialize. */
8962 if (MEM_P (incoming)
8963 && stack_realign_drap
8964 && arg_pointer_rtx == cfa_base_rtx
8965 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
8966 || (GET_CODE (XEXP (incoming, 0)) == PLUS
8967 && XEXP (XEXP (incoming, 0), 0)
8968 == crtl->args.internal_arg_pointer
8969 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
8970 {
8971 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
8972 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
8973 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
8974 incoming
8975 = replace_equiv_address_nv (incoming,
8976 plus_constant (arg_pointer_rtx, off));
8977 }
8978
8979 #ifdef HAVE_window_save
8980 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
8981 If the target machine has an explicit window save instruction, the
8982 actual entry value is the corresponding OUTGOING_REGNO instead. */
8983 if (REG_P (incoming)
8984 && HARD_REGISTER_P (incoming)
8985 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
8986 {
8987 parm_reg_t *p
8988 = VEC_safe_push (parm_reg_t, gc, windowed_parm_regs, NULL);
8989 p->incoming = incoming;
8990 incoming
8991 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
8992 OUTGOING_REGNO (REGNO (incoming)), 0);
8993 p->outgoing = incoming;
8994 }
8995 else if (MEM_P (incoming)
8996 && REG_P (XEXP (incoming, 0))
8997 && HARD_REGISTER_P (XEXP (incoming, 0)))
8998 {
8999 rtx reg = XEXP (incoming, 0);
9000 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9001 {
9002 parm_reg_t *p
9003 = VEC_safe_push (parm_reg_t, gc, windowed_parm_regs, NULL);
9004 p->incoming = reg;
9005 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9006 p->outgoing = reg;
9007 incoming = replace_equiv_address_nv (incoming, reg);
9008 }
9009 }
9010 #endif
9011
9012 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9013 {
9014 if (REG_P (incoming) || MEM_P (incoming))
9015 {
9016 /* This means argument is passed by invisible reference. */
9017 offset = 0;
9018 decl = parm;
9019 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
9020 }
9021 else
9022 {
9023 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9024 return;
9025 offset += byte_lowpart_offset (GET_MODE (incoming),
9026 GET_MODE (decl_rtl));
9027 }
9028 }
9029
9030 if (!decl)
9031 return;
9032
9033 if (parm != decl)
9034 {
9035 /* Assume that DECL_RTL was a pseudo that got spilled to
9036 memory. The spill slot sharing code will force the
9037 memory to reference spill_slot_decl (%sfp), so we don't
9038 match above. That's ok, the pseudo must have referenced
9039 the entire parameter, so just reset OFFSET. */
9040 gcc_assert (decl == get_spill_slot_decl (false));
9041 offset = 0;
9042 }
9043
9044 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9045 return;
9046
9047 out = &VTI (ENTRY_BLOCK_PTR)->out;
9048
9049 dv = dv_from_decl (parm);
9050
9051 if (target_for_debug_bind (parm)
9052 /* We can't deal with these right now, because this kind of
9053 variable is single-part. ??? We could handle parallels
9054 that describe multiple locations for the same single
9055 value, but ATM we don't. */
9056 && GET_CODE (incoming) != PARALLEL)
9057 {
9058 cselib_val *val;
9059
9060 /* ??? We shouldn't ever hit this, but it may happen because
9061 arguments passed by invisible reference aren't dealt with
9062 above: incoming-rtl will have Pmode rather than the
9063 expected mode for the type. */
9064 if (offset)
9065 return;
9066
9067 val = cselib_lookup_from_insn (var_lowpart (mode, incoming), mode, true,
9068 VOIDmode, get_insns ());
9069
9070 /* ??? Float-typed values in memory are not handled by
9071 cselib. */
9072 if (val)
9073 {
9074 preserve_value (val);
9075 set_variable_part (out, val->val_rtx, dv, offset,
9076 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9077 dv = dv_from_value (val->val_rtx);
9078 }
9079 }
9080
9081 if (REG_P (incoming))
9082 {
9083 incoming = var_lowpart (mode, incoming);
9084 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9085 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9086 incoming);
9087 set_variable_part (out, incoming, dv, offset,
9088 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9089 if (dv_is_value_p (dv))
9090 {
9091 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9092 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9093 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9094 {
9095 enum machine_mode indmode
9096 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9097 rtx mem = gen_rtx_MEM (indmode, incoming);
9098 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9099 VOIDmode,
9100 get_insns ());
9101 if (val)
9102 {
9103 preserve_value (val);
9104 record_entry_value (val, mem);
9105 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9106 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9107 }
9108 }
9109 }
9110 }
9111 else if (MEM_P (incoming))
9112 {
9113 incoming = var_lowpart (mode, incoming);
9114 set_variable_part (out, incoming, dv, offset,
9115 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9116 }
9117 }
9118
9119 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9120
9121 static void
9122 vt_add_function_parameters (void)
9123 {
9124 tree parm;
9125
9126 for (parm = DECL_ARGUMENTS (current_function_decl);
9127 parm; parm = DECL_CHAIN (parm))
9128 vt_add_function_parameter (parm);
9129
9130 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9131 {
9132 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9133
9134 if (TREE_CODE (vexpr) == INDIRECT_REF)
9135 vexpr = TREE_OPERAND (vexpr, 0);
9136
9137 if (TREE_CODE (vexpr) == PARM_DECL
9138 && DECL_ARTIFICIAL (vexpr)
9139 && !DECL_IGNORED_P (vexpr)
9140 && DECL_NAMELESS (vexpr))
9141 vt_add_function_parameter (vexpr);
9142 }
9143 }
9144
9145 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
9146
9147 static bool
9148 fp_setter (rtx insn)
9149 {
9150 rtx pat = PATTERN (insn);
9151 if (RTX_FRAME_RELATED_P (insn))
9152 {
9153 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
9154 if (expr)
9155 pat = XEXP (expr, 0);
9156 }
9157 if (GET_CODE (pat) == SET)
9158 return SET_DEST (pat) == hard_frame_pointer_rtx;
9159 else if (GET_CODE (pat) == PARALLEL)
9160 {
9161 int i;
9162 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
9163 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
9164 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
9165 return true;
9166 }
9167 return false;
9168 }
9169
9170 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9171 ensure it isn't flushed during cselib_reset_table.
9172 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9173 has been eliminated. */
9174
9175 static void
9176 vt_init_cfa_base (void)
9177 {
9178 cselib_val *val;
9179
9180 #ifdef FRAME_POINTER_CFA_OFFSET
9181 cfa_base_rtx = frame_pointer_rtx;
9182 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9183 #else
9184 cfa_base_rtx = arg_pointer_rtx;
9185 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9186 #endif
9187 if (cfa_base_rtx == hard_frame_pointer_rtx
9188 || !fixed_regs[REGNO (cfa_base_rtx)])
9189 {
9190 cfa_base_rtx = NULL_RTX;
9191 return;
9192 }
9193 if (!MAY_HAVE_DEBUG_INSNS)
9194 return;
9195
9196 /* Tell alias analysis that cfa_base_rtx should share
9197 find_base_term value with stack pointer or hard frame pointer. */
9198 if (!frame_pointer_needed)
9199 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9200 else if (!crtl->stack_realign_tried)
9201 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9202
9203 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9204 VOIDmode, get_insns ());
9205 preserve_value (val);
9206 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9207 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
9208 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
9209 0, NULL_RTX, INSERT);
9210 }
9211
9212 /* Allocate and initialize the data structures for variable tracking
9213 and parse the RTL to get the micro operations. */
9214
9215 static bool
9216 vt_initialize (void)
9217 {
9218 basic_block bb, prologue_bb = single_succ (ENTRY_BLOCK_PTR);
9219 HOST_WIDE_INT fp_cfa_offset = -1;
9220
9221 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9222
9223 attrs_pool = create_alloc_pool ("attrs_def pool",
9224 sizeof (struct attrs_def), 1024);
9225 var_pool = create_alloc_pool ("variable_def pool",
9226 sizeof (struct variable_def)
9227 + (MAX_VAR_PARTS - 1)
9228 * sizeof (((variable)NULL)->var_part[0]), 64);
9229 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9230 sizeof (struct location_chain_def),
9231 1024);
9232 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9233 sizeof (struct shared_hash_def), 256);
9234 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9235 empty_shared_hash->refcount = 1;
9236 empty_shared_hash->htab
9237 = htab_create (1, variable_htab_hash, variable_htab_eq,
9238 variable_htab_free);
9239 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
9240 variable_htab_free);
9241
9242 /* Init the IN and OUT sets. */
9243 FOR_ALL_BB (bb)
9244 {
9245 VTI (bb)->visited = false;
9246 VTI (bb)->flooded = false;
9247 dataflow_set_init (&VTI (bb)->in);
9248 dataflow_set_init (&VTI (bb)->out);
9249 VTI (bb)->permp = NULL;
9250 }
9251
9252 if (MAY_HAVE_DEBUG_INSNS)
9253 {
9254 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9255 scratch_regs = BITMAP_ALLOC (NULL);
9256 valvar_pool = create_alloc_pool ("small variable_def pool",
9257 sizeof (struct variable_def), 256);
9258 preserved_values = VEC_alloc (rtx, heap, 256);
9259 }
9260 else
9261 {
9262 scratch_regs = NULL;
9263 valvar_pool = NULL;
9264 }
9265
9266 /* In order to factor out the adjustments made to the stack pointer or to
9267 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9268 instead of individual location lists, we're going to rewrite MEMs based
9269 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9270 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9271 resp. arg_pointer_rtx. We can do this either when there is no frame
9272 pointer in the function and stack adjustments are consistent for all
9273 basic blocks or when there is a frame pointer and no stack realignment.
9274 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9275 has been eliminated. */
9276 if (!frame_pointer_needed)
9277 {
9278 rtx reg, elim;
9279
9280 if (!vt_stack_adjustments ())
9281 return false;
9282
9283 #ifdef FRAME_POINTER_CFA_OFFSET
9284 reg = frame_pointer_rtx;
9285 #else
9286 reg = arg_pointer_rtx;
9287 #endif
9288 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9289 if (elim != reg)
9290 {
9291 if (GET_CODE (elim) == PLUS)
9292 elim = XEXP (elim, 0);
9293 if (elim == stack_pointer_rtx)
9294 vt_init_cfa_base ();
9295 }
9296 }
9297 else if (!crtl->stack_realign_tried)
9298 {
9299 rtx reg, elim;
9300
9301 #ifdef FRAME_POINTER_CFA_OFFSET
9302 reg = frame_pointer_rtx;
9303 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9304 #else
9305 reg = arg_pointer_rtx;
9306 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9307 #endif
9308 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9309 if (elim != reg)
9310 {
9311 if (GET_CODE (elim) == PLUS)
9312 {
9313 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9314 elim = XEXP (elim, 0);
9315 }
9316 if (elim != hard_frame_pointer_rtx)
9317 fp_cfa_offset = -1;
9318 }
9319 else
9320 fp_cfa_offset = -1;
9321 }
9322
9323 /* If the stack is realigned and a DRAP register is used, we're going to
9324 rewrite MEMs based on it representing incoming locations of parameters
9325 passed on the stack into MEMs based on the argument pointer. Although
9326 we aren't going to rewrite other MEMs, we still need to initialize the
9327 virtual CFA pointer in order to ensure that the argument pointer will
9328 be seen as a constant throughout the function.
9329
9330 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9331 else if (stack_realign_drap)
9332 {
9333 rtx reg, elim;
9334
9335 #ifdef FRAME_POINTER_CFA_OFFSET
9336 reg = frame_pointer_rtx;
9337 #else
9338 reg = arg_pointer_rtx;
9339 #endif
9340 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9341 if (elim != reg)
9342 {
9343 if (GET_CODE (elim) == PLUS)
9344 elim = XEXP (elim, 0);
9345 if (elim == hard_frame_pointer_rtx)
9346 vt_init_cfa_base ();
9347 }
9348 }
9349
9350 hard_frame_pointer_adjustment = -1;
9351
9352 vt_add_function_parameters ();
9353
9354 FOR_EACH_BB (bb)
9355 {
9356 rtx insn;
9357 HOST_WIDE_INT pre, post = 0;
9358 basic_block first_bb, last_bb;
9359
9360 if (MAY_HAVE_DEBUG_INSNS)
9361 {
9362 cselib_record_sets_hook = add_with_sets;
9363 if (dump_file && (dump_flags & TDF_DETAILS))
9364 fprintf (dump_file, "first value: %i\n",
9365 cselib_get_next_uid ());
9366 }
9367
9368 first_bb = bb;
9369 for (;;)
9370 {
9371 edge e;
9372 if (bb->next_bb == EXIT_BLOCK_PTR
9373 || ! single_pred_p (bb->next_bb))
9374 break;
9375 e = find_edge (bb, bb->next_bb);
9376 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
9377 break;
9378 bb = bb->next_bb;
9379 }
9380 last_bb = bb;
9381
9382 /* Add the micro-operations to the vector. */
9383 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
9384 {
9385 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
9386 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
9387 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
9388 insn = NEXT_INSN (insn))
9389 {
9390 if (INSN_P (insn))
9391 {
9392 if (!frame_pointer_needed)
9393 {
9394 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
9395 if (pre)
9396 {
9397 micro_operation mo;
9398 mo.type = MO_ADJUST;
9399 mo.u.adjust = pre;
9400 mo.insn = insn;
9401 if (dump_file && (dump_flags & TDF_DETAILS))
9402 log_op_type (PATTERN (insn), bb, insn,
9403 MO_ADJUST, dump_file);
9404 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
9405 &mo);
9406 VTI (bb)->out.stack_adjust += pre;
9407 }
9408 }
9409
9410 cselib_hook_called = false;
9411 adjust_insn (bb, insn);
9412 if (MAY_HAVE_DEBUG_INSNS)
9413 {
9414 if (CALL_P (insn))
9415 prepare_call_arguments (bb, insn);
9416 cselib_process_insn (insn);
9417 if (dump_file && (dump_flags & TDF_DETAILS))
9418 {
9419 print_rtl_single (dump_file, insn);
9420 dump_cselib_table (dump_file);
9421 }
9422 }
9423 if (!cselib_hook_called)
9424 add_with_sets (insn, 0, 0);
9425 cancel_changes (0);
9426
9427 if (!frame_pointer_needed && post)
9428 {
9429 micro_operation mo;
9430 mo.type = MO_ADJUST;
9431 mo.u.adjust = post;
9432 mo.insn = insn;
9433 if (dump_file && (dump_flags & TDF_DETAILS))
9434 log_op_type (PATTERN (insn), bb, insn,
9435 MO_ADJUST, dump_file);
9436 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
9437 &mo);
9438 VTI (bb)->out.stack_adjust += post;
9439 }
9440
9441 if (bb == prologue_bb
9442 && fp_cfa_offset != -1
9443 && hard_frame_pointer_adjustment == -1
9444 && RTX_FRAME_RELATED_P (insn)
9445 && fp_setter (insn))
9446 {
9447 vt_init_cfa_base ();
9448 hard_frame_pointer_adjustment = fp_cfa_offset;
9449 }
9450 }
9451 }
9452 gcc_assert (offset == VTI (bb)->out.stack_adjust);
9453 }
9454
9455 bb = last_bb;
9456
9457 if (MAY_HAVE_DEBUG_INSNS)
9458 {
9459 cselib_preserve_only_values ();
9460 cselib_reset_table (cselib_get_next_uid ());
9461 cselib_record_sets_hook = NULL;
9462 }
9463 }
9464
9465 hard_frame_pointer_adjustment = -1;
9466 VTI (ENTRY_BLOCK_PTR)->flooded = true;
9467 cfa_base_rtx = NULL_RTX;
9468 return true;
9469 }
9470
9471 /* This is *not* reset after each function. It gives each
9472 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
9473 a unique label number. */
9474
9475 static int debug_label_num = 1;
9476
9477 /* Get rid of all debug insns from the insn stream. */
9478
9479 static void
9480 delete_debug_insns (void)
9481 {
9482 basic_block bb;
9483 rtx insn, next;
9484
9485 if (!MAY_HAVE_DEBUG_INSNS)
9486 return;
9487
9488 FOR_EACH_BB (bb)
9489 {
9490 FOR_BB_INSNS_SAFE (bb, insn, next)
9491 if (DEBUG_INSN_P (insn))
9492 {
9493 tree decl = INSN_VAR_LOCATION_DECL (insn);
9494 if (TREE_CODE (decl) == LABEL_DECL
9495 && DECL_NAME (decl)
9496 && !DECL_RTL_SET_P (decl))
9497 {
9498 PUT_CODE (insn, NOTE);
9499 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
9500 NOTE_DELETED_LABEL_NAME (insn)
9501 = IDENTIFIER_POINTER (DECL_NAME (decl));
9502 SET_DECL_RTL (decl, insn);
9503 CODE_LABEL_NUMBER (insn) = debug_label_num++;
9504 }
9505 else
9506 delete_insn (insn);
9507 }
9508 }
9509 }
9510
9511 /* Run a fast, BB-local only version of var tracking, to take care of
9512 information that we don't do global analysis on, such that not all
9513 information is lost. If SKIPPED holds, we're skipping the global
9514 pass entirely, so we should try to use information it would have
9515 handled as well.. */
9516
9517 static void
9518 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
9519 {
9520 /* ??? Just skip it all for now. */
9521 delete_debug_insns ();
9522 }
9523
9524 /* Free the data structures needed for variable tracking. */
9525
9526 static void
9527 vt_finalize (void)
9528 {
9529 basic_block bb;
9530
9531 FOR_EACH_BB (bb)
9532 {
9533 VEC_free (micro_operation, heap, VTI (bb)->mos);
9534 }
9535
9536 FOR_ALL_BB (bb)
9537 {
9538 dataflow_set_destroy (&VTI (bb)->in);
9539 dataflow_set_destroy (&VTI (bb)->out);
9540 if (VTI (bb)->permp)
9541 {
9542 dataflow_set_destroy (VTI (bb)->permp);
9543 XDELETE (VTI (bb)->permp);
9544 }
9545 }
9546 free_aux_for_blocks ();
9547 htab_delete (empty_shared_hash->htab);
9548 htab_delete (changed_variables);
9549 free_alloc_pool (attrs_pool);
9550 free_alloc_pool (var_pool);
9551 free_alloc_pool (loc_chain_pool);
9552 free_alloc_pool (shared_hash_pool);
9553
9554 if (MAY_HAVE_DEBUG_INSNS)
9555 {
9556 free_alloc_pool (valvar_pool);
9557 VEC_free (rtx, heap, preserved_values);
9558 cselib_finish ();
9559 BITMAP_FREE (scratch_regs);
9560 scratch_regs = NULL;
9561 }
9562
9563 #ifdef HAVE_window_save
9564 VEC_free (parm_reg_t, gc, windowed_parm_regs);
9565 #endif
9566
9567 if (vui_vec)
9568 XDELETEVEC (vui_vec);
9569 vui_vec = NULL;
9570 vui_allocated = 0;
9571 }
9572
9573 /* The entry point to variable tracking pass. */
9574
9575 static inline unsigned int
9576 variable_tracking_main_1 (void)
9577 {
9578 bool success;
9579
9580 if (flag_var_tracking_assignments < 0)
9581 {
9582 delete_debug_insns ();
9583 return 0;
9584 }
9585
9586 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
9587 {
9588 vt_debug_insns_local (true);
9589 return 0;
9590 }
9591
9592 mark_dfs_back_edges ();
9593 if (!vt_initialize ())
9594 {
9595 vt_finalize ();
9596 vt_debug_insns_local (true);
9597 return 0;
9598 }
9599
9600 success = vt_find_locations ();
9601
9602 if (!success && flag_var_tracking_assignments > 0)
9603 {
9604 vt_finalize ();
9605
9606 delete_debug_insns ();
9607
9608 /* This is later restored by our caller. */
9609 flag_var_tracking_assignments = 0;
9610
9611 success = vt_initialize ();
9612 gcc_assert (success);
9613
9614 success = vt_find_locations ();
9615 }
9616
9617 if (!success)
9618 {
9619 vt_finalize ();
9620 vt_debug_insns_local (false);
9621 return 0;
9622 }
9623
9624 if (dump_file && (dump_flags & TDF_DETAILS))
9625 {
9626 dump_dataflow_sets ();
9627 dump_flow_info (dump_file, dump_flags);
9628 }
9629
9630 timevar_push (TV_VAR_TRACKING_EMIT);
9631 vt_emit_notes ();
9632 timevar_pop (TV_VAR_TRACKING_EMIT);
9633
9634 vt_finalize ();
9635 vt_debug_insns_local (false);
9636 return 0;
9637 }
9638
9639 unsigned int
9640 variable_tracking_main (void)
9641 {
9642 unsigned int ret;
9643 int save = flag_var_tracking_assignments;
9644
9645 ret = variable_tracking_main_1 ();
9646
9647 flag_var_tracking_assignments = save;
9648
9649 return ret;
9650 }
9651 \f
9652 static bool
9653 gate_handle_var_tracking (void)
9654 {
9655 return (flag_var_tracking && !targetm.delay_vartrack);
9656 }
9657
9658
9659
9660 struct rtl_opt_pass pass_variable_tracking =
9661 {
9662 {
9663 RTL_PASS,
9664 "vartrack", /* name */
9665 gate_handle_var_tracking, /* gate */
9666 variable_tracking_main, /* execute */
9667 NULL, /* sub */
9668 NULL, /* next */
9669 0, /* static_pass_number */
9670 TV_VAR_TRACKING, /* tv_id */
9671 0, /* properties_required */
9672 0, /* properties_provided */
9673 0, /* properties_destroyed */
9674 0, /* todo_flags_start */
9675 TODO_verify_rtl_sharing /* todo_flags_finish */
9676 }
9677 };