dwarf2out.c (dw_cfi_oprnd_struct): Reduce dw_cfi_reg_num to int.
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING. If not, write to the Free
18 Software Foundation, 51 Franklin Street, Fifth Floor, Boston, MA
19 02110-1301, USA. */
20
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
28
29 How does the variable tracking pass work?
30
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
38
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
45
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
55
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
61
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
71
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
79
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
86
87 */
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "hard-reg-set.h"
96 #include "basic-block.h"
97 #include "flags.h"
98 #include "output.h"
99 #include "insn-config.h"
100 #include "reload.h"
101 #include "sbitmap.h"
102 #include "alloc-pool.h"
103 #include "fibheap.h"
104 #include "hashtab.h"
105 #include "regs.h"
106 #include "expr.h"
107 #include "timevar.h"
108 #include "tree-pass.h"
109
110 /* Type of micro operation. */
111 enum micro_operation_type
112 {
113 MO_USE, /* Use location (REG or MEM). */
114 MO_USE_NO_VAR,/* Use location which is not associated with a variable
115 or the variable is not trackable. */
116 MO_SET, /* Set location. */
117 MO_CLOBBER, /* Clobber location. */
118 MO_CALL, /* Call insn. */
119 MO_ADJUST /* Adjust stack pointer. */
120 };
121
122 /* Where shall the note be emitted? BEFORE or AFTER the instruction. */
123 enum emit_note_where
124 {
125 EMIT_NOTE_BEFORE_INSN,
126 EMIT_NOTE_AFTER_INSN
127 };
128
129 /* Structure holding information about micro operation. */
130 typedef struct micro_operation_def
131 {
132 /* Type of micro operation. */
133 enum micro_operation_type type;
134
135 union {
136 /* Location. */
137 rtx loc;
138
139 /* Stack adjustment. */
140 HOST_WIDE_INT adjust;
141 } u;
142
143 /* The instruction which the micro operation is in. */
144 rtx insn;
145 } micro_operation;
146
147 /* Structure for passing some other parameters to function
148 emit_note_insn_var_location. */
149 typedef struct emit_note_data_def
150 {
151 /* The instruction which the note will be emitted before/after. */
152 rtx insn;
153
154 /* Where the note will be emitted (before/after insn)? */
155 enum emit_note_where where;
156 } emit_note_data;
157
158 /* Description of location of a part of a variable. The content of a physical
159 register is described by a chain of these structures.
160 The chains are pretty short (usually 1 or 2 elements) and thus
161 chain is the best data structure. */
162 typedef struct attrs_def
163 {
164 /* Pointer to next member of the list. */
165 struct attrs_def *next;
166
167 /* The rtx of register. */
168 rtx loc;
169
170 /* The declaration corresponding to LOC. */
171 tree decl;
172
173 /* Offset from start of DECL. */
174 HOST_WIDE_INT offset;
175 } *attrs;
176
177 /* Structure holding the IN or OUT set for a basic block. */
178 typedef struct dataflow_set_def
179 {
180 /* Adjustment of stack offset. */
181 HOST_WIDE_INT stack_adjust;
182
183 /* Attributes for registers (lists of attrs). */
184 attrs regs[FIRST_PSEUDO_REGISTER];
185
186 /* Variable locations. */
187 htab_t vars;
188 } dataflow_set;
189
190 /* The structure (one for each basic block) containing the information
191 needed for variable tracking. */
192 typedef struct variable_tracking_info_def
193 {
194 /* Number of micro operations stored in the MOS array. */
195 int n_mos;
196
197 /* The array of micro operations. */
198 micro_operation *mos;
199
200 /* The IN and OUT set for dataflow analysis. */
201 dataflow_set in;
202 dataflow_set out;
203
204 /* Has the block been visited in DFS? */
205 bool visited;
206 } *variable_tracking_info;
207
208 /* Structure for chaining the locations. */
209 typedef struct location_chain_def
210 {
211 /* Next element in the chain. */
212 struct location_chain_def *next;
213
214 /* The location (REG or MEM). */
215 rtx loc;
216 } *location_chain;
217
218 /* Structure describing one part of variable. */
219 typedef struct variable_part_def
220 {
221 /* Chain of locations of the part. */
222 location_chain loc_chain;
223
224 /* Location which was last emitted to location list. */
225 rtx cur_loc;
226
227 /* The offset in the variable. */
228 HOST_WIDE_INT offset;
229 } variable_part;
230
231 /* Maximum number of location parts. */
232 #define MAX_VAR_PARTS 16
233
234 /* Structure describing where the variable is located. */
235 typedef struct variable_def
236 {
237 /* The declaration of the variable. */
238 tree decl;
239
240 /* Reference count. */
241 int refcount;
242
243 /* Number of variable parts. */
244 int n_var_parts;
245
246 /* The variable parts. */
247 variable_part var_part[MAX_VAR_PARTS];
248 } *variable;
249
250 /* Hash function for DECL for VARIABLE_HTAB. */
251 #define VARIABLE_HASH_VAL(decl) (DECL_UID (decl))
252
253 /* Pointer to the BB's information specific to variable tracking pass. */
254 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
255
256 /* Alloc pool for struct attrs_def. */
257 static alloc_pool attrs_pool;
258
259 /* Alloc pool for struct variable_def. */
260 static alloc_pool var_pool;
261
262 /* Alloc pool for struct location_chain_def. */
263 static alloc_pool loc_chain_pool;
264
265 /* Changed variables, notes will be emitted for them. */
266 static htab_t changed_variables;
267
268 /* Shall notes be emitted? */
269 static bool emit_notes;
270
271 /* Local function prototypes. */
272 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
273 HOST_WIDE_INT *);
274 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
275 HOST_WIDE_INT *);
276 static void bb_stack_adjust_offset (basic_block);
277 static bool vt_stack_adjustments (void);
278 static rtx adjust_stack_reference (rtx, HOST_WIDE_INT);
279 static hashval_t variable_htab_hash (const void *);
280 static int variable_htab_eq (const void *, const void *);
281 static void variable_htab_free (void *);
282
283 static void init_attrs_list_set (attrs *);
284 static void attrs_list_clear (attrs *);
285 static attrs attrs_list_member (attrs, tree, HOST_WIDE_INT);
286 static void attrs_list_insert (attrs *, tree, HOST_WIDE_INT, rtx);
287 static void attrs_list_copy (attrs *, attrs);
288 static void attrs_list_union (attrs *, attrs);
289
290 static void vars_clear (htab_t);
291 static variable unshare_variable (dataflow_set *set, variable var);
292 static int vars_copy_1 (void **, void *);
293 static void vars_copy (htab_t, htab_t);
294 static void var_reg_delete_and_set (dataflow_set *, rtx);
295 static void var_reg_delete (dataflow_set *, rtx);
296 static void var_regno_delete (dataflow_set *, int);
297 static void var_mem_delete_and_set (dataflow_set *, rtx);
298 static void var_mem_delete (dataflow_set *, rtx);
299
300 static void dataflow_set_init (dataflow_set *, int);
301 static void dataflow_set_clear (dataflow_set *);
302 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
303 static int variable_union_info_cmp_pos (const void *, const void *);
304 static int variable_union (void **, void *);
305 static void dataflow_set_union (dataflow_set *, dataflow_set *);
306 static bool variable_part_different_p (variable_part *, variable_part *);
307 static bool variable_different_p (variable, variable, bool);
308 static int dataflow_set_different_1 (void **, void *);
309 static int dataflow_set_different_2 (void **, void *);
310 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
311 static void dataflow_set_destroy (dataflow_set *);
312
313 static bool contains_symbol_ref (rtx);
314 static bool track_expr_p (tree);
315 static int count_uses (rtx *, void *);
316 static void count_uses_1 (rtx *, void *);
317 static void count_stores (rtx, rtx, void *);
318 static int add_uses (rtx *, void *);
319 static void add_uses_1 (rtx *, void *);
320 static void add_stores (rtx, rtx, void *);
321 static bool compute_bb_dataflow (basic_block);
322 static void vt_find_locations (void);
323
324 static void dump_attrs_list (attrs);
325 static int dump_variable (void **, void *);
326 static void dump_vars (htab_t);
327 static void dump_dataflow_set (dataflow_set *);
328 static void dump_dataflow_sets (void);
329
330 static void variable_was_changed (variable, htab_t);
331 static void set_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
332 static void delete_variable_part (dataflow_set *, rtx, tree, HOST_WIDE_INT);
333 static int emit_note_insn_var_location (void **, void *);
334 static void emit_notes_for_changes (rtx, enum emit_note_where);
335 static int emit_notes_for_differences_1 (void **, void *);
336 static int emit_notes_for_differences_2 (void **, void *);
337 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
338 static void emit_notes_in_bb (basic_block);
339 static void vt_emit_notes (void);
340
341 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
342 static void vt_add_function_parameters (void);
343 static void vt_initialize (void);
344 static void vt_finalize (void);
345
346 /* Given a SET, calculate the amount of stack adjustment it contains
347 PRE- and POST-modifying stack pointer.
348 This function is similar to stack_adjust_offset. */
349
350 static void
351 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
352 HOST_WIDE_INT *post)
353 {
354 rtx src = SET_SRC (pattern);
355 rtx dest = SET_DEST (pattern);
356 enum rtx_code code;
357
358 if (dest == stack_pointer_rtx)
359 {
360 /* (set (reg sp) (plus (reg sp) (const_int))) */
361 code = GET_CODE (src);
362 if (! (code == PLUS || code == MINUS)
363 || XEXP (src, 0) != stack_pointer_rtx
364 || GET_CODE (XEXP (src, 1)) != CONST_INT)
365 return;
366
367 if (code == MINUS)
368 *post += INTVAL (XEXP (src, 1));
369 else
370 *post -= INTVAL (XEXP (src, 1));
371 }
372 else if (MEM_P (dest))
373 {
374 /* (set (mem (pre_dec (reg sp))) (foo)) */
375 src = XEXP (dest, 0);
376 code = GET_CODE (src);
377
378 switch (code)
379 {
380 case PRE_MODIFY:
381 case POST_MODIFY:
382 if (XEXP (src, 0) == stack_pointer_rtx)
383 {
384 rtx val = XEXP (XEXP (src, 1), 1);
385 /* We handle only adjustments by constant amount. */
386 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
387 GET_CODE (val) == CONST_INT);
388
389 if (code == PRE_MODIFY)
390 *pre -= INTVAL (val);
391 else
392 *post -= INTVAL (val);
393 break;
394 }
395 return;
396
397 case PRE_DEC:
398 if (XEXP (src, 0) == stack_pointer_rtx)
399 {
400 *pre += GET_MODE_SIZE (GET_MODE (dest));
401 break;
402 }
403 return;
404
405 case POST_DEC:
406 if (XEXP (src, 0) == stack_pointer_rtx)
407 {
408 *post += GET_MODE_SIZE (GET_MODE (dest));
409 break;
410 }
411 return;
412
413 case PRE_INC:
414 if (XEXP (src, 0) == stack_pointer_rtx)
415 {
416 *pre -= GET_MODE_SIZE (GET_MODE (dest));
417 break;
418 }
419 return;
420
421 case POST_INC:
422 if (XEXP (src, 0) == stack_pointer_rtx)
423 {
424 *post -= GET_MODE_SIZE (GET_MODE (dest));
425 break;
426 }
427 return;
428
429 default:
430 return;
431 }
432 }
433 }
434
435 /* Given an INSN, calculate the amount of stack adjustment it contains
436 PRE- and POST-modifying stack pointer. */
437
438 static void
439 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
440 HOST_WIDE_INT *post)
441 {
442 *pre = 0;
443 *post = 0;
444
445 if (GET_CODE (PATTERN (insn)) == SET)
446 stack_adjust_offset_pre_post (PATTERN (insn), pre, post);
447 else if (GET_CODE (PATTERN (insn)) == PARALLEL
448 || GET_CODE (PATTERN (insn)) == SEQUENCE)
449 {
450 int i;
451
452 /* There may be stack adjustments inside compound insns. Search
453 for them. */
454 for ( i = XVECLEN (PATTERN (insn), 0) - 1; i >= 0; i--)
455 if (GET_CODE (XVECEXP (PATTERN (insn), 0, i)) == SET)
456 stack_adjust_offset_pre_post (XVECEXP (PATTERN (insn), 0, i),
457 pre, post);
458 }
459 }
460
461 /* Compute stack adjustment in basic block BB. */
462
463 static void
464 bb_stack_adjust_offset (basic_block bb)
465 {
466 HOST_WIDE_INT offset;
467 int i;
468
469 offset = VTI (bb)->in.stack_adjust;
470 for (i = 0; i < VTI (bb)->n_mos; i++)
471 {
472 if (VTI (bb)->mos[i].type == MO_ADJUST)
473 offset += VTI (bb)->mos[i].u.adjust;
474 else if (VTI (bb)->mos[i].type != MO_CALL)
475 {
476 if (MEM_P (VTI (bb)->mos[i].u.loc))
477 {
478 VTI (bb)->mos[i].u.loc
479 = adjust_stack_reference (VTI (bb)->mos[i].u.loc, -offset);
480 }
481 }
482 }
483 VTI (bb)->out.stack_adjust = offset;
484 }
485
486 /* Compute stack adjustments for all blocks by traversing DFS tree.
487 Return true when the adjustments on all incoming edges are consistent.
488 Heavily borrowed from flow_depth_first_order_compute. */
489
490 static bool
491 vt_stack_adjustments (void)
492 {
493 edge_iterator *stack;
494 int sp;
495
496 /* Initialize entry block. */
497 VTI (ENTRY_BLOCK_PTR)->visited = true;
498 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
499
500 /* Allocate stack for back-tracking up CFG. */
501 stack = xmalloc ((n_basic_blocks + 1) * sizeof (edge_iterator));
502 sp = 0;
503
504 /* Push the first edge on to the stack. */
505 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
506
507 while (sp)
508 {
509 edge_iterator ei;
510 basic_block src;
511 basic_block dest;
512
513 /* Look at the edge on the top of the stack. */
514 ei = stack[sp - 1];
515 src = ei_edge (ei)->src;
516 dest = ei_edge (ei)->dest;
517
518 /* Check if the edge destination has been visited yet. */
519 if (!VTI (dest)->visited)
520 {
521 VTI (dest)->visited = true;
522 VTI (dest)->in.stack_adjust = VTI (src)->out.stack_adjust;
523 bb_stack_adjust_offset (dest);
524
525 if (EDGE_COUNT (dest->succs) > 0)
526 /* Since the DEST node has been visited for the first
527 time, check its successors. */
528 stack[sp++] = ei_start (dest->succs);
529 }
530 else
531 {
532 /* Check whether the adjustments on the edges are the same. */
533 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
534 {
535 free (stack);
536 return false;
537 }
538
539 if (! ei_one_before_end_p (ei))
540 /* Go to the next edge. */
541 ei_next (&stack[sp - 1]);
542 else
543 /* Return to previous level if there are no more edges. */
544 sp--;
545 }
546 }
547
548 free (stack);
549 return true;
550 }
551
552 /* Adjust stack reference MEM by ADJUSTMENT bytes and make it relative
553 to the argument pointer. Return the new rtx. */
554
555 static rtx
556 adjust_stack_reference (rtx mem, HOST_WIDE_INT adjustment)
557 {
558 rtx addr, cfa, tmp;
559
560 #ifdef FRAME_POINTER_CFA_OFFSET
561 adjustment -= FRAME_POINTER_CFA_OFFSET (current_function_decl);
562 cfa = plus_constant (frame_pointer_rtx, adjustment);
563 #else
564 adjustment -= ARG_POINTER_CFA_OFFSET (current_function_decl);
565 cfa = plus_constant (arg_pointer_rtx, adjustment);
566 #endif
567
568 addr = replace_rtx (copy_rtx (XEXP (mem, 0)), stack_pointer_rtx, cfa);
569 tmp = simplify_rtx (addr);
570 if (tmp)
571 addr = tmp;
572
573 return replace_equiv_address_nv (mem, addr);
574 }
575
576 /* The hash function for variable_htab, computes the hash value
577 from the declaration of variable X. */
578
579 static hashval_t
580 variable_htab_hash (const void *x)
581 {
582 const variable v = (const variable) x;
583
584 return (VARIABLE_HASH_VAL (v->decl));
585 }
586
587 /* Compare the declaration of variable X with declaration Y. */
588
589 static int
590 variable_htab_eq (const void *x, const void *y)
591 {
592 const variable v = (const variable) x;
593 const tree decl = (const tree) y;
594
595 return (VARIABLE_HASH_VAL (v->decl) == VARIABLE_HASH_VAL (decl));
596 }
597
598 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
599
600 static void
601 variable_htab_free (void *elem)
602 {
603 int i;
604 variable var = (variable) elem;
605 location_chain node, next;
606
607 gcc_assert (var->refcount > 0);
608
609 var->refcount--;
610 if (var->refcount > 0)
611 return;
612
613 for (i = 0; i < var->n_var_parts; i++)
614 {
615 for (node = var->var_part[i].loc_chain; node; node = next)
616 {
617 next = node->next;
618 pool_free (loc_chain_pool, node);
619 }
620 var->var_part[i].loc_chain = NULL;
621 }
622 pool_free (var_pool, var);
623 }
624
625 /* Initialize the set (array) SET of attrs to empty lists. */
626
627 static void
628 init_attrs_list_set (attrs *set)
629 {
630 int i;
631
632 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
633 set[i] = NULL;
634 }
635
636 /* Make the list *LISTP empty. */
637
638 static void
639 attrs_list_clear (attrs *listp)
640 {
641 attrs list, next;
642
643 for (list = *listp; list; list = next)
644 {
645 next = list->next;
646 pool_free (attrs_pool, list);
647 }
648 *listp = NULL;
649 }
650
651 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
652
653 static attrs
654 attrs_list_member (attrs list, tree decl, HOST_WIDE_INT offset)
655 {
656 for (; list; list = list->next)
657 if (list->decl == decl && list->offset == offset)
658 return list;
659 return NULL;
660 }
661
662 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
663
664 static void
665 attrs_list_insert (attrs *listp, tree decl, HOST_WIDE_INT offset, rtx loc)
666 {
667 attrs list;
668
669 list = pool_alloc (attrs_pool);
670 list->loc = loc;
671 list->decl = decl;
672 list->offset = offset;
673 list->next = *listp;
674 *listp = list;
675 }
676
677 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
678
679 static void
680 attrs_list_copy (attrs *dstp, attrs src)
681 {
682 attrs n;
683
684 attrs_list_clear (dstp);
685 for (; src; src = src->next)
686 {
687 n = pool_alloc (attrs_pool);
688 n->loc = src->loc;
689 n->decl = src->decl;
690 n->offset = src->offset;
691 n->next = *dstp;
692 *dstp = n;
693 }
694 }
695
696 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
697
698 static void
699 attrs_list_union (attrs *dstp, attrs src)
700 {
701 for (; src; src = src->next)
702 {
703 if (!attrs_list_member (*dstp, src->decl, src->offset))
704 attrs_list_insert (dstp, src->decl, src->offset, src->loc);
705 }
706 }
707
708 /* Delete all variables from hash table VARS. */
709
710 static void
711 vars_clear (htab_t vars)
712 {
713 htab_empty (vars);
714 }
715
716 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
717
718 static variable
719 unshare_variable (dataflow_set *set, variable var)
720 {
721 void **slot;
722 variable new_var;
723 int i;
724
725 new_var = pool_alloc (var_pool);
726 new_var->decl = var->decl;
727 new_var->refcount = 1;
728 var->refcount--;
729 new_var->n_var_parts = var->n_var_parts;
730
731 for (i = 0; i < var->n_var_parts; i++)
732 {
733 location_chain node;
734 location_chain *nextp;
735
736 new_var->var_part[i].offset = var->var_part[i].offset;
737 nextp = &new_var->var_part[i].loc_chain;
738 for (node = var->var_part[i].loc_chain; node; node = node->next)
739 {
740 location_chain new_lc;
741
742 new_lc = pool_alloc (loc_chain_pool);
743 new_lc->next = NULL;
744 new_lc->loc = node->loc;
745
746 *nextp = new_lc;
747 nextp = &new_lc->next;
748 }
749
750 /* We are at the basic block boundary when copying variable description
751 so set the CUR_LOC to be the first element of the chain. */
752 if (new_var->var_part[i].loc_chain)
753 new_var->var_part[i].cur_loc = new_var->var_part[i].loc_chain->loc;
754 else
755 new_var->var_part[i].cur_loc = NULL;
756 }
757
758 slot = htab_find_slot_with_hash (set->vars, new_var->decl,
759 VARIABLE_HASH_VAL (new_var->decl),
760 INSERT);
761 *slot = new_var;
762 return new_var;
763 }
764
765 /* Add a variable from *SLOT to hash table DATA and increase its reference
766 count. */
767
768 static int
769 vars_copy_1 (void **slot, void *data)
770 {
771 htab_t dst = (htab_t) data;
772 variable src, *dstp;
773
774 src = *(variable *) slot;
775 src->refcount++;
776
777 dstp = (variable *) htab_find_slot_with_hash (dst, src->decl,
778 VARIABLE_HASH_VAL (src->decl),
779 INSERT);
780 *dstp = src;
781
782 /* Continue traversing the hash table. */
783 return 1;
784 }
785
786 /* Copy all variables from hash table SRC to hash table DST. */
787
788 static void
789 vars_copy (htab_t dst, htab_t src)
790 {
791 vars_clear (dst);
792 htab_traverse (src, vars_copy_1, dst);
793 }
794
795 /* Delete current content of register LOC in dataflow set SET
796 and set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
797
798 static void
799 var_reg_delete_and_set (dataflow_set *set, rtx loc)
800 {
801 tree decl = REG_EXPR (loc);
802 HOST_WIDE_INT offset = REG_OFFSET (loc);
803 attrs node, next;
804 attrs *nextp;
805
806 nextp = &set->regs[REGNO (loc)];
807 for (node = *nextp; node; node = next)
808 {
809 next = node->next;
810 if (node->decl != decl || node->offset != offset)
811 {
812 delete_variable_part (set, node->loc, node->decl, node->offset);
813 pool_free (attrs_pool, node);
814 *nextp = next;
815 }
816 else
817 {
818 node->loc = loc;
819 nextp = &node->next;
820 }
821 }
822 if (set->regs[REGNO (loc)] == NULL)
823 attrs_list_insert (&set->regs[REGNO (loc)], decl, offset, loc);
824 set_variable_part (set, loc, decl, offset);
825 }
826
827 /* Delete current content of register LOC in dataflow set SET. */
828
829 static void
830 var_reg_delete (dataflow_set *set, rtx loc)
831 {
832 attrs *reg = &set->regs[REGNO (loc)];
833 attrs node, next;
834
835 for (node = *reg; node; node = next)
836 {
837 next = node->next;
838 delete_variable_part (set, node->loc, node->decl, node->offset);
839 pool_free (attrs_pool, node);
840 }
841 *reg = NULL;
842 }
843
844 /* Delete content of register with number REGNO in dataflow set SET. */
845
846 static void
847 var_regno_delete (dataflow_set *set, int regno)
848 {
849 attrs *reg = &set->regs[regno];
850 attrs node, next;
851
852 for (node = *reg; node; node = next)
853 {
854 next = node->next;
855 delete_variable_part (set, node->loc, node->decl, node->offset);
856 pool_free (attrs_pool, node);
857 }
858 *reg = NULL;
859 }
860
861 /* Delete and set the location part of variable MEM_EXPR (LOC)
862 in dataflow set SET to LOC.
863 Adjust the address first if it is stack pointer based. */
864
865 static void
866 var_mem_delete_and_set (dataflow_set *set, rtx loc)
867 {
868 tree decl = MEM_EXPR (loc);
869 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
870
871 set_variable_part (set, loc, decl, offset);
872 }
873
874 /* Delete the location part LOC from dataflow set SET.
875 Adjust the address first if it is stack pointer based. */
876
877 static void
878 var_mem_delete (dataflow_set *set, rtx loc)
879 {
880 tree decl = MEM_EXPR (loc);
881 HOST_WIDE_INT offset = MEM_OFFSET (loc) ? INTVAL (MEM_OFFSET (loc)) : 0;
882
883 delete_variable_part (set, loc, decl, offset);
884 }
885
886 /* Initialize dataflow set SET to be empty.
887 VARS_SIZE is the initial size of hash table VARS. */
888
889 static void
890 dataflow_set_init (dataflow_set *set, int vars_size)
891 {
892 init_attrs_list_set (set->regs);
893 set->vars = htab_create (vars_size, variable_htab_hash, variable_htab_eq,
894 variable_htab_free);
895 set->stack_adjust = 0;
896 }
897
898 /* Delete the contents of dataflow set SET. */
899
900 static void
901 dataflow_set_clear (dataflow_set *set)
902 {
903 int i;
904
905 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
906 attrs_list_clear (&set->regs[i]);
907
908 vars_clear (set->vars);
909 }
910
911 /* Copy the contents of dataflow set SRC to DST. */
912
913 static void
914 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
915 {
916 int i;
917
918 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
919 attrs_list_copy (&dst->regs[i], src->regs[i]);
920
921 vars_copy (dst->vars, src->vars);
922 dst->stack_adjust = src->stack_adjust;
923 }
924
925 /* Information for merging lists of locations for a given offset of variable.
926 */
927 struct variable_union_info
928 {
929 /* Node of the location chain. */
930 location_chain lc;
931
932 /* The sum of positions in the input chains. */
933 int pos;
934
935 /* The position in the chains of SRC and DST dataflow sets. */
936 int pos_src;
937 int pos_dst;
938 };
939
940 /* Compare function for qsort, order the structures by POS element. */
941
942 static int
943 variable_union_info_cmp_pos (const void *n1, const void *n2)
944 {
945 const struct variable_union_info *i1 = n1;
946 const struct variable_union_info *i2 = n2;
947
948 if (i1->pos != i2->pos)
949 return i1->pos - i2->pos;
950
951 return (i1->pos_dst - i2->pos_dst);
952 }
953
954 /* Compute union of location parts of variable *SLOT and the same variable
955 from hash table DATA. Compute "sorted" union of the location chains
956 for common offsets, i.e. the locations of a variable part are sorted by
957 a priority where the priority is the sum of the positions in the 2 chains
958 (if a location is only in one list the position in the second list is
959 defined to be larger than the length of the chains).
960 When we are updating the location parts the newest location is in the
961 beginning of the chain, so when we do the described "sorted" union
962 we keep the newest locations in the beginning. */
963
964 static int
965 variable_union (void **slot, void *data)
966 {
967 variable src, dst, *dstp;
968 dataflow_set *set = (dataflow_set *) data;
969 int i, j, k;
970
971 src = *(variable *) slot;
972 dstp = (variable *) htab_find_slot_with_hash (set->vars, src->decl,
973 VARIABLE_HASH_VAL (src->decl),
974 INSERT);
975 if (!*dstp)
976 {
977 src->refcount++;
978
979 /* If CUR_LOC of some variable part is not the first element of
980 the location chain we are going to change it so we have to make
981 a copy of the variable. */
982 for (k = 0; k < src->n_var_parts; k++)
983 {
984 gcc_assert (!src->var_part[k].loc_chain
985 == !src->var_part[k].cur_loc);
986 if (src->var_part[k].loc_chain)
987 {
988 gcc_assert (src->var_part[k].cur_loc);
989 if (src->var_part[k].cur_loc != src->var_part[k].loc_chain->loc)
990 break;
991 }
992 }
993 if (k < src->n_var_parts)
994 unshare_variable (set, src);
995 else
996 *dstp = src;
997
998 /* Continue traversing the hash table. */
999 return 1;
1000 }
1001 else
1002 dst = *dstp;
1003
1004 gcc_assert (src->n_var_parts);
1005
1006 /* Count the number of location parts, result is K. */
1007 for (i = 0, j = 0, k = 0;
1008 i < src->n_var_parts && j < dst->n_var_parts; k++)
1009 {
1010 if (src->var_part[i].offset == dst->var_part[j].offset)
1011 {
1012 i++;
1013 j++;
1014 }
1015 else if (src->var_part[i].offset < dst->var_part[j].offset)
1016 i++;
1017 else
1018 j++;
1019 }
1020 k += src->n_var_parts - i;
1021 k += dst->n_var_parts - j;
1022
1023 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1024 thus there are at most MAX_VAR_PARTS different offsets. */
1025 gcc_assert (k <= MAX_VAR_PARTS);
1026
1027 if (dst->refcount > 1 && dst->n_var_parts != k)
1028 dst = unshare_variable (set, dst);
1029
1030 i = src->n_var_parts - 1;
1031 j = dst->n_var_parts - 1;
1032 dst->n_var_parts = k;
1033
1034 for (k--; k >= 0; k--)
1035 {
1036 location_chain node, node2;
1037
1038 if (i >= 0 && j >= 0
1039 && src->var_part[i].offset == dst->var_part[j].offset)
1040 {
1041 /* Compute the "sorted" union of the chains, i.e. the locations which
1042 are in both chains go first, they are sorted by the sum of
1043 positions in the chains. */
1044 int dst_l, src_l;
1045 int ii, jj, n;
1046 struct variable_union_info *vui;
1047
1048 /* If DST is shared compare the location chains.
1049 If they are different we will modify the chain in DST with
1050 high probability so make a copy of DST. */
1051 if (dst->refcount > 1)
1052 {
1053 for (node = src->var_part[i].loc_chain,
1054 node2 = dst->var_part[j].loc_chain; node && node2;
1055 node = node->next, node2 = node2->next)
1056 {
1057 if (!((REG_P (node2->loc)
1058 && REG_P (node->loc)
1059 && REGNO (node2->loc) == REGNO (node->loc))
1060 || rtx_equal_p (node2->loc, node->loc)))
1061 break;
1062 }
1063 if (node || node2)
1064 dst = unshare_variable (set, dst);
1065 }
1066
1067 src_l = 0;
1068 for (node = src->var_part[i].loc_chain; node; node = node->next)
1069 src_l++;
1070 dst_l = 0;
1071 for (node = dst->var_part[j].loc_chain; node; node = node->next)
1072 dst_l++;
1073 vui = xcalloc (src_l + dst_l, sizeof (struct variable_union_info));
1074
1075 /* Fill in the locations from DST. */
1076 for (node = dst->var_part[j].loc_chain, jj = 0; node;
1077 node = node->next, jj++)
1078 {
1079 vui[jj].lc = node;
1080 vui[jj].pos_dst = jj;
1081
1082 /* Value larger than a sum of 2 valid positions. */
1083 vui[jj].pos_src = src_l + dst_l;
1084 }
1085
1086 /* Fill in the locations from SRC. */
1087 n = dst_l;
1088 for (node = src->var_part[i].loc_chain, ii = 0; node;
1089 node = node->next, ii++)
1090 {
1091 /* Find location from NODE. */
1092 for (jj = 0; jj < dst_l; jj++)
1093 {
1094 if ((REG_P (vui[jj].lc->loc)
1095 && REG_P (node->loc)
1096 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
1097 || rtx_equal_p (vui[jj].lc->loc, node->loc))
1098 {
1099 vui[jj].pos_src = ii;
1100 break;
1101 }
1102 }
1103 if (jj >= dst_l) /* The location has not been found. */
1104 {
1105 location_chain new_node;
1106
1107 /* Copy the location from SRC. */
1108 new_node = pool_alloc (loc_chain_pool);
1109 new_node->loc = node->loc;
1110 vui[n].lc = new_node;
1111 vui[n].pos_src = ii;
1112 vui[n].pos_dst = src_l + dst_l;
1113 n++;
1114 }
1115 }
1116
1117 for (ii = 0; ii < src_l + dst_l; ii++)
1118 vui[ii].pos = vui[ii].pos_src + vui[ii].pos_dst;
1119
1120 qsort (vui, n, sizeof (struct variable_union_info),
1121 variable_union_info_cmp_pos);
1122
1123 /* Reconnect the nodes in sorted order. */
1124 for (ii = 1; ii < n; ii++)
1125 vui[ii - 1].lc->next = vui[ii].lc;
1126 vui[n - 1].lc->next = NULL;
1127
1128 dst->var_part[k].loc_chain = vui[0].lc;
1129 dst->var_part[k].offset = dst->var_part[j].offset;
1130
1131 free (vui);
1132 i--;
1133 j--;
1134 }
1135 else if ((i >= 0 && j >= 0
1136 && src->var_part[i].offset < dst->var_part[j].offset)
1137 || i < 0)
1138 {
1139 dst->var_part[k] = dst->var_part[j];
1140 j--;
1141 }
1142 else if ((i >= 0 && j >= 0
1143 && src->var_part[i].offset > dst->var_part[j].offset)
1144 || j < 0)
1145 {
1146 location_chain *nextp;
1147
1148 /* Copy the chain from SRC. */
1149 nextp = &dst->var_part[k].loc_chain;
1150 for (node = src->var_part[i].loc_chain; node; node = node->next)
1151 {
1152 location_chain new_lc;
1153
1154 new_lc = pool_alloc (loc_chain_pool);
1155 new_lc->next = NULL;
1156 new_lc->loc = node->loc;
1157
1158 *nextp = new_lc;
1159 nextp = &new_lc->next;
1160 }
1161
1162 dst->var_part[k].offset = src->var_part[i].offset;
1163 i--;
1164 }
1165
1166 /* We are at the basic block boundary when computing union
1167 so set the CUR_LOC to be the first element of the chain. */
1168 if (dst->var_part[k].loc_chain)
1169 dst->var_part[k].cur_loc = dst->var_part[k].loc_chain->loc;
1170 else
1171 dst->var_part[k].cur_loc = NULL;
1172 }
1173
1174 /* Continue traversing the hash table. */
1175 return 1;
1176 }
1177
1178 /* Compute union of dataflow sets SRC and DST and store it to DST. */
1179
1180 static void
1181 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
1182 {
1183 int i;
1184
1185 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1186 attrs_list_union (&dst->regs[i], src->regs[i]);
1187
1188 htab_traverse (src->vars, variable_union, dst);
1189 }
1190
1191 /* Flag whether two dataflow sets being compared contain different data. */
1192 static bool
1193 dataflow_set_different_value;
1194
1195 static bool
1196 variable_part_different_p (variable_part *vp1, variable_part *vp2)
1197 {
1198 location_chain lc1, lc2;
1199
1200 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
1201 {
1202 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
1203 {
1204 if (REG_P (lc1->loc) && REG_P (lc2->loc))
1205 {
1206 if (REGNO (lc1->loc) == REGNO (lc2->loc))
1207 break;
1208 }
1209 if (rtx_equal_p (lc1->loc, lc2->loc))
1210 break;
1211 }
1212 if (!lc2)
1213 return true;
1214 }
1215 return false;
1216 }
1217
1218 /* Return true if variables VAR1 and VAR2 are different.
1219 If COMPARE_CURRENT_LOCATION is true compare also the cur_loc of each
1220 variable part. */
1221
1222 static bool
1223 variable_different_p (variable var1, variable var2,
1224 bool compare_current_location)
1225 {
1226 int i;
1227
1228 if (var1 == var2)
1229 return false;
1230
1231 if (var1->n_var_parts != var2->n_var_parts)
1232 return true;
1233
1234 for (i = 0; i < var1->n_var_parts; i++)
1235 {
1236 if (var1->var_part[i].offset != var2->var_part[i].offset)
1237 return true;
1238 if (compare_current_location)
1239 {
1240 if (!((REG_P (var1->var_part[i].cur_loc)
1241 && REG_P (var2->var_part[i].cur_loc)
1242 && (REGNO (var1->var_part[i].cur_loc)
1243 == REGNO (var2->var_part[i].cur_loc)))
1244 || rtx_equal_p (var1->var_part[i].cur_loc,
1245 var2->var_part[i].cur_loc)))
1246 return true;
1247 }
1248 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
1249 return true;
1250 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
1251 return true;
1252 }
1253 return false;
1254 }
1255
1256 /* Compare variable *SLOT with the same variable in hash table DATA
1257 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1258
1259 static int
1260 dataflow_set_different_1 (void **slot, void *data)
1261 {
1262 htab_t htab = (htab_t) data;
1263 variable var1, var2;
1264
1265 var1 = *(variable *) slot;
1266 var2 = htab_find_with_hash (htab, var1->decl,
1267 VARIABLE_HASH_VAL (var1->decl));
1268 if (!var2)
1269 {
1270 dataflow_set_different_value = true;
1271
1272 /* Stop traversing the hash table. */
1273 return 0;
1274 }
1275
1276 if (variable_different_p (var1, var2, false))
1277 {
1278 dataflow_set_different_value = true;
1279
1280 /* Stop traversing the hash table. */
1281 return 0;
1282 }
1283
1284 /* Continue traversing the hash table. */
1285 return 1;
1286 }
1287
1288 /* Compare variable *SLOT with the same variable in hash table DATA
1289 and set DATAFLOW_SET_DIFFERENT_VALUE if they are different. */
1290
1291 static int
1292 dataflow_set_different_2 (void **slot, void *data)
1293 {
1294 htab_t htab = (htab_t) data;
1295 variable var1, var2;
1296
1297 var1 = *(variable *) slot;
1298 var2 = htab_find_with_hash (htab, var1->decl,
1299 VARIABLE_HASH_VAL (var1->decl));
1300 if (!var2)
1301 {
1302 dataflow_set_different_value = true;
1303
1304 /* Stop traversing the hash table. */
1305 return 0;
1306 }
1307
1308 /* If both variables are defined they have been already checked for
1309 equivalence. */
1310 gcc_assert (!variable_different_p (var1, var2, false));
1311
1312 /* Continue traversing the hash table. */
1313 return 1;
1314 }
1315
1316 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
1317
1318 static bool
1319 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
1320 {
1321 dataflow_set_different_value = false;
1322
1323 htab_traverse (old_set->vars, dataflow_set_different_1, new_set->vars);
1324 if (!dataflow_set_different_value)
1325 {
1326 /* We have compared the variables which are in both hash tables
1327 so now only check whether there are some variables in NEW_SET->VARS
1328 which are not in OLD_SET->VARS. */
1329 htab_traverse (new_set->vars, dataflow_set_different_2, old_set->vars);
1330 }
1331 return dataflow_set_different_value;
1332 }
1333
1334 /* Free the contents of dataflow set SET. */
1335
1336 static void
1337 dataflow_set_destroy (dataflow_set *set)
1338 {
1339 int i;
1340
1341 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1342 attrs_list_clear (&set->regs[i]);
1343
1344 htab_delete (set->vars);
1345 set->vars = NULL;
1346 }
1347
1348 /* Return true if RTL X contains a SYMBOL_REF. */
1349
1350 static bool
1351 contains_symbol_ref (rtx x)
1352 {
1353 const char *fmt;
1354 RTX_CODE code;
1355 int i;
1356
1357 if (!x)
1358 return false;
1359
1360 code = GET_CODE (x);
1361 if (code == SYMBOL_REF)
1362 return true;
1363
1364 fmt = GET_RTX_FORMAT (code);
1365 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
1366 {
1367 if (fmt[i] == 'e')
1368 {
1369 if (contains_symbol_ref (XEXP (x, i)))
1370 return true;
1371 }
1372 else if (fmt[i] == 'E')
1373 {
1374 int j;
1375 for (j = 0; j < XVECLEN (x, i); j++)
1376 if (contains_symbol_ref (XVECEXP (x, i, j)))
1377 return true;
1378 }
1379 }
1380
1381 return false;
1382 }
1383
1384 /* Shall EXPR be tracked? */
1385
1386 static bool
1387 track_expr_p (tree expr)
1388 {
1389 rtx decl_rtl;
1390 tree realdecl;
1391
1392 /* If EXPR is not a parameter or a variable do not track it. */
1393 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
1394 return 0;
1395
1396 /* It also must have a name... */
1397 if (!DECL_NAME (expr))
1398 return 0;
1399
1400 /* ... and a RTL assigned to it. */
1401 decl_rtl = DECL_RTL_IF_SET (expr);
1402 if (!decl_rtl)
1403 return 0;
1404
1405 /* If this expression is really a debug alias of some other declaration, we
1406 don't need to track this expression if the ultimate declaration is
1407 ignored. */
1408 realdecl = expr;
1409 if (DECL_DEBUG_EXPR_IS_FROM (realdecl) && DECL_DEBUG_EXPR (realdecl))
1410 {
1411 realdecl = DECL_DEBUG_EXPR (realdecl);
1412 /* ??? We don't yet know how to emit DW_OP_piece for variable
1413 that has been SRA'ed. */
1414 if (!DECL_P (realdecl))
1415 return 0;
1416 }
1417
1418 /* Do not track EXPR if REALDECL it should be ignored for debugging
1419 purposes. */
1420 if (DECL_IGNORED_P (realdecl))
1421 return 0;
1422
1423 /* Do not track global variables until we are able to emit correct location
1424 list for them. */
1425 if (TREE_STATIC (realdecl))
1426 return 0;
1427
1428 /* When the EXPR is a DECL for alias of some variable (see example)
1429 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
1430 DECL_RTL contains SYMBOL_REF.
1431
1432 Example:
1433 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
1434 char **_dl_argv;
1435 */
1436 if (MEM_P (decl_rtl)
1437 && contains_symbol_ref (XEXP (decl_rtl, 0)))
1438 return 0;
1439
1440 /* If RTX is a memory it should not be very large (because it would be
1441 an array or struct). */
1442 if (MEM_P (decl_rtl))
1443 {
1444 /* Do not track structures and arrays. */
1445 if (GET_MODE (decl_rtl) == BLKmode)
1446 return 0;
1447 if (MEM_SIZE (decl_rtl)
1448 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
1449 return 0;
1450 }
1451
1452 return 1;
1453 }
1454
1455 /* Count uses (register and memory references) LOC which will be tracked.
1456 INSN is instruction which the LOC is part of. */
1457
1458 static int
1459 count_uses (rtx *loc, void *insn)
1460 {
1461 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1462
1463 if (REG_P (*loc))
1464 {
1465 gcc_assert (REGNO (*loc) < FIRST_PSEUDO_REGISTER);
1466 VTI (bb)->n_mos++;
1467 }
1468 else if (MEM_P (*loc)
1469 && MEM_EXPR (*loc)
1470 && track_expr_p (MEM_EXPR (*loc)))
1471 {
1472 VTI (bb)->n_mos++;
1473 }
1474
1475 return 0;
1476 }
1477
1478 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1479
1480 static void
1481 count_uses_1 (rtx *x, void *insn)
1482 {
1483 for_each_rtx (x, count_uses, insn);
1484 }
1485
1486 /* Count stores (register and memory references) LOC which will be tracked.
1487 INSN is instruction which the LOC is part of. */
1488
1489 static void
1490 count_stores (rtx loc, rtx expr ATTRIBUTE_UNUSED, void *insn)
1491 {
1492 count_uses (&loc, insn);
1493 }
1494
1495 /* Add uses (register and memory references) LOC which will be tracked
1496 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
1497
1498 static int
1499 add_uses (rtx *loc, void *insn)
1500 {
1501 if (REG_P (*loc))
1502 {
1503 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1504 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1505
1506 mo->type = ((REG_EXPR (*loc) && track_expr_p (REG_EXPR (*loc)))
1507 ? MO_USE : MO_USE_NO_VAR);
1508 mo->u.loc = *loc;
1509 mo->insn = (rtx) insn;
1510 }
1511 else if (MEM_P (*loc)
1512 && MEM_EXPR (*loc)
1513 && track_expr_p (MEM_EXPR (*loc)))
1514 {
1515 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1516 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1517
1518 mo->type = MO_USE;
1519 mo->u.loc = *loc;
1520 mo->insn = (rtx) insn;
1521 }
1522
1523 return 0;
1524 }
1525
1526 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
1527
1528 static void
1529 add_uses_1 (rtx *x, void *insn)
1530 {
1531 for_each_rtx (x, add_uses, insn);
1532 }
1533
1534 /* Add stores (register and memory references) LOC which will be tracked
1535 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
1536 INSN is instruction which the LOC is part of. */
1537
1538 static void
1539 add_stores (rtx loc, rtx expr, void *insn)
1540 {
1541 if (REG_P (loc))
1542 {
1543 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1544 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1545
1546 mo->type = ((GET_CODE (expr) != CLOBBER && REG_EXPR (loc)
1547 && track_expr_p (REG_EXPR (loc)))
1548 ? MO_SET : MO_CLOBBER);
1549 mo->u.loc = loc;
1550 mo->insn = (rtx) insn;
1551 }
1552 else if (MEM_P (loc)
1553 && MEM_EXPR (loc)
1554 && track_expr_p (MEM_EXPR (loc)))
1555 {
1556 basic_block bb = BLOCK_FOR_INSN ((rtx) insn);
1557 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
1558
1559 mo->type = GET_CODE (expr) == CLOBBER ? MO_CLOBBER : MO_SET;
1560 mo->u.loc = loc;
1561 mo->insn = (rtx) insn;
1562 }
1563 }
1564
1565 /* Compute the changes of variable locations in the basic block BB. */
1566
1567 static bool
1568 compute_bb_dataflow (basic_block bb)
1569 {
1570 int i, n, r;
1571 bool changed;
1572 dataflow_set old_out;
1573 dataflow_set *in = &VTI (bb)->in;
1574 dataflow_set *out = &VTI (bb)->out;
1575
1576 dataflow_set_init (&old_out, htab_elements (VTI (bb)->out.vars) + 3);
1577 dataflow_set_copy (&old_out, out);
1578 dataflow_set_copy (out, in);
1579
1580 n = VTI (bb)->n_mos;
1581 for (i = 0; i < n; i++)
1582 {
1583 switch (VTI (bb)->mos[i].type)
1584 {
1585 case MO_CALL:
1586 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
1587 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
1588 var_regno_delete (out, r);
1589 break;
1590
1591 case MO_USE:
1592 case MO_SET:
1593 {
1594 rtx loc = VTI (bb)->mos[i].u.loc;
1595
1596 if (REG_P (loc))
1597 var_reg_delete_and_set (out, loc);
1598 else if (MEM_P (loc))
1599 var_mem_delete_and_set (out, loc);
1600 }
1601 break;
1602
1603 case MO_USE_NO_VAR:
1604 case MO_CLOBBER:
1605 {
1606 rtx loc = VTI (bb)->mos[i].u.loc;
1607
1608 if (REG_P (loc))
1609 var_reg_delete (out, loc);
1610 else if (MEM_P (loc))
1611 var_mem_delete (out, loc);
1612 }
1613 break;
1614
1615 case MO_ADJUST:
1616 out->stack_adjust += VTI (bb)->mos[i].u.adjust;
1617 break;
1618 }
1619 }
1620
1621 changed = dataflow_set_different (&old_out, out);
1622 dataflow_set_destroy (&old_out);
1623 return changed;
1624 }
1625
1626 /* Find the locations of variables in the whole function. */
1627
1628 static void
1629 vt_find_locations (void)
1630 {
1631 fibheap_t worklist, pending, fibheap_swap;
1632 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
1633 basic_block bb;
1634 edge e;
1635 int *bb_order;
1636 int *rc_order;
1637 int i;
1638
1639 /* Compute reverse completion order of depth first search of the CFG
1640 so that the data-flow runs faster. */
1641 rc_order = xmalloc (n_basic_blocks * sizeof (int));
1642 bb_order = xmalloc (last_basic_block * sizeof (int));
1643 flow_depth_first_order_compute (NULL, rc_order);
1644 for (i = 0; i < n_basic_blocks; i++)
1645 bb_order[rc_order[i]] = i;
1646 free (rc_order);
1647
1648 worklist = fibheap_new ();
1649 pending = fibheap_new ();
1650 visited = sbitmap_alloc (last_basic_block);
1651 in_worklist = sbitmap_alloc (last_basic_block);
1652 in_pending = sbitmap_alloc (last_basic_block);
1653 sbitmap_zero (in_worklist);
1654
1655 FOR_EACH_BB (bb)
1656 fibheap_insert (pending, bb_order[bb->index], bb);
1657 sbitmap_ones (in_pending);
1658
1659 while (!fibheap_empty (pending))
1660 {
1661 fibheap_swap = pending;
1662 pending = worklist;
1663 worklist = fibheap_swap;
1664 sbitmap_swap = in_pending;
1665 in_pending = in_worklist;
1666 in_worklist = sbitmap_swap;
1667
1668 sbitmap_zero (visited);
1669
1670 while (!fibheap_empty (worklist))
1671 {
1672 bb = fibheap_extract_min (worklist);
1673 RESET_BIT (in_worklist, bb->index);
1674 if (!TEST_BIT (visited, bb->index))
1675 {
1676 bool changed;
1677 edge_iterator ei;
1678
1679 SET_BIT (visited, bb->index);
1680
1681 /* Calculate the IN set as union of predecessor OUT sets. */
1682 dataflow_set_clear (&VTI (bb)->in);
1683 FOR_EACH_EDGE (e, ei, bb->preds)
1684 {
1685 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
1686 }
1687
1688 changed = compute_bb_dataflow (bb);
1689 if (changed)
1690 {
1691 FOR_EACH_EDGE (e, ei, bb->succs)
1692 {
1693 if (e->dest == EXIT_BLOCK_PTR)
1694 continue;
1695
1696 if (e->dest == bb)
1697 continue;
1698
1699 if (TEST_BIT (visited, e->dest->index))
1700 {
1701 if (!TEST_BIT (in_pending, e->dest->index))
1702 {
1703 /* Send E->DEST to next round. */
1704 SET_BIT (in_pending, e->dest->index);
1705 fibheap_insert (pending,
1706 bb_order[e->dest->index],
1707 e->dest);
1708 }
1709 }
1710 else if (!TEST_BIT (in_worklist, e->dest->index))
1711 {
1712 /* Add E->DEST to current round. */
1713 SET_BIT (in_worklist, e->dest->index);
1714 fibheap_insert (worklist, bb_order[e->dest->index],
1715 e->dest);
1716 }
1717 }
1718 }
1719 }
1720 }
1721 }
1722
1723 free (bb_order);
1724 fibheap_delete (worklist);
1725 fibheap_delete (pending);
1726 sbitmap_free (visited);
1727 sbitmap_free (in_worklist);
1728 sbitmap_free (in_pending);
1729 }
1730
1731 /* Print the content of the LIST to dump file. */
1732
1733 static void
1734 dump_attrs_list (attrs list)
1735 {
1736 for (; list; list = list->next)
1737 {
1738 print_mem_expr (dump_file, list->decl);
1739 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
1740 }
1741 fprintf (dump_file, "\n");
1742 }
1743
1744 /* Print the information about variable *SLOT to dump file. */
1745
1746 static int
1747 dump_variable (void **slot, void *data ATTRIBUTE_UNUSED)
1748 {
1749 variable var = *(variable *) slot;
1750 int i;
1751 location_chain node;
1752
1753 fprintf (dump_file, " name: %s\n",
1754 IDENTIFIER_POINTER (DECL_NAME (var->decl)));
1755 for (i = 0; i < var->n_var_parts; i++)
1756 {
1757 fprintf (dump_file, " offset %ld\n",
1758 (long) var->var_part[i].offset);
1759 for (node = var->var_part[i].loc_chain; node; node = node->next)
1760 {
1761 fprintf (dump_file, " ");
1762 print_rtl_single (dump_file, node->loc);
1763 }
1764 }
1765
1766 /* Continue traversing the hash table. */
1767 return 1;
1768 }
1769
1770 /* Print the information about variables from hash table VARS to dump file. */
1771
1772 static void
1773 dump_vars (htab_t vars)
1774 {
1775 if (htab_elements (vars) > 0)
1776 {
1777 fprintf (dump_file, "Variables:\n");
1778 htab_traverse (vars, dump_variable, NULL);
1779 }
1780 }
1781
1782 /* Print the dataflow set SET to dump file. */
1783
1784 static void
1785 dump_dataflow_set (dataflow_set *set)
1786 {
1787 int i;
1788
1789 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
1790 set->stack_adjust);
1791 for (i = 1; i < FIRST_PSEUDO_REGISTER; i++)
1792 {
1793 if (set->regs[i])
1794 {
1795 fprintf (dump_file, "Reg %d:", i);
1796 dump_attrs_list (set->regs[i]);
1797 }
1798 }
1799 dump_vars (set->vars);
1800 fprintf (dump_file, "\n");
1801 }
1802
1803 /* Print the IN and OUT sets for each basic block to dump file. */
1804
1805 static void
1806 dump_dataflow_sets (void)
1807 {
1808 basic_block bb;
1809
1810 FOR_EACH_BB (bb)
1811 {
1812 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
1813 fprintf (dump_file, "IN:\n");
1814 dump_dataflow_set (&VTI (bb)->in);
1815 fprintf (dump_file, "OUT:\n");
1816 dump_dataflow_set (&VTI (bb)->out);
1817 }
1818 }
1819
1820 /* Add variable VAR to the hash table of changed variables and
1821 if it has no locations delete it from hash table HTAB. */
1822
1823 static void
1824 variable_was_changed (variable var, htab_t htab)
1825 {
1826 hashval_t hash = VARIABLE_HASH_VAL (var->decl);
1827
1828 if (emit_notes)
1829 {
1830 variable *slot;
1831
1832 slot = (variable *) htab_find_slot_with_hash (changed_variables,
1833 var->decl, hash, INSERT);
1834
1835 if (htab && var->n_var_parts == 0)
1836 {
1837 variable empty_var;
1838 void **old;
1839
1840 empty_var = pool_alloc (var_pool);
1841 empty_var->decl = var->decl;
1842 empty_var->refcount = 1;
1843 empty_var->n_var_parts = 0;
1844 *slot = empty_var;
1845
1846 old = htab_find_slot_with_hash (htab, var->decl, hash,
1847 NO_INSERT);
1848 if (old)
1849 htab_clear_slot (htab, old);
1850 }
1851 else
1852 {
1853 *slot = var;
1854 }
1855 }
1856 else
1857 {
1858 gcc_assert (htab);
1859 if (var->n_var_parts == 0)
1860 {
1861 void **slot = htab_find_slot_with_hash (htab, var->decl, hash,
1862 NO_INSERT);
1863 if (slot)
1864 htab_clear_slot (htab, slot);
1865 }
1866 }
1867 }
1868
1869 /* Set the part of variable's location in the dataflow set SET. The variable
1870 part is specified by variable's declaration DECL and offset OFFSET and the
1871 part's location by LOC. */
1872
1873 static void
1874 set_variable_part (dataflow_set *set, rtx loc, tree decl, HOST_WIDE_INT offset)
1875 {
1876 int pos, low, high;
1877 location_chain node, next;
1878 location_chain *nextp;
1879 variable var;
1880 void **slot;
1881
1882 slot = htab_find_slot_with_hash (set->vars, decl,
1883 VARIABLE_HASH_VAL (decl), INSERT);
1884 if (!*slot)
1885 {
1886 /* Create new variable information. */
1887 var = pool_alloc (var_pool);
1888 var->decl = decl;
1889 var->refcount = 1;
1890 var->n_var_parts = 1;
1891 var->var_part[0].offset = offset;
1892 var->var_part[0].loc_chain = NULL;
1893 var->var_part[0].cur_loc = NULL;
1894 *slot = var;
1895 pos = 0;
1896 }
1897 else
1898 {
1899 var = (variable) *slot;
1900
1901 /* Find the location part. */
1902 low = 0;
1903 high = var->n_var_parts;
1904 while (low != high)
1905 {
1906 pos = (low + high) / 2;
1907 if (var->var_part[pos].offset < offset)
1908 low = pos + 1;
1909 else
1910 high = pos;
1911 }
1912 pos = low;
1913
1914 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
1915 {
1916 node = var->var_part[pos].loc_chain;
1917
1918 if (node
1919 && ((REG_P (node->loc) && REG_P (loc)
1920 && REGNO (node->loc) == REGNO (loc))
1921 || rtx_equal_p (node->loc, loc)))
1922 {
1923 /* LOC is in the beginning of the chain so we have nothing
1924 to do. */
1925 return;
1926 }
1927 else
1928 {
1929 /* We have to make a copy of a shared variable. */
1930 if (var->refcount > 1)
1931 var = unshare_variable (set, var);
1932 }
1933 }
1934 else
1935 {
1936 /* We have not found the location part, new one will be created. */
1937
1938 /* We have to make a copy of the shared variable. */
1939 if (var->refcount > 1)
1940 var = unshare_variable (set, var);
1941
1942 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
1943 thus there are at most MAX_VAR_PARTS different offsets. */
1944 gcc_assert (var->n_var_parts < MAX_VAR_PARTS);
1945
1946 /* We have to move the elements of array starting at index low to the
1947 next position. */
1948 for (high = var->n_var_parts; high > low; high--)
1949 var->var_part[high] = var->var_part[high - 1];
1950
1951 var->n_var_parts++;
1952 var->var_part[pos].offset = offset;
1953 var->var_part[pos].loc_chain = NULL;
1954 var->var_part[pos].cur_loc = NULL;
1955 }
1956 }
1957
1958 /* Delete the location from the list. */
1959 nextp = &var->var_part[pos].loc_chain;
1960 for (node = var->var_part[pos].loc_chain; node; node = next)
1961 {
1962 next = node->next;
1963 if ((REG_P (node->loc) && REG_P (loc)
1964 && REGNO (node->loc) == REGNO (loc))
1965 || rtx_equal_p (node->loc, loc))
1966 {
1967 pool_free (loc_chain_pool, node);
1968 *nextp = next;
1969 break;
1970 }
1971 else
1972 nextp = &node->next;
1973 }
1974
1975 /* Add the location to the beginning. */
1976 node = pool_alloc (loc_chain_pool);
1977 node->loc = loc;
1978 node->next = var->var_part[pos].loc_chain;
1979 var->var_part[pos].loc_chain = node;
1980
1981 /* If no location was emitted do so. */
1982 if (var->var_part[pos].cur_loc == NULL)
1983 {
1984 var->var_part[pos].cur_loc = loc;
1985 variable_was_changed (var, set->vars);
1986 }
1987 }
1988
1989 /* Delete the part of variable's location from dataflow set SET. The variable
1990 part is specified by variable's declaration DECL and offset OFFSET and the
1991 part's location by LOC. */
1992
1993 static void
1994 delete_variable_part (dataflow_set *set, rtx loc, tree decl,
1995 HOST_WIDE_INT offset)
1996 {
1997 int pos, low, high;
1998 void **slot;
1999
2000 slot = htab_find_slot_with_hash (set->vars, decl, VARIABLE_HASH_VAL (decl),
2001 NO_INSERT);
2002 if (slot)
2003 {
2004 variable var = (variable) *slot;
2005
2006 /* Find the location part. */
2007 low = 0;
2008 high = var->n_var_parts;
2009 while (low != high)
2010 {
2011 pos = (low + high) / 2;
2012 if (var->var_part[pos].offset < offset)
2013 low = pos + 1;
2014 else
2015 high = pos;
2016 }
2017 pos = low;
2018
2019 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
2020 {
2021 location_chain node, next;
2022 location_chain *nextp;
2023 bool changed;
2024
2025 if (var->refcount > 1)
2026 {
2027 /* If the variable contains the location part we have to
2028 make a copy of the variable. */
2029 for (node = var->var_part[pos].loc_chain; node;
2030 node = node->next)
2031 {
2032 if ((REG_P (node->loc) && REG_P (loc)
2033 && REGNO (node->loc) == REGNO (loc))
2034 || rtx_equal_p (node->loc, loc))
2035 {
2036 var = unshare_variable (set, var);
2037 break;
2038 }
2039 }
2040 }
2041
2042 /* Delete the location part. */
2043 nextp = &var->var_part[pos].loc_chain;
2044 for (node = *nextp; node; node = next)
2045 {
2046 next = node->next;
2047 if ((REG_P (node->loc) && REG_P (loc)
2048 && REGNO (node->loc) == REGNO (loc))
2049 || rtx_equal_p (node->loc, loc))
2050 {
2051 pool_free (loc_chain_pool, node);
2052 *nextp = next;
2053 break;
2054 }
2055 else
2056 nextp = &node->next;
2057 }
2058
2059 /* If we have deleted the location which was last emitted
2060 we have to emit new location so add the variable to set
2061 of changed variables. */
2062 if (var->var_part[pos].cur_loc
2063 && ((REG_P (loc)
2064 && REG_P (var->var_part[pos].cur_loc)
2065 && REGNO (loc) == REGNO (var->var_part[pos].cur_loc))
2066 || rtx_equal_p (loc, var->var_part[pos].cur_loc)))
2067 {
2068 changed = true;
2069 if (var->var_part[pos].loc_chain)
2070 var->var_part[pos].cur_loc = var->var_part[pos].loc_chain->loc;
2071 }
2072 else
2073 changed = false;
2074
2075 if (var->var_part[pos].loc_chain == NULL)
2076 {
2077 var->n_var_parts--;
2078 while (pos < var->n_var_parts)
2079 {
2080 var->var_part[pos] = var->var_part[pos + 1];
2081 pos++;
2082 }
2083 }
2084 if (changed)
2085 variable_was_changed (var, set->vars);
2086 }
2087 }
2088 }
2089
2090 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
2091 additional parameters: WHERE specifies whether the note shall be emitted
2092 before of after instruction INSN. */
2093
2094 static int
2095 emit_note_insn_var_location (void **varp, void *data)
2096 {
2097 variable var = *(variable *) varp;
2098 rtx insn = ((emit_note_data *)data)->insn;
2099 enum emit_note_where where = ((emit_note_data *)data)->where;
2100 rtx note;
2101 int i, j, n_var_parts;
2102 bool complete;
2103 HOST_WIDE_INT last_limit;
2104 tree type_size_unit;
2105 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
2106 rtx loc[MAX_VAR_PARTS];
2107
2108 gcc_assert (var->decl);
2109
2110 complete = true;
2111 last_limit = 0;
2112 n_var_parts = 0;
2113 for (i = 0; i < var->n_var_parts; i++)
2114 {
2115 enum machine_mode mode, wider_mode;
2116
2117 if (last_limit < var->var_part[i].offset)
2118 {
2119 complete = false;
2120 break;
2121 }
2122 else if (last_limit > var->var_part[i].offset)
2123 continue;
2124 offsets[n_var_parts] = var->var_part[i].offset;
2125 loc[n_var_parts] = var->var_part[i].loc_chain->loc;
2126 mode = GET_MODE (loc[n_var_parts]);
2127 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2128
2129 /* Attempt to merge adjacent registers or memory. */
2130 wider_mode = GET_MODE_WIDER_MODE (mode);
2131 for (j = i + 1; j < var->n_var_parts; j++)
2132 if (last_limit <= var->var_part[j].offset)
2133 break;
2134 if (j < var->n_var_parts
2135 && wider_mode != VOIDmode
2136 && GET_CODE (loc[n_var_parts])
2137 == GET_CODE (var->var_part[j].loc_chain->loc)
2138 && mode == GET_MODE (var->var_part[j].loc_chain->loc)
2139 && last_limit == var->var_part[j].offset)
2140 {
2141 rtx new_loc = NULL;
2142 rtx loc2 = var->var_part[j].loc_chain->loc;
2143
2144 if (REG_P (loc[n_var_parts])
2145 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
2146 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
2147 && REGNO (loc[n_var_parts])
2148 + hard_regno_nregs[REGNO (loc[n_var_parts])][mode]
2149 == REGNO (loc2))
2150 {
2151 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
2152 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
2153 mode, 0);
2154 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
2155 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
2156 if (new_loc)
2157 {
2158 if (!REG_P (new_loc)
2159 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
2160 new_loc = NULL;
2161 else
2162 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
2163 }
2164 }
2165 else if (MEM_P (loc[n_var_parts])
2166 && GET_CODE (XEXP (loc2, 0)) == PLUS
2167 && GET_CODE (XEXP (XEXP (loc2, 0), 0)) == REG
2168 && GET_CODE (XEXP (XEXP (loc2, 0), 1)) == CONST_INT)
2169 {
2170 if ((GET_CODE (XEXP (loc[n_var_parts], 0)) == REG
2171 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
2172 XEXP (XEXP (loc2, 0), 0))
2173 && INTVAL (XEXP (XEXP (loc2, 0), 1))
2174 == GET_MODE_SIZE (mode))
2175 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
2176 && GET_CODE (XEXP (XEXP (loc[n_var_parts], 0), 1))
2177 == CONST_INT
2178 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
2179 XEXP (XEXP (loc2, 0), 0))
2180 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
2181 + GET_MODE_SIZE (mode)
2182 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
2183 new_loc = adjust_address_nv (loc[n_var_parts],
2184 wider_mode, 0);
2185 }
2186
2187 if (new_loc)
2188 {
2189 loc[n_var_parts] = new_loc;
2190 mode = wider_mode;
2191 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
2192 i = j;
2193 }
2194 }
2195 ++n_var_parts;
2196 }
2197 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (var->decl));
2198 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
2199 complete = false;
2200
2201 if (where == EMIT_NOTE_AFTER_INSN)
2202 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
2203 else
2204 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
2205
2206 if (!complete)
2207 {
2208 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2209 NULL_RTX);
2210 }
2211 else if (n_var_parts == 1)
2212 {
2213 rtx expr_list
2214 = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
2215
2216 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2217 expr_list);
2218 }
2219 else if (n_var_parts)
2220 {
2221 rtx parallel;
2222
2223 for (i = 0; i < n_var_parts; i++)
2224 loc[i]
2225 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
2226
2227 parallel = gen_rtx_PARALLEL (VOIDmode,
2228 gen_rtvec_v (n_var_parts, loc));
2229 NOTE_VAR_LOCATION (note) = gen_rtx_VAR_LOCATION (VOIDmode, var->decl,
2230 parallel);
2231 }
2232
2233 htab_clear_slot (changed_variables, varp);
2234
2235 /* When there are no location parts the variable has been already
2236 removed from hash table and a new empty variable was created.
2237 Free the empty variable. */
2238 if (var->n_var_parts == 0)
2239 {
2240 pool_free (var_pool, var);
2241 }
2242
2243 /* Continue traversing the hash table. */
2244 return 1;
2245 }
2246
2247 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
2248 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
2249 shall be emitted before of after instruction INSN. */
2250
2251 static void
2252 emit_notes_for_changes (rtx insn, enum emit_note_where where)
2253 {
2254 emit_note_data data;
2255
2256 data.insn = insn;
2257 data.where = where;
2258 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
2259 }
2260
2261 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
2262 same variable in hash table DATA or is not there at all. */
2263
2264 static int
2265 emit_notes_for_differences_1 (void **slot, void *data)
2266 {
2267 htab_t new_vars = (htab_t) data;
2268 variable old_var, new_var;
2269
2270 old_var = *(variable *) slot;
2271 new_var = htab_find_with_hash (new_vars, old_var->decl,
2272 VARIABLE_HASH_VAL (old_var->decl));
2273
2274 if (!new_var)
2275 {
2276 /* Variable has disappeared. */
2277 variable empty_var;
2278
2279 empty_var = pool_alloc (var_pool);
2280 empty_var->decl = old_var->decl;
2281 empty_var->refcount = 1;
2282 empty_var->n_var_parts = 0;
2283 variable_was_changed (empty_var, NULL);
2284 }
2285 else if (variable_different_p (old_var, new_var, true))
2286 {
2287 variable_was_changed (new_var, NULL);
2288 }
2289
2290 /* Continue traversing the hash table. */
2291 return 1;
2292 }
2293
2294 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
2295 table DATA. */
2296
2297 static int
2298 emit_notes_for_differences_2 (void **slot, void *data)
2299 {
2300 htab_t old_vars = (htab_t) data;
2301 variable old_var, new_var;
2302
2303 new_var = *(variable *) slot;
2304 old_var = htab_find_with_hash (old_vars, new_var->decl,
2305 VARIABLE_HASH_VAL (new_var->decl));
2306 if (!old_var)
2307 {
2308 /* Variable has appeared. */
2309 variable_was_changed (new_var, NULL);
2310 }
2311
2312 /* Continue traversing the hash table. */
2313 return 1;
2314 }
2315
2316 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
2317 NEW_SET. */
2318
2319 static void
2320 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
2321 dataflow_set *new_set)
2322 {
2323 htab_traverse (old_set->vars, emit_notes_for_differences_1, new_set->vars);
2324 htab_traverse (new_set->vars, emit_notes_for_differences_2, old_set->vars);
2325 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2326 }
2327
2328 /* Emit the notes for changes of location parts in the basic block BB. */
2329
2330 static void
2331 emit_notes_in_bb (basic_block bb)
2332 {
2333 int i;
2334 dataflow_set set;
2335
2336 dataflow_set_init (&set, htab_elements (VTI (bb)->in.vars) + 3);
2337 dataflow_set_copy (&set, &VTI (bb)->in);
2338
2339 for (i = 0; i < VTI (bb)->n_mos; i++)
2340 {
2341 rtx insn = VTI (bb)->mos[i].insn;
2342
2343 switch (VTI (bb)->mos[i].type)
2344 {
2345 case MO_CALL:
2346 {
2347 int r;
2348
2349 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
2350 if (TEST_HARD_REG_BIT (call_used_reg_set, r))
2351 {
2352 var_regno_delete (&set, r);
2353 }
2354 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2355 }
2356 break;
2357
2358 case MO_USE:
2359 case MO_SET:
2360 {
2361 rtx loc = VTI (bb)->mos[i].u.loc;
2362
2363 if (REG_P (loc))
2364 var_reg_delete_and_set (&set, loc);
2365 else
2366 var_mem_delete_and_set (&set, loc);
2367
2368 if (VTI (bb)->mos[i].type == MO_USE)
2369 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2370 else
2371 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2372 }
2373 break;
2374
2375 case MO_USE_NO_VAR:
2376 case MO_CLOBBER:
2377 {
2378 rtx loc = VTI (bb)->mos[i].u.loc;
2379
2380 if (REG_P (loc))
2381 var_reg_delete (&set, loc);
2382 else
2383 var_mem_delete (&set, loc);
2384
2385 if (VTI (bb)->mos[i].type == MO_USE_NO_VAR)
2386 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN);
2387 else
2388 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN);
2389 }
2390 break;
2391
2392 case MO_ADJUST:
2393 set.stack_adjust += VTI (bb)->mos[i].u.adjust;
2394 break;
2395 }
2396 }
2397 dataflow_set_destroy (&set);
2398 }
2399
2400 /* Emit notes for the whole function. */
2401
2402 static void
2403 vt_emit_notes (void)
2404 {
2405 basic_block bb;
2406 dataflow_set *last_out;
2407 dataflow_set empty;
2408
2409 gcc_assert (!htab_elements (changed_variables));
2410
2411 /* Enable emitting notes by functions (mainly by set_variable_part and
2412 delete_variable_part). */
2413 emit_notes = true;
2414
2415 dataflow_set_init (&empty, 7);
2416 last_out = &empty;
2417
2418 FOR_EACH_BB (bb)
2419 {
2420 /* Emit the notes for changes of variable locations between two
2421 subsequent basic blocks. */
2422 emit_notes_for_differences (BB_HEAD (bb), last_out, &VTI (bb)->in);
2423
2424 /* Emit the notes for the changes in the basic block itself. */
2425 emit_notes_in_bb (bb);
2426
2427 last_out = &VTI (bb)->out;
2428 }
2429 dataflow_set_destroy (&empty);
2430 emit_notes = false;
2431 }
2432
2433 /* If there is a declaration and offset associated with register/memory RTL
2434 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
2435
2436 static bool
2437 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
2438 {
2439 if (REG_P (rtl))
2440 {
2441 if (REG_ATTRS (rtl))
2442 {
2443 *declp = REG_EXPR (rtl);
2444 *offsetp = REG_OFFSET (rtl);
2445 return true;
2446 }
2447 }
2448 else if (MEM_P (rtl))
2449 {
2450 if (MEM_ATTRS (rtl))
2451 {
2452 *declp = MEM_EXPR (rtl);
2453 *offsetp = MEM_OFFSET (rtl) ? INTVAL (MEM_OFFSET (rtl)) : 0;
2454 return true;
2455 }
2456 }
2457 return false;
2458 }
2459
2460 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
2461
2462 static void
2463 vt_add_function_parameters (void)
2464 {
2465 tree parm;
2466
2467 for (parm = DECL_ARGUMENTS (current_function_decl);
2468 parm; parm = TREE_CHAIN (parm))
2469 {
2470 rtx decl_rtl = DECL_RTL_IF_SET (parm);
2471 rtx incoming = DECL_INCOMING_RTL (parm);
2472 tree decl;
2473 HOST_WIDE_INT offset;
2474 dataflow_set *out;
2475
2476 if (TREE_CODE (parm) != PARM_DECL)
2477 continue;
2478
2479 if (!DECL_NAME (parm))
2480 continue;
2481
2482 if (!decl_rtl || !incoming)
2483 continue;
2484
2485 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
2486 continue;
2487
2488 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
2489 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
2490 continue;
2491
2492 if (!decl)
2493 continue;
2494
2495 gcc_assert (parm == decl);
2496
2497 out = &VTI (ENTRY_BLOCK_PTR)->out;
2498
2499 if (REG_P (incoming))
2500 {
2501 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
2502 attrs_list_insert (&out->regs[REGNO (incoming)],
2503 parm, offset, incoming);
2504 set_variable_part (out, incoming, parm, offset);
2505 }
2506 else if (MEM_P (incoming))
2507 set_variable_part (out, incoming, parm, offset);
2508 }
2509 }
2510
2511 /* Allocate and initialize the data structures for variable tracking
2512 and parse the RTL to get the micro operations. */
2513
2514 static void
2515 vt_initialize (void)
2516 {
2517 basic_block bb;
2518
2519 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
2520
2521 FOR_EACH_BB (bb)
2522 {
2523 rtx insn;
2524 HOST_WIDE_INT pre, post = 0;
2525
2526 /* Count the number of micro operations. */
2527 VTI (bb)->n_mos = 0;
2528 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2529 insn = NEXT_INSN (insn))
2530 {
2531 if (INSN_P (insn))
2532 {
2533 if (!frame_pointer_needed)
2534 {
2535 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2536 if (pre)
2537 VTI (bb)->n_mos++;
2538 if (post)
2539 VTI (bb)->n_mos++;
2540 }
2541 note_uses (&PATTERN (insn), count_uses_1, insn);
2542 note_stores (PATTERN (insn), count_stores, insn);
2543 if (CALL_P (insn))
2544 VTI (bb)->n_mos++;
2545 }
2546 }
2547
2548 /* Add the micro-operations to the array. */
2549 VTI (bb)->mos = xmalloc (VTI (bb)->n_mos
2550 * sizeof (struct micro_operation_def));
2551 VTI (bb)->n_mos = 0;
2552 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
2553 insn = NEXT_INSN (insn))
2554 {
2555 if (INSN_P (insn))
2556 {
2557 int n1, n2;
2558
2559 if (!frame_pointer_needed)
2560 {
2561 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
2562 if (pre)
2563 {
2564 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2565
2566 mo->type = MO_ADJUST;
2567 mo->u.adjust = pre;
2568 mo->insn = insn;
2569 }
2570 }
2571
2572 n1 = VTI (bb)->n_mos;
2573 note_uses (&PATTERN (insn), add_uses_1, insn);
2574 n2 = VTI (bb)->n_mos - 1;
2575
2576 /* Order the MO_USEs to be before MO_USE_NO_VARs. */
2577 while (n1 < n2)
2578 {
2579 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_USE)
2580 n1++;
2581 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_USE_NO_VAR)
2582 n2--;
2583 if (n1 < n2)
2584 {
2585 micro_operation sw;
2586
2587 sw = VTI (bb)->mos[n1];
2588 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2589 VTI (bb)->mos[n2] = sw;
2590 }
2591 }
2592
2593 if (CALL_P (insn))
2594 {
2595 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2596
2597 mo->type = MO_CALL;
2598 mo->insn = insn;
2599 }
2600
2601 n1 = VTI (bb)->n_mos;
2602 note_stores (PATTERN (insn), add_stores, insn);
2603 n2 = VTI (bb)->n_mos - 1;
2604
2605 /* Order the MO_SETs to be before MO_CLOBBERs. */
2606 while (n1 < n2)
2607 {
2608 while (n1 < n2 && VTI (bb)->mos[n1].type == MO_SET)
2609 n1++;
2610 while (n1 < n2 && VTI (bb)->mos[n2].type == MO_CLOBBER)
2611 n2--;
2612 if (n1 < n2)
2613 {
2614 micro_operation sw;
2615
2616 sw = VTI (bb)->mos[n1];
2617 VTI (bb)->mos[n1] = VTI (bb)->mos[n2];
2618 VTI (bb)->mos[n2] = sw;
2619 }
2620 }
2621
2622 if (!frame_pointer_needed && post)
2623 {
2624 micro_operation *mo = VTI (bb)->mos + VTI (bb)->n_mos++;
2625
2626 mo->type = MO_ADJUST;
2627 mo->u.adjust = post;
2628 mo->insn = insn;
2629 }
2630 }
2631 }
2632 }
2633
2634 /* Init the IN and OUT sets. */
2635 FOR_ALL_BB (bb)
2636 {
2637 VTI (bb)->visited = false;
2638 dataflow_set_init (&VTI (bb)->in, 7);
2639 dataflow_set_init (&VTI (bb)->out, 7);
2640 }
2641
2642 attrs_pool = create_alloc_pool ("attrs_def pool",
2643 sizeof (struct attrs_def), 1024);
2644 var_pool = create_alloc_pool ("variable_def pool",
2645 sizeof (struct variable_def), 64);
2646 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
2647 sizeof (struct location_chain_def),
2648 1024);
2649 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
2650 NULL);
2651 vt_add_function_parameters ();
2652 }
2653
2654 /* Free the data structures needed for variable tracking. */
2655
2656 static void
2657 vt_finalize (void)
2658 {
2659 basic_block bb;
2660
2661 FOR_EACH_BB (bb)
2662 {
2663 free (VTI (bb)->mos);
2664 }
2665
2666 FOR_ALL_BB (bb)
2667 {
2668 dataflow_set_destroy (&VTI (bb)->in);
2669 dataflow_set_destroy (&VTI (bb)->out);
2670 }
2671 free_aux_for_blocks ();
2672 free_alloc_pool (attrs_pool);
2673 free_alloc_pool (var_pool);
2674 free_alloc_pool (loc_chain_pool);
2675 htab_delete (changed_variables);
2676 }
2677
2678 /* The entry point to variable tracking pass. */
2679
2680 void
2681 variable_tracking_main (void)
2682 {
2683 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
2684 return;
2685
2686 mark_dfs_back_edges ();
2687 vt_initialize ();
2688 if (!frame_pointer_needed)
2689 {
2690 if (!vt_stack_adjustments ())
2691 {
2692 vt_finalize ();
2693 return;
2694 }
2695 }
2696
2697 vt_find_locations ();
2698 vt_emit_notes ();
2699
2700 if (dump_file)
2701 {
2702 dump_dataflow_sets ();
2703 dump_flow_info (dump_file);
2704 }
2705
2706 vt_finalize ();
2707 }
2708 \f
2709 static bool
2710 gate_handle_var_tracking (void)
2711 {
2712 return (flag_var_tracking);
2713 }
2714
2715
2716
2717 struct tree_opt_pass pass_variable_tracking =
2718 {
2719 "vartrack", /* name */
2720 gate_handle_var_tracking, /* gate */
2721 variable_tracking_main, /* execute */
2722 NULL, /* sub */
2723 NULL, /* next */
2724 0, /* static_pass_number */
2725 TV_VAR_TRACKING, /* tv_id */
2726 0, /* properties_required */
2727 0, /* properties_provided */
2728 0, /* properties_destroyed */
2729 0, /* todo_flags_start */
2730 TODO_dump_func, /* todo_flags_finish */
2731 'V' /* letter */
2732 };
2733