var-tracking.c: Use rtx_insn
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "hash-map.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx_insn *insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
246 {
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
259
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
262 {
263 /* Next element in the chain. */
264 struct location_chain_def *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
332 {
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
365
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
390
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
393
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
396
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
398
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
405
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
412
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
417
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
432
433
434
435 typedef unsigned int dvuid;
436
437 /* Return the uid of DV. */
438
439 static inline dvuid
440 dv_uid (decl_or_value dv)
441 {
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
446 }
447
448 /* Compute the hash from the uid. */
449
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
452 {
453 return uid;
454 }
455
456 /* The hash function for a mask table in a shared_htab chain. */
457
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
460 {
461 return dv_uid2hash (dv_uid (dv));
462 }
463
464 static void variable_htab_free (void *);
465
466 /* Variable hashtable helpers. */
467
468 struct variable_hasher
469 {
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
475 };
476
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
479
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
482 {
483 return dv_htab_hash (v->dv);
484 }
485
486 /* Compare the declaration of variable X with declaration Y. */
487
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
490 {
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
492
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
494 }
495
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
497
498 inline void
499 variable_hasher::remove (value_type *var)
500 {
501 variable_htab_free (var);
502 }
503
504 typedef hash_table<variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
506
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
510 {
511 /* The instruction which the note will be emitted before/after. */
512 rtx_insn *insn;
513
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
516
517 /* The variables and values active at this point. */
518 variable_table_type *vars;
519 } emit_note_data;
520
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
524 {
525 /* Reference count. */
526 int refcount;
527
528 /* Actual hash table. */
529 variable_table_type *htab;
530 } *shared_hash;
531
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
534 {
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
537
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
540
541 /* Variable locations. */
542 shared_hash vars;
543
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
547
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
551 {
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
554
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
558
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
564
565 /* Has the block been visited in DFS? */
566 bool visited;
567
568 /* Has the block been flooded in VTA? */
569 bool flooded;
570
571 } *variable_tracking_info;
572
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
575
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
578
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
581
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
584
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
587
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
590
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type *changed_variables;
593
594 /* Shall notes be emitted? */
595 static bool emit_notes;
596
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type *dropped_values;
601
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
604
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
607
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
613
614
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
618
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
621
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx_insn *, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
628
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
635
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type *, variable_table_type *);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
649
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type *);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
663
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
672
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type *);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
678
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
697
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
702
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
706
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
710 {
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
714
715 if (dest == stack_pointer_rtx)
716 {
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
723
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
728 }
729 else if (MEM_P (dest))
730 {
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
734
735 switch (code)
736 {
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
740 {
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
745
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
751 }
752 return;
753
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
756 {
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
759 }
760 return;
761
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
764 {
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
767 }
768 return;
769
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
772 {
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
775 }
776 return;
777
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
780 {
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
783 }
784 return;
785
786 default:
787 return;
788 }
789 }
790 }
791
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
794
795 static void
796 insn_stack_adjust_offset_pre_post (rtx_insn *insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
798 {
799 rtx pattern;
800
801 *pre = 0;
802 *post = 0;
803
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
806 {
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
810 }
811
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
816 {
817 int i;
818
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
824 }
825 }
826
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
830
831 static bool
832 vt_stack_adjustments (void)
833 {
834 edge_iterator *stack;
835 int sp;
836
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
843
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
847
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
850
851 while (sp)
852 {
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
856
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
861
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
864 {
865 rtx_insn *insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
869
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
875 {
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
878 }
879
880 VTI (dest)->out.stack_adjust = offset;
881
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
886 }
887 else
888 {
889 /* We can end up with different stack adjustments for the exit block
890 of a shrink-wrapped function if stack_adjust_offset_pre_post
891 doesn't understand the rtx pattern used to restore the stack
892 pointer in the epilogue. For example, on s390(x), the stack
893 pointer is often restored via a load-multiple instruction
894 and so no stack_adjust offset is recorded for it. This means
895 that the stack offset at the end of the epilogue block is the
896 the same as the offset before the epilogue, whereas other paths
897 to the exit block will have the correct stack_adjust.
898
899 It is safe to ignore these differences because (a) we never
900 use the stack_adjust for the exit block in this pass and
901 (b) dwarf2cfi checks whether the CFA notes in a shrink-wrapped
902 function are correct.
903
904 We must check whether the adjustments on other edges are
905 the same though. */
906 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun)
907 && VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
908 {
909 free (stack);
910 return false;
911 }
912
913 if (! ei_one_before_end_p (ei))
914 /* Go to the next edge. */
915 ei_next (&stack[sp - 1]);
916 else
917 /* Return to previous level if there are no more edges. */
918 sp--;
919 }
920 }
921
922 free (stack);
923 return true;
924 }
925
926 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
927 hard_frame_pointer_rtx is being mapped to it and offset for it. */
928 static rtx cfa_base_rtx;
929 static HOST_WIDE_INT cfa_base_offset;
930
931 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
932 or hard_frame_pointer_rtx. */
933
934 static inline rtx
935 compute_cfa_pointer (HOST_WIDE_INT adjustment)
936 {
937 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
938 }
939
940 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
941 or -1 if the replacement shouldn't be done. */
942 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
943
944 /* Data for adjust_mems callback. */
945
946 struct adjust_mem_data
947 {
948 bool store;
949 enum machine_mode mem_mode;
950 HOST_WIDE_INT stack_adjust;
951 rtx side_effects;
952 };
953
954 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
955 transformation of wider mode arithmetics to narrower mode,
956 -1 if it is suitable and subexpressions shouldn't be
957 traversed and 0 if it is suitable and subexpressions should
958 be traversed. Called through for_each_rtx. */
959
960 static int
961 use_narrower_mode_test (rtx *loc, void *data)
962 {
963 rtx subreg = (rtx) data;
964
965 if (CONSTANT_P (*loc))
966 return -1;
967 switch (GET_CODE (*loc))
968 {
969 case REG:
970 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
971 return 1;
972 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
973 *loc, subreg_lowpart_offset (GET_MODE (subreg),
974 GET_MODE (*loc))))
975 return 1;
976 return -1;
977 case PLUS:
978 case MINUS:
979 case MULT:
980 return 0;
981 case ASHIFT:
982 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
983 return 1;
984 else
985 return -1;
986 default:
987 return 1;
988 }
989 }
990
991 /* Transform X into narrower mode MODE from wider mode WMODE. */
992
993 static rtx
994 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
995 {
996 rtx op0, op1;
997 if (CONSTANT_P (x))
998 return lowpart_subreg (mode, x, wmode);
999 switch (GET_CODE (x))
1000 {
1001 case REG:
1002 return lowpart_subreg (mode, x, wmode);
1003 case PLUS:
1004 case MINUS:
1005 case MULT:
1006 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1007 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
1008 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
1009 case ASHIFT:
1010 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
1011 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
1012 default:
1013 gcc_unreachable ();
1014 }
1015 }
1016
1017 /* Helper function for adjusting used MEMs. */
1018
1019 static rtx
1020 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1021 {
1022 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1023 rtx mem, addr = loc, tem;
1024 enum machine_mode mem_mode_save;
1025 bool store_save;
1026 switch (GET_CODE (loc))
1027 {
1028 case REG:
1029 /* Don't do any sp or fp replacements outside of MEM addresses
1030 on the LHS. */
1031 if (amd->mem_mode == VOIDmode && amd->store)
1032 return loc;
1033 if (loc == stack_pointer_rtx
1034 && !frame_pointer_needed
1035 && cfa_base_rtx)
1036 return compute_cfa_pointer (amd->stack_adjust);
1037 else if (loc == hard_frame_pointer_rtx
1038 && frame_pointer_needed
1039 && hard_frame_pointer_adjustment != -1
1040 && cfa_base_rtx)
1041 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1042 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1043 return loc;
1044 case MEM:
1045 mem = loc;
1046 if (!amd->store)
1047 {
1048 mem = targetm.delegitimize_address (mem);
1049 if (mem != loc && !MEM_P (mem))
1050 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1051 }
1052
1053 addr = XEXP (mem, 0);
1054 mem_mode_save = amd->mem_mode;
1055 amd->mem_mode = GET_MODE (mem);
1056 store_save = amd->store;
1057 amd->store = false;
1058 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1059 amd->store = store_save;
1060 amd->mem_mode = mem_mode_save;
1061 if (mem == loc)
1062 addr = targetm.delegitimize_address (addr);
1063 if (addr != XEXP (mem, 0))
1064 mem = replace_equiv_address_nv (mem, addr);
1065 if (!amd->store)
1066 mem = avoid_constant_pool_reference (mem);
1067 return mem;
1068 case PRE_INC:
1069 case PRE_DEC:
1070 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1071 gen_int_mode (GET_CODE (loc) == PRE_INC
1072 ? GET_MODE_SIZE (amd->mem_mode)
1073 : -GET_MODE_SIZE (amd->mem_mode),
1074 GET_MODE (loc)));
1075 case POST_INC:
1076 case POST_DEC:
1077 if (addr == loc)
1078 addr = XEXP (loc, 0);
1079 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1080 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1081 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1082 gen_int_mode ((GET_CODE (loc) == PRE_INC
1083 || GET_CODE (loc) == POST_INC)
1084 ? GET_MODE_SIZE (amd->mem_mode)
1085 : -GET_MODE_SIZE (amd->mem_mode),
1086 GET_MODE (loc)));
1087 store_save = amd->store;
1088 amd->store = false;
1089 tem = simplify_replace_fn_rtx (tem, old_rtx, adjust_mems, data);
1090 amd->store = store_save;
1091 amd->side_effects = alloc_EXPR_LIST (0,
1092 gen_rtx_SET (VOIDmode,
1093 XEXP (loc, 0), tem),
1094 amd->side_effects);
1095 return addr;
1096 case PRE_MODIFY:
1097 addr = XEXP (loc, 1);
1098 case POST_MODIFY:
1099 if (addr == loc)
1100 addr = XEXP (loc, 0);
1101 gcc_assert (amd->mem_mode != VOIDmode);
1102 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1103 store_save = amd->store;
1104 amd->store = false;
1105 tem = simplify_replace_fn_rtx (XEXP (loc, 1), old_rtx,
1106 adjust_mems, data);
1107 amd->store = store_save;
1108 amd->side_effects = alloc_EXPR_LIST (0,
1109 gen_rtx_SET (VOIDmode,
1110 XEXP (loc, 0), tem),
1111 amd->side_effects);
1112 return addr;
1113 case SUBREG:
1114 /* First try without delegitimization of whole MEMs and
1115 avoid_constant_pool_reference, which is more likely to succeed. */
1116 store_save = amd->store;
1117 amd->store = true;
1118 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1119 data);
1120 amd->store = store_save;
1121 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1122 if (mem == SUBREG_REG (loc))
1123 {
1124 tem = loc;
1125 goto finish_subreg;
1126 }
1127 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1128 GET_MODE (SUBREG_REG (loc)),
1129 SUBREG_BYTE (loc));
1130 if (tem)
1131 goto finish_subreg;
1132 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1133 GET_MODE (SUBREG_REG (loc)),
1134 SUBREG_BYTE (loc));
1135 if (tem == NULL_RTX)
1136 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1137 finish_subreg:
1138 if (MAY_HAVE_DEBUG_INSNS
1139 && GET_CODE (tem) == SUBREG
1140 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1141 || GET_CODE (SUBREG_REG (tem)) == MINUS
1142 || GET_CODE (SUBREG_REG (tem)) == MULT
1143 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1144 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1145 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1146 && GET_MODE_SIZE (GET_MODE (tem))
1147 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1148 && subreg_lowpart_p (tem)
1149 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1150 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1151 GET_MODE (SUBREG_REG (tem)));
1152 return tem;
1153 case ASM_OPERANDS:
1154 /* Don't do any replacements in second and following
1155 ASM_OPERANDS of inline-asm with multiple sets.
1156 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1157 and ASM_OPERANDS_LABEL_VEC need to be equal between
1158 all the ASM_OPERANDs in the insn and adjust_insn will
1159 fix this up. */
1160 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1161 return loc;
1162 break;
1163 default:
1164 break;
1165 }
1166 return NULL_RTX;
1167 }
1168
1169 /* Helper function for replacement of uses. */
1170
1171 static void
1172 adjust_mem_uses (rtx *x, void *data)
1173 {
1174 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1175 if (new_x != *x)
1176 validate_change (NULL_RTX, x, new_x, true);
1177 }
1178
1179 /* Helper function for replacement of stores. */
1180
1181 static void
1182 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1183 {
1184 if (MEM_P (loc))
1185 {
1186 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1187 adjust_mems, data);
1188 if (new_dest != SET_DEST (expr))
1189 {
1190 rtx xexpr = CONST_CAST_RTX (expr);
1191 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1192 }
1193 }
1194 }
1195
1196 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1197 replace them with their value in the insn and add the side-effects
1198 as other sets to the insn. */
1199
1200 static void
1201 adjust_insn (basic_block bb, rtx_insn *insn)
1202 {
1203 struct adjust_mem_data amd;
1204 rtx set;
1205
1206 #ifdef HAVE_window_save
1207 /* If the target machine has an explicit window save instruction, the
1208 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1209 if (RTX_FRAME_RELATED_P (insn)
1210 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1211 {
1212 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1213 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1214 parm_reg_t *p;
1215
1216 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1217 {
1218 XVECEXP (rtl, 0, i * 2)
1219 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1220 /* Do not clobber the attached DECL, but only the REG. */
1221 XVECEXP (rtl, 0, i * 2 + 1)
1222 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1223 gen_raw_REG (GET_MODE (p->outgoing),
1224 REGNO (p->outgoing)));
1225 }
1226
1227 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1228 return;
1229 }
1230 #endif
1231
1232 amd.mem_mode = VOIDmode;
1233 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1234 amd.side_effects = NULL_RTX;
1235
1236 amd.store = true;
1237 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1238
1239 amd.store = false;
1240 if (GET_CODE (PATTERN (insn)) == PARALLEL
1241 && asm_noperands (PATTERN (insn)) > 0
1242 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1243 {
1244 rtx body, set0;
1245 int i;
1246
1247 /* inline-asm with multiple sets is tiny bit more complicated,
1248 because the 3 vectors in ASM_OPERANDS need to be shared between
1249 all ASM_OPERANDS in the instruction. adjust_mems will
1250 not touch ASM_OPERANDS other than the first one, asm_noperands
1251 test above needs to be called before that (otherwise it would fail)
1252 and afterwards this code fixes it up. */
1253 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1254 body = PATTERN (insn);
1255 set0 = XVECEXP (body, 0, 0);
1256 gcc_checking_assert (GET_CODE (set0) == SET
1257 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1258 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1259 for (i = 1; i < XVECLEN (body, 0); i++)
1260 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1261 break;
1262 else
1263 {
1264 set = XVECEXP (body, 0, i);
1265 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1266 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1267 == i);
1268 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1269 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1270 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1271 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1272 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1273 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1274 {
1275 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1276 ASM_OPERANDS_INPUT_VEC (newsrc)
1277 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1278 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1279 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1280 ASM_OPERANDS_LABEL_VEC (newsrc)
1281 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1282 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1283 }
1284 }
1285 }
1286 else
1287 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1288
1289 /* For read-only MEMs containing some constant, prefer those
1290 constants. */
1291 set = single_set (insn);
1292 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1293 {
1294 rtx note = find_reg_equal_equiv_note (insn);
1295
1296 if (note && CONSTANT_P (XEXP (note, 0)))
1297 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1298 }
1299
1300 if (amd.side_effects)
1301 {
1302 rtx *pat, new_pat, s;
1303 int i, oldn, newn;
1304
1305 pat = &PATTERN (insn);
1306 if (GET_CODE (*pat) == COND_EXEC)
1307 pat = &COND_EXEC_CODE (*pat);
1308 if (GET_CODE (*pat) == PARALLEL)
1309 oldn = XVECLEN (*pat, 0);
1310 else
1311 oldn = 1;
1312 for (s = amd.side_effects, newn = 0; s; newn++)
1313 s = XEXP (s, 1);
1314 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1315 if (GET_CODE (*pat) == PARALLEL)
1316 for (i = 0; i < oldn; i++)
1317 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1318 else
1319 XVECEXP (new_pat, 0, 0) = *pat;
1320 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1321 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1322 free_EXPR_LIST_list (&amd.side_effects);
1323 validate_change (NULL_RTX, pat, new_pat, true);
1324 }
1325 }
1326
1327 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1328 static inline rtx
1329 dv_as_rtx (decl_or_value dv)
1330 {
1331 tree decl;
1332
1333 if (dv_is_value_p (dv))
1334 return dv_as_value (dv);
1335
1336 decl = dv_as_decl (dv);
1337
1338 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1339 return DECL_RTL_KNOWN_SET (decl);
1340 }
1341
1342 /* Return nonzero if a decl_or_value must not have more than one
1343 variable part. The returned value discriminates among various
1344 kinds of one-part DVs ccording to enum onepart_enum. */
1345 static inline onepart_enum_t
1346 dv_onepart_p (decl_or_value dv)
1347 {
1348 tree decl;
1349
1350 if (!MAY_HAVE_DEBUG_INSNS)
1351 return NOT_ONEPART;
1352
1353 if (dv_is_value_p (dv))
1354 return ONEPART_VALUE;
1355
1356 decl = dv_as_decl (dv);
1357
1358 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1359 return ONEPART_DEXPR;
1360
1361 if (target_for_debug_bind (decl) != NULL_TREE)
1362 return ONEPART_VDECL;
1363
1364 return NOT_ONEPART;
1365 }
1366
1367 /* Return the variable pool to be used for a dv of type ONEPART. */
1368 static inline alloc_pool
1369 onepart_pool (onepart_enum_t onepart)
1370 {
1371 return onepart ? valvar_pool : var_pool;
1372 }
1373
1374 /* Build a decl_or_value out of a decl. */
1375 static inline decl_or_value
1376 dv_from_decl (tree decl)
1377 {
1378 decl_or_value dv;
1379 dv = decl;
1380 gcc_checking_assert (dv_is_decl_p (dv));
1381 return dv;
1382 }
1383
1384 /* Build a decl_or_value out of a value. */
1385 static inline decl_or_value
1386 dv_from_value (rtx value)
1387 {
1388 decl_or_value dv;
1389 dv = value;
1390 gcc_checking_assert (dv_is_value_p (dv));
1391 return dv;
1392 }
1393
1394 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1395 static inline decl_or_value
1396 dv_from_rtx (rtx x)
1397 {
1398 decl_or_value dv;
1399
1400 switch (GET_CODE (x))
1401 {
1402 case DEBUG_EXPR:
1403 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1404 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1405 break;
1406
1407 case VALUE:
1408 dv = dv_from_value (x);
1409 break;
1410
1411 default:
1412 gcc_unreachable ();
1413 }
1414
1415 return dv;
1416 }
1417
1418 extern void debug_dv (decl_or_value dv);
1419
1420 DEBUG_FUNCTION void
1421 debug_dv (decl_or_value dv)
1422 {
1423 if (dv_is_value_p (dv))
1424 debug_rtx (dv_as_value (dv));
1425 else
1426 debug_generic_stmt (dv_as_decl (dv));
1427 }
1428
1429 static void loc_exp_dep_clear (variable var);
1430
1431 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1432
1433 static void
1434 variable_htab_free (void *elem)
1435 {
1436 int i;
1437 variable var = (variable) elem;
1438 location_chain node, next;
1439
1440 gcc_checking_assert (var->refcount > 0);
1441
1442 var->refcount--;
1443 if (var->refcount > 0)
1444 return;
1445
1446 for (i = 0; i < var->n_var_parts; i++)
1447 {
1448 for (node = var->var_part[i].loc_chain; node; node = next)
1449 {
1450 next = node->next;
1451 pool_free (loc_chain_pool, node);
1452 }
1453 var->var_part[i].loc_chain = NULL;
1454 }
1455 if (var->onepart && VAR_LOC_1PAUX (var))
1456 {
1457 loc_exp_dep_clear (var);
1458 if (VAR_LOC_DEP_LST (var))
1459 VAR_LOC_DEP_LST (var)->pprev = NULL;
1460 XDELETE (VAR_LOC_1PAUX (var));
1461 /* These may be reused across functions, so reset
1462 e.g. NO_LOC_P. */
1463 if (var->onepart == ONEPART_DEXPR)
1464 set_dv_changed (var->dv, true);
1465 }
1466 pool_free (onepart_pool (var->onepart), var);
1467 }
1468
1469 /* Initialize the set (array) SET of attrs to empty lists. */
1470
1471 static void
1472 init_attrs_list_set (attrs *set)
1473 {
1474 int i;
1475
1476 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1477 set[i] = NULL;
1478 }
1479
1480 /* Make the list *LISTP empty. */
1481
1482 static void
1483 attrs_list_clear (attrs *listp)
1484 {
1485 attrs list, next;
1486
1487 for (list = *listp; list; list = next)
1488 {
1489 next = list->next;
1490 pool_free (attrs_pool, list);
1491 }
1492 *listp = NULL;
1493 }
1494
1495 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1496
1497 static attrs
1498 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1499 {
1500 for (; list; list = list->next)
1501 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1502 return list;
1503 return NULL;
1504 }
1505
1506 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1507
1508 static void
1509 attrs_list_insert (attrs *listp, decl_or_value dv,
1510 HOST_WIDE_INT offset, rtx loc)
1511 {
1512 attrs list;
1513
1514 list = (attrs) pool_alloc (attrs_pool);
1515 list->loc = loc;
1516 list->dv = dv;
1517 list->offset = offset;
1518 list->next = *listp;
1519 *listp = list;
1520 }
1521
1522 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1523
1524 static void
1525 attrs_list_copy (attrs *dstp, attrs src)
1526 {
1527 attrs n;
1528
1529 attrs_list_clear (dstp);
1530 for (; src; src = src->next)
1531 {
1532 n = (attrs) pool_alloc (attrs_pool);
1533 n->loc = src->loc;
1534 n->dv = src->dv;
1535 n->offset = src->offset;
1536 n->next = *dstp;
1537 *dstp = n;
1538 }
1539 }
1540
1541 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1542
1543 static void
1544 attrs_list_union (attrs *dstp, attrs src)
1545 {
1546 for (; src; src = src->next)
1547 {
1548 if (!attrs_list_member (*dstp, src->dv, src->offset))
1549 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1550 }
1551 }
1552
1553 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1554 *DSTP. */
1555
1556 static void
1557 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1558 {
1559 gcc_assert (!*dstp);
1560 for (; src; src = src->next)
1561 {
1562 if (!dv_onepart_p (src->dv))
1563 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1564 }
1565 for (src = src2; src; src = src->next)
1566 {
1567 if (!dv_onepart_p (src->dv)
1568 && !attrs_list_member (*dstp, src->dv, src->offset))
1569 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1570 }
1571 }
1572
1573 /* Shared hashtable support. */
1574
1575 /* Return true if VARS is shared. */
1576
1577 static inline bool
1578 shared_hash_shared (shared_hash vars)
1579 {
1580 return vars->refcount > 1;
1581 }
1582
1583 /* Return the hash table for VARS. */
1584
1585 static inline variable_table_type *
1586 shared_hash_htab (shared_hash vars)
1587 {
1588 return vars->htab;
1589 }
1590
1591 /* Return true if VAR is shared, or maybe because VARS is shared. */
1592
1593 static inline bool
1594 shared_var_p (variable var, shared_hash vars)
1595 {
1596 /* Don't count an entry in the changed_variables table as a duplicate. */
1597 return ((var->refcount > 1 + (int) var->in_changed_variables)
1598 || shared_hash_shared (vars));
1599 }
1600
1601 /* Copy variables into a new hash table. */
1602
1603 static shared_hash
1604 shared_hash_unshare (shared_hash vars)
1605 {
1606 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1607 gcc_assert (vars->refcount > 1);
1608 new_vars->refcount = 1;
1609 new_vars->htab = new variable_table_type (vars->htab->elements () + 3);
1610 vars_copy (new_vars->htab, vars->htab);
1611 vars->refcount--;
1612 return new_vars;
1613 }
1614
1615 /* Increment reference counter on VARS and return it. */
1616
1617 static inline shared_hash
1618 shared_hash_copy (shared_hash vars)
1619 {
1620 vars->refcount++;
1621 return vars;
1622 }
1623
1624 /* Decrement reference counter and destroy hash table if not shared
1625 anymore. */
1626
1627 static void
1628 shared_hash_destroy (shared_hash vars)
1629 {
1630 gcc_checking_assert (vars->refcount > 0);
1631 if (--vars->refcount == 0)
1632 {
1633 delete vars->htab;
1634 pool_free (shared_hash_pool, vars);
1635 }
1636 }
1637
1638 /* Unshare *PVARS if shared and return slot for DV. If INS is
1639 INSERT, insert it if not already present. */
1640
1641 static inline variable_def **
1642 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1643 hashval_t dvhash, enum insert_option ins)
1644 {
1645 if (shared_hash_shared (*pvars))
1646 *pvars = shared_hash_unshare (*pvars);
1647 return shared_hash_htab (*pvars)->find_slot_with_hash (dv, dvhash, ins);
1648 }
1649
1650 static inline variable_def **
1651 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1652 enum insert_option ins)
1653 {
1654 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1655 }
1656
1657 /* Return slot for DV, if it is already present in the hash table.
1658 If it is not present, insert it only VARS is not shared, otherwise
1659 return NULL. */
1660
1661 static inline variable_def **
1662 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1663 {
1664 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash,
1665 shared_hash_shared (vars)
1666 ? NO_INSERT : INSERT);
1667 }
1668
1669 static inline variable_def **
1670 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1671 {
1672 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1673 }
1674
1675 /* Return slot for DV only if it is already present in the hash table. */
1676
1677 static inline variable_def **
1678 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1679 hashval_t dvhash)
1680 {
1681 return shared_hash_htab (vars)->find_slot_with_hash (dv, dvhash, NO_INSERT);
1682 }
1683
1684 static inline variable_def **
1685 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1686 {
1687 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1688 }
1689
1690 /* Return variable for DV or NULL if not already present in the hash
1691 table. */
1692
1693 static inline variable
1694 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1695 {
1696 return shared_hash_htab (vars)->find_with_hash (dv, dvhash);
1697 }
1698
1699 static inline variable
1700 shared_hash_find (shared_hash vars, decl_or_value dv)
1701 {
1702 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1703 }
1704
1705 /* Return true if TVAL is better than CVAL as a canonival value. We
1706 choose lowest-numbered VALUEs, using the RTX address as a
1707 tie-breaker. The idea is to arrange them into a star topology,
1708 such that all of them are at most one step away from the canonical
1709 value, and the canonical value has backlinks to all of them, in
1710 addition to all the actual locations. We don't enforce this
1711 topology throughout the entire dataflow analysis, though.
1712 */
1713
1714 static inline bool
1715 canon_value_cmp (rtx tval, rtx cval)
1716 {
1717 return !cval
1718 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1719 }
1720
1721 static bool dst_can_be_shared;
1722
1723 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1724
1725 static variable_def **
1726 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1727 enum var_init_status initialized)
1728 {
1729 variable new_var;
1730 int i;
1731
1732 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1733 new_var->dv = var->dv;
1734 new_var->refcount = 1;
1735 var->refcount--;
1736 new_var->n_var_parts = var->n_var_parts;
1737 new_var->onepart = var->onepart;
1738 new_var->in_changed_variables = false;
1739
1740 if (! flag_var_tracking_uninit)
1741 initialized = VAR_INIT_STATUS_INITIALIZED;
1742
1743 for (i = 0; i < var->n_var_parts; i++)
1744 {
1745 location_chain node;
1746 location_chain *nextp;
1747
1748 if (i == 0 && var->onepart)
1749 {
1750 /* One-part auxiliary data is only used while emitting
1751 notes, so propagate it to the new variable in the active
1752 dataflow set. If we're not emitting notes, this will be
1753 a no-op. */
1754 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1755 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1756 VAR_LOC_1PAUX (var) = NULL;
1757 }
1758 else
1759 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1760 nextp = &new_var->var_part[i].loc_chain;
1761 for (node = var->var_part[i].loc_chain; node; node = node->next)
1762 {
1763 location_chain new_lc;
1764
1765 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1766 new_lc->next = NULL;
1767 if (node->init > initialized)
1768 new_lc->init = node->init;
1769 else
1770 new_lc->init = initialized;
1771 if (node->set_src && !(MEM_P (node->set_src)))
1772 new_lc->set_src = node->set_src;
1773 else
1774 new_lc->set_src = NULL;
1775 new_lc->loc = node->loc;
1776
1777 *nextp = new_lc;
1778 nextp = &new_lc->next;
1779 }
1780
1781 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1782 }
1783
1784 dst_can_be_shared = false;
1785 if (shared_hash_shared (set->vars))
1786 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1787 else if (set->traversed_vars && set->vars != set->traversed_vars)
1788 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1789 *slot = new_var;
1790 if (var->in_changed_variables)
1791 {
1792 variable_def **cslot
1793 = changed_variables->find_slot_with_hash (var->dv,
1794 dv_htab_hash (var->dv),
1795 NO_INSERT);
1796 gcc_assert (*cslot == (void *) var);
1797 var->in_changed_variables = false;
1798 variable_htab_free (var);
1799 *cslot = new_var;
1800 new_var->in_changed_variables = true;
1801 }
1802 return slot;
1803 }
1804
1805 /* Copy all variables from hash table SRC to hash table DST. */
1806
1807 static void
1808 vars_copy (variable_table_type *dst, variable_table_type *src)
1809 {
1810 variable_iterator_type hi;
1811 variable var;
1812
1813 FOR_EACH_HASH_TABLE_ELEMENT (*src, var, variable, hi)
1814 {
1815 variable_def **dstp;
1816 var->refcount++;
1817 dstp = dst->find_slot_with_hash (var->dv, dv_htab_hash (var->dv),
1818 INSERT);
1819 *dstp = var;
1820 }
1821 }
1822
1823 /* Map a decl to its main debug decl. */
1824
1825 static inline tree
1826 var_debug_decl (tree decl)
1827 {
1828 if (decl && TREE_CODE (decl) == VAR_DECL
1829 && DECL_HAS_DEBUG_EXPR_P (decl))
1830 {
1831 tree debugdecl = DECL_DEBUG_EXPR (decl);
1832 if (DECL_P (debugdecl))
1833 decl = debugdecl;
1834 }
1835
1836 return decl;
1837 }
1838
1839 /* Set the register LOC to contain DV, OFFSET. */
1840
1841 static void
1842 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1843 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1844 enum insert_option iopt)
1845 {
1846 attrs node;
1847 bool decl_p = dv_is_decl_p (dv);
1848
1849 if (decl_p)
1850 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1851
1852 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1853 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1854 && node->offset == offset)
1855 break;
1856 if (!node)
1857 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1858 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1859 }
1860
1861 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1862
1863 static void
1864 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1865 rtx set_src)
1866 {
1867 tree decl = REG_EXPR (loc);
1868 HOST_WIDE_INT offset = REG_OFFSET (loc);
1869
1870 var_reg_decl_set (set, loc, initialized,
1871 dv_from_decl (decl), offset, set_src, INSERT);
1872 }
1873
1874 static enum var_init_status
1875 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1876 {
1877 variable var;
1878 int i;
1879 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1880
1881 if (! flag_var_tracking_uninit)
1882 return VAR_INIT_STATUS_INITIALIZED;
1883
1884 var = shared_hash_find (set->vars, dv);
1885 if (var)
1886 {
1887 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1888 {
1889 location_chain nextp;
1890 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1891 if (rtx_equal_p (nextp->loc, loc))
1892 {
1893 ret_val = nextp->init;
1894 break;
1895 }
1896 }
1897 }
1898
1899 return ret_val;
1900 }
1901
1902 /* Delete current content of register LOC in dataflow set SET and set
1903 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1904 MODIFY is true, any other live copies of the same variable part are
1905 also deleted from the dataflow set, otherwise the variable part is
1906 assumed to be copied from another location holding the same
1907 part. */
1908
1909 static void
1910 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1911 enum var_init_status initialized, rtx set_src)
1912 {
1913 tree decl = REG_EXPR (loc);
1914 HOST_WIDE_INT offset = REG_OFFSET (loc);
1915 attrs node, next;
1916 attrs *nextp;
1917
1918 decl = var_debug_decl (decl);
1919
1920 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1921 initialized = get_init_value (set, loc, dv_from_decl (decl));
1922
1923 nextp = &set->regs[REGNO (loc)];
1924 for (node = *nextp; node; node = next)
1925 {
1926 next = node->next;
1927 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1928 {
1929 delete_variable_part (set, node->loc, node->dv, node->offset);
1930 pool_free (attrs_pool, node);
1931 *nextp = next;
1932 }
1933 else
1934 {
1935 node->loc = loc;
1936 nextp = &node->next;
1937 }
1938 }
1939 if (modify)
1940 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1941 var_reg_set (set, loc, initialized, set_src);
1942 }
1943
1944 /* Delete the association of register LOC in dataflow set SET with any
1945 variables that aren't onepart. If CLOBBER is true, also delete any
1946 other live copies of the same variable part, and delete the
1947 association with onepart dvs too. */
1948
1949 static void
1950 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1951 {
1952 attrs *nextp = &set->regs[REGNO (loc)];
1953 attrs node, next;
1954
1955 if (clobber)
1956 {
1957 tree decl = REG_EXPR (loc);
1958 HOST_WIDE_INT offset = REG_OFFSET (loc);
1959
1960 decl = var_debug_decl (decl);
1961
1962 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1963 }
1964
1965 for (node = *nextp; node; node = next)
1966 {
1967 next = node->next;
1968 if (clobber || !dv_onepart_p (node->dv))
1969 {
1970 delete_variable_part (set, node->loc, node->dv, node->offset);
1971 pool_free (attrs_pool, node);
1972 *nextp = next;
1973 }
1974 else
1975 nextp = &node->next;
1976 }
1977 }
1978
1979 /* Delete content of register with number REGNO in dataflow set SET. */
1980
1981 static void
1982 var_regno_delete (dataflow_set *set, int regno)
1983 {
1984 attrs *reg = &set->regs[regno];
1985 attrs node, next;
1986
1987 for (node = *reg; node; node = next)
1988 {
1989 next = node->next;
1990 delete_variable_part (set, node->loc, node->dv, node->offset);
1991 pool_free (attrs_pool, node);
1992 }
1993 *reg = NULL;
1994 }
1995
1996 /* Return true if I is the negated value of a power of two. */
1997 static bool
1998 negative_power_of_two_p (HOST_WIDE_INT i)
1999 {
2000 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
2001 return x == (x & -x);
2002 }
2003
2004 /* Strip constant offsets and alignments off of LOC. Return the base
2005 expression. */
2006
2007 static rtx
2008 vt_get_canonicalize_base (rtx loc)
2009 {
2010 while ((GET_CODE (loc) == PLUS
2011 || GET_CODE (loc) == AND)
2012 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2013 && (GET_CODE (loc) != AND
2014 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
2015 loc = XEXP (loc, 0);
2016
2017 return loc;
2018 }
2019
2020 /* This caches canonicalized addresses for VALUEs, computed using
2021 information in the global cselib table. */
2022 static hash_map<rtx, rtx> *global_get_addr_cache;
2023
2024 /* This caches canonicalized addresses for VALUEs, computed using
2025 information from the global cache and information pertaining to a
2026 basic block being analyzed. */
2027 static hash_map<rtx, rtx> *local_get_addr_cache;
2028
2029 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2030
2031 /* Return the canonical address for LOC, that must be a VALUE, using a
2032 cached global equivalence or computing it and storing it in the
2033 global cache. */
2034
2035 static rtx
2036 get_addr_from_global_cache (rtx const loc)
2037 {
2038 rtx x;
2039
2040 gcc_checking_assert (GET_CODE (loc) == VALUE);
2041
2042 bool existed;
2043 rtx *slot = &global_get_addr_cache->get_or_insert (loc, &existed);
2044 if (existed)
2045 return *slot;
2046
2047 x = canon_rtx (get_addr (loc));
2048
2049 /* Tentative, avoiding infinite recursion. */
2050 *slot = x;
2051
2052 if (x != loc)
2053 {
2054 rtx nx = vt_canonicalize_addr (NULL, x);
2055 if (nx != x)
2056 {
2057 /* The table may have moved during recursion, recompute
2058 SLOT. */
2059 *global_get_addr_cache->get (loc) = x = nx;
2060 }
2061 }
2062
2063 return x;
2064 }
2065
2066 /* Return the canonical address for LOC, that must be a VALUE, using a
2067 cached local equivalence or computing it and storing it in the
2068 local cache. */
2069
2070 static rtx
2071 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2072 {
2073 rtx x;
2074 decl_or_value dv;
2075 variable var;
2076 location_chain l;
2077
2078 gcc_checking_assert (GET_CODE (loc) == VALUE);
2079
2080 bool existed;
2081 rtx *slot = &local_get_addr_cache->get_or_insert (loc, &existed);
2082 if (existed)
2083 return *slot;
2084
2085 x = get_addr_from_global_cache (loc);
2086
2087 /* Tentative, avoiding infinite recursion. */
2088 *slot = x;
2089
2090 /* Recurse to cache local expansion of X, or if we need to search
2091 for a VALUE in the expansion. */
2092 if (x != loc)
2093 {
2094 rtx nx = vt_canonicalize_addr (set, x);
2095 if (nx != x)
2096 {
2097 slot = local_get_addr_cache->get (loc);
2098 *slot = x = nx;
2099 }
2100 return x;
2101 }
2102
2103 dv = dv_from_rtx (x);
2104 var = shared_hash_find (set->vars, dv);
2105 if (!var)
2106 return x;
2107
2108 /* Look for an improved equivalent expression. */
2109 for (l = var->var_part[0].loc_chain; l; l = l->next)
2110 {
2111 rtx base = vt_get_canonicalize_base (l->loc);
2112 if (GET_CODE (base) == VALUE
2113 && canon_value_cmp (base, loc))
2114 {
2115 rtx nx = vt_canonicalize_addr (set, l->loc);
2116 if (x != nx)
2117 {
2118 slot = local_get_addr_cache->get (loc);
2119 *slot = x = nx;
2120 }
2121 break;
2122 }
2123 }
2124
2125 return x;
2126 }
2127
2128 /* Canonicalize LOC using equivalences from SET in addition to those
2129 in the cselib static table. It expects a VALUE-based expression,
2130 and it will only substitute VALUEs with other VALUEs or
2131 function-global equivalences, so that, if two addresses have base
2132 VALUEs that are locally or globally related in ways that
2133 memrefs_conflict_p cares about, they will both canonicalize to
2134 expressions that have the same base VALUE.
2135
2136 The use of VALUEs as canonical base addresses enables the canonical
2137 RTXs to remain unchanged globally, if they resolve to a constant,
2138 or throughout a basic block otherwise, so that they can be cached
2139 and the cache needs not be invalidated when REGs, MEMs or such
2140 change. */
2141
2142 static rtx
2143 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2144 {
2145 HOST_WIDE_INT ofst = 0;
2146 enum machine_mode mode = GET_MODE (oloc);
2147 rtx loc = oloc;
2148 rtx x;
2149 bool retry = true;
2150
2151 while (retry)
2152 {
2153 while (GET_CODE (loc) == PLUS
2154 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2155 {
2156 ofst += INTVAL (XEXP (loc, 1));
2157 loc = XEXP (loc, 0);
2158 }
2159
2160 /* Alignment operations can't normally be combined, so just
2161 canonicalize the base and we're done. We'll normally have
2162 only one stack alignment anyway. */
2163 if (GET_CODE (loc) == AND
2164 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2165 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2166 {
2167 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2168 if (x != XEXP (loc, 0))
2169 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2170 retry = false;
2171 }
2172
2173 if (GET_CODE (loc) == VALUE)
2174 {
2175 if (set)
2176 loc = get_addr_from_local_cache (set, loc);
2177 else
2178 loc = get_addr_from_global_cache (loc);
2179
2180 /* Consolidate plus_constants. */
2181 while (ofst && GET_CODE (loc) == PLUS
2182 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2183 {
2184 ofst += INTVAL (XEXP (loc, 1));
2185 loc = XEXP (loc, 0);
2186 }
2187
2188 retry = false;
2189 }
2190 else
2191 {
2192 x = canon_rtx (loc);
2193 if (retry)
2194 retry = (x != loc);
2195 loc = x;
2196 }
2197 }
2198
2199 /* Add OFST back in. */
2200 if (ofst)
2201 {
2202 /* Don't build new RTL if we can help it. */
2203 if (GET_CODE (oloc) == PLUS
2204 && XEXP (oloc, 0) == loc
2205 && INTVAL (XEXP (oloc, 1)) == ofst)
2206 return oloc;
2207
2208 loc = plus_constant (mode, loc, ofst);
2209 }
2210
2211 return loc;
2212 }
2213
2214 /* Return true iff there's a true dependence between MLOC and LOC.
2215 MADDR must be a canonicalized version of MLOC's address. */
2216
2217 static inline bool
2218 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2219 {
2220 if (GET_CODE (loc) != MEM)
2221 return false;
2222
2223 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2224 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2225 return false;
2226
2227 return true;
2228 }
2229
2230 /* Hold parameters for the hashtab traversal function
2231 drop_overlapping_mem_locs, see below. */
2232
2233 struct overlapping_mems
2234 {
2235 dataflow_set *set;
2236 rtx loc, addr;
2237 };
2238
2239 /* Remove all MEMs that overlap with COMS->LOC from the location list
2240 of a hash table entry for a value. COMS->ADDR must be a
2241 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2242 canonicalized itself. */
2243
2244 int
2245 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2246 {
2247 dataflow_set *set = coms->set;
2248 rtx mloc = coms->loc, addr = coms->addr;
2249 variable var = *slot;
2250
2251 if (var->onepart == ONEPART_VALUE)
2252 {
2253 location_chain loc, *locp;
2254 bool changed = false;
2255 rtx cur_loc;
2256
2257 gcc_assert (var->n_var_parts == 1);
2258
2259 if (shared_var_p (var, set->vars))
2260 {
2261 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2262 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2263 break;
2264
2265 if (!loc)
2266 return 1;
2267
2268 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2269 var = *slot;
2270 gcc_assert (var->n_var_parts == 1);
2271 }
2272
2273 if (VAR_LOC_1PAUX (var))
2274 cur_loc = VAR_LOC_FROM (var);
2275 else
2276 cur_loc = var->var_part[0].cur_loc;
2277
2278 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2279 loc; loc = *locp)
2280 {
2281 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2282 {
2283 locp = &loc->next;
2284 continue;
2285 }
2286
2287 *locp = loc->next;
2288 /* If we have deleted the location which was last emitted
2289 we have to emit new location so add the variable to set
2290 of changed variables. */
2291 if (cur_loc == loc->loc)
2292 {
2293 changed = true;
2294 var->var_part[0].cur_loc = NULL;
2295 if (VAR_LOC_1PAUX (var))
2296 VAR_LOC_FROM (var) = NULL;
2297 }
2298 pool_free (loc_chain_pool, loc);
2299 }
2300
2301 if (!var->var_part[0].loc_chain)
2302 {
2303 var->n_var_parts--;
2304 changed = true;
2305 }
2306 if (changed)
2307 variable_was_changed (var, set);
2308 }
2309
2310 return 1;
2311 }
2312
2313 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2314
2315 static void
2316 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2317 {
2318 struct overlapping_mems coms;
2319
2320 gcc_checking_assert (GET_CODE (loc) == MEM);
2321
2322 coms.set = set;
2323 coms.loc = canon_rtx (loc);
2324 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2325
2326 set->traversed_vars = set->vars;
2327 shared_hash_htab (set->vars)
2328 ->traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2329 set->traversed_vars = NULL;
2330 }
2331
2332 /* Set the location of DV, OFFSET as the MEM LOC. */
2333
2334 static void
2335 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2336 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2337 enum insert_option iopt)
2338 {
2339 if (dv_is_decl_p (dv))
2340 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2341
2342 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2343 }
2344
2345 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2346 SET to LOC.
2347 Adjust the address first if it is stack pointer based. */
2348
2349 static void
2350 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2351 rtx set_src)
2352 {
2353 tree decl = MEM_EXPR (loc);
2354 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2355
2356 var_mem_decl_set (set, loc, initialized,
2357 dv_from_decl (decl), offset, set_src, INSERT);
2358 }
2359
2360 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2361 dataflow set SET to LOC. If MODIFY is true, any other live copies
2362 of the same variable part are also deleted from the dataflow set,
2363 otherwise the variable part is assumed to be copied from another
2364 location holding the same part.
2365 Adjust the address first if it is stack pointer based. */
2366
2367 static void
2368 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2369 enum var_init_status initialized, rtx set_src)
2370 {
2371 tree decl = MEM_EXPR (loc);
2372 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2373
2374 clobber_overlapping_mems (set, loc);
2375 decl = var_debug_decl (decl);
2376
2377 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2378 initialized = get_init_value (set, loc, dv_from_decl (decl));
2379
2380 if (modify)
2381 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2382 var_mem_set (set, loc, initialized, set_src);
2383 }
2384
2385 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2386 true, also delete any other live copies of the same variable part.
2387 Adjust the address first if it is stack pointer based. */
2388
2389 static void
2390 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2391 {
2392 tree decl = MEM_EXPR (loc);
2393 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2394
2395 clobber_overlapping_mems (set, loc);
2396 decl = var_debug_decl (decl);
2397 if (clobber)
2398 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2399 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2400 }
2401
2402 /* Return true if LOC should not be expanded for location expressions,
2403 or used in them. */
2404
2405 static inline bool
2406 unsuitable_loc (rtx loc)
2407 {
2408 switch (GET_CODE (loc))
2409 {
2410 case PC:
2411 case SCRATCH:
2412 case CC0:
2413 case ASM_INPUT:
2414 case ASM_OPERANDS:
2415 return true;
2416
2417 default:
2418 return false;
2419 }
2420 }
2421
2422 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2423 bound to it. */
2424
2425 static inline void
2426 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2427 {
2428 if (REG_P (loc))
2429 {
2430 if (modified)
2431 var_regno_delete (set, REGNO (loc));
2432 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2433 dv_from_value (val), 0, NULL_RTX, INSERT);
2434 }
2435 else if (MEM_P (loc))
2436 {
2437 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2438
2439 if (modified)
2440 clobber_overlapping_mems (set, loc);
2441
2442 if (l && GET_CODE (l->loc) == VALUE)
2443 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2444
2445 /* If this MEM is a global constant, we don't need it in the
2446 dynamic tables. ??? We should test this before emitting the
2447 micro-op in the first place. */
2448 while (l)
2449 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2450 break;
2451 else
2452 l = l->next;
2453
2454 if (!l)
2455 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2456 dv_from_value (val), 0, NULL_RTX, INSERT);
2457 }
2458 else
2459 {
2460 /* Other kinds of equivalences are necessarily static, at least
2461 so long as we do not perform substitutions while merging
2462 expressions. */
2463 gcc_unreachable ();
2464 set_variable_part (set, loc, dv_from_value (val), 0,
2465 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2466 }
2467 }
2468
2469 /* Bind a value to a location it was just stored in. If MODIFIED
2470 holds, assume the location was modified, detaching it from any
2471 values bound to it. */
2472
2473 static void
2474 val_store (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn,
2475 bool modified)
2476 {
2477 cselib_val *v = CSELIB_VAL_PTR (val);
2478
2479 gcc_assert (cselib_preserved_value_p (v));
2480
2481 if (dump_file)
2482 {
2483 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2484 print_inline_rtx (dump_file, loc, 0);
2485 fprintf (dump_file, " evaluates to ");
2486 print_inline_rtx (dump_file, val, 0);
2487 if (v->locs)
2488 {
2489 struct elt_loc_list *l;
2490 for (l = v->locs; l; l = l->next)
2491 {
2492 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2493 print_inline_rtx (dump_file, l->loc, 0);
2494 }
2495 }
2496 fprintf (dump_file, "\n");
2497 }
2498
2499 gcc_checking_assert (!unsuitable_loc (loc));
2500
2501 val_bind (set, val, loc, modified);
2502 }
2503
2504 /* Clear (canonical address) slots that reference X. */
2505
2506 bool
2507 local_get_addr_clear_given_value (rtx const &, rtx *slot, rtx x)
2508 {
2509 if (vt_get_canonicalize_base (*slot) == x)
2510 *slot = NULL;
2511 return true;
2512 }
2513
2514 /* Reset this node, detaching all its equivalences. Return the slot
2515 in the variable hash table that holds dv, if there is one. */
2516
2517 static void
2518 val_reset (dataflow_set *set, decl_or_value dv)
2519 {
2520 variable var = shared_hash_find (set->vars, dv) ;
2521 location_chain node;
2522 rtx cval;
2523
2524 if (!var || !var->n_var_parts)
2525 return;
2526
2527 gcc_assert (var->n_var_parts == 1);
2528
2529 if (var->onepart == ONEPART_VALUE)
2530 {
2531 rtx x = dv_as_value (dv);
2532
2533 /* Relationships in the global cache don't change, so reset the
2534 local cache entry only. */
2535 rtx *slot = local_get_addr_cache->get (x);
2536 if (slot)
2537 {
2538 /* If the value resolved back to itself, odds are that other
2539 values may have cached it too. These entries now refer
2540 to the old X, so detach them too. Entries that used the
2541 old X but resolved to something else remain ok as long as
2542 that something else isn't also reset. */
2543 if (*slot == x)
2544 local_get_addr_cache
2545 ->traverse<rtx, local_get_addr_clear_given_value> (x);
2546 *slot = NULL;
2547 }
2548 }
2549
2550 cval = NULL;
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 if (GET_CODE (node->loc) == VALUE
2553 && canon_value_cmp (node->loc, cval))
2554 cval = node->loc;
2555
2556 for (node = var->var_part[0].loc_chain; node; node = node->next)
2557 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2558 {
2559 /* Redirect the equivalence link to the new canonical
2560 value, or simply remove it if it would point at
2561 itself. */
2562 if (cval)
2563 set_variable_part (set, cval, dv_from_value (node->loc),
2564 0, node->init, node->set_src, NO_INSERT);
2565 delete_variable_part (set, dv_as_value (dv),
2566 dv_from_value (node->loc), 0);
2567 }
2568
2569 if (cval)
2570 {
2571 decl_or_value cdv = dv_from_value (cval);
2572
2573 /* Keep the remaining values connected, accummulating links
2574 in the canonical value. */
2575 for (node = var->var_part[0].loc_chain; node; node = node->next)
2576 {
2577 if (node->loc == cval)
2578 continue;
2579 else if (GET_CODE (node->loc) == REG)
2580 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2581 node->set_src, NO_INSERT);
2582 else if (GET_CODE (node->loc) == MEM)
2583 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2584 node->set_src, NO_INSERT);
2585 else
2586 set_variable_part (set, node->loc, cdv, 0,
2587 node->init, node->set_src, NO_INSERT);
2588 }
2589 }
2590
2591 /* We remove this last, to make sure that the canonical value is not
2592 removed to the point of requiring reinsertion. */
2593 if (cval)
2594 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2595
2596 clobber_variable_part (set, NULL, dv, 0, NULL);
2597 }
2598
2599 /* Find the values in a given location and map the val to another
2600 value, if it is unique, or add the location as one holding the
2601 value. */
2602
2603 static void
2604 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx_insn *insn)
2605 {
2606 decl_or_value dv = dv_from_value (val);
2607
2608 if (dump_file && (dump_flags & TDF_DETAILS))
2609 {
2610 if (insn)
2611 fprintf (dump_file, "%i: ", INSN_UID (insn));
2612 else
2613 fprintf (dump_file, "head: ");
2614 print_inline_rtx (dump_file, val, 0);
2615 fputs (" is at ", dump_file);
2616 print_inline_rtx (dump_file, loc, 0);
2617 fputc ('\n', dump_file);
2618 }
2619
2620 val_reset (set, dv);
2621
2622 gcc_checking_assert (!unsuitable_loc (loc));
2623
2624 if (REG_P (loc))
2625 {
2626 attrs node, found = NULL;
2627
2628 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2629 if (dv_is_value_p (node->dv)
2630 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2631 {
2632 found = node;
2633
2634 /* Map incoming equivalences. ??? Wouldn't it be nice if
2635 we just started sharing the location lists? Maybe a
2636 circular list ending at the value itself or some
2637 such. */
2638 set_variable_part (set, dv_as_value (node->dv),
2639 dv_from_value (val), node->offset,
2640 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2641 set_variable_part (set, val, node->dv, node->offset,
2642 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2643 }
2644
2645 /* If we didn't find any equivalence, we need to remember that
2646 this value is held in the named register. */
2647 if (found)
2648 return;
2649 }
2650 /* ??? Attempt to find and merge equivalent MEMs or other
2651 expressions too. */
2652
2653 val_bind (set, val, loc, false);
2654 }
2655
2656 /* Initialize dataflow set SET to be empty.
2657 VARS_SIZE is the initial size of hash table VARS. */
2658
2659 static void
2660 dataflow_set_init (dataflow_set *set)
2661 {
2662 init_attrs_list_set (set->regs);
2663 set->vars = shared_hash_copy (empty_shared_hash);
2664 set->stack_adjust = 0;
2665 set->traversed_vars = NULL;
2666 }
2667
2668 /* Delete the contents of dataflow set SET. */
2669
2670 static void
2671 dataflow_set_clear (dataflow_set *set)
2672 {
2673 int i;
2674
2675 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2676 attrs_list_clear (&set->regs[i]);
2677
2678 shared_hash_destroy (set->vars);
2679 set->vars = shared_hash_copy (empty_shared_hash);
2680 }
2681
2682 /* Copy the contents of dataflow set SRC to DST. */
2683
2684 static void
2685 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2686 {
2687 int i;
2688
2689 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2690 attrs_list_copy (&dst->regs[i], src->regs[i]);
2691
2692 shared_hash_destroy (dst->vars);
2693 dst->vars = shared_hash_copy (src->vars);
2694 dst->stack_adjust = src->stack_adjust;
2695 }
2696
2697 /* Information for merging lists of locations for a given offset of variable.
2698 */
2699 struct variable_union_info
2700 {
2701 /* Node of the location chain. */
2702 location_chain lc;
2703
2704 /* The sum of positions in the input chains. */
2705 int pos;
2706
2707 /* The position in the chain of DST dataflow set. */
2708 int pos_dst;
2709 };
2710
2711 /* Buffer for location list sorting and its allocated size. */
2712 static struct variable_union_info *vui_vec;
2713 static int vui_allocated;
2714
2715 /* Compare function for qsort, order the structures by POS element. */
2716
2717 static int
2718 variable_union_info_cmp_pos (const void *n1, const void *n2)
2719 {
2720 const struct variable_union_info *const i1 =
2721 (const struct variable_union_info *) n1;
2722 const struct variable_union_info *const i2 =
2723 ( const struct variable_union_info *) n2;
2724
2725 if (i1->pos != i2->pos)
2726 return i1->pos - i2->pos;
2727
2728 return (i1->pos_dst - i2->pos_dst);
2729 }
2730
2731 /* Compute union of location parts of variable *SLOT and the same variable
2732 from hash table DATA. Compute "sorted" union of the location chains
2733 for common offsets, i.e. the locations of a variable part are sorted by
2734 a priority where the priority is the sum of the positions in the 2 chains
2735 (if a location is only in one list the position in the second list is
2736 defined to be larger than the length of the chains).
2737 When we are updating the location parts the newest location is in the
2738 beginning of the chain, so when we do the described "sorted" union
2739 we keep the newest locations in the beginning. */
2740
2741 static int
2742 variable_union (variable src, dataflow_set *set)
2743 {
2744 variable dst;
2745 variable_def **dstp;
2746 int i, j, k;
2747
2748 dstp = shared_hash_find_slot (set->vars, src->dv);
2749 if (!dstp || !*dstp)
2750 {
2751 src->refcount++;
2752
2753 dst_can_be_shared = false;
2754 if (!dstp)
2755 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2756
2757 *dstp = src;
2758
2759 /* Continue traversing the hash table. */
2760 return 1;
2761 }
2762 else
2763 dst = *dstp;
2764
2765 gcc_assert (src->n_var_parts);
2766 gcc_checking_assert (src->onepart == dst->onepart);
2767
2768 /* We can combine one-part variables very efficiently, because their
2769 entries are in canonical order. */
2770 if (src->onepart)
2771 {
2772 location_chain *nodep, dnode, snode;
2773
2774 gcc_assert (src->n_var_parts == 1
2775 && dst->n_var_parts == 1);
2776
2777 snode = src->var_part[0].loc_chain;
2778 gcc_assert (snode);
2779
2780 restart_onepart_unshared:
2781 nodep = &dst->var_part[0].loc_chain;
2782 dnode = *nodep;
2783 gcc_assert (dnode);
2784
2785 while (snode)
2786 {
2787 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2788
2789 if (r > 0)
2790 {
2791 location_chain nnode;
2792
2793 if (shared_var_p (dst, set->vars))
2794 {
2795 dstp = unshare_variable (set, dstp, dst,
2796 VAR_INIT_STATUS_INITIALIZED);
2797 dst = *dstp;
2798 goto restart_onepart_unshared;
2799 }
2800
2801 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2802 nnode->loc = snode->loc;
2803 nnode->init = snode->init;
2804 if (!snode->set_src || MEM_P (snode->set_src))
2805 nnode->set_src = NULL;
2806 else
2807 nnode->set_src = snode->set_src;
2808 nnode->next = dnode;
2809 dnode = nnode;
2810 }
2811 else if (r == 0)
2812 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2813
2814 if (r >= 0)
2815 snode = snode->next;
2816
2817 nodep = &dnode->next;
2818 dnode = *nodep;
2819 }
2820
2821 return 1;
2822 }
2823
2824 gcc_checking_assert (!src->onepart);
2825
2826 /* Count the number of location parts, result is K. */
2827 for (i = 0, j = 0, k = 0;
2828 i < src->n_var_parts && j < dst->n_var_parts; k++)
2829 {
2830 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2831 {
2832 i++;
2833 j++;
2834 }
2835 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2836 i++;
2837 else
2838 j++;
2839 }
2840 k += src->n_var_parts - i;
2841 k += dst->n_var_parts - j;
2842
2843 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2844 thus there are at most MAX_VAR_PARTS different offsets. */
2845 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2846
2847 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2848 {
2849 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2850 dst = *dstp;
2851 }
2852
2853 i = src->n_var_parts - 1;
2854 j = dst->n_var_parts - 1;
2855 dst->n_var_parts = k;
2856
2857 for (k--; k >= 0; k--)
2858 {
2859 location_chain node, node2;
2860
2861 if (i >= 0 && j >= 0
2862 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2863 {
2864 /* Compute the "sorted" union of the chains, i.e. the locations which
2865 are in both chains go first, they are sorted by the sum of
2866 positions in the chains. */
2867 int dst_l, src_l;
2868 int ii, jj, n;
2869 struct variable_union_info *vui;
2870
2871 /* If DST is shared compare the location chains.
2872 If they are different we will modify the chain in DST with
2873 high probability so make a copy of DST. */
2874 if (shared_var_p (dst, set->vars))
2875 {
2876 for (node = src->var_part[i].loc_chain,
2877 node2 = dst->var_part[j].loc_chain; node && node2;
2878 node = node->next, node2 = node2->next)
2879 {
2880 if (!((REG_P (node2->loc)
2881 && REG_P (node->loc)
2882 && REGNO (node2->loc) == REGNO (node->loc))
2883 || rtx_equal_p (node2->loc, node->loc)))
2884 {
2885 if (node2->init < node->init)
2886 node2->init = node->init;
2887 break;
2888 }
2889 }
2890 if (node || node2)
2891 {
2892 dstp = unshare_variable (set, dstp, dst,
2893 VAR_INIT_STATUS_UNKNOWN);
2894 dst = (variable)*dstp;
2895 }
2896 }
2897
2898 src_l = 0;
2899 for (node = src->var_part[i].loc_chain; node; node = node->next)
2900 src_l++;
2901 dst_l = 0;
2902 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2903 dst_l++;
2904
2905 if (dst_l == 1)
2906 {
2907 /* The most common case, much simpler, no qsort is needed. */
2908 location_chain dstnode = dst->var_part[j].loc_chain;
2909 dst->var_part[k].loc_chain = dstnode;
2910 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2911 node2 = dstnode;
2912 for (node = src->var_part[i].loc_chain; node; node = node->next)
2913 if (!((REG_P (dstnode->loc)
2914 && REG_P (node->loc)
2915 && REGNO (dstnode->loc) == REGNO (node->loc))
2916 || rtx_equal_p (dstnode->loc, node->loc)))
2917 {
2918 location_chain new_node;
2919
2920 /* Copy the location from SRC. */
2921 new_node = (location_chain) pool_alloc (loc_chain_pool);
2922 new_node->loc = node->loc;
2923 new_node->init = node->init;
2924 if (!node->set_src || MEM_P (node->set_src))
2925 new_node->set_src = NULL;
2926 else
2927 new_node->set_src = node->set_src;
2928 node2->next = new_node;
2929 node2 = new_node;
2930 }
2931 node2->next = NULL;
2932 }
2933 else
2934 {
2935 if (src_l + dst_l > vui_allocated)
2936 {
2937 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2938 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2939 vui_allocated);
2940 }
2941 vui = vui_vec;
2942
2943 /* Fill in the locations from DST. */
2944 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2945 node = node->next, jj++)
2946 {
2947 vui[jj].lc = node;
2948 vui[jj].pos_dst = jj;
2949
2950 /* Pos plus value larger than a sum of 2 valid positions. */
2951 vui[jj].pos = jj + src_l + dst_l;
2952 }
2953
2954 /* Fill in the locations from SRC. */
2955 n = dst_l;
2956 for (node = src->var_part[i].loc_chain, ii = 0; node;
2957 node = node->next, ii++)
2958 {
2959 /* Find location from NODE. */
2960 for (jj = 0; jj < dst_l; jj++)
2961 {
2962 if ((REG_P (vui[jj].lc->loc)
2963 && REG_P (node->loc)
2964 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2965 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2966 {
2967 vui[jj].pos = jj + ii;
2968 break;
2969 }
2970 }
2971 if (jj >= dst_l) /* The location has not been found. */
2972 {
2973 location_chain new_node;
2974
2975 /* Copy the location from SRC. */
2976 new_node = (location_chain) pool_alloc (loc_chain_pool);
2977 new_node->loc = node->loc;
2978 new_node->init = node->init;
2979 if (!node->set_src || MEM_P (node->set_src))
2980 new_node->set_src = NULL;
2981 else
2982 new_node->set_src = node->set_src;
2983 vui[n].lc = new_node;
2984 vui[n].pos_dst = src_l + dst_l;
2985 vui[n].pos = ii + src_l + dst_l;
2986 n++;
2987 }
2988 }
2989
2990 if (dst_l == 2)
2991 {
2992 /* Special case still very common case. For dst_l == 2
2993 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2994 vui[i].pos == i + src_l + dst_l. */
2995 if (vui[0].pos > vui[1].pos)
2996 {
2997 /* Order should be 1, 0, 2... */
2998 dst->var_part[k].loc_chain = vui[1].lc;
2999 vui[1].lc->next = vui[0].lc;
3000 if (n >= 3)
3001 {
3002 vui[0].lc->next = vui[2].lc;
3003 vui[n - 1].lc->next = NULL;
3004 }
3005 else
3006 vui[0].lc->next = NULL;
3007 ii = 3;
3008 }
3009 else
3010 {
3011 dst->var_part[k].loc_chain = vui[0].lc;
3012 if (n >= 3 && vui[2].pos < vui[1].pos)
3013 {
3014 /* Order should be 0, 2, 1, 3... */
3015 vui[0].lc->next = vui[2].lc;
3016 vui[2].lc->next = vui[1].lc;
3017 if (n >= 4)
3018 {
3019 vui[1].lc->next = vui[3].lc;
3020 vui[n - 1].lc->next = NULL;
3021 }
3022 else
3023 vui[1].lc->next = NULL;
3024 ii = 4;
3025 }
3026 else
3027 {
3028 /* Order should be 0, 1, 2... */
3029 ii = 1;
3030 vui[n - 1].lc->next = NULL;
3031 }
3032 }
3033 for (; ii < n; ii++)
3034 vui[ii - 1].lc->next = vui[ii].lc;
3035 }
3036 else
3037 {
3038 qsort (vui, n, sizeof (struct variable_union_info),
3039 variable_union_info_cmp_pos);
3040
3041 /* Reconnect the nodes in sorted order. */
3042 for (ii = 1; ii < n; ii++)
3043 vui[ii - 1].lc->next = vui[ii].lc;
3044 vui[n - 1].lc->next = NULL;
3045 dst->var_part[k].loc_chain = vui[0].lc;
3046 }
3047
3048 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3049 }
3050 i--;
3051 j--;
3052 }
3053 else if ((i >= 0 && j >= 0
3054 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3055 || i < 0)
3056 {
3057 dst->var_part[k] = dst->var_part[j];
3058 j--;
3059 }
3060 else if ((i >= 0 && j >= 0
3061 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3062 || j < 0)
3063 {
3064 location_chain *nextp;
3065
3066 /* Copy the chain from SRC. */
3067 nextp = &dst->var_part[k].loc_chain;
3068 for (node = src->var_part[i].loc_chain; node; node = node->next)
3069 {
3070 location_chain new_lc;
3071
3072 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3073 new_lc->next = NULL;
3074 new_lc->init = node->init;
3075 if (!node->set_src || MEM_P (node->set_src))
3076 new_lc->set_src = NULL;
3077 else
3078 new_lc->set_src = node->set_src;
3079 new_lc->loc = node->loc;
3080
3081 *nextp = new_lc;
3082 nextp = &new_lc->next;
3083 }
3084
3085 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3086 i--;
3087 }
3088 dst->var_part[k].cur_loc = NULL;
3089 }
3090
3091 if (flag_var_tracking_uninit)
3092 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3093 {
3094 location_chain node, node2;
3095 for (node = src->var_part[i].loc_chain; node; node = node->next)
3096 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3097 if (rtx_equal_p (node->loc, node2->loc))
3098 {
3099 if (node->init > node2->init)
3100 node2->init = node->init;
3101 }
3102 }
3103
3104 /* Continue traversing the hash table. */
3105 return 1;
3106 }
3107
3108 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3109
3110 static void
3111 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3112 {
3113 int i;
3114
3115 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3116 attrs_list_union (&dst->regs[i], src->regs[i]);
3117
3118 if (dst->vars == empty_shared_hash)
3119 {
3120 shared_hash_destroy (dst->vars);
3121 dst->vars = shared_hash_copy (src->vars);
3122 }
3123 else
3124 {
3125 variable_iterator_type hi;
3126 variable var;
3127
3128 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (src->vars),
3129 var, variable, hi)
3130 variable_union (var, dst);
3131 }
3132 }
3133
3134 /* Whether the value is currently being expanded. */
3135 #define VALUE_RECURSED_INTO(x) \
3136 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3137
3138 /* Whether no expansion was found, saving useless lookups.
3139 It must only be set when VALUE_CHANGED is clear. */
3140 #define NO_LOC_P(x) \
3141 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3142
3143 /* Whether cur_loc in the value needs to be (re)computed. */
3144 #define VALUE_CHANGED(x) \
3145 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3146 /* Whether cur_loc in the decl needs to be (re)computed. */
3147 #define DECL_CHANGED(x) TREE_VISITED (x)
3148
3149 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3150 user DECLs, this means they're in changed_variables. Values and
3151 debug exprs may be left with this flag set if no user variable
3152 requires them to be evaluated. */
3153
3154 static inline void
3155 set_dv_changed (decl_or_value dv, bool newv)
3156 {
3157 switch (dv_onepart_p (dv))
3158 {
3159 case ONEPART_VALUE:
3160 if (newv)
3161 NO_LOC_P (dv_as_value (dv)) = false;
3162 VALUE_CHANGED (dv_as_value (dv)) = newv;
3163 break;
3164
3165 case ONEPART_DEXPR:
3166 if (newv)
3167 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3168 /* Fall through... */
3169
3170 default:
3171 DECL_CHANGED (dv_as_decl (dv)) = newv;
3172 break;
3173 }
3174 }
3175
3176 /* Return true if DV needs to have its cur_loc recomputed. */
3177
3178 static inline bool
3179 dv_changed_p (decl_or_value dv)
3180 {
3181 return (dv_is_value_p (dv)
3182 ? VALUE_CHANGED (dv_as_value (dv))
3183 : DECL_CHANGED (dv_as_decl (dv)));
3184 }
3185
3186 /* Return a location list node whose loc is rtx_equal to LOC, in the
3187 location list of a one-part variable or value VAR, or in that of
3188 any values recursively mentioned in the location lists. VARS must
3189 be in star-canonical form. */
3190
3191 static location_chain
3192 find_loc_in_1pdv (rtx loc, variable var, variable_table_type *vars)
3193 {
3194 location_chain node;
3195 enum rtx_code loc_code;
3196
3197 if (!var)
3198 return NULL;
3199
3200 gcc_checking_assert (var->onepart);
3201
3202 if (!var->n_var_parts)
3203 return NULL;
3204
3205 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3206
3207 loc_code = GET_CODE (loc);
3208 for (node = var->var_part[0].loc_chain; node; node = node->next)
3209 {
3210 decl_or_value dv;
3211 variable rvar;
3212
3213 if (GET_CODE (node->loc) != loc_code)
3214 {
3215 if (GET_CODE (node->loc) != VALUE)
3216 continue;
3217 }
3218 else if (loc == node->loc)
3219 return node;
3220 else if (loc_code != VALUE)
3221 {
3222 if (rtx_equal_p (loc, node->loc))
3223 return node;
3224 continue;
3225 }
3226
3227 /* Since we're in star-canonical form, we don't need to visit
3228 non-canonical nodes: one-part variables and non-canonical
3229 values would only point back to the canonical node. */
3230 if (dv_is_value_p (var->dv)
3231 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3232 {
3233 /* Skip all subsequent VALUEs. */
3234 while (node->next && GET_CODE (node->next->loc) == VALUE)
3235 {
3236 node = node->next;
3237 gcc_checking_assert (!canon_value_cmp (node->loc,
3238 dv_as_value (var->dv)));
3239 if (loc == node->loc)
3240 return node;
3241 }
3242 continue;
3243 }
3244
3245 gcc_checking_assert (node == var->var_part[0].loc_chain);
3246 gcc_checking_assert (!node->next);
3247
3248 dv = dv_from_value (node->loc);
3249 rvar = vars->find_with_hash (dv, dv_htab_hash (dv));
3250 return find_loc_in_1pdv (loc, rvar, vars);
3251 }
3252
3253 /* ??? Gotta look in cselib_val locations too. */
3254
3255 return NULL;
3256 }
3257
3258 /* Hash table iteration argument passed to variable_merge. */
3259 struct dfset_merge
3260 {
3261 /* The set in which the merge is to be inserted. */
3262 dataflow_set *dst;
3263 /* The set that we're iterating in. */
3264 dataflow_set *cur;
3265 /* The set that may contain the other dv we are to merge with. */
3266 dataflow_set *src;
3267 /* Number of onepart dvs in src. */
3268 int src_onepart_cnt;
3269 };
3270
3271 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3272 loc_cmp order, and it is maintained as such. */
3273
3274 static void
3275 insert_into_intersection (location_chain *nodep, rtx loc,
3276 enum var_init_status status)
3277 {
3278 location_chain node;
3279 int r;
3280
3281 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3282 if ((r = loc_cmp (node->loc, loc)) == 0)
3283 {
3284 node->init = MIN (node->init, status);
3285 return;
3286 }
3287 else if (r > 0)
3288 break;
3289
3290 node = (location_chain) pool_alloc (loc_chain_pool);
3291
3292 node->loc = loc;
3293 node->set_src = NULL;
3294 node->init = status;
3295 node->next = *nodep;
3296 *nodep = node;
3297 }
3298
3299 /* Insert in DEST the intersection of the locations present in both
3300 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3301 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3302 DSM->dst. */
3303
3304 static void
3305 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3306 location_chain s1node, variable s2var)
3307 {
3308 dataflow_set *s1set = dsm->cur;
3309 dataflow_set *s2set = dsm->src;
3310 location_chain found;
3311
3312 if (s2var)
3313 {
3314 location_chain s2node;
3315
3316 gcc_checking_assert (s2var->onepart);
3317
3318 if (s2var->n_var_parts)
3319 {
3320 s2node = s2var->var_part[0].loc_chain;
3321
3322 for (; s1node && s2node;
3323 s1node = s1node->next, s2node = s2node->next)
3324 if (s1node->loc != s2node->loc)
3325 break;
3326 else if (s1node->loc == val)
3327 continue;
3328 else
3329 insert_into_intersection (dest, s1node->loc,
3330 MIN (s1node->init, s2node->init));
3331 }
3332 }
3333
3334 for (; s1node; s1node = s1node->next)
3335 {
3336 if (s1node->loc == val)
3337 continue;
3338
3339 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3340 shared_hash_htab (s2set->vars))))
3341 {
3342 insert_into_intersection (dest, s1node->loc,
3343 MIN (s1node->init, found->init));
3344 continue;
3345 }
3346
3347 if (GET_CODE (s1node->loc) == VALUE
3348 && !VALUE_RECURSED_INTO (s1node->loc))
3349 {
3350 decl_or_value dv = dv_from_value (s1node->loc);
3351 variable svar = shared_hash_find (s1set->vars, dv);
3352 if (svar)
3353 {
3354 if (svar->n_var_parts == 1)
3355 {
3356 VALUE_RECURSED_INTO (s1node->loc) = true;
3357 intersect_loc_chains (val, dest, dsm,
3358 svar->var_part[0].loc_chain,
3359 s2var);
3360 VALUE_RECURSED_INTO (s1node->loc) = false;
3361 }
3362 }
3363 }
3364
3365 /* ??? gotta look in cselib_val locations too. */
3366
3367 /* ??? if the location is equivalent to any location in src,
3368 searched recursively
3369
3370 add to dst the values needed to represent the equivalence
3371
3372 telling whether locations S is equivalent to another dv's
3373 location list:
3374
3375 for each location D in the list
3376
3377 if S and D satisfy rtx_equal_p, then it is present
3378
3379 else if D is a value, recurse without cycles
3380
3381 else if S and D have the same CODE and MODE
3382
3383 for each operand oS and the corresponding oD
3384
3385 if oS and oD are not equivalent, then S an D are not equivalent
3386
3387 else if they are RTX vectors
3388
3389 if any vector oS element is not equivalent to its respective oD,
3390 then S and D are not equivalent
3391
3392 */
3393
3394
3395 }
3396 }
3397
3398 /* Return -1 if X should be before Y in a location list for a 1-part
3399 variable, 1 if Y should be before X, and 0 if they're equivalent
3400 and should not appear in the list. */
3401
3402 static int
3403 loc_cmp (rtx x, rtx y)
3404 {
3405 int i, j, r;
3406 RTX_CODE code = GET_CODE (x);
3407 const char *fmt;
3408
3409 if (x == y)
3410 return 0;
3411
3412 if (REG_P (x))
3413 {
3414 if (!REG_P (y))
3415 return -1;
3416 gcc_assert (GET_MODE (x) == GET_MODE (y));
3417 if (REGNO (x) == REGNO (y))
3418 return 0;
3419 else if (REGNO (x) < REGNO (y))
3420 return -1;
3421 else
3422 return 1;
3423 }
3424
3425 if (REG_P (y))
3426 return 1;
3427
3428 if (MEM_P (x))
3429 {
3430 if (!MEM_P (y))
3431 return -1;
3432 gcc_assert (GET_MODE (x) == GET_MODE (y));
3433 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3434 }
3435
3436 if (MEM_P (y))
3437 return 1;
3438
3439 if (GET_CODE (x) == VALUE)
3440 {
3441 if (GET_CODE (y) != VALUE)
3442 return -1;
3443 /* Don't assert the modes are the same, that is true only
3444 when not recursing. (subreg:QI (value:SI 1:1) 0)
3445 and (subreg:QI (value:DI 2:2) 0) can be compared,
3446 even when the modes are different. */
3447 if (canon_value_cmp (x, y))
3448 return -1;
3449 else
3450 return 1;
3451 }
3452
3453 if (GET_CODE (y) == VALUE)
3454 return 1;
3455
3456 /* Entry value is the least preferable kind of expression. */
3457 if (GET_CODE (x) == ENTRY_VALUE)
3458 {
3459 if (GET_CODE (y) != ENTRY_VALUE)
3460 return 1;
3461 gcc_assert (GET_MODE (x) == GET_MODE (y));
3462 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3463 }
3464
3465 if (GET_CODE (y) == ENTRY_VALUE)
3466 return -1;
3467
3468 if (GET_CODE (x) == GET_CODE (y))
3469 /* Compare operands below. */;
3470 else if (GET_CODE (x) < GET_CODE (y))
3471 return -1;
3472 else
3473 return 1;
3474
3475 gcc_assert (GET_MODE (x) == GET_MODE (y));
3476
3477 if (GET_CODE (x) == DEBUG_EXPR)
3478 {
3479 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3480 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3481 return -1;
3482 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3483 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3484 return 1;
3485 }
3486
3487 fmt = GET_RTX_FORMAT (code);
3488 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3489 switch (fmt[i])
3490 {
3491 case 'w':
3492 if (XWINT (x, i) == XWINT (y, i))
3493 break;
3494 else if (XWINT (x, i) < XWINT (y, i))
3495 return -1;
3496 else
3497 return 1;
3498
3499 case 'n':
3500 case 'i':
3501 if (XINT (x, i) == XINT (y, i))
3502 break;
3503 else if (XINT (x, i) < XINT (y, i))
3504 return -1;
3505 else
3506 return 1;
3507
3508 case 'V':
3509 case 'E':
3510 /* Compare the vector length first. */
3511 if (XVECLEN (x, i) == XVECLEN (y, i))
3512 /* Compare the vectors elements. */;
3513 else if (XVECLEN (x, i) < XVECLEN (y, i))
3514 return -1;
3515 else
3516 return 1;
3517
3518 for (j = 0; j < XVECLEN (x, i); j++)
3519 if ((r = loc_cmp (XVECEXP (x, i, j),
3520 XVECEXP (y, i, j))))
3521 return r;
3522 break;
3523
3524 case 'e':
3525 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3526 return r;
3527 break;
3528
3529 case 'S':
3530 case 's':
3531 if (XSTR (x, i) == XSTR (y, i))
3532 break;
3533 if (!XSTR (x, i))
3534 return -1;
3535 if (!XSTR (y, i))
3536 return 1;
3537 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3538 break;
3539 else if (r < 0)
3540 return -1;
3541 else
3542 return 1;
3543
3544 case 'u':
3545 /* These are just backpointers, so they don't matter. */
3546 break;
3547
3548 case '0':
3549 case 't':
3550 break;
3551
3552 /* It is believed that rtx's at this level will never
3553 contain anything but integers and other rtx's,
3554 except for within LABEL_REFs and SYMBOL_REFs. */
3555 default:
3556 gcc_unreachable ();
3557 }
3558 if (CONST_WIDE_INT_P (x))
3559 {
3560 /* Compare the vector length first. */
3561 if (CONST_WIDE_INT_NUNITS (x) >= CONST_WIDE_INT_NUNITS (y))
3562 return 1;
3563 else if (CONST_WIDE_INT_NUNITS (x) < CONST_WIDE_INT_NUNITS (y))
3564 return -1;
3565
3566 /* Compare the vectors elements. */;
3567 for (j = CONST_WIDE_INT_NUNITS (x) - 1; j >= 0 ; j--)
3568 {
3569 if (CONST_WIDE_INT_ELT (x, j) < CONST_WIDE_INT_ELT (y, j))
3570 return -1;
3571 if (CONST_WIDE_INT_ELT (x, j) > CONST_WIDE_INT_ELT (y, j))
3572 return 1;
3573 }
3574 }
3575
3576 return 0;
3577 }
3578
3579 #if ENABLE_CHECKING
3580 /* Check the order of entries in one-part variables. */
3581
3582 int
3583 canonicalize_loc_order_check (variable_def **slot,
3584 dataflow_set *data ATTRIBUTE_UNUSED)
3585 {
3586 variable var = *slot;
3587 location_chain node, next;
3588
3589 #ifdef ENABLE_RTL_CHECKING
3590 int i;
3591 for (i = 0; i < var->n_var_parts; i++)
3592 gcc_assert (var->var_part[0].cur_loc == NULL);
3593 gcc_assert (!var->in_changed_variables);
3594 #endif
3595
3596 if (!var->onepart)
3597 return 1;
3598
3599 gcc_assert (var->n_var_parts == 1);
3600 node = var->var_part[0].loc_chain;
3601 gcc_assert (node);
3602
3603 while ((next = node->next))
3604 {
3605 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3606 node = next;
3607 }
3608
3609 return 1;
3610 }
3611 #endif
3612
3613 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3614 more likely to be chosen as canonical for an equivalence set.
3615 Ensure less likely values can reach more likely neighbors, making
3616 the connections bidirectional. */
3617
3618 int
3619 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3620 {
3621 variable var = *slot;
3622 decl_or_value dv = var->dv;
3623 rtx val;
3624 location_chain node;
3625
3626 if (!dv_is_value_p (dv))
3627 return 1;
3628
3629 gcc_checking_assert (var->n_var_parts == 1);
3630
3631 val = dv_as_value (dv);
3632
3633 for (node = var->var_part[0].loc_chain; node; node = node->next)
3634 if (GET_CODE (node->loc) == VALUE)
3635 {
3636 if (canon_value_cmp (node->loc, val))
3637 VALUE_RECURSED_INTO (val) = true;
3638 else
3639 {
3640 decl_or_value odv = dv_from_value (node->loc);
3641 variable_def **oslot;
3642 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3643
3644 set_slot_part (set, val, oslot, odv, 0,
3645 node->init, NULL_RTX);
3646
3647 VALUE_RECURSED_INTO (node->loc) = true;
3648 }
3649 }
3650
3651 return 1;
3652 }
3653
3654 /* Remove redundant entries from equivalence lists in onepart
3655 variables, canonicalizing equivalence sets into star shapes. */
3656
3657 int
3658 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3659 {
3660 variable var = *slot;
3661 decl_or_value dv = var->dv;
3662 location_chain node;
3663 decl_or_value cdv;
3664 rtx val, cval;
3665 variable_def **cslot;
3666 bool has_value;
3667 bool has_marks;
3668
3669 if (!var->onepart)
3670 return 1;
3671
3672 gcc_checking_assert (var->n_var_parts == 1);
3673
3674 if (dv_is_value_p (dv))
3675 {
3676 cval = dv_as_value (dv);
3677 if (!VALUE_RECURSED_INTO (cval))
3678 return 1;
3679 VALUE_RECURSED_INTO (cval) = false;
3680 }
3681 else
3682 cval = NULL_RTX;
3683
3684 restart:
3685 val = cval;
3686 has_value = false;
3687 has_marks = false;
3688
3689 gcc_assert (var->n_var_parts == 1);
3690
3691 for (node = var->var_part[0].loc_chain; node; node = node->next)
3692 if (GET_CODE (node->loc) == VALUE)
3693 {
3694 has_value = true;
3695 if (VALUE_RECURSED_INTO (node->loc))
3696 has_marks = true;
3697 if (canon_value_cmp (node->loc, cval))
3698 cval = node->loc;
3699 }
3700
3701 if (!has_value)
3702 return 1;
3703
3704 if (cval == val)
3705 {
3706 if (!has_marks || dv_is_decl_p (dv))
3707 return 1;
3708
3709 /* Keep it marked so that we revisit it, either after visiting a
3710 child node, or after visiting a new parent that might be
3711 found out. */
3712 VALUE_RECURSED_INTO (val) = true;
3713
3714 for (node = var->var_part[0].loc_chain; node; node = node->next)
3715 if (GET_CODE (node->loc) == VALUE
3716 && VALUE_RECURSED_INTO (node->loc))
3717 {
3718 cval = node->loc;
3719 restart_with_cval:
3720 VALUE_RECURSED_INTO (cval) = false;
3721 dv = dv_from_value (cval);
3722 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3723 if (!slot)
3724 {
3725 gcc_assert (dv_is_decl_p (var->dv));
3726 /* The canonical value was reset and dropped.
3727 Remove it. */
3728 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3729 return 1;
3730 }
3731 var = *slot;
3732 gcc_assert (dv_is_value_p (var->dv));
3733 if (var->n_var_parts == 0)
3734 return 1;
3735 gcc_assert (var->n_var_parts == 1);
3736 goto restart;
3737 }
3738
3739 VALUE_RECURSED_INTO (val) = false;
3740
3741 return 1;
3742 }
3743
3744 /* Push values to the canonical one. */
3745 cdv = dv_from_value (cval);
3746 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3747
3748 for (node = var->var_part[0].loc_chain; node; node = node->next)
3749 if (node->loc != cval)
3750 {
3751 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3752 node->init, NULL_RTX);
3753 if (GET_CODE (node->loc) == VALUE)
3754 {
3755 decl_or_value ndv = dv_from_value (node->loc);
3756
3757 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3758 NO_INSERT);
3759
3760 if (canon_value_cmp (node->loc, val))
3761 {
3762 /* If it could have been a local minimum, it's not any more,
3763 since it's now neighbor to cval, so it may have to push
3764 to it. Conversely, if it wouldn't have prevailed over
3765 val, then whatever mark it has is fine: if it was to
3766 push, it will now push to a more canonical node, but if
3767 it wasn't, then it has already pushed any values it might
3768 have to. */
3769 VALUE_RECURSED_INTO (node->loc) = true;
3770 /* Make sure we visit node->loc by ensuring we cval is
3771 visited too. */
3772 VALUE_RECURSED_INTO (cval) = true;
3773 }
3774 else if (!VALUE_RECURSED_INTO (node->loc))
3775 /* If we have no need to "recurse" into this node, it's
3776 already "canonicalized", so drop the link to the old
3777 parent. */
3778 clobber_variable_part (set, cval, ndv, 0, NULL);
3779 }
3780 else if (GET_CODE (node->loc) == REG)
3781 {
3782 attrs list = set->regs[REGNO (node->loc)], *listp;
3783
3784 /* Change an existing attribute referring to dv so that it
3785 refers to cdv, removing any duplicate this might
3786 introduce, and checking that no previous duplicates
3787 existed, all in a single pass. */
3788
3789 while (list)
3790 {
3791 if (list->offset == 0
3792 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3793 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3794 break;
3795
3796 list = list->next;
3797 }
3798
3799 gcc_assert (list);
3800 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3801 {
3802 list->dv = cdv;
3803 for (listp = &list->next; (list = *listp); listp = &list->next)
3804 {
3805 if (list->offset)
3806 continue;
3807
3808 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3809 {
3810 *listp = list->next;
3811 pool_free (attrs_pool, list);
3812 list = *listp;
3813 break;
3814 }
3815
3816 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3817 }
3818 }
3819 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3820 {
3821 for (listp = &list->next; (list = *listp); listp = &list->next)
3822 {
3823 if (list->offset)
3824 continue;
3825
3826 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3827 {
3828 *listp = list->next;
3829 pool_free (attrs_pool, list);
3830 list = *listp;
3831 break;
3832 }
3833
3834 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3835 }
3836 }
3837 else
3838 gcc_unreachable ();
3839
3840 #if ENABLE_CHECKING
3841 while (list)
3842 {
3843 if (list->offset == 0
3844 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3845 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3846 gcc_unreachable ();
3847
3848 list = list->next;
3849 }
3850 #endif
3851 }
3852 }
3853
3854 if (val)
3855 set_slot_part (set, val, cslot, cdv, 0,
3856 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3857
3858 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3859
3860 /* Variable may have been unshared. */
3861 var = *slot;
3862 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3863 && var->var_part[0].loc_chain->next == NULL);
3864
3865 if (VALUE_RECURSED_INTO (cval))
3866 goto restart_with_cval;
3867
3868 return 1;
3869 }
3870
3871 /* Bind one-part variables to the canonical value in an equivalence
3872 set. Not doing this causes dataflow convergence failure in rare
3873 circumstances, see PR42873. Unfortunately we can't do this
3874 efficiently as part of canonicalize_values_star, since we may not
3875 have determined or even seen the canonical value of a set when we
3876 get to a variable that references another member of the set. */
3877
3878 int
3879 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3880 {
3881 variable var = *slot;
3882 decl_or_value dv = var->dv;
3883 location_chain node;
3884 rtx cval;
3885 decl_or_value cdv;
3886 variable_def **cslot;
3887 variable cvar;
3888 location_chain cnode;
3889
3890 if (!var->onepart || var->onepart == ONEPART_VALUE)
3891 return 1;
3892
3893 gcc_assert (var->n_var_parts == 1);
3894
3895 node = var->var_part[0].loc_chain;
3896
3897 if (GET_CODE (node->loc) != VALUE)
3898 return 1;
3899
3900 gcc_assert (!node->next);
3901 cval = node->loc;
3902
3903 /* Push values to the canonical one. */
3904 cdv = dv_from_value (cval);
3905 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3906 if (!cslot)
3907 return 1;
3908 cvar = *cslot;
3909 gcc_assert (cvar->n_var_parts == 1);
3910
3911 cnode = cvar->var_part[0].loc_chain;
3912
3913 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3914 that are not “more canonical” than it. */
3915 if (GET_CODE (cnode->loc) != VALUE
3916 || !canon_value_cmp (cnode->loc, cval))
3917 return 1;
3918
3919 /* CVAL was found to be non-canonical. Change the variable to point
3920 to the canonical VALUE. */
3921 gcc_assert (!cnode->next);
3922 cval = cnode->loc;
3923
3924 slot = set_slot_part (set, cval, slot, dv, 0,
3925 node->init, node->set_src);
3926 clobber_slot_part (set, cval, slot, 0, node->set_src);
3927
3928 return 1;
3929 }
3930
3931 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3932 corresponding entry in DSM->src. Multi-part variables are combined
3933 with variable_union, whereas onepart dvs are combined with
3934 intersection. */
3935
3936 static int
3937 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3938 {
3939 dataflow_set *dst = dsm->dst;
3940 variable_def **dstslot;
3941 variable s2var, dvar = NULL;
3942 decl_or_value dv = s1var->dv;
3943 onepart_enum_t onepart = s1var->onepart;
3944 rtx val;
3945 hashval_t dvhash;
3946 location_chain node, *nodep;
3947
3948 /* If the incoming onepart variable has an empty location list, then
3949 the intersection will be just as empty. For other variables,
3950 it's always union. */
3951 gcc_checking_assert (s1var->n_var_parts
3952 && s1var->var_part[0].loc_chain);
3953
3954 if (!onepart)
3955 return variable_union (s1var, dst);
3956
3957 gcc_checking_assert (s1var->n_var_parts == 1);
3958
3959 dvhash = dv_htab_hash (dv);
3960 if (dv_is_value_p (dv))
3961 val = dv_as_value (dv);
3962 else
3963 val = NULL;
3964
3965 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3966 if (!s2var)
3967 {
3968 dst_can_be_shared = false;
3969 return 1;
3970 }
3971
3972 dsm->src_onepart_cnt--;
3973 gcc_assert (s2var->var_part[0].loc_chain
3974 && s2var->onepart == onepart
3975 && s2var->n_var_parts == 1);
3976
3977 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3978 if (dstslot)
3979 {
3980 dvar = *dstslot;
3981 gcc_assert (dvar->refcount == 1
3982 && dvar->onepart == onepart
3983 && dvar->n_var_parts == 1);
3984 nodep = &dvar->var_part[0].loc_chain;
3985 }
3986 else
3987 {
3988 nodep = &node;
3989 node = NULL;
3990 }
3991
3992 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3993 {
3994 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3995 dvhash, INSERT);
3996 *dstslot = dvar = s2var;
3997 dvar->refcount++;
3998 }
3999 else
4000 {
4001 dst_can_be_shared = false;
4002
4003 intersect_loc_chains (val, nodep, dsm,
4004 s1var->var_part[0].loc_chain, s2var);
4005
4006 if (!dstslot)
4007 {
4008 if (node)
4009 {
4010 dvar = (variable) pool_alloc (onepart_pool (onepart));
4011 dvar->dv = dv;
4012 dvar->refcount = 1;
4013 dvar->n_var_parts = 1;
4014 dvar->onepart = onepart;
4015 dvar->in_changed_variables = false;
4016 dvar->var_part[0].loc_chain = node;
4017 dvar->var_part[0].cur_loc = NULL;
4018 if (onepart)
4019 VAR_LOC_1PAUX (dvar) = NULL;
4020 else
4021 VAR_PART_OFFSET (dvar, 0) = 0;
4022
4023 dstslot
4024 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
4025 INSERT);
4026 gcc_assert (!*dstslot);
4027 *dstslot = dvar;
4028 }
4029 else
4030 return 1;
4031 }
4032 }
4033
4034 nodep = &dvar->var_part[0].loc_chain;
4035 while ((node = *nodep))
4036 {
4037 location_chain *nextp = &node->next;
4038
4039 if (GET_CODE (node->loc) == REG)
4040 {
4041 attrs list;
4042
4043 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4044 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4045 && dv_is_value_p (list->dv))
4046 break;
4047
4048 if (!list)
4049 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4050 dv, 0, node->loc);
4051 /* If this value became canonical for another value that had
4052 this register, we want to leave it alone. */
4053 else if (dv_as_value (list->dv) != val)
4054 {
4055 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4056 dstslot, dv, 0,
4057 node->init, NULL_RTX);
4058 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4059
4060 /* Since nextp points into the removed node, we can't
4061 use it. The pointer to the next node moved to nodep.
4062 However, if the variable we're walking is unshared
4063 during our walk, we'll keep walking the location list
4064 of the previously-shared variable, in which case the
4065 node won't have been removed, and we'll want to skip
4066 it. That's why we test *nodep here. */
4067 if (*nodep != node)
4068 nextp = nodep;
4069 }
4070 }
4071 else
4072 /* Canonicalization puts registers first, so we don't have to
4073 walk it all. */
4074 break;
4075 nodep = nextp;
4076 }
4077
4078 if (dvar != *dstslot)
4079 dvar = *dstslot;
4080 nodep = &dvar->var_part[0].loc_chain;
4081
4082 if (val)
4083 {
4084 /* Mark all referenced nodes for canonicalization, and make sure
4085 we have mutual equivalence links. */
4086 VALUE_RECURSED_INTO (val) = true;
4087 for (node = *nodep; node; node = node->next)
4088 if (GET_CODE (node->loc) == VALUE)
4089 {
4090 VALUE_RECURSED_INTO (node->loc) = true;
4091 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4092 node->init, NULL, INSERT);
4093 }
4094
4095 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4096 gcc_assert (*dstslot == dvar);
4097 canonicalize_values_star (dstslot, dst);
4098 gcc_checking_assert (dstslot
4099 == shared_hash_find_slot_noinsert_1 (dst->vars,
4100 dv, dvhash));
4101 dvar = *dstslot;
4102 }
4103 else
4104 {
4105 bool has_value = false, has_other = false;
4106
4107 /* If we have one value and anything else, we're going to
4108 canonicalize this, so make sure all values have an entry in
4109 the table and are marked for canonicalization. */
4110 for (node = *nodep; node; node = node->next)
4111 {
4112 if (GET_CODE (node->loc) == VALUE)
4113 {
4114 /* If this was marked during register canonicalization,
4115 we know we have to canonicalize values. */
4116 if (has_value)
4117 has_other = true;
4118 has_value = true;
4119 if (has_other)
4120 break;
4121 }
4122 else
4123 {
4124 has_other = true;
4125 if (has_value)
4126 break;
4127 }
4128 }
4129
4130 if (has_value && has_other)
4131 {
4132 for (node = *nodep; node; node = node->next)
4133 {
4134 if (GET_CODE (node->loc) == VALUE)
4135 {
4136 decl_or_value dv = dv_from_value (node->loc);
4137 variable_def **slot = NULL;
4138
4139 if (shared_hash_shared (dst->vars))
4140 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4141 if (!slot)
4142 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4143 INSERT);
4144 if (!*slot)
4145 {
4146 variable var = (variable) pool_alloc (onepart_pool
4147 (ONEPART_VALUE));
4148 var->dv = dv;
4149 var->refcount = 1;
4150 var->n_var_parts = 1;
4151 var->onepart = ONEPART_VALUE;
4152 var->in_changed_variables = false;
4153 var->var_part[0].loc_chain = NULL;
4154 var->var_part[0].cur_loc = NULL;
4155 VAR_LOC_1PAUX (var) = NULL;
4156 *slot = var;
4157 }
4158
4159 VALUE_RECURSED_INTO (node->loc) = true;
4160 }
4161 }
4162
4163 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4164 gcc_assert (*dstslot == dvar);
4165 canonicalize_values_star (dstslot, dst);
4166 gcc_checking_assert (dstslot
4167 == shared_hash_find_slot_noinsert_1 (dst->vars,
4168 dv, dvhash));
4169 dvar = *dstslot;
4170 }
4171 }
4172
4173 if (!onepart_variable_different_p (dvar, s2var))
4174 {
4175 variable_htab_free (dvar);
4176 *dstslot = dvar = s2var;
4177 dvar->refcount++;
4178 }
4179 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4180 {
4181 variable_htab_free (dvar);
4182 *dstslot = dvar = s1var;
4183 dvar->refcount++;
4184 dst_can_be_shared = false;
4185 }
4186 else
4187 dst_can_be_shared = false;
4188
4189 return 1;
4190 }
4191
4192 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4193 multi-part variable. Unions of multi-part variables and
4194 intersections of one-part ones will be handled in
4195 variable_merge_over_cur(). */
4196
4197 static int
4198 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4199 {
4200 dataflow_set *dst = dsm->dst;
4201 decl_or_value dv = s2var->dv;
4202
4203 if (!s2var->onepart)
4204 {
4205 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4206 *dstp = s2var;
4207 s2var->refcount++;
4208 return 1;
4209 }
4210
4211 dsm->src_onepart_cnt++;
4212 return 1;
4213 }
4214
4215 /* Combine dataflow set information from SRC2 into DST, using PDST
4216 to carry over information across passes. */
4217
4218 static void
4219 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4220 {
4221 dataflow_set cur = *dst;
4222 dataflow_set *src1 = &cur;
4223 struct dfset_merge dsm;
4224 int i;
4225 size_t src1_elems, src2_elems;
4226 variable_iterator_type hi;
4227 variable var;
4228
4229 src1_elems = shared_hash_htab (src1->vars)->elements ();
4230 src2_elems = shared_hash_htab (src2->vars)->elements ();
4231 dataflow_set_init (dst);
4232 dst->stack_adjust = cur.stack_adjust;
4233 shared_hash_destroy (dst->vars);
4234 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4235 dst->vars->refcount = 1;
4236 dst->vars->htab = new variable_table_type (MAX (src1_elems, src2_elems));
4237
4238 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4239 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4240
4241 dsm.dst = dst;
4242 dsm.src = src2;
4243 dsm.cur = src1;
4244 dsm.src_onepart_cnt = 0;
4245
4246 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.src->vars),
4247 var, variable, hi)
4248 variable_merge_over_src (var, &dsm);
4249 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (dsm.cur->vars),
4250 var, variable, hi)
4251 variable_merge_over_cur (var, &dsm);
4252
4253 if (dsm.src_onepart_cnt)
4254 dst_can_be_shared = false;
4255
4256 dataflow_set_destroy (src1);
4257 }
4258
4259 /* Mark register equivalences. */
4260
4261 static void
4262 dataflow_set_equiv_regs (dataflow_set *set)
4263 {
4264 int i;
4265 attrs list, *listp;
4266
4267 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4268 {
4269 rtx canon[NUM_MACHINE_MODES];
4270
4271 /* If the list is empty or one entry, no need to canonicalize
4272 anything. */
4273 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4274 continue;
4275
4276 memset (canon, 0, sizeof (canon));
4277
4278 for (list = set->regs[i]; list; list = list->next)
4279 if (list->offset == 0 && dv_is_value_p (list->dv))
4280 {
4281 rtx val = dv_as_value (list->dv);
4282 rtx *cvalp = &canon[(int)GET_MODE (val)];
4283 rtx cval = *cvalp;
4284
4285 if (canon_value_cmp (val, cval))
4286 *cvalp = val;
4287 }
4288
4289 for (list = set->regs[i]; list; list = list->next)
4290 if (list->offset == 0 && dv_onepart_p (list->dv))
4291 {
4292 rtx cval = canon[(int)GET_MODE (list->loc)];
4293
4294 if (!cval)
4295 continue;
4296
4297 if (dv_is_value_p (list->dv))
4298 {
4299 rtx val = dv_as_value (list->dv);
4300
4301 if (val == cval)
4302 continue;
4303
4304 VALUE_RECURSED_INTO (val) = true;
4305 set_variable_part (set, val, dv_from_value (cval), 0,
4306 VAR_INIT_STATUS_INITIALIZED,
4307 NULL, NO_INSERT);
4308 }
4309
4310 VALUE_RECURSED_INTO (cval) = true;
4311 set_variable_part (set, cval, list->dv, 0,
4312 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4313 }
4314
4315 for (listp = &set->regs[i]; (list = *listp);
4316 listp = list ? &list->next : listp)
4317 if (list->offset == 0 && dv_onepart_p (list->dv))
4318 {
4319 rtx cval = canon[(int)GET_MODE (list->loc)];
4320 variable_def **slot;
4321
4322 if (!cval)
4323 continue;
4324
4325 if (dv_is_value_p (list->dv))
4326 {
4327 rtx val = dv_as_value (list->dv);
4328 if (!VALUE_RECURSED_INTO (val))
4329 continue;
4330 }
4331
4332 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4333 canonicalize_values_star (slot, set);
4334 if (*listp != list)
4335 list = NULL;
4336 }
4337 }
4338 }
4339
4340 /* Remove any redundant values in the location list of VAR, which must
4341 be unshared and 1-part. */
4342
4343 static void
4344 remove_duplicate_values (variable var)
4345 {
4346 location_chain node, *nodep;
4347
4348 gcc_assert (var->onepart);
4349 gcc_assert (var->n_var_parts == 1);
4350 gcc_assert (var->refcount == 1);
4351
4352 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4353 {
4354 if (GET_CODE (node->loc) == VALUE)
4355 {
4356 if (VALUE_RECURSED_INTO (node->loc))
4357 {
4358 /* Remove duplicate value node. */
4359 *nodep = node->next;
4360 pool_free (loc_chain_pool, node);
4361 continue;
4362 }
4363 else
4364 VALUE_RECURSED_INTO (node->loc) = true;
4365 }
4366 nodep = &node->next;
4367 }
4368
4369 for (node = var->var_part[0].loc_chain; node; node = node->next)
4370 if (GET_CODE (node->loc) == VALUE)
4371 {
4372 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4373 VALUE_RECURSED_INTO (node->loc) = false;
4374 }
4375 }
4376
4377
4378 /* Hash table iteration argument passed to variable_post_merge. */
4379 struct dfset_post_merge
4380 {
4381 /* The new input set for the current block. */
4382 dataflow_set *set;
4383 /* Pointer to the permanent input set for the current block, or
4384 NULL. */
4385 dataflow_set **permp;
4386 };
4387
4388 /* Create values for incoming expressions associated with one-part
4389 variables that don't have value numbers for them. */
4390
4391 int
4392 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4393 {
4394 dataflow_set *set = dfpm->set;
4395 variable var = *slot;
4396 location_chain node;
4397
4398 if (!var->onepart || !var->n_var_parts)
4399 return 1;
4400
4401 gcc_assert (var->n_var_parts == 1);
4402
4403 if (dv_is_decl_p (var->dv))
4404 {
4405 bool check_dupes = false;
4406
4407 restart:
4408 for (node = var->var_part[0].loc_chain; node; node = node->next)
4409 {
4410 if (GET_CODE (node->loc) == VALUE)
4411 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4412 else if (GET_CODE (node->loc) == REG)
4413 {
4414 attrs att, *attp, *curp = NULL;
4415
4416 if (var->refcount != 1)
4417 {
4418 slot = unshare_variable (set, slot, var,
4419 VAR_INIT_STATUS_INITIALIZED);
4420 var = *slot;
4421 goto restart;
4422 }
4423
4424 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4425 attp = &att->next)
4426 if (att->offset == 0
4427 && GET_MODE (att->loc) == GET_MODE (node->loc))
4428 {
4429 if (dv_is_value_p (att->dv))
4430 {
4431 rtx cval = dv_as_value (att->dv);
4432 node->loc = cval;
4433 check_dupes = true;
4434 break;
4435 }
4436 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4437 curp = attp;
4438 }
4439
4440 if (!curp)
4441 {
4442 curp = attp;
4443 while (*curp)
4444 if ((*curp)->offset == 0
4445 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4446 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4447 break;
4448 else
4449 curp = &(*curp)->next;
4450 gcc_assert (*curp);
4451 }
4452
4453 if (!att)
4454 {
4455 decl_or_value cdv;
4456 rtx cval;
4457
4458 if (!*dfpm->permp)
4459 {
4460 *dfpm->permp = XNEW (dataflow_set);
4461 dataflow_set_init (*dfpm->permp);
4462 }
4463
4464 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4465 att; att = att->next)
4466 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4467 {
4468 gcc_assert (att->offset == 0
4469 && dv_is_value_p (att->dv));
4470 val_reset (set, att->dv);
4471 break;
4472 }
4473
4474 if (att)
4475 {
4476 cdv = att->dv;
4477 cval = dv_as_value (cdv);
4478 }
4479 else
4480 {
4481 /* Create a unique value to hold this register,
4482 that ought to be found and reused in
4483 subsequent rounds. */
4484 cselib_val *v;
4485 gcc_assert (!cselib_lookup (node->loc,
4486 GET_MODE (node->loc), 0,
4487 VOIDmode));
4488 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4489 VOIDmode);
4490 cselib_preserve_value (v);
4491 cselib_invalidate_rtx (node->loc);
4492 cval = v->val_rtx;
4493 cdv = dv_from_value (cval);
4494 if (dump_file)
4495 fprintf (dump_file,
4496 "Created new value %u:%u for reg %i\n",
4497 v->uid, v->hash, REGNO (node->loc));
4498 }
4499
4500 var_reg_decl_set (*dfpm->permp, node->loc,
4501 VAR_INIT_STATUS_INITIALIZED,
4502 cdv, 0, NULL, INSERT);
4503
4504 node->loc = cval;
4505 check_dupes = true;
4506 }
4507
4508 /* Remove attribute referring to the decl, which now
4509 uses the value for the register, already existing or
4510 to be added when we bring perm in. */
4511 att = *curp;
4512 *curp = att->next;
4513 pool_free (attrs_pool, att);
4514 }
4515 }
4516
4517 if (check_dupes)
4518 remove_duplicate_values (var);
4519 }
4520
4521 return 1;
4522 }
4523
4524 /* Reset values in the permanent set that are not associated with the
4525 chosen expression. */
4526
4527 int
4528 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4529 {
4530 dataflow_set *set = dfpm->set;
4531 variable pvar = *pslot, var;
4532 location_chain pnode;
4533 decl_or_value dv;
4534 attrs att;
4535
4536 gcc_assert (dv_is_value_p (pvar->dv)
4537 && pvar->n_var_parts == 1);
4538 pnode = pvar->var_part[0].loc_chain;
4539 gcc_assert (pnode
4540 && !pnode->next
4541 && REG_P (pnode->loc));
4542
4543 dv = pvar->dv;
4544
4545 var = shared_hash_find (set->vars, dv);
4546 if (var)
4547 {
4548 /* Although variable_post_merge_new_vals may have made decls
4549 non-star-canonical, values that pre-existed in canonical form
4550 remain canonical, and newly-created values reference a single
4551 REG, so they are canonical as well. Since VAR has the
4552 location list for a VALUE, using find_loc_in_1pdv for it is
4553 fine, since VALUEs don't map back to DECLs. */
4554 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4555 return 1;
4556 val_reset (set, dv);
4557 }
4558
4559 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4560 if (att->offset == 0
4561 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4562 && dv_is_value_p (att->dv))
4563 break;
4564
4565 /* If there is a value associated with this register already, create
4566 an equivalence. */
4567 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4568 {
4569 rtx cval = dv_as_value (att->dv);
4570 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4571 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4572 NULL, INSERT);
4573 }
4574 else if (!att)
4575 {
4576 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4577 dv, 0, pnode->loc);
4578 variable_union (pvar, set);
4579 }
4580
4581 return 1;
4582 }
4583
4584 /* Just checking stuff and registering register attributes for
4585 now. */
4586
4587 static void
4588 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4589 {
4590 struct dfset_post_merge dfpm;
4591
4592 dfpm.set = set;
4593 dfpm.permp = permp;
4594
4595 shared_hash_htab (set->vars)
4596 ->traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4597 if (*permp)
4598 shared_hash_htab ((*permp)->vars)
4599 ->traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4600 shared_hash_htab (set->vars)
4601 ->traverse <dataflow_set *, canonicalize_values_star> (set);
4602 shared_hash_htab (set->vars)
4603 ->traverse <dataflow_set *, canonicalize_vars_star> (set);
4604 }
4605
4606 /* Return a node whose loc is a MEM that refers to EXPR in the
4607 location list of a one-part variable or value VAR, or in that of
4608 any values recursively mentioned in the location lists. */
4609
4610 static location_chain
4611 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type *vars)
4612 {
4613 location_chain node;
4614 decl_or_value dv;
4615 variable var;
4616 location_chain where = NULL;
4617
4618 if (!val)
4619 return NULL;
4620
4621 gcc_assert (GET_CODE (val) == VALUE
4622 && !VALUE_RECURSED_INTO (val));
4623
4624 dv = dv_from_value (val);
4625 var = vars->find_with_hash (dv, dv_htab_hash (dv));
4626
4627 if (!var)
4628 return NULL;
4629
4630 gcc_assert (var->onepart);
4631
4632 if (!var->n_var_parts)
4633 return NULL;
4634
4635 VALUE_RECURSED_INTO (val) = true;
4636
4637 for (node = var->var_part[0].loc_chain; node; node = node->next)
4638 if (MEM_P (node->loc)
4639 && MEM_EXPR (node->loc) == expr
4640 && INT_MEM_OFFSET (node->loc) == 0)
4641 {
4642 where = node;
4643 break;
4644 }
4645 else if (GET_CODE (node->loc) == VALUE
4646 && !VALUE_RECURSED_INTO (node->loc)
4647 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4648 break;
4649
4650 VALUE_RECURSED_INTO (val) = false;
4651
4652 return where;
4653 }
4654
4655 /* Return TRUE if the value of MEM may vary across a call. */
4656
4657 static bool
4658 mem_dies_at_call (rtx mem)
4659 {
4660 tree expr = MEM_EXPR (mem);
4661 tree decl;
4662
4663 if (!expr)
4664 return true;
4665
4666 decl = get_base_address (expr);
4667
4668 if (!decl)
4669 return true;
4670
4671 if (!DECL_P (decl))
4672 return true;
4673
4674 return (may_be_aliased (decl)
4675 || (!TREE_READONLY (decl) && is_global_var (decl)));
4676 }
4677
4678 /* Remove all MEMs from the location list of a hash table entry for a
4679 one-part variable, except those whose MEM attributes map back to
4680 the variable itself, directly or within a VALUE. */
4681
4682 int
4683 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4684 {
4685 variable var = *slot;
4686
4687 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4688 {
4689 tree decl = dv_as_decl (var->dv);
4690 location_chain loc, *locp;
4691 bool changed = false;
4692
4693 if (!var->n_var_parts)
4694 return 1;
4695
4696 gcc_assert (var->n_var_parts == 1);
4697
4698 if (shared_var_p (var, set->vars))
4699 {
4700 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4701 {
4702 /* We want to remove dying MEMs that doesn't refer to DECL. */
4703 if (GET_CODE (loc->loc) == MEM
4704 && (MEM_EXPR (loc->loc) != decl
4705 || INT_MEM_OFFSET (loc->loc) != 0)
4706 && !mem_dies_at_call (loc->loc))
4707 break;
4708 /* We want to move here MEMs that do refer to DECL. */
4709 else if (GET_CODE (loc->loc) == VALUE
4710 && find_mem_expr_in_1pdv (decl, loc->loc,
4711 shared_hash_htab (set->vars)))
4712 break;
4713 }
4714
4715 if (!loc)
4716 return 1;
4717
4718 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4719 var = *slot;
4720 gcc_assert (var->n_var_parts == 1);
4721 }
4722
4723 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4724 loc; loc = *locp)
4725 {
4726 rtx old_loc = loc->loc;
4727 if (GET_CODE (old_loc) == VALUE)
4728 {
4729 location_chain mem_node
4730 = find_mem_expr_in_1pdv (decl, loc->loc,
4731 shared_hash_htab (set->vars));
4732
4733 /* ??? This picks up only one out of multiple MEMs that
4734 refer to the same variable. Do we ever need to be
4735 concerned about dealing with more than one, or, given
4736 that they should all map to the same variable
4737 location, their addresses will have been merged and
4738 they will be regarded as equivalent? */
4739 if (mem_node)
4740 {
4741 loc->loc = mem_node->loc;
4742 loc->set_src = mem_node->set_src;
4743 loc->init = MIN (loc->init, mem_node->init);
4744 }
4745 }
4746
4747 if (GET_CODE (loc->loc) != MEM
4748 || (MEM_EXPR (loc->loc) == decl
4749 && INT_MEM_OFFSET (loc->loc) == 0)
4750 || !mem_dies_at_call (loc->loc))
4751 {
4752 if (old_loc != loc->loc && emit_notes)
4753 {
4754 if (old_loc == var->var_part[0].cur_loc)
4755 {
4756 changed = true;
4757 var->var_part[0].cur_loc = NULL;
4758 }
4759 }
4760 locp = &loc->next;
4761 continue;
4762 }
4763
4764 if (emit_notes)
4765 {
4766 if (old_loc == var->var_part[0].cur_loc)
4767 {
4768 changed = true;
4769 var->var_part[0].cur_loc = NULL;
4770 }
4771 }
4772 *locp = loc->next;
4773 pool_free (loc_chain_pool, loc);
4774 }
4775
4776 if (!var->var_part[0].loc_chain)
4777 {
4778 var->n_var_parts--;
4779 changed = true;
4780 }
4781 if (changed)
4782 variable_was_changed (var, set);
4783 }
4784
4785 return 1;
4786 }
4787
4788 /* Remove all MEMs from the location list of a hash table entry for a
4789 value. */
4790
4791 int
4792 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4793 {
4794 variable var = *slot;
4795
4796 if (var->onepart == ONEPART_VALUE)
4797 {
4798 location_chain loc, *locp;
4799 bool changed = false;
4800 rtx cur_loc;
4801
4802 gcc_assert (var->n_var_parts == 1);
4803
4804 if (shared_var_p (var, set->vars))
4805 {
4806 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4807 if (GET_CODE (loc->loc) == MEM
4808 && mem_dies_at_call (loc->loc))
4809 break;
4810
4811 if (!loc)
4812 return 1;
4813
4814 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4815 var = *slot;
4816 gcc_assert (var->n_var_parts == 1);
4817 }
4818
4819 if (VAR_LOC_1PAUX (var))
4820 cur_loc = VAR_LOC_FROM (var);
4821 else
4822 cur_loc = var->var_part[0].cur_loc;
4823
4824 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4825 loc; loc = *locp)
4826 {
4827 if (GET_CODE (loc->loc) != MEM
4828 || !mem_dies_at_call (loc->loc))
4829 {
4830 locp = &loc->next;
4831 continue;
4832 }
4833
4834 *locp = loc->next;
4835 /* If we have deleted the location which was last emitted
4836 we have to emit new location so add the variable to set
4837 of changed variables. */
4838 if (cur_loc == loc->loc)
4839 {
4840 changed = true;
4841 var->var_part[0].cur_loc = NULL;
4842 if (VAR_LOC_1PAUX (var))
4843 VAR_LOC_FROM (var) = NULL;
4844 }
4845 pool_free (loc_chain_pool, loc);
4846 }
4847
4848 if (!var->var_part[0].loc_chain)
4849 {
4850 var->n_var_parts--;
4851 changed = true;
4852 }
4853 if (changed)
4854 variable_was_changed (var, set);
4855 }
4856
4857 return 1;
4858 }
4859
4860 /* Remove all variable-location information about call-clobbered
4861 registers, as well as associations between MEMs and VALUEs. */
4862
4863 static void
4864 dataflow_set_clear_at_call (dataflow_set *set)
4865 {
4866 unsigned int r;
4867 hard_reg_set_iterator hrsi;
4868
4869 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4870 var_regno_delete (set, r);
4871
4872 if (MAY_HAVE_DEBUG_INSNS)
4873 {
4874 set->traversed_vars = set->vars;
4875 shared_hash_htab (set->vars)
4876 ->traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4877 set->traversed_vars = set->vars;
4878 shared_hash_htab (set->vars)
4879 ->traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4880 set->traversed_vars = NULL;
4881 }
4882 }
4883
4884 static bool
4885 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4886 {
4887 location_chain lc1, lc2;
4888
4889 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4890 {
4891 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4892 {
4893 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4894 {
4895 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4896 break;
4897 }
4898 if (rtx_equal_p (lc1->loc, lc2->loc))
4899 break;
4900 }
4901 if (!lc2)
4902 return true;
4903 }
4904 return false;
4905 }
4906
4907 /* Return true if one-part variables VAR1 and VAR2 are different.
4908 They must be in canonical order. */
4909
4910 static bool
4911 onepart_variable_different_p (variable var1, variable var2)
4912 {
4913 location_chain lc1, lc2;
4914
4915 if (var1 == var2)
4916 return false;
4917
4918 gcc_assert (var1->n_var_parts == 1
4919 && var2->n_var_parts == 1);
4920
4921 lc1 = var1->var_part[0].loc_chain;
4922 lc2 = var2->var_part[0].loc_chain;
4923
4924 gcc_assert (lc1 && lc2);
4925
4926 while (lc1 && lc2)
4927 {
4928 if (loc_cmp (lc1->loc, lc2->loc))
4929 return true;
4930 lc1 = lc1->next;
4931 lc2 = lc2->next;
4932 }
4933
4934 return lc1 != lc2;
4935 }
4936
4937 /* Return true if variables VAR1 and VAR2 are different. */
4938
4939 static bool
4940 variable_different_p (variable var1, variable var2)
4941 {
4942 int i;
4943
4944 if (var1 == var2)
4945 return false;
4946
4947 if (var1->onepart != var2->onepart)
4948 return true;
4949
4950 if (var1->n_var_parts != var2->n_var_parts)
4951 return true;
4952
4953 if (var1->onepart && var1->n_var_parts)
4954 {
4955 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4956 && var1->n_var_parts == 1);
4957 /* One-part values have locations in a canonical order. */
4958 return onepart_variable_different_p (var1, var2);
4959 }
4960
4961 for (i = 0; i < var1->n_var_parts; i++)
4962 {
4963 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4964 return true;
4965 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4966 return true;
4967 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4968 return true;
4969 }
4970 return false;
4971 }
4972
4973 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4974
4975 static bool
4976 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4977 {
4978 variable_iterator_type hi;
4979 variable var1;
4980
4981 if (old_set->vars == new_set->vars)
4982 return false;
4983
4984 if (shared_hash_htab (old_set->vars)->elements ()
4985 != shared_hash_htab (new_set->vars)->elements ())
4986 return true;
4987
4988 FOR_EACH_HASH_TABLE_ELEMENT (*shared_hash_htab (old_set->vars),
4989 var1, variable, hi)
4990 {
4991 variable_table_type *htab = shared_hash_htab (new_set->vars);
4992 variable var2 = htab->find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4993 if (!var2)
4994 {
4995 if (dump_file && (dump_flags & TDF_DETAILS))
4996 {
4997 fprintf (dump_file, "dataflow difference found: removal of:\n");
4998 dump_var (var1);
4999 }
5000 return true;
5001 }
5002
5003 if (variable_different_p (var1, var2))
5004 {
5005 if (dump_file && (dump_flags & TDF_DETAILS))
5006 {
5007 fprintf (dump_file, "dataflow difference found: "
5008 "old and new follow:\n");
5009 dump_var (var1);
5010 dump_var (var2);
5011 }
5012 return true;
5013 }
5014 }
5015
5016 /* No need to traverse the second hashtab, if both have the same number
5017 of elements and the second one had all entries found in the first one,
5018 then it can't have any extra entries. */
5019 return false;
5020 }
5021
5022 /* Free the contents of dataflow set SET. */
5023
5024 static void
5025 dataflow_set_destroy (dataflow_set *set)
5026 {
5027 int i;
5028
5029 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
5030 attrs_list_clear (&set->regs[i]);
5031
5032 shared_hash_destroy (set->vars);
5033 set->vars = NULL;
5034 }
5035
5036 /* Return true if RTL X contains a SYMBOL_REF. */
5037
5038 static bool
5039 contains_symbol_ref (rtx x)
5040 {
5041 const char *fmt;
5042 RTX_CODE code;
5043 int i;
5044
5045 if (!x)
5046 return false;
5047
5048 code = GET_CODE (x);
5049 if (code == SYMBOL_REF)
5050 return true;
5051
5052 fmt = GET_RTX_FORMAT (code);
5053 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5054 {
5055 if (fmt[i] == 'e')
5056 {
5057 if (contains_symbol_ref (XEXP (x, i)))
5058 return true;
5059 }
5060 else if (fmt[i] == 'E')
5061 {
5062 int j;
5063 for (j = 0; j < XVECLEN (x, i); j++)
5064 if (contains_symbol_ref (XVECEXP (x, i, j)))
5065 return true;
5066 }
5067 }
5068
5069 return false;
5070 }
5071
5072 /* Shall EXPR be tracked? */
5073
5074 static bool
5075 track_expr_p (tree expr, bool need_rtl)
5076 {
5077 rtx decl_rtl;
5078 tree realdecl;
5079
5080 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5081 return DECL_RTL_SET_P (expr);
5082
5083 /* If EXPR is not a parameter or a variable do not track it. */
5084 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5085 return 0;
5086
5087 /* It also must have a name... */
5088 if (!DECL_NAME (expr) && need_rtl)
5089 return 0;
5090
5091 /* ... and a RTL assigned to it. */
5092 decl_rtl = DECL_RTL_IF_SET (expr);
5093 if (!decl_rtl && need_rtl)
5094 return 0;
5095
5096 /* If this expression is really a debug alias of some other declaration, we
5097 don't need to track this expression if the ultimate declaration is
5098 ignored. */
5099 realdecl = expr;
5100 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5101 {
5102 realdecl = DECL_DEBUG_EXPR (realdecl);
5103 if (!DECL_P (realdecl))
5104 {
5105 if (handled_component_p (realdecl)
5106 || (TREE_CODE (realdecl) == MEM_REF
5107 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5108 {
5109 HOST_WIDE_INT bitsize, bitpos, maxsize;
5110 tree innerdecl
5111 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5112 &maxsize);
5113 if (!DECL_P (innerdecl)
5114 || DECL_IGNORED_P (innerdecl)
5115 /* Do not track declarations for parts of tracked parameters
5116 since we want to track them as a whole instead. */
5117 || (TREE_CODE (innerdecl) == PARM_DECL
5118 && DECL_MODE (innerdecl) != BLKmode
5119 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5120 || TREE_STATIC (innerdecl)
5121 || bitsize <= 0
5122 || bitpos + bitsize > 256
5123 || bitsize != maxsize)
5124 return 0;
5125 else
5126 realdecl = expr;
5127 }
5128 else
5129 return 0;
5130 }
5131 }
5132
5133 /* Do not track EXPR if REALDECL it should be ignored for debugging
5134 purposes. */
5135 if (DECL_IGNORED_P (realdecl))
5136 return 0;
5137
5138 /* Do not track global variables until we are able to emit correct location
5139 list for them. */
5140 if (TREE_STATIC (realdecl))
5141 return 0;
5142
5143 /* When the EXPR is a DECL for alias of some variable (see example)
5144 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5145 DECL_RTL contains SYMBOL_REF.
5146
5147 Example:
5148 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5149 char **_dl_argv;
5150 */
5151 if (decl_rtl && MEM_P (decl_rtl)
5152 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5153 return 0;
5154
5155 /* If RTX is a memory it should not be very large (because it would be
5156 an array or struct). */
5157 if (decl_rtl && MEM_P (decl_rtl))
5158 {
5159 /* Do not track structures and arrays. */
5160 if (GET_MODE (decl_rtl) == BLKmode
5161 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5162 return 0;
5163 if (MEM_SIZE_KNOWN_P (decl_rtl)
5164 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5165 return 0;
5166 }
5167
5168 DECL_CHANGED (expr) = 0;
5169 DECL_CHANGED (realdecl) = 0;
5170 return 1;
5171 }
5172
5173 /* Determine whether a given LOC refers to the same variable part as
5174 EXPR+OFFSET. */
5175
5176 static bool
5177 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5178 {
5179 tree expr2;
5180 HOST_WIDE_INT offset2;
5181
5182 if (! DECL_P (expr))
5183 return false;
5184
5185 if (REG_P (loc))
5186 {
5187 expr2 = REG_EXPR (loc);
5188 offset2 = REG_OFFSET (loc);
5189 }
5190 else if (MEM_P (loc))
5191 {
5192 expr2 = MEM_EXPR (loc);
5193 offset2 = INT_MEM_OFFSET (loc);
5194 }
5195 else
5196 return false;
5197
5198 if (! expr2 || ! DECL_P (expr2))
5199 return false;
5200
5201 expr = var_debug_decl (expr);
5202 expr2 = var_debug_decl (expr2);
5203
5204 return (expr == expr2 && offset == offset2);
5205 }
5206
5207 /* LOC is a REG or MEM that we would like to track if possible.
5208 If EXPR is null, we don't know what expression LOC refers to,
5209 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5210 LOC is an lvalue register.
5211
5212 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5213 is something we can track. When returning true, store the mode of
5214 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5215 from EXPR in *OFFSET_OUT (if nonnull). */
5216
5217 static bool
5218 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5219 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5220 {
5221 enum machine_mode mode;
5222
5223 if (expr == NULL || !track_expr_p (expr, true))
5224 return false;
5225
5226 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5227 whole subreg, but only the old inner part is really relevant. */
5228 mode = GET_MODE (loc);
5229 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5230 {
5231 enum machine_mode pseudo_mode;
5232
5233 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5234 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5235 {
5236 offset += byte_lowpart_offset (pseudo_mode, mode);
5237 mode = pseudo_mode;
5238 }
5239 }
5240
5241 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5242 Do the same if we are storing to a register and EXPR occupies
5243 the whole of register LOC; in that case, the whole of EXPR is
5244 being changed. We exclude complex modes from the second case
5245 because the real and imaginary parts are represented as separate
5246 pseudo registers, even if the whole complex value fits into one
5247 hard register. */
5248 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5249 || (store_reg_p
5250 && !COMPLEX_MODE_P (DECL_MODE (expr))
5251 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5252 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5253 {
5254 mode = DECL_MODE (expr);
5255 offset = 0;
5256 }
5257
5258 if (offset < 0 || offset >= MAX_VAR_PARTS)
5259 return false;
5260
5261 if (mode_out)
5262 *mode_out = mode;
5263 if (offset_out)
5264 *offset_out = offset;
5265 return true;
5266 }
5267
5268 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5269 want to track. When returning nonnull, make sure that the attributes
5270 on the returned value are updated. */
5271
5272 static rtx
5273 var_lowpart (enum machine_mode mode, rtx loc)
5274 {
5275 unsigned int offset, reg_offset, regno;
5276
5277 if (GET_MODE (loc) == mode)
5278 return loc;
5279
5280 if (!REG_P (loc) && !MEM_P (loc))
5281 return NULL;
5282
5283 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5284
5285 if (MEM_P (loc))
5286 return adjust_address_nv (loc, mode, offset);
5287
5288 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5289 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5290 reg_offset, mode);
5291 return gen_rtx_REG_offset (loc, mode, regno, offset);
5292 }
5293
5294 /* Carry information about uses and stores while walking rtx. */
5295
5296 struct count_use_info
5297 {
5298 /* The insn where the RTX is. */
5299 rtx_insn *insn;
5300
5301 /* The basic block where insn is. */
5302 basic_block bb;
5303
5304 /* The array of n_sets sets in the insn, as determined by cselib. */
5305 struct cselib_set *sets;
5306 int n_sets;
5307
5308 /* True if we're counting stores, false otherwise. */
5309 bool store_p;
5310 };
5311
5312 /* Find a VALUE corresponding to X. */
5313
5314 static inline cselib_val *
5315 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5316 {
5317 int i;
5318
5319 if (cui->sets)
5320 {
5321 /* This is called after uses are set up and before stores are
5322 processed by cselib, so it's safe to look up srcs, but not
5323 dsts. So we look up expressions that appear in srcs or in
5324 dest expressions, but we search the sets array for dests of
5325 stores. */
5326 if (cui->store_p)
5327 {
5328 /* Some targets represent memset and memcpy patterns
5329 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5330 (set (mem:BLK ...) (const_int ...)) or
5331 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5332 in that case, otherwise we end up with mode mismatches. */
5333 if (mode == BLKmode && MEM_P (x))
5334 return NULL;
5335 for (i = 0; i < cui->n_sets; i++)
5336 if (cui->sets[i].dest == x)
5337 return cui->sets[i].src_elt;
5338 }
5339 else
5340 return cselib_lookup (x, mode, 0, VOIDmode);
5341 }
5342
5343 return NULL;
5344 }
5345
5346 /* Replace all registers and addresses in an expression with VALUE
5347 expressions that map back to them, unless the expression is a
5348 register. If no mapping is or can be performed, returns NULL. */
5349
5350 static rtx
5351 replace_expr_with_values (rtx loc)
5352 {
5353 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5354 return NULL;
5355 else if (MEM_P (loc))
5356 {
5357 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5358 get_address_mode (loc), 0,
5359 GET_MODE (loc));
5360 if (addr)
5361 return replace_equiv_address_nv (loc, addr->val_rtx);
5362 else
5363 return NULL;
5364 }
5365 else
5366 return cselib_subst_to_values (loc, VOIDmode);
5367 }
5368
5369 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5370 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5371 RTX. */
5372
5373 static int
5374 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5375 {
5376 rtx loc = *x;
5377
5378 return GET_CODE (loc) == DEBUG_EXPR;
5379 }
5380
5381 /* Determine what kind of micro operation to choose for a USE. Return
5382 MO_CLOBBER if no micro operation is to be generated. */
5383
5384 static enum micro_operation_type
5385 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5386 {
5387 tree expr;
5388
5389 if (cui && cui->sets)
5390 {
5391 if (GET_CODE (loc) == VAR_LOCATION)
5392 {
5393 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5394 {
5395 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5396 if (! VAR_LOC_UNKNOWN_P (ploc))
5397 {
5398 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5399 VOIDmode);
5400
5401 /* ??? flag_float_store and volatile mems are never
5402 given values, but we could in theory use them for
5403 locations. */
5404 gcc_assert (val || 1);
5405 }
5406 return MO_VAL_LOC;
5407 }
5408 else
5409 return MO_CLOBBER;
5410 }
5411
5412 if (REG_P (loc) || MEM_P (loc))
5413 {
5414 if (modep)
5415 *modep = GET_MODE (loc);
5416 if (cui->store_p)
5417 {
5418 if (REG_P (loc)
5419 || (find_use_val (loc, GET_MODE (loc), cui)
5420 && cselib_lookup (XEXP (loc, 0),
5421 get_address_mode (loc), 0,
5422 GET_MODE (loc))))
5423 return MO_VAL_SET;
5424 }
5425 else
5426 {
5427 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5428
5429 if (val && !cselib_preserved_value_p (val))
5430 return MO_VAL_USE;
5431 }
5432 }
5433 }
5434
5435 if (REG_P (loc))
5436 {
5437 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5438
5439 if (loc == cfa_base_rtx)
5440 return MO_CLOBBER;
5441 expr = REG_EXPR (loc);
5442
5443 if (!expr)
5444 return MO_USE_NO_VAR;
5445 else if (target_for_debug_bind (var_debug_decl (expr)))
5446 return MO_CLOBBER;
5447 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5448 false, modep, NULL))
5449 return MO_USE;
5450 else
5451 return MO_USE_NO_VAR;
5452 }
5453 else if (MEM_P (loc))
5454 {
5455 expr = MEM_EXPR (loc);
5456
5457 if (!expr)
5458 return MO_CLOBBER;
5459 else if (target_for_debug_bind (var_debug_decl (expr)))
5460 return MO_CLOBBER;
5461 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5462 false, modep, NULL)
5463 /* Multi-part variables shouldn't refer to one-part
5464 variable names such as VALUEs (never happens) or
5465 DEBUG_EXPRs (only happens in the presence of debug
5466 insns). */
5467 && (!MAY_HAVE_DEBUG_INSNS
5468 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5469 return MO_USE;
5470 else
5471 return MO_CLOBBER;
5472 }
5473
5474 return MO_CLOBBER;
5475 }
5476
5477 /* Log to OUT information about micro-operation MOPT involving X in
5478 INSN of BB. */
5479
5480 static inline void
5481 log_op_type (rtx x, basic_block bb, rtx_insn *insn,
5482 enum micro_operation_type mopt, FILE *out)
5483 {
5484 fprintf (out, "bb %i op %i insn %i %s ",
5485 bb->index, VTI (bb)->mos.length (),
5486 INSN_UID (insn), micro_operation_type_name[mopt]);
5487 print_inline_rtx (out, x, 2);
5488 fputc ('\n', out);
5489 }
5490
5491 /* Tell whether the CONCAT used to holds a VALUE and its location
5492 needs value resolution, i.e., an attempt of mapping the location
5493 back to other incoming values. */
5494 #define VAL_NEEDS_RESOLUTION(x) \
5495 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5496 /* Whether the location in the CONCAT is a tracked expression, that
5497 should also be handled like a MO_USE. */
5498 #define VAL_HOLDS_TRACK_EXPR(x) \
5499 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5500 /* Whether the location in the CONCAT should be handled like a MO_COPY
5501 as well. */
5502 #define VAL_EXPR_IS_COPIED(x) \
5503 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5504 /* Whether the location in the CONCAT should be handled like a
5505 MO_CLOBBER as well. */
5506 #define VAL_EXPR_IS_CLOBBERED(x) \
5507 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5508
5509 /* All preserved VALUEs. */
5510 static vec<rtx> preserved_values;
5511
5512 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5513
5514 static void
5515 preserve_value (cselib_val *val)
5516 {
5517 cselib_preserve_value (val);
5518 preserved_values.safe_push (val->val_rtx);
5519 }
5520
5521 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5522 any rtxes not suitable for CONST use not replaced by VALUEs
5523 are discovered. */
5524
5525 static int
5526 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5527 {
5528 if (*x == NULL_RTX)
5529 return 0;
5530
5531 switch (GET_CODE (*x))
5532 {
5533 case REG:
5534 case DEBUG_EXPR:
5535 case PC:
5536 case SCRATCH:
5537 case CC0:
5538 case ASM_INPUT:
5539 case ASM_OPERANDS:
5540 return 1;
5541 case MEM:
5542 return !MEM_READONLY_P (*x);
5543 default:
5544 return 0;
5545 }
5546 }
5547
5548 /* Add uses (register and memory references) LOC which will be tracked
5549 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5550
5551 static int
5552 add_uses (rtx *ploc, void *data)
5553 {
5554 rtx loc = *ploc;
5555 enum machine_mode mode = VOIDmode;
5556 struct count_use_info *cui = (struct count_use_info *)data;
5557 enum micro_operation_type type = use_type (loc, cui, &mode);
5558
5559 if (type != MO_CLOBBER)
5560 {
5561 basic_block bb = cui->bb;
5562 micro_operation mo;
5563
5564 mo.type = type;
5565 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5566 mo.insn = cui->insn;
5567
5568 if (type == MO_VAL_LOC)
5569 {
5570 rtx oloc = loc;
5571 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5572 cselib_val *val;
5573
5574 gcc_assert (cui->sets);
5575
5576 if (MEM_P (vloc)
5577 && !REG_P (XEXP (vloc, 0))
5578 && !MEM_P (XEXP (vloc, 0)))
5579 {
5580 rtx mloc = vloc;
5581 enum machine_mode address_mode = get_address_mode (mloc);
5582 cselib_val *val
5583 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5584 GET_MODE (mloc));
5585
5586 if (val && !cselib_preserved_value_p (val))
5587 preserve_value (val);
5588 }
5589
5590 if (CONSTANT_P (vloc)
5591 && (GET_CODE (vloc) != CONST
5592 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5593 /* For constants don't look up any value. */;
5594 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5595 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5596 {
5597 enum machine_mode mode2;
5598 enum micro_operation_type type2;
5599 rtx nloc = NULL;
5600 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5601
5602 if (resolvable)
5603 nloc = replace_expr_with_values (vloc);
5604
5605 if (nloc)
5606 {
5607 oloc = shallow_copy_rtx (oloc);
5608 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5609 }
5610
5611 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5612
5613 type2 = use_type (vloc, 0, &mode2);
5614
5615 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5616 || type2 == MO_CLOBBER);
5617
5618 if (type2 == MO_CLOBBER
5619 && !cselib_preserved_value_p (val))
5620 {
5621 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5622 preserve_value (val);
5623 }
5624 }
5625 else if (!VAR_LOC_UNKNOWN_P (vloc))
5626 {
5627 oloc = shallow_copy_rtx (oloc);
5628 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5629 }
5630
5631 mo.u.loc = oloc;
5632 }
5633 else if (type == MO_VAL_USE)
5634 {
5635 enum machine_mode mode2 = VOIDmode;
5636 enum micro_operation_type type2;
5637 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5638 rtx vloc, oloc = loc, nloc;
5639
5640 gcc_assert (cui->sets);
5641
5642 if (MEM_P (oloc)
5643 && !REG_P (XEXP (oloc, 0))
5644 && !MEM_P (XEXP (oloc, 0)))
5645 {
5646 rtx mloc = oloc;
5647 enum machine_mode address_mode = get_address_mode (mloc);
5648 cselib_val *val
5649 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5650 GET_MODE (mloc));
5651
5652 if (val && !cselib_preserved_value_p (val))
5653 preserve_value (val);
5654 }
5655
5656 type2 = use_type (loc, 0, &mode2);
5657
5658 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5659 || type2 == MO_CLOBBER);
5660
5661 if (type2 == MO_USE)
5662 vloc = var_lowpart (mode2, loc);
5663 else
5664 vloc = oloc;
5665
5666 /* The loc of a MO_VAL_USE may have two forms:
5667
5668 (concat val src): val is at src, a value-based
5669 representation.
5670
5671 (concat (concat val use) src): same as above, with use as
5672 the MO_USE tracked value, if it differs from src.
5673
5674 */
5675
5676 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5677 nloc = replace_expr_with_values (loc);
5678 if (!nloc)
5679 nloc = oloc;
5680
5681 if (vloc != nloc)
5682 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5683 else
5684 oloc = val->val_rtx;
5685
5686 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5687
5688 if (type2 == MO_USE)
5689 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5690 if (!cselib_preserved_value_p (val))
5691 {
5692 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5693 preserve_value (val);
5694 }
5695 }
5696 else
5697 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5698
5699 if (dump_file && (dump_flags & TDF_DETAILS))
5700 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5701 VTI (bb)->mos.safe_push (mo);
5702 }
5703
5704 return 0;
5705 }
5706
5707 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5708
5709 static void
5710 add_uses_1 (rtx *x, void *cui)
5711 {
5712 for_each_rtx (x, add_uses, cui);
5713 }
5714
5715 /* This is the value used during expansion of locations. We want it
5716 to be unbounded, so that variables expanded deep in a recursion
5717 nest are fully evaluated, so that their values are cached
5718 correctly. We avoid recursion cycles through other means, and we
5719 don't unshare RTL, so excess complexity is not a problem. */
5720 #define EXPR_DEPTH (INT_MAX)
5721 /* We use this to keep too-complex expressions from being emitted as
5722 location notes, and then to debug information. Users can trade
5723 compile time for ridiculously complex expressions, although they're
5724 seldom useful, and they may often have to be discarded as not
5725 representable anyway. */
5726 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5727
5728 /* Attempt to reverse the EXPR operation in the debug info and record
5729 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5730 no longer live we can express its value as VAL - 6. */
5731
5732 static void
5733 reverse_op (rtx val, const_rtx expr, rtx_insn *insn)
5734 {
5735 rtx src, arg, ret;
5736 cselib_val *v;
5737 struct elt_loc_list *l;
5738 enum rtx_code code;
5739 int count;
5740
5741 if (GET_CODE (expr) != SET)
5742 return;
5743
5744 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5745 return;
5746
5747 src = SET_SRC (expr);
5748 switch (GET_CODE (src))
5749 {
5750 case PLUS:
5751 case MINUS:
5752 case XOR:
5753 case NOT:
5754 case NEG:
5755 if (!REG_P (XEXP (src, 0)))
5756 return;
5757 break;
5758 case SIGN_EXTEND:
5759 case ZERO_EXTEND:
5760 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5761 return;
5762 break;
5763 default:
5764 return;
5765 }
5766
5767 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5768 return;
5769
5770 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5771 if (!v || !cselib_preserved_value_p (v))
5772 return;
5773
5774 /* Use canonical V to avoid creating multiple redundant expressions
5775 for different VALUES equivalent to V. */
5776 v = canonical_cselib_val (v);
5777
5778 /* Adding a reverse op isn't useful if V already has an always valid
5779 location. Ignore ENTRY_VALUE, while it is always constant, we should
5780 prefer non-ENTRY_VALUE locations whenever possible. */
5781 for (l = v->locs, count = 0; l; l = l->next, count++)
5782 if (CONSTANT_P (l->loc)
5783 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5784 return;
5785 /* Avoid creating too large locs lists. */
5786 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5787 return;
5788
5789 switch (GET_CODE (src))
5790 {
5791 case NOT:
5792 case NEG:
5793 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5794 return;
5795 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5796 break;
5797 case SIGN_EXTEND:
5798 case ZERO_EXTEND:
5799 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5800 break;
5801 case XOR:
5802 code = XOR;
5803 goto binary;
5804 case PLUS:
5805 code = MINUS;
5806 goto binary;
5807 case MINUS:
5808 code = PLUS;
5809 goto binary;
5810 binary:
5811 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5812 return;
5813 arg = XEXP (src, 1);
5814 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5815 {
5816 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5817 if (arg == NULL_RTX)
5818 return;
5819 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5820 return;
5821 }
5822 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5823 if (ret == val)
5824 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5825 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5826 breaks a lot of routines during var-tracking. */
5827 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5828 break;
5829 default:
5830 gcc_unreachable ();
5831 }
5832
5833 cselib_add_permanent_equiv (v, ret, insn);
5834 }
5835
5836 /* Add stores (register and memory references) LOC which will be tracked
5837 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5838 CUIP->insn is instruction which the LOC is part of. */
5839
5840 static void
5841 add_stores (rtx loc, const_rtx expr, void *cuip)
5842 {
5843 enum machine_mode mode = VOIDmode, mode2;
5844 struct count_use_info *cui = (struct count_use_info *)cuip;
5845 basic_block bb = cui->bb;
5846 micro_operation mo;
5847 rtx oloc = loc, nloc, src = NULL;
5848 enum micro_operation_type type = use_type (loc, cui, &mode);
5849 bool track_p = false;
5850 cselib_val *v;
5851 bool resolve, preserve;
5852
5853 if (type == MO_CLOBBER)
5854 return;
5855
5856 mode2 = mode;
5857
5858 if (REG_P (loc))
5859 {
5860 gcc_assert (loc != cfa_base_rtx);
5861 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5862 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5863 || GET_CODE (expr) == CLOBBER)
5864 {
5865 mo.type = MO_CLOBBER;
5866 mo.u.loc = loc;
5867 if (GET_CODE (expr) == SET
5868 && SET_DEST (expr) == loc
5869 && !unsuitable_loc (SET_SRC (expr))
5870 && find_use_val (loc, mode, cui))
5871 {
5872 gcc_checking_assert (type == MO_VAL_SET);
5873 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5874 }
5875 }
5876 else
5877 {
5878 if (GET_CODE (expr) == SET
5879 && SET_DEST (expr) == loc
5880 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5881 src = var_lowpart (mode2, SET_SRC (expr));
5882 loc = var_lowpart (mode2, loc);
5883
5884 if (src == NULL)
5885 {
5886 mo.type = MO_SET;
5887 mo.u.loc = loc;
5888 }
5889 else
5890 {
5891 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5892 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5893 {
5894 /* If this is an instruction copying (part of) a parameter
5895 passed by invisible reference to its register location,
5896 pretend it's a SET so that the initial memory location
5897 is discarded, as the parameter register can be reused
5898 for other purposes and we do not track locations based
5899 on generic registers. */
5900 if (MEM_P (src)
5901 && REG_EXPR (loc)
5902 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5903 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5904 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5905 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5906 != arg_pointer_rtx)
5907 mo.type = MO_SET;
5908 else
5909 mo.type = MO_COPY;
5910 }
5911 else
5912 mo.type = MO_SET;
5913 mo.u.loc = xexpr;
5914 }
5915 }
5916 mo.insn = cui->insn;
5917 }
5918 else if (MEM_P (loc)
5919 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5920 || cui->sets))
5921 {
5922 if (MEM_P (loc) && type == MO_VAL_SET
5923 && !REG_P (XEXP (loc, 0))
5924 && !MEM_P (XEXP (loc, 0)))
5925 {
5926 rtx mloc = loc;
5927 enum machine_mode address_mode = get_address_mode (mloc);
5928 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5929 address_mode, 0,
5930 GET_MODE (mloc));
5931
5932 if (val && !cselib_preserved_value_p (val))
5933 preserve_value (val);
5934 }
5935
5936 if (GET_CODE (expr) == CLOBBER || !track_p)
5937 {
5938 mo.type = MO_CLOBBER;
5939 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5940 }
5941 else
5942 {
5943 if (GET_CODE (expr) == SET
5944 && SET_DEST (expr) == loc
5945 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5946 src = var_lowpart (mode2, SET_SRC (expr));
5947 loc = var_lowpart (mode2, loc);
5948
5949 if (src == NULL)
5950 {
5951 mo.type = MO_SET;
5952 mo.u.loc = loc;
5953 }
5954 else
5955 {
5956 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5957 if (same_variable_part_p (SET_SRC (xexpr),
5958 MEM_EXPR (loc),
5959 INT_MEM_OFFSET (loc)))
5960 mo.type = MO_COPY;
5961 else
5962 mo.type = MO_SET;
5963 mo.u.loc = xexpr;
5964 }
5965 }
5966 mo.insn = cui->insn;
5967 }
5968 else
5969 return;
5970
5971 if (type != MO_VAL_SET)
5972 goto log_and_return;
5973
5974 v = find_use_val (oloc, mode, cui);
5975
5976 if (!v)
5977 goto log_and_return;
5978
5979 resolve = preserve = !cselib_preserved_value_p (v);
5980
5981 /* We cannot track values for multiple-part variables, so we track only
5982 locations for tracked parameters passed either by invisible reference
5983 or directly in multiple locations. */
5984 if (track_p
5985 && REG_P (loc)
5986 && REG_EXPR (loc)
5987 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5988 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5989 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5990 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5991 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5992 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5993 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5994 {
5995 /* Although we don't use the value here, it could be used later by the
5996 mere virtue of its existence as the operand of the reverse operation
5997 that gave rise to it (typically extension/truncation). Make sure it
5998 is preserved as required by vt_expand_var_loc_chain. */
5999 if (preserve)
6000 preserve_value (v);
6001 goto log_and_return;
6002 }
6003
6004 if (loc == stack_pointer_rtx
6005 && hard_frame_pointer_adjustment != -1
6006 && preserve)
6007 cselib_set_value_sp_based (v);
6008
6009 nloc = replace_expr_with_values (oloc);
6010 if (nloc)
6011 oloc = nloc;
6012
6013 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
6014 {
6015 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
6016
6017 if (oval == v)
6018 return;
6019 gcc_assert (REG_P (oloc) || MEM_P (oloc));
6020
6021 if (oval && !cselib_preserved_value_p (oval))
6022 {
6023 micro_operation moa;
6024
6025 preserve_value (oval);
6026
6027 moa.type = MO_VAL_USE;
6028 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
6029 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
6030 moa.insn = cui->insn;
6031
6032 if (dump_file && (dump_flags & TDF_DETAILS))
6033 log_op_type (moa.u.loc, cui->bb, cui->insn,
6034 moa.type, dump_file);
6035 VTI (bb)->mos.safe_push (moa);
6036 }
6037
6038 resolve = false;
6039 }
6040 else if (resolve && GET_CODE (mo.u.loc) == SET)
6041 {
6042 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6043 nloc = replace_expr_with_values (SET_SRC (expr));
6044 else
6045 nloc = NULL_RTX;
6046
6047 /* Avoid the mode mismatch between oexpr and expr. */
6048 if (!nloc && mode != mode2)
6049 {
6050 nloc = SET_SRC (expr);
6051 gcc_assert (oloc == SET_DEST (expr));
6052 }
6053
6054 if (nloc && nloc != SET_SRC (mo.u.loc))
6055 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6056 else
6057 {
6058 if (oloc == SET_DEST (mo.u.loc))
6059 /* No point in duplicating. */
6060 oloc = mo.u.loc;
6061 if (!REG_P (SET_SRC (mo.u.loc)))
6062 resolve = false;
6063 }
6064 }
6065 else if (!resolve)
6066 {
6067 if (GET_CODE (mo.u.loc) == SET
6068 && oloc == SET_DEST (mo.u.loc))
6069 /* No point in duplicating. */
6070 oloc = mo.u.loc;
6071 }
6072 else
6073 resolve = false;
6074
6075 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6076
6077 if (mo.u.loc != oloc)
6078 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6079
6080 /* The loc of a MO_VAL_SET may have various forms:
6081
6082 (concat val dst): dst now holds val
6083
6084 (concat val (set dst src)): dst now holds val, copied from src
6085
6086 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6087 after replacing mems and non-top-level regs with values.
6088
6089 (concat (concat val dstv) (set dst src)): dst now holds val,
6090 copied from src. dstv is a value-based representation of dst, if
6091 it differs from dst. If resolution is needed, src is a REG, and
6092 its mode is the same as that of val.
6093
6094 (concat (concat val (set dstv srcv)) (set dst src)): src
6095 copied to dst, holding val. dstv and srcv are value-based
6096 representations of dst and src, respectively.
6097
6098 */
6099
6100 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6101 reverse_op (v->val_rtx, expr, cui->insn);
6102
6103 mo.u.loc = loc;
6104
6105 if (track_p)
6106 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6107 if (preserve)
6108 {
6109 VAL_NEEDS_RESOLUTION (loc) = resolve;
6110 preserve_value (v);
6111 }
6112 if (mo.type == MO_CLOBBER)
6113 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6114 if (mo.type == MO_COPY)
6115 VAL_EXPR_IS_COPIED (loc) = 1;
6116
6117 mo.type = MO_VAL_SET;
6118
6119 log_and_return:
6120 if (dump_file && (dump_flags & TDF_DETAILS))
6121 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6122 VTI (bb)->mos.safe_push (mo);
6123 }
6124
6125 /* Arguments to the call. */
6126 static rtx call_arguments;
6127
6128 /* Compute call_arguments. */
6129
6130 static void
6131 prepare_call_arguments (basic_block bb, rtx_insn *insn)
6132 {
6133 rtx link, x, call;
6134 rtx prev, cur, next;
6135 rtx this_arg = NULL_RTX;
6136 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6137 tree obj_type_ref = NULL_TREE;
6138 CUMULATIVE_ARGS args_so_far_v;
6139 cumulative_args_t args_so_far;
6140
6141 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6142 args_so_far = pack_cumulative_args (&args_so_far_v);
6143 call = get_call_rtx_from (insn);
6144 if (call)
6145 {
6146 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6147 {
6148 rtx symbol = XEXP (XEXP (call, 0), 0);
6149 if (SYMBOL_REF_DECL (symbol))
6150 fndecl = SYMBOL_REF_DECL (symbol);
6151 }
6152 if (fndecl == NULL_TREE)
6153 fndecl = MEM_EXPR (XEXP (call, 0));
6154 if (fndecl
6155 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6156 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6157 fndecl = NULL_TREE;
6158 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6159 type = TREE_TYPE (fndecl);
6160 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6161 {
6162 if (TREE_CODE (fndecl) == INDIRECT_REF
6163 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6164 obj_type_ref = TREE_OPERAND (fndecl, 0);
6165 fndecl = NULL_TREE;
6166 }
6167 if (type)
6168 {
6169 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6170 t = TREE_CHAIN (t))
6171 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6172 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6173 break;
6174 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6175 type = NULL;
6176 else
6177 {
6178 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6179 link = CALL_INSN_FUNCTION_USAGE (insn);
6180 #ifndef PCC_STATIC_STRUCT_RETURN
6181 if (aggregate_value_p (TREE_TYPE (type), type)
6182 && targetm.calls.struct_value_rtx (type, 0) == 0)
6183 {
6184 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6185 enum machine_mode mode = TYPE_MODE (struct_addr);
6186 rtx reg;
6187 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6188 nargs + 1);
6189 reg = targetm.calls.function_arg (args_so_far, mode,
6190 struct_addr, true);
6191 targetm.calls.function_arg_advance (args_so_far, mode,
6192 struct_addr, true);
6193 if (reg == NULL_RTX)
6194 {
6195 for (; link; link = XEXP (link, 1))
6196 if (GET_CODE (XEXP (link, 0)) == USE
6197 && MEM_P (XEXP (XEXP (link, 0), 0)))
6198 {
6199 link = XEXP (link, 1);
6200 break;
6201 }
6202 }
6203 }
6204 else
6205 #endif
6206 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6207 nargs);
6208 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6209 {
6210 enum machine_mode mode;
6211 t = TYPE_ARG_TYPES (type);
6212 mode = TYPE_MODE (TREE_VALUE (t));
6213 this_arg = targetm.calls.function_arg (args_so_far, mode,
6214 TREE_VALUE (t), true);
6215 if (this_arg && !REG_P (this_arg))
6216 this_arg = NULL_RTX;
6217 else if (this_arg == NULL_RTX)
6218 {
6219 for (; link; link = XEXP (link, 1))
6220 if (GET_CODE (XEXP (link, 0)) == USE
6221 && MEM_P (XEXP (XEXP (link, 0), 0)))
6222 {
6223 this_arg = XEXP (XEXP (link, 0), 0);
6224 break;
6225 }
6226 }
6227 }
6228 }
6229 }
6230 }
6231 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6232
6233 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6234 if (GET_CODE (XEXP (link, 0)) == USE)
6235 {
6236 rtx item = NULL_RTX;
6237 x = XEXP (XEXP (link, 0), 0);
6238 if (GET_MODE (link) == VOIDmode
6239 || GET_MODE (link) == BLKmode
6240 || (GET_MODE (link) != GET_MODE (x)
6241 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6242 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6243 /* Can't do anything for these, if the original type mode
6244 isn't known or can't be converted. */;
6245 else if (REG_P (x))
6246 {
6247 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6248 if (val && cselib_preserved_value_p (val))
6249 item = val->val_rtx;
6250 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6251 {
6252 enum machine_mode mode = GET_MODE (x);
6253
6254 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6255 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6256 {
6257 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6258
6259 if (reg == NULL_RTX || !REG_P (reg))
6260 continue;
6261 val = cselib_lookup (reg, mode, 0, VOIDmode);
6262 if (val && cselib_preserved_value_p (val))
6263 {
6264 item = val->val_rtx;
6265 break;
6266 }
6267 }
6268 }
6269 }
6270 else if (MEM_P (x))
6271 {
6272 rtx mem = x;
6273 cselib_val *val;
6274
6275 if (!frame_pointer_needed)
6276 {
6277 struct adjust_mem_data amd;
6278 amd.mem_mode = VOIDmode;
6279 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6280 amd.side_effects = NULL_RTX;
6281 amd.store = true;
6282 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6283 &amd);
6284 gcc_assert (amd.side_effects == NULL_RTX);
6285 }
6286 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6287 if (val && cselib_preserved_value_p (val))
6288 item = val->val_rtx;
6289 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6290 {
6291 /* For non-integer stack argument see also if they weren't
6292 initialized by integers. */
6293 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6294 if (imode != GET_MODE (mem) && imode != BLKmode)
6295 {
6296 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6297 imode, 0, VOIDmode);
6298 if (val && cselib_preserved_value_p (val))
6299 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6300 imode);
6301 }
6302 }
6303 }
6304 if (item)
6305 {
6306 rtx x2 = x;
6307 if (GET_MODE (item) != GET_MODE (link))
6308 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6309 if (GET_MODE (x2) != GET_MODE (link))
6310 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6311 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6312 call_arguments
6313 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6314 }
6315 if (t && t != void_list_node)
6316 {
6317 tree argtype = TREE_VALUE (t);
6318 enum machine_mode mode = TYPE_MODE (argtype);
6319 rtx reg;
6320 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6321 {
6322 argtype = build_pointer_type (argtype);
6323 mode = TYPE_MODE (argtype);
6324 }
6325 reg = targetm.calls.function_arg (args_so_far, mode,
6326 argtype, true);
6327 if (TREE_CODE (argtype) == REFERENCE_TYPE
6328 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6329 && reg
6330 && REG_P (reg)
6331 && GET_MODE (reg) == mode
6332 && GET_MODE_CLASS (mode) == MODE_INT
6333 && REG_P (x)
6334 && REGNO (x) == REGNO (reg)
6335 && GET_MODE (x) == mode
6336 && item)
6337 {
6338 enum machine_mode indmode
6339 = TYPE_MODE (TREE_TYPE (argtype));
6340 rtx mem = gen_rtx_MEM (indmode, x);
6341 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6342 if (val && cselib_preserved_value_p (val))
6343 {
6344 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6345 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6346 call_arguments);
6347 }
6348 else
6349 {
6350 struct elt_loc_list *l;
6351 tree initial;
6352
6353 /* Try harder, when passing address of a constant
6354 pool integer it can be easily read back. */
6355 item = XEXP (item, 1);
6356 if (GET_CODE (item) == SUBREG)
6357 item = SUBREG_REG (item);
6358 gcc_assert (GET_CODE (item) == VALUE);
6359 val = CSELIB_VAL_PTR (item);
6360 for (l = val->locs; l; l = l->next)
6361 if (GET_CODE (l->loc) == SYMBOL_REF
6362 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6363 && SYMBOL_REF_DECL (l->loc)
6364 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6365 {
6366 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6367 if (tree_fits_shwi_p (initial))
6368 {
6369 item = GEN_INT (tree_to_shwi (initial));
6370 item = gen_rtx_CONCAT (indmode, mem, item);
6371 call_arguments
6372 = gen_rtx_EXPR_LIST (VOIDmode, item,
6373 call_arguments);
6374 }
6375 break;
6376 }
6377 }
6378 }
6379 targetm.calls.function_arg_advance (args_so_far, mode,
6380 argtype, true);
6381 t = TREE_CHAIN (t);
6382 }
6383 }
6384
6385 /* Add debug arguments. */
6386 if (fndecl
6387 && TREE_CODE (fndecl) == FUNCTION_DECL
6388 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6389 {
6390 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6391 if (debug_args)
6392 {
6393 unsigned int ix;
6394 tree param;
6395 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6396 {
6397 rtx item;
6398 tree dtemp = (**debug_args)[ix + 1];
6399 enum machine_mode mode = DECL_MODE (dtemp);
6400 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6401 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6402 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6403 call_arguments);
6404 }
6405 }
6406 }
6407
6408 /* Reverse call_arguments chain. */
6409 prev = NULL_RTX;
6410 for (cur = call_arguments; cur; cur = next)
6411 {
6412 next = XEXP (cur, 1);
6413 XEXP (cur, 1) = prev;
6414 prev = cur;
6415 }
6416 call_arguments = prev;
6417
6418 x = get_call_rtx_from (insn);
6419 if (x)
6420 {
6421 x = XEXP (XEXP (x, 0), 0);
6422 if (GET_CODE (x) == SYMBOL_REF)
6423 /* Don't record anything. */;
6424 else if (CONSTANT_P (x))
6425 {
6426 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6427 pc_rtx, x);
6428 call_arguments
6429 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6430 }
6431 else
6432 {
6433 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6434 if (val && cselib_preserved_value_p (val))
6435 {
6436 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6437 call_arguments
6438 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6439 }
6440 }
6441 }
6442 if (this_arg)
6443 {
6444 enum machine_mode mode
6445 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6446 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6447 HOST_WIDE_INT token
6448 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6449 if (token)
6450 clobbered = plus_constant (mode, clobbered,
6451 token * GET_MODE_SIZE (mode));
6452 clobbered = gen_rtx_MEM (mode, clobbered);
6453 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6454 call_arguments
6455 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6456 }
6457 }
6458
6459 /* Callback for cselib_record_sets_hook, that records as micro
6460 operations uses and stores in an insn after cselib_record_sets has
6461 analyzed the sets in an insn, but before it modifies the stored
6462 values in the internal tables, unless cselib_record_sets doesn't
6463 call it directly (perhaps because we're not doing cselib in the
6464 first place, in which case sets and n_sets will be 0). */
6465
6466 static void
6467 add_with_sets (rtx uncast_insn, struct cselib_set *sets, int n_sets)
6468 {
6469 rtx_insn *insn = as_a <rtx_insn *> (uncast_insn);
6470 basic_block bb = BLOCK_FOR_INSN (insn);
6471 int n1, n2;
6472 struct count_use_info cui;
6473 micro_operation *mos;
6474
6475 cselib_hook_called = true;
6476
6477 cui.insn = insn;
6478 cui.bb = bb;
6479 cui.sets = sets;
6480 cui.n_sets = n_sets;
6481
6482 n1 = VTI (bb)->mos.length ();
6483 cui.store_p = false;
6484 note_uses (&PATTERN (insn), add_uses_1, &cui);
6485 n2 = VTI (bb)->mos.length () - 1;
6486 mos = VTI (bb)->mos.address ();
6487
6488 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6489 MO_VAL_LOC last. */
6490 while (n1 < n2)
6491 {
6492 while (n1 < n2 && mos[n1].type == MO_USE)
6493 n1++;
6494 while (n1 < n2 && mos[n2].type != MO_USE)
6495 n2--;
6496 if (n1 < n2)
6497 {
6498 micro_operation sw;
6499
6500 sw = mos[n1];
6501 mos[n1] = mos[n2];
6502 mos[n2] = sw;
6503 }
6504 }
6505
6506 n2 = VTI (bb)->mos.length () - 1;
6507 while (n1 < n2)
6508 {
6509 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6510 n1++;
6511 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6512 n2--;
6513 if (n1 < n2)
6514 {
6515 micro_operation sw;
6516
6517 sw = mos[n1];
6518 mos[n1] = mos[n2];
6519 mos[n2] = sw;
6520 }
6521 }
6522
6523 if (CALL_P (insn))
6524 {
6525 micro_operation mo;
6526
6527 mo.type = MO_CALL;
6528 mo.insn = insn;
6529 mo.u.loc = call_arguments;
6530 call_arguments = NULL_RTX;
6531
6532 if (dump_file && (dump_flags & TDF_DETAILS))
6533 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6534 VTI (bb)->mos.safe_push (mo);
6535 }
6536
6537 n1 = VTI (bb)->mos.length ();
6538 /* This will record NEXT_INSN (insn), such that we can
6539 insert notes before it without worrying about any
6540 notes that MO_USEs might emit after the insn. */
6541 cui.store_p = true;
6542 note_stores (PATTERN (insn), add_stores, &cui);
6543 n2 = VTI (bb)->mos.length () - 1;
6544 mos = VTI (bb)->mos.address ();
6545
6546 /* Order the MO_VAL_USEs first (note_stores does nothing
6547 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6548 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6549 while (n1 < n2)
6550 {
6551 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6552 n1++;
6553 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6554 n2--;
6555 if (n1 < n2)
6556 {
6557 micro_operation sw;
6558
6559 sw = mos[n1];
6560 mos[n1] = mos[n2];
6561 mos[n2] = sw;
6562 }
6563 }
6564
6565 n2 = VTI (bb)->mos.length () - 1;
6566 while (n1 < n2)
6567 {
6568 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6569 n1++;
6570 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6571 n2--;
6572 if (n1 < n2)
6573 {
6574 micro_operation sw;
6575
6576 sw = mos[n1];
6577 mos[n1] = mos[n2];
6578 mos[n2] = sw;
6579 }
6580 }
6581 }
6582
6583 static enum var_init_status
6584 find_src_status (dataflow_set *in, rtx src)
6585 {
6586 tree decl = NULL_TREE;
6587 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6588
6589 if (! flag_var_tracking_uninit)
6590 status = VAR_INIT_STATUS_INITIALIZED;
6591
6592 if (src && REG_P (src))
6593 decl = var_debug_decl (REG_EXPR (src));
6594 else if (src && MEM_P (src))
6595 decl = var_debug_decl (MEM_EXPR (src));
6596
6597 if (src && decl)
6598 status = get_init_value (in, src, dv_from_decl (decl));
6599
6600 return status;
6601 }
6602
6603 /* SRC is the source of an assignment. Use SET to try to find what
6604 was ultimately assigned to SRC. Return that value if known,
6605 otherwise return SRC itself. */
6606
6607 static rtx
6608 find_src_set_src (dataflow_set *set, rtx src)
6609 {
6610 tree decl = NULL_TREE; /* The variable being copied around. */
6611 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6612 variable var;
6613 location_chain nextp;
6614 int i;
6615 bool found;
6616
6617 if (src && REG_P (src))
6618 decl = var_debug_decl (REG_EXPR (src));
6619 else if (src && MEM_P (src))
6620 decl = var_debug_decl (MEM_EXPR (src));
6621
6622 if (src && decl)
6623 {
6624 decl_or_value dv = dv_from_decl (decl);
6625
6626 var = shared_hash_find (set->vars, dv);
6627 if (var)
6628 {
6629 found = false;
6630 for (i = 0; i < var->n_var_parts && !found; i++)
6631 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6632 nextp = nextp->next)
6633 if (rtx_equal_p (nextp->loc, src))
6634 {
6635 set_src = nextp->set_src;
6636 found = true;
6637 }
6638
6639 }
6640 }
6641
6642 return set_src;
6643 }
6644
6645 /* Compute the changes of variable locations in the basic block BB. */
6646
6647 static bool
6648 compute_bb_dataflow (basic_block bb)
6649 {
6650 unsigned int i;
6651 micro_operation *mo;
6652 bool changed;
6653 dataflow_set old_out;
6654 dataflow_set *in = &VTI (bb)->in;
6655 dataflow_set *out = &VTI (bb)->out;
6656
6657 dataflow_set_init (&old_out);
6658 dataflow_set_copy (&old_out, out);
6659 dataflow_set_copy (out, in);
6660
6661 if (MAY_HAVE_DEBUG_INSNS)
6662 local_get_addr_cache = new hash_map<rtx, rtx>;
6663
6664 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6665 {
6666 rtx_insn *insn = mo->insn;
6667
6668 switch (mo->type)
6669 {
6670 case MO_CALL:
6671 dataflow_set_clear_at_call (out);
6672 break;
6673
6674 case MO_USE:
6675 {
6676 rtx loc = mo->u.loc;
6677
6678 if (REG_P (loc))
6679 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6680 else if (MEM_P (loc))
6681 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6682 }
6683 break;
6684
6685 case MO_VAL_LOC:
6686 {
6687 rtx loc = mo->u.loc;
6688 rtx val, vloc;
6689 tree var;
6690
6691 if (GET_CODE (loc) == CONCAT)
6692 {
6693 val = XEXP (loc, 0);
6694 vloc = XEXP (loc, 1);
6695 }
6696 else
6697 {
6698 val = NULL_RTX;
6699 vloc = loc;
6700 }
6701
6702 var = PAT_VAR_LOCATION_DECL (vloc);
6703
6704 clobber_variable_part (out, NULL_RTX,
6705 dv_from_decl (var), 0, NULL_RTX);
6706 if (val)
6707 {
6708 if (VAL_NEEDS_RESOLUTION (loc))
6709 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6710 set_variable_part (out, val, dv_from_decl (var), 0,
6711 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6712 INSERT);
6713 }
6714 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6715 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6716 dv_from_decl (var), 0,
6717 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6718 INSERT);
6719 }
6720 break;
6721
6722 case MO_VAL_USE:
6723 {
6724 rtx loc = mo->u.loc;
6725 rtx val, vloc, uloc;
6726
6727 vloc = uloc = XEXP (loc, 1);
6728 val = XEXP (loc, 0);
6729
6730 if (GET_CODE (val) == CONCAT)
6731 {
6732 uloc = XEXP (val, 1);
6733 val = XEXP (val, 0);
6734 }
6735
6736 if (VAL_NEEDS_RESOLUTION (loc))
6737 val_resolve (out, val, vloc, insn);
6738 else
6739 val_store (out, val, uloc, insn, false);
6740
6741 if (VAL_HOLDS_TRACK_EXPR (loc))
6742 {
6743 if (GET_CODE (uloc) == REG)
6744 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6745 NULL);
6746 else if (GET_CODE (uloc) == MEM)
6747 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6748 NULL);
6749 }
6750 }
6751 break;
6752
6753 case MO_VAL_SET:
6754 {
6755 rtx loc = mo->u.loc;
6756 rtx val, vloc, uloc;
6757 rtx dstv, srcv;
6758
6759 vloc = loc;
6760 uloc = XEXP (vloc, 1);
6761 val = XEXP (vloc, 0);
6762 vloc = uloc;
6763
6764 if (GET_CODE (uloc) == SET)
6765 {
6766 dstv = SET_DEST (uloc);
6767 srcv = SET_SRC (uloc);
6768 }
6769 else
6770 {
6771 dstv = uloc;
6772 srcv = NULL;
6773 }
6774
6775 if (GET_CODE (val) == CONCAT)
6776 {
6777 dstv = vloc = XEXP (val, 1);
6778 val = XEXP (val, 0);
6779 }
6780
6781 if (GET_CODE (vloc) == SET)
6782 {
6783 srcv = SET_SRC (vloc);
6784
6785 gcc_assert (val != srcv);
6786 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6787
6788 dstv = vloc = SET_DEST (vloc);
6789
6790 if (VAL_NEEDS_RESOLUTION (loc))
6791 val_resolve (out, val, srcv, insn);
6792 }
6793 else if (VAL_NEEDS_RESOLUTION (loc))
6794 {
6795 gcc_assert (GET_CODE (uloc) == SET
6796 && GET_CODE (SET_SRC (uloc)) == REG);
6797 val_resolve (out, val, SET_SRC (uloc), insn);
6798 }
6799
6800 if (VAL_HOLDS_TRACK_EXPR (loc))
6801 {
6802 if (VAL_EXPR_IS_CLOBBERED (loc))
6803 {
6804 if (REG_P (uloc))
6805 var_reg_delete (out, uloc, true);
6806 else if (MEM_P (uloc))
6807 {
6808 gcc_assert (MEM_P (dstv));
6809 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6810 var_mem_delete (out, dstv, true);
6811 }
6812 }
6813 else
6814 {
6815 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6816 rtx src = NULL, dst = uloc;
6817 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6818
6819 if (GET_CODE (uloc) == SET)
6820 {
6821 src = SET_SRC (uloc);
6822 dst = SET_DEST (uloc);
6823 }
6824
6825 if (copied_p)
6826 {
6827 if (flag_var_tracking_uninit)
6828 {
6829 status = find_src_status (in, src);
6830
6831 if (status == VAR_INIT_STATUS_UNKNOWN)
6832 status = find_src_status (out, src);
6833 }
6834
6835 src = find_src_set_src (in, src);
6836 }
6837
6838 if (REG_P (dst))
6839 var_reg_delete_and_set (out, dst, !copied_p,
6840 status, srcv);
6841 else if (MEM_P (dst))
6842 {
6843 gcc_assert (MEM_P (dstv));
6844 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6845 var_mem_delete_and_set (out, dstv, !copied_p,
6846 status, srcv);
6847 }
6848 }
6849 }
6850 else if (REG_P (uloc))
6851 var_regno_delete (out, REGNO (uloc));
6852 else if (MEM_P (uloc))
6853 {
6854 gcc_checking_assert (GET_CODE (vloc) == MEM);
6855 gcc_checking_assert (dstv == vloc);
6856 if (dstv != vloc)
6857 clobber_overlapping_mems (out, vloc);
6858 }
6859
6860 val_store (out, val, dstv, insn, true);
6861 }
6862 break;
6863
6864 case MO_SET:
6865 {
6866 rtx loc = mo->u.loc;
6867 rtx set_src = NULL;
6868
6869 if (GET_CODE (loc) == SET)
6870 {
6871 set_src = SET_SRC (loc);
6872 loc = SET_DEST (loc);
6873 }
6874
6875 if (REG_P (loc))
6876 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6877 set_src);
6878 else if (MEM_P (loc))
6879 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6880 set_src);
6881 }
6882 break;
6883
6884 case MO_COPY:
6885 {
6886 rtx loc = mo->u.loc;
6887 enum var_init_status src_status;
6888 rtx set_src = NULL;
6889
6890 if (GET_CODE (loc) == SET)
6891 {
6892 set_src = SET_SRC (loc);
6893 loc = SET_DEST (loc);
6894 }
6895
6896 if (! flag_var_tracking_uninit)
6897 src_status = VAR_INIT_STATUS_INITIALIZED;
6898 else
6899 {
6900 src_status = find_src_status (in, set_src);
6901
6902 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6903 src_status = find_src_status (out, set_src);
6904 }
6905
6906 set_src = find_src_set_src (in, set_src);
6907
6908 if (REG_P (loc))
6909 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6910 else if (MEM_P (loc))
6911 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6912 }
6913 break;
6914
6915 case MO_USE_NO_VAR:
6916 {
6917 rtx loc = mo->u.loc;
6918
6919 if (REG_P (loc))
6920 var_reg_delete (out, loc, false);
6921 else if (MEM_P (loc))
6922 var_mem_delete (out, loc, false);
6923 }
6924 break;
6925
6926 case MO_CLOBBER:
6927 {
6928 rtx loc = mo->u.loc;
6929
6930 if (REG_P (loc))
6931 var_reg_delete (out, loc, true);
6932 else if (MEM_P (loc))
6933 var_mem_delete (out, loc, true);
6934 }
6935 break;
6936
6937 case MO_ADJUST:
6938 out->stack_adjust += mo->u.adjust;
6939 break;
6940 }
6941 }
6942
6943 if (MAY_HAVE_DEBUG_INSNS)
6944 {
6945 delete local_get_addr_cache;
6946 local_get_addr_cache = NULL;
6947
6948 dataflow_set_equiv_regs (out);
6949 shared_hash_htab (out->vars)
6950 ->traverse <dataflow_set *, canonicalize_values_mark> (out);
6951 shared_hash_htab (out->vars)
6952 ->traverse <dataflow_set *, canonicalize_values_star> (out);
6953 #if ENABLE_CHECKING
6954 shared_hash_htab (out->vars)
6955 ->traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6956 #endif
6957 }
6958 changed = dataflow_set_different (&old_out, out);
6959 dataflow_set_destroy (&old_out);
6960 return changed;
6961 }
6962
6963 /* Find the locations of variables in the whole function. */
6964
6965 static bool
6966 vt_find_locations (void)
6967 {
6968 fibheap_t worklist, pending, fibheap_swap;
6969 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6970 basic_block bb;
6971 edge e;
6972 int *bb_order;
6973 int *rc_order;
6974 int i;
6975 int htabsz = 0;
6976 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6977 bool success = true;
6978
6979 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6980 /* Compute reverse completion order of depth first search of the CFG
6981 so that the data-flow runs faster. */
6982 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6983 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6984 pre_and_rev_post_order_compute (NULL, rc_order, false);
6985 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6986 bb_order[rc_order[i]] = i;
6987 free (rc_order);
6988
6989 worklist = fibheap_new ();
6990 pending = fibheap_new ();
6991 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6992 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6993 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6994 bitmap_clear (in_worklist);
6995
6996 FOR_EACH_BB_FN (bb, cfun)
6997 fibheap_insert (pending, bb_order[bb->index], bb);
6998 bitmap_ones (in_pending);
6999
7000 while (success && !fibheap_empty (pending))
7001 {
7002 fibheap_swap = pending;
7003 pending = worklist;
7004 worklist = fibheap_swap;
7005 sbitmap_swap = in_pending;
7006 in_pending = in_worklist;
7007 in_worklist = sbitmap_swap;
7008
7009 bitmap_clear (visited);
7010
7011 while (!fibheap_empty (worklist))
7012 {
7013 bb = (basic_block) fibheap_extract_min (worklist);
7014 bitmap_clear_bit (in_worklist, bb->index);
7015 gcc_assert (!bitmap_bit_p (visited, bb->index));
7016 if (!bitmap_bit_p (visited, bb->index))
7017 {
7018 bool changed;
7019 edge_iterator ei;
7020 int oldinsz, oldoutsz;
7021
7022 bitmap_set_bit (visited, bb->index);
7023
7024 if (VTI (bb)->in.vars)
7025 {
7026 htabsz
7027 -= shared_hash_htab (VTI (bb)->in.vars)->size ()
7028 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7029 oldinsz = shared_hash_htab (VTI (bb)->in.vars)->elements ();
7030 oldoutsz
7031 = shared_hash_htab (VTI (bb)->out.vars)->elements ();
7032 }
7033 else
7034 oldinsz = oldoutsz = 0;
7035
7036 if (MAY_HAVE_DEBUG_INSNS)
7037 {
7038 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
7039 bool first = true, adjust = false;
7040
7041 /* Calculate the IN set as the intersection of
7042 predecessor OUT sets. */
7043
7044 dataflow_set_clear (in);
7045 dst_can_be_shared = true;
7046
7047 FOR_EACH_EDGE (e, ei, bb->preds)
7048 if (!VTI (e->src)->flooded)
7049 gcc_assert (bb_order[bb->index]
7050 <= bb_order[e->src->index]);
7051 else if (first)
7052 {
7053 dataflow_set_copy (in, &VTI (e->src)->out);
7054 first_out = &VTI (e->src)->out;
7055 first = false;
7056 }
7057 else
7058 {
7059 dataflow_set_merge (in, &VTI (e->src)->out);
7060 adjust = true;
7061 }
7062
7063 if (adjust)
7064 {
7065 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7066 #if ENABLE_CHECKING
7067 /* Merge and merge_adjust should keep entries in
7068 canonical order. */
7069 shared_hash_htab (in->vars)
7070 ->traverse <dataflow_set *,
7071 canonicalize_loc_order_check> (in);
7072 #endif
7073 if (dst_can_be_shared)
7074 {
7075 shared_hash_destroy (in->vars);
7076 in->vars = shared_hash_copy (first_out->vars);
7077 }
7078 }
7079
7080 VTI (bb)->flooded = true;
7081 }
7082 else
7083 {
7084 /* Calculate the IN set as union of predecessor OUT sets. */
7085 dataflow_set_clear (&VTI (bb)->in);
7086 FOR_EACH_EDGE (e, ei, bb->preds)
7087 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7088 }
7089
7090 changed = compute_bb_dataflow (bb);
7091 htabsz += shared_hash_htab (VTI (bb)->in.vars)->size ()
7092 + shared_hash_htab (VTI (bb)->out.vars)->size ();
7093
7094 if (htabmax && htabsz > htabmax)
7095 {
7096 if (MAY_HAVE_DEBUG_INSNS)
7097 inform (DECL_SOURCE_LOCATION (cfun->decl),
7098 "variable tracking size limit exceeded with "
7099 "-fvar-tracking-assignments, retrying without");
7100 else
7101 inform (DECL_SOURCE_LOCATION (cfun->decl),
7102 "variable tracking size limit exceeded");
7103 success = false;
7104 break;
7105 }
7106
7107 if (changed)
7108 {
7109 FOR_EACH_EDGE (e, ei, bb->succs)
7110 {
7111 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7112 continue;
7113
7114 if (bitmap_bit_p (visited, e->dest->index))
7115 {
7116 if (!bitmap_bit_p (in_pending, e->dest->index))
7117 {
7118 /* Send E->DEST to next round. */
7119 bitmap_set_bit (in_pending, e->dest->index);
7120 fibheap_insert (pending,
7121 bb_order[e->dest->index],
7122 e->dest);
7123 }
7124 }
7125 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7126 {
7127 /* Add E->DEST to current round. */
7128 bitmap_set_bit (in_worklist, e->dest->index);
7129 fibheap_insert (worklist, bb_order[e->dest->index],
7130 e->dest);
7131 }
7132 }
7133 }
7134
7135 if (dump_file)
7136 fprintf (dump_file,
7137 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7138 bb->index,
7139 (int)shared_hash_htab (VTI (bb)->in.vars)->size (),
7140 oldinsz,
7141 (int)shared_hash_htab (VTI (bb)->out.vars)->size (),
7142 oldoutsz,
7143 (int)worklist->nodes, (int)pending->nodes, htabsz);
7144
7145 if (dump_file && (dump_flags & TDF_DETAILS))
7146 {
7147 fprintf (dump_file, "BB %i IN:\n", bb->index);
7148 dump_dataflow_set (&VTI (bb)->in);
7149 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7150 dump_dataflow_set (&VTI (bb)->out);
7151 }
7152 }
7153 }
7154 }
7155
7156 if (success && MAY_HAVE_DEBUG_INSNS)
7157 FOR_EACH_BB_FN (bb, cfun)
7158 gcc_assert (VTI (bb)->flooded);
7159
7160 free (bb_order);
7161 fibheap_delete (worklist);
7162 fibheap_delete (pending);
7163 sbitmap_free (visited);
7164 sbitmap_free (in_worklist);
7165 sbitmap_free (in_pending);
7166
7167 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7168 return success;
7169 }
7170
7171 /* Print the content of the LIST to dump file. */
7172
7173 static void
7174 dump_attrs_list (attrs list)
7175 {
7176 for (; list; list = list->next)
7177 {
7178 if (dv_is_decl_p (list->dv))
7179 print_mem_expr (dump_file, dv_as_decl (list->dv));
7180 else
7181 print_rtl_single (dump_file, dv_as_value (list->dv));
7182 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7183 }
7184 fprintf (dump_file, "\n");
7185 }
7186
7187 /* Print the information about variable *SLOT to dump file. */
7188
7189 int
7190 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7191 {
7192 variable var = *slot;
7193
7194 dump_var (var);
7195
7196 /* Continue traversing the hash table. */
7197 return 1;
7198 }
7199
7200 /* Print the information about variable VAR to dump file. */
7201
7202 static void
7203 dump_var (variable var)
7204 {
7205 int i;
7206 location_chain node;
7207
7208 if (dv_is_decl_p (var->dv))
7209 {
7210 const_tree decl = dv_as_decl (var->dv);
7211
7212 if (DECL_NAME (decl))
7213 {
7214 fprintf (dump_file, " name: %s",
7215 IDENTIFIER_POINTER (DECL_NAME (decl)));
7216 if (dump_flags & TDF_UID)
7217 fprintf (dump_file, "D.%u", DECL_UID (decl));
7218 }
7219 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7220 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7221 else
7222 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7223 fprintf (dump_file, "\n");
7224 }
7225 else
7226 {
7227 fputc (' ', dump_file);
7228 print_rtl_single (dump_file, dv_as_value (var->dv));
7229 }
7230
7231 for (i = 0; i < var->n_var_parts; i++)
7232 {
7233 fprintf (dump_file, " offset %ld\n",
7234 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7235 for (node = var->var_part[i].loc_chain; node; node = node->next)
7236 {
7237 fprintf (dump_file, " ");
7238 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7239 fprintf (dump_file, "[uninit]");
7240 print_rtl_single (dump_file, node->loc);
7241 }
7242 }
7243 }
7244
7245 /* Print the information about variables from hash table VARS to dump file. */
7246
7247 static void
7248 dump_vars (variable_table_type *vars)
7249 {
7250 if (vars->elements () > 0)
7251 {
7252 fprintf (dump_file, "Variables:\n");
7253 vars->traverse <void *, dump_var_tracking_slot> (NULL);
7254 }
7255 }
7256
7257 /* Print the dataflow set SET to dump file. */
7258
7259 static void
7260 dump_dataflow_set (dataflow_set *set)
7261 {
7262 int i;
7263
7264 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7265 set->stack_adjust);
7266 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7267 {
7268 if (set->regs[i])
7269 {
7270 fprintf (dump_file, "Reg %d:", i);
7271 dump_attrs_list (set->regs[i]);
7272 }
7273 }
7274 dump_vars (shared_hash_htab (set->vars));
7275 fprintf (dump_file, "\n");
7276 }
7277
7278 /* Print the IN and OUT sets for each basic block to dump file. */
7279
7280 static void
7281 dump_dataflow_sets (void)
7282 {
7283 basic_block bb;
7284
7285 FOR_EACH_BB_FN (bb, cfun)
7286 {
7287 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7288 fprintf (dump_file, "IN:\n");
7289 dump_dataflow_set (&VTI (bb)->in);
7290 fprintf (dump_file, "OUT:\n");
7291 dump_dataflow_set (&VTI (bb)->out);
7292 }
7293 }
7294
7295 /* Return the variable for DV in dropped_values, inserting one if
7296 requested with INSERT. */
7297
7298 static inline variable
7299 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7300 {
7301 variable_def **slot;
7302 variable empty_var;
7303 onepart_enum_t onepart;
7304
7305 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7306
7307 if (!slot)
7308 return NULL;
7309
7310 if (*slot)
7311 return *slot;
7312
7313 gcc_checking_assert (insert == INSERT);
7314
7315 onepart = dv_onepart_p (dv);
7316
7317 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7318
7319 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7320 empty_var->dv = dv;
7321 empty_var->refcount = 1;
7322 empty_var->n_var_parts = 0;
7323 empty_var->onepart = onepart;
7324 empty_var->in_changed_variables = false;
7325 empty_var->var_part[0].loc_chain = NULL;
7326 empty_var->var_part[0].cur_loc = NULL;
7327 VAR_LOC_1PAUX (empty_var) = NULL;
7328 set_dv_changed (dv, true);
7329
7330 *slot = empty_var;
7331
7332 return empty_var;
7333 }
7334
7335 /* Recover the one-part aux from dropped_values. */
7336
7337 static struct onepart_aux *
7338 recover_dropped_1paux (variable var)
7339 {
7340 variable dvar;
7341
7342 gcc_checking_assert (var->onepart);
7343
7344 if (VAR_LOC_1PAUX (var))
7345 return VAR_LOC_1PAUX (var);
7346
7347 if (var->onepart == ONEPART_VDECL)
7348 return NULL;
7349
7350 dvar = variable_from_dropped (var->dv, NO_INSERT);
7351
7352 if (!dvar)
7353 return NULL;
7354
7355 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7356 VAR_LOC_1PAUX (dvar) = NULL;
7357
7358 return VAR_LOC_1PAUX (var);
7359 }
7360
7361 /* Add variable VAR to the hash table of changed variables and
7362 if it has no locations delete it from SET's hash table. */
7363
7364 static void
7365 variable_was_changed (variable var, dataflow_set *set)
7366 {
7367 hashval_t hash = dv_htab_hash (var->dv);
7368
7369 if (emit_notes)
7370 {
7371 variable_def **slot;
7372
7373 /* Remember this decl or VALUE has been added to changed_variables. */
7374 set_dv_changed (var->dv, true);
7375
7376 slot = changed_variables->find_slot_with_hash (var->dv, hash, INSERT);
7377
7378 if (*slot)
7379 {
7380 variable old_var = *slot;
7381 gcc_assert (old_var->in_changed_variables);
7382 old_var->in_changed_variables = false;
7383 if (var != old_var && var->onepart)
7384 {
7385 /* Restore the auxiliary info from an empty variable
7386 previously created for changed_variables, so it is
7387 not lost. */
7388 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7389 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7390 VAR_LOC_1PAUX (old_var) = NULL;
7391 }
7392 variable_htab_free (*slot);
7393 }
7394
7395 if (set && var->n_var_parts == 0)
7396 {
7397 onepart_enum_t onepart = var->onepart;
7398 variable empty_var = NULL;
7399 variable_def **dslot = NULL;
7400
7401 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7402 {
7403 dslot = dropped_values->find_slot_with_hash (var->dv,
7404 dv_htab_hash (var->dv),
7405 INSERT);
7406 empty_var = *dslot;
7407
7408 if (empty_var)
7409 {
7410 gcc_checking_assert (!empty_var->in_changed_variables);
7411 if (!VAR_LOC_1PAUX (var))
7412 {
7413 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7414 VAR_LOC_1PAUX (empty_var) = NULL;
7415 }
7416 else
7417 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7418 }
7419 }
7420
7421 if (!empty_var)
7422 {
7423 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7424 empty_var->dv = var->dv;
7425 empty_var->refcount = 1;
7426 empty_var->n_var_parts = 0;
7427 empty_var->onepart = onepart;
7428 if (dslot)
7429 {
7430 empty_var->refcount++;
7431 *dslot = empty_var;
7432 }
7433 }
7434 else
7435 empty_var->refcount++;
7436 empty_var->in_changed_variables = true;
7437 *slot = empty_var;
7438 if (onepart)
7439 {
7440 empty_var->var_part[0].loc_chain = NULL;
7441 empty_var->var_part[0].cur_loc = NULL;
7442 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7443 VAR_LOC_1PAUX (var) = NULL;
7444 }
7445 goto drop_var;
7446 }
7447 else
7448 {
7449 if (var->onepart && !VAR_LOC_1PAUX (var))
7450 recover_dropped_1paux (var);
7451 var->refcount++;
7452 var->in_changed_variables = true;
7453 *slot = var;
7454 }
7455 }
7456 else
7457 {
7458 gcc_assert (set);
7459 if (var->n_var_parts == 0)
7460 {
7461 variable_def **slot;
7462
7463 drop_var:
7464 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7465 if (slot)
7466 {
7467 if (shared_hash_shared (set->vars))
7468 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7469 NO_INSERT);
7470 shared_hash_htab (set->vars)->clear_slot (slot);
7471 }
7472 }
7473 }
7474 }
7475
7476 /* Look for the index in VAR->var_part corresponding to OFFSET.
7477 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7478 referenced int will be set to the index that the part has or should
7479 have, if it should be inserted. */
7480
7481 static inline int
7482 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7483 int *insertion_point)
7484 {
7485 int pos, low, high;
7486
7487 if (var->onepart)
7488 {
7489 if (offset != 0)
7490 return -1;
7491
7492 if (insertion_point)
7493 *insertion_point = 0;
7494
7495 return var->n_var_parts - 1;
7496 }
7497
7498 /* Find the location part. */
7499 low = 0;
7500 high = var->n_var_parts;
7501 while (low != high)
7502 {
7503 pos = (low + high) / 2;
7504 if (VAR_PART_OFFSET (var, pos) < offset)
7505 low = pos + 1;
7506 else
7507 high = pos;
7508 }
7509 pos = low;
7510
7511 if (insertion_point)
7512 *insertion_point = pos;
7513
7514 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7515 return pos;
7516
7517 return -1;
7518 }
7519
7520 static variable_def **
7521 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7522 decl_or_value dv, HOST_WIDE_INT offset,
7523 enum var_init_status initialized, rtx set_src)
7524 {
7525 int pos;
7526 location_chain node, next;
7527 location_chain *nextp;
7528 variable var;
7529 onepart_enum_t onepart;
7530
7531 var = *slot;
7532
7533 if (var)
7534 onepart = var->onepart;
7535 else
7536 onepart = dv_onepart_p (dv);
7537
7538 gcc_checking_assert (offset == 0 || !onepart);
7539 gcc_checking_assert (loc != dv_as_opaque (dv));
7540
7541 if (! flag_var_tracking_uninit)
7542 initialized = VAR_INIT_STATUS_INITIALIZED;
7543
7544 if (!var)
7545 {
7546 /* Create new variable information. */
7547 var = (variable) pool_alloc (onepart_pool (onepart));
7548 var->dv = dv;
7549 var->refcount = 1;
7550 var->n_var_parts = 1;
7551 var->onepart = onepart;
7552 var->in_changed_variables = false;
7553 if (var->onepart)
7554 VAR_LOC_1PAUX (var) = NULL;
7555 else
7556 VAR_PART_OFFSET (var, 0) = offset;
7557 var->var_part[0].loc_chain = NULL;
7558 var->var_part[0].cur_loc = NULL;
7559 *slot = var;
7560 pos = 0;
7561 nextp = &var->var_part[0].loc_chain;
7562 }
7563 else if (onepart)
7564 {
7565 int r = -1, c = 0;
7566
7567 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7568
7569 pos = 0;
7570
7571 if (GET_CODE (loc) == VALUE)
7572 {
7573 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7574 nextp = &node->next)
7575 if (GET_CODE (node->loc) == VALUE)
7576 {
7577 if (node->loc == loc)
7578 {
7579 r = 0;
7580 break;
7581 }
7582 if (canon_value_cmp (node->loc, loc))
7583 c++;
7584 else
7585 {
7586 r = 1;
7587 break;
7588 }
7589 }
7590 else if (REG_P (node->loc) || MEM_P (node->loc))
7591 c++;
7592 else
7593 {
7594 r = 1;
7595 break;
7596 }
7597 }
7598 else if (REG_P (loc))
7599 {
7600 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7601 nextp = &node->next)
7602 if (REG_P (node->loc))
7603 {
7604 if (REGNO (node->loc) < REGNO (loc))
7605 c++;
7606 else
7607 {
7608 if (REGNO (node->loc) == REGNO (loc))
7609 r = 0;
7610 else
7611 r = 1;
7612 break;
7613 }
7614 }
7615 else
7616 {
7617 r = 1;
7618 break;
7619 }
7620 }
7621 else if (MEM_P (loc))
7622 {
7623 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7624 nextp = &node->next)
7625 if (REG_P (node->loc))
7626 c++;
7627 else if (MEM_P (node->loc))
7628 {
7629 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7630 break;
7631 else
7632 c++;
7633 }
7634 else
7635 {
7636 r = 1;
7637 break;
7638 }
7639 }
7640 else
7641 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7642 nextp = &node->next)
7643 if ((r = loc_cmp (node->loc, loc)) >= 0)
7644 break;
7645 else
7646 c++;
7647
7648 if (r == 0)
7649 return slot;
7650
7651 if (shared_var_p (var, set->vars))
7652 {
7653 slot = unshare_variable (set, slot, var, initialized);
7654 var = *slot;
7655 for (nextp = &var->var_part[0].loc_chain; c;
7656 nextp = &(*nextp)->next)
7657 c--;
7658 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7659 }
7660 }
7661 else
7662 {
7663 int inspos = 0;
7664
7665 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7666
7667 pos = find_variable_location_part (var, offset, &inspos);
7668
7669 if (pos >= 0)
7670 {
7671 node = var->var_part[pos].loc_chain;
7672
7673 if (node
7674 && ((REG_P (node->loc) && REG_P (loc)
7675 && REGNO (node->loc) == REGNO (loc))
7676 || rtx_equal_p (node->loc, loc)))
7677 {
7678 /* LOC is in the beginning of the chain so we have nothing
7679 to do. */
7680 if (node->init < initialized)
7681 node->init = initialized;
7682 if (set_src != NULL)
7683 node->set_src = set_src;
7684
7685 return slot;
7686 }
7687 else
7688 {
7689 /* We have to make a copy of a shared variable. */
7690 if (shared_var_p (var, set->vars))
7691 {
7692 slot = unshare_variable (set, slot, var, initialized);
7693 var = *slot;
7694 }
7695 }
7696 }
7697 else
7698 {
7699 /* We have not found the location part, new one will be created. */
7700
7701 /* We have to make a copy of the shared variable. */
7702 if (shared_var_p (var, set->vars))
7703 {
7704 slot = unshare_variable (set, slot, var, initialized);
7705 var = *slot;
7706 }
7707
7708 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7709 thus there are at most MAX_VAR_PARTS different offsets. */
7710 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7711 && (!var->n_var_parts || !onepart));
7712
7713 /* We have to move the elements of array starting at index
7714 inspos to the next position. */
7715 for (pos = var->n_var_parts; pos > inspos; pos--)
7716 var->var_part[pos] = var->var_part[pos - 1];
7717
7718 var->n_var_parts++;
7719 gcc_checking_assert (!onepart);
7720 VAR_PART_OFFSET (var, pos) = offset;
7721 var->var_part[pos].loc_chain = NULL;
7722 var->var_part[pos].cur_loc = NULL;
7723 }
7724
7725 /* Delete the location from the list. */
7726 nextp = &var->var_part[pos].loc_chain;
7727 for (node = var->var_part[pos].loc_chain; node; node = next)
7728 {
7729 next = node->next;
7730 if ((REG_P (node->loc) && REG_P (loc)
7731 && REGNO (node->loc) == REGNO (loc))
7732 || rtx_equal_p (node->loc, loc))
7733 {
7734 /* Save these values, to assign to the new node, before
7735 deleting this one. */
7736 if (node->init > initialized)
7737 initialized = node->init;
7738 if (node->set_src != NULL && set_src == NULL)
7739 set_src = node->set_src;
7740 if (var->var_part[pos].cur_loc == node->loc)
7741 var->var_part[pos].cur_loc = NULL;
7742 pool_free (loc_chain_pool, node);
7743 *nextp = next;
7744 break;
7745 }
7746 else
7747 nextp = &node->next;
7748 }
7749
7750 nextp = &var->var_part[pos].loc_chain;
7751 }
7752
7753 /* Add the location to the beginning. */
7754 node = (location_chain) pool_alloc (loc_chain_pool);
7755 node->loc = loc;
7756 node->init = initialized;
7757 node->set_src = set_src;
7758 node->next = *nextp;
7759 *nextp = node;
7760
7761 /* If no location was emitted do so. */
7762 if (var->var_part[pos].cur_loc == NULL)
7763 variable_was_changed (var, set);
7764
7765 return slot;
7766 }
7767
7768 /* Set the part of variable's location in the dataflow set SET. The
7769 variable part is specified by variable's declaration in DV and
7770 offset OFFSET and the part's location by LOC. IOPT should be
7771 NO_INSERT if the variable is known to be in SET already and the
7772 variable hash table must not be resized, and INSERT otherwise. */
7773
7774 static void
7775 set_variable_part (dataflow_set *set, rtx loc,
7776 decl_or_value dv, HOST_WIDE_INT offset,
7777 enum var_init_status initialized, rtx set_src,
7778 enum insert_option iopt)
7779 {
7780 variable_def **slot;
7781
7782 if (iopt == NO_INSERT)
7783 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7784 else
7785 {
7786 slot = shared_hash_find_slot (set->vars, dv);
7787 if (!slot)
7788 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7789 }
7790 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7791 }
7792
7793 /* Remove all recorded register locations for the given variable part
7794 from dataflow set SET, except for those that are identical to loc.
7795 The variable part is specified by variable's declaration or value
7796 DV and offset OFFSET. */
7797
7798 static variable_def **
7799 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7800 HOST_WIDE_INT offset, rtx set_src)
7801 {
7802 variable var = *slot;
7803 int pos = find_variable_location_part (var, offset, NULL);
7804
7805 if (pos >= 0)
7806 {
7807 location_chain node, next;
7808
7809 /* Remove the register locations from the dataflow set. */
7810 next = var->var_part[pos].loc_chain;
7811 for (node = next; node; node = next)
7812 {
7813 next = node->next;
7814 if (node->loc != loc
7815 && (!flag_var_tracking_uninit
7816 || !set_src
7817 || MEM_P (set_src)
7818 || !rtx_equal_p (set_src, node->set_src)))
7819 {
7820 if (REG_P (node->loc))
7821 {
7822 attrs anode, anext;
7823 attrs *anextp;
7824
7825 /* Remove the variable part from the register's
7826 list, but preserve any other variable parts
7827 that might be regarded as live in that same
7828 register. */
7829 anextp = &set->regs[REGNO (node->loc)];
7830 for (anode = *anextp; anode; anode = anext)
7831 {
7832 anext = anode->next;
7833 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7834 && anode->offset == offset)
7835 {
7836 pool_free (attrs_pool, anode);
7837 *anextp = anext;
7838 }
7839 else
7840 anextp = &anode->next;
7841 }
7842 }
7843
7844 slot = delete_slot_part (set, node->loc, slot, offset);
7845 }
7846 }
7847 }
7848
7849 return slot;
7850 }
7851
7852 /* Remove all recorded register locations for the given variable part
7853 from dataflow set SET, except for those that are identical to loc.
7854 The variable part is specified by variable's declaration or value
7855 DV and offset OFFSET. */
7856
7857 static void
7858 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7859 HOST_WIDE_INT offset, rtx set_src)
7860 {
7861 variable_def **slot;
7862
7863 if (!dv_as_opaque (dv)
7864 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7865 return;
7866
7867 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7868 if (!slot)
7869 return;
7870
7871 clobber_slot_part (set, loc, slot, offset, set_src);
7872 }
7873
7874 /* Delete the part of variable's location from dataflow set SET. The
7875 variable part is specified by its SET->vars slot SLOT and offset
7876 OFFSET and the part's location by LOC. */
7877
7878 static variable_def **
7879 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7880 HOST_WIDE_INT offset)
7881 {
7882 variable var = *slot;
7883 int pos = find_variable_location_part (var, offset, NULL);
7884
7885 if (pos >= 0)
7886 {
7887 location_chain node, next;
7888 location_chain *nextp;
7889 bool changed;
7890 rtx cur_loc;
7891
7892 if (shared_var_p (var, set->vars))
7893 {
7894 /* If the variable contains the location part we have to
7895 make a copy of the variable. */
7896 for (node = var->var_part[pos].loc_chain; node;
7897 node = node->next)
7898 {
7899 if ((REG_P (node->loc) && REG_P (loc)
7900 && REGNO (node->loc) == REGNO (loc))
7901 || rtx_equal_p (node->loc, loc))
7902 {
7903 slot = unshare_variable (set, slot, var,
7904 VAR_INIT_STATUS_UNKNOWN);
7905 var = *slot;
7906 break;
7907 }
7908 }
7909 }
7910
7911 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7912 cur_loc = VAR_LOC_FROM (var);
7913 else
7914 cur_loc = var->var_part[pos].cur_loc;
7915
7916 /* Delete the location part. */
7917 changed = false;
7918 nextp = &var->var_part[pos].loc_chain;
7919 for (node = *nextp; node; node = next)
7920 {
7921 next = node->next;
7922 if ((REG_P (node->loc) && REG_P (loc)
7923 && REGNO (node->loc) == REGNO (loc))
7924 || rtx_equal_p (node->loc, loc))
7925 {
7926 /* If we have deleted the location which was last emitted
7927 we have to emit new location so add the variable to set
7928 of changed variables. */
7929 if (cur_loc == node->loc)
7930 {
7931 changed = true;
7932 var->var_part[pos].cur_loc = NULL;
7933 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7934 VAR_LOC_FROM (var) = NULL;
7935 }
7936 pool_free (loc_chain_pool, node);
7937 *nextp = next;
7938 break;
7939 }
7940 else
7941 nextp = &node->next;
7942 }
7943
7944 if (var->var_part[pos].loc_chain == NULL)
7945 {
7946 changed = true;
7947 var->n_var_parts--;
7948 while (pos < var->n_var_parts)
7949 {
7950 var->var_part[pos] = var->var_part[pos + 1];
7951 pos++;
7952 }
7953 }
7954 if (changed)
7955 variable_was_changed (var, set);
7956 }
7957
7958 return slot;
7959 }
7960
7961 /* Delete the part of variable's location from dataflow set SET. The
7962 variable part is specified by variable's declaration or value DV
7963 and offset OFFSET and the part's location by LOC. */
7964
7965 static void
7966 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7967 HOST_WIDE_INT offset)
7968 {
7969 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7970 if (!slot)
7971 return;
7972
7973 delete_slot_part (set, loc, slot, offset);
7974 }
7975
7976
7977 /* Structure for passing some other parameters to function
7978 vt_expand_loc_callback. */
7979 struct expand_loc_callback_data
7980 {
7981 /* The variables and values active at this point. */
7982 variable_table_type *vars;
7983
7984 /* Stack of values and debug_exprs under expansion, and their
7985 children. */
7986 auto_vec<rtx, 4> expanding;
7987
7988 /* Stack of values and debug_exprs whose expansion hit recursion
7989 cycles. They will have VALUE_RECURSED_INTO marked when added to
7990 this list. This flag will be cleared if any of its dependencies
7991 resolves to a valid location. So, if the flag remains set at the
7992 end of the search, we know no valid location for this one can
7993 possibly exist. */
7994 auto_vec<rtx, 4> pending;
7995
7996 /* The maximum depth among the sub-expressions under expansion.
7997 Zero indicates no expansion so far. */
7998 expand_depth depth;
7999 };
8000
8001 /* Allocate the one-part auxiliary data structure for VAR, with enough
8002 room for COUNT dependencies. */
8003
8004 static void
8005 loc_exp_dep_alloc (variable var, int count)
8006 {
8007 size_t allocsize;
8008
8009 gcc_checking_assert (var->onepart);
8010
8011 /* We can be called with COUNT == 0 to allocate the data structure
8012 without any dependencies, e.g. for the backlinks only. However,
8013 if we are specifying a COUNT, then the dependency list must have
8014 been emptied before. It would be possible to adjust pointers or
8015 force it empty here, but this is better done at an earlier point
8016 in the algorithm, so we instead leave an assertion to catch
8017 errors. */
8018 gcc_checking_assert (!count
8019 || VAR_LOC_DEP_VEC (var) == NULL
8020 || VAR_LOC_DEP_VEC (var)->is_empty ());
8021
8022 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
8023 return;
8024
8025 allocsize = offsetof (struct onepart_aux, deps)
8026 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
8027
8028 if (VAR_LOC_1PAUX (var))
8029 {
8030 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
8031 VAR_LOC_1PAUX (var), allocsize);
8032 /* If the reallocation moves the onepaux structure, the
8033 back-pointer to BACKLINKS in the first list member will still
8034 point to its old location. Adjust it. */
8035 if (VAR_LOC_DEP_LST (var))
8036 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
8037 }
8038 else
8039 {
8040 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
8041 *VAR_LOC_DEP_LSTP (var) = NULL;
8042 VAR_LOC_FROM (var) = NULL;
8043 VAR_LOC_DEPTH (var).complexity = 0;
8044 VAR_LOC_DEPTH (var).entryvals = 0;
8045 }
8046 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8047 }
8048
8049 /* Remove all entries from the vector of active dependencies of VAR,
8050 removing them from the back-links lists too. */
8051
8052 static void
8053 loc_exp_dep_clear (variable var)
8054 {
8055 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8056 {
8057 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8058 if (led->next)
8059 led->next->pprev = led->pprev;
8060 if (led->pprev)
8061 *led->pprev = led->next;
8062 VAR_LOC_DEP_VEC (var)->pop ();
8063 }
8064 }
8065
8066 /* Insert an active dependency from VAR on X to the vector of
8067 dependencies, and add the corresponding back-link to X's list of
8068 back-links in VARS. */
8069
8070 static void
8071 loc_exp_insert_dep (variable var, rtx x, variable_table_type *vars)
8072 {
8073 decl_or_value dv;
8074 variable xvar;
8075 loc_exp_dep *led;
8076
8077 dv = dv_from_rtx (x);
8078
8079 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8080 an additional look up? */
8081 xvar = vars->find_with_hash (dv, dv_htab_hash (dv));
8082
8083 if (!xvar)
8084 {
8085 xvar = variable_from_dropped (dv, NO_INSERT);
8086 gcc_checking_assert (xvar);
8087 }
8088
8089 /* No point in adding the same backlink more than once. This may
8090 arise if say the same value appears in two complex expressions in
8091 the same loc_list, or even more than once in a single
8092 expression. */
8093 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8094 return;
8095
8096 if (var->onepart == NOT_ONEPART)
8097 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8098 else
8099 {
8100 loc_exp_dep empty;
8101 memset (&empty, 0, sizeof (empty));
8102 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8103 led = &VAR_LOC_DEP_VEC (var)->last ();
8104 }
8105 led->dv = var->dv;
8106 led->value = x;
8107
8108 loc_exp_dep_alloc (xvar, 0);
8109 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8110 led->next = *led->pprev;
8111 if (led->next)
8112 led->next->pprev = &led->next;
8113 *led->pprev = led;
8114 }
8115
8116 /* Create active dependencies of VAR on COUNT values starting at
8117 VALUE, and corresponding back-links to the entries in VARS. Return
8118 true if we found any pending-recursion results. */
8119
8120 static bool
8121 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8122 variable_table_type *vars)
8123 {
8124 bool pending_recursion = false;
8125
8126 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8127 || VAR_LOC_DEP_VEC (var)->is_empty ());
8128
8129 /* Set up all dependencies from last_child (as set up at the end of
8130 the loop above) to the end. */
8131 loc_exp_dep_alloc (var, count);
8132
8133 while (count--)
8134 {
8135 rtx x = *value++;
8136
8137 if (!pending_recursion)
8138 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8139
8140 loc_exp_insert_dep (var, x, vars);
8141 }
8142
8143 return pending_recursion;
8144 }
8145
8146 /* Notify the back-links of IVAR that are pending recursion that we
8147 have found a non-NIL value for it, so they are cleared for another
8148 attempt to compute a current location. */
8149
8150 static void
8151 notify_dependents_of_resolved_value (variable ivar, variable_table_type *vars)
8152 {
8153 loc_exp_dep *led, *next;
8154
8155 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8156 {
8157 decl_or_value dv = led->dv;
8158 variable var;
8159
8160 next = led->next;
8161
8162 if (dv_is_value_p (dv))
8163 {
8164 rtx value = dv_as_value (dv);
8165
8166 /* If we have already resolved it, leave it alone. */
8167 if (!VALUE_RECURSED_INTO (value))
8168 continue;
8169
8170 /* Check that VALUE_RECURSED_INTO, true from the test above,
8171 implies NO_LOC_P. */
8172 gcc_checking_assert (NO_LOC_P (value));
8173
8174 /* We won't notify variables that are being expanded,
8175 because their dependency list is cleared before
8176 recursing. */
8177 NO_LOC_P (value) = false;
8178 VALUE_RECURSED_INTO (value) = false;
8179
8180 gcc_checking_assert (dv_changed_p (dv));
8181 }
8182 else
8183 {
8184 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8185 if (!dv_changed_p (dv))
8186 continue;
8187 }
8188
8189 var = vars->find_with_hash (dv, dv_htab_hash (dv));
8190
8191 if (!var)
8192 var = variable_from_dropped (dv, NO_INSERT);
8193
8194 if (var)
8195 notify_dependents_of_resolved_value (var, vars);
8196
8197 if (next)
8198 next->pprev = led->pprev;
8199 if (led->pprev)
8200 *led->pprev = next;
8201 led->next = NULL;
8202 led->pprev = NULL;
8203 }
8204 }
8205
8206 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8207 int max_depth, void *data);
8208
8209 /* Return the combined depth, when one sub-expression evaluated to
8210 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8211
8212 static inline expand_depth
8213 update_depth (expand_depth saved_depth, expand_depth best_depth)
8214 {
8215 /* If we didn't find anything, stick with what we had. */
8216 if (!best_depth.complexity)
8217 return saved_depth;
8218
8219 /* If we found hadn't found anything, use the depth of the current
8220 expression. Do NOT add one extra level, we want to compute the
8221 maximum depth among sub-expressions. We'll increment it later,
8222 if appropriate. */
8223 if (!saved_depth.complexity)
8224 return best_depth;
8225
8226 /* Combine the entryval count so that regardless of which one we
8227 return, the entryval count is accurate. */
8228 best_depth.entryvals = saved_depth.entryvals
8229 = best_depth.entryvals + saved_depth.entryvals;
8230
8231 if (saved_depth.complexity < best_depth.complexity)
8232 return best_depth;
8233 else
8234 return saved_depth;
8235 }
8236
8237 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8238 DATA for cselib expand callback. If PENDRECP is given, indicate in
8239 it whether any sub-expression couldn't be fully evaluated because
8240 it is pending recursion resolution. */
8241
8242 static inline rtx
8243 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8244 {
8245 struct expand_loc_callback_data *elcd
8246 = (struct expand_loc_callback_data *) data;
8247 location_chain loc, next;
8248 rtx result = NULL;
8249 int first_child, result_first_child, last_child;
8250 bool pending_recursion;
8251 rtx loc_from = NULL;
8252 struct elt_loc_list *cloc = NULL;
8253 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8254 int wanted_entryvals, found_entryvals = 0;
8255
8256 /* Clear all backlinks pointing at this, so that we're not notified
8257 while we're active. */
8258 loc_exp_dep_clear (var);
8259
8260 retry:
8261 if (var->onepart == ONEPART_VALUE)
8262 {
8263 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8264
8265 gcc_checking_assert (cselib_preserved_value_p (val));
8266
8267 cloc = val->locs;
8268 }
8269
8270 first_child = result_first_child = last_child
8271 = elcd->expanding.length ();
8272
8273 wanted_entryvals = found_entryvals;
8274
8275 /* Attempt to expand each available location in turn. */
8276 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8277 loc || cloc; loc = next)
8278 {
8279 result_first_child = last_child;
8280
8281 if (!loc)
8282 {
8283 loc_from = cloc->loc;
8284 next = loc;
8285 cloc = cloc->next;
8286 if (unsuitable_loc (loc_from))
8287 continue;
8288 }
8289 else
8290 {
8291 loc_from = loc->loc;
8292 next = loc->next;
8293 }
8294
8295 gcc_checking_assert (!unsuitable_loc (loc_from));
8296
8297 elcd->depth.complexity = elcd->depth.entryvals = 0;
8298 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8299 vt_expand_loc_callback, data);
8300 last_child = elcd->expanding.length ();
8301
8302 if (result)
8303 {
8304 depth = elcd->depth;
8305
8306 gcc_checking_assert (depth.complexity
8307 || result_first_child == last_child);
8308
8309 if (last_child - result_first_child != 1)
8310 {
8311 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8312 depth.entryvals++;
8313 depth.complexity++;
8314 }
8315
8316 if (depth.complexity <= EXPR_USE_DEPTH)
8317 {
8318 if (depth.entryvals <= wanted_entryvals)
8319 break;
8320 else if (!found_entryvals || depth.entryvals < found_entryvals)
8321 found_entryvals = depth.entryvals;
8322 }
8323
8324 result = NULL;
8325 }
8326
8327 /* Set it up in case we leave the loop. */
8328 depth.complexity = depth.entryvals = 0;
8329 loc_from = NULL;
8330 result_first_child = first_child;
8331 }
8332
8333 if (!loc_from && wanted_entryvals < found_entryvals)
8334 {
8335 /* We found entries with ENTRY_VALUEs and skipped them. Since
8336 we could not find any expansions without ENTRY_VALUEs, but we
8337 found at least one with them, go back and get an entry with
8338 the minimum number ENTRY_VALUE count that we found. We could
8339 avoid looping, but since each sub-loc is already resolved,
8340 the re-expansion should be trivial. ??? Should we record all
8341 attempted locs as dependencies, so that we retry the
8342 expansion should any of them change, in the hope it can give
8343 us a new entry without an ENTRY_VALUE? */
8344 elcd->expanding.truncate (first_child);
8345 goto retry;
8346 }
8347
8348 /* Register all encountered dependencies as active. */
8349 pending_recursion = loc_exp_dep_set
8350 (var, result, elcd->expanding.address () + result_first_child,
8351 last_child - result_first_child, elcd->vars);
8352
8353 elcd->expanding.truncate (first_child);
8354
8355 /* Record where the expansion came from. */
8356 gcc_checking_assert (!result || !pending_recursion);
8357 VAR_LOC_FROM (var) = loc_from;
8358 VAR_LOC_DEPTH (var) = depth;
8359
8360 gcc_checking_assert (!depth.complexity == !result);
8361
8362 elcd->depth = update_depth (saved_depth, depth);
8363
8364 /* Indicate whether any of the dependencies are pending recursion
8365 resolution. */
8366 if (pendrecp)
8367 *pendrecp = pending_recursion;
8368
8369 if (!pendrecp || !pending_recursion)
8370 var->var_part[0].cur_loc = result;
8371
8372 return result;
8373 }
8374
8375 /* Callback for cselib_expand_value, that looks for expressions
8376 holding the value in the var-tracking hash tables. Return X for
8377 standard processing, anything else is to be used as-is. */
8378
8379 static rtx
8380 vt_expand_loc_callback (rtx x, bitmap regs,
8381 int max_depth ATTRIBUTE_UNUSED,
8382 void *data)
8383 {
8384 struct expand_loc_callback_data *elcd
8385 = (struct expand_loc_callback_data *) data;
8386 decl_or_value dv;
8387 variable var;
8388 rtx result, subreg;
8389 bool pending_recursion = false;
8390 bool from_empty = false;
8391
8392 switch (GET_CODE (x))
8393 {
8394 case SUBREG:
8395 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8396 EXPR_DEPTH,
8397 vt_expand_loc_callback, data);
8398
8399 if (!subreg)
8400 return NULL;
8401
8402 result = simplify_gen_subreg (GET_MODE (x), subreg,
8403 GET_MODE (SUBREG_REG (x)),
8404 SUBREG_BYTE (x));
8405
8406 /* Invalid SUBREGs are ok in debug info. ??? We could try
8407 alternate expansions for the VALUE as well. */
8408 if (!result)
8409 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8410
8411 return result;
8412
8413 case DEBUG_EXPR:
8414 case VALUE:
8415 dv = dv_from_rtx (x);
8416 break;
8417
8418 default:
8419 return x;
8420 }
8421
8422 elcd->expanding.safe_push (x);
8423
8424 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8425 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8426
8427 if (NO_LOC_P (x))
8428 {
8429 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8430 return NULL;
8431 }
8432
8433 var = elcd->vars->find_with_hash (dv, dv_htab_hash (dv));
8434
8435 if (!var)
8436 {
8437 from_empty = true;
8438 var = variable_from_dropped (dv, INSERT);
8439 }
8440
8441 gcc_checking_assert (var);
8442
8443 if (!dv_changed_p (dv))
8444 {
8445 gcc_checking_assert (!NO_LOC_P (x));
8446 gcc_checking_assert (var->var_part[0].cur_loc);
8447 gcc_checking_assert (VAR_LOC_1PAUX (var));
8448 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8449
8450 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8451
8452 return var->var_part[0].cur_loc;
8453 }
8454
8455 VALUE_RECURSED_INTO (x) = true;
8456 /* This is tentative, but it makes some tests simpler. */
8457 NO_LOC_P (x) = true;
8458
8459 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8460
8461 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8462
8463 if (pending_recursion)
8464 {
8465 gcc_checking_assert (!result);
8466 elcd->pending.safe_push (x);
8467 }
8468 else
8469 {
8470 NO_LOC_P (x) = !result;
8471 VALUE_RECURSED_INTO (x) = false;
8472 set_dv_changed (dv, false);
8473
8474 if (result)
8475 notify_dependents_of_resolved_value (var, elcd->vars);
8476 }
8477
8478 return result;
8479 }
8480
8481 /* While expanding variables, we may encounter recursion cycles
8482 because of mutual (possibly indirect) dependencies between two
8483 particular variables (or values), say A and B. If we're trying to
8484 expand A when we get to B, which in turn attempts to expand A, if
8485 we can't find any other expansion for B, we'll add B to this
8486 pending-recursion stack, and tentatively return NULL for its
8487 location. This tentative value will be used for any other
8488 occurrences of B, unless A gets some other location, in which case
8489 it will notify B that it is worth another try at computing a
8490 location for it, and it will use the location computed for A then.
8491 At the end of the expansion, the tentative NULL locations become
8492 final for all members of PENDING that didn't get a notification.
8493 This function performs this finalization of NULL locations. */
8494
8495 static void
8496 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8497 {
8498 while (!pending->is_empty ())
8499 {
8500 rtx x = pending->pop ();
8501 decl_or_value dv;
8502
8503 if (!VALUE_RECURSED_INTO (x))
8504 continue;
8505
8506 gcc_checking_assert (NO_LOC_P (x));
8507 VALUE_RECURSED_INTO (x) = false;
8508 dv = dv_from_rtx (x);
8509 gcc_checking_assert (dv_changed_p (dv));
8510 set_dv_changed (dv, false);
8511 }
8512 }
8513
8514 /* Initialize expand_loc_callback_data D with variable hash table V.
8515 It must be a macro because of alloca (vec stack). */
8516 #define INIT_ELCD(d, v) \
8517 do \
8518 { \
8519 (d).vars = (v); \
8520 (d).depth.complexity = (d).depth.entryvals = 0; \
8521 } \
8522 while (0)
8523 /* Finalize expand_loc_callback_data D, resolved to location L. */
8524 #define FINI_ELCD(d, l) \
8525 do \
8526 { \
8527 resolve_expansions_pending_recursion (&(d).pending); \
8528 (d).pending.release (); \
8529 (d).expanding.release (); \
8530 \
8531 if ((l) && MEM_P (l)) \
8532 (l) = targetm.delegitimize_address (l); \
8533 } \
8534 while (0)
8535
8536 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8537 equivalences in VARS, updating their CUR_LOCs in the process. */
8538
8539 static rtx
8540 vt_expand_loc (rtx loc, variable_table_type *vars)
8541 {
8542 struct expand_loc_callback_data data;
8543 rtx result;
8544
8545 if (!MAY_HAVE_DEBUG_INSNS)
8546 return loc;
8547
8548 INIT_ELCD (data, vars);
8549
8550 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8551 vt_expand_loc_callback, &data);
8552
8553 FINI_ELCD (data, result);
8554
8555 return result;
8556 }
8557
8558 /* Expand the one-part VARiable to a location, using the equivalences
8559 in VARS, updating their CUR_LOCs in the process. */
8560
8561 static rtx
8562 vt_expand_1pvar (variable var, variable_table_type *vars)
8563 {
8564 struct expand_loc_callback_data data;
8565 rtx loc;
8566
8567 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8568
8569 if (!dv_changed_p (var->dv))
8570 return var->var_part[0].cur_loc;
8571
8572 INIT_ELCD (data, vars);
8573
8574 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8575
8576 gcc_checking_assert (data.expanding.is_empty ());
8577
8578 FINI_ELCD (data, loc);
8579
8580 return loc;
8581 }
8582
8583 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8584 additional parameters: WHERE specifies whether the note shall be emitted
8585 before or after instruction INSN. */
8586
8587 int
8588 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8589 {
8590 variable var = *varp;
8591 rtx_insn *insn = data->insn;
8592 enum emit_note_where where = data->where;
8593 variable_table_type *vars = data->vars;
8594 rtx_note *note;
8595 rtx note_vl;
8596 int i, j, n_var_parts;
8597 bool complete;
8598 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8599 HOST_WIDE_INT last_limit;
8600 tree type_size_unit;
8601 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8602 rtx loc[MAX_VAR_PARTS];
8603 tree decl;
8604 location_chain lc;
8605
8606 gcc_checking_assert (var->onepart == NOT_ONEPART
8607 || var->onepart == ONEPART_VDECL);
8608
8609 decl = dv_as_decl (var->dv);
8610
8611 complete = true;
8612 last_limit = 0;
8613 n_var_parts = 0;
8614 if (!var->onepart)
8615 for (i = 0; i < var->n_var_parts; i++)
8616 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8617 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8618 for (i = 0; i < var->n_var_parts; i++)
8619 {
8620 enum machine_mode mode, wider_mode;
8621 rtx loc2;
8622 HOST_WIDE_INT offset;
8623
8624 if (i == 0 && var->onepart)
8625 {
8626 gcc_checking_assert (var->n_var_parts == 1);
8627 offset = 0;
8628 initialized = VAR_INIT_STATUS_INITIALIZED;
8629 loc2 = vt_expand_1pvar (var, vars);
8630 }
8631 else
8632 {
8633 if (last_limit < VAR_PART_OFFSET (var, i))
8634 {
8635 complete = false;
8636 break;
8637 }
8638 else if (last_limit > VAR_PART_OFFSET (var, i))
8639 continue;
8640 offset = VAR_PART_OFFSET (var, i);
8641 loc2 = var->var_part[i].cur_loc;
8642 if (loc2 && GET_CODE (loc2) == MEM
8643 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8644 {
8645 rtx depval = XEXP (loc2, 0);
8646
8647 loc2 = vt_expand_loc (loc2, vars);
8648
8649 if (loc2)
8650 loc_exp_insert_dep (var, depval, vars);
8651 }
8652 if (!loc2)
8653 {
8654 complete = false;
8655 continue;
8656 }
8657 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8658 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8659 if (var->var_part[i].cur_loc == lc->loc)
8660 {
8661 initialized = lc->init;
8662 break;
8663 }
8664 gcc_assert (lc);
8665 }
8666
8667 offsets[n_var_parts] = offset;
8668 if (!loc2)
8669 {
8670 complete = false;
8671 continue;
8672 }
8673 loc[n_var_parts] = loc2;
8674 mode = GET_MODE (var->var_part[i].cur_loc);
8675 if (mode == VOIDmode && var->onepart)
8676 mode = DECL_MODE (decl);
8677 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8678
8679 /* Attempt to merge adjacent registers or memory. */
8680 wider_mode = GET_MODE_WIDER_MODE (mode);
8681 for (j = i + 1; j < var->n_var_parts; j++)
8682 if (last_limit <= VAR_PART_OFFSET (var, j))
8683 break;
8684 if (j < var->n_var_parts
8685 && wider_mode != VOIDmode
8686 && var->var_part[j].cur_loc
8687 && mode == GET_MODE (var->var_part[j].cur_loc)
8688 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8689 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8690 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8691 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8692 {
8693 rtx new_loc = NULL;
8694
8695 if (REG_P (loc[n_var_parts])
8696 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8697 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8698 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8699 == REGNO (loc2))
8700 {
8701 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8702 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8703 mode, 0);
8704 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8705 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8706 if (new_loc)
8707 {
8708 if (!REG_P (new_loc)
8709 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8710 new_loc = NULL;
8711 else
8712 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8713 }
8714 }
8715 else if (MEM_P (loc[n_var_parts])
8716 && GET_CODE (XEXP (loc2, 0)) == PLUS
8717 && REG_P (XEXP (XEXP (loc2, 0), 0))
8718 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8719 {
8720 if ((REG_P (XEXP (loc[n_var_parts], 0))
8721 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8722 XEXP (XEXP (loc2, 0), 0))
8723 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8724 == GET_MODE_SIZE (mode))
8725 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8726 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8727 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8728 XEXP (XEXP (loc2, 0), 0))
8729 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8730 + GET_MODE_SIZE (mode)
8731 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8732 new_loc = adjust_address_nv (loc[n_var_parts],
8733 wider_mode, 0);
8734 }
8735
8736 if (new_loc)
8737 {
8738 loc[n_var_parts] = new_loc;
8739 mode = wider_mode;
8740 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8741 i = j;
8742 }
8743 }
8744 ++n_var_parts;
8745 }
8746 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8747 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8748 complete = false;
8749
8750 if (! flag_var_tracking_uninit)
8751 initialized = VAR_INIT_STATUS_INITIALIZED;
8752
8753 note_vl = NULL_RTX;
8754 if (!complete)
8755 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX, initialized);
8756 else if (n_var_parts == 1)
8757 {
8758 rtx expr_list;
8759
8760 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8761 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8762 else
8763 expr_list = loc[0];
8764
8765 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list, initialized);
8766 }
8767 else if (n_var_parts)
8768 {
8769 rtx parallel;
8770
8771 for (i = 0; i < n_var_parts; i++)
8772 loc[i]
8773 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8774
8775 parallel = gen_rtx_PARALLEL (VOIDmode,
8776 gen_rtvec_v (n_var_parts, loc));
8777 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8778 parallel, initialized);
8779 }
8780
8781 if (where != EMIT_NOTE_BEFORE_INSN)
8782 {
8783 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8784 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8785 NOTE_DURING_CALL_P (note) = true;
8786 }
8787 else
8788 {
8789 /* Make sure that the call related notes come first. */
8790 while (NEXT_INSN (insn)
8791 && NOTE_P (insn)
8792 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8793 && NOTE_DURING_CALL_P (insn))
8794 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8795 insn = NEXT_INSN (insn);
8796 if (NOTE_P (insn)
8797 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8798 && NOTE_DURING_CALL_P (insn))
8799 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8800 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8801 else
8802 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8803 }
8804 NOTE_VAR_LOCATION (note) = note_vl;
8805
8806 set_dv_changed (var->dv, false);
8807 gcc_assert (var->in_changed_variables);
8808 var->in_changed_variables = false;
8809 changed_variables->clear_slot (varp);
8810
8811 /* Continue traversing the hash table. */
8812 return 1;
8813 }
8814
8815 /* While traversing changed_variables, push onto DATA (a stack of RTX
8816 values) entries that aren't user variables. */
8817
8818 int
8819 var_track_values_to_stack (variable_def **slot,
8820 vec<rtx, va_heap> *changed_values_stack)
8821 {
8822 variable var = *slot;
8823
8824 if (var->onepart == ONEPART_VALUE)
8825 changed_values_stack->safe_push (dv_as_value (var->dv));
8826 else if (var->onepart == ONEPART_DEXPR)
8827 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8828
8829 return 1;
8830 }
8831
8832 /* Remove from changed_variables the entry whose DV corresponds to
8833 value or debug_expr VAL. */
8834 static void
8835 remove_value_from_changed_variables (rtx val)
8836 {
8837 decl_or_value dv = dv_from_rtx (val);
8838 variable_def **slot;
8839 variable var;
8840
8841 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8842 NO_INSERT);
8843 var = *slot;
8844 var->in_changed_variables = false;
8845 changed_variables->clear_slot (slot);
8846 }
8847
8848 /* If VAL (a value or debug_expr) has backlinks to variables actively
8849 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8850 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8851 have dependencies of their own to notify. */
8852
8853 static void
8854 notify_dependents_of_changed_value (rtx val, variable_table_type *htab,
8855 vec<rtx, va_heap> *changed_values_stack)
8856 {
8857 variable_def **slot;
8858 variable var;
8859 loc_exp_dep *led;
8860 decl_or_value dv = dv_from_rtx (val);
8861
8862 slot = changed_variables->find_slot_with_hash (dv, dv_htab_hash (dv),
8863 NO_INSERT);
8864 if (!slot)
8865 slot = htab->find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8866 if (!slot)
8867 slot = dropped_values->find_slot_with_hash (dv, dv_htab_hash (dv),
8868 NO_INSERT);
8869 var = *slot;
8870
8871 while ((led = VAR_LOC_DEP_LST (var)))
8872 {
8873 decl_or_value ldv = led->dv;
8874 variable ivar;
8875
8876 /* Deactivate and remove the backlink, as it was “used up”. It
8877 makes no sense to attempt to notify the same entity again:
8878 either it will be recomputed and re-register an active
8879 dependency, or it will still have the changed mark. */
8880 if (led->next)
8881 led->next->pprev = led->pprev;
8882 if (led->pprev)
8883 *led->pprev = led->next;
8884 led->next = NULL;
8885 led->pprev = NULL;
8886
8887 if (dv_changed_p (ldv))
8888 continue;
8889
8890 switch (dv_onepart_p (ldv))
8891 {
8892 case ONEPART_VALUE:
8893 case ONEPART_DEXPR:
8894 set_dv_changed (ldv, true);
8895 changed_values_stack->safe_push (dv_as_rtx (ldv));
8896 break;
8897
8898 case ONEPART_VDECL:
8899 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8900 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8901 variable_was_changed (ivar, NULL);
8902 break;
8903
8904 case NOT_ONEPART:
8905 pool_free (loc_exp_dep_pool, led);
8906 ivar = htab->find_with_hash (ldv, dv_htab_hash (ldv));
8907 if (ivar)
8908 {
8909 int i = ivar->n_var_parts;
8910 while (i--)
8911 {
8912 rtx loc = ivar->var_part[i].cur_loc;
8913
8914 if (loc && GET_CODE (loc) == MEM
8915 && XEXP (loc, 0) == val)
8916 {
8917 variable_was_changed (ivar, NULL);
8918 break;
8919 }
8920 }
8921 }
8922 break;
8923
8924 default:
8925 gcc_unreachable ();
8926 }
8927 }
8928 }
8929
8930 /* Take out of changed_variables any entries that don't refer to use
8931 variables. Back-propagate change notifications from values and
8932 debug_exprs to their active dependencies in HTAB or in
8933 CHANGED_VARIABLES. */
8934
8935 static void
8936 process_changed_values (variable_table_type *htab)
8937 {
8938 int i, n;
8939 rtx val;
8940 auto_vec<rtx, 20> changed_values_stack;
8941
8942 /* Move values from changed_variables to changed_values_stack. */
8943 changed_variables
8944 ->traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8945 (&changed_values_stack);
8946
8947 /* Back-propagate change notifications in values while popping
8948 them from the stack. */
8949 for (n = i = changed_values_stack.length ();
8950 i > 0; i = changed_values_stack.length ())
8951 {
8952 val = changed_values_stack.pop ();
8953 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8954
8955 /* This condition will hold when visiting each of the entries
8956 originally in changed_variables. We can't remove them
8957 earlier because this could drop the backlinks before we got a
8958 chance to use them. */
8959 if (i == n)
8960 {
8961 remove_value_from_changed_variables (val);
8962 n--;
8963 }
8964 }
8965 }
8966
8967 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8968 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8969 the notes shall be emitted before of after instruction INSN. */
8970
8971 static void
8972 emit_notes_for_changes (rtx_insn *insn, enum emit_note_where where,
8973 shared_hash vars)
8974 {
8975 emit_note_data data;
8976 variable_table_type *htab = shared_hash_htab (vars);
8977
8978 if (!changed_variables->elements ())
8979 return;
8980
8981 if (MAY_HAVE_DEBUG_INSNS)
8982 process_changed_values (htab);
8983
8984 data.insn = insn;
8985 data.where = where;
8986 data.vars = htab;
8987
8988 changed_variables
8989 ->traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8990 }
8991
8992 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8993 same variable in hash table DATA or is not there at all. */
8994
8995 int
8996 emit_notes_for_differences_1 (variable_def **slot, variable_table_type *new_vars)
8997 {
8998 variable old_var, new_var;
8999
9000 old_var = *slot;
9001 new_var = new_vars->find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
9002
9003 if (!new_var)
9004 {
9005 /* Variable has disappeared. */
9006 variable empty_var = NULL;
9007
9008 if (old_var->onepart == ONEPART_VALUE
9009 || old_var->onepart == ONEPART_DEXPR)
9010 {
9011 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
9012 if (empty_var)
9013 {
9014 gcc_checking_assert (!empty_var->in_changed_variables);
9015 if (!VAR_LOC_1PAUX (old_var))
9016 {
9017 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
9018 VAR_LOC_1PAUX (empty_var) = NULL;
9019 }
9020 else
9021 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
9022 }
9023 }
9024
9025 if (!empty_var)
9026 {
9027 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
9028 empty_var->dv = old_var->dv;
9029 empty_var->refcount = 0;
9030 empty_var->n_var_parts = 0;
9031 empty_var->onepart = old_var->onepart;
9032 empty_var->in_changed_variables = false;
9033 }
9034
9035 if (empty_var->onepart)
9036 {
9037 /* Propagate the auxiliary data to (ultimately)
9038 changed_variables. */
9039 empty_var->var_part[0].loc_chain = NULL;
9040 empty_var->var_part[0].cur_loc = NULL;
9041 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9042 VAR_LOC_1PAUX (old_var) = NULL;
9043 }
9044 variable_was_changed (empty_var, NULL);
9045 /* Continue traversing the hash table. */
9046 return 1;
9047 }
9048 /* Update cur_loc and one-part auxiliary data, before new_var goes
9049 through variable_was_changed. */
9050 if (old_var != new_var && new_var->onepart)
9051 {
9052 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9053 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9054 VAR_LOC_1PAUX (old_var) = NULL;
9055 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9056 }
9057 if (variable_different_p (old_var, new_var))
9058 variable_was_changed (new_var, NULL);
9059
9060 /* Continue traversing the hash table. */
9061 return 1;
9062 }
9063
9064 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9065 table DATA. */
9066
9067 int
9068 emit_notes_for_differences_2 (variable_def **slot, variable_table_type *old_vars)
9069 {
9070 variable old_var, new_var;
9071
9072 new_var = *slot;
9073 old_var = old_vars->find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9074 if (!old_var)
9075 {
9076 int i;
9077 for (i = 0; i < new_var->n_var_parts; i++)
9078 new_var->var_part[i].cur_loc = NULL;
9079 variable_was_changed (new_var, NULL);
9080 }
9081
9082 /* Continue traversing the hash table. */
9083 return 1;
9084 }
9085
9086 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9087 NEW_SET. */
9088
9089 static void
9090 emit_notes_for_differences (rtx_insn *insn, dataflow_set *old_set,
9091 dataflow_set *new_set)
9092 {
9093 shared_hash_htab (old_set->vars)
9094 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9095 (shared_hash_htab (new_set->vars));
9096 shared_hash_htab (new_set->vars)
9097 ->traverse <variable_table_type *, emit_notes_for_differences_2>
9098 (shared_hash_htab (old_set->vars));
9099 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9100 }
9101
9102 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9103
9104 static rtx_insn *
9105 next_non_note_insn_var_location (rtx_insn *insn)
9106 {
9107 while (insn)
9108 {
9109 insn = NEXT_INSN (insn);
9110 if (insn == 0
9111 || !NOTE_P (insn)
9112 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9113 break;
9114 }
9115
9116 return insn;
9117 }
9118
9119 /* Emit the notes for changes of location parts in the basic block BB. */
9120
9121 static void
9122 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9123 {
9124 unsigned int i;
9125 micro_operation *mo;
9126
9127 dataflow_set_clear (set);
9128 dataflow_set_copy (set, &VTI (bb)->in);
9129
9130 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9131 {
9132 rtx_insn *insn = mo->insn;
9133 rtx_insn *next_insn = next_non_note_insn_var_location (insn);
9134
9135 switch (mo->type)
9136 {
9137 case MO_CALL:
9138 dataflow_set_clear_at_call (set);
9139 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9140 {
9141 rtx arguments = mo->u.loc, *p = &arguments;
9142 rtx_note *note;
9143 while (*p)
9144 {
9145 XEXP (XEXP (*p, 0), 1)
9146 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9147 shared_hash_htab (set->vars));
9148 /* If expansion is successful, keep it in the list. */
9149 if (XEXP (XEXP (*p, 0), 1))
9150 p = &XEXP (*p, 1);
9151 /* Otherwise, if the following item is data_value for it,
9152 drop it too too. */
9153 else if (XEXP (*p, 1)
9154 && REG_P (XEXP (XEXP (*p, 0), 0))
9155 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9156 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9157 0))
9158 && REGNO (XEXP (XEXP (*p, 0), 0))
9159 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9160 0), 0)))
9161 *p = XEXP (XEXP (*p, 1), 1);
9162 /* Just drop this item. */
9163 else
9164 *p = XEXP (*p, 1);
9165 }
9166 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9167 NOTE_VAR_LOCATION (note) = arguments;
9168 }
9169 break;
9170
9171 case MO_USE:
9172 {
9173 rtx loc = mo->u.loc;
9174
9175 if (REG_P (loc))
9176 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9177 else
9178 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9179
9180 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9181 }
9182 break;
9183
9184 case MO_VAL_LOC:
9185 {
9186 rtx loc = mo->u.loc;
9187 rtx val, vloc;
9188 tree var;
9189
9190 if (GET_CODE (loc) == CONCAT)
9191 {
9192 val = XEXP (loc, 0);
9193 vloc = XEXP (loc, 1);
9194 }
9195 else
9196 {
9197 val = NULL_RTX;
9198 vloc = loc;
9199 }
9200
9201 var = PAT_VAR_LOCATION_DECL (vloc);
9202
9203 clobber_variable_part (set, NULL_RTX,
9204 dv_from_decl (var), 0, NULL_RTX);
9205 if (val)
9206 {
9207 if (VAL_NEEDS_RESOLUTION (loc))
9208 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9209 set_variable_part (set, val, dv_from_decl (var), 0,
9210 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9211 INSERT);
9212 }
9213 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9214 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9215 dv_from_decl (var), 0,
9216 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9217 INSERT);
9218
9219 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9220 }
9221 break;
9222
9223 case MO_VAL_USE:
9224 {
9225 rtx loc = mo->u.loc;
9226 rtx val, vloc, uloc;
9227
9228 vloc = uloc = XEXP (loc, 1);
9229 val = XEXP (loc, 0);
9230
9231 if (GET_CODE (val) == CONCAT)
9232 {
9233 uloc = XEXP (val, 1);
9234 val = XEXP (val, 0);
9235 }
9236
9237 if (VAL_NEEDS_RESOLUTION (loc))
9238 val_resolve (set, val, vloc, insn);
9239 else
9240 val_store (set, val, uloc, insn, false);
9241
9242 if (VAL_HOLDS_TRACK_EXPR (loc))
9243 {
9244 if (GET_CODE (uloc) == REG)
9245 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9246 NULL);
9247 else if (GET_CODE (uloc) == MEM)
9248 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9249 NULL);
9250 }
9251
9252 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9253 }
9254 break;
9255
9256 case MO_VAL_SET:
9257 {
9258 rtx loc = mo->u.loc;
9259 rtx val, vloc, uloc;
9260 rtx dstv, srcv;
9261
9262 vloc = loc;
9263 uloc = XEXP (vloc, 1);
9264 val = XEXP (vloc, 0);
9265 vloc = uloc;
9266
9267 if (GET_CODE (uloc) == SET)
9268 {
9269 dstv = SET_DEST (uloc);
9270 srcv = SET_SRC (uloc);
9271 }
9272 else
9273 {
9274 dstv = uloc;
9275 srcv = NULL;
9276 }
9277
9278 if (GET_CODE (val) == CONCAT)
9279 {
9280 dstv = vloc = XEXP (val, 1);
9281 val = XEXP (val, 0);
9282 }
9283
9284 if (GET_CODE (vloc) == SET)
9285 {
9286 srcv = SET_SRC (vloc);
9287
9288 gcc_assert (val != srcv);
9289 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9290
9291 dstv = vloc = SET_DEST (vloc);
9292
9293 if (VAL_NEEDS_RESOLUTION (loc))
9294 val_resolve (set, val, srcv, insn);
9295 }
9296 else if (VAL_NEEDS_RESOLUTION (loc))
9297 {
9298 gcc_assert (GET_CODE (uloc) == SET
9299 && GET_CODE (SET_SRC (uloc)) == REG);
9300 val_resolve (set, val, SET_SRC (uloc), insn);
9301 }
9302
9303 if (VAL_HOLDS_TRACK_EXPR (loc))
9304 {
9305 if (VAL_EXPR_IS_CLOBBERED (loc))
9306 {
9307 if (REG_P (uloc))
9308 var_reg_delete (set, uloc, true);
9309 else if (MEM_P (uloc))
9310 {
9311 gcc_assert (MEM_P (dstv));
9312 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9313 var_mem_delete (set, dstv, true);
9314 }
9315 }
9316 else
9317 {
9318 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9319 rtx src = NULL, dst = uloc;
9320 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9321
9322 if (GET_CODE (uloc) == SET)
9323 {
9324 src = SET_SRC (uloc);
9325 dst = SET_DEST (uloc);
9326 }
9327
9328 if (copied_p)
9329 {
9330 status = find_src_status (set, src);
9331
9332 src = find_src_set_src (set, src);
9333 }
9334
9335 if (REG_P (dst))
9336 var_reg_delete_and_set (set, dst, !copied_p,
9337 status, srcv);
9338 else if (MEM_P (dst))
9339 {
9340 gcc_assert (MEM_P (dstv));
9341 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9342 var_mem_delete_and_set (set, dstv, !copied_p,
9343 status, srcv);
9344 }
9345 }
9346 }
9347 else if (REG_P (uloc))
9348 var_regno_delete (set, REGNO (uloc));
9349 else if (MEM_P (uloc))
9350 {
9351 gcc_checking_assert (GET_CODE (vloc) == MEM);
9352 gcc_checking_assert (vloc == dstv);
9353 if (vloc != dstv)
9354 clobber_overlapping_mems (set, vloc);
9355 }
9356
9357 val_store (set, val, dstv, insn, true);
9358
9359 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9360 set->vars);
9361 }
9362 break;
9363
9364 case MO_SET:
9365 {
9366 rtx loc = mo->u.loc;
9367 rtx set_src = NULL;
9368
9369 if (GET_CODE (loc) == SET)
9370 {
9371 set_src = SET_SRC (loc);
9372 loc = SET_DEST (loc);
9373 }
9374
9375 if (REG_P (loc))
9376 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9377 set_src);
9378 else
9379 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9380 set_src);
9381
9382 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9383 set->vars);
9384 }
9385 break;
9386
9387 case MO_COPY:
9388 {
9389 rtx loc = mo->u.loc;
9390 enum var_init_status src_status;
9391 rtx set_src = NULL;
9392
9393 if (GET_CODE (loc) == SET)
9394 {
9395 set_src = SET_SRC (loc);
9396 loc = SET_DEST (loc);
9397 }
9398
9399 src_status = find_src_status (set, set_src);
9400 set_src = find_src_set_src (set, set_src);
9401
9402 if (REG_P (loc))
9403 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9404 else
9405 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9406
9407 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9408 set->vars);
9409 }
9410 break;
9411
9412 case MO_USE_NO_VAR:
9413 {
9414 rtx loc = mo->u.loc;
9415
9416 if (REG_P (loc))
9417 var_reg_delete (set, loc, false);
9418 else
9419 var_mem_delete (set, loc, false);
9420
9421 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9422 }
9423 break;
9424
9425 case MO_CLOBBER:
9426 {
9427 rtx loc = mo->u.loc;
9428
9429 if (REG_P (loc))
9430 var_reg_delete (set, loc, true);
9431 else
9432 var_mem_delete (set, loc, true);
9433
9434 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9435 set->vars);
9436 }
9437 break;
9438
9439 case MO_ADJUST:
9440 set->stack_adjust += mo->u.adjust;
9441 break;
9442 }
9443 }
9444 }
9445
9446 /* Emit notes for the whole function. */
9447
9448 static void
9449 vt_emit_notes (void)
9450 {
9451 basic_block bb;
9452 dataflow_set cur;
9453
9454 gcc_assert (!changed_variables->elements ());
9455
9456 /* Free memory occupied by the out hash tables, as they aren't used
9457 anymore. */
9458 FOR_EACH_BB_FN (bb, cfun)
9459 dataflow_set_clear (&VTI (bb)->out);
9460
9461 /* Enable emitting notes by functions (mainly by set_variable_part and
9462 delete_variable_part). */
9463 emit_notes = true;
9464
9465 if (MAY_HAVE_DEBUG_INSNS)
9466 {
9467 dropped_values = new variable_table_type (cselib_get_next_uid () * 2);
9468 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9469 sizeof (loc_exp_dep), 64);
9470 }
9471
9472 dataflow_set_init (&cur);
9473
9474 FOR_EACH_BB_FN (bb, cfun)
9475 {
9476 /* Emit the notes for changes of variable locations between two
9477 subsequent basic blocks. */
9478 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9479
9480 if (MAY_HAVE_DEBUG_INSNS)
9481 local_get_addr_cache = new hash_map<rtx, rtx>;
9482
9483 /* Emit the notes for the changes in the basic block itself. */
9484 emit_notes_in_bb (bb, &cur);
9485
9486 if (MAY_HAVE_DEBUG_INSNS)
9487 delete local_get_addr_cache;
9488 local_get_addr_cache = NULL;
9489
9490 /* Free memory occupied by the in hash table, we won't need it
9491 again. */
9492 dataflow_set_clear (&VTI (bb)->in);
9493 }
9494 #ifdef ENABLE_CHECKING
9495 shared_hash_htab (cur.vars)
9496 ->traverse <variable_table_type *, emit_notes_for_differences_1>
9497 (shared_hash_htab (empty_shared_hash));
9498 #endif
9499 dataflow_set_destroy (&cur);
9500
9501 if (MAY_HAVE_DEBUG_INSNS)
9502 delete dropped_values;
9503 dropped_values = NULL;
9504
9505 emit_notes = false;
9506 }
9507
9508 /* If there is a declaration and offset associated with register/memory RTL
9509 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9510
9511 static bool
9512 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9513 {
9514 if (REG_P (rtl))
9515 {
9516 if (REG_ATTRS (rtl))
9517 {
9518 *declp = REG_EXPR (rtl);
9519 *offsetp = REG_OFFSET (rtl);
9520 return true;
9521 }
9522 }
9523 else if (GET_CODE (rtl) == PARALLEL)
9524 {
9525 tree decl = NULL_TREE;
9526 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9527 int len = XVECLEN (rtl, 0), i;
9528
9529 for (i = 0; i < len; i++)
9530 {
9531 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9532 if (!REG_P (reg) || !REG_ATTRS (reg))
9533 break;
9534 if (!decl)
9535 decl = REG_EXPR (reg);
9536 if (REG_EXPR (reg) != decl)
9537 break;
9538 if (REG_OFFSET (reg) < offset)
9539 offset = REG_OFFSET (reg);
9540 }
9541
9542 if (i == len)
9543 {
9544 *declp = decl;
9545 *offsetp = offset;
9546 return true;
9547 }
9548 }
9549 else if (MEM_P (rtl))
9550 {
9551 if (MEM_ATTRS (rtl))
9552 {
9553 *declp = MEM_EXPR (rtl);
9554 *offsetp = INT_MEM_OFFSET (rtl);
9555 return true;
9556 }
9557 }
9558 return false;
9559 }
9560
9561 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9562 of VAL. */
9563
9564 static void
9565 record_entry_value (cselib_val *val, rtx rtl)
9566 {
9567 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9568
9569 ENTRY_VALUE_EXP (ev) = rtl;
9570
9571 cselib_add_permanent_equiv (val, ev, get_insns ());
9572 }
9573
9574 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9575
9576 static void
9577 vt_add_function_parameter (tree parm)
9578 {
9579 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9580 rtx incoming = DECL_INCOMING_RTL (parm);
9581 tree decl;
9582 enum machine_mode mode;
9583 HOST_WIDE_INT offset;
9584 dataflow_set *out;
9585 decl_or_value dv;
9586
9587 if (TREE_CODE (parm) != PARM_DECL)
9588 return;
9589
9590 if (!decl_rtl || !incoming)
9591 return;
9592
9593 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9594 return;
9595
9596 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9597 rewrite the incoming location of parameters passed on the stack
9598 into MEMs based on the argument pointer, so that incoming doesn't
9599 depend on a pseudo. */
9600 if (MEM_P (incoming)
9601 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9602 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9603 && XEXP (XEXP (incoming, 0), 0)
9604 == crtl->args.internal_arg_pointer
9605 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9606 {
9607 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9608 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9609 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9610 incoming
9611 = replace_equiv_address_nv (incoming,
9612 plus_constant (Pmode,
9613 arg_pointer_rtx, off));
9614 }
9615
9616 #ifdef HAVE_window_save
9617 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9618 If the target machine has an explicit window save instruction, the
9619 actual entry value is the corresponding OUTGOING_REGNO instead. */
9620 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9621 {
9622 if (REG_P (incoming)
9623 && HARD_REGISTER_P (incoming)
9624 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9625 {
9626 parm_reg_t p;
9627 p.incoming = incoming;
9628 incoming
9629 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9630 OUTGOING_REGNO (REGNO (incoming)), 0);
9631 p.outgoing = incoming;
9632 vec_safe_push (windowed_parm_regs, p);
9633 }
9634 else if (GET_CODE (incoming) == PARALLEL)
9635 {
9636 rtx outgoing
9637 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9638 int i;
9639
9640 for (i = 0; i < XVECLEN (incoming, 0); i++)
9641 {
9642 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9643 parm_reg_t p;
9644 p.incoming = reg;
9645 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9646 OUTGOING_REGNO (REGNO (reg)), 0);
9647 p.outgoing = reg;
9648 XVECEXP (outgoing, 0, i)
9649 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9650 XEXP (XVECEXP (incoming, 0, i), 1));
9651 vec_safe_push (windowed_parm_regs, p);
9652 }
9653
9654 incoming = outgoing;
9655 }
9656 else if (MEM_P (incoming)
9657 && REG_P (XEXP (incoming, 0))
9658 && HARD_REGISTER_P (XEXP (incoming, 0)))
9659 {
9660 rtx reg = XEXP (incoming, 0);
9661 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9662 {
9663 parm_reg_t p;
9664 p.incoming = reg;
9665 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9666 p.outgoing = reg;
9667 vec_safe_push (windowed_parm_regs, p);
9668 incoming = replace_equiv_address_nv (incoming, reg);
9669 }
9670 }
9671 }
9672 #endif
9673
9674 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9675 {
9676 if (MEM_P (incoming))
9677 {
9678 /* This means argument is passed by invisible reference. */
9679 offset = 0;
9680 decl = parm;
9681 }
9682 else
9683 {
9684 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9685 return;
9686 offset += byte_lowpart_offset (GET_MODE (incoming),
9687 GET_MODE (decl_rtl));
9688 }
9689 }
9690
9691 if (!decl)
9692 return;
9693
9694 if (parm != decl)
9695 {
9696 /* If that DECL_RTL wasn't a pseudo that got spilled to
9697 memory, bail out. Otherwise, the spill slot sharing code
9698 will force the memory to reference spill_slot_decl (%sfp),
9699 so we don't match above. That's ok, the pseudo must have
9700 referenced the entire parameter, so just reset OFFSET. */
9701 if (decl != get_spill_slot_decl (false))
9702 return;
9703 offset = 0;
9704 }
9705
9706 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9707 return;
9708
9709 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9710
9711 dv = dv_from_decl (parm);
9712
9713 if (target_for_debug_bind (parm)
9714 /* We can't deal with these right now, because this kind of
9715 variable is single-part. ??? We could handle parallels
9716 that describe multiple locations for the same single
9717 value, but ATM we don't. */
9718 && GET_CODE (incoming) != PARALLEL)
9719 {
9720 cselib_val *val;
9721 rtx lowpart;
9722
9723 /* ??? We shouldn't ever hit this, but it may happen because
9724 arguments passed by invisible reference aren't dealt with
9725 above: incoming-rtl will have Pmode rather than the
9726 expected mode for the type. */
9727 if (offset)
9728 return;
9729
9730 lowpart = var_lowpart (mode, incoming);
9731 if (!lowpart)
9732 return;
9733
9734 val = cselib_lookup_from_insn (lowpart, mode, true,
9735 VOIDmode, get_insns ());
9736
9737 /* ??? Float-typed values in memory are not handled by
9738 cselib. */
9739 if (val)
9740 {
9741 preserve_value (val);
9742 set_variable_part (out, val->val_rtx, dv, offset,
9743 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9744 dv = dv_from_value (val->val_rtx);
9745 }
9746
9747 if (MEM_P (incoming))
9748 {
9749 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9750 VOIDmode, get_insns ());
9751 if (val)
9752 {
9753 preserve_value (val);
9754 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9755 }
9756 }
9757 }
9758
9759 if (REG_P (incoming))
9760 {
9761 incoming = var_lowpart (mode, incoming);
9762 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9763 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9764 incoming);
9765 set_variable_part (out, incoming, dv, offset,
9766 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9767 if (dv_is_value_p (dv))
9768 {
9769 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9770 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9771 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9772 {
9773 enum machine_mode indmode
9774 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9775 rtx mem = gen_rtx_MEM (indmode, incoming);
9776 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9777 VOIDmode,
9778 get_insns ());
9779 if (val)
9780 {
9781 preserve_value (val);
9782 record_entry_value (val, mem);
9783 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9784 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9785 }
9786 }
9787 }
9788 }
9789 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9790 {
9791 int i;
9792
9793 for (i = 0; i < XVECLEN (incoming, 0); i++)
9794 {
9795 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9796 offset = REG_OFFSET (reg);
9797 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9798 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9799 set_variable_part (out, reg, dv, offset,
9800 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9801 }
9802 }
9803 else if (MEM_P (incoming))
9804 {
9805 incoming = var_lowpart (mode, incoming);
9806 set_variable_part (out, incoming, dv, offset,
9807 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9808 }
9809 }
9810
9811 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9812
9813 static void
9814 vt_add_function_parameters (void)
9815 {
9816 tree parm;
9817
9818 for (parm = DECL_ARGUMENTS (current_function_decl);
9819 parm; parm = DECL_CHAIN (parm))
9820 vt_add_function_parameter (parm);
9821
9822 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9823 {
9824 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9825
9826 if (TREE_CODE (vexpr) == INDIRECT_REF)
9827 vexpr = TREE_OPERAND (vexpr, 0);
9828
9829 if (TREE_CODE (vexpr) == PARM_DECL
9830 && DECL_ARTIFICIAL (vexpr)
9831 && !DECL_IGNORED_P (vexpr)
9832 && DECL_NAMELESS (vexpr))
9833 vt_add_function_parameter (vexpr);
9834 }
9835 }
9836
9837 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9838 ensure it isn't flushed during cselib_reset_table.
9839 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9840 has been eliminated. */
9841
9842 static void
9843 vt_init_cfa_base (void)
9844 {
9845 cselib_val *val;
9846
9847 #ifdef FRAME_POINTER_CFA_OFFSET
9848 cfa_base_rtx = frame_pointer_rtx;
9849 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9850 #else
9851 cfa_base_rtx = arg_pointer_rtx;
9852 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9853 #endif
9854 if (cfa_base_rtx == hard_frame_pointer_rtx
9855 || !fixed_regs[REGNO (cfa_base_rtx)])
9856 {
9857 cfa_base_rtx = NULL_RTX;
9858 return;
9859 }
9860 if (!MAY_HAVE_DEBUG_INSNS)
9861 return;
9862
9863 /* Tell alias analysis that cfa_base_rtx should share
9864 find_base_term value with stack pointer or hard frame pointer. */
9865 if (!frame_pointer_needed)
9866 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9867 else if (!crtl->stack_realign_tried)
9868 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9869
9870 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9871 VOIDmode, get_insns ());
9872 preserve_value (val);
9873 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9874 }
9875
9876 /* Allocate and initialize the data structures for variable tracking
9877 and parse the RTL to get the micro operations. */
9878
9879 static bool
9880 vt_initialize (void)
9881 {
9882 basic_block bb;
9883 HOST_WIDE_INT fp_cfa_offset = -1;
9884
9885 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9886
9887 attrs_pool = create_alloc_pool ("attrs_def pool",
9888 sizeof (struct attrs_def), 1024);
9889 var_pool = create_alloc_pool ("variable_def pool",
9890 sizeof (struct variable_def)
9891 + (MAX_VAR_PARTS - 1)
9892 * sizeof (((variable)NULL)->var_part[0]), 64);
9893 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9894 sizeof (struct location_chain_def),
9895 1024);
9896 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9897 sizeof (struct shared_hash_def), 256);
9898 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9899 empty_shared_hash->refcount = 1;
9900 empty_shared_hash->htab = new variable_table_type (1);
9901 changed_variables = new variable_table_type (10);
9902
9903 /* Init the IN and OUT sets. */
9904 FOR_ALL_BB_FN (bb, cfun)
9905 {
9906 VTI (bb)->visited = false;
9907 VTI (bb)->flooded = false;
9908 dataflow_set_init (&VTI (bb)->in);
9909 dataflow_set_init (&VTI (bb)->out);
9910 VTI (bb)->permp = NULL;
9911 }
9912
9913 if (MAY_HAVE_DEBUG_INSNS)
9914 {
9915 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9916 scratch_regs = BITMAP_ALLOC (NULL);
9917 valvar_pool = create_alloc_pool ("small variable_def pool",
9918 sizeof (struct variable_def), 256);
9919 preserved_values.create (256);
9920 global_get_addr_cache = new hash_map<rtx, rtx>;
9921 }
9922 else
9923 {
9924 scratch_regs = NULL;
9925 valvar_pool = NULL;
9926 global_get_addr_cache = NULL;
9927 }
9928
9929 if (MAY_HAVE_DEBUG_INSNS)
9930 {
9931 rtx reg, expr;
9932 int ofst;
9933 cselib_val *val;
9934
9935 #ifdef FRAME_POINTER_CFA_OFFSET
9936 reg = frame_pointer_rtx;
9937 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9938 #else
9939 reg = arg_pointer_rtx;
9940 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9941 #endif
9942
9943 ofst -= INCOMING_FRAME_SP_OFFSET;
9944
9945 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9946 VOIDmode, get_insns ());
9947 preserve_value (val);
9948 if (reg != hard_frame_pointer_rtx && fixed_regs[REGNO (reg)])
9949 cselib_preserve_cfa_base_value (val, REGNO (reg));
9950 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9951 stack_pointer_rtx, -ofst);
9952 cselib_add_permanent_equiv (val, expr, get_insns ());
9953
9954 if (ofst)
9955 {
9956 val = cselib_lookup_from_insn (stack_pointer_rtx,
9957 GET_MODE (stack_pointer_rtx), 1,
9958 VOIDmode, get_insns ());
9959 preserve_value (val);
9960 expr = plus_constant (GET_MODE (reg), reg, ofst);
9961 cselib_add_permanent_equiv (val, expr, get_insns ());
9962 }
9963 }
9964
9965 /* In order to factor out the adjustments made to the stack pointer or to
9966 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9967 instead of individual location lists, we're going to rewrite MEMs based
9968 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9969 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9970 resp. arg_pointer_rtx. We can do this either when there is no frame
9971 pointer in the function and stack adjustments are consistent for all
9972 basic blocks or when there is a frame pointer and no stack realignment.
9973 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9974 has been eliminated. */
9975 if (!frame_pointer_needed)
9976 {
9977 rtx reg, elim;
9978
9979 if (!vt_stack_adjustments ())
9980 return false;
9981
9982 #ifdef FRAME_POINTER_CFA_OFFSET
9983 reg = frame_pointer_rtx;
9984 #else
9985 reg = arg_pointer_rtx;
9986 #endif
9987 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9988 if (elim != reg)
9989 {
9990 if (GET_CODE (elim) == PLUS)
9991 elim = XEXP (elim, 0);
9992 if (elim == stack_pointer_rtx)
9993 vt_init_cfa_base ();
9994 }
9995 }
9996 else if (!crtl->stack_realign_tried)
9997 {
9998 rtx reg, elim;
9999
10000 #ifdef FRAME_POINTER_CFA_OFFSET
10001 reg = frame_pointer_rtx;
10002 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
10003 #else
10004 reg = arg_pointer_rtx;
10005 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
10006 #endif
10007 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10008 if (elim != reg)
10009 {
10010 if (GET_CODE (elim) == PLUS)
10011 {
10012 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
10013 elim = XEXP (elim, 0);
10014 }
10015 if (elim != hard_frame_pointer_rtx)
10016 fp_cfa_offset = -1;
10017 }
10018 else
10019 fp_cfa_offset = -1;
10020 }
10021
10022 /* If the stack is realigned and a DRAP register is used, we're going to
10023 rewrite MEMs based on it representing incoming locations of parameters
10024 passed on the stack into MEMs based on the argument pointer. Although
10025 we aren't going to rewrite other MEMs, we still need to initialize the
10026 virtual CFA pointer in order to ensure that the argument pointer will
10027 be seen as a constant throughout the function.
10028
10029 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
10030 else if (stack_realign_drap)
10031 {
10032 rtx reg, elim;
10033
10034 #ifdef FRAME_POINTER_CFA_OFFSET
10035 reg = frame_pointer_rtx;
10036 #else
10037 reg = arg_pointer_rtx;
10038 #endif
10039 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
10040 if (elim != reg)
10041 {
10042 if (GET_CODE (elim) == PLUS)
10043 elim = XEXP (elim, 0);
10044 if (elim == hard_frame_pointer_rtx)
10045 vt_init_cfa_base ();
10046 }
10047 }
10048
10049 hard_frame_pointer_adjustment = -1;
10050
10051 vt_add_function_parameters ();
10052
10053 FOR_EACH_BB_FN (bb, cfun)
10054 {
10055 rtx_insn *insn;
10056 HOST_WIDE_INT pre, post = 0;
10057 basic_block first_bb, last_bb;
10058
10059 if (MAY_HAVE_DEBUG_INSNS)
10060 {
10061 cselib_record_sets_hook = add_with_sets;
10062 if (dump_file && (dump_flags & TDF_DETAILS))
10063 fprintf (dump_file, "first value: %i\n",
10064 cselib_get_next_uid ());
10065 }
10066
10067 first_bb = bb;
10068 for (;;)
10069 {
10070 edge e;
10071 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10072 || ! single_pred_p (bb->next_bb))
10073 break;
10074 e = find_edge (bb, bb->next_bb);
10075 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10076 break;
10077 bb = bb->next_bb;
10078 }
10079 last_bb = bb;
10080
10081 /* Add the micro-operations to the vector. */
10082 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10083 {
10084 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10085 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10086 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10087 insn = NEXT_INSN (insn))
10088 {
10089 if (INSN_P (insn))
10090 {
10091 if (!frame_pointer_needed)
10092 {
10093 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10094 if (pre)
10095 {
10096 micro_operation mo;
10097 mo.type = MO_ADJUST;
10098 mo.u.adjust = pre;
10099 mo.insn = insn;
10100 if (dump_file && (dump_flags & TDF_DETAILS))
10101 log_op_type (PATTERN (insn), bb, insn,
10102 MO_ADJUST, dump_file);
10103 VTI (bb)->mos.safe_push (mo);
10104 VTI (bb)->out.stack_adjust += pre;
10105 }
10106 }
10107
10108 cselib_hook_called = false;
10109 adjust_insn (bb, insn);
10110 if (MAY_HAVE_DEBUG_INSNS)
10111 {
10112 if (CALL_P (insn))
10113 prepare_call_arguments (bb, insn);
10114 cselib_process_insn (insn);
10115 if (dump_file && (dump_flags & TDF_DETAILS))
10116 {
10117 print_rtl_single (dump_file, insn);
10118 dump_cselib_table (dump_file);
10119 }
10120 }
10121 if (!cselib_hook_called)
10122 add_with_sets (insn, 0, 0);
10123 cancel_changes (0);
10124
10125 if (!frame_pointer_needed && post)
10126 {
10127 micro_operation mo;
10128 mo.type = MO_ADJUST;
10129 mo.u.adjust = post;
10130 mo.insn = insn;
10131 if (dump_file && (dump_flags & TDF_DETAILS))
10132 log_op_type (PATTERN (insn), bb, insn,
10133 MO_ADJUST, dump_file);
10134 VTI (bb)->mos.safe_push (mo);
10135 VTI (bb)->out.stack_adjust += post;
10136 }
10137
10138 if (fp_cfa_offset != -1
10139 && hard_frame_pointer_adjustment == -1
10140 && fp_setter_insn (insn))
10141 {
10142 vt_init_cfa_base ();
10143 hard_frame_pointer_adjustment = fp_cfa_offset;
10144 /* Disassociate sp from fp now. */
10145 if (MAY_HAVE_DEBUG_INSNS)
10146 {
10147 cselib_val *v;
10148 cselib_invalidate_rtx (stack_pointer_rtx);
10149 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10150 VOIDmode);
10151 if (v && !cselib_preserved_value_p (v))
10152 {
10153 cselib_set_value_sp_based (v);
10154 preserve_value (v);
10155 }
10156 }
10157 }
10158 }
10159 }
10160 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10161 }
10162
10163 bb = last_bb;
10164
10165 if (MAY_HAVE_DEBUG_INSNS)
10166 {
10167 cselib_preserve_only_values ();
10168 cselib_reset_table (cselib_get_next_uid ());
10169 cselib_record_sets_hook = NULL;
10170 }
10171 }
10172
10173 hard_frame_pointer_adjustment = -1;
10174 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10175 cfa_base_rtx = NULL_RTX;
10176 return true;
10177 }
10178
10179 /* This is *not* reset after each function. It gives each
10180 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10181 a unique label number. */
10182
10183 static int debug_label_num = 1;
10184
10185 /* Get rid of all debug insns from the insn stream. */
10186
10187 static void
10188 delete_debug_insns (void)
10189 {
10190 basic_block bb;
10191 rtx_insn *insn, *next;
10192
10193 if (!MAY_HAVE_DEBUG_INSNS)
10194 return;
10195
10196 FOR_EACH_BB_FN (bb, cfun)
10197 {
10198 FOR_BB_INSNS_SAFE (bb, insn, next)
10199 if (DEBUG_INSN_P (insn))
10200 {
10201 tree decl = INSN_VAR_LOCATION_DECL (insn);
10202 if (TREE_CODE (decl) == LABEL_DECL
10203 && DECL_NAME (decl)
10204 && !DECL_RTL_SET_P (decl))
10205 {
10206 PUT_CODE (insn, NOTE);
10207 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10208 NOTE_DELETED_LABEL_NAME (insn)
10209 = IDENTIFIER_POINTER (DECL_NAME (decl));
10210 SET_DECL_RTL (decl, insn);
10211 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10212 }
10213 else
10214 delete_insn (insn);
10215 }
10216 }
10217 }
10218
10219 /* Run a fast, BB-local only version of var tracking, to take care of
10220 information that we don't do global analysis on, such that not all
10221 information is lost. If SKIPPED holds, we're skipping the global
10222 pass entirely, so we should try to use information it would have
10223 handled as well.. */
10224
10225 static void
10226 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10227 {
10228 /* ??? Just skip it all for now. */
10229 delete_debug_insns ();
10230 }
10231
10232 /* Free the data structures needed for variable tracking. */
10233
10234 static void
10235 vt_finalize (void)
10236 {
10237 basic_block bb;
10238
10239 FOR_EACH_BB_FN (bb, cfun)
10240 {
10241 VTI (bb)->mos.release ();
10242 }
10243
10244 FOR_ALL_BB_FN (bb, cfun)
10245 {
10246 dataflow_set_destroy (&VTI (bb)->in);
10247 dataflow_set_destroy (&VTI (bb)->out);
10248 if (VTI (bb)->permp)
10249 {
10250 dataflow_set_destroy (VTI (bb)->permp);
10251 XDELETE (VTI (bb)->permp);
10252 }
10253 }
10254 free_aux_for_blocks ();
10255 delete empty_shared_hash->htab;
10256 empty_shared_hash->htab = NULL;
10257 delete changed_variables;
10258 changed_variables = NULL;
10259 free_alloc_pool (attrs_pool);
10260 free_alloc_pool (var_pool);
10261 free_alloc_pool (loc_chain_pool);
10262 free_alloc_pool (shared_hash_pool);
10263
10264 if (MAY_HAVE_DEBUG_INSNS)
10265 {
10266 if (global_get_addr_cache)
10267 delete global_get_addr_cache;
10268 global_get_addr_cache = NULL;
10269 if (loc_exp_dep_pool)
10270 free_alloc_pool (loc_exp_dep_pool);
10271 loc_exp_dep_pool = NULL;
10272 free_alloc_pool (valvar_pool);
10273 preserved_values.release ();
10274 cselib_finish ();
10275 BITMAP_FREE (scratch_regs);
10276 scratch_regs = NULL;
10277 }
10278
10279 #ifdef HAVE_window_save
10280 vec_free (windowed_parm_regs);
10281 #endif
10282
10283 if (vui_vec)
10284 XDELETEVEC (vui_vec);
10285 vui_vec = NULL;
10286 vui_allocated = 0;
10287 }
10288
10289 /* The entry point to variable tracking pass. */
10290
10291 static inline unsigned int
10292 variable_tracking_main_1 (void)
10293 {
10294 bool success;
10295
10296 if (flag_var_tracking_assignments < 0)
10297 {
10298 delete_debug_insns ();
10299 return 0;
10300 }
10301
10302 if (n_basic_blocks_for_fn (cfun) > 500 &&
10303 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10304 {
10305 vt_debug_insns_local (true);
10306 return 0;
10307 }
10308
10309 mark_dfs_back_edges ();
10310 if (!vt_initialize ())
10311 {
10312 vt_finalize ();
10313 vt_debug_insns_local (true);
10314 return 0;
10315 }
10316
10317 success = vt_find_locations ();
10318
10319 if (!success && flag_var_tracking_assignments > 0)
10320 {
10321 vt_finalize ();
10322
10323 delete_debug_insns ();
10324
10325 /* This is later restored by our caller. */
10326 flag_var_tracking_assignments = 0;
10327
10328 success = vt_initialize ();
10329 gcc_assert (success);
10330
10331 success = vt_find_locations ();
10332 }
10333
10334 if (!success)
10335 {
10336 vt_finalize ();
10337 vt_debug_insns_local (false);
10338 return 0;
10339 }
10340
10341 if (dump_file && (dump_flags & TDF_DETAILS))
10342 {
10343 dump_dataflow_sets ();
10344 dump_reg_info (dump_file);
10345 dump_flow_info (dump_file, dump_flags);
10346 }
10347
10348 timevar_push (TV_VAR_TRACKING_EMIT);
10349 vt_emit_notes ();
10350 timevar_pop (TV_VAR_TRACKING_EMIT);
10351
10352 vt_finalize ();
10353 vt_debug_insns_local (false);
10354 return 0;
10355 }
10356
10357 unsigned int
10358 variable_tracking_main (void)
10359 {
10360 unsigned int ret;
10361 int save = flag_var_tracking_assignments;
10362
10363 ret = variable_tracking_main_1 ();
10364
10365 flag_var_tracking_assignments = save;
10366
10367 return ret;
10368 }
10369 \f
10370 namespace {
10371
10372 const pass_data pass_data_variable_tracking =
10373 {
10374 RTL_PASS, /* type */
10375 "vartrack", /* name */
10376 OPTGROUP_NONE, /* optinfo_flags */
10377 TV_VAR_TRACKING, /* tv_id */
10378 0, /* properties_required */
10379 0, /* properties_provided */
10380 0, /* properties_destroyed */
10381 0, /* todo_flags_start */
10382 0, /* todo_flags_finish */
10383 };
10384
10385 class pass_variable_tracking : public rtl_opt_pass
10386 {
10387 public:
10388 pass_variable_tracking (gcc::context *ctxt)
10389 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10390 {}
10391
10392 /* opt_pass methods: */
10393 virtual bool gate (function *)
10394 {
10395 return (flag_var_tracking && !targetm.delay_vartrack);
10396 }
10397
10398 virtual unsigned int execute (function *)
10399 {
10400 return variable_tracking_main ();
10401 }
10402
10403 }; // class pass_variable_tracking
10404
10405 } // anon namespace
10406
10407 rtl_opt_pass *
10408 make_pass_variable_tracking (gcc::context *ctxt)
10409 {
10410 return new pass_variable_tracking (ctxt);
10411 }