re PR middle-end/45364 (Compiling wine's directx.c with -O1 -g takes a very long...
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
246 {
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
259
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
262 {
263 /* Next element in the chain. */
264 struct location_chain_def *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
332 {
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
365
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
390
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
393
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
396
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
398
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
405
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
412
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
417
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
432
433
434
435 typedef unsigned int dvuid;
436
437 /* Return the uid of DV. */
438
439 static inline dvuid
440 dv_uid (decl_or_value dv)
441 {
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
446 }
447
448 /* Compute the hash from the uid. */
449
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
452 {
453 return uid;
454 }
455
456 /* The hash function for a mask table in a shared_htab chain. */
457
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
460 {
461 return dv_uid2hash (dv_uid (dv));
462 }
463
464 static void variable_htab_free (void *);
465
466 /* Variable hashtable helpers. */
467
468 struct variable_hasher
469 {
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
475 };
476
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
479
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
482 {
483 return dv_htab_hash (v->dv);
484 }
485
486 /* Compare the declaration of variable X with declaration Y. */
487
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
490 {
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
492
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
494 }
495
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
497
498 inline void
499 variable_hasher::remove (value_type *var)
500 {
501 variable_htab_free (var);
502 }
503
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
506
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
510 {
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
513
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
516
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
520
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
524 {
525 /* Reference count. */
526 int refcount;
527
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
531
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
534 {
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
537
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
540
541 /* Variable locations. */
542 shared_hash vars;
543
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
547
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
551 {
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
554
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
558
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
564
565 /* Has the block been visited in DFS? */
566 bool visited;
567
568 /* Has the block been flooded in VTA? */
569 bool flooded;
570
571 } *variable_tracking_info;
572
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
575
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
578
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
581
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
584
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
587
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
590
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
593
594 /* Shall notes be emitted? */
595 static bool emit_notes;
596
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
601
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
604
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
607
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
613
614
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
618
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
621
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
628
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
635
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
649
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
663
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
672
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
678
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
697
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
702
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
706
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
710 {
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
714
715 if (dest == stack_pointer_rtx)
716 {
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
723
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
728 }
729 else if (MEM_P (dest))
730 {
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
734
735 switch (code)
736 {
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
740 {
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
745
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
751 }
752 return;
753
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
756 {
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
759 }
760 return;
761
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
764 {
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
767 }
768 return;
769
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
772 {
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
775 }
776 return;
777
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
780 {
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
783 }
784 return;
785
786 default:
787 return;
788 }
789 }
790 }
791
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
794
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
798 {
799 rtx pattern;
800
801 *pre = 0;
802 *post = 0;
803
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
806 {
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
810 }
811
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
816 {
817 int i;
818
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
824 }
825 }
826
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
830
831 static bool
832 vt_stack_adjustments (void)
833 {
834 edge_iterator *stack;
835 int sp;
836
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
843
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
847
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
850
851 while (sp)
852 {
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
856
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
861
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
864 {
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
869
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
875 {
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
878 }
879
880 VTI (dest)->out.stack_adjust = offset;
881
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
886 }
887 else
888 {
889 /* Check whether the adjustments on the edges are the same. */
890 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
891 {
892 free (stack);
893 return false;
894 }
895
896 if (! ei_one_before_end_p (ei))
897 /* Go to the next edge. */
898 ei_next (&stack[sp - 1]);
899 else
900 /* Return to previous level if there are no more edges. */
901 sp--;
902 }
903 }
904
905 free (stack);
906 return true;
907 }
908
909 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
910 hard_frame_pointer_rtx is being mapped to it and offset for it. */
911 static rtx cfa_base_rtx;
912 static HOST_WIDE_INT cfa_base_offset;
913
914 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
915 or hard_frame_pointer_rtx. */
916
917 static inline rtx
918 compute_cfa_pointer (HOST_WIDE_INT adjustment)
919 {
920 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
921 }
922
923 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
924 or -1 if the replacement shouldn't be done. */
925 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
926
927 /* Data for adjust_mems callback. */
928
929 struct adjust_mem_data
930 {
931 bool store;
932 enum machine_mode mem_mode;
933 HOST_WIDE_INT stack_adjust;
934 rtx side_effects;
935 };
936
937 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
938 transformation of wider mode arithmetics to narrower mode,
939 -1 if it is suitable and subexpressions shouldn't be
940 traversed and 0 if it is suitable and subexpressions should
941 be traversed. Called through for_each_rtx. */
942
943 static int
944 use_narrower_mode_test (rtx *loc, void *data)
945 {
946 rtx subreg = (rtx) data;
947
948 if (CONSTANT_P (*loc))
949 return -1;
950 switch (GET_CODE (*loc))
951 {
952 case REG:
953 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
954 return 1;
955 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
956 *loc, subreg_lowpart_offset (GET_MODE (subreg),
957 GET_MODE (*loc))))
958 return 1;
959 return -1;
960 case PLUS:
961 case MINUS:
962 case MULT:
963 return 0;
964 case ASHIFT:
965 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
966 return 1;
967 else
968 return -1;
969 default:
970 return 1;
971 }
972 }
973
974 /* Transform X into narrower mode MODE from wider mode WMODE. */
975
976 static rtx
977 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
978 {
979 rtx op0, op1;
980 if (CONSTANT_P (x))
981 return lowpart_subreg (mode, x, wmode);
982 switch (GET_CODE (x))
983 {
984 case REG:
985 return lowpart_subreg (mode, x, wmode);
986 case PLUS:
987 case MINUS:
988 case MULT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
991 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
992 case ASHIFT:
993 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
994 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
995 default:
996 gcc_unreachable ();
997 }
998 }
999
1000 /* Helper function for adjusting used MEMs. */
1001
1002 static rtx
1003 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1004 {
1005 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1006 rtx mem, addr = loc, tem;
1007 enum machine_mode mem_mode_save;
1008 bool store_save;
1009 switch (GET_CODE (loc))
1010 {
1011 case REG:
1012 /* Don't do any sp or fp replacements outside of MEM addresses
1013 on the LHS. */
1014 if (amd->mem_mode == VOIDmode && amd->store)
1015 return loc;
1016 if (loc == stack_pointer_rtx
1017 && !frame_pointer_needed
1018 && cfa_base_rtx)
1019 return compute_cfa_pointer (amd->stack_adjust);
1020 else if (loc == hard_frame_pointer_rtx
1021 && frame_pointer_needed
1022 && hard_frame_pointer_adjustment != -1
1023 && cfa_base_rtx)
1024 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1025 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1026 return loc;
1027 case MEM:
1028 mem = loc;
1029 if (!amd->store)
1030 {
1031 mem = targetm.delegitimize_address (mem);
1032 if (mem != loc && !MEM_P (mem))
1033 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1034 }
1035
1036 addr = XEXP (mem, 0);
1037 mem_mode_save = amd->mem_mode;
1038 amd->mem_mode = GET_MODE (mem);
1039 store_save = amd->store;
1040 amd->store = false;
1041 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1042 amd->store = store_save;
1043 amd->mem_mode = mem_mode_save;
1044 if (mem == loc)
1045 addr = targetm.delegitimize_address (addr);
1046 if (addr != XEXP (mem, 0))
1047 mem = replace_equiv_address_nv (mem, addr);
1048 if (!amd->store)
1049 mem = avoid_constant_pool_reference (mem);
1050 return mem;
1051 case PRE_INC:
1052 case PRE_DEC:
1053 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1054 gen_int_mode (GET_CODE (loc) == PRE_INC
1055 ? GET_MODE_SIZE (amd->mem_mode)
1056 : -GET_MODE_SIZE (amd->mem_mode),
1057 GET_MODE (loc)));
1058 case POST_INC:
1059 case POST_DEC:
1060 if (addr == loc)
1061 addr = XEXP (loc, 0);
1062 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1063 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1064 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1065 gen_int_mode ((GET_CODE (loc) == PRE_INC
1066 || GET_CODE (loc) == POST_INC)
1067 ? GET_MODE_SIZE (amd->mem_mode)
1068 : -GET_MODE_SIZE (amd->mem_mode),
1069 GET_MODE (loc)));
1070 amd->side_effects = alloc_EXPR_LIST (0,
1071 gen_rtx_SET (VOIDmode,
1072 XEXP (loc, 0),
1073 tem),
1074 amd->side_effects);
1075 return addr;
1076 case PRE_MODIFY:
1077 addr = XEXP (loc, 1);
1078 case POST_MODIFY:
1079 if (addr == loc)
1080 addr = XEXP (loc, 0);
1081 gcc_assert (amd->mem_mode != VOIDmode);
1082 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1083 amd->side_effects = alloc_EXPR_LIST (0,
1084 gen_rtx_SET (VOIDmode,
1085 XEXP (loc, 0),
1086 XEXP (loc, 1)),
1087 amd->side_effects);
1088 return addr;
1089 case SUBREG:
1090 /* First try without delegitimization of whole MEMs and
1091 avoid_constant_pool_reference, which is more likely to succeed. */
1092 store_save = amd->store;
1093 amd->store = true;
1094 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1095 data);
1096 amd->store = store_save;
1097 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1098 if (mem == SUBREG_REG (loc))
1099 {
1100 tem = loc;
1101 goto finish_subreg;
1102 }
1103 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1104 GET_MODE (SUBREG_REG (loc)),
1105 SUBREG_BYTE (loc));
1106 if (tem)
1107 goto finish_subreg;
1108 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1109 GET_MODE (SUBREG_REG (loc)),
1110 SUBREG_BYTE (loc));
1111 if (tem == NULL_RTX)
1112 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1113 finish_subreg:
1114 if (MAY_HAVE_DEBUG_INSNS
1115 && GET_CODE (tem) == SUBREG
1116 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1117 || GET_CODE (SUBREG_REG (tem)) == MINUS
1118 || GET_CODE (SUBREG_REG (tem)) == MULT
1119 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1120 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1121 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1122 && GET_MODE_SIZE (GET_MODE (tem))
1123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1124 && subreg_lowpart_p (tem)
1125 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1126 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1127 GET_MODE (SUBREG_REG (tem)));
1128 return tem;
1129 case ASM_OPERANDS:
1130 /* Don't do any replacements in second and following
1131 ASM_OPERANDS of inline-asm with multiple sets.
1132 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1133 and ASM_OPERANDS_LABEL_VEC need to be equal between
1134 all the ASM_OPERANDs in the insn and adjust_insn will
1135 fix this up. */
1136 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1137 return loc;
1138 break;
1139 default:
1140 break;
1141 }
1142 return NULL_RTX;
1143 }
1144
1145 /* Helper function for replacement of uses. */
1146
1147 static void
1148 adjust_mem_uses (rtx *x, void *data)
1149 {
1150 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1151 if (new_x != *x)
1152 validate_change (NULL_RTX, x, new_x, true);
1153 }
1154
1155 /* Helper function for replacement of stores. */
1156
1157 static void
1158 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1159 {
1160 if (MEM_P (loc))
1161 {
1162 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1163 adjust_mems, data);
1164 if (new_dest != SET_DEST (expr))
1165 {
1166 rtx xexpr = CONST_CAST_RTX (expr);
1167 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1168 }
1169 }
1170 }
1171
1172 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1173 replace them with their value in the insn and add the side-effects
1174 as other sets to the insn. */
1175
1176 static void
1177 adjust_insn (basic_block bb, rtx insn)
1178 {
1179 struct adjust_mem_data amd;
1180 rtx set;
1181
1182 #ifdef HAVE_window_save
1183 /* If the target machine has an explicit window save instruction, the
1184 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1185 if (RTX_FRAME_RELATED_P (insn)
1186 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1187 {
1188 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1189 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1190 parm_reg_t *p;
1191
1192 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1193 {
1194 XVECEXP (rtl, 0, i * 2)
1195 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1196 /* Do not clobber the attached DECL, but only the REG. */
1197 XVECEXP (rtl, 0, i * 2 + 1)
1198 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1199 gen_raw_REG (GET_MODE (p->outgoing),
1200 REGNO (p->outgoing)));
1201 }
1202
1203 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1204 return;
1205 }
1206 #endif
1207
1208 amd.mem_mode = VOIDmode;
1209 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1210 amd.side_effects = NULL_RTX;
1211
1212 amd.store = true;
1213 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1214
1215 amd.store = false;
1216 if (GET_CODE (PATTERN (insn)) == PARALLEL
1217 && asm_noperands (PATTERN (insn)) > 0
1218 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1219 {
1220 rtx body, set0;
1221 int i;
1222
1223 /* inline-asm with multiple sets is tiny bit more complicated,
1224 because the 3 vectors in ASM_OPERANDS need to be shared between
1225 all ASM_OPERANDS in the instruction. adjust_mems will
1226 not touch ASM_OPERANDS other than the first one, asm_noperands
1227 test above needs to be called before that (otherwise it would fail)
1228 and afterwards this code fixes it up. */
1229 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1230 body = PATTERN (insn);
1231 set0 = XVECEXP (body, 0, 0);
1232 gcc_checking_assert (GET_CODE (set0) == SET
1233 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1234 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1235 for (i = 1; i < XVECLEN (body, 0); i++)
1236 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1237 break;
1238 else
1239 {
1240 set = XVECEXP (body, 0, i);
1241 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1243 == i);
1244 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1245 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1246 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1247 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1248 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1249 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1250 {
1251 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1252 ASM_OPERANDS_INPUT_VEC (newsrc)
1253 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1254 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1255 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1256 ASM_OPERANDS_LABEL_VEC (newsrc)
1257 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1258 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1259 }
1260 }
1261 }
1262 else
1263 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1264
1265 /* For read-only MEMs containing some constant, prefer those
1266 constants. */
1267 set = single_set (insn);
1268 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1269 {
1270 rtx note = find_reg_equal_equiv_note (insn);
1271
1272 if (note && CONSTANT_P (XEXP (note, 0)))
1273 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1274 }
1275
1276 if (amd.side_effects)
1277 {
1278 rtx *pat, new_pat, s;
1279 int i, oldn, newn;
1280
1281 pat = &PATTERN (insn);
1282 if (GET_CODE (*pat) == COND_EXEC)
1283 pat = &COND_EXEC_CODE (*pat);
1284 if (GET_CODE (*pat) == PARALLEL)
1285 oldn = XVECLEN (*pat, 0);
1286 else
1287 oldn = 1;
1288 for (s = amd.side_effects, newn = 0; s; newn++)
1289 s = XEXP (s, 1);
1290 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1291 if (GET_CODE (*pat) == PARALLEL)
1292 for (i = 0; i < oldn; i++)
1293 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1294 else
1295 XVECEXP (new_pat, 0, 0) = *pat;
1296 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1297 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1298 free_EXPR_LIST_list (&amd.side_effects);
1299 validate_change (NULL_RTX, pat, new_pat, true);
1300 }
1301 }
1302
1303 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1304 static inline rtx
1305 dv_as_rtx (decl_or_value dv)
1306 {
1307 tree decl;
1308
1309 if (dv_is_value_p (dv))
1310 return dv_as_value (dv);
1311
1312 decl = dv_as_decl (dv);
1313
1314 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1315 return DECL_RTL_KNOWN_SET (decl);
1316 }
1317
1318 /* Return nonzero if a decl_or_value must not have more than one
1319 variable part. The returned value discriminates among various
1320 kinds of one-part DVs ccording to enum onepart_enum. */
1321 static inline onepart_enum_t
1322 dv_onepart_p (decl_or_value dv)
1323 {
1324 tree decl;
1325
1326 if (!MAY_HAVE_DEBUG_INSNS)
1327 return NOT_ONEPART;
1328
1329 if (dv_is_value_p (dv))
1330 return ONEPART_VALUE;
1331
1332 decl = dv_as_decl (dv);
1333
1334 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1335 return ONEPART_DEXPR;
1336
1337 if (target_for_debug_bind (decl) != NULL_TREE)
1338 return ONEPART_VDECL;
1339
1340 return NOT_ONEPART;
1341 }
1342
1343 /* Return the variable pool to be used for a dv of type ONEPART. */
1344 static inline alloc_pool
1345 onepart_pool (onepart_enum_t onepart)
1346 {
1347 return onepart ? valvar_pool : var_pool;
1348 }
1349
1350 /* Build a decl_or_value out of a decl. */
1351 static inline decl_or_value
1352 dv_from_decl (tree decl)
1353 {
1354 decl_or_value dv;
1355 dv = decl;
1356 gcc_checking_assert (dv_is_decl_p (dv));
1357 return dv;
1358 }
1359
1360 /* Build a decl_or_value out of a value. */
1361 static inline decl_or_value
1362 dv_from_value (rtx value)
1363 {
1364 decl_or_value dv;
1365 dv = value;
1366 gcc_checking_assert (dv_is_value_p (dv));
1367 return dv;
1368 }
1369
1370 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1371 static inline decl_or_value
1372 dv_from_rtx (rtx x)
1373 {
1374 decl_or_value dv;
1375
1376 switch (GET_CODE (x))
1377 {
1378 case DEBUG_EXPR:
1379 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1380 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1381 break;
1382
1383 case VALUE:
1384 dv = dv_from_value (x);
1385 break;
1386
1387 default:
1388 gcc_unreachable ();
1389 }
1390
1391 return dv;
1392 }
1393
1394 extern void debug_dv (decl_or_value dv);
1395
1396 DEBUG_FUNCTION void
1397 debug_dv (decl_or_value dv)
1398 {
1399 if (dv_is_value_p (dv))
1400 debug_rtx (dv_as_value (dv));
1401 else
1402 debug_generic_stmt (dv_as_decl (dv));
1403 }
1404
1405 static void loc_exp_dep_clear (variable var);
1406
1407 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1408
1409 static void
1410 variable_htab_free (void *elem)
1411 {
1412 int i;
1413 variable var = (variable) elem;
1414 location_chain node, next;
1415
1416 gcc_checking_assert (var->refcount > 0);
1417
1418 var->refcount--;
1419 if (var->refcount > 0)
1420 return;
1421
1422 for (i = 0; i < var->n_var_parts; i++)
1423 {
1424 for (node = var->var_part[i].loc_chain; node; node = next)
1425 {
1426 next = node->next;
1427 pool_free (loc_chain_pool, node);
1428 }
1429 var->var_part[i].loc_chain = NULL;
1430 }
1431 if (var->onepart && VAR_LOC_1PAUX (var))
1432 {
1433 loc_exp_dep_clear (var);
1434 if (VAR_LOC_DEP_LST (var))
1435 VAR_LOC_DEP_LST (var)->pprev = NULL;
1436 XDELETE (VAR_LOC_1PAUX (var));
1437 /* These may be reused across functions, so reset
1438 e.g. NO_LOC_P. */
1439 if (var->onepart == ONEPART_DEXPR)
1440 set_dv_changed (var->dv, true);
1441 }
1442 pool_free (onepart_pool (var->onepart), var);
1443 }
1444
1445 /* Initialize the set (array) SET of attrs to empty lists. */
1446
1447 static void
1448 init_attrs_list_set (attrs *set)
1449 {
1450 int i;
1451
1452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1453 set[i] = NULL;
1454 }
1455
1456 /* Make the list *LISTP empty. */
1457
1458 static void
1459 attrs_list_clear (attrs *listp)
1460 {
1461 attrs list, next;
1462
1463 for (list = *listp; list; list = next)
1464 {
1465 next = list->next;
1466 pool_free (attrs_pool, list);
1467 }
1468 *listp = NULL;
1469 }
1470
1471 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1472
1473 static attrs
1474 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1475 {
1476 for (; list; list = list->next)
1477 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1478 return list;
1479 return NULL;
1480 }
1481
1482 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1483
1484 static void
1485 attrs_list_insert (attrs *listp, decl_or_value dv,
1486 HOST_WIDE_INT offset, rtx loc)
1487 {
1488 attrs list;
1489
1490 list = (attrs) pool_alloc (attrs_pool);
1491 list->loc = loc;
1492 list->dv = dv;
1493 list->offset = offset;
1494 list->next = *listp;
1495 *listp = list;
1496 }
1497
1498 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1499
1500 static void
1501 attrs_list_copy (attrs *dstp, attrs src)
1502 {
1503 attrs n;
1504
1505 attrs_list_clear (dstp);
1506 for (; src; src = src->next)
1507 {
1508 n = (attrs) pool_alloc (attrs_pool);
1509 n->loc = src->loc;
1510 n->dv = src->dv;
1511 n->offset = src->offset;
1512 n->next = *dstp;
1513 *dstp = n;
1514 }
1515 }
1516
1517 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1518
1519 static void
1520 attrs_list_union (attrs *dstp, attrs src)
1521 {
1522 for (; src; src = src->next)
1523 {
1524 if (!attrs_list_member (*dstp, src->dv, src->offset))
1525 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1526 }
1527 }
1528
1529 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1530 *DSTP. */
1531
1532 static void
1533 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1534 {
1535 gcc_assert (!*dstp);
1536 for (; src; src = src->next)
1537 {
1538 if (!dv_onepart_p (src->dv))
1539 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1540 }
1541 for (src = src2; src; src = src->next)
1542 {
1543 if (!dv_onepart_p (src->dv)
1544 && !attrs_list_member (*dstp, src->dv, src->offset))
1545 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1546 }
1547 }
1548
1549 /* Shared hashtable support. */
1550
1551 /* Return true if VARS is shared. */
1552
1553 static inline bool
1554 shared_hash_shared (shared_hash vars)
1555 {
1556 return vars->refcount > 1;
1557 }
1558
1559 /* Return the hash table for VARS. */
1560
1561 static inline variable_table_type
1562 shared_hash_htab (shared_hash vars)
1563 {
1564 return vars->htab;
1565 }
1566
1567 /* Return true if VAR is shared, or maybe because VARS is shared. */
1568
1569 static inline bool
1570 shared_var_p (variable var, shared_hash vars)
1571 {
1572 /* Don't count an entry in the changed_variables table as a duplicate. */
1573 return ((var->refcount > 1 + (int) var->in_changed_variables)
1574 || shared_hash_shared (vars));
1575 }
1576
1577 /* Copy variables into a new hash table. */
1578
1579 static shared_hash
1580 shared_hash_unshare (shared_hash vars)
1581 {
1582 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1583 gcc_assert (vars->refcount > 1);
1584 new_vars->refcount = 1;
1585 new_vars->htab.create (vars->htab.elements () + 3);
1586 vars_copy (new_vars->htab, vars->htab);
1587 vars->refcount--;
1588 return new_vars;
1589 }
1590
1591 /* Increment reference counter on VARS and return it. */
1592
1593 static inline shared_hash
1594 shared_hash_copy (shared_hash vars)
1595 {
1596 vars->refcount++;
1597 return vars;
1598 }
1599
1600 /* Decrement reference counter and destroy hash table if not shared
1601 anymore. */
1602
1603 static void
1604 shared_hash_destroy (shared_hash vars)
1605 {
1606 gcc_checking_assert (vars->refcount > 0);
1607 if (--vars->refcount == 0)
1608 {
1609 vars->htab.dispose ();
1610 pool_free (shared_hash_pool, vars);
1611 }
1612 }
1613
1614 /* Unshare *PVARS if shared and return slot for DV. If INS is
1615 INSERT, insert it if not already present. */
1616
1617 static inline variable_def **
1618 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1619 hashval_t dvhash, enum insert_option ins)
1620 {
1621 if (shared_hash_shared (*pvars))
1622 *pvars = shared_hash_unshare (*pvars);
1623 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1624 }
1625
1626 static inline variable_def **
1627 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1628 enum insert_option ins)
1629 {
1630 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1631 }
1632
1633 /* Return slot for DV, if it is already present in the hash table.
1634 If it is not present, insert it only VARS is not shared, otherwise
1635 return NULL. */
1636
1637 static inline variable_def **
1638 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1639 {
1640 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1641 shared_hash_shared (vars)
1642 ? NO_INSERT : INSERT);
1643 }
1644
1645 static inline variable_def **
1646 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1647 {
1648 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1649 }
1650
1651 /* Return slot for DV only if it is already present in the hash table. */
1652
1653 static inline variable_def **
1654 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1655 hashval_t dvhash)
1656 {
1657 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1658 }
1659
1660 static inline variable_def **
1661 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1662 {
1663 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1664 }
1665
1666 /* Return variable for DV or NULL if not already present in the hash
1667 table. */
1668
1669 static inline variable
1670 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1671 {
1672 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1673 }
1674
1675 static inline variable
1676 shared_hash_find (shared_hash vars, decl_or_value dv)
1677 {
1678 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1679 }
1680
1681 /* Return true if TVAL is better than CVAL as a canonival value. We
1682 choose lowest-numbered VALUEs, using the RTX address as a
1683 tie-breaker. The idea is to arrange them into a star topology,
1684 such that all of them are at most one step away from the canonical
1685 value, and the canonical value has backlinks to all of them, in
1686 addition to all the actual locations. We don't enforce this
1687 topology throughout the entire dataflow analysis, though.
1688 */
1689
1690 static inline bool
1691 canon_value_cmp (rtx tval, rtx cval)
1692 {
1693 return !cval
1694 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1695 }
1696
1697 static bool dst_can_be_shared;
1698
1699 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1700
1701 static variable_def **
1702 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1703 enum var_init_status initialized)
1704 {
1705 variable new_var;
1706 int i;
1707
1708 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1709 new_var->dv = var->dv;
1710 new_var->refcount = 1;
1711 var->refcount--;
1712 new_var->n_var_parts = var->n_var_parts;
1713 new_var->onepart = var->onepart;
1714 new_var->in_changed_variables = false;
1715
1716 if (! flag_var_tracking_uninit)
1717 initialized = VAR_INIT_STATUS_INITIALIZED;
1718
1719 for (i = 0; i < var->n_var_parts; i++)
1720 {
1721 location_chain node;
1722 location_chain *nextp;
1723
1724 if (i == 0 && var->onepart)
1725 {
1726 /* One-part auxiliary data is only used while emitting
1727 notes, so propagate it to the new variable in the active
1728 dataflow set. If we're not emitting notes, this will be
1729 a no-op. */
1730 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1731 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1732 VAR_LOC_1PAUX (var) = NULL;
1733 }
1734 else
1735 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1736 nextp = &new_var->var_part[i].loc_chain;
1737 for (node = var->var_part[i].loc_chain; node; node = node->next)
1738 {
1739 location_chain new_lc;
1740
1741 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1742 new_lc->next = NULL;
1743 if (node->init > initialized)
1744 new_lc->init = node->init;
1745 else
1746 new_lc->init = initialized;
1747 if (node->set_src && !(MEM_P (node->set_src)))
1748 new_lc->set_src = node->set_src;
1749 else
1750 new_lc->set_src = NULL;
1751 new_lc->loc = node->loc;
1752
1753 *nextp = new_lc;
1754 nextp = &new_lc->next;
1755 }
1756
1757 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1758 }
1759
1760 dst_can_be_shared = false;
1761 if (shared_hash_shared (set->vars))
1762 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1763 else if (set->traversed_vars && set->vars != set->traversed_vars)
1764 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1765 *slot = new_var;
1766 if (var->in_changed_variables)
1767 {
1768 variable_def **cslot
1769 = changed_variables.find_slot_with_hash (var->dv,
1770 dv_htab_hash (var->dv), NO_INSERT);
1771 gcc_assert (*cslot == (void *) var);
1772 var->in_changed_variables = false;
1773 variable_htab_free (var);
1774 *cslot = new_var;
1775 new_var->in_changed_variables = true;
1776 }
1777 return slot;
1778 }
1779
1780 /* Copy all variables from hash table SRC to hash table DST. */
1781
1782 static void
1783 vars_copy (variable_table_type dst, variable_table_type src)
1784 {
1785 variable_iterator_type hi;
1786 variable var;
1787
1788 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1789 {
1790 variable_def **dstp;
1791 var->refcount++;
1792 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1793 *dstp = var;
1794 }
1795 }
1796
1797 /* Map a decl to its main debug decl. */
1798
1799 static inline tree
1800 var_debug_decl (tree decl)
1801 {
1802 if (decl && TREE_CODE (decl) == VAR_DECL
1803 && DECL_HAS_DEBUG_EXPR_P (decl))
1804 {
1805 tree debugdecl = DECL_DEBUG_EXPR (decl);
1806 if (DECL_P (debugdecl))
1807 decl = debugdecl;
1808 }
1809
1810 return decl;
1811 }
1812
1813 /* Set the register LOC to contain DV, OFFSET. */
1814
1815 static void
1816 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1817 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1818 enum insert_option iopt)
1819 {
1820 attrs node;
1821 bool decl_p = dv_is_decl_p (dv);
1822
1823 if (decl_p)
1824 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1825
1826 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1827 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1828 && node->offset == offset)
1829 break;
1830 if (!node)
1831 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1832 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1833 }
1834
1835 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1836
1837 static void
1838 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1839 rtx set_src)
1840 {
1841 tree decl = REG_EXPR (loc);
1842 HOST_WIDE_INT offset = REG_OFFSET (loc);
1843
1844 var_reg_decl_set (set, loc, initialized,
1845 dv_from_decl (decl), offset, set_src, INSERT);
1846 }
1847
1848 static enum var_init_status
1849 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1850 {
1851 variable var;
1852 int i;
1853 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1854
1855 if (! flag_var_tracking_uninit)
1856 return VAR_INIT_STATUS_INITIALIZED;
1857
1858 var = shared_hash_find (set->vars, dv);
1859 if (var)
1860 {
1861 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1862 {
1863 location_chain nextp;
1864 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1865 if (rtx_equal_p (nextp->loc, loc))
1866 {
1867 ret_val = nextp->init;
1868 break;
1869 }
1870 }
1871 }
1872
1873 return ret_val;
1874 }
1875
1876 /* Delete current content of register LOC in dataflow set SET and set
1877 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1878 MODIFY is true, any other live copies of the same variable part are
1879 also deleted from the dataflow set, otherwise the variable part is
1880 assumed to be copied from another location holding the same
1881 part. */
1882
1883 static void
1884 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1885 enum var_init_status initialized, rtx set_src)
1886 {
1887 tree decl = REG_EXPR (loc);
1888 HOST_WIDE_INT offset = REG_OFFSET (loc);
1889 attrs node, next;
1890 attrs *nextp;
1891
1892 decl = var_debug_decl (decl);
1893
1894 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1895 initialized = get_init_value (set, loc, dv_from_decl (decl));
1896
1897 nextp = &set->regs[REGNO (loc)];
1898 for (node = *nextp; node; node = next)
1899 {
1900 next = node->next;
1901 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1902 {
1903 delete_variable_part (set, node->loc, node->dv, node->offset);
1904 pool_free (attrs_pool, node);
1905 *nextp = next;
1906 }
1907 else
1908 {
1909 node->loc = loc;
1910 nextp = &node->next;
1911 }
1912 }
1913 if (modify)
1914 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1915 var_reg_set (set, loc, initialized, set_src);
1916 }
1917
1918 /* Delete the association of register LOC in dataflow set SET with any
1919 variables that aren't onepart. If CLOBBER is true, also delete any
1920 other live copies of the same variable part, and delete the
1921 association with onepart dvs too. */
1922
1923 static void
1924 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1925 {
1926 attrs *nextp = &set->regs[REGNO (loc)];
1927 attrs node, next;
1928
1929 if (clobber)
1930 {
1931 tree decl = REG_EXPR (loc);
1932 HOST_WIDE_INT offset = REG_OFFSET (loc);
1933
1934 decl = var_debug_decl (decl);
1935
1936 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1937 }
1938
1939 for (node = *nextp; node; node = next)
1940 {
1941 next = node->next;
1942 if (clobber || !dv_onepart_p (node->dv))
1943 {
1944 delete_variable_part (set, node->loc, node->dv, node->offset);
1945 pool_free (attrs_pool, node);
1946 *nextp = next;
1947 }
1948 else
1949 nextp = &node->next;
1950 }
1951 }
1952
1953 /* Delete content of register with number REGNO in dataflow set SET. */
1954
1955 static void
1956 var_regno_delete (dataflow_set *set, int regno)
1957 {
1958 attrs *reg = &set->regs[regno];
1959 attrs node, next;
1960
1961 for (node = *reg; node; node = next)
1962 {
1963 next = node->next;
1964 delete_variable_part (set, node->loc, node->dv, node->offset);
1965 pool_free (attrs_pool, node);
1966 }
1967 *reg = NULL;
1968 }
1969
1970 /* Return true if I is the negated value of a power of two. */
1971 static bool
1972 negative_power_of_two_p (HOST_WIDE_INT i)
1973 {
1974 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1975 return x == (x & -x);
1976 }
1977
1978 /* Strip constant offsets and alignments off of LOC. Return the base
1979 expression. */
1980
1981 static rtx
1982 vt_get_canonicalize_base (rtx loc)
1983 {
1984 while ((GET_CODE (loc) == PLUS
1985 || GET_CODE (loc) == AND)
1986 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1987 && (GET_CODE (loc) != AND
1988 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
1989 loc = XEXP (loc, 0);
1990
1991 return loc;
1992 }
1993
1994 /* This caches canonicalized addresses for VALUEs, computed using
1995 information in the global cselib table. */
1996 static struct pointer_map_t *global_get_addr_cache;
1997
1998 /* This caches canonicalized addresses for VALUEs, computed using
1999 information from the global cache and information pertaining to a
2000 basic block being analyzed. */
2001 static struct pointer_map_t *local_get_addr_cache;
2002
2003 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2004
2005 /* Return the canonical address for LOC, that must be a VALUE, using a
2006 cached global equivalence or computing it and storing it in the
2007 global cache. */
2008
2009 static rtx
2010 get_addr_from_global_cache (rtx const loc)
2011 {
2012 rtx x;
2013 void **slot;
2014
2015 gcc_checking_assert (GET_CODE (loc) == VALUE);
2016
2017 slot = pointer_map_insert (global_get_addr_cache, loc);
2018 if (*slot)
2019 return (rtx)*slot;
2020
2021 x = canon_rtx (get_addr (loc));
2022
2023 /* Tentative, avoiding infinite recursion. */
2024 *slot = x;
2025
2026 if (x != loc)
2027 {
2028 rtx nx = vt_canonicalize_addr (NULL, x);
2029 if (nx != x)
2030 {
2031 /* The table may have moved during recursion, recompute
2032 SLOT. */
2033 slot = pointer_map_contains (global_get_addr_cache, loc);
2034 *slot = x = nx;
2035 }
2036 }
2037
2038 return x;
2039 }
2040
2041 /* Return the canonical address for LOC, that must be a VALUE, using a
2042 cached local equivalence or computing it and storing it in the
2043 local cache. */
2044
2045 static rtx
2046 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2047 {
2048 rtx x;
2049 void **slot;
2050 decl_or_value dv;
2051 variable var;
2052 location_chain l;
2053
2054 gcc_checking_assert (GET_CODE (loc) == VALUE);
2055
2056 slot = pointer_map_insert (local_get_addr_cache, loc);
2057 if (*slot)
2058 return (rtx)*slot;
2059
2060 x = get_addr_from_global_cache (loc);
2061
2062 /* Tentative, avoiding infinite recursion. */
2063 *slot = x;
2064
2065 /* Recurse to cache local expansion of X, or if we need to search
2066 for a VALUE in the expansion. */
2067 if (x != loc)
2068 {
2069 rtx nx = vt_canonicalize_addr (set, x);
2070 if (nx != x)
2071 {
2072 slot = pointer_map_contains (local_get_addr_cache, loc);
2073 *slot = x = nx;
2074 }
2075 return x;
2076 }
2077
2078 dv = dv_from_rtx (x);
2079 var = shared_hash_find (set->vars, dv);
2080 if (!var)
2081 return x;
2082
2083 /* Look for an improved equivalent expression. */
2084 for (l = var->var_part[0].loc_chain; l; l = l->next)
2085 {
2086 rtx base = vt_get_canonicalize_base (l->loc);
2087 if (GET_CODE (base) == VALUE
2088 && canon_value_cmp (base, loc))
2089 {
2090 rtx nx = vt_canonicalize_addr (set, l->loc);
2091 if (x != nx)
2092 {
2093 slot = pointer_map_contains (local_get_addr_cache, loc);
2094 *slot = x = nx;
2095 }
2096 break;
2097 }
2098 }
2099
2100 return x;
2101 }
2102
2103 /* Canonicalize LOC using equivalences from SET in addition to those
2104 in the cselib static table. It expects a VALUE-based expression,
2105 and it will only substitute VALUEs with other VALUEs or
2106 function-global equivalences, so that, if two addresses have base
2107 VALUEs that are locally or globally related in ways that
2108 memrefs_conflict_p cares about, they will both canonicalize to
2109 expressions that have the same base VALUE.
2110
2111 The use of VALUEs as canonical base addresses enables the canonical
2112 RTXs to remain unchanged globally, if they resolve to a constant,
2113 or throughout a basic block otherwise, so that they can be cached
2114 and the cache needs not be invalidated when REGs, MEMs or such
2115 change. */
2116
2117 static rtx
2118 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2119 {
2120 HOST_WIDE_INT ofst = 0;
2121 enum machine_mode mode = GET_MODE (oloc);
2122 rtx loc = oloc;
2123 rtx x;
2124 bool retry = true;
2125
2126 while (retry)
2127 {
2128 while (GET_CODE (loc) == PLUS
2129 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2130 {
2131 ofst += INTVAL (XEXP (loc, 1));
2132 loc = XEXP (loc, 0);
2133 }
2134
2135 /* Alignment operations can't normally be combined, so just
2136 canonicalize the base and we're done. We'll normally have
2137 only one stack alignment anyway. */
2138 if (GET_CODE (loc) == AND
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2140 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2141 {
2142 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2143 if (x != XEXP (loc, 0))
2144 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2145 retry = false;
2146 }
2147
2148 if (GET_CODE (loc) == VALUE)
2149 {
2150 if (set)
2151 loc = get_addr_from_local_cache (set, loc);
2152 else
2153 loc = get_addr_from_global_cache (loc);
2154
2155 /* Consolidate plus_constants. */
2156 while (ofst && GET_CODE (loc) == PLUS
2157 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2158 {
2159 ofst += INTVAL (XEXP (loc, 1));
2160 loc = XEXP (loc, 0);
2161 }
2162
2163 retry = false;
2164 }
2165 else
2166 {
2167 x = canon_rtx (loc);
2168 if (retry)
2169 retry = (x != loc);
2170 loc = x;
2171 }
2172 }
2173
2174 /* Add OFST back in. */
2175 if (ofst)
2176 {
2177 /* Don't build new RTL if we can help it. */
2178 if (GET_CODE (oloc) == PLUS
2179 && XEXP (oloc, 0) == loc
2180 && INTVAL (XEXP (oloc, 1)) == ofst)
2181 return oloc;
2182
2183 loc = plus_constant (mode, loc, ofst);
2184 }
2185
2186 return loc;
2187 }
2188
2189 /* Return true iff there's a true dependence between MLOC and LOC.
2190 MADDR must be a canonicalized version of MLOC's address. */
2191
2192 static inline bool
2193 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2194 {
2195 if (GET_CODE (loc) != MEM)
2196 return false;
2197
2198 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2199 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2200 return false;
2201
2202 return true;
2203 }
2204
2205 /* Hold parameters for the hashtab traversal function
2206 drop_overlapping_mem_locs, see below. */
2207
2208 struct overlapping_mems
2209 {
2210 dataflow_set *set;
2211 rtx loc, addr;
2212 };
2213
2214 /* Remove all MEMs that overlap with COMS->LOC from the location list
2215 of a hash table entry for a value. COMS->ADDR must be a
2216 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2217 canonicalized itself. */
2218
2219 int
2220 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2221 {
2222 dataflow_set *set = coms->set;
2223 rtx mloc = coms->loc, addr = coms->addr;
2224 variable var = *slot;
2225
2226 if (var->onepart == ONEPART_VALUE)
2227 {
2228 location_chain loc, *locp;
2229 bool changed = false;
2230 rtx cur_loc;
2231
2232 gcc_assert (var->n_var_parts == 1);
2233
2234 if (shared_var_p (var, set->vars))
2235 {
2236 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2237 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2238 break;
2239
2240 if (!loc)
2241 return 1;
2242
2243 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2244 var = *slot;
2245 gcc_assert (var->n_var_parts == 1);
2246 }
2247
2248 if (VAR_LOC_1PAUX (var))
2249 cur_loc = VAR_LOC_FROM (var);
2250 else
2251 cur_loc = var->var_part[0].cur_loc;
2252
2253 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2254 loc; loc = *locp)
2255 {
2256 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2257 {
2258 locp = &loc->next;
2259 continue;
2260 }
2261
2262 *locp = loc->next;
2263 /* If we have deleted the location which was last emitted
2264 we have to emit new location so add the variable to set
2265 of changed variables. */
2266 if (cur_loc == loc->loc)
2267 {
2268 changed = true;
2269 var->var_part[0].cur_loc = NULL;
2270 if (VAR_LOC_1PAUX (var))
2271 VAR_LOC_FROM (var) = NULL;
2272 }
2273 pool_free (loc_chain_pool, loc);
2274 }
2275
2276 if (!var->var_part[0].loc_chain)
2277 {
2278 var->n_var_parts--;
2279 changed = true;
2280 }
2281 if (changed)
2282 variable_was_changed (var, set);
2283 }
2284
2285 return 1;
2286 }
2287
2288 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2289
2290 static void
2291 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2292 {
2293 struct overlapping_mems coms;
2294
2295 gcc_checking_assert (GET_CODE (loc) == MEM);
2296
2297 coms.set = set;
2298 coms.loc = canon_rtx (loc);
2299 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2300
2301 set->traversed_vars = set->vars;
2302 shared_hash_htab (set->vars)
2303 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2304 set->traversed_vars = NULL;
2305 }
2306
2307 /* Set the location of DV, OFFSET as the MEM LOC. */
2308
2309 static void
2310 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2311 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2312 enum insert_option iopt)
2313 {
2314 if (dv_is_decl_p (dv))
2315 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2316
2317 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2318 }
2319
2320 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2321 SET to LOC.
2322 Adjust the address first if it is stack pointer based. */
2323
2324 static void
2325 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2326 rtx set_src)
2327 {
2328 tree decl = MEM_EXPR (loc);
2329 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2330
2331 var_mem_decl_set (set, loc, initialized,
2332 dv_from_decl (decl), offset, set_src, INSERT);
2333 }
2334
2335 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2336 dataflow set SET to LOC. If MODIFY is true, any other live copies
2337 of the same variable part are also deleted from the dataflow set,
2338 otherwise the variable part is assumed to be copied from another
2339 location holding the same part.
2340 Adjust the address first if it is stack pointer based. */
2341
2342 static void
2343 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2344 enum var_init_status initialized, rtx set_src)
2345 {
2346 tree decl = MEM_EXPR (loc);
2347 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2348
2349 clobber_overlapping_mems (set, loc);
2350 decl = var_debug_decl (decl);
2351
2352 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2353 initialized = get_init_value (set, loc, dv_from_decl (decl));
2354
2355 if (modify)
2356 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2357 var_mem_set (set, loc, initialized, set_src);
2358 }
2359
2360 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2361 true, also delete any other live copies of the same variable part.
2362 Adjust the address first if it is stack pointer based. */
2363
2364 static void
2365 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2366 {
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2369
2370 clobber_overlapping_mems (set, loc);
2371 decl = var_debug_decl (decl);
2372 if (clobber)
2373 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2374 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2375 }
2376
2377 /* Return true if LOC should not be expanded for location expressions,
2378 or used in them. */
2379
2380 static inline bool
2381 unsuitable_loc (rtx loc)
2382 {
2383 switch (GET_CODE (loc))
2384 {
2385 case PC:
2386 case SCRATCH:
2387 case CC0:
2388 case ASM_INPUT:
2389 case ASM_OPERANDS:
2390 return true;
2391
2392 default:
2393 return false;
2394 }
2395 }
2396
2397 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2398 bound to it. */
2399
2400 static inline void
2401 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2402 {
2403 if (REG_P (loc))
2404 {
2405 if (modified)
2406 var_regno_delete (set, REGNO (loc));
2407 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2408 dv_from_value (val), 0, NULL_RTX, INSERT);
2409 }
2410 else if (MEM_P (loc))
2411 {
2412 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2413
2414 if (modified)
2415 clobber_overlapping_mems (set, loc);
2416
2417 if (l && GET_CODE (l->loc) == VALUE)
2418 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2419
2420 /* If this MEM is a global constant, we don't need it in the
2421 dynamic tables. ??? We should test this before emitting the
2422 micro-op in the first place. */
2423 while (l)
2424 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2425 break;
2426 else
2427 l = l->next;
2428
2429 if (!l)
2430 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2431 dv_from_value (val), 0, NULL_RTX, INSERT);
2432 }
2433 else
2434 {
2435 /* Other kinds of equivalences are necessarily static, at least
2436 so long as we do not perform substitutions while merging
2437 expressions. */
2438 gcc_unreachable ();
2439 set_variable_part (set, loc, dv_from_value (val), 0,
2440 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2441 }
2442 }
2443
2444 /* Bind a value to a location it was just stored in. If MODIFIED
2445 holds, assume the location was modified, detaching it from any
2446 values bound to it. */
2447
2448 static void
2449 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2450 {
2451 cselib_val *v = CSELIB_VAL_PTR (val);
2452
2453 gcc_assert (cselib_preserved_value_p (v));
2454
2455 if (dump_file)
2456 {
2457 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2458 print_inline_rtx (dump_file, loc, 0);
2459 fprintf (dump_file, " evaluates to ");
2460 print_inline_rtx (dump_file, val, 0);
2461 if (v->locs)
2462 {
2463 struct elt_loc_list *l;
2464 for (l = v->locs; l; l = l->next)
2465 {
2466 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2467 print_inline_rtx (dump_file, l->loc, 0);
2468 }
2469 }
2470 fprintf (dump_file, "\n");
2471 }
2472
2473 gcc_checking_assert (!unsuitable_loc (loc));
2474
2475 val_bind (set, val, loc, modified);
2476 }
2477
2478 /* Clear (canonical address) slots that reference X. */
2479
2480 static bool
2481 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2482 void **slot, void *x)
2483 {
2484 if (*slot != NULL
2485 && vt_get_canonicalize_base ((rtx)*slot) == x)
2486 *slot = NULL;
2487 return true;
2488 }
2489
2490 /* Reset this node, detaching all its equivalences. Return the slot
2491 in the variable hash table that holds dv, if there is one. */
2492
2493 static void
2494 val_reset (dataflow_set *set, decl_or_value dv)
2495 {
2496 variable var = shared_hash_find (set->vars, dv) ;
2497 location_chain node;
2498 rtx cval;
2499
2500 if (!var || !var->n_var_parts)
2501 return;
2502
2503 gcc_assert (var->n_var_parts == 1);
2504
2505 if (var->onepart == ONEPART_VALUE
2506 && local_get_addr_cache != NULL)
2507 {
2508 rtx x = dv_as_value (dv);
2509 void **slot;
2510
2511 /* Relationships in the global cache don't change, so reset the
2512 local cache entry only. */
2513 slot = pointer_map_contains (local_get_addr_cache, x);
2514 if (slot)
2515 {
2516 /* If the value resolved back to itself, odds are that other
2517 values may have cached it too. These entries now refer
2518 to the old X, so detach them too. Entries that used the
2519 old X but resolved to something else remain ok as long as
2520 that something else isn't also reset. */
2521 if (*slot == x)
2522 pointer_map_traverse (local_get_addr_cache,
2523 local_get_addr_clear_given_value, x);
2524 *slot = NULL;
2525 }
2526 }
2527
2528 cval = NULL;
2529 for (node = var->var_part[0].loc_chain; node; node = node->next)
2530 if (GET_CODE (node->loc) == VALUE
2531 && canon_value_cmp (node->loc, cval))
2532 cval = node->loc;
2533
2534 for (node = var->var_part[0].loc_chain; node; node = node->next)
2535 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2536 {
2537 /* Redirect the equivalence link to the new canonical
2538 value, or simply remove it if it would point at
2539 itself. */
2540 if (cval)
2541 set_variable_part (set, cval, dv_from_value (node->loc),
2542 0, node->init, node->set_src, NO_INSERT);
2543 delete_variable_part (set, dv_as_value (dv),
2544 dv_from_value (node->loc), 0);
2545 }
2546
2547 if (cval)
2548 {
2549 decl_or_value cdv = dv_from_value (cval);
2550
2551 /* Keep the remaining values connected, accummulating links
2552 in the canonical value. */
2553 for (node = var->var_part[0].loc_chain; node; node = node->next)
2554 {
2555 if (node->loc == cval)
2556 continue;
2557 else if (GET_CODE (node->loc) == REG)
2558 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2559 node->set_src, NO_INSERT);
2560 else if (GET_CODE (node->loc) == MEM)
2561 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2562 node->set_src, NO_INSERT);
2563 else
2564 set_variable_part (set, node->loc, cdv, 0,
2565 node->init, node->set_src, NO_INSERT);
2566 }
2567 }
2568
2569 /* We remove this last, to make sure that the canonical value is not
2570 removed to the point of requiring reinsertion. */
2571 if (cval)
2572 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2573
2574 clobber_variable_part (set, NULL, dv, 0, NULL);
2575 }
2576
2577 /* Find the values in a given location and map the val to another
2578 value, if it is unique, or add the location as one holding the
2579 value. */
2580
2581 static void
2582 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2583 {
2584 decl_or_value dv = dv_from_value (val);
2585
2586 if (dump_file && (dump_flags & TDF_DETAILS))
2587 {
2588 if (insn)
2589 fprintf (dump_file, "%i: ", INSN_UID (insn));
2590 else
2591 fprintf (dump_file, "head: ");
2592 print_inline_rtx (dump_file, val, 0);
2593 fputs (" is at ", dump_file);
2594 print_inline_rtx (dump_file, loc, 0);
2595 fputc ('\n', dump_file);
2596 }
2597
2598 val_reset (set, dv);
2599
2600 gcc_checking_assert (!unsuitable_loc (loc));
2601
2602 if (REG_P (loc))
2603 {
2604 attrs node, found = NULL;
2605
2606 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2607 if (dv_is_value_p (node->dv)
2608 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2609 {
2610 found = node;
2611
2612 /* Map incoming equivalences. ??? Wouldn't it be nice if
2613 we just started sharing the location lists? Maybe a
2614 circular list ending at the value itself or some
2615 such. */
2616 set_variable_part (set, dv_as_value (node->dv),
2617 dv_from_value (val), node->offset,
2618 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2619 set_variable_part (set, val, node->dv, node->offset,
2620 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2621 }
2622
2623 /* If we didn't find any equivalence, we need to remember that
2624 this value is held in the named register. */
2625 if (found)
2626 return;
2627 }
2628 /* ??? Attempt to find and merge equivalent MEMs or other
2629 expressions too. */
2630
2631 val_bind (set, val, loc, false);
2632 }
2633
2634 /* Initialize dataflow set SET to be empty.
2635 VARS_SIZE is the initial size of hash table VARS. */
2636
2637 static void
2638 dataflow_set_init (dataflow_set *set)
2639 {
2640 init_attrs_list_set (set->regs);
2641 set->vars = shared_hash_copy (empty_shared_hash);
2642 set->stack_adjust = 0;
2643 set->traversed_vars = NULL;
2644 }
2645
2646 /* Delete the contents of dataflow set SET. */
2647
2648 static void
2649 dataflow_set_clear (dataflow_set *set)
2650 {
2651 int i;
2652
2653 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2654 attrs_list_clear (&set->regs[i]);
2655
2656 shared_hash_destroy (set->vars);
2657 set->vars = shared_hash_copy (empty_shared_hash);
2658 }
2659
2660 /* Copy the contents of dataflow set SRC to DST. */
2661
2662 static void
2663 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2664 {
2665 int i;
2666
2667 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2668 attrs_list_copy (&dst->regs[i], src->regs[i]);
2669
2670 shared_hash_destroy (dst->vars);
2671 dst->vars = shared_hash_copy (src->vars);
2672 dst->stack_adjust = src->stack_adjust;
2673 }
2674
2675 /* Information for merging lists of locations for a given offset of variable.
2676 */
2677 struct variable_union_info
2678 {
2679 /* Node of the location chain. */
2680 location_chain lc;
2681
2682 /* The sum of positions in the input chains. */
2683 int pos;
2684
2685 /* The position in the chain of DST dataflow set. */
2686 int pos_dst;
2687 };
2688
2689 /* Buffer for location list sorting and its allocated size. */
2690 static struct variable_union_info *vui_vec;
2691 static int vui_allocated;
2692
2693 /* Compare function for qsort, order the structures by POS element. */
2694
2695 static int
2696 variable_union_info_cmp_pos (const void *n1, const void *n2)
2697 {
2698 const struct variable_union_info *const i1 =
2699 (const struct variable_union_info *) n1;
2700 const struct variable_union_info *const i2 =
2701 ( const struct variable_union_info *) n2;
2702
2703 if (i1->pos != i2->pos)
2704 return i1->pos - i2->pos;
2705
2706 return (i1->pos_dst - i2->pos_dst);
2707 }
2708
2709 /* Compute union of location parts of variable *SLOT and the same variable
2710 from hash table DATA. Compute "sorted" union of the location chains
2711 for common offsets, i.e. the locations of a variable part are sorted by
2712 a priority where the priority is the sum of the positions in the 2 chains
2713 (if a location is only in one list the position in the second list is
2714 defined to be larger than the length of the chains).
2715 When we are updating the location parts the newest location is in the
2716 beginning of the chain, so when we do the described "sorted" union
2717 we keep the newest locations in the beginning. */
2718
2719 static int
2720 variable_union (variable src, dataflow_set *set)
2721 {
2722 variable dst;
2723 variable_def **dstp;
2724 int i, j, k;
2725
2726 dstp = shared_hash_find_slot (set->vars, src->dv);
2727 if (!dstp || !*dstp)
2728 {
2729 src->refcount++;
2730
2731 dst_can_be_shared = false;
2732 if (!dstp)
2733 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2734
2735 *dstp = src;
2736
2737 /* Continue traversing the hash table. */
2738 return 1;
2739 }
2740 else
2741 dst = *dstp;
2742
2743 gcc_assert (src->n_var_parts);
2744 gcc_checking_assert (src->onepart == dst->onepart);
2745
2746 /* We can combine one-part variables very efficiently, because their
2747 entries are in canonical order. */
2748 if (src->onepart)
2749 {
2750 location_chain *nodep, dnode, snode;
2751
2752 gcc_assert (src->n_var_parts == 1
2753 && dst->n_var_parts == 1);
2754
2755 snode = src->var_part[0].loc_chain;
2756 gcc_assert (snode);
2757
2758 restart_onepart_unshared:
2759 nodep = &dst->var_part[0].loc_chain;
2760 dnode = *nodep;
2761 gcc_assert (dnode);
2762
2763 while (snode)
2764 {
2765 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2766
2767 if (r > 0)
2768 {
2769 location_chain nnode;
2770
2771 if (shared_var_p (dst, set->vars))
2772 {
2773 dstp = unshare_variable (set, dstp, dst,
2774 VAR_INIT_STATUS_INITIALIZED);
2775 dst = *dstp;
2776 goto restart_onepart_unshared;
2777 }
2778
2779 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2780 nnode->loc = snode->loc;
2781 nnode->init = snode->init;
2782 if (!snode->set_src || MEM_P (snode->set_src))
2783 nnode->set_src = NULL;
2784 else
2785 nnode->set_src = snode->set_src;
2786 nnode->next = dnode;
2787 dnode = nnode;
2788 }
2789 else if (r == 0)
2790 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2791
2792 if (r >= 0)
2793 snode = snode->next;
2794
2795 nodep = &dnode->next;
2796 dnode = *nodep;
2797 }
2798
2799 return 1;
2800 }
2801
2802 gcc_checking_assert (!src->onepart);
2803
2804 /* Count the number of location parts, result is K. */
2805 for (i = 0, j = 0, k = 0;
2806 i < src->n_var_parts && j < dst->n_var_parts; k++)
2807 {
2808 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2809 {
2810 i++;
2811 j++;
2812 }
2813 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2814 i++;
2815 else
2816 j++;
2817 }
2818 k += src->n_var_parts - i;
2819 k += dst->n_var_parts - j;
2820
2821 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2822 thus there are at most MAX_VAR_PARTS different offsets. */
2823 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2824
2825 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2826 {
2827 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2828 dst = *dstp;
2829 }
2830
2831 i = src->n_var_parts - 1;
2832 j = dst->n_var_parts - 1;
2833 dst->n_var_parts = k;
2834
2835 for (k--; k >= 0; k--)
2836 {
2837 location_chain node, node2;
2838
2839 if (i >= 0 && j >= 0
2840 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2841 {
2842 /* Compute the "sorted" union of the chains, i.e. the locations which
2843 are in both chains go first, they are sorted by the sum of
2844 positions in the chains. */
2845 int dst_l, src_l;
2846 int ii, jj, n;
2847 struct variable_union_info *vui;
2848
2849 /* If DST is shared compare the location chains.
2850 If they are different we will modify the chain in DST with
2851 high probability so make a copy of DST. */
2852 if (shared_var_p (dst, set->vars))
2853 {
2854 for (node = src->var_part[i].loc_chain,
2855 node2 = dst->var_part[j].loc_chain; node && node2;
2856 node = node->next, node2 = node2->next)
2857 {
2858 if (!((REG_P (node2->loc)
2859 && REG_P (node->loc)
2860 && REGNO (node2->loc) == REGNO (node->loc))
2861 || rtx_equal_p (node2->loc, node->loc)))
2862 {
2863 if (node2->init < node->init)
2864 node2->init = node->init;
2865 break;
2866 }
2867 }
2868 if (node || node2)
2869 {
2870 dstp = unshare_variable (set, dstp, dst,
2871 VAR_INIT_STATUS_UNKNOWN);
2872 dst = (variable)*dstp;
2873 }
2874 }
2875
2876 src_l = 0;
2877 for (node = src->var_part[i].loc_chain; node; node = node->next)
2878 src_l++;
2879 dst_l = 0;
2880 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2881 dst_l++;
2882
2883 if (dst_l == 1)
2884 {
2885 /* The most common case, much simpler, no qsort is needed. */
2886 location_chain dstnode = dst->var_part[j].loc_chain;
2887 dst->var_part[k].loc_chain = dstnode;
2888 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2889 node2 = dstnode;
2890 for (node = src->var_part[i].loc_chain; node; node = node->next)
2891 if (!((REG_P (dstnode->loc)
2892 && REG_P (node->loc)
2893 && REGNO (dstnode->loc) == REGNO (node->loc))
2894 || rtx_equal_p (dstnode->loc, node->loc)))
2895 {
2896 location_chain new_node;
2897
2898 /* Copy the location from SRC. */
2899 new_node = (location_chain) pool_alloc (loc_chain_pool);
2900 new_node->loc = node->loc;
2901 new_node->init = node->init;
2902 if (!node->set_src || MEM_P (node->set_src))
2903 new_node->set_src = NULL;
2904 else
2905 new_node->set_src = node->set_src;
2906 node2->next = new_node;
2907 node2 = new_node;
2908 }
2909 node2->next = NULL;
2910 }
2911 else
2912 {
2913 if (src_l + dst_l > vui_allocated)
2914 {
2915 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2916 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2917 vui_allocated);
2918 }
2919 vui = vui_vec;
2920
2921 /* Fill in the locations from DST. */
2922 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2923 node = node->next, jj++)
2924 {
2925 vui[jj].lc = node;
2926 vui[jj].pos_dst = jj;
2927
2928 /* Pos plus value larger than a sum of 2 valid positions. */
2929 vui[jj].pos = jj + src_l + dst_l;
2930 }
2931
2932 /* Fill in the locations from SRC. */
2933 n = dst_l;
2934 for (node = src->var_part[i].loc_chain, ii = 0; node;
2935 node = node->next, ii++)
2936 {
2937 /* Find location from NODE. */
2938 for (jj = 0; jj < dst_l; jj++)
2939 {
2940 if ((REG_P (vui[jj].lc->loc)
2941 && REG_P (node->loc)
2942 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2943 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2944 {
2945 vui[jj].pos = jj + ii;
2946 break;
2947 }
2948 }
2949 if (jj >= dst_l) /* The location has not been found. */
2950 {
2951 location_chain new_node;
2952
2953 /* Copy the location from SRC. */
2954 new_node = (location_chain) pool_alloc (loc_chain_pool);
2955 new_node->loc = node->loc;
2956 new_node->init = node->init;
2957 if (!node->set_src || MEM_P (node->set_src))
2958 new_node->set_src = NULL;
2959 else
2960 new_node->set_src = node->set_src;
2961 vui[n].lc = new_node;
2962 vui[n].pos_dst = src_l + dst_l;
2963 vui[n].pos = ii + src_l + dst_l;
2964 n++;
2965 }
2966 }
2967
2968 if (dst_l == 2)
2969 {
2970 /* Special case still very common case. For dst_l == 2
2971 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2972 vui[i].pos == i + src_l + dst_l. */
2973 if (vui[0].pos > vui[1].pos)
2974 {
2975 /* Order should be 1, 0, 2... */
2976 dst->var_part[k].loc_chain = vui[1].lc;
2977 vui[1].lc->next = vui[0].lc;
2978 if (n >= 3)
2979 {
2980 vui[0].lc->next = vui[2].lc;
2981 vui[n - 1].lc->next = NULL;
2982 }
2983 else
2984 vui[0].lc->next = NULL;
2985 ii = 3;
2986 }
2987 else
2988 {
2989 dst->var_part[k].loc_chain = vui[0].lc;
2990 if (n >= 3 && vui[2].pos < vui[1].pos)
2991 {
2992 /* Order should be 0, 2, 1, 3... */
2993 vui[0].lc->next = vui[2].lc;
2994 vui[2].lc->next = vui[1].lc;
2995 if (n >= 4)
2996 {
2997 vui[1].lc->next = vui[3].lc;
2998 vui[n - 1].lc->next = NULL;
2999 }
3000 else
3001 vui[1].lc->next = NULL;
3002 ii = 4;
3003 }
3004 else
3005 {
3006 /* Order should be 0, 1, 2... */
3007 ii = 1;
3008 vui[n - 1].lc->next = NULL;
3009 }
3010 }
3011 for (; ii < n; ii++)
3012 vui[ii - 1].lc->next = vui[ii].lc;
3013 }
3014 else
3015 {
3016 qsort (vui, n, sizeof (struct variable_union_info),
3017 variable_union_info_cmp_pos);
3018
3019 /* Reconnect the nodes in sorted order. */
3020 for (ii = 1; ii < n; ii++)
3021 vui[ii - 1].lc->next = vui[ii].lc;
3022 vui[n - 1].lc->next = NULL;
3023 dst->var_part[k].loc_chain = vui[0].lc;
3024 }
3025
3026 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3027 }
3028 i--;
3029 j--;
3030 }
3031 else if ((i >= 0 && j >= 0
3032 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3033 || i < 0)
3034 {
3035 dst->var_part[k] = dst->var_part[j];
3036 j--;
3037 }
3038 else if ((i >= 0 && j >= 0
3039 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3040 || j < 0)
3041 {
3042 location_chain *nextp;
3043
3044 /* Copy the chain from SRC. */
3045 nextp = &dst->var_part[k].loc_chain;
3046 for (node = src->var_part[i].loc_chain; node; node = node->next)
3047 {
3048 location_chain new_lc;
3049
3050 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3051 new_lc->next = NULL;
3052 new_lc->init = node->init;
3053 if (!node->set_src || MEM_P (node->set_src))
3054 new_lc->set_src = NULL;
3055 else
3056 new_lc->set_src = node->set_src;
3057 new_lc->loc = node->loc;
3058
3059 *nextp = new_lc;
3060 nextp = &new_lc->next;
3061 }
3062
3063 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3064 i--;
3065 }
3066 dst->var_part[k].cur_loc = NULL;
3067 }
3068
3069 if (flag_var_tracking_uninit)
3070 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3071 {
3072 location_chain node, node2;
3073 for (node = src->var_part[i].loc_chain; node; node = node->next)
3074 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3075 if (rtx_equal_p (node->loc, node2->loc))
3076 {
3077 if (node->init > node2->init)
3078 node2->init = node->init;
3079 }
3080 }
3081
3082 /* Continue traversing the hash table. */
3083 return 1;
3084 }
3085
3086 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3087
3088 static void
3089 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3090 {
3091 int i;
3092
3093 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3094 attrs_list_union (&dst->regs[i], src->regs[i]);
3095
3096 if (dst->vars == empty_shared_hash)
3097 {
3098 shared_hash_destroy (dst->vars);
3099 dst->vars = shared_hash_copy (src->vars);
3100 }
3101 else
3102 {
3103 variable_iterator_type hi;
3104 variable var;
3105
3106 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3107 var, variable, hi)
3108 variable_union (var, dst);
3109 }
3110 }
3111
3112 /* Whether the value is currently being expanded. */
3113 #define VALUE_RECURSED_INTO(x) \
3114 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3115
3116 /* Whether no expansion was found, saving useless lookups.
3117 It must only be set when VALUE_CHANGED is clear. */
3118 #define NO_LOC_P(x) \
3119 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3120
3121 /* Whether cur_loc in the value needs to be (re)computed. */
3122 #define VALUE_CHANGED(x) \
3123 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3124 /* Whether cur_loc in the decl needs to be (re)computed. */
3125 #define DECL_CHANGED(x) TREE_VISITED (x)
3126
3127 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3128 user DECLs, this means they're in changed_variables. Values and
3129 debug exprs may be left with this flag set if no user variable
3130 requires them to be evaluated. */
3131
3132 static inline void
3133 set_dv_changed (decl_or_value dv, bool newv)
3134 {
3135 switch (dv_onepart_p (dv))
3136 {
3137 case ONEPART_VALUE:
3138 if (newv)
3139 NO_LOC_P (dv_as_value (dv)) = false;
3140 VALUE_CHANGED (dv_as_value (dv)) = newv;
3141 break;
3142
3143 case ONEPART_DEXPR:
3144 if (newv)
3145 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3146 /* Fall through... */
3147
3148 default:
3149 DECL_CHANGED (dv_as_decl (dv)) = newv;
3150 break;
3151 }
3152 }
3153
3154 /* Return true if DV needs to have its cur_loc recomputed. */
3155
3156 static inline bool
3157 dv_changed_p (decl_or_value dv)
3158 {
3159 return (dv_is_value_p (dv)
3160 ? VALUE_CHANGED (dv_as_value (dv))
3161 : DECL_CHANGED (dv_as_decl (dv)));
3162 }
3163
3164 /* Return a location list node whose loc is rtx_equal to LOC, in the
3165 location list of a one-part variable or value VAR, or in that of
3166 any values recursively mentioned in the location lists. VARS must
3167 be in star-canonical form. */
3168
3169 static location_chain
3170 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3171 {
3172 location_chain node;
3173 enum rtx_code loc_code;
3174
3175 if (!var)
3176 return NULL;
3177
3178 gcc_checking_assert (var->onepart);
3179
3180 if (!var->n_var_parts)
3181 return NULL;
3182
3183 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3184
3185 loc_code = GET_CODE (loc);
3186 for (node = var->var_part[0].loc_chain; node; node = node->next)
3187 {
3188 decl_or_value dv;
3189 variable rvar;
3190
3191 if (GET_CODE (node->loc) != loc_code)
3192 {
3193 if (GET_CODE (node->loc) != VALUE)
3194 continue;
3195 }
3196 else if (loc == node->loc)
3197 return node;
3198 else if (loc_code != VALUE)
3199 {
3200 if (rtx_equal_p (loc, node->loc))
3201 return node;
3202 continue;
3203 }
3204
3205 /* Since we're in star-canonical form, we don't need to visit
3206 non-canonical nodes: one-part variables and non-canonical
3207 values would only point back to the canonical node. */
3208 if (dv_is_value_p (var->dv)
3209 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3210 {
3211 /* Skip all subsequent VALUEs. */
3212 while (node->next && GET_CODE (node->next->loc) == VALUE)
3213 {
3214 node = node->next;
3215 gcc_checking_assert (!canon_value_cmp (node->loc,
3216 dv_as_value (var->dv)));
3217 if (loc == node->loc)
3218 return node;
3219 }
3220 continue;
3221 }
3222
3223 gcc_checking_assert (node == var->var_part[0].loc_chain);
3224 gcc_checking_assert (!node->next);
3225
3226 dv = dv_from_value (node->loc);
3227 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3228 return find_loc_in_1pdv (loc, rvar, vars);
3229 }
3230
3231 /* ??? Gotta look in cselib_val locations too. */
3232
3233 return NULL;
3234 }
3235
3236 /* Hash table iteration argument passed to variable_merge. */
3237 struct dfset_merge
3238 {
3239 /* The set in which the merge is to be inserted. */
3240 dataflow_set *dst;
3241 /* The set that we're iterating in. */
3242 dataflow_set *cur;
3243 /* The set that may contain the other dv we are to merge with. */
3244 dataflow_set *src;
3245 /* Number of onepart dvs in src. */
3246 int src_onepart_cnt;
3247 };
3248
3249 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3250 loc_cmp order, and it is maintained as such. */
3251
3252 static void
3253 insert_into_intersection (location_chain *nodep, rtx loc,
3254 enum var_init_status status)
3255 {
3256 location_chain node;
3257 int r;
3258
3259 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3260 if ((r = loc_cmp (node->loc, loc)) == 0)
3261 {
3262 node->init = MIN (node->init, status);
3263 return;
3264 }
3265 else if (r > 0)
3266 break;
3267
3268 node = (location_chain) pool_alloc (loc_chain_pool);
3269
3270 node->loc = loc;
3271 node->set_src = NULL;
3272 node->init = status;
3273 node->next = *nodep;
3274 *nodep = node;
3275 }
3276
3277 /* Insert in DEST the intersection of the locations present in both
3278 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3279 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3280 DSM->dst. */
3281
3282 static void
3283 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3284 location_chain s1node, variable s2var)
3285 {
3286 dataflow_set *s1set = dsm->cur;
3287 dataflow_set *s2set = dsm->src;
3288 location_chain found;
3289
3290 if (s2var)
3291 {
3292 location_chain s2node;
3293
3294 gcc_checking_assert (s2var->onepart);
3295
3296 if (s2var->n_var_parts)
3297 {
3298 s2node = s2var->var_part[0].loc_chain;
3299
3300 for (; s1node && s2node;
3301 s1node = s1node->next, s2node = s2node->next)
3302 if (s1node->loc != s2node->loc)
3303 break;
3304 else if (s1node->loc == val)
3305 continue;
3306 else
3307 insert_into_intersection (dest, s1node->loc,
3308 MIN (s1node->init, s2node->init));
3309 }
3310 }
3311
3312 for (; s1node; s1node = s1node->next)
3313 {
3314 if (s1node->loc == val)
3315 continue;
3316
3317 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3318 shared_hash_htab (s2set->vars))))
3319 {
3320 insert_into_intersection (dest, s1node->loc,
3321 MIN (s1node->init, found->init));
3322 continue;
3323 }
3324
3325 if (GET_CODE (s1node->loc) == VALUE
3326 && !VALUE_RECURSED_INTO (s1node->loc))
3327 {
3328 decl_or_value dv = dv_from_value (s1node->loc);
3329 variable svar = shared_hash_find (s1set->vars, dv);
3330 if (svar)
3331 {
3332 if (svar->n_var_parts == 1)
3333 {
3334 VALUE_RECURSED_INTO (s1node->loc) = true;
3335 intersect_loc_chains (val, dest, dsm,
3336 svar->var_part[0].loc_chain,
3337 s2var);
3338 VALUE_RECURSED_INTO (s1node->loc) = false;
3339 }
3340 }
3341 }
3342
3343 /* ??? gotta look in cselib_val locations too. */
3344
3345 /* ??? if the location is equivalent to any location in src,
3346 searched recursively
3347
3348 add to dst the values needed to represent the equivalence
3349
3350 telling whether locations S is equivalent to another dv's
3351 location list:
3352
3353 for each location D in the list
3354
3355 if S and D satisfy rtx_equal_p, then it is present
3356
3357 else if D is a value, recurse without cycles
3358
3359 else if S and D have the same CODE and MODE
3360
3361 for each operand oS and the corresponding oD
3362
3363 if oS and oD are not equivalent, then S an D are not equivalent
3364
3365 else if they are RTX vectors
3366
3367 if any vector oS element is not equivalent to its respective oD,
3368 then S and D are not equivalent
3369
3370 */
3371
3372
3373 }
3374 }
3375
3376 /* Return -1 if X should be before Y in a location list for a 1-part
3377 variable, 1 if Y should be before X, and 0 if they're equivalent
3378 and should not appear in the list. */
3379
3380 static int
3381 loc_cmp (rtx x, rtx y)
3382 {
3383 int i, j, r;
3384 RTX_CODE code = GET_CODE (x);
3385 const char *fmt;
3386
3387 if (x == y)
3388 return 0;
3389
3390 if (REG_P (x))
3391 {
3392 if (!REG_P (y))
3393 return -1;
3394 gcc_assert (GET_MODE (x) == GET_MODE (y));
3395 if (REGNO (x) == REGNO (y))
3396 return 0;
3397 else if (REGNO (x) < REGNO (y))
3398 return -1;
3399 else
3400 return 1;
3401 }
3402
3403 if (REG_P (y))
3404 return 1;
3405
3406 if (MEM_P (x))
3407 {
3408 if (!MEM_P (y))
3409 return -1;
3410 gcc_assert (GET_MODE (x) == GET_MODE (y));
3411 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3412 }
3413
3414 if (MEM_P (y))
3415 return 1;
3416
3417 if (GET_CODE (x) == VALUE)
3418 {
3419 if (GET_CODE (y) != VALUE)
3420 return -1;
3421 /* Don't assert the modes are the same, that is true only
3422 when not recursing. (subreg:QI (value:SI 1:1) 0)
3423 and (subreg:QI (value:DI 2:2) 0) can be compared,
3424 even when the modes are different. */
3425 if (canon_value_cmp (x, y))
3426 return -1;
3427 else
3428 return 1;
3429 }
3430
3431 if (GET_CODE (y) == VALUE)
3432 return 1;
3433
3434 /* Entry value is the least preferable kind of expression. */
3435 if (GET_CODE (x) == ENTRY_VALUE)
3436 {
3437 if (GET_CODE (y) != ENTRY_VALUE)
3438 return 1;
3439 gcc_assert (GET_MODE (x) == GET_MODE (y));
3440 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3441 }
3442
3443 if (GET_CODE (y) == ENTRY_VALUE)
3444 return -1;
3445
3446 if (GET_CODE (x) == GET_CODE (y))
3447 /* Compare operands below. */;
3448 else if (GET_CODE (x) < GET_CODE (y))
3449 return -1;
3450 else
3451 return 1;
3452
3453 gcc_assert (GET_MODE (x) == GET_MODE (y));
3454
3455 if (GET_CODE (x) == DEBUG_EXPR)
3456 {
3457 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3458 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3459 return -1;
3460 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3461 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3462 return 1;
3463 }
3464
3465 fmt = GET_RTX_FORMAT (code);
3466 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3467 switch (fmt[i])
3468 {
3469 case 'w':
3470 if (XWINT (x, i) == XWINT (y, i))
3471 break;
3472 else if (XWINT (x, i) < XWINT (y, i))
3473 return -1;
3474 else
3475 return 1;
3476
3477 case 'n':
3478 case 'i':
3479 if (XINT (x, i) == XINT (y, i))
3480 break;
3481 else if (XINT (x, i) < XINT (y, i))
3482 return -1;
3483 else
3484 return 1;
3485
3486 case 'V':
3487 case 'E':
3488 /* Compare the vector length first. */
3489 if (XVECLEN (x, i) == XVECLEN (y, i))
3490 /* Compare the vectors elements. */;
3491 else if (XVECLEN (x, i) < XVECLEN (y, i))
3492 return -1;
3493 else
3494 return 1;
3495
3496 for (j = 0; j < XVECLEN (x, i); j++)
3497 if ((r = loc_cmp (XVECEXP (x, i, j),
3498 XVECEXP (y, i, j))))
3499 return r;
3500 break;
3501
3502 case 'e':
3503 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3504 return r;
3505 break;
3506
3507 case 'S':
3508 case 's':
3509 if (XSTR (x, i) == XSTR (y, i))
3510 break;
3511 if (!XSTR (x, i))
3512 return -1;
3513 if (!XSTR (y, i))
3514 return 1;
3515 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3516 break;
3517 else if (r < 0)
3518 return -1;
3519 else
3520 return 1;
3521
3522 case 'u':
3523 /* These are just backpointers, so they don't matter. */
3524 break;
3525
3526 case '0':
3527 case 't':
3528 break;
3529
3530 /* It is believed that rtx's at this level will never
3531 contain anything but integers and other rtx's,
3532 except for within LABEL_REFs and SYMBOL_REFs. */
3533 default:
3534 gcc_unreachable ();
3535 }
3536
3537 return 0;
3538 }
3539
3540 #if ENABLE_CHECKING
3541 /* Check the order of entries in one-part variables. */
3542
3543 int
3544 canonicalize_loc_order_check (variable_def **slot,
3545 dataflow_set *data ATTRIBUTE_UNUSED)
3546 {
3547 variable var = *slot;
3548 location_chain node, next;
3549
3550 #ifdef ENABLE_RTL_CHECKING
3551 int i;
3552 for (i = 0; i < var->n_var_parts; i++)
3553 gcc_assert (var->var_part[0].cur_loc == NULL);
3554 gcc_assert (!var->in_changed_variables);
3555 #endif
3556
3557 if (!var->onepart)
3558 return 1;
3559
3560 gcc_assert (var->n_var_parts == 1);
3561 node = var->var_part[0].loc_chain;
3562 gcc_assert (node);
3563
3564 while ((next = node->next))
3565 {
3566 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3567 node = next;
3568 }
3569
3570 return 1;
3571 }
3572 #endif
3573
3574 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3575 more likely to be chosen as canonical for an equivalence set.
3576 Ensure less likely values can reach more likely neighbors, making
3577 the connections bidirectional. */
3578
3579 int
3580 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3581 {
3582 variable var = *slot;
3583 decl_or_value dv = var->dv;
3584 rtx val;
3585 location_chain node;
3586
3587 if (!dv_is_value_p (dv))
3588 return 1;
3589
3590 gcc_checking_assert (var->n_var_parts == 1);
3591
3592 val = dv_as_value (dv);
3593
3594 for (node = var->var_part[0].loc_chain; node; node = node->next)
3595 if (GET_CODE (node->loc) == VALUE)
3596 {
3597 if (canon_value_cmp (node->loc, val))
3598 VALUE_RECURSED_INTO (val) = true;
3599 else
3600 {
3601 decl_or_value odv = dv_from_value (node->loc);
3602 variable_def **oslot;
3603 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3604
3605 set_slot_part (set, val, oslot, odv, 0,
3606 node->init, NULL_RTX);
3607
3608 VALUE_RECURSED_INTO (node->loc) = true;
3609 }
3610 }
3611
3612 return 1;
3613 }
3614
3615 /* Remove redundant entries from equivalence lists in onepart
3616 variables, canonicalizing equivalence sets into star shapes. */
3617
3618 int
3619 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3620 {
3621 variable var = *slot;
3622 decl_or_value dv = var->dv;
3623 location_chain node;
3624 decl_or_value cdv;
3625 rtx val, cval;
3626 variable_def **cslot;
3627 bool has_value;
3628 bool has_marks;
3629
3630 if (!var->onepart)
3631 return 1;
3632
3633 gcc_checking_assert (var->n_var_parts == 1);
3634
3635 if (dv_is_value_p (dv))
3636 {
3637 cval = dv_as_value (dv);
3638 if (!VALUE_RECURSED_INTO (cval))
3639 return 1;
3640 VALUE_RECURSED_INTO (cval) = false;
3641 }
3642 else
3643 cval = NULL_RTX;
3644
3645 restart:
3646 val = cval;
3647 has_value = false;
3648 has_marks = false;
3649
3650 gcc_assert (var->n_var_parts == 1);
3651
3652 for (node = var->var_part[0].loc_chain; node; node = node->next)
3653 if (GET_CODE (node->loc) == VALUE)
3654 {
3655 has_value = true;
3656 if (VALUE_RECURSED_INTO (node->loc))
3657 has_marks = true;
3658 if (canon_value_cmp (node->loc, cval))
3659 cval = node->loc;
3660 }
3661
3662 if (!has_value)
3663 return 1;
3664
3665 if (cval == val)
3666 {
3667 if (!has_marks || dv_is_decl_p (dv))
3668 return 1;
3669
3670 /* Keep it marked so that we revisit it, either after visiting a
3671 child node, or after visiting a new parent that might be
3672 found out. */
3673 VALUE_RECURSED_INTO (val) = true;
3674
3675 for (node = var->var_part[0].loc_chain; node; node = node->next)
3676 if (GET_CODE (node->loc) == VALUE
3677 && VALUE_RECURSED_INTO (node->loc))
3678 {
3679 cval = node->loc;
3680 restart_with_cval:
3681 VALUE_RECURSED_INTO (cval) = false;
3682 dv = dv_from_value (cval);
3683 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3684 if (!slot)
3685 {
3686 gcc_assert (dv_is_decl_p (var->dv));
3687 /* The canonical value was reset and dropped.
3688 Remove it. */
3689 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3690 return 1;
3691 }
3692 var = *slot;
3693 gcc_assert (dv_is_value_p (var->dv));
3694 if (var->n_var_parts == 0)
3695 return 1;
3696 gcc_assert (var->n_var_parts == 1);
3697 goto restart;
3698 }
3699
3700 VALUE_RECURSED_INTO (val) = false;
3701
3702 return 1;
3703 }
3704
3705 /* Push values to the canonical one. */
3706 cdv = dv_from_value (cval);
3707 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3708
3709 for (node = var->var_part[0].loc_chain; node; node = node->next)
3710 if (node->loc != cval)
3711 {
3712 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3713 node->init, NULL_RTX);
3714 if (GET_CODE (node->loc) == VALUE)
3715 {
3716 decl_or_value ndv = dv_from_value (node->loc);
3717
3718 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3719 NO_INSERT);
3720
3721 if (canon_value_cmp (node->loc, val))
3722 {
3723 /* If it could have been a local minimum, it's not any more,
3724 since it's now neighbor to cval, so it may have to push
3725 to it. Conversely, if it wouldn't have prevailed over
3726 val, then whatever mark it has is fine: if it was to
3727 push, it will now push to a more canonical node, but if
3728 it wasn't, then it has already pushed any values it might
3729 have to. */
3730 VALUE_RECURSED_INTO (node->loc) = true;
3731 /* Make sure we visit node->loc by ensuring we cval is
3732 visited too. */
3733 VALUE_RECURSED_INTO (cval) = true;
3734 }
3735 else if (!VALUE_RECURSED_INTO (node->loc))
3736 /* If we have no need to "recurse" into this node, it's
3737 already "canonicalized", so drop the link to the old
3738 parent. */
3739 clobber_variable_part (set, cval, ndv, 0, NULL);
3740 }
3741 else if (GET_CODE (node->loc) == REG)
3742 {
3743 attrs list = set->regs[REGNO (node->loc)], *listp;
3744
3745 /* Change an existing attribute referring to dv so that it
3746 refers to cdv, removing any duplicate this might
3747 introduce, and checking that no previous duplicates
3748 existed, all in a single pass. */
3749
3750 while (list)
3751 {
3752 if (list->offset == 0
3753 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3754 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3755 break;
3756
3757 list = list->next;
3758 }
3759
3760 gcc_assert (list);
3761 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3762 {
3763 list->dv = cdv;
3764 for (listp = &list->next; (list = *listp); listp = &list->next)
3765 {
3766 if (list->offset)
3767 continue;
3768
3769 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3770 {
3771 *listp = list->next;
3772 pool_free (attrs_pool, list);
3773 list = *listp;
3774 break;
3775 }
3776
3777 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3778 }
3779 }
3780 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3781 {
3782 for (listp = &list->next; (list = *listp); listp = &list->next)
3783 {
3784 if (list->offset)
3785 continue;
3786
3787 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3788 {
3789 *listp = list->next;
3790 pool_free (attrs_pool, list);
3791 list = *listp;
3792 break;
3793 }
3794
3795 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3796 }
3797 }
3798 else
3799 gcc_unreachable ();
3800
3801 #if ENABLE_CHECKING
3802 while (list)
3803 {
3804 if (list->offset == 0
3805 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3806 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3807 gcc_unreachable ();
3808
3809 list = list->next;
3810 }
3811 #endif
3812 }
3813 }
3814
3815 if (val)
3816 set_slot_part (set, val, cslot, cdv, 0,
3817 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3818
3819 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3820
3821 /* Variable may have been unshared. */
3822 var = *slot;
3823 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3824 && var->var_part[0].loc_chain->next == NULL);
3825
3826 if (VALUE_RECURSED_INTO (cval))
3827 goto restart_with_cval;
3828
3829 return 1;
3830 }
3831
3832 /* Bind one-part variables to the canonical value in an equivalence
3833 set. Not doing this causes dataflow convergence failure in rare
3834 circumstances, see PR42873. Unfortunately we can't do this
3835 efficiently as part of canonicalize_values_star, since we may not
3836 have determined or even seen the canonical value of a set when we
3837 get to a variable that references another member of the set. */
3838
3839 int
3840 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3841 {
3842 variable var = *slot;
3843 decl_or_value dv = var->dv;
3844 location_chain node;
3845 rtx cval;
3846 decl_or_value cdv;
3847 variable_def **cslot;
3848 variable cvar;
3849 location_chain cnode;
3850
3851 if (!var->onepart || var->onepart == ONEPART_VALUE)
3852 return 1;
3853
3854 gcc_assert (var->n_var_parts == 1);
3855
3856 node = var->var_part[0].loc_chain;
3857
3858 if (GET_CODE (node->loc) != VALUE)
3859 return 1;
3860
3861 gcc_assert (!node->next);
3862 cval = node->loc;
3863
3864 /* Push values to the canonical one. */
3865 cdv = dv_from_value (cval);
3866 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3867 if (!cslot)
3868 return 1;
3869 cvar = *cslot;
3870 gcc_assert (cvar->n_var_parts == 1);
3871
3872 cnode = cvar->var_part[0].loc_chain;
3873
3874 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3875 that are not “more canonical” than it. */
3876 if (GET_CODE (cnode->loc) != VALUE
3877 || !canon_value_cmp (cnode->loc, cval))
3878 return 1;
3879
3880 /* CVAL was found to be non-canonical. Change the variable to point
3881 to the canonical VALUE. */
3882 gcc_assert (!cnode->next);
3883 cval = cnode->loc;
3884
3885 slot = set_slot_part (set, cval, slot, dv, 0,
3886 node->init, node->set_src);
3887 clobber_slot_part (set, cval, slot, 0, node->set_src);
3888
3889 return 1;
3890 }
3891
3892 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3893 corresponding entry in DSM->src. Multi-part variables are combined
3894 with variable_union, whereas onepart dvs are combined with
3895 intersection. */
3896
3897 static int
3898 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3899 {
3900 dataflow_set *dst = dsm->dst;
3901 variable_def **dstslot;
3902 variable s2var, dvar = NULL;
3903 decl_or_value dv = s1var->dv;
3904 onepart_enum_t onepart = s1var->onepart;
3905 rtx val;
3906 hashval_t dvhash;
3907 location_chain node, *nodep;
3908
3909 /* If the incoming onepart variable has an empty location list, then
3910 the intersection will be just as empty. For other variables,
3911 it's always union. */
3912 gcc_checking_assert (s1var->n_var_parts
3913 && s1var->var_part[0].loc_chain);
3914
3915 if (!onepart)
3916 return variable_union (s1var, dst);
3917
3918 gcc_checking_assert (s1var->n_var_parts == 1);
3919
3920 dvhash = dv_htab_hash (dv);
3921 if (dv_is_value_p (dv))
3922 val = dv_as_value (dv);
3923 else
3924 val = NULL;
3925
3926 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3927 if (!s2var)
3928 {
3929 dst_can_be_shared = false;
3930 return 1;
3931 }
3932
3933 dsm->src_onepart_cnt--;
3934 gcc_assert (s2var->var_part[0].loc_chain
3935 && s2var->onepart == onepart
3936 && s2var->n_var_parts == 1);
3937
3938 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3939 if (dstslot)
3940 {
3941 dvar = *dstslot;
3942 gcc_assert (dvar->refcount == 1
3943 && dvar->onepart == onepart
3944 && dvar->n_var_parts == 1);
3945 nodep = &dvar->var_part[0].loc_chain;
3946 }
3947 else
3948 {
3949 nodep = &node;
3950 node = NULL;
3951 }
3952
3953 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3954 {
3955 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3956 dvhash, INSERT);
3957 *dstslot = dvar = s2var;
3958 dvar->refcount++;
3959 }
3960 else
3961 {
3962 dst_can_be_shared = false;
3963
3964 intersect_loc_chains (val, nodep, dsm,
3965 s1var->var_part[0].loc_chain, s2var);
3966
3967 if (!dstslot)
3968 {
3969 if (node)
3970 {
3971 dvar = (variable) pool_alloc (onepart_pool (onepart));
3972 dvar->dv = dv;
3973 dvar->refcount = 1;
3974 dvar->n_var_parts = 1;
3975 dvar->onepart = onepart;
3976 dvar->in_changed_variables = false;
3977 dvar->var_part[0].loc_chain = node;
3978 dvar->var_part[0].cur_loc = NULL;
3979 if (onepart)
3980 VAR_LOC_1PAUX (dvar) = NULL;
3981 else
3982 VAR_PART_OFFSET (dvar, 0) = 0;
3983
3984 dstslot
3985 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3986 INSERT);
3987 gcc_assert (!*dstslot);
3988 *dstslot = dvar;
3989 }
3990 else
3991 return 1;
3992 }
3993 }
3994
3995 nodep = &dvar->var_part[0].loc_chain;
3996 while ((node = *nodep))
3997 {
3998 location_chain *nextp = &node->next;
3999
4000 if (GET_CODE (node->loc) == REG)
4001 {
4002 attrs list;
4003
4004 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4005 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4006 && dv_is_value_p (list->dv))
4007 break;
4008
4009 if (!list)
4010 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4011 dv, 0, node->loc);
4012 /* If this value became canonical for another value that had
4013 this register, we want to leave it alone. */
4014 else if (dv_as_value (list->dv) != val)
4015 {
4016 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4017 dstslot, dv, 0,
4018 node->init, NULL_RTX);
4019 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4020
4021 /* Since nextp points into the removed node, we can't
4022 use it. The pointer to the next node moved to nodep.
4023 However, if the variable we're walking is unshared
4024 during our walk, we'll keep walking the location list
4025 of the previously-shared variable, in which case the
4026 node won't have been removed, and we'll want to skip
4027 it. That's why we test *nodep here. */
4028 if (*nodep != node)
4029 nextp = nodep;
4030 }
4031 }
4032 else
4033 /* Canonicalization puts registers first, so we don't have to
4034 walk it all. */
4035 break;
4036 nodep = nextp;
4037 }
4038
4039 if (dvar != *dstslot)
4040 dvar = *dstslot;
4041 nodep = &dvar->var_part[0].loc_chain;
4042
4043 if (val)
4044 {
4045 /* Mark all referenced nodes for canonicalization, and make sure
4046 we have mutual equivalence links. */
4047 VALUE_RECURSED_INTO (val) = true;
4048 for (node = *nodep; node; node = node->next)
4049 if (GET_CODE (node->loc) == VALUE)
4050 {
4051 VALUE_RECURSED_INTO (node->loc) = true;
4052 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4053 node->init, NULL, INSERT);
4054 }
4055
4056 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4057 gcc_assert (*dstslot == dvar);
4058 canonicalize_values_star (dstslot, dst);
4059 gcc_checking_assert (dstslot
4060 == shared_hash_find_slot_noinsert_1 (dst->vars,
4061 dv, dvhash));
4062 dvar = *dstslot;
4063 }
4064 else
4065 {
4066 bool has_value = false, has_other = false;
4067
4068 /* If we have one value and anything else, we're going to
4069 canonicalize this, so make sure all values have an entry in
4070 the table and are marked for canonicalization. */
4071 for (node = *nodep; node; node = node->next)
4072 {
4073 if (GET_CODE (node->loc) == VALUE)
4074 {
4075 /* If this was marked during register canonicalization,
4076 we know we have to canonicalize values. */
4077 if (has_value)
4078 has_other = true;
4079 has_value = true;
4080 if (has_other)
4081 break;
4082 }
4083 else
4084 {
4085 has_other = true;
4086 if (has_value)
4087 break;
4088 }
4089 }
4090
4091 if (has_value && has_other)
4092 {
4093 for (node = *nodep; node; node = node->next)
4094 {
4095 if (GET_CODE (node->loc) == VALUE)
4096 {
4097 decl_or_value dv = dv_from_value (node->loc);
4098 variable_def **slot = NULL;
4099
4100 if (shared_hash_shared (dst->vars))
4101 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4102 if (!slot)
4103 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4104 INSERT);
4105 if (!*slot)
4106 {
4107 variable var = (variable) pool_alloc (onepart_pool
4108 (ONEPART_VALUE));
4109 var->dv = dv;
4110 var->refcount = 1;
4111 var->n_var_parts = 1;
4112 var->onepart = ONEPART_VALUE;
4113 var->in_changed_variables = false;
4114 var->var_part[0].loc_chain = NULL;
4115 var->var_part[0].cur_loc = NULL;
4116 VAR_LOC_1PAUX (var) = NULL;
4117 *slot = var;
4118 }
4119
4120 VALUE_RECURSED_INTO (node->loc) = true;
4121 }
4122 }
4123
4124 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4125 gcc_assert (*dstslot == dvar);
4126 canonicalize_values_star (dstslot, dst);
4127 gcc_checking_assert (dstslot
4128 == shared_hash_find_slot_noinsert_1 (dst->vars,
4129 dv, dvhash));
4130 dvar = *dstslot;
4131 }
4132 }
4133
4134 if (!onepart_variable_different_p (dvar, s2var))
4135 {
4136 variable_htab_free (dvar);
4137 *dstslot = dvar = s2var;
4138 dvar->refcount++;
4139 }
4140 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4141 {
4142 variable_htab_free (dvar);
4143 *dstslot = dvar = s1var;
4144 dvar->refcount++;
4145 dst_can_be_shared = false;
4146 }
4147 else
4148 dst_can_be_shared = false;
4149
4150 return 1;
4151 }
4152
4153 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4154 multi-part variable. Unions of multi-part variables and
4155 intersections of one-part ones will be handled in
4156 variable_merge_over_cur(). */
4157
4158 static int
4159 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4160 {
4161 dataflow_set *dst = dsm->dst;
4162 decl_or_value dv = s2var->dv;
4163
4164 if (!s2var->onepart)
4165 {
4166 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4167 *dstp = s2var;
4168 s2var->refcount++;
4169 return 1;
4170 }
4171
4172 dsm->src_onepart_cnt++;
4173 return 1;
4174 }
4175
4176 /* Combine dataflow set information from SRC2 into DST, using PDST
4177 to carry over information across passes. */
4178
4179 static void
4180 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4181 {
4182 dataflow_set cur = *dst;
4183 dataflow_set *src1 = &cur;
4184 struct dfset_merge dsm;
4185 int i;
4186 size_t src1_elems, src2_elems;
4187 variable_iterator_type hi;
4188 variable var;
4189
4190 src1_elems = shared_hash_htab (src1->vars).elements ();
4191 src2_elems = shared_hash_htab (src2->vars).elements ();
4192 dataflow_set_init (dst);
4193 dst->stack_adjust = cur.stack_adjust;
4194 shared_hash_destroy (dst->vars);
4195 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4196 dst->vars->refcount = 1;
4197 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4198
4199 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4200 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4201
4202 dsm.dst = dst;
4203 dsm.src = src2;
4204 dsm.cur = src1;
4205 dsm.src_onepart_cnt = 0;
4206
4207 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4208 var, variable, hi)
4209 variable_merge_over_src (var, &dsm);
4210 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4211 var, variable, hi)
4212 variable_merge_over_cur (var, &dsm);
4213
4214 if (dsm.src_onepart_cnt)
4215 dst_can_be_shared = false;
4216
4217 dataflow_set_destroy (src1);
4218 }
4219
4220 /* Mark register equivalences. */
4221
4222 static void
4223 dataflow_set_equiv_regs (dataflow_set *set)
4224 {
4225 int i;
4226 attrs list, *listp;
4227
4228 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4229 {
4230 rtx canon[NUM_MACHINE_MODES];
4231
4232 /* If the list is empty or one entry, no need to canonicalize
4233 anything. */
4234 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4235 continue;
4236
4237 memset (canon, 0, sizeof (canon));
4238
4239 for (list = set->regs[i]; list; list = list->next)
4240 if (list->offset == 0 && dv_is_value_p (list->dv))
4241 {
4242 rtx val = dv_as_value (list->dv);
4243 rtx *cvalp = &canon[(int)GET_MODE (val)];
4244 rtx cval = *cvalp;
4245
4246 if (canon_value_cmp (val, cval))
4247 *cvalp = val;
4248 }
4249
4250 for (list = set->regs[i]; list; list = list->next)
4251 if (list->offset == 0 && dv_onepart_p (list->dv))
4252 {
4253 rtx cval = canon[(int)GET_MODE (list->loc)];
4254
4255 if (!cval)
4256 continue;
4257
4258 if (dv_is_value_p (list->dv))
4259 {
4260 rtx val = dv_as_value (list->dv);
4261
4262 if (val == cval)
4263 continue;
4264
4265 VALUE_RECURSED_INTO (val) = true;
4266 set_variable_part (set, val, dv_from_value (cval), 0,
4267 VAR_INIT_STATUS_INITIALIZED,
4268 NULL, NO_INSERT);
4269 }
4270
4271 VALUE_RECURSED_INTO (cval) = true;
4272 set_variable_part (set, cval, list->dv, 0,
4273 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4274 }
4275
4276 for (listp = &set->regs[i]; (list = *listp);
4277 listp = list ? &list->next : listp)
4278 if (list->offset == 0 && dv_onepart_p (list->dv))
4279 {
4280 rtx cval = canon[(int)GET_MODE (list->loc)];
4281 variable_def **slot;
4282
4283 if (!cval)
4284 continue;
4285
4286 if (dv_is_value_p (list->dv))
4287 {
4288 rtx val = dv_as_value (list->dv);
4289 if (!VALUE_RECURSED_INTO (val))
4290 continue;
4291 }
4292
4293 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4294 canonicalize_values_star (slot, set);
4295 if (*listp != list)
4296 list = NULL;
4297 }
4298 }
4299 }
4300
4301 /* Remove any redundant values in the location list of VAR, which must
4302 be unshared and 1-part. */
4303
4304 static void
4305 remove_duplicate_values (variable var)
4306 {
4307 location_chain node, *nodep;
4308
4309 gcc_assert (var->onepart);
4310 gcc_assert (var->n_var_parts == 1);
4311 gcc_assert (var->refcount == 1);
4312
4313 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4314 {
4315 if (GET_CODE (node->loc) == VALUE)
4316 {
4317 if (VALUE_RECURSED_INTO (node->loc))
4318 {
4319 /* Remove duplicate value node. */
4320 *nodep = node->next;
4321 pool_free (loc_chain_pool, node);
4322 continue;
4323 }
4324 else
4325 VALUE_RECURSED_INTO (node->loc) = true;
4326 }
4327 nodep = &node->next;
4328 }
4329
4330 for (node = var->var_part[0].loc_chain; node; node = node->next)
4331 if (GET_CODE (node->loc) == VALUE)
4332 {
4333 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4334 VALUE_RECURSED_INTO (node->loc) = false;
4335 }
4336 }
4337
4338
4339 /* Hash table iteration argument passed to variable_post_merge. */
4340 struct dfset_post_merge
4341 {
4342 /* The new input set for the current block. */
4343 dataflow_set *set;
4344 /* Pointer to the permanent input set for the current block, or
4345 NULL. */
4346 dataflow_set **permp;
4347 };
4348
4349 /* Create values for incoming expressions associated with one-part
4350 variables that don't have value numbers for them. */
4351
4352 int
4353 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4354 {
4355 dataflow_set *set = dfpm->set;
4356 variable var = *slot;
4357 location_chain node;
4358
4359 if (!var->onepart || !var->n_var_parts)
4360 return 1;
4361
4362 gcc_assert (var->n_var_parts == 1);
4363
4364 if (dv_is_decl_p (var->dv))
4365 {
4366 bool check_dupes = false;
4367
4368 restart:
4369 for (node = var->var_part[0].loc_chain; node; node = node->next)
4370 {
4371 if (GET_CODE (node->loc) == VALUE)
4372 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4373 else if (GET_CODE (node->loc) == REG)
4374 {
4375 attrs att, *attp, *curp = NULL;
4376
4377 if (var->refcount != 1)
4378 {
4379 slot = unshare_variable (set, slot, var,
4380 VAR_INIT_STATUS_INITIALIZED);
4381 var = *slot;
4382 goto restart;
4383 }
4384
4385 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4386 attp = &att->next)
4387 if (att->offset == 0
4388 && GET_MODE (att->loc) == GET_MODE (node->loc))
4389 {
4390 if (dv_is_value_p (att->dv))
4391 {
4392 rtx cval = dv_as_value (att->dv);
4393 node->loc = cval;
4394 check_dupes = true;
4395 break;
4396 }
4397 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4398 curp = attp;
4399 }
4400
4401 if (!curp)
4402 {
4403 curp = attp;
4404 while (*curp)
4405 if ((*curp)->offset == 0
4406 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4407 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4408 break;
4409 else
4410 curp = &(*curp)->next;
4411 gcc_assert (*curp);
4412 }
4413
4414 if (!att)
4415 {
4416 decl_or_value cdv;
4417 rtx cval;
4418
4419 if (!*dfpm->permp)
4420 {
4421 *dfpm->permp = XNEW (dataflow_set);
4422 dataflow_set_init (*dfpm->permp);
4423 }
4424
4425 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4426 att; att = att->next)
4427 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4428 {
4429 gcc_assert (att->offset == 0
4430 && dv_is_value_p (att->dv));
4431 val_reset (set, att->dv);
4432 break;
4433 }
4434
4435 if (att)
4436 {
4437 cdv = att->dv;
4438 cval = dv_as_value (cdv);
4439 }
4440 else
4441 {
4442 /* Create a unique value to hold this register,
4443 that ought to be found and reused in
4444 subsequent rounds. */
4445 cselib_val *v;
4446 gcc_assert (!cselib_lookup (node->loc,
4447 GET_MODE (node->loc), 0,
4448 VOIDmode));
4449 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4450 VOIDmode);
4451 cselib_preserve_value (v);
4452 cselib_invalidate_rtx (node->loc);
4453 cval = v->val_rtx;
4454 cdv = dv_from_value (cval);
4455 if (dump_file)
4456 fprintf (dump_file,
4457 "Created new value %u:%u for reg %i\n",
4458 v->uid, v->hash, REGNO (node->loc));
4459 }
4460
4461 var_reg_decl_set (*dfpm->permp, node->loc,
4462 VAR_INIT_STATUS_INITIALIZED,
4463 cdv, 0, NULL, INSERT);
4464
4465 node->loc = cval;
4466 check_dupes = true;
4467 }
4468
4469 /* Remove attribute referring to the decl, which now
4470 uses the value for the register, already existing or
4471 to be added when we bring perm in. */
4472 att = *curp;
4473 *curp = att->next;
4474 pool_free (attrs_pool, att);
4475 }
4476 }
4477
4478 if (check_dupes)
4479 remove_duplicate_values (var);
4480 }
4481
4482 return 1;
4483 }
4484
4485 /* Reset values in the permanent set that are not associated with the
4486 chosen expression. */
4487
4488 int
4489 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4490 {
4491 dataflow_set *set = dfpm->set;
4492 variable pvar = *pslot, var;
4493 location_chain pnode;
4494 decl_or_value dv;
4495 attrs att;
4496
4497 gcc_assert (dv_is_value_p (pvar->dv)
4498 && pvar->n_var_parts == 1);
4499 pnode = pvar->var_part[0].loc_chain;
4500 gcc_assert (pnode
4501 && !pnode->next
4502 && REG_P (pnode->loc));
4503
4504 dv = pvar->dv;
4505
4506 var = shared_hash_find (set->vars, dv);
4507 if (var)
4508 {
4509 /* Although variable_post_merge_new_vals may have made decls
4510 non-star-canonical, values that pre-existed in canonical form
4511 remain canonical, and newly-created values reference a single
4512 REG, so they are canonical as well. Since VAR has the
4513 location list for a VALUE, using find_loc_in_1pdv for it is
4514 fine, since VALUEs don't map back to DECLs. */
4515 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4516 return 1;
4517 val_reset (set, dv);
4518 }
4519
4520 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4521 if (att->offset == 0
4522 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4523 && dv_is_value_p (att->dv))
4524 break;
4525
4526 /* If there is a value associated with this register already, create
4527 an equivalence. */
4528 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4529 {
4530 rtx cval = dv_as_value (att->dv);
4531 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4532 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4533 NULL, INSERT);
4534 }
4535 else if (!att)
4536 {
4537 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4538 dv, 0, pnode->loc);
4539 variable_union (pvar, set);
4540 }
4541
4542 return 1;
4543 }
4544
4545 /* Just checking stuff and registering register attributes for
4546 now. */
4547
4548 static void
4549 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4550 {
4551 struct dfset_post_merge dfpm;
4552
4553 dfpm.set = set;
4554 dfpm.permp = permp;
4555
4556 shared_hash_htab (set->vars)
4557 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4558 if (*permp)
4559 shared_hash_htab ((*permp)->vars)
4560 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4561 shared_hash_htab (set->vars)
4562 .traverse <dataflow_set *, canonicalize_values_star> (set);
4563 shared_hash_htab (set->vars)
4564 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4565 }
4566
4567 /* Return a node whose loc is a MEM that refers to EXPR in the
4568 location list of a one-part variable or value VAR, or in that of
4569 any values recursively mentioned in the location lists. */
4570
4571 static location_chain
4572 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4573 {
4574 location_chain node;
4575 decl_or_value dv;
4576 variable var;
4577 location_chain where = NULL;
4578
4579 if (!val)
4580 return NULL;
4581
4582 gcc_assert (GET_CODE (val) == VALUE
4583 && !VALUE_RECURSED_INTO (val));
4584
4585 dv = dv_from_value (val);
4586 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4587
4588 if (!var)
4589 return NULL;
4590
4591 gcc_assert (var->onepart);
4592
4593 if (!var->n_var_parts)
4594 return NULL;
4595
4596 VALUE_RECURSED_INTO (val) = true;
4597
4598 for (node = var->var_part[0].loc_chain; node; node = node->next)
4599 if (MEM_P (node->loc)
4600 && MEM_EXPR (node->loc) == expr
4601 && INT_MEM_OFFSET (node->loc) == 0)
4602 {
4603 where = node;
4604 break;
4605 }
4606 else if (GET_CODE (node->loc) == VALUE
4607 && !VALUE_RECURSED_INTO (node->loc)
4608 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4609 break;
4610
4611 VALUE_RECURSED_INTO (val) = false;
4612
4613 return where;
4614 }
4615
4616 /* Return TRUE if the value of MEM may vary across a call. */
4617
4618 static bool
4619 mem_dies_at_call (rtx mem)
4620 {
4621 tree expr = MEM_EXPR (mem);
4622 tree decl;
4623
4624 if (!expr)
4625 return true;
4626
4627 decl = get_base_address (expr);
4628
4629 if (!decl)
4630 return true;
4631
4632 if (!DECL_P (decl))
4633 return true;
4634
4635 return (may_be_aliased (decl)
4636 || (!TREE_READONLY (decl) && is_global_var (decl)));
4637 }
4638
4639 /* Remove all MEMs from the location list of a hash table entry for a
4640 one-part variable, except those whose MEM attributes map back to
4641 the variable itself, directly or within a VALUE. */
4642
4643 int
4644 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4645 {
4646 variable var = *slot;
4647
4648 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4649 {
4650 tree decl = dv_as_decl (var->dv);
4651 location_chain loc, *locp;
4652 bool changed = false;
4653
4654 if (!var->n_var_parts)
4655 return 1;
4656
4657 gcc_assert (var->n_var_parts == 1);
4658
4659 if (shared_var_p (var, set->vars))
4660 {
4661 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4662 {
4663 /* We want to remove dying MEMs that doesn't refer to DECL. */
4664 if (GET_CODE (loc->loc) == MEM
4665 && (MEM_EXPR (loc->loc) != decl
4666 || INT_MEM_OFFSET (loc->loc) != 0)
4667 && !mem_dies_at_call (loc->loc))
4668 break;
4669 /* We want to move here MEMs that do refer to DECL. */
4670 else if (GET_CODE (loc->loc) == VALUE
4671 && find_mem_expr_in_1pdv (decl, loc->loc,
4672 shared_hash_htab (set->vars)))
4673 break;
4674 }
4675
4676 if (!loc)
4677 return 1;
4678
4679 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4680 var = *slot;
4681 gcc_assert (var->n_var_parts == 1);
4682 }
4683
4684 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4685 loc; loc = *locp)
4686 {
4687 rtx old_loc = loc->loc;
4688 if (GET_CODE (old_loc) == VALUE)
4689 {
4690 location_chain mem_node
4691 = find_mem_expr_in_1pdv (decl, loc->loc,
4692 shared_hash_htab (set->vars));
4693
4694 /* ??? This picks up only one out of multiple MEMs that
4695 refer to the same variable. Do we ever need to be
4696 concerned about dealing with more than one, or, given
4697 that they should all map to the same variable
4698 location, their addresses will have been merged and
4699 they will be regarded as equivalent? */
4700 if (mem_node)
4701 {
4702 loc->loc = mem_node->loc;
4703 loc->set_src = mem_node->set_src;
4704 loc->init = MIN (loc->init, mem_node->init);
4705 }
4706 }
4707
4708 if (GET_CODE (loc->loc) != MEM
4709 || (MEM_EXPR (loc->loc) == decl
4710 && INT_MEM_OFFSET (loc->loc) == 0)
4711 || !mem_dies_at_call (loc->loc))
4712 {
4713 if (old_loc != loc->loc && emit_notes)
4714 {
4715 if (old_loc == var->var_part[0].cur_loc)
4716 {
4717 changed = true;
4718 var->var_part[0].cur_loc = NULL;
4719 }
4720 }
4721 locp = &loc->next;
4722 continue;
4723 }
4724
4725 if (emit_notes)
4726 {
4727 if (old_loc == var->var_part[0].cur_loc)
4728 {
4729 changed = true;
4730 var->var_part[0].cur_loc = NULL;
4731 }
4732 }
4733 *locp = loc->next;
4734 pool_free (loc_chain_pool, loc);
4735 }
4736
4737 if (!var->var_part[0].loc_chain)
4738 {
4739 var->n_var_parts--;
4740 changed = true;
4741 }
4742 if (changed)
4743 variable_was_changed (var, set);
4744 }
4745
4746 return 1;
4747 }
4748
4749 /* Remove all MEMs from the location list of a hash table entry for a
4750 value. */
4751
4752 int
4753 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4754 {
4755 variable var = *slot;
4756
4757 if (var->onepart == ONEPART_VALUE)
4758 {
4759 location_chain loc, *locp;
4760 bool changed = false;
4761 rtx cur_loc;
4762
4763 gcc_assert (var->n_var_parts == 1);
4764
4765 if (shared_var_p (var, set->vars))
4766 {
4767 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4768 if (GET_CODE (loc->loc) == MEM
4769 && mem_dies_at_call (loc->loc))
4770 break;
4771
4772 if (!loc)
4773 return 1;
4774
4775 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4776 var = *slot;
4777 gcc_assert (var->n_var_parts == 1);
4778 }
4779
4780 if (VAR_LOC_1PAUX (var))
4781 cur_loc = VAR_LOC_FROM (var);
4782 else
4783 cur_loc = var->var_part[0].cur_loc;
4784
4785 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4786 loc; loc = *locp)
4787 {
4788 if (GET_CODE (loc->loc) != MEM
4789 || !mem_dies_at_call (loc->loc))
4790 {
4791 locp = &loc->next;
4792 continue;
4793 }
4794
4795 *locp = loc->next;
4796 /* If we have deleted the location which was last emitted
4797 we have to emit new location so add the variable to set
4798 of changed variables. */
4799 if (cur_loc == loc->loc)
4800 {
4801 changed = true;
4802 var->var_part[0].cur_loc = NULL;
4803 if (VAR_LOC_1PAUX (var))
4804 VAR_LOC_FROM (var) = NULL;
4805 }
4806 pool_free (loc_chain_pool, loc);
4807 }
4808
4809 if (!var->var_part[0].loc_chain)
4810 {
4811 var->n_var_parts--;
4812 changed = true;
4813 }
4814 if (changed)
4815 variable_was_changed (var, set);
4816 }
4817
4818 return 1;
4819 }
4820
4821 /* Remove all variable-location information about call-clobbered
4822 registers, as well as associations between MEMs and VALUEs. */
4823
4824 static void
4825 dataflow_set_clear_at_call (dataflow_set *set)
4826 {
4827 unsigned int r;
4828 hard_reg_set_iterator hrsi;
4829
4830 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4831 var_regno_delete (set, r);
4832
4833 if (MAY_HAVE_DEBUG_INSNS)
4834 {
4835 set->traversed_vars = set->vars;
4836 shared_hash_htab (set->vars)
4837 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4838 set->traversed_vars = set->vars;
4839 shared_hash_htab (set->vars)
4840 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4841 set->traversed_vars = NULL;
4842 }
4843 }
4844
4845 static bool
4846 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4847 {
4848 location_chain lc1, lc2;
4849
4850 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4851 {
4852 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4853 {
4854 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4855 {
4856 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4857 break;
4858 }
4859 if (rtx_equal_p (lc1->loc, lc2->loc))
4860 break;
4861 }
4862 if (!lc2)
4863 return true;
4864 }
4865 return false;
4866 }
4867
4868 /* Return true if one-part variables VAR1 and VAR2 are different.
4869 They must be in canonical order. */
4870
4871 static bool
4872 onepart_variable_different_p (variable var1, variable var2)
4873 {
4874 location_chain lc1, lc2;
4875
4876 if (var1 == var2)
4877 return false;
4878
4879 gcc_assert (var1->n_var_parts == 1
4880 && var2->n_var_parts == 1);
4881
4882 lc1 = var1->var_part[0].loc_chain;
4883 lc2 = var2->var_part[0].loc_chain;
4884
4885 gcc_assert (lc1 && lc2);
4886
4887 while (lc1 && lc2)
4888 {
4889 if (loc_cmp (lc1->loc, lc2->loc))
4890 return true;
4891 lc1 = lc1->next;
4892 lc2 = lc2->next;
4893 }
4894
4895 return lc1 != lc2;
4896 }
4897
4898 /* Return true if variables VAR1 and VAR2 are different. */
4899
4900 static bool
4901 variable_different_p (variable var1, variable var2)
4902 {
4903 int i;
4904
4905 if (var1 == var2)
4906 return false;
4907
4908 if (var1->onepart != var2->onepart)
4909 return true;
4910
4911 if (var1->n_var_parts != var2->n_var_parts)
4912 return true;
4913
4914 if (var1->onepart && var1->n_var_parts)
4915 {
4916 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4917 && var1->n_var_parts == 1);
4918 /* One-part values have locations in a canonical order. */
4919 return onepart_variable_different_p (var1, var2);
4920 }
4921
4922 for (i = 0; i < var1->n_var_parts; i++)
4923 {
4924 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4925 return true;
4926 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4927 return true;
4928 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4929 return true;
4930 }
4931 return false;
4932 }
4933
4934 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4935
4936 static bool
4937 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4938 {
4939 variable_iterator_type hi;
4940 variable var1;
4941
4942 if (old_set->vars == new_set->vars)
4943 return false;
4944
4945 if (shared_hash_htab (old_set->vars).elements ()
4946 != shared_hash_htab (new_set->vars).elements ())
4947 return true;
4948
4949 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4950 var1, variable, hi)
4951 {
4952 variable_table_type htab = shared_hash_htab (new_set->vars);
4953 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4954 if (!var2)
4955 {
4956 if (dump_file && (dump_flags & TDF_DETAILS))
4957 {
4958 fprintf (dump_file, "dataflow difference found: removal of:\n");
4959 dump_var (var1);
4960 }
4961 return true;
4962 }
4963
4964 if (variable_different_p (var1, var2))
4965 {
4966 if (dump_file && (dump_flags & TDF_DETAILS))
4967 {
4968 fprintf (dump_file, "dataflow difference found: "
4969 "old and new follow:\n");
4970 dump_var (var1);
4971 dump_var (var2);
4972 }
4973 return true;
4974 }
4975 }
4976
4977 /* No need to traverse the second hashtab, if both have the same number
4978 of elements and the second one had all entries found in the first one,
4979 then it can't have any extra entries. */
4980 return false;
4981 }
4982
4983 /* Free the contents of dataflow set SET. */
4984
4985 static void
4986 dataflow_set_destroy (dataflow_set *set)
4987 {
4988 int i;
4989
4990 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4991 attrs_list_clear (&set->regs[i]);
4992
4993 shared_hash_destroy (set->vars);
4994 set->vars = NULL;
4995 }
4996
4997 /* Return true if RTL X contains a SYMBOL_REF. */
4998
4999 static bool
5000 contains_symbol_ref (rtx x)
5001 {
5002 const char *fmt;
5003 RTX_CODE code;
5004 int i;
5005
5006 if (!x)
5007 return false;
5008
5009 code = GET_CODE (x);
5010 if (code == SYMBOL_REF)
5011 return true;
5012
5013 fmt = GET_RTX_FORMAT (code);
5014 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5015 {
5016 if (fmt[i] == 'e')
5017 {
5018 if (contains_symbol_ref (XEXP (x, i)))
5019 return true;
5020 }
5021 else if (fmt[i] == 'E')
5022 {
5023 int j;
5024 for (j = 0; j < XVECLEN (x, i); j++)
5025 if (contains_symbol_ref (XVECEXP (x, i, j)))
5026 return true;
5027 }
5028 }
5029
5030 return false;
5031 }
5032
5033 /* Shall EXPR be tracked? */
5034
5035 static bool
5036 track_expr_p (tree expr, bool need_rtl)
5037 {
5038 rtx decl_rtl;
5039 tree realdecl;
5040
5041 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5042 return DECL_RTL_SET_P (expr);
5043
5044 /* If EXPR is not a parameter or a variable do not track it. */
5045 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5046 return 0;
5047
5048 /* It also must have a name... */
5049 if (!DECL_NAME (expr) && need_rtl)
5050 return 0;
5051
5052 /* ... and a RTL assigned to it. */
5053 decl_rtl = DECL_RTL_IF_SET (expr);
5054 if (!decl_rtl && need_rtl)
5055 return 0;
5056
5057 /* If this expression is really a debug alias of some other declaration, we
5058 don't need to track this expression if the ultimate declaration is
5059 ignored. */
5060 realdecl = expr;
5061 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5062 {
5063 realdecl = DECL_DEBUG_EXPR (realdecl);
5064 if (!DECL_P (realdecl))
5065 {
5066 if (handled_component_p (realdecl)
5067 || (TREE_CODE (realdecl) == MEM_REF
5068 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5069 {
5070 HOST_WIDE_INT bitsize, bitpos, maxsize;
5071 tree innerdecl
5072 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5073 &maxsize);
5074 if (!DECL_P (innerdecl)
5075 || DECL_IGNORED_P (innerdecl)
5076 /* Do not track declarations for parts of tracked parameters
5077 since we want to track them as a whole instead. */
5078 || (TREE_CODE (innerdecl) == PARM_DECL
5079 && DECL_MODE (innerdecl) != BLKmode
5080 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5081 || TREE_STATIC (innerdecl)
5082 || bitsize <= 0
5083 || bitpos + bitsize > 256
5084 || bitsize != maxsize)
5085 return 0;
5086 else
5087 realdecl = expr;
5088 }
5089 else
5090 return 0;
5091 }
5092 }
5093
5094 /* Do not track EXPR if REALDECL it should be ignored for debugging
5095 purposes. */
5096 if (DECL_IGNORED_P (realdecl))
5097 return 0;
5098
5099 /* Do not track global variables until we are able to emit correct location
5100 list for them. */
5101 if (TREE_STATIC (realdecl))
5102 return 0;
5103
5104 /* When the EXPR is a DECL for alias of some variable (see example)
5105 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5106 DECL_RTL contains SYMBOL_REF.
5107
5108 Example:
5109 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5110 char **_dl_argv;
5111 */
5112 if (decl_rtl && MEM_P (decl_rtl)
5113 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5114 return 0;
5115
5116 /* If RTX is a memory it should not be very large (because it would be
5117 an array or struct). */
5118 if (decl_rtl && MEM_P (decl_rtl))
5119 {
5120 /* Do not track structures and arrays. */
5121 if (GET_MODE (decl_rtl) == BLKmode
5122 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5123 return 0;
5124 if (MEM_SIZE_KNOWN_P (decl_rtl)
5125 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5126 return 0;
5127 }
5128
5129 DECL_CHANGED (expr) = 0;
5130 DECL_CHANGED (realdecl) = 0;
5131 return 1;
5132 }
5133
5134 /* Determine whether a given LOC refers to the same variable part as
5135 EXPR+OFFSET. */
5136
5137 static bool
5138 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5139 {
5140 tree expr2;
5141 HOST_WIDE_INT offset2;
5142
5143 if (! DECL_P (expr))
5144 return false;
5145
5146 if (REG_P (loc))
5147 {
5148 expr2 = REG_EXPR (loc);
5149 offset2 = REG_OFFSET (loc);
5150 }
5151 else if (MEM_P (loc))
5152 {
5153 expr2 = MEM_EXPR (loc);
5154 offset2 = INT_MEM_OFFSET (loc);
5155 }
5156 else
5157 return false;
5158
5159 if (! expr2 || ! DECL_P (expr2))
5160 return false;
5161
5162 expr = var_debug_decl (expr);
5163 expr2 = var_debug_decl (expr2);
5164
5165 return (expr == expr2 && offset == offset2);
5166 }
5167
5168 /* LOC is a REG or MEM that we would like to track if possible.
5169 If EXPR is null, we don't know what expression LOC refers to,
5170 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5171 LOC is an lvalue register.
5172
5173 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5174 is something we can track. When returning true, store the mode of
5175 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5176 from EXPR in *OFFSET_OUT (if nonnull). */
5177
5178 static bool
5179 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5180 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5181 {
5182 enum machine_mode mode;
5183
5184 if (expr == NULL || !track_expr_p (expr, true))
5185 return false;
5186
5187 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5188 whole subreg, but only the old inner part is really relevant. */
5189 mode = GET_MODE (loc);
5190 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5191 {
5192 enum machine_mode pseudo_mode;
5193
5194 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5195 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5196 {
5197 offset += byte_lowpart_offset (pseudo_mode, mode);
5198 mode = pseudo_mode;
5199 }
5200 }
5201
5202 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5203 Do the same if we are storing to a register and EXPR occupies
5204 the whole of register LOC; in that case, the whole of EXPR is
5205 being changed. We exclude complex modes from the second case
5206 because the real and imaginary parts are represented as separate
5207 pseudo registers, even if the whole complex value fits into one
5208 hard register. */
5209 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5210 || (store_reg_p
5211 && !COMPLEX_MODE_P (DECL_MODE (expr))
5212 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5213 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5214 {
5215 mode = DECL_MODE (expr);
5216 offset = 0;
5217 }
5218
5219 if (offset < 0 || offset >= MAX_VAR_PARTS)
5220 return false;
5221
5222 if (mode_out)
5223 *mode_out = mode;
5224 if (offset_out)
5225 *offset_out = offset;
5226 return true;
5227 }
5228
5229 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5230 want to track. When returning nonnull, make sure that the attributes
5231 on the returned value are updated. */
5232
5233 static rtx
5234 var_lowpart (enum machine_mode mode, rtx loc)
5235 {
5236 unsigned int offset, reg_offset, regno;
5237
5238 if (GET_MODE (loc) == mode)
5239 return loc;
5240
5241 if (!REG_P (loc) && !MEM_P (loc))
5242 return NULL;
5243
5244 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5245
5246 if (MEM_P (loc))
5247 return adjust_address_nv (loc, mode, offset);
5248
5249 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5250 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5251 reg_offset, mode);
5252 return gen_rtx_REG_offset (loc, mode, regno, offset);
5253 }
5254
5255 /* Carry information about uses and stores while walking rtx. */
5256
5257 struct count_use_info
5258 {
5259 /* The insn where the RTX is. */
5260 rtx insn;
5261
5262 /* The basic block where insn is. */
5263 basic_block bb;
5264
5265 /* The array of n_sets sets in the insn, as determined by cselib. */
5266 struct cselib_set *sets;
5267 int n_sets;
5268
5269 /* True if we're counting stores, false otherwise. */
5270 bool store_p;
5271 };
5272
5273 /* Find a VALUE corresponding to X. */
5274
5275 static inline cselib_val *
5276 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5277 {
5278 int i;
5279
5280 if (cui->sets)
5281 {
5282 /* This is called after uses are set up and before stores are
5283 processed by cselib, so it's safe to look up srcs, but not
5284 dsts. So we look up expressions that appear in srcs or in
5285 dest expressions, but we search the sets array for dests of
5286 stores. */
5287 if (cui->store_p)
5288 {
5289 /* Some targets represent memset and memcpy patterns
5290 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5291 (set (mem:BLK ...) (const_int ...)) or
5292 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5293 in that case, otherwise we end up with mode mismatches. */
5294 if (mode == BLKmode && MEM_P (x))
5295 return NULL;
5296 for (i = 0; i < cui->n_sets; i++)
5297 if (cui->sets[i].dest == x)
5298 return cui->sets[i].src_elt;
5299 }
5300 else
5301 return cselib_lookup (x, mode, 0, VOIDmode);
5302 }
5303
5304 return NULL;
5305 }
5306
5307 /* Replace all registers and addresses in an expression with VALUE
5308 expressions that map back to them, unless the expression is a
5309 register. If no mapping is or can be performed, returns NULL. */
5310
5311 static rtx
5312 replace_expr_with_values (rtx loc)
5313 {
5314 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5315 return NULL;
5316 else if (MEM_P (loc))
5317 {
5318 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5319 get_address_mode (loc), 0,
5320 GET_MODE (loc));
5321 if (addr)
5322 return replace_equiv_address_nv (loc, addr->val_rtx);
5323 else
5324 return NULL;
5325 }
5326 else
5327 return cselib_subst_to_values (loc, VOIDmode);
5328 }
5329
5330 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5331 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5332 RTX. */
5333
5334 static int
5335 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5336 {
5337 rtx loc = *x;
5338
5339 return GET_CODE (loc) == DEBUG_EXPR;
5340 }
5341
5342 /* Determine what kind of micro operation to choose for a USE. Return
5343 MO_CLOBBER if no micro operation is to be generated. */
5344
5345 static enum micro_operation_type
5346 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5347 {
5348 tree expr;
5349
5350 if (cui && cui->sets)
5351 {
5352 if (GET_CODE (loc) == VAR_LOCATION)
5353 {
5354 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5355 {
5356 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5357 if (! VAR_LOC_UNKNOWN_P (ploc))
5358 {
5359 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5360 VOIDmode);
5361
5362 /* ??? flag_float_store and volatile mems are never
5363 given values, but we could in theory use them for
5364 locations. */
5365 gcc_assert (val || 1);
5366 }
5367 return MO_VAL_LOC;
5368 }
5369 else
5370 return MO_CLOBBER;
5371 }
5372
5373 if (REG_P (loc) || MEM_P (loc))
5374 {
5375 if (modep)
5376 *modep = GET_MODE (loc);
5377 if (cui->store_p)
5378 {
5379 if (REG_P (loc)
5380 || (find_use_val (loc, GET_MODE (loc), cui)
5381 && cselib_lookup (XEXP (loc, 0),
5382 get_address_mode (loc), 0,
5383 GET_MODE (loc))))
5384 return MO_VAL_SET;
5385 }
5386 else
5387 {
5388 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5389
5390 if (val && !cselib_preserved_value_p (val))
5391 return MO_VAL_USE;
5392 }
5393 }
5394 }
5395
5396 if (REG_P (loc))
5397 {
5398 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5399
5400 if (loc == cfa_base_rtx)
5401 return MO_CLOBBER;
5402 expr = REG_EXPR (loc);
5403
5404 if (!expr)
5405 return MO_USE_NO_VAR;
5406 else if (target_for_debug_bind (var_debug_decl (expr)))
5407 return MO_CLOBBER;
5408 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5409 false, modep, NULL))
5410 return MO_USE;
5411 else
5412 return MO_USE_NO_VAR;
5413 }
5414 else if (MEM_P (loc))
5415 {
5416 expr = MEM_EXPR (loc);
5417
5418 if (!expr)
5419 return MO_CLOBBER;
5420 else if (target_for_debug_bind (var_debug_decl (expr)))
5421 return MO_CLOBBER;
5422 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5423 false, modep, NULL)
5424 /* Multi-part variables shouldn't refer to one-part
5425 variable names such as VALUEs (never happens) or
5426 DEBUG_EXPRs (only happens in the presence of debug
5427 insns). */
5428 && (!MAY_HAVE_DEBUG_INSNS
5429 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5430 return MO_USE;
5431 else
5432 return MO_CLOBBER;
5433 }
5434
5435 return MO_CLOBBER;
5436 }
5437
5438 /* Log to OUT information about micro-operation MOPT involving X in
5439 INSN of BB. */
5440
5441 static inline void
5442 log_op_type (rtx x, basic_block bb, rtx insn,
5443 enum micro_operation_type mopt, FILE *out)
5444 {
5445 fprintf (out, "bb %i op %i insn %i %s ",
5446 bb->index, VTI (bb)->mos.length (),
5447 INSN_UID (insn), micro_operation_type_name[mopt]);
5448 print_inline_rtx (out, x, 2);
5449 fputc ('\n', out);
5450 }
5451
5452 /* Tell whether the CONCAT used to holds a VALUE and its location
5453 needs value resolution, i.e., an attempt of mapping the location
5454 back to other incoming values. */
5455 #define VAL_NEEDS_RESOLUTION(x) \
5456 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5457 /* Whether the location in the CONCAT is a tracked expression, that
5458 should also be handled like a MO_USE. */
5459 #define VAL_HOLDS_TRACK_EXPR(x) \
5460 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5461 /* Whether the location in the CONCAT should be handled like a MO_COPY
5462 as well. */
5463 #define VAL_EXPR_IS_COPIED(x) \
5464 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5465 /* Whether the location in the CONCAT should be handled like a
5466 MO_CLOBBER as well. */
5467 #define VAL_EXPR_IS_CLOBBERED(x) \
5468 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5469
5470 /* All preserved VALUEs. */
5471 static vec<rtx> preserved_values;
5472
5473 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5474
5475 static void
5476 preserve_value (cselib_val *val)
5477 {
5478 cselib_preserve_value (val);
5479 preserved_values.safe_push (val->val_rtx);
5480 }
5481
5482 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5483 any rtxes not suitable for CONST use not replaced by VALUEs
5484 are discovered. */
5485
5486 static int
5487 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5488 {
5489 if (*x == NULL_RTX)
5490 return 0;
5491
5492 switch (GET_CODE (*x))
5493 {
5494 case REG:
5495 case DEBUG_EXPR:
5496 case PC:
5497 case SCRATCH:
5498 case CC0:
5499 case ASM_INPUT:
5500 case ASM_OPERANDS:
5501 return 1;
5502 case MEM:
5503 return !MEM_READONLY_P (*x);
5504 default:
5505 return 0;
5506 }
5507 }
5508
5509 /* Add uses (register and memory references) LOC which will be tracked
5510 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5511
5512 static int
5513 add_uses (rtx *ploc, void *data)
5514 {
5515 rtx loc = *ploc;
5516 enum machine_mode mode = VOIDmode;
5517 struct count_use_info *cui = (struct count_use_info *)data;
5518 enum micro_operation_type type = use_type (loc, cui, &mode);
5519
5520 if (type != MO_CLOBBER)
5521 {
5522 basic_block bb = cui->bb;
5523 micro_operation mo;
5524
5525 mo.type = type;
5526 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5527 mo.insn = cui->insn;
5528
5529 if (type == MO_VAL_LOC)
5530 {
5531 rtx oloc = loc;
5532 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5533 cselib_val *val;
5534
5535 gcc_assert (cui->sets);
5536
5537 if (MEM_P (vloc)
5538 && !REG_P (XEXP (vloc, 0))
5539 && !MEM_P (XEXP (vloc, 0)))
5540 {
5541 rtx mloc = vloc;
5542 enum machine_mode address_mode = get_address_mode (mloc);
5543 cselib_val *val
5544 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5545 GET_MODE (mloc));
5546
5547 if (val && !cselib_preserved_value_p (val))
5548 preserve_value (val);
5549 }
5550
5551 if (CONSTANT_P (vloc)
5552 && (GET_CODE (vloc) != CONST
5553 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5554 /* For constants don't look up any value. */;
5555 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5556 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5557 {
5558 enum machine_mode mode2;
5559 enum micro_operation_type type2;
5560 rtx nloc = NULL;
5561 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5562
5563 if (resolvable)
5564 nloc = replace_expr_with_values (vloc);
5565
5566 if (nloc)
5567 {
5568 oloc = shallow_copy_rtx (oloc);
5569 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5570 }
5571
5572 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5573
5574 type2 = use_type (vloc, 0, &mode2);
5575
5576 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5577 || type2 == MO_CLOBBER);
5578
5579 if (type2 == MO_CLOBBER
5580 && !cselib_preserved_value_p (val))
5581 {
5582 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5583 preserve_value (val);
5584 }
5585 }
5586 else if (!VAR_LOC_UNKNOWN_P (vloc))
5587 {
5588 oloc = shallow_copy_rtx (oloc);
5589 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5590 }
5591
5592 mo.u.loc = oloc;
5593 }
5594 else if (type == MO_VAL_USE)
5595 {
5596 enum machine_mode mode2 = VOIDmode;
5597 enum micro_operation_type type2;
5598 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5599 rtx vloc, oloc = loc, nloc;
5600
5601 gcc_assert (cui->sets);
5602
5603 if (MEM_P (oloc)
5604 && !REG_P (XEXP (oloc, 0))
5605 && !MEM_P (XEXP (oloc, 0)))
5606 {
5607 rtx mloc = oloc;
5608 enum machine_mode address_mode = get_address_mode (mloc);
5609 cselib_val *val
5610 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5611 GET_MODE (mloc));
5612
5613 if (val && !cselib_preserved_value_p (val))
5614 preserve_value (val);
5615 }
5616
5617 type2 = use_type (loc, 0, &mode2);
5618
5619 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5620 || type2 == MO_CLOBBER);
5621
5622 if (type2 == MO_USE)
5623 vloc = var_lowpart (mode2, loc);
5624 else
5625 vloc = oloc;
5626
5627 /* The loc of a MO_VAL_USE may have two forms:
5628
5629 (concat val src): val is at src, a value-based
5630 representation.
5631
5632 (concat (concat val use) src): same as above, with use as
5633 the MO_USE tracked value, if it differs from src.
5634
5635 */
5636
5637 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5638 nloc = replace_expr_with_values (loc);
5639 if (!nloc)
5640 nloc = oloc;
5641
5642 if (vloc != nloc)
5643 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5644 else
5645 oloc = val->val_rtx;
5646
5647 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5648
5649 if (type2 == MO_USE)
5650 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5651 if (!cselib_preserved_value_p (val))
5652 {
5653 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5654 preserve_value (val);
5655 }
5656 }
5657 else
5658 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5659
5660 if (dump_file && (dump_flags & TDF_DETAILS))
5661 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5662 VTI (bb)->mos.safe_push (mo);
5663 }
5664
5665 return 0;
5666 }
5667
5668 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5669
5670 static void
5671 add_uses_1 (rtx *x, void *cui)
5672 {
5673 for_each_rtx (x, add_uses, cui);
5674 }
5675
5676 /* This is the value used during expansion of locations. We want it
5677 to be unbounded, so that variables expanded deep in a recursion
5678 nest are fully evaluated, so that their values are cached
5679 correctly. We avoid recursion cycles through other means, and we
5680 don't unshare RTL, so excess complexity is not a problem. */
5681 #define EXPR_DEPTH (INT_MAX)
5682 /* We use this to keep too-complex expressions from being emitted as
5683 location notes, and then to debug information. Users can trade
5684 compile time for ridiculously complex expressions, although they're
5685 seldom useful, and they may often have to be discarded as not
5686 representable anyway. */
5687 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5688
5689 /* Attempt to reverse the EXPR operation in the debug info and record
5690 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5691 no longer live we can express its value as VAL - 6. */
5692
5693 static void
5694 reverse_op (rtx val, const_rtx expr, rtx insn)
5695 {
5696 rtx src, arg, ret;
5697 cselib_val *v;
5698 struct elt_loc_list *l;
5699 enum rtx_code code;
5700 int count;
5701
5702 if (GET_CODE (expr) != SET)
5703 return;
5704
5705 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5706 return;
5707
5708 src = SET_SRC (expr);
5709 switch (GET_CODE (src))
5710 {
5711 case PLUS:
5712 case MINUS:
5713 case XOR:
5714 case NOT:
5715 case NEG:
5716 if (!REG_P (XEXP (src, 0)))
5717 return;
5718 break;
5719 case SIGN_EXTEND:
5720 case ZERO_EXTEND:
5721 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5722 return;
5723 break;
5724 default:
5725 return;
5726 }
5727
5728 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5729 return;
5730
5731 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5732 if (!v || !cselib_preserved_value_p (v))
5733 return;
5734
5735 /* Use canonical V to avoid creating multiple redundant expressions
5736 for different VALUES equivalent to V. */
5737 v = canonical_cselib_val (v);
5738
5739 /* Adding a reverse op isn't useful if V already has an always valid
5740 location. Ignore ENTRY_VALUE, while it is always constant, we should
5741 prefer non-ENTRY_VALUE locations whenever possible. */
5742 for (l = v->locs, count = 0; l; l = l->next, count++)
5743 if (CONSTANT_P (l->loc)
5744 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5745 return;
5746 /* Avoid creating too large locs lists. */
5747 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5748 return;
5749
5750 switch (GET_CODE (src))
5751 {
5752 case NOT:
5753 case NEG:
5754 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5755 return;
5756 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5757 break;
5758 case SIGN_EXTEND:
5759 case ZERO_EXTEND:
5760 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5761 break;
5762 case XOR:
5763 code = XOR;
5764 goto binary;
5765 case PLUS:
5766 code = MINUS;
5767 goto binary;
5768 case MINUS:
5769 code = PLUS;
5770 goto binary;
5771 binary:
5772 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5773 return;
5774 arg = XEXP (src, 1);
5775 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5776 {
5777 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5778 if (arg == NULL_RTX)
5779 return;
5780 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5781 return;
5782 }
5783 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5784 if (ret == val)
5785 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5786 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5787 breaks a lot of routines during var-tracking. */
5788 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5789 break;
5790 default:
5791 gcc_unreachable ();
5792 }
5793
5794 cselib_add_permanent_equiv (v, ret, insn);
5795 }
5796
5797 /* Add stores (register and memory references) LOC which will be tracked
5798 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5799 CUIP->insn is instruction which the LOC is part of. */
5800
5801 static void
5802 add_stores (rtx loc, const_rtx expr, void *cuip)
5803 {
5804 enum machine_mode mode = VOIDmode, mode2;
5805 struct count_use_info *cui = (struct count_use_info *)cuip;
5806 basic_block bb = cui->bb;
5807 micro_operation mo;
5808 rtx oloc = loc, nloc, src = NULL;
5809 enum micro_operation_type type = use_type (loc, cui, &mode);
5810 bool track_p = false;
5811 cselib_val *v;
5812 bool resolve, preserve;
5813
5814 if (type == MO_CLOBBER)
5815 return;
5816
5817 mode2 = mode;
5818
5819 if (REG_P (loc))
5820 {
5821 gcc_assert (loc != cfa_base_rtx);
5822 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5823 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5824 || GET_CODE (expr) == CLOBBER)
5825 {
5826 mo.type = MO_CLOBBER;
5827 mo.u.loc = loc;
5828 if (GET_CODE (expr) == SET
5829 && SET_DEST (expr) == loc
5830 && !unsuitable_loc (SET_SRC (expr))
5831 && find_use_val (loc, mode, cui))
5832 {
5833 gcc_checking_assert (type == MO_VAL_SET);
5834 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5835 }
5836 }
5837 else
5838 {
5839 if (GET_CODE (expr) == SET
5840 && SET_DEST (expr) == loc
5841 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5842 src = var_lowpart (mode2, SET_SRC (expr));
5843 loc = var_lowpart (mode2, loc);
5844
5845 if (src == NULL)
5846 {
5847 mo.type = MO_SET;
5848 mo.u.loc = loc;
5849 }
5850 else
5851 {
5852 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5853 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5854 {
5855 /* If this is an instruction copying (part of) a parameter
5856 passed by invisible reference to its register location,
5857 pretend it's a SET so that the initial memory location
5858 is discarded, as the parameter register can be reused
5859 for other purposes and we do not track locations based
5860 on generic registers. */
5861 if (MEM_P (src)
5862 && REG_EXPR (loc)
5863 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5864 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5865 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5866 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5867 != arg_pointer_rtx)
5868 mo.type = MO_SET;
5869 else
5870 mo.type = MO_COPY;
5871 }
5872 else
5873 mo.type = MO_SET;
5874 mo.u.loc = xexpr;
5875 }
5876 }
5877 mo.insn = cui->insn;
5878 }
5879 else if (MEM_P (loc)
5880 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5881 || cui->sets))
5882 {
5883 if (MEM_P (loc) && type == MO_VAL_SET
5884 && !REG_P (XEXP (loc, 0))
5885 && !MEM_P (XEXP (loc, 0)))
5886 {
5887 rtx mloc = loc;
5888 enum machine_mode address_mode = get_address_mode (mloc);
5889 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5890 address_mode, 0,
5891 GET_MODE (mloc));
5892
5893 if (val && !cselib_preserved_value_p (val))
5894 preserve_value (val);
5895 }
5896
5897 if (GET_CODE (expr) == CLOBBER || !track_p)
5898 {
5899 mo.type = MO_CLOBBER;
5900 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5901 }
5902 else
5903 {
5904 if (GET_CODE (expr) == SET
5905 && SET_DEST (expr) == loc
5906 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5907 src = var_lowpart (mode2, SET_SRC (expr));
5908 loc = var_lowpart (mode2, loc);
5909
5910 if (src == NULL)
5911 {
5912 mo.type = MO_SET;
5913 mo.u.loc = loc;
5914 }
5915 else
5916 {
5917 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5918 if (same_variable_part_p (SET_SRC (xexpr),
5919 MEM_EXPR (loc),
5920 INT_MEM_OFFSET (loc)))
5921 mo.type = MO_COPY;
5922 else
5923 mo.type = MO_SET;
5924 mo.u.loc = xexpr;
5925 }
5926 }
5927 mo.insn = cui->insn;
5928 }
5929 else
5930 return;
5931
5932 if (type != MO_VAL_SET)
5933 goto log_and_return;
5934
5935 v = find_use_val (oloc, mode, cui);
5936
5937 if (!v)
5938 goto log_and_return;
5939
5940 resolve = preserve = !cselib_preserved_value_p (v);
5941
5942 /* We cannot track values for multiple-part variables, so we track only
5943 locations for tracked parameters passed either by invisible reference
5944 or directly in multiple locations. */
5945 if (track_p
5946 && REG_P (loc)
5947 && REG_EXPR (loc)
5948 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5949 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5950 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5951 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5952 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5953 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5954 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5955 {
5956 /* Although we don't use the value here, it could be used later by the
5957 mere virtue of its existence as the operand of the reverse operation
5958 that gave rise to it (typically extension/truncation). Make sure it
5959 is preserved as required by vt_expand_var_loc_chain. */
5960 if (preserve)
5961 preserve_value (v);
5962 goto log_and_return;
5963 }
5964
5965 if (loc == stack_pointer_rtx
5966 && hard_frame_pointer_adjustment != -1
5967 && preserve)
5968 cselib_set_value_sp_based (v);
5969
5970 nloc = replace_expr_with_values (oloc);
5971 if (nloc)
5972 oloc = nloc;
5973
5974 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5975 {
5976 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5977
5978 gcc_assert (oval != v);
5979 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5980
5981 if (oval && !cselib_preserved_value_p (oval))
5982 {
5983 micro_operation moa;
5984
5985 preserve_value (oval);
5986
5987 moa.type = MO_VAL_USE;
5988 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5989 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5990 moa.insn = cui->insn;
5991
5992 if (dump_file && (dump_flags & TDF_DETAILS))
5993 log_op_type (moa.u.loc, cui->bb, cui->insn,
5994 moa.type, dump_file);
5995 VTI (bb)->mos.safe_push (moa);
5996 }
5997
5998 resolve = false;
5999 }
6000 else if (resolve && GET_CODE (mo.u.loc) == SET)
6001 {
6002 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6003 nloc = replace_expr_with_values (SET_SRC (expr));
6004 else
6005 nloc = NULL_RTX;
6006
6007 /* Avoid the mode mismatch between oexpr and expr. */
6008 if (!nloc && mode != mode2)
6009 {
6010 nloc = SET_SRC (expr);
6011 gcc_assert (oloc == SET_DEST (expr));
6012 }
6013
6014 if (nloc && nloc != SET_SRC (mo.u.loc))
6015 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6016 else
6017 {
6018 if (oloc == SET_DEST (mo.u.loc))
6019 /* No point in duplicating. */
6020 oloc = mo.u.loc;
6021 if (!REG_P (SET_SRC (mo.u.loc)))
6022 resolve = false;
6023 }
6024 }
6025 else if (!resolve)
6026 {
6027 if (GET_CODE (mo.u.loc) == SET
6028 && oloc == SET_DEST (mo.u.loc))
6029 /* No point in duplicating. */
6030 oloc = mo.u.loc;
6031 }
6032 else
6033 resolve = false;
6034
6035 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6036
6037 if (mo.u.loc != oloc)
6038 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6039
6040 /* The loc of a MO_VAL_SET may have various forms:
6041
6042 (concat val dst): dst now holds val
6043
6044 (concat val (set dst src)): dst now holds val, copied from src
6045
6046 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6047 after replacing mems and non-top-level regs with values.
6048
6049 (concat (concat val dstv) (set dst src)): dst now holds val,
6050 copied from src. dstv is a value-based representation of dst, if
6051 it differs from dst. If resolution is needed, src is a REG, and
6052 its mode is the same as that of val.
6053
6054 (concat (concat val (set dstv srcv)) (set dst src)): src
6055 copied to dst, holding val. dstv and srcv are value-based
6056 representations of dst and src, respectively.
6057
6058 */
6059
6060 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6061 reverse_op (v->val_rtx, expr, cui->insn);
6062
6063 mo.u.loc = loc;
6064
6065 if (track_p)
6066 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6067 if (preserve)
6068 {
6069 VAL_NEEDS_RESOLUTION (loc) = resolve;
6070 preserve_value (v);
6071 }
6072 if (mo.type == MO_CLOBBER)
6073 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6074 if (mo.type == MO_COPY)
6075 VAL_EXPR_IS_COPIED (loc) = 1;
6076
6077 mo.type = MO_VAL_SET;
6078
6079 log_and_return:
6080 if (dump_file && (dump_flags & TDF_DETAILS))
6081 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6082 VTI (bb)->mos.safe_push (mo);
6083 }
6084
6085 /* Arguments to the call. */
6086 static rtx call_arguments;
6087
6088 /* Compute call_arguments. */
6089
6090 static void
6091 prepare_call_arguments (basic_block bb, rtx insn)
6092 {
6093 rtx link, x, call;
6094 rtx prev, cur, next;
6095 rtx this_arg = NULL_RTX;
6096 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6097 tree obj_type_ref = NULL_TREE;
6098 CUMULATIVE_ARGS args_so_far_v;
6099 cumulative_args_t args_so_far;
6100
6101 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6102 args_so_far = pack_cumulative_args (&args_so_far_v);
6103 call = get_call_rtx_from (insn);
6104 if (call)
6105 {
6106 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6107 {
6108 rtx symbol = XEXP (XEXP (call, 0), 0);
6109 if (SYMBOL_REF_DECL (symbol))
6110 fndecl = SYMBOL_REF_DECL (symbol);
6111 }
6112 if (fndecl == NULL_TREE)
6113 fndecl = MEM_EXPR (XEXP (call, 0));
6114 if (fndecl
6115 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6116 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6117 fndecl = NULL_TREE;
6118 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6119 type = TREE_TYPE (fndecl);
6120 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6121 {
6122 if (TREE_CODE (fndecl) == INDIRECT_REF
6123 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6124 obj_type_ref = TREE_OPERAND (fndecl, 0);
6125 fndecl = NULL_TREE;
6126 }
6127 if (type)
6128 {
6129 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6130 t = TREE_CHAIN (t))
6131 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6132 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6133 break;
6134 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6135 type = NULL;
6136 else
6137 {
6138 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6139 link = CALL_INSN_FUNCTION_USAGE (insn);
6140 #ifndef PCC_STATIC_STRUCT_RETURN
6141 if (aggregate_value_p (TREE_TYPE (type), type)
6142 && targetm.calls.struct_value_rtx (type, 0) == 0)
6143 {
6144 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6145 enum machine_mode mode = TYPE_MODE (struct_addr);
6146 rtx reg;
6147 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6148 nargs + 1);
6149 reg = targetm.calls.function_arg (args_so_far, mode,
6150 struct_addr, true);
6151 targetm.calls.function_arg_advance (args_so_far, mode,
6152 struct_addr, true);
6153 if (reg == NULL_RTX)
6154 {
6155 for (; link; link = XEXP (link, 1))
6156 if (GET_CODE (XEXP (link, 0)) == USE
6157 && MEM_P (XEXP (XEXP (link, 0), 0)))
6158 {
6159 link = XEXP (link, 1);
6160 break;
6161 }
6162 }
6163 }
6164 else
6165 #endif
6166 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6167 nargs);
6168 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6169 {
6170 enum machine_mode mode;
6171 t = TYPE_ARG_TYPES (type);
6172 mode = TYPE_MODE (TREE_VALUE (t));
6173 this_arg = targetm.calls.function_arg (args_so_far, mode,
6174 TREE_VALUE (t), true);
6175 if (this_arg && !REG_P (this_arg))
6176 this_arg = NULL_RTX;
6177 else if (this_arg == NULL_RTX)
6178 {
6179 for (; link; link = XEXP (link, 1))
6180 if (GET_CODE (XEXP (link, 0)) == USE
6181 && MEM_P (XEXP (XEXP (link, 0), 0)))
6182 {
6183 this_arg = XEXP (XEXP (link, 0), 0);
6184 break;
6185 }
6186 }
6187 }
6188 }
6189 }
6190 }
6191 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6192
6193 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6194 if (GET_CODE (XEXP (link, 0)) == USE)
6195 {
6196 rtx item = NULL_RTX;
6197 x = XEXP (XEXP (link, 0), 0);
6198 if (GET_MODE (link) == VOIDmode
6199 || GET_MODE (link) == BLKmode
6200 || (GET_MODE (link) != GET_MODE (x)
6201 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6202 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6203 /* Can't do anything for these, if the original type mode
6204 isn't known or can't be converted. */;
6205 else if (REG_P (x))
6206 {
6207 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6208 if (val && cselib_preserved_value_p (val))
6209 item = val->val_rtx;
6210 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6211 {
6212 enum machine_mode mode = GET_MODE (x);
6213
6214 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6215 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6216 {
6217 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6218
6219 if (reg == NULL_RTX || !REG_P (reg))
6220 continue;
6221 val = cselib_lookup (reg, mode, 0, VOIDmode);
6222 if (val && cselib_preserved_value_p (val))
6223 {
6224 item = val->val_rtx;
6225 break;
6226 }
6227 }
6228 }
6229 }
6230 else if (MEM_P (x))
6231 {
6232 rtx mem = x;
6233 cselib_val *val;
6234
6235 if (!frame_pointer_needed)
6236 {
6237 struct adjust_mem_data amd;
6238 amd.mem_mode = VOIDmode;
6239 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6240 amd.side_effects = NULL_RTX;
6241 amd.store = true;
6242 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6243 &amd);
6244 gcc_assert (amd.side_effects == NULL_RTX);
6245 }
6246 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6247 if (val && cselib_preserved_value_p (val))
6248 item = val->val_rtx;
6249 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6250 {
6251 /* For non-integer stack argument see also if they weren't
6252 initialized by integers. */
6253 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6254 if (imode != GET_MODE (mem) && imode != BLKmode)
6255 {
6256 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6257 imode, 0, VOIDmode);
6258 if (val && cselib_preserved_value_p (val))
6259 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6260 imode);
6261 }
6262 }
6263 }
6264 if (item)
6265 {
6266 rtx x2 = x;
6267 if (GET_MODE (item) != GET_MODE (link))
6268 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6269 if (GET_MODE (x2) != GET_MODE (link))
6270 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6271 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6272 call_arguments
6273 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6274 }
6275 if (t && t != void_list_node)
6276 {
6277 tree argtype = TREE_VALUE (t);
6278 enum machine_mode mode = TYPE_MODE (argtype);
6279 rtx reg;
6280 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6281 {
6282 argtype = build_pointer_type (argtype);
6283 mode = TYPE_MODE (argtype);
6284 }
6285 reg = targetm.calls.function_arg (args_so_far, mode,
6286 argtype, true);
6287 if (TREE_CODE (argtype) == REFERENCE_TYPE
6288 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6289 && reg
6290 && REG_P (reg)
6291 && GET_MODE (reg) == mode
6292 && GET_MODE_CLASS (mode) == MODE_INT
6293 && REG_P (x)
6294 && REGNO (x) == REGNO (reg)
6295 && GET_MODE (x) == mode
6296 && item)
6297 {
6298 enum machine_mode indmode
6299 = TYPE_MODE (TREE_TYPE (argtype));
6300 rtx mem = gen_rtx_MEM (indmode, x);
6301 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6302 if (val && cselib_preserved_value_p (val))
6303 {
6304 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6305 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6306 call_arguments);
6307 }
6308 else
6309 {
6310 struct elt_loc_list *l;
6311 tree initial;
6312
6313 /* Try harder, when passing address of a constant
6314 pool integer it can be easily read back. */
6315 item = XEXP (item, 1);
6316 if (GET_CODE (item) == SUBREG)
6317 item = SUBREG_REG (item);
6318 gcc_assert (GET_CODE (item) == VALUE);
6319 val = CSELIB_VAL_PTR (item);
6320 for (l = val->locs; l; l = l->next)
6321 if (GET_CODE (l->loc) == SYMBOL_REF
6322 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6323 && SYMBOL_REF_DECL (l->loc)
6324 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6325 {
6326 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6327 if (tree_fits_shwi_p (initial))
6328 {
6329 item = GEN_INT (tree_to_shwi (initial));
6330 item = gen_rtx_CONCAT (indmode, mem, item);
6331 call_arguments
6332 = gen_rtx_EXPR_LIST (VOIDmode, item,
6333 call_arguments);
6334 }
6335 break;
6336 }
6337 }
6338 }
6339 targetm.calls.function_arg_advance (args_so_far, mode,
6340 argtype, true);
6341 t = TREE_CHAIN (t);
6342 }
6343 }
6344
6345 /* Add debug arguments. */
6346 if (fndecl
6347 && TREE_CODE (fndecl) == FUNCTION_DECL
6348 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6349 {
6350 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6351 if (debug_args)
6352 {
6353 unsigned int ix;
6354 tree param;
6355 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6356 {
6357 rtx item;
6358 tree dtemp = (**debug_args)[ix + 1];
6359 enum machine_mode mode = DECL_MODE (dtemp);
6360 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6361 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6362 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6363 call_arguments);
6364 }
6365 }
6366 }
6367
6368 /* Reverse call_arguments chain. */
6369 prev = NULL_RTX;
6370 for (cur = call_arguments; cur; cur = next)
6371 {
6372 next = XEXP (cur, 1);
6373 XEXP (cur, 1) = prev;
6374 prev = cur;
6375 }
6376 call_arguments = prev;
6377
6378 x = get_call_rtx_from (insn);
6379 if (x)
6380 {
6381 x = XEXP (XEXP (x, 0), 0);
6382 if (GET_CODE (x) == SYMBOL_REF)
6383 /* Don't record anything. */;
6384 else if (CONSTANT_P (x))
6385 {
6386 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6387 pc_rtx, x);
6388 call_arguments
6389 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6390 }
6391 else
6392 {
6393 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6394 if (val && cselib_preserved_value_p (val))
6395 {
6396 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6397 call_arguments
6398 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6399 }
6400 }
6401 }
6402 if (this_arg)
6403 {
6404 enum machine_mode mode
6405 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6406 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6407 HOST_WIDE_INT token
6408 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6409 if (token)
6410 clobbered = plus_constant (mode, clobbered,
6411 token * GET_MODE_SIZE (mode));
6412 clobbered = gen_rtx_MEM (mode, clobbered);
6413 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6414 call_arguments
6415 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6416 }
6417 }
6418
6419 /* Callback for cselib_record_sets_hook, that records as micro
6420 operations uses and stores in an insn after cselib_record_sets has
6421 analyzed the sets in an insn, but before it modifies the stored
6422 values in the internal tables, unless cselib_record_sets doesn't
6423 call it directly (perhaps because we're not doing cselib in the
6424 first place, in which case sets and n_sets will be 0). */
6425
6426 static void
6427 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6428 {
6429 basic_block bb = BLOCK_FOR_INSN (insn);
6430 int n1, n2;
6431 struct count_use_info cui;
6432 micro_operation *mos;
6433
6434 cselib_hook_called = true;
6435
6436 cui.insn = insn;
6437 cui.bb = bb;
6438 cui.sets = sets;
6439 cui.n_sets = n_sets;
6440
6441 n1 = VTI (bb)->mos.length ();
6442 cui.store_p = false;
6443 note_uses (&PATTERN (insn), add_uses_1, &cui);
6444 n2 = VTI (bb)->mos.length () - 1;
6445 mos = VTI (bb)->mos.address ();
6446
6447 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6448 MO_VAL_LOC last. */
6449 while (n1 < n2)
6450 {
6451 while (n1 < n2 && mos[n1].type == MO_USE)
6452 n1++;
6453 while (n1 < n2 && mos[n2].type != MO_USE)
6454 n2--;
6455 if (n1 < n2)
6456 {
6457 micro_operation sw;
6458
6459 sw = mos[n1];
6460 mos[n1] = mos[n2];
6461 mos[n2] = sw;
6462 }
6463 }
6464
6465 n2 = VTI (bb)->mos.length () - 1;
6466 while (n1 < n2)
6467 {
6468 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6469 n1++;
6470 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6471 n2--;
6472 if (n1 < n2)
6473 {
6474 micro_operation sw;
6475
6476 sw = mos[n1];
6477 mos[n1] = mos[n2];
6478 mos[n2] = sw;
6479 }
6480 }
6481
6482 if (CALL_P (insn))
6483 {
6484 micro_operation mo;
6485
6486 mo.type = MO_CALL;
6487 mo.insn = insn;
6488 mo.u.loc = call_arguments;
6489 call_arguments = NULL_RTX;
6490
6491 if (dump_file && (dump_flags & TDF_DETAILS))
6492 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6493 VTI (bb)->mos.safe_push (mo);
6494 }
6495
6496 n1 = VTI (bb)->mos.length ();
6497 /* This will record NEXT_INSN (insn), such that we can
6498 insert notes before it without worrying about any
6499 notes that MO_USEs might emit after the insn. */
6500 cui.store_p = true;
6501 note_stores (PATTERN (insn), add_stores, &cui);
6502 n2 = VTI (bb)->mos.length () - 1;
6503 mos = VTI (bb)->mos.address ();
6504
6505 /* Order the MO_VAL_USEs first (note_stores does nothing
6506 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6507 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6508 while (n1 < n2)
6509 {
6510 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6511 n1++;
6512 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6513 n2--;
6514 if (n1 < n2)
6515 {
6516 micro_operation sw;
6517
6518 sw = mos[n1];
6519 mos[n1] = mos[n2];
6520 mos[n2] = sw;
6521 }
6522 }
6523
6524 n2 = VTI (bb)->mos.length () - 1;
6525 while (n1 < n2)
6526 {
6527 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6528 n1++;
6529 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6530 n2--;
6531 if (n1 < n2)
6532 {
6533 micro_operation sw;
6534
6535 sw = mos[n1];
6536 mos[n1] = mos[n2];
6537 mos[n2] = sw;
6538 }
6539 }
6540 }
6541
6542 static enum var_init_status
6543 find_src_status (dataflow_set *in, rtx src)
6544 {
6545 tree decl = NULL_TREE;
6546 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6547
6548 if (! flag_var_tracking_uninit)
6549 status = VAR_INIT_STATUS_INITIALIZED;
6550
6551 if (src && REG_P (src))
6552 decl = var_debug_decl (REG_EXPR (src));
6553 else if (src && MEM_P (src))
6554 decl = var_debug_decl (MEM_EXPR (src));
6555
6556 if (src && decl)
6557 status = get_init_value (in, src, dv_from_decl (decl));
6558
6559 return status;
6560 }
6561
6562 /* SRC is the source of an assignment. Use SET to try to find what
6563 was ultimately assigned to SRC. Return that value if known,
6564 otherwise return SRC itself. */
6565
6566 static rtx
6567 find_src_set_src (dataflow_set *set, rtx src)
6568 {
6569 tree decl = NULL_TREE; /* The variable being copied around. */
6570 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6571 variable var;
6572 location_chain nextp;
6573 int i;
6574 bool found;
6575
6576 if (src && REG_P (src))
6577 decl = var_debug_decl (REG_EXPR (src));
6578 else if (src && MEM_P (src))
6579 decl = var_debug_decl (MEM_EXPR (src));
6580
6581 if (src && decl)
6582 {
6583 decl_or_value dv = dv_from_decl (decl);
6584
6585 var = shared_hash_find (set->vars, dv);
6586 if (var)
6587 {
6588 found = false;
6589 for (i = 0; i < var->n_var_parts && !found; i++)
6590 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6591 nextp = nextp->next)
6592 if (rtx_equal_p (nextp->loc, src))
6593 {
6594 set_src = nextp->set_src;
6595 found = true;
6596 }
6597
6598 }
6599 }
6600
6601 return set_src;
6602 }
6603
6604 /* Compute the changes of variable locations in the basic block BB. */
6605
6606 static bool
6607 compute_bb_dataflow (basic_block bb)
6608 {
6609 unsigned int i;
6610 micro_operation *mo;
6611 bool changed;
6612 dataflow_set old_out;
6613 dataflow_set *in = &VTI (bb)->in;
6614 dataflow_set *out = &VTI (bb)->out;
6615
6616 dataflow_set_init (&old_out);
6617 dataflow_set_copy (&old_out, out);
6618 dataflow_set_copy (out, in);
6619
6620 if (MAY_HAVE_DEBUG_INSNS)
6621 local_get_addr_cache = pointer_map_create ();
6622
6623 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6624 {
6625 rtx insn = mo->insn;
6626
6627 switch (mo->type)
6628 {
6629 case MO_CALL:
6630 dataflow_set_clear_at_call (out);
6631 break;
6632
6633 case MO_USE:
6634 {
6635 rtx loc = mo->u.loc;
6636
6637 if (REG_P (loc))
6638 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6639 else if (MEM_P (loc))
6640 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6641 }
6642 break;
6643
6644 case MO_VAL_LOC:
6645 {
6646 rtx loc = mo->u.loc;
6647 rtx val, vloc;
6648 tree var;
6649
6650 if (GET_CODE (loc) == CONCAT)
6651 {
6652 val = XEXP (loc, 0);
6653 vloc = XEXP (loc, 1);
6654 }
6655 else
6656 {
6657 val = NULL_RTX;
6658 vloc = loc;
6659 }
6660
6661 var = PAT_VAR_LOCATION_DECL (vloc);
6662
6663 clobber_variable_part (out, NULL_RTX,
6664 dv_from_decl (var), 0, NULL_RTX);
6665 if (val)
6666 {
6667 if (VAL_NEEDS_RESOLUTION (loc))
6668 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6669 set_variable_part (out, val, dv_from_decl (var), 0,
6670 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6671 INSERT);
6672 }
6673 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6674 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6675 dv_from_decl (var), 0,
6676 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6677 INSERT);
6678 }
6679 break;
6680
6681 case MO_VAL_USE:
6682 {
6683 rtx loc = mo->u.loc;
6684 rtx val, vloc, uloc;
6685
6686 vloc = uloc = XEXP (loc, 1);
6687 val = XEXP (loc, 0);
6688
6689 if (GET_CODE (val) == CONCAT)
6690 {
6691 uloc = XEXP (val, 1);
6692 val = XEXP (val, 0);
6693 }
6694
6695 if (VAL_NEEDS_RESOLUTION (loc))
6696 val_resolve (out, val, vloc, insn);
6697 else
6698 val_store (out, val, uloc, insn, false);
6699
6700 if (VAL_HOLDS_TRACK_EXPR (loc))
6701 {
6702 if (GET_CODE (uloc) == REG)
6703 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6704 NULL);
6705 else if (GET_CODE (uloc) == MEM)
6706 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6707 NULL);
6708 }
6709 }
6710 break;
6711
6712 case MO_VAL_SET:
6713 {
6714 rtx loc = mo->u.loc;
6715 rtx val, vloc, uloc;
6716 rtx dstv, srcv;
6717
6718 vloc = loc;
6719 uloc = XEXP (vloc, 1);
6720 val = XEXP (vloc, 0);
6721 vloc = uloc;
6722
6723 if (GET_CODE (uloc) == SET)
6724 {
6725 dstv = SET_DEST (uloc);
6726 srcv = SET_SRC (uloc);
6727 }
6728 else
6729 {
6730 dstv = uloc;
6731 srcv = NULL;
6732 }
6733
6734 if (GET_CODE (val) == CONCAT)
6735 {
6736 dstv = vloc = XEXP (val, 1);
6737 val = XEXP (val, 0);
6738 }
6739
6740 if (GET_CODE (vloc) == SET)
6741 {
6742 srcv = SET_SRC (vloc);
6743
6744 gcc_assert (val != srcv);
6745 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6746
6747 dstv = vloc = SET_DEST (vloc);
6748
6749 if (VAL_NEEDS_RESOLUTION (loc))
6750 val_resolve (out, val, srcv, insn);
6751 }
6752 else if (VAL_NEEDS_RESOLUTION (loc))
6753 {
6754 gcc_assert (GET_CODE (uloc) == SET
6755 && GET_CODE (SET_SRC (uloc)) == REG);
6756 val_resolve (out, val, SET_SRC (uloc), insn);
6757 }
6758
6759 if (VAL_HOLDS_TRACK_EXPR (loc))
6760 {
6761 if (VAL_EXPR_IS_CLOBBERED (loc))
6762 {
6763 if (REG_P (uloc))
6764 var_reg_delete (out, uloc, true);
6765 else if (MEM_P (uloc))
6766 {
6767 gcc_assert (MEM_P (dstv));
6768 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6769 var_mem_delete (out, dstv, true);
6770 }
6771 }
6772 else
6773 {
6774 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6775 rtx src = NULL, dst = uloc;
6776 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6777
6778 if (GET_CODE (uloc) == SET)
6779 {
6780 src = SET_SRC (uloc);
6781 dst = SET_DEST (uloc);
6782 }
6783
6784 if (copied_p)
6785 {
6786 if (flag_var_tracking_uninit)
6787 {
6788 status = find_src_status (in, src);
6789
6790 if (status == VAR_INIT_STATUS_UNKNOWN)
6791 status = find_src_status (out, src);
6792 }
6793
6794 src = find_src_set_src (in, src);
6795 }
6796
6797 if (REG_P (dst))
6798 var_reg_delete_and_set (out, dst, !copied_p,
6799 status, srcv);
6800 else if (MEM_P (dst))
6801 {
6802 gcc_assert (MEM_P (dstv));
6803 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6804 var_mem_delete_and_set (out, dstv, !copied_p,
6805 status, srcv);
6806 }
6807 }
6808 }
6809 else if (REG_P (uloc))
6810 var_regno_delete (out, REGNO (uloc));
6811 else if (MEM_P (uloc))
6812 {
6813 gcc_checking_assert (GET_CODE (vloc) == MEM);
6814 gcc_checking_assert (dstv == vloc);
6815 if (dstv != vloc)
6816 clobber_overlapping_mems (out, vloc);
6817 }
6818
6819 val_store (out, val, dstv, insn, true);
6820 }
6821 break;
6822
6823 case MO_SET:
6824 {
6825 rtx loc = mo->u.loc;
6826 rtx set_src = NULL;
6827
6828 if (GET_CODE (loc) == SET)
6829 {
6830 set_src = SET_SRC (loc);
6831 loc = SET_DEST (loc);
6832 }
6833
6834 if (REG_P (loc))
6835 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6836 set_src);
6837 else if (MEM_P (loc))
6838 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6839 set_src);
6840 }
6841 break;
6842
6843 case MO_COPY:
6844 {
6845 rtx loc = mo->u.loc;
6846 enum var_init_status src_status;
6847 rtx set_src = NULL;
6848
6849 if (GET_CODE (loc) == SET)
6850 {
6851 set_src = SET_SRC (loc);
6852 loc = SET_DEST (loc);
6853 }
6854
6855 if (! flag_var_tracking_uninit)
6856 src_status = VAR_INIT_STATUS_INITIALIZED;
6857 else
6858 {
6859 src_status = find_src_status (in, set_src);
6860
6861 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6862 src_status = find_src_status (out, set_src);
6863 }
6864
6865 set_src = find_src_set_src (in, set_src);
6866
6867 if (REG_P (loc))
6868 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6869 else if (MEM_P (loc))
6870 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6871 }
6872 break;
6873
6874 case MO_USE_NO_VAR:
6875 {
6876 rtx loc = mo->u.loc;
6877
6878 if (REG_P (loc))
6879 var_reg_delete (out, loc, false);
6880 else if (MEM_P (loc))
6881 var_mem_delete (out, loc, false);
6882 }
6883 break;
6884
6885 case MO_CLOBBER:
6886 {
6887 rtx loc = mo->u.loc;
6888
6889 if (REG_P (loc))
6890 var_reg_delete (out, loc, true);
6891 else if (MEM_P (loc))
6892 var_mem_delete (out, loc, true);
6893 }
6894 break;
6895
6896 case MO_ADJUST:
6897 out->stack_adjust += mo->u.adjust;
6898 break;
6899 }
6900 }
6901
6902 if (MAY_HAVE_DEBUG_INSNS)
6903 {
6904 pointer_map_destroy (local_get_addr_cache);
6905 local_get_addr_cache = NULL;
6906
6907 dataflow_set_equiv_regs (out);
6908 shared_hash_htab (out->vars)
6909 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6910 shared_hash_htab (out->vars)
6911 .traverse <dataflow_set *, canonicalize_values_star> (out);
6912 #if ENABLE_CHECKING
6913 shared_hash_htab (out->vars)
6914 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6915 #endif
6916 }
6917 changed = dataflow_set_different (&old_out, out);
6918 dataflow_set_destroy (&old_out);
6919 return changed;
6920 }
6921
6922 /* Find the locations of variables in the whole function. */
6923
6924 static bool
6925 vt_find_locations (void)
6926 {
6927 fibheap_t worklist, pending, fibheap_swap;
6928 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6929 basic_block bb;
6930 edge e;
6931 int *bb_order;
6932 int *rc_order;
6933 int i;
6934 int htabsz = 0;
6935 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6936 bool success = true;
6937
6938 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6939 /* Compute reverse top sord order of the inverted CFG
6940 so that the data-flow runs faster. */
6941 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun));
6942 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6943 int num = inverted_post_order_compute (rc_order);
6944 for (i = 0; i < num; i++)
6945 bb_order[rc_order[i]] = i;
6946 free (rc_order);
6947
6948 worklist = fibheap_new ();
6949 pending = fibheap_new ();
6950 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6951 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6952 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6953 bitmap_clear (in_worklist);
6954
6955 FOR_EACH_BB_FN (bb, cfun)
6956 fibheap_insert (pending, bb_order[bb->index], bb);
6957 bitmap_ones (in_pending);
6958
6959 while (success && !fibheap_empty (pending))
6960 {
6961 fibheap_swap = pending;
6962 pending = worklist;
6963 worklist = fibheap_swap;
6964 sbitmap_swap = in_pending;
6965 in_pending = in_worklist;
6966 in_worklist = sbitmap_swap;
6967
6968 bitmap_clear (visited);
6969
6970 while (!fibheap_empty (worklist))
6971 {
6972 bb = (basic_block) fibheap_extract_min (worklist);
6973 bitmap_clear_bit (in_worklist, bb->index);
6974 gcc_assert (!bitmap_bit_p (visited, bb->index));
6975 if (!bitmap_bit_p (visited, bb->index))
6976 {
6977 bool changed;
6978 edge_iterator ei;
6979 int oldinsz, oldoutsz;
6980
6981 bitmap_set_bit (visited, bb->index);
6982
6983 if (VTI (bb)->in.vars)
6984 {
6985 htabsz
6986 -= shared_hash_htab (VTI (bb)->in.vars).size ()
6987 + shared_hash_htab (VTI (bb)->out.vars).size ();
6988 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
6989 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
6990 }
6991 else
6992 oldinsz = oldoutsz = 0;
6993
6994 if (MAY_HAVE_DEBUG_INSNS)
6995 {
6996 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6997 bool first = true, adjust = false;
6998
6999 /* Calculate the IN set as the intersection of
7000 predecessor OUT sets. */
7001
7002 dataflow_set_clear (in);
7003 dst_can_be_shared = true;
7004
7005 FOR_EACH_EDGE (e, ei, bb->preds)
7006 if (!VTI (e->src)->flooded)
7007 gcc_assert (bb_order[bb->index]
7008 <= bb_order[e->src->index]);
7009 else if (first)
7010 {
7011 dataflow_set_copy (in, &VTI (e->src)->out);
7012 first_out = &VTI (e->src)->out;
7013 first = false;
7014 }
7015 else
7016 {
7017 dataflow_set_merge (in, &VTI (e->src)->out);
7018 adjust = true;
7019 }
7020
7021 if (adjust)
7022 {
7023 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7024 #if ENABLE_CHECKING
7025 /* Merge and merge_adjust should keep entries in
7026 canonical order. */
7027 shared_hash_htab (in->vars)
7028 .traverse <dataflow_set *,
7029 canonicalize_loc_order_check> (in);
7030 #endif
7031 if (dst_can_be_shared)
7032 {
7033 shared_hash_destroy (in->vars);
7034 in->vars = shared_hash_copy (first_out->vars);
7035 }
7036 }
7037
7038 VTI (bb)->flooded = true;
7039 }
7040 else
7041 {
7042 /* Calculate the IN set as union of predecessor OUT sets. */
7043 dataflow_set_clear (&VTI (bb)->in);
7044 FOR_EACH_EDGE (e, ei, bb->preds)
7045 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7046 }
7047
7048 changed = compute_bb_dataflow (bb);
7049 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7050 + shared_hash_htab (VTI (bb)->out.vars).size ();
7051
7052 if (htabmax && htabsz > htabmax)
7053 {
7054 if (MAY_HAVE_DEBUG_INSNS)
7055 inform (DECL_SOURCE_LOCATION (cfun->decl),
7056 "variable tracking size limit exceeded with "
7057 "-fvar-tracking-assignments, retrying without");
7058 else
7059 inform (DECL_SOURCE_LOCATION (cfun->decl),
7060 "variable tracking size limit exceeded");
7061 success = false;
7062 break;
7063 }
7064
7065 if (changed)
7066 {
7067 FOR_EACH_EDGE (e, ei, bb->succs)
7068 {
7069 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7070 continue;
7071
7072 if (bitmap_bit_p (visited, e->dest->index))
7073 {
7074 if (!bitmap_bit_p (in_pending, e->dest->index))
7075 {
7076 /* Send E->DEST to next round. */
7077 bitmap_set_bit (in_pending, e->dest->index);
7078 fibheap_insert (pending,
7079 bb_order[e->dest->index],
7080 e->dest);
7081 }
7082 }
7083 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7084 {
7085 /* Add E->DEST to current round. */
7086 bitmap_set_bit (in_worklist, e->dest->index);
7087 fibheap_insert (worklist, bb_order[e->dest->index],
7088 e->dest);
7089 }
7090 }
7091 }
7092
7093 if (dump_file)
7094 fprintf (dump_file,
7095 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7096 bb->index,
7097 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7098 oldinsz,
7099 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7100 oldoutsz,
7101 (int)worklist->nodes, (int)pending->nodes, htabsz);
7102
7103 if (dump_file && (dump_flags & TDF_DETAILS))
7104 {
7105 fprintf (dump_file, "BB %i IN:\n", bb->index);
7106 dump_dataflow_set (&VTI (bb)->in);
7107 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7108 dump_dataflow_set (&VTI (bb)->out);
7109 }
7110 }
7111 }
7112 }
7113
7114 if (success && MAY_HAVE_DEBUG_INSNS)
7115 FOR_EACH_BB_FN (bb, cfun)
7116 gcc_assert (VTI (bb)->flooded);
7117
7118 free (bb_order);
7119 fibheap_delete (worklist);
7120 fibheap_delete (pending);
7121 sbitmap_free (visited);
7122 sbitmap_free (in_worklist);
7123 sbitmap_free (in_pending);
7124
7125 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7126 return success;
7127 }
7128
7129 /* Print the content of the LIST to dump file. */
7130
7131 static void
7132 dump_attrs_list (attrs list)
7133 {
7134 for (; list; list = list->next)
7135 {
7136 if (dv_is_decl_p (list->dv))
7137 print_mem_expr (dump_file, dv_as_decl (list->dv));
7138 else
7139 print_rtl_single (dump_file, dv_as_value (list->dv));
7140 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7141 }
7142 fprintf (dump_file, "\n");
7143 }
7144
7145 /* Print the information about variable *SLOT to dump file. */
7146
7147 int
7148 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7149 {
7150 variable var = *slot;
7151
7152 dump_var (var);
7153
7154 /* Continue traversing the hash table. */
7155 return 1;
7156 }
7157
7158 /* Print the information about variable VAR to dump file. */
7159
7160 static void
7161 dump_var (variable var)
7162 {
7163 int i;
7164 location_chain node;
7165
7166 if (dv_is_decl_p (var->dv))
7167 {
7168 const_tree decl = dv_as_decl (var->dv);
7169
7170 if (DECL_NAME (decl))
7171 {
7172 fprintf (dump_file, " name: %s",
7173 IDENTIFIER_POINTER (DECL_NAME (decl)));
7174 if (dump_flags & TDF_UID)
7175 fprintf (dump_file, "D.%u", DECL_UID (decl));
7176 }
7177 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7178 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7179 else
7180 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7181 fprintf (dump_file, "\n");
7182 }
7183 else
7184 {
7185 fputc (' ', dump_file);
7186 print_rtl_single (dump_file, dv_as_value (var->dv));
7187 }
7188
7189 for (i = 0; i < var->n_var_parts; i++)
7190 {
7191 fprintf (dump_file, " offset %ld\n",
7192 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7193 for (node = var->var_part[i].loc_chain; node; node = node->next)
7194 {
7195 fprintf (dump_file, " ");
7196 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7197 fprintf (dump_file, "[uninit]");
7198 print_rtl_single (dump_file, node->loc);
7199 }
7200 }
7201 }
7202
7203 /* Print the information about variables from hash table VARS to dump file. */
7204
7205 static void
7206 dump_vars (variable_table_type vars)
7207 {
7208 if (vars.elements () > 0)
7209 {
7210 fprintf (dump_file, "Variables:\n");
7211 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7212 }
7213 }
7214
7215 /* Print the dataflow set SET to dump file. */
7216
7217 static void
7218 dump_dataflow_set (dataflow_set *set)
7219 {
7220 int i;
7221
7222 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7223 set->stack_adjust);
7224 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7225 {
7226 if (set->regs[i])
7227 {
7228 fprintf (dump_file, "Reg %d:", i);
7229 dump_attrs_list (set->regs[i]);
7230 }
7231 }
7232 dump_vars (shared_hash_htab (set->vars));
7233 fprintf (dump_file, "\n");
7234 }
7235
7236 /* Print the IN and OUT sets for each basic block to dump file. */
7237
7238 static void
7239 dump_dataflow_sets (void)
7240 {
7241 basic_block bb;
7242
7243 FOR_EACH_BB_FN (bb, cfun)
7244 {
7245 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7246 fprintf (dump_file, "IN:\n");
7247 dump_dataflow_set (&VTI (bb)->in);
7248 fprintf (dump_file, "OUT:\n");
7249 dump_dataflow_set (&VTI (bb)->out);
7250 }
7251 }
7252
7253 /* Return the variable for DV in dropped_values, inserting one if
7254 requested with INSERT. */
7255
7256 static inline variable
7257 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7258 {
7259 variable_def **slot;
7260 variable empty_var;
7261 onepart_enum_t onepart;
7262
7263 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7264
7265 if (!slot)
7266 return NULL;
7267
7268 if (*slot)
7269 return *slot;
7270
7271 gcc_checking_assert (insert == INSERT);
7272
7273 onepart = dv_onepart_p (dv);
7274
7275 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7276
7277 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7278 empty_var->dv = dv;
7279 empty_var->refcount = 1;
7280 empty_var->n_var_parts = 0;
7281 empty_var->onepart = onepart;
7282 empty_var->in_changed_variables = false;
7283 empty_var->var_part[0].loc_chain = NULL;
7284 empty_var->var_part[0].cur_loc = NULL;
7285 VAR_LOC_1PAUX (empty_var) = NULL;
7286 set_dv_changed (dv, true);
7287
7288 *slot = empty_var;
7289
7290 return empty_var;
7291 }
7292
7293 /* Recover the one-part aux from dropped_values. */
7294
7295 static struct onepart_aux *
7296 recover_dropped_1paux (variable var)
7297 {
7298 variable dvar;
7299
7300 gcc_checking_assert (var->onepart);
7301
7302 if (VAR_LOC_1PAUX (var))
7303 return VAR_LOC_1PAUX (var);
7304
7305 if (var->onepart == ONEPART_VDECL)
7306 return NULL;
7307
7308 dvar = variable_from_dropped (var->dv, NO_INSERT);
7309
7310 if (!dvar)
7311 return NULL;
7312
7313 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7314 VAR_LOC_1PAUX (dvar) = NULL;
7315
7316 return VAR_LOC_1PAUX (var);
7317 }
7318
7319 /* Add variable VAR to the hash table of changed variables and
7320 if it has no locations delete it from SET's hash table. */
7321
7322 static void
7323 variable_was_changed (variable var, dataflow_set *set)
7324 {
7325 hashval_t hash = dv_htab_hash (var->dv);
7326
7327 if (emit_notes)
7328 {
7329 variable_def **slot;
7330
7331 /* Remember this decl or VALUE has been added to changed_variables. */
7332 set_dv_changed (var->dv, true);
7333
7334 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7335
7336 if (*slot)
7337 {
7338 variable old_var = *slot;
7339 gcc_assert (old_var->in_changed_variables);
7340 old_var->in_changed_variables = false;
7341 if (var != old_var && var->onepart)
7342 {
7343 /* Restore the auxiliary info from an empty variable
7344 previously created for changed_variables, so it is
7345 not lost. */
7346 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7347 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7348 VAR_LOC_1PAUX (old_var) = NULL;
7349 }
7350 variable_htab_free (*slot);
7351 }
7352
7353 if (set && var->n_var_parts == 0)
7354 {
7355 onepart_enum_t onepart = var->onepart;
7356 variable empty_var = NULL;
7357 variable_def **dslot = NULL;
7358
7359 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7360 {
7361 dslot = dropped_values.find_slot_with_hash (var->dv,
7362 dv_htab_hash (var->dv),
7363 INSERT);
7364 empty_var = *dslot;
7365
7366 if (empty_var)
7367 {
7368 gcc_checking_assert (!empty_var->in_changed_variables);
7369 if (!VAR_LOC_1PAUX (var))
7370 {
7371 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7372 VAR_LOC_1PAUX (empty_var) = NULL;
7373 }
7374 else
7375 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7376 }
7377 }
7378
7379 if (!empty_var)
7380 {
7381 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7382 empty_var->dv = var->dv;
7383 empty_var->refcount = 1;
7384 empty_var->n_var_parts = 0;
7385 empty_var->onepart = onepart;
7386 if (dslot)
7387 {
7388 empty_var->refcount++;
7389 *dslot = empty_var;
7390 }
7391 }
7392 else
7393 empty_var->refcount++;
7394 empty_var->in_changed_variables = true;
7395 *slot = empty_var;
7396 if (onepart)
7397 {
7398 empty_var->var_part[0].loc_chain = NULL;
7399 empty_var->var_part[0].cur_loc = NULL;
7400 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7401 VAR_LOC_1PAUX (var) = NULL;
7402 }
7403 goto drop_var;
7404 }
7405 else
7406 {
7407 if (var->onepart && !VAR_LOC_1PAUX (var))
7408 recover_dropped_1paux (var);
7409 var->refcount++;
7410 var->in_changed_variables = true;
7411 *slot = var;
7412 }
7413 }
7414 else
7415 {
7416 gcc_assert (set);
7417 if (var->n_var_parts == 0)
7418 {
7419 variable_def **slot;
7420
7421 drop_var:
7422 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7423 if (slot)
7424 {
7425 if (shared_hash_shared (set->vars))
7426 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7427 NO_INSERT);
7428 shared_hash_htab (set->vars).clear_slot (slot);
7429 }
7430 }
7431 }
7432 }
7433
7434 /* Look for the index in VAR->var_part corresponding to OFFSET.
7435 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7436 referenced int will be set to the index that the part has or should
7437 have, if it should be inserted. */
7438
7439 static inline int
7440 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7441 int *insertion_point)
7442 {
7443 int pos, low, high;
7444
7445 if (var->onepart)
7446 {
7447 if (offset != 0)
7448 return -1;
7449
7450 if (insertion_point)
7451 *insertion_point = 0;
7452
7453 return var->n_var_parts - 1;
7454 }
7455
7456 /* Find the location part. */
7457 low = 0;
7458 high = var->n_var_parts;
7459 while (low != high)
7460 {
7461 pos = (low + high) / 2;
7462 if (VAR_PART_OFFSET (var, pos) < offset)
7463 low = pos + 1;
7464 else
7465 high = pos;
7466 }
7467 pos = low;
7468
7469 if (insertion_point)
7470 *insertion_point = pos;
7471
7472 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7473 return pos;
7474
7475 return -1;
7476 }
7477
7478 static variable_def **
7479 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7480 decl_or_value dv, HOST_WIDE_INT offset,
7481 enum var_init_status initialized, rtx set_src)
7482 {
7483 int pos;
7484 location_chain node, next;
7485 location_chain *nextp;
7486 variable var;
7487 onepart_enum_t onepart;
7488
7489 var = *slot;
7490
7491 if (var)
7492 onepart = var->onepart;
7493 else
7494 onepart = dv_onepart_p (dv);
7495
7496 gcc_checking_assert (offset == 0 || !onepart);
7497 gcc_checking_assert (loc != dv_as_opaque (dv));
7498
7499 if (! flag_var_tracking_uninit)
7500 initialized = VAR_INIT_STATUS_INITIALIZED;
7501
7502 if (!var)
7503 {
7504 /* Create new variable information. */
7505 var = (variable) pool_alloc (onepart_pool (onepart));
7506 var->dv = dv;
7507 var->refcount = 1;
7508 var->n_var_parts = 1;
7509 var->onepart = onepart;
7510 var->in_changed_variables = false;
7511 if (var->onepart)
7512 VAR_LOC_1PAUX (var) = NULL;
7513 else
7514 VAR_PART_OFFSET (var, 0) = offset;
7515 var->var_part[0].loc_chain = NULL;
7516 var->var_part[0].cur_loc = NULL;
7517 *slot = var;
7518 pos = 0;
7519 nextp = &var->var_part[0].loc_chain;
7520 }
7521 else if (onepart)
7522 {
7523 int r = -1, c = 0;
7524
7525 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7526
7527 pos = 0;
7528
7529 if (GET_CODE (loc) == VALUE)
7530 {
7531 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7532 nextp = &node->next)
7533 if (GET_CODE (node->loc) == VALUE)
7534 {
7535 if (node->loc == loc)
7536 {
7537 r = 0;
7538 break;
7539 }
7540 if (canon_value_cmp (node->loc, loc))
7541 c++;
7542 else
7543 {
7544 r = 1;
7545 break;
7546 }
7547 }
7548 else if (REG_P (node->loc) || MEM_P (node->loc))
7549 c++;
7550 else
7551 {
7552 r = 1;
7553 break;
7554 }
7555 }
7556 else if (REG_P (loc))
7557 {
7558 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7559 nextp = &node->next)
7560 if (REG_P (node->loc))
7561 {
7562 if (REGNO (node->loc) < REGNO (loc))
7563 c++;
7564 else
7565 {
7566 if (REGNO (node->loc) == REGNO (loc))
7567 r = 0;
7568 else
7569 r = 1;
7570 break;
7571 }
7572 }
7573 else
7574 {
7575 r = 1;
7576 break;
7577 }
7578 }
7579 else if (MEM_P (loc))
7580 {
7581 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7582 nextp = &node->next)
7583 if (REG_P (node->loc))
7584 c++;
7585 else if (MEM_P (node->loc))
7586 {
7587 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7588 break;
7589 else
7590 c++;
7591 }
7592 else
7593 {
7594 r = 1;
7595 break;
7596 }
7597 }
7598 else
7599 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7600 nextp = &node->next)
7601 if ((r = loc_cmp (node->loc, loc)) >= 0)
7602 break;
7603 else
7604 c++;
7605
7606 if (r == 0)
7607 return slot;
7608
7609 if (shared_var_p (var, set->vars))
7610 {
7611 slot = unshare_variable (set, slot, var, initialized);
7612 var = *slot;
7613 for (nextp = &var->var_part[0].loc_chain; c;
7614 nextp = &(*nextp)->next)
7615 c--;
7616 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7617 }
7618 }
7619 else
7620 {
7621 int inspos = 0;
7622
7623 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7624
7625 pos = find_variable_location_part (var, offset, &inspos);
7626
7627 if (pos >= 0)
7628 {
7629 node = var->var_part[pos].loc_chain;
7630
7631 if (node
7632 && ((REG_P (node->loc) && REG_P (loc)
7633 && REGNO (node->loc) == REGNO (loc))
7634 || rtx_equal_p (node->loc, loc)))
7635 {
7636 /* LOC is in the beginning of the chain so we have nothing
7637 to do. */
7638 if (node->init < initialized)
7639 node->init = initialized;
7640 if (set_src != NULL)
7641 node->set_src = set_src;
7642
7643 return slot;
7644 }
7645 else
7646 {
7647 /* We have to make a copy of a shared variable. */
7648 if (shared_var_p (var, set->vars))
7649 {
7650 slot = unshare_variable (set, slot, var, initialized);
7651 var = *slot;
7652 }
7653 }
7654 }
7655 else
7656 {
7657 /* We have not found the location part, new one will be created. */
7658
7659 /* We have to make a copy of the shared variable. */
7660 if (shared_var_p (var, set->vars))
7661 {
7662 slot = unshare_variable (set, slot, var, initialized);
7663 var = *slot;
7664 }
7665
7666 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7667 thus there are at most MAX_VAR_PARTS different offsets. */
7668 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7669 && (!var->n_var_parts || !onepart));
7670
7671 /* We have to move the elements of array starting at index
7672 inspos to the next position. */
7673 for (pos = var->n_var_parts; pos > inspos; pos--)
7674 var->var_part[pos] = var->var_part[pos - 1];
7675
7676 var->n_var_parts++;
7677 gcc_checking_assert (!onepart);
7678 VAR_PART_OFFSET (var, pos) = offset;
7679 var->var_part[pos].loc_chain = NULL;
7680 var->var_part[pos].cur_loc = NULL;
7681 }
7682
7683 /* Delete the location from the list. */
7684 nextp = &var->var_part[pos].loc_chain;
7685 for (node = var->var_part[pos].loc_chain; node; node = next)
7686 {
7687 next = node->next;
7688 if ((REG_P (node->loc) && REG_P (loc)
7689 && REGNO (node->loc) == REGNO (loc))
7690 || rtx_equal_p (node->loc, loc))
7691 {
7692 /* Save these values, to assign to the new node, before
7693 deleting this one. */
7694 if (node->init > initialized)
7695 initialized = node->init;
7696 if (node->set_src != NULL && set_src == NULL)
7697 set_src = node->set_src;
7698 if (var->var_part[pos].cur_loc == node->loc)
7699 var->var_part[pos].cur_loc = NULL;
7700 pool_free (loc_chain_pool, node);
7701 *nextp = next;
7702 break;
7703 }
7704 else
7705 nextp = &node->next;
7706 }
7707
7708 nextp = &var->var_part[pos].loc_chain;
7709 }
7710
7711 /* Add the location to the beginning. */
7712 node = (location_chain) pool_alloc (loc_chain_pool);
7713 node->loc = loc;
7714 node->init = initialized;
7715 node->set_src = set_src;
7716 node->next = *nextp;
7717 *nextp = node;
7718
7719 /* If no location was emitted do so. */
7720 if (var->var_part[pos].cur_loc == NULL)
7721 variable_was_changed (var, set);
7722
7723 return slot;
7724 }
7725
7726 /* Set the part of variable's location in the dataflow set SET. The
7727 variable part is specified by variable's declaration in DV and
7728 offset OFFSET and the part's location by LOC. IOPT should be
7729 NO_INSERT if the variable is known to be in SET already and the
7730 variable hash table must not be resized, and INSERT otherwise. */
7731
7732 static void
7733 set_variable_part (dataflow_set *set, rtx loc,
7734 decl_or_value dv, HOST_WIDE_INT offset,
7735 enum var_init_status initialized, rtx set_src,
7736 enum insert_option iopt)
7737 {
7738 variable_def **slot;
7739
7740 if (iopt == NO_INSERT)
7741 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7742 else
7743 {
7744 slot = shared_hash_find_slot (set->vars, dv);
7745 if (!slot)
7746 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7747 }
7748 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7749 }
7750
7751 /* Remove all recorded register locations for the given variable part
7752 from dataflow set SET, except for those that are identical to loc.
7753 The variable part is specified by variable's declaration or value
7754 DV and offset OFFSET. */
7755
7756 static variable_def **
7757 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7758 HOST_WIDE_INT offset, rtx set_src)
7759 {
7760 variable var = *slot;
7761 int pos = find_variable_location_part (var, offset, NULL);
7762
7763 if (pos >= 0)
7764 {
7765 location_chain node, next;
7766
7767 /* Remove the register locations from the dataflow set. */
7768 next = var->var_part[pos].loc_chain;
7769 for (node = next; node; node = next)
7770 {
7771 next = node->next;
7772 if (node->loc != loc
7773 && (!flag_var_tracking_uninit
7774 || !set_src
7775 || MEM_P (set_src)
7776 || !rtx_equal_p (set_src, node->set_src)))
7777 {
7778 if (REG_P (node->loc))
7779 {
7780 attrs anode, anext;
7781 attrs *anextp;
7782
7783 /* Remove the variable part from the register's
7784 list, but preserve any other variable parts
7785 that might be regarded as live in that same
7786 register. */
7787 anextp = &set->regs[REGNO (node->loc)];
7788 for (anode = *anextp; anode; anode = anext)
7789 {
7790 anext = anode->next;
7791 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7792 && anode->offset == offset)
7793 {
7794 pool_free (attrs_pool, anode);
7795 *anextp = anext;
7796 }
7797 else
7798 anextp = &anode->next;
7799 }
7800 }
7801
7802 slot = delete_slot_part (set, node->loc, slot, offset);
7803 }
7804 }
7805 }
7806
7807 return slot;
7808 }
7809
7810 /* Remove all recorded register locations for the given variable part
7811 from dataflow set SET, except for those that are identical to loc.
7812 The variable part is specified by variable's declaration or value
7813 DV and offset OFFSET. */
7814
7815 static void
7816 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7817 HOST_WIDE_INT offset, rtx set_src)
7818 {
7819 variable_def **slot;
7820
7821 if (!dv_as_opaque (dv)
7822 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7823 return;
7824
7825 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7826 if (!slot)
7827 return;
7828
7829 clobber_slot_part (set, loc, slot, offset, set_src);
7830 }
7831
7832 /* Delete the part of variable's location from dataflow set SET. The
7833 variable part is specified by its SET->vars slot SLOT and offset
7834 OFFSET and the part's location by LOC. */
7835
7836 static variable_def **
7837 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7838 HOST_WIDE_INT offset)
7839 {
7840 variable var = *slot;
7841 int pos = find_variable_location_part (var, offset, NULL);
7842
7843 if (pos >= 0)
7844 {
7845 location_chain node, next;
7846 location_chain *nextp;
7847 bool changed;
7848 rtx cur_loc;
7849
7850 if (shared_var_p (var, set->vars))
7851 {
7852 /* If the variable contains the location part we have to
7853 make a copy of the variable. */
7854 for (node = var->var_part[pos].loc_chain; node;
7855 node = node->next)
7856 {
7857 if ((REG_P (node->loc) && REG_P (loc)
7858 && REGNO (node->loc) == REGNO (loc))
7859 || rtx_equal_p (node->loc, loc))
7860 {
7861 slot = unshare_variable (set, slot, var,
7862 VAR_INIT_STATUS_UNKNOWN);
7863 var = *slot;
7864 break;
7865 }
7866 }
7867 }
7868
7869 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7870 cur_loc = VAR_LOC_FROM (var);
7871 else
7872 cur_loc = var->var_part[pos].cur_loc;
7873
7874 /* Delete the location part. */
7875 changed = false;
7876 nextp = &var->var_part[pos].loc_chain;
7877 for (node = *nextp; node; node = next)
7878 {
7879 next = node->next;
7880 if ((REG_P (node->loc) && REG_P (loc)
7881 && REGNO (node->loc) == REGNO (loc))
7882 || rtx_equal_p (node->loc, loc))
7883 {
7884 /* If we have deleted the location which was last emitted
7885 we have to emit new location so add the variable to set
7886 of changed variables. */
7887 if (cur_loc == node->loc)
7888 {
7889 changed = true;
7890 var->var_part[pos].cur_loc = NULL;
7891 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7892 VAR_LOC_FROM (var) = NULL;
7893 }
7894 pool_free (loc_chain_pool, node);
7895 *nextp = next;
7896 break;
7897 }
7898 else
7899 nextp = &node->next;
7900 }
7901
7902 if (var->var_part[pos].loc_chain == NULL)
7903 {
7904 changed = true;
7905 var->n_var_parts--;
7906 while (pos < var->n_var_parts)
7907 {
7908 var->var_part[pos] = var->var_part[pos + 1];
7909 pos++;
7910 }
7911 }
7912 if (changed)
7913 variable_was_changed (var, set);
7914 }
7915
7916 return slot;
7917 }
7918
7919 /* Delete the part of variable's location from dataflow set SET. The
7920 variable part is specified by variable's declaration or value DV
7921 and offset OFFSET and the part's location by LOC. */
7922
7923 static void
7924 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7925 HOST_WIDE_INT offset)
7926 {
7927 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7928 if (!slot)
7929 return;
7930
7931 delete_slot_part (set, loc, slot, offset);
7932 }
7933
7934
7935 /* Structure for passing some other parameters to function
7936 vt_expand_loc_callback. */
7937 struct expand_loc_callback_data
7938 {
7939 /* The variables and values active at this point. */
7940 variable_table_type vars;
7941
7942 /* Stack of values and debug_exprs under expansion, and their
7943 children. */
7944 auto_vec<rtx, 4> expanding;
7945
7946 /* Stack of values and debug_exprs whose expansion hit recursion
7947 cycles. They will have VALUE_RECURSED_INTO marked when added to
7948 this list. This flag will be cleared if any of its dependencies
7949 resolves to a valid location. So, if the flag remains set at the
7950 end of the search, we know no valid location for this one can
7951 possibly exist. */
7952 auto_vec<rtx, 4> pending;
7953
7954 /* The maximum depth among the sub-expressions under expansion.
7955 Zero indicates no expansion so far. */
7956 expand_depth depth;
7957 };
7958
7959 /* Allocate the one-part auxiliary data structure for VAR, with enough
7960 room for COUNT dependencies. */
7961
7962 static void
7963 loc_exp_dep_alloc (variable var, int count)
7964 {
7965 size_t allocsize;
7966
7967 gcc_checking_assert (var->onepart);
7968
7969 /* We can be called with COUNT == 0 to allocate the data structure
7970 without any dependencies, e.g. for the backlinks only. However,
7971 if we are specifying a COUNT, then the dependency list must have
7972 been emptied before. It would be possible to adjust pointers or
7973 force it empty here, but this is better done at an earlier point
7974 in the algorithm, so we instead leave an assertion to catch
7975 errors. */
7976 gcc_checking_assert (!count
7977 || VAR_LOC_DEP_VEC (var) == NULL
7978 || VAR_LOC_DEP_VEC (var)->is_empty ());
7979
7980 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7981 return;
7982
7983 allocsize = offsetof (struct onepart_aux, deps)
7984 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7985
7986 if (VAR_LOC_1PAUX (var))
7987 {
7988 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7989 VAR_LOC_1PAUX (var), allocsize);
7990 /* If the reallocation moves the onepaux structure, the
7991 back-pointer to BACKLINKS in the first list member will still
7992 point to its old location. Adjust it. */
7993 if (VAR_LOC_DEP_LST (var))
7994 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7995 }
7996 else
7997 {
7998 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7999 *VAR_LOC_DEP_LSTP (var) = NULL;
8000 VAR_LOC_FROM (var) = NULL;
8001 VAR_LOC_DEPTH (var).complexity = 0;
8002 VAR_LOC_DEPTH (var).entryvals = 0;
8003 }
8004 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8005 }
8006
8007 /* Remove all entries from the vector of active dependencies of VAR,
8008 removing them from the back-links lists too. */
8009
8010 static void
8011 loc_exp_dep_clear (variable var)
8012 {
8013 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8014 {
8015 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8016 if (led->next)
8017 led->next->pprev = led->pprev;
8018 if (led->pprev)
8019 *led->pprev = led->next;
8020 VAR_LOC_DEP_VEC (var)->pop ();
8021 }
8022 }
8023
8024 /* Insert an active dependency from VAR on X to the vector of
8025 dependencies, and add the corresponding back-link to X's list of
8026 back-links in VARS. */
8027
8028 static void
8029 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8030 {
8031 decl_or_value dv;
8032 variable xvar;
8033 loc_exp_dep *led;
8034
8035 dv = dv_from_rtx (x);
8036
8037 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8038 an additional look up? */
8039 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8040
8041 if (!xvar)
8042 {
8043 xvar = variable_from_dropped (dv, NO_INSERT);
8044 gcc_checking_assert (xvar);
8045 }
8046
8047 /* No point in adding the same backlink more than once. This may
8048 arise if say the same value appears in two complex expressions in
8049 the same loc_list, or even more than once in a single
8050 expression. */
8051 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8052 return;
8053
8054 if (var->onepart == NOT_ONEPART)
8055 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8056 else
8057 {
8058 loc_exp_dep empty;
8059 memset (&empty, 0, sizeof (empty));
8060 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8061 led = &VAR_LOC_DEP_VEC (var)->last ();
8062 }
8063 led->dv = var->dv;
8064 led->value = x;
8065
8066 loc_exp_dep_alloc (xvar, 0);
8067 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8068 led->next = *led->pprev;
8069 if (led->next)
8070 led->next->pprev = &led->next;
8071 *led->pprev = led;
8072 }
8073
8074 /* Create active dependencies of VAR on COUNT values starting at
8075 VALUE, and corresponding back-links to the entries in VARS. Return
8076 true if we found any pending-recursion results. */
8077
8078 static bool
8079 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8080 variable_table_type vars)
8081 {
8082 bool pending_recursion = false;
8083
8084 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8085 || VAR_LOC_DEP_VEC (var)->is_empty ());
8086
8087 /* Set up all dependencies from last_child (as set up at the end of
8088 the loop above) to the end. */
8089 loc_exp_dep_alloc (var, count);
8090
8091 while (count--)
8092 {
8093 rtx x = *value++;
8094
8095 if (!pending_recursion)
8096 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8097
8098 loc_exp_insert_dep (var, x, vars);
8099 }
8100
8101 return pending_recursion;
8102 }
8103
8104 /* Notify the back-links of IVAR that are pending recursion that we
8105 have found a non-NIL value for it, so they are cleared for another
8106 attempt to compute a current location. */
8107
8108 static void
8109 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8110 {
8111 loc_exp_dep *led, *next;
8112
8113 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8114 {
8115 decl_or_value dv = led->dv;
8116 variable var;
8117
8118 next = led->next;
8119
8120 if (dv_is_value_p (dv))
8121 {
8122 rtx value = dv_as_value (dv);
8123
8124 /* If we have already resolved it, leave it alone. */
8125 if (!VALUE_RECURSED_INTO (value))
8126 continue;
8127
8128 /* Check that VALUE_RECURSED_INTO, true from the test above,
8129 implies NO_LOC_P. */
8130 gcc_checking_assert (NO_LOC_P (value));
8131
8132 /* We won't notify variables that are being expanded,
8133 because their dependency list is cleared before
8134 recursing. */
8135 NO_LOC_P (value) = false;
8136 VALUE_RECURSED_INTO (value) = false;
8137
8138 gcc_checking_assert (dv_changed_p (dv));
8139 }
8140 else
8141 {
8142 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8143 if (!dv_changed_p (dv))
8144 continue;
8145 }
8146
8147 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8148
8149 if (!var)
8150 var = variable_from_dropped (dv, NO_INSERT);
8151
8152 if (var)
8153 notify_dependents_of_resolved_value (var, vars);
8154
8155 if (next)
8156 next->pprev = led->pprev;
8157 if (led->pprev)
8158 *led->pprev = next;
8159 led->next = NULL;
8160 led->pprev = NULL;
8161 }
8162 }
8163
8164 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8165 int max_depth, void *data);
8166
8167 /* Return the combined depth, when one sub-expression evaluated to
8168 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8169
8170 static inline expand_depth
8171 update_depth (expand_depth saved_depth, expand_depth best_depth)
8172 {
8173 /* If we didn't find anything, stick with what we had. */
8174 if (!best_depth.complexity)
8175 return saved_depth;
8176
8177 /* If we found hadn't found anything, use the depth of the current
8178 expression. Do NOT add one extra level, we want to compute the
8179 maximum depth among sub-expressions. We'll increment it later,
8180 if appropriate. */
8181 if (!saved_depth.complexity)
8182 return best_depth;
8183
8184 /* Combine the entryval count so that regardless of which one we
8185 return, the entryval count is accurate. */
8186 best_depth.entryvals = saved_depth.entryvals
8187 = best_depth.entryvals + saved_depth.entryvals;
8188
8189 if (saved_depth.complexity < best_depth.complexity)
8190 return best_depth;
8191 else
8192 return saved_depth;
8193 }
8194
8195 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8196 DATA for cselib expand callback. If PENDRECP is given, indicate in
8197 it whether any sub-expression couldn't be fully evaluated because
8198 it is pending recursion resolution. */
8199
8200 static inline rtx
8201 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8202 {
8203 struct expand_loc_callback_data *elcd
8204 = (struct expand_loc_callback_data *) data;
8205 location_chain loc, next;
8206 rtx result = NULL;
8207 int first_child, result_first_child, last_child;
8208 bool pending_recursion;
8209 rtx loc_from = NULL;
8210 struct elt_loc_list *cloc = NULL;
8211 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8212 int wanted_entryvals, found_entryvals = 0;
8213
8214 /* Clear all backlinks pointing at this, so that we're not notified
8215 while we're active. */
8216 loc_exp_dep_clear (var);
8217
8218 retry:
8219 if (var->onepart == ONEPART_VALUE)
8220 {
8221 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8222
8223 gcc_checking_assert (cselib_preserved_value_p (val));
8224
8225 cloc = val->locs;
8226 }
8227
8228 first_child = result_first_child = last_child
8229 = elcd->expanding.length ();
8230
8231 wanted_entryvals = found_entryvals;
8232
8233 /* Attempt to expand each available location in turn. */
8234 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8235 loc || cloc; loc = next)
8236 {
8237 result_first_child = last_child;
8238
8239 if (!loc)
8240 {
8241 loc_from = cloc->loc;
8242 next = loc;
8243 cloc = cloc->next;
8244 if (unsuitable_loc (loc_from))
8245 continue;
8246 }
8247 else
8248 {
8249 loc_from = loc->loc;
8250 next = loc->next;
8251 }
8252
8253 gcc_checking_assert (!unsuitable_loc (loc_from));
8254
8255 elcd->depth.complexity = elcd->depth.entryvals = 0;
8256 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8257 vt_expand_loc_callback, data);
8258 last_child = elcd->expanding.length ();
8259
8260 if (result)
8261 {
8262 depth = elcd->depth;
8263
8264 gcc_checking_assert (depth.complexity
8265 || result_first_child == last_child);
8266
8267 if (last_child - result_first_child != 1)
8268 {
8269 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8270 depth.entryvals++;
8271 depth.complexity++;
8272 }
8273
8274 if (depth.complexity <= EXPR_USE_DEPTH)
8275 {
8276 if (depth.entryvals <= wanted_entryvals)
8277 break;
8278 else if (!found_entryvals || depth.entryvals < found_entryvals)
8279 found_entryvals = depth.entryvals;
8280 }
8281
8282 result = NULL;
8283 }
8284
8285 /* Set it up in case we leave the loop. */
8286 depth.complexity = depth.entryvals = 0;
8287 loc_from = NULL;
8288 result_first_child = first_child;
8289 }
8290
8291 if (!loc_from && wanted_entryvals < found_entryvals)
8292 {
8293 /* We found entries with ENTRY_VALUEs and skipped them. Since
8294 we could not find any expansions without ENTRY_VALUEs, but we
8295 found at least one with them, go back and get an entry with
8296 the minimum number ENTRY_VALUE count that we found. We could
8297 avoid looping, but since each sub-loc is already resolved,
8298 the re-expansion should be trivial. ??? Should we record all
8299 attempted locs as dependencies, so that we retry the
8300 expansion should any of them change, in the hope it can give
8301 us a new entry without an ENTRY_VALUE? */
8302 elcd->expanding.truncate (first_child);
8303 goto retry;
8304 }
8305
8306 /* Register all encountered dependencies as active. */
8307 pending_recursion = loc_exp_dep_set
8308 (var, result, elcd->expanding.address () + result_first_child,
8309 last_child - result_first_child, elcd->vars);
8310
8311 elcd->expanding.truncate (first_child);
8312
8313 /* Record where the expansion came from. */
8314 gcc_checking_assert (!result || !pending_recursion);
8315 VAR_LOC_FROM (var) = loc_from;
8316 VAR_LOC_DEPTH (var) = depth;
8317
8318 gcc_checking_assert (!depth.complexity == !result);
8319
8320 elcd->depth = update_depth (saved_depth, depth);
8321
8322 /* Indicate whether any of the dependencies are pending recursion
8323 resolution. */
8324 if (pendrecp)
8325 *pendrecp = pending_recursion;
8326
8327 if (!pendrecp || !pending_recursion)
8328 var->var_part[0].cur_loc = result;
8329
8330 return result;
8331 }
8332
8333 /* Callback for cselib_expand_value, that looks for expressions
8334 holding the value in the var-tracking hash tables. Return X for
8335 standard processing, anything else is to be used as-is. */
8336
8337 static rtx
8338 vt_expand_loc_callback (rtx x, bitmap regs,
8339 int max_depth ATTRIBUTE_UNUSED,
8340 void *data)
8341 {
8342 struct expand_loc_callback_data *elcd
8343 = (struct expand_loc_callback_data *) data;
8344 decl_or_value dv;
8345 variable var;
8346 rtx result, subreg;
8347 bool pending_recursion = false;
8348 bool from_empty = false;
8349
8350 switch (GET_CODE (x))
8351 {
8352 case SUBREG:
8353 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8354 EXPR_DEPTH,
8355 vt_expand_loc_callback, data);
8356
8357 if (!subreg)
8358 return NULL;
8359
8360 result = simplify_gen_subreg (GET_MODE (x), subreg,
8361 GET_MODE (SUBREG_REG (x)),
8362 SUBREG_BYTE (x));
8363
8364 /* Invalid SUBREGs are ok in debug info. ??? We could try
8365 alternate expansions for the VALUE as well. */
8366 if (!result)
8367 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8368
8369 return result;
8370
8371 case DEBUG_EXPR:
8372 case VALUE:
8373 dv = dv_from_rtx (x);
8374 break;
8375
8376 default:
8377 return x;
8378 }
8379
8380 elcd->expanding.safe_push (x);
8381
8382 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8383 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8384
8385 if (NO_LOC_P (x))
8386 {
8387 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8388 return NULL;
8389 }
8390
8391 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8392
8393 if (!var)
8394 {
8395 from_empty = true;
8396 var = variable_from_dropped (dv, INSERT);
8397 }
8398
8399 gcc_checking_assert (var);
8400
8401 if (!dv_changed_p (dv))
8402 {
8403 gcc_checking_assert (!NO_LOC_P (x));
8404 gcc_checking_assert (var->var_part[0].cur_loc);
8405 gcc_checking_assert (VAR_LOC_1PAUX (var));
8406 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8407
8408 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8409
8410 return var->var_part[0].cur_loc;
8411 }
8412
8413 VALUE_RECURSED_INTO (x) = true;
8414 /* This is tentative, but it makes some tests simpler. */
8415 NO_LOC_P (x) = true;
8416
8417 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8418
8419 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8420
8421 if (pending_recursion)
8422 {
8423 gcc_checking_assert (!result);
8424 elcd->pending.safe_push (x);
8425 }
8426 else
8427 {
8428 NO_LOC_P (x) = !result;
8429 VALUE_RECURSED_INTO (x) = false;
8430 set_dv_changed (dv, false);
8431
8432 if (result)
8433 notify_dependents_of_resolved_value (var, elcd->vars);
8434 }
8435
8436 return result;
8437 }
8438
8439 /* While expanding variables, we may encounter recursion cycles
8440 because of mutual (possibly indirect) dependencies between two
8441 particular variables (or values), say A and B. If we're trying to
8442 expand A when we get to B, which in turn attempts to expand A, if
8443 we can't find any other expansion for B, we'll add B to this
8444 pending-recursion stack, and tentatively return NULL for its
8445 location. This tentative value will be used for any other
8446 occurrences of B, unless A gets some other location, in which case
8447 it will notify B that it is worth another try at computing a
8448 location for it, and it will use the location computed for A then.
8449 At the end of the expansion, the tentative NULL locations become
8450 final for all members of PENDING that didn't get a notification.
8451 This function performs this finalization of NULL locations. */
8452
8453 static void
8454 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8455 {
8456 while (!pending->is_empty ())
8457 {
8458 rtx x = pending->pop ();
8459 decl_or_value dv;
8460
8461 if (!VALUE_RECURSED_INTO (x))
8462 continue;
8463
8464 gcc_checking_assert (NO_LOC_P (x));
8465 VALUE_RECURSED_INTO (x) = false;
8466 dv = dv_from_rtx (x);
8467 gcc_checking_assert (dv_changed_p (dv));
8468 set_dv_changed (dv, false);
8469 }
8470 }
8471
8472 /* Initialize expand_loc_callback_data D with variable hash table V.
8473 It must be a macro because of alloca (vec stack). */
8474 #define INIT_ELCD(d, v) \
8475 do \
8476 { \
8477 (d).vars = (v); \
8478 (d).depth.complexity = (d).depth.entryvals = 0; \
8479 } \
8480 while (0)
8481 /* Finalize expand_loc_callback_data D, resolved to location L. */
8482 #define FINI_ELCD(d, l) \
8483 do \
8484 { \
8485 resolve_expansions_pending_recursion (&(d).pending); \
8486 (d).pending.release (); \
8487 (d).expanding.release (); \
8488 \
8489 if ((l) && MEM_P (l)) \
8490 (l) = targetm.delegitimize_address (l); \
8491 } \
8492 while (0)
8493
8494 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8495 equivalences in VARS, updating their CUR_LOCs in the process. */
8496
8497 static rtx
8498 vt_expand_loc (rtx loc, variable_table_type vars)
8499 {
8500 struct expand_loc_callback_data data;
8501 rtx result;
8502
8503 if (!MAY_HAVE_DEBUG_INSNS)
8504 return loc;
8505
8506 INIT_ELCD (data, vars);
8507
8508 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8509 vt_expand_loc_callback, &data);
8510
8511 FINI_ELCD (data, result);
8512
8513 return result;
8514 }
8515
8516 /* Expand the one-part VARiable to a location, using the equivalences
8517 in VARS, updating their CUR_LOCs in the process. */
8518
8519 static rtx
8520 vt_expand_1pvar (variable var, variable_table_type vars)
8521 {
8522 struct expand_loc_callback_data data;
8523 rtx loc;
8524
8525 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8526
8527 if (!dv_changed_p (var->dv))
8528 return var->var_part[0].cur_loc;
8529
8530 INIT_ELCD (data, vars);
8531
8532 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8533
8534 gcc_checking_assert (data.expanding.is_empty ());
8535
8536 FINI_ELCD (data, loc);
8537
8538 return loc;
8539 }
8540
8541 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8542 additional parameters: WHERE specifies whether the note shall be emitted
8543 before or after instruction INSN. */
8544
8545 int
8546 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8547 {
8548 variable var = *varp;
8549 rtx insn = data->insn;
8550 enum emit_note_where where = data->where;
8551 variable_table_type vars = data->vars;
8552 rtx note, note_vl;
8553 int i, j, n_var_parts;
8554 bool complete;
8555 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8556 HOST_WIDE_INT last_limit;
8557 tree type_size_unit;
8558 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8559 rtx loc[MAX_VAR_PARTS];
8560 tree decl;
8561 location_chain lc;
8562
8563 gcc_checking_assert (var->onepart == NOT_ONEPART
8564 || var->onepart == ONEPART_VDECL);
8565
8566 decl = dv_as_decl (var->dv);
8567
8568 complete = true;
8569 last_limit = 0;
8570 n_var_parts = 0;
8571 if (!var->onepart)
8572 for (i = 0; i < var->n_var_parts; i++)
8573 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8574 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8575 for (i = 0; i < var->n_var_parts; i++)
8576 {
8577 enum machine_mode mode, wider_mode;
8578 rtx loc2;
8579 HOST_WIDE_INT offset;
8580
8581 if (i == 0 && var->onepart)
8582 {
8583 gcc_checking_assert (var->n_var_parts == 1);
8584 offset = 0;
8585 initialized = VAR_INIT_STATUS_INITIALIZED;
8586 loc2 = vt_expand_1pvar (var, vars);
8587 }
8588 else
8589 {
8590 if (last_limit < VAR_PART_OFFSET (var, i))
8591 {
8592 complete = false;
8593 break;
8594 }
8595 else if (last_limit > VAR_PART_OFFSET (var, i))
8596 continue;
8597 offset = VAR_PART_OFFSET (var, i);
8598 loc2 = var->var_part[i].cur_loc;
8599 if (loc2 && GET_CODE (loc2) == MEM
8600 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8601 {
8602 rtx depval = XEXP (loc2, 0);
8603
8604 loc2 = vt_expand_loc (loc2, vars);
8605
8606 if (loc2)
8607 loc_exp_insert_dep (var, depval, vars);
8608 }
8609 if (!loc2)
8610 {
8611 complete = false;
8612 continue;
8613 }
8614 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8615 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8616 if (var->var_part[i].cur_loc == lc->loc)
8617 {
8618 initialized = lc->init;
8619 break;
8620 }
8621 gcc_assert (lc);
8622 }
8623
8624 offsets[n_var_parts] = offset;
8625 if (!loc2)
8626 {
8627 complete = false;
8628 continue;
8629 }
8630 loc[n_var_parts] = loc2;
8631 mode = GET_MODE (var->var_part[i].cur_loc);
8632 if (mode == VOIDmode && var->onepart)
8633 mode = DECL_MODE (decl);
8634 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8635
8636 /* Attempt to merge adjacent registers or memory. */
8637 wider_mode = GET_MODE_WIDER_MODE (mode);
8638 for (j = i + 1; j < var->n_var_parts; j++)
8639 if (last_limit <= VAR_PART_OFFSET (var, j))
8640 break;
8641 if (j < var->n_var_parts
8642 && wider_mode != VOIDmode
8643 && var->var_part[j].cur_loc
8644 && mode == GET_MODE (var->var_part[j].cur_loc)
8645 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8646 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8647 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8648 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8649 {
8650 rtx new_loc = NULL;
8651
8652 if (REG_P (loc[n_var_parts])
8653 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8654 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8655 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8656 == REGNO (loc2))
8657 {
8658 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8659 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8660 mode, 0);
8661 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8662 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8663 if (new_loc)
8664 {
8665 if (!REG_P (new_loc)
8666 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8667 new_loc = NULL;
8668 else
8669 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8670 }
8671 }
8672 else if (MEM_P (loc[n_var_parts])
8673 && GET_CODE (XEXP (loc2, 0)) == PLUS
8674 && REG_P (XEXP (XEXP (loc2, 0), 0))
8675 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8676 {
8677 if ((REG_P (XEXP (loc[n_var_parts], 0))
8678 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8679 XEXP (XEXP (loc2, 0), 0))
8680 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8681 == GET_MODE_SIZE (mode))
8682 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8683 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8684 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8685 XEXP (XEXP (loc2, 0), 0))
8686 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8687 + GET_MODE_SIZE (mode)
8688 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8689 new_loc = adjust_address_nv (loc[n_var_parts],
8690 wider_mode, 0);
8691 }
8692
8693 if (new_loc)
8694 {
8695 loc[n_var_parts] = new_loc;
8696 mode = wider_mode;
8697 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8698 i = j;
8699 }
8700 }
8701 ++n_var_parts;
8702 }
8703 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8704 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8705 complete = false;
8706
8707 if (! flag_var_tracking_uninit)
8708 initialized = VAR_INIT_STATUS_INITIALIZED;
8709
8710 note_vl = NULL_RTX;
8711 if (!complete)
8712 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8713 (int) initialized);
8714 else if (n_var_parts == 1)
8715 {
8716 rtx expr_list;
8717
8718 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8719 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8720 else
8721 expr_list = loc[0];
8722
8723 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8724 (int) initialized);
8725 }
8726 else if (n_var_parts)
8727 {
8728 rtx parallel;
8729
8730 for (i = 0; i < n_var_parts; i++)
8731 loc[i]
8732 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8733
8734 parallel = gen_rtx_PARALLEL (VOIDmode,
8735 gen_rtvec_v (n_var_parts, loc));
8736 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8737 parallel, (int) initialized);
8738 }
8739
8740 if (where != EMIT_NOTE_BEFORE_INSN)
8741 {
8742 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8743 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8744 NOTE_DURING_CALL_P (note) = true;
8745 }
8746 else
8747 {
8748 /* Make sure that the call related notes come first. */
8749 while (NEXT_INSN (insn)
8750 && NOTE_P (insn)
8751 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8752 && NOTE_DURING_CALL_P (insn))
8753 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8754 insn = NEXT_INSN (insn);
8755 if (NOTE_P (insn)
8756 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8757 && NOTE_DURING_CALL_P (insn))
8758 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8759 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8760 else
8761 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8762 }
8763 NOTE_VAR_LOCATION (note) = note_vl;
8764
8765 set_dv_changed (var->dv, false);
8766 gcc_assert (var->in_changed_variables);
8767 var->in_changed_variables = false;
8768 changed_variables.clear_slot (varp);
8769
8770 /* Continue traversing the hash table. */
8771 return 1;
8772 }
8773
8774 /* While traversing changed_variables, push onto DATA (a stack of RTX
8775 values) entries that aren't user variables. */
8776
8777 int
8778 var_track_values_to_stack (variable_def **slot,
8779 vec<rtx, va_heap> *changed_values_stack)
8780 {
8781 variable var = *slot;
8782
8783 if (var->onepart == ONEPART_VALUE)
8784 changed_values_stack->safe_push (dv_as_value (var->dv));
8785 else if (var->onepart == ONEPART_DEXPR)
8786 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8787
8788 return 1;
8789 }
8790
8791 /* Remove from changed_variables the entry whose DV corresponds to
8792 value or debug_expr VAL. */
8793 static void
8794 remove_value_from_changed_variables (rtx val)
8795 {
8796 decl_or_value dv = dv_from_rtx (val);
8797 variable_def **slot;
8798 variable var;
8799
8800 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8801 NO_INSERT);
8802 var = *slot;
8803 var->in_changed_variables = false;
8804 changed_variables.clear_slot (slot);
8805 }
8806
8807 /* If VAL (a value or debug_expr) has backlinks to variables actively
8808 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8809 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8810 have dependencies of their own to notify. */
8811
8812 static void
8813 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8814 vec<rtx, va_heap> *changed_values_stack)
8815 {
8816 variable_def **slot;
8817 variable var;
8818 loc_exp_dep *led;
8819 decl_or_value dv = dv_from_rtx (val);
8820
8821 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8822 NO_INSERT);
8823 if (!slot)
8824 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8825 if (!slot)
8826 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8827 NO_INSERT);
8828 var = *slot;
8829
8830 while ((led = VAR_LOC_DEP_LST (var)))
8831 {
8832 decl_or_value ldv = led->dv;
8833 variable ivar;
8834
8835 /* Deactivate and remove the backlink, as it was “used up”. It
8836 makes no sense to attempt to notify the same entity again:
8837 either it will be recomputed and re-register an active
8838 dependency, or it will still have the changed mark. */
8839 if (led->next)
8840 led->next->pprev = led->pprev;
8841 if (led->pprev)
8842 *led->pprev = led->next;
8843 led->next = NULL;
8844 led->pprev = NULL;
8845
8846 if (dv_changed_p (ldv))
8847 continue;
8848
8849 switch (dv_onepart_p (ldv))
8850 {
8851 case ONEPART_VALUE:
8852 case ONEPART_DEXPR:
8853 set_dv_changed (ldv, true);
8854 changed_values_stack->safe_push (dv_as_rtx (ldv));
8855 break;
8856
8857 case ONEPART_VDECL:
8858 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8859 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8860 variable_was_changed (ivar, NULL);
8861 break;
8862
8863 case NOT_ONEPART:
8864 pool_free (loc_exp_dep_pool, led);
8865 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8866 if (ivar)
8867 {
8868 int i = ivar->n_var_parts;
8869 while (i--)
8870 {
8871 rtx loc = ivar->var_part[i].cur_loc;
8872
8873 if (loc && GET_CODE (loc) == MEM
8874 && XEXP (loc, 0) == val)
8875 {
8876 variable_was_changed (ivar, NULL);
8877 break;
8878 }
8879 }
8880 }
8881 break;
8882
8883 default:
8884 gcc_unreachable ();
8885 }
8886 }
8887 }
8888
8889 /* Take out of changed_variables any entries that don't refer to use
8890 variables. Back-propagate change notifications from values and
8891 debug_exprs to their active dependencies in HTAB or in
8892 CHANGED_VARIABLES. */
8893
8894 static void
8895 process_changed_values (variable_table_type htab)
8896 {
8897 int i, n;
8898 rtx val;
8899 auto_vec<rtx, 20> changed_values_stack;
8900
8901 /* Move values from changed_variables to changed_values_stack. */
8902 changed_variables
8903 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8904 (&changed_values_stack);
8905
8906 /* Back-propagate change notifications in values while popping
8907 them from the stack. */
8908 for (n = i = changed_values_stack.length ();
8909 i > 0; i = changed_values_stack.length ())
8910 {
8911 val = changed_values_stack.pop ();
8912 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8913
8914 /* This condition will hold when visiting each of the entries
8915 originally in changed_variables. We can't remove them
8916 earlier because this could drop the backlinks before we got a
8917 chance to use them. */
8918 if (i == n)
8919 {
8920 remove_value_from_changed_variables (val);
8921 n--;
8922 }
8923 }
8924 }
8925
8926 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8927 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8928 the notes shall be emitted before of after instruction INSN. */
8929
8930 static void
8931 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8932 shared_hash vars)
8933 {
8934 emit_note_data data;
8935 variable_table_type htab = shared_hash_htab (vars);
8936
8937 if (!changed_variables.elements ())
8938 return;
8939
8940 if (MAY_HAVE_DEBUG_INSNS)
8941 process_changed_values (htab);
8942
8943 data.insn = insn;
8944 data.where = where;
8945 data.vars = htab;
8946
8947 changed_variables
8948 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8949 }
8950
8951 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8952 same variable in hash table DATA or is not there at all. */
8953
8954 int
8955 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8956 {
8957 variable old_var, new_var;
8958
8959 old_var = *slot;
8960 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8961
8962 if (!new_var)
8963 {
8964 /* Variable has disappeared. */
8965 variable empty_var = NULL;
8966
8967 if (old_var->onepart == ONEPART_VALUE
8968 || old_var->onepart == ONEPART_DEXPR)
8969 {
8970 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8971 if (empty_var)
8972 {
8973 gcc_checking_assert (!empty_var->in_changed_variables);
8974 if (!VAR_LOC_1PAUX (old_var))
8975 {
8976 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8977 VAR_LOC_1PAUX (empty_var) = NULL;
8978 }
8979 else
8980 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8981 }
8982 }
8983
8984 if (!empty_var)
8985 {
8986 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8987 empty_var->dv = old_var->dv;
8988 empty_var->refcount = 0;
8989 empty_var->n_var_parts = 0;
8990 empty_var->onepart = old_var->onepart;
8991 empty_var->in_changed_variables = false;
8992 }
8993
8994 if (empty_var->onepart)
8995 {
8996 /* Propagate the auxiliary data to (ultimately)
8997 changed_variables. */
8998 empty_var->var_part[0].loc_chain = NULL;
8999 empty_var->var_part[0].cur_loc = NULL;
9000 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
9001 VAR_LOC_1PAUX (old_var) = NULL;
9002 }
9003 variable_was_changed (empty_var, NULL);
9004 /* Continue traversing the hash table. */
9005 return 1;
9006 }
9007 /* Update cur_loc and one-part auxiliary data, before new_var goes
9008 through variable_was_changed. */
9009 if (old_var != new_var && new_var->onepart)
9010 {
9011 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9012 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9013 VAR_LOC_1PAUX (old_var) = NULL;
9014 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9015 }
9016 if (variable_different_p (old_var, new_var))
9017 variable_was_changed (new_var, NULL);
9018
9019 /* Continue traversing the hash table. */
9020 return 1;
9021 }
9022
9023 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9024 table DATA. */
9025
9026 int
9027 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9028 {
9029 variable old_var, new_var;
9030
9031 new_var = *slot;
9032 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9033 if (!old_var)
9034 {
9035 int i;
9036 for (i = 0; i < new_var->n_var_parts; i++)
9037 new_var->var_part[i].cur_loc = NULL;
9038 variable_was_changed (new_var, NULL);
9039 }
9040
9041 /* Continue traversing the hash table. */
9042 return 1;
9043 }
9044
9045 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9046 NEW_SET. */
9047
9048 static void
9049 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9050 dataflow_set *new_set)
9051 {
9052 shared_hash_htab (old_set->vars)
9053 .traverse <variable_table_type, emit_notes_for_differences_1>
9054 (shared_hash_htab (new_set->vars));
9055 shared_hash_htab (new_set->vars)
9056 .traverse <variable_table_type, emit_notes_for_differences_2>
9057 (shared_hash_htab (old_set->vars));
9058 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9059 }
9060
9061 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9062
9063 static rtx
9064 next_non_note_insn_var_location (rtx insn)
9065 {
9066 while (insn)
9067 {
9068 insn = NEXT_INSN (insn);
9069 if (insn == 0
9070 || !NOTE_P (insn)
9071 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9072 break;
9073 }
9074
9075 return insn;
9076 }
9077
9078 /* Emit the notes for changes of location parts in the basic block BB. */
9079
9080 static void
9081 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9082 {
9083 unsigned int i;
9084 micro_operation *mo;
9085
9086 dataflow_set_clear (set);
9087 dataflow_set_copy (set, &VTI (bb)->in);
9088
9089 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9090 {
9091 rtx insn = mo->insn;
9092 rtx next_insn = next_non_note_insn_var_location (insn);
9093
9094 switch (mo->type)
9095 {
9096 case MO_CALL:
9097 dataflow_set_clear_at_call (set);
9098 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9099 {
9100 rtx arguments = mo->u.loc, *p = &arguments, note;
9101 while (*p)
9102 {
9103 XEXP (XEXP (*p, 0), 1)
9104 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9105 shared_hash_htab (set->vars));
9106 /* If expansion is successful, keep it in the list. */
9107 if (XEXP (XEXP (*p, 0), 1))
9108 p = &XEXP (*p, 1);
9109 /* Otherwise, if the following item is data_value for it,
9110 drop it too too. */
9111 else if (XEXP (*p, 1)
9112 && REG_P (XEXP (XEXP (*p, 0), 0))
9113 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9114 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9115 0))
9116 && REGNO (XEXP (XEXP (*p, 0), 0))
9117 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9118 0), 0)))
9119 *p = XEXP (XEXP (*p, 1), 1);
9120 /* Just drop this item. */
9121 else
9122 *p = XEXP (*p, 1);
9123 }
9124 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9125 NOTE_VAR_LOCATION (note) = arguments;
9126 }
9127 break;
9128
9129 case MO_USE:
9130 {
9131 rtx loc = mo->u.loc;
9132
9133 if (REG_P (loc))
9134 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9135 else
9136 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9137
9138 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9139 }
9140 break;
9141
9142 case MO_VAL_LOC:
9143 {
9144 rtx loc = mo->u.loc;
9145 rtx val, vloc;
9146 tree var;
9147
9148 if (GET_CODE (loc) == CONCAT)
9149 {
9150 val = XEXP (loc, 0);
9151 vloc = XEXP (loc, 1);
9152 }
9153 else
9154 {
9155 val = NULL_RTX;
9156 vloc = loc;
9157 }
9158
9159 var = PAT_VAR_LOCATION_DECL (vloc);
9160
9161 clobber_variable_part (set, NULL_RTX,
9162 dv_from_decl (var), 0, NULL_RTX);
9163 if (val)
9164 {
9165 if (VAL_NEEDS_RESOLUTION (loc))
9166 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9167 set_variable_part (set, val, dv_from_decl (var), 0,
9168 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9169 INSERT);
9170 }
9171 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9172 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9173 dv_from_decl (var), 0,
9174 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9175 INSERT);
9176
9177 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9178 }
9179 break;
9180
9181 case MO_VAL_USE:
9182 {
9183 rtx loc = mo->u.loc;
9184 rtx val, vloc, uloc;
9185
9186 vloc = uloc = XEXP (loc, 1);
9187 val = XEXP (loc, 0);
9188
9189 if (GET_CODE (val) == CONCAT)
9190 {
9191 uloc = XEXP (val, 1);
9192 val = XEXP (val, 0);
9193 }
9194
9195 if (VAL_NEEDS_RESOLUTION (loc))
9196 val_resolve (set, val, vloc, insn);
9197 else
9198 val_store (set, val, uloc, insn, false);
9199
9200 if (VAL_HOLDS_TRACK_EXPR (loc))
9201 {
9202 if (GET_CODE (uloc) == REG)
9203 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9204 NULL);
9205 else if (GET_CODE (uloc) == MEM)
9206 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9207 NULL);
9208 }
9209
9210 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9211 }
9212 break;
9213
9214 case MO_VAL_SET:
9215 {
9216 rtx loc = mo->u.loc;
9217 rtx val, vloc, uloc;
9218 rtx dstv, srcv;
9219
9220 vloc = loc;
9221 uloc = XEXP (vloc, 1);
9222 val = XEXP (vloc, 0);
9223 vloc = uloc;
9224
9225 if (GET_CODE (uloc) == SET)
9226 {
9227 dstv = SET_DEST (uloc);
9228 srcv = SET_SRC (uloc);
9229 }
9230 else
9231 {
9232 dstv = uloc;
9233 srcv = NULL;
9234 }
9235
9236 if (GET_CODE (val) == CONCAT)
9237 {
9238 dstv = vloc = XEXP (val, 1);
9239 val = XEXP (val, 0);
9240 }
9241
9242 if (GET_CODE (vloc) == SET)
9243 {
9244 srcv = SET_SRC (vloc);
9245
9246 gcc_assert (val != srcv);
9247 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9248
9249 dstv = vloc = SET_DEST (vloc);
9250
9251 if (VAL_NEEDS_RESOLUTION (loc))
9252 val_resolve (set, val, srcv, insn);
9253 }
9254 else if (VAL_NEEDS_RESOLUTION (loc))
9255 {
9256 gcc_assert (GET_CODE (uloc) == SET
9257 && GET_CODE (SET_SRC (uloc)) == REG);
9258 val_resolve (set, val, SET_SRC (uloc), insn);
9259 }
9260
9261 if (VAL_HOLDS_TRACK_EXPR (loc))
9262 {
9263 if (VAL_EXPR_IS_CLOBBERED (loc))
9264 {
9265 if (REG_P (uloc))
9266 var_reg_delete (set, uloc, true);
9267 else if (MEM_P (uloc))
9268 {
9269 gcc_assert (MEM_P (dstv));
9270 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9271 var_mem_delete (set, dstv, true);
9272 }
9273 }
9274 else
9275 {
9276 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9277 rtx src = NULL, dst = uloc;
9278 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9279
9280 if (GET_CODE (uloc) == SET)
9281 {
9282 src = SET_SRC (uloc);
9283 dst = SET_DEST (uloc);
9284 }
9285
9286 if (copied_p)
9287 {
9288 status = find_src_status (set, src);
9289
9290 src = find_src_set_src (set, src);
9291 }
9292
9293 if (REG_P (dst))
9294 var_reg_delete_and_set (set, dst, !copied_p,
9295 status, srcv);
9296 else if (MEM_P (dst))
9297 {
9298 gcc_assert (MEM_P (dstv));
9299 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9300 var_mem_delete_and_set (set, dstv, !copied_p,
9301 status, srcv);
9302 }
9303 }
9304 }
9305 else if (REG_P (uloc))
9306 var_regno_delete (set, REGNO (uloc));
9307 else if (MEM_P (uloc))
9308 {
9309 gcc_checking_assert (GET_CODE (vloc) == MEM);
9310 gcc_checking_assert (vloc == dstv);
9311 if (vloc != dstv)
9312 clobber_overlapping_mems (set, vloc);
9313 }
9314
9315 val_store (set, val, dstv, insn, true);
9316
9317 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9318 set->vars);
9319 }
9320 break;
9321
9322 case MO_SET:
9323 {
9324 rtx loc = mo->u.loc;
9325 rtx set_src = NULL;
9326
9327 if (GET_CODE (loc) == SET)
9328 {
9329 set_src = SET_SRC (loc);
9330 loc = SET_DEST (loc);
9331 }
9332
9333 if (REG_P (loc))
9334 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9335 set_src);
9336 else
9337 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9338 set_src);
9339
9340 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9341 set->vars);
9342 }
9343 break;
9344
9345 case MO_COPY:
9346 {
9347 rtx loc = mo->u.loc;
9348 enum var_init_status src_status;
9349 rtx set_src = NULL;
9350
9351 if (GET_CODE (loc) == SET)
9352 {
9353 set_src = SET_SRC (loc);
9354 loc = SET_DEST (loc);
9355 }
9356
9357 src_status = find_src_status (set, set_src);
9358 set_src = find_src_set_src (set, set_src);
9359
9360 if (REG_P (loc))
9361 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9362 else
9363 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9364
9365 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9366 set->vars);
9367 }
9368 break;
9369
9370 case MO_USE_NO_VAR:
9371 {
9372 rtx loc = mo->u.loc;
9373
9374 if (REG_P (loc))
9375 var_reg_delete (set, loc, false);
9376 else
9377 var_mem_delete (set, loc, false);
9378
9379 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9380 }
9381 break;
9382
9383 case MO_CLOBBER:
9384 {
9385 rtx loc = mo->u.loc;
9386
9387 if (REG_P (loc))
9388 var_reg_delete (set, loc, true);
9389 else
9390 var_mem_delete (set, loc, true);
9391
9392 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9393 set->vars);
9394 }
9395 break;
9396
9397 case MO_ADJUST:
9398 set->stack_adjust += mo->u.adjust;
9399 break;
9400 }
9401 }
9402 }
9403
9404 /* Emit notes for the whole function. */
9405
9406 static void
9407 vt_emit_notes (void)
9408 {
9409 basic_block bb;
9410 dataflow_set cur;
9411
9412 gcc_assert (!changed_variables.elements ());
9413
9414 /* Free memory occupied by the out hash tables, as they aren't used
9415 anymore. */
9416 FOR_EACH_BB_FN (bb, cfun)
9417 dataflow_set_clear (&VTI (bb)->out);
9418
9419 /* Enable emitting notes by functions (mainly by set_variable_part and
9420 delete_variable_part). */
9421 emit_notes = true;
9422
9423 if (MAY_HAVE_DEBUG_INSNS)
9424 {
9425 dropped_values.create (cselib_get_next_uid () * 2);
9426 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9427 sizeof (loc_exp_dep), 64);
9428 }
9429
9430 dataflow_set_init (&cur);
9431
9432 FOR_EACH_BB_FN (bb, cfun)
9433 {
9434 /* Emit the notes for changes of variable locations between two
9435 subsequent basic blocks. */
9436 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9437
9438 if (MAY_HAVE_DEBUG_INSNS)
9439 local_get_addr_cache = pointer_map_create ();
9440
9441 /* Emit the notes for the changes in the basic block itself. */
9442 emit_notes_in_bb (bb, &cur);
9443
9444 if (MAY_HAVE_DEBUG_INSNS)
9445 pointer_map_destroy (local_get_addr_cache);
9446 local_get_addr_cache = NULL;
9447
9448 /* Free memory occupied by the in hash table, we won't need it
9449 again. */
9450 dataflow_set_clear (&VTI (bb)->in);
9451 }
9452 #ifdef ENABLE_CHECKING
9453 shared_hash_htab (cur.vars)
9454 .traverse <variable_table_type, emit_notes_for_differences_1>
9455 (shared_hash_htab (empty_shared_hash));
9456 #endif
9457 dataflow_set_destroy (&cur);
9458
9459 if (MAY_HAVE_DEBUG_INSNS)
9460 dropped_values.dispose ();
9461
9462 emit_notes = false;
9463 }
9464
9465 /* If there is a declaration and offset associated with register/memory RTL
9466 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9467
9468 static bool
9469 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9470 {
9471 if (REG_P (rtl))
9472 {
9473 if (REG_ATTRS (rtl))
9474 {
9475 *declp = REG_EXPR (rtl);
9476 *offsetp = REG_OFFSET (rtl);
9477 return true;
9478 }
9479 }
9480 else if (GET_CODE (rtl) == PARALLEL)
9481 {
9482 tree decl = NULL_TREE;
9483 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9484 int len = XVECLEN (rtl, 0), i;
9485
9486 for (i = 0; i < len; i++)
9487 {
9488 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9489 if (!REG_P (reg) || !REG_ATTRS (reg))
9490 break;
9491 if (!decl)
9492 decl = REG_EXPR (reg);
9493 if (REG_EXPR (reg) != decl)
9494 break;
9495 if (REG_OFFSET (reg) < offset)
9496 offset = REG_OFFSET (reg);
9497 }
9498
9499 if (i == len)
9500 {
9501 *declp = decl;
9502 *offsetp = offset;
9503 return true;
9504 }
9505 }
9506 else if (MEM_P (rtl))
9507 {
9508 if (MEM_ATTRS (rtl))
9509 {
9510 *declp = MEM_EXPR (rtl);
9511 *offsetp = INT_MEM_OFFSET (rtl);
9512 return true;
9513 }
9514 }
9515 return false;
9516 }
9517
9518 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9519 of VAL. */
9520
9521 static void
9522 record_entry_value (cselib_val *val, rtx rtl)
9523 {
9524 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9525
9526 ENTRY_VALUE_EXP (ev) = rtl;
9527
9528 cselib_add_permanent_equiv (val, ev, get_insns ());
9529 }
9530
9531 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9532
9533 static void
9534 vt_add_function_parameter (tree parm)
9535 {
9536 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9537 rtx incoming = DECL_INCOMING_RTL (parm);
9538 tree decl;
9539 enum machine_mode mode;
9540 HOST_WIDE_INT offset;
9541 dataflow_set *out;
9542 decl_or_value dv;
9543
9544 if (TREE_CODE (parm) != PARM_DECL)
9545 return;
9546
9547 if (!decl_rtl || !incoming)
9548 return;
9549
9550 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9551 return;
9552
9553 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9554 rewrite the incoming location of parameters passed on the stack
9555 into MEMs based on the argument pointer, so that incoming doesn't
9556 depend on a pseudo. */
9557 if (MEM_P (incoming)
9558 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9559 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9560 && XEXP (XEXP (incoming, 0), 0)
9561 == crtl->args.internal_arg_pointer
9562 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9563 {
9564 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9565 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9566 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9567 incoming
9568 = replace_equiv_address_nv (incoming,
9569 plus_constant (Pmode,
9570 arg_pointer_rtx, off));
9571 }
9572
9573 #ifdef HAVE_window_save
9574 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9575 If the target machine has an explicit window save instruction, the
9576 actual entry value is the corresponding OUTGOING_REGNO instead. */
9577 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9578 {
9579 if (REG_P (incoming)
9580 && HARD_REGISTER_P (incoming)
9581 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9582 {
9583 parm_reg_t p;
9584 p.incoming = incoming;
9585 incoming
9586 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9587 OUTGOING_REGNO (REGNO (incoming)), 0);
9588 p.outgoing = incoming;
9589 vec_safe_push (windowed_parm_regs, p);
9590 }
9591 else if (GET_CODE (incoming) == PARALLEL)
9592 {
9593 rtx outgoing
9594 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9595 int i;
9596
9597 for (i = 0; i < XVECLEN (incoming, 0); i++)
9598 {
9599 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9600 parm_reg_t p;
9601 p.incoming = reg;
9602 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9603 OUTGOING_REGNO (REGNO (reg)), 0);
9604 p.outgoing = reg;
9605 XVECEXP (outgoing, 0, i)
9606 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9607 XEXP (XVECEXP (incoming, 0, i), 1));
9608 vec_safe_push (windowed_parm_regs, p);
9609 }
9610
9611 incoming = outgoing;
9612 }
9613 else if (MEM_P (incoming)
9614 && REG_P (XEXP (incoming, 0))
9615 && HARD_REGISTER_P (XEXP (incoming, 0)))
9616 {
9617 rtx reg = XEXP (incoming, 0);
9618 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9619 {
9620 parm_reg_t p;
9621 p.incoming = reg;
9622 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9623 p.outgoing = reg;
9624 vec_safe_push (windowed_parm_regs, p);
9625 incoming = replace_equiv_address_nv (incoming, reg);
9626 }
9627 }
9628 }
9629 #endif
9630
9631 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9632 {
9633 if (MEM_P (incoming))
9634 {
9635 /* This means argument is passed by invisible reference. */
9636 offset = 0;
9637 decl = parm;
9638 }
9639 else
9640 {
9641 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9642 return;
9643 offset += byte_lowpart_offset (GET_MODE (incoming),
9644 GET_MODE (decl_rtl));
9645 }
9646 }
9647
9648 if (!decl)
9649 return;
9650
9651 if (parm != decl)
9652 {
9653 /* If that DECL_RTL wasn't a pseudo that got spilled to
9654 memory, bail out. Otherwise, the spill slot sharing code
9655 will force the memory to reference spill_slot_decl (%sfp),
9656 so we don't match above. That's ok, the pseudo must have
9657 referenced the entire parameter, so just reset OFFSET. */
9658 if (decl != get_spill_slot_decl (false))
9659 return;
9660 offset = 0;
9661 }
9662
9663 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9664 return;
9665
9666 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9667
9668 dv = dv_from_decl (parm);
9669
9670 if (target_for_debug_bind (parm)
9671 /* We can't deal with these right now, because this kind of
9672 variable is single-part. ??? We could handle parallels
9673 that describe multiple locations for the same single
9674 value, but ATM we don't. */
9675 && GET_CODE (incoming) != PARALLEL)
9676 {
9677 cselib_val *val;
9678 rtx lowpart;
9679
9680 /* ??? We shouldn't ever hit this, but it may happen because
9681 arguments passed by invisible reference aren't dealt with
9682 above: incoming-rtl will have Pmode rather than the
9683 expected mode for the type. */
9684 if (offset)
9685 return;
9686
9687 lowpart = var_lowpart (mode, incoming);
9688 if (!lowpart)
9689 return;
9690
9691 val = cselib_lookup_from_insn (lowpart, mode, true,
9692 VOIDmode, get_insns ());
9693
9694 /* ??? Float-typed values in memory are not handled by
9695 cselib. */
9696 if (val)
9697 {
9698 preserve_value (val);
9699 set_variable_part (out, val->val_rtx, dv, offset,
9700 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9701 dv = dv_from_value (val->val_rtx);
9702 }
9703
9704 if (MEM_P (incoming))
9705 {
9706 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9707 VOIDmode, get_insns ());
9708 if (val)
9709 {
9710 preserve_value (val);
9711 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9712 }
9713 }
9714 }
9715
9716 if (REG_P (incoming))
9717 {
9718 incoming = var_lowpart (mode, incoming);
9719 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9720 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9721 incoming);
9722 set_variable_part (out, incoming, dv, offset,
9723 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9724 if (dv_is_value_p (dv))
9725 {
9726 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9727 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9728 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9729 {
9730 enum machine_mode indmode
9731 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9732 rtx mem = gen_rtx_MEM (indmode, incoming);
9733 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9734 VOIDmode,
9735 get_insns ());
9736 if (val)
9737 {
9738 preserve_value (val);
9739 record_entry_value (val, mem);
9740 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9741 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9742 }
9743 }
9744 }
9745 }
9746 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9747 {
9748 int i;
9749
9750 for (i = 0; i < XVECLEN (incoming, 0); i++)
9751 {
9752 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9753 offset = REG_OFFSET (reg);
9754 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9755 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9756 set_variable_part (out, reg, dv, offset,
9757 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9758 }
9759 }
9760 else if (MEM_P (incoming))
9761 {
9762 incoming = var_lowpart (mode, incoming);
9763 set_variable_part (out, incoming, dv, offset,
9764 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9765 }
9766 }
9767
9768 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9769
9770 static void
9771 vt_add_function_parameters (void)
9772 {
9773 tree parm;
9774
9775 for (parm = DECL_ARGUMENTS (current_function_decl);
9776 parm; parm = DECL_CHAIN (parm))
9777 vt_add_function_parameter (parm);
9778
9779 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9780 {
9781 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9782
9783 if (TREE_CODE (vexpr) == INDIRECT_REF)
9784 vexpr = TREE_OPERAND (vexpr, 0);
9785
9786 if (TREE_CODE (vexpr) == PARM_DECL
9787 && DECL_ARTIFICIAL (vexpr)
9788 && !DECL_IGNORED_P (vexpr)
9789 && DECL_NAMELESS (vexpr))
9790 vt_add_function_parameter (vexpr);
9791 }
9792 }
9793
9794 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9795 ensure it isn't flushed during cselib_reset_table.
9796 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9797 has been eliminated. */
9798
9799 static void
9800 vt_init_cfa_base (void)
9801 {
9802 cselib_val *val;
9803
9804 #ifdef FRAME_POINTER_CFA_OFFSET
9805 cfa_base_rtx = frame_pointer_rtx;
9806 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9807 #else
9808 cfa_base_rtx = arg_pointer_rtx;
9809 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9810 #endif
9811 if (cfa_base_rtx == hard_frame_pointer_rtx
9812 || !fixed_regs[REGNO (cfa_base_rtx)])
9813 {
9814 cfa_base_rtx = NULL_RTX;
9815 return;
9816 }
9817 if (!MAY_HAVE_DEBUG_INSNS)
9818 return;
9819
9820 /* Tell alias analysis that cfa_base_rtx should share
9821 find_base_term value with stack pointer or hard frame pointer. */
9822 if (!frame_pointer_needed)
9823 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9824 else if (!crtl->stack_realign_tried)
9825 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9826
9827 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9828 VOIDmode, get_insns ());
9829 preserve_value (val);
9830 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9831 }
9832
9833 /* Allocate and initialize the data structures for variable tracking
9834 and parse the RTL to get the micro operations. */
9835
9836 static bool
9837 vt_initialize (void)
9838 {
9839 basic_block bb;
9840 HOST_WIDE_INT fp_cfa_offset = -1;
9841
9842 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9843
9844 attrs_pool = create_alloc_pool ("attrs_def pool",
9845 sizeof (struct attrs_def), 1024);
9846 var_pool = create_alloc_pool ("variable_def pool",
9847 sizeof (struct variable_def)
9848 + (MAX_VAR_PARTS - 1)
9849 * sizeof (((variable)NULL)->var_part[0]), 64);
9850 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9851 sizeof (struct location_chain_def),
9852 1024);
9853 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9854 sizeof (struct shared_hash_def), 256);
9855 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9856 empty_shared_hash->refcount = 1;
9857 empty_shared_hash->htab.create (1);
9858 changed_variables.create (10);
9859
9860 /* Init the IN and OUT sets. */
9861 FOR_ALL_BB_FN (bb, cfun)
9862 {
9863 VTI (bb)->visited = false;
9864 VTI (bb)->flooded = false;
9865 dataflow_set_init (&VTI (bb)->in);
9866 dataflow_set_init (&VTI (bb)->out);
9867 VTI (bb)->permp = NULL;
9868 }
9869
9870 if (MAY_HAVE_DEBUG_INSNS)
9871 {
9872 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9873 scratch_regs = BITMAP_ALLOC (NULL);
9874 valvar_pool = create_alloc_pool ("small variable_def pool",
9875 sizeof (struct variable_def), 256);
9876 preserved_values.create (256);
9877 global_get_addr_cache = pointer_map_create ();
9878 }
9879 else
9880 {
9881 scratch_regs = NULL;
9882 valvar_pool = NULL;
9883 global_get_addr_cache = NULL;
9884 }
9885
9886 if (MAY_HAVE_DEBUG_INSNS)
9887 {
9888 rtx reg, expr;
9889 int ofst;
9890 cselib_val *val;
9891
9892 #ifdef FRAME_POINTER_CFA_OFFSET
9893 reg = frame_pointer_rtx;
9894 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9895 #else
9896 reg = arg_pointer_rtx;
9897 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9898 #endif
9899
9900 ofst -= INCOMING_FRAME_SP_OFFSET;
9901
9902 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9903 VOIDmode, get_insns ());
9904 preserve_value (val);
9905 cselib_preserve_cfa_base_value (val, REGNO (reg));
9906 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9907 stack_pointer_rtx, -ofst);
9908 cselib_add_permanent_equiv (val, expr, get_insns ());
9909
9910 if (ofst)
9911 {
9912 val = cselib_lookup_from_insn (stack_pointer_rtx,
9913 GET_MODE (stack_pointer_rtx), 1,
9914 VOIDmode, get_insns ());
9915 preserve_value (val);
9916 expr = plus_constant (GET_MODE (reg), reg, ofst);
9917 cselib_add_permanent_equiv (val, expr, get_insns ());
9918 }
9919 }
9920
9921 /* In order to factor out the adjustments made to the stack pointer or to
9922 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9923 instead of individual location lists, we're going to rewrite MEMs based
9924 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9925 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9926 resp. arg_pointer_rtx. We can do this either when there is no frame
9927 pointer in the function and stack adjustments are consistent for all
9928 basic blocks or when there is a frame pointer and no stack realignment.
9929 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9930 has been eliminated. */
9931 if (!frame_pointer_needed)
9932 {
9933 rtx reg, elim;
9934
9935 if (!vt_stack_adjustments ())
9936 return false;
9937
9938 #ifdef FRAME_POINTER_CFA_OFFSET
9939 reg = frame_pointer_rtx;
9940 #else
9941 reg = arg_pointer_rtx;
9942 #endif
9943 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9944 if (elim != reg)
9945 {
9946 if (GET_CODE (elim) == PLUS)
9947 elim = XEXP (elim, 0);
9948 if (elim == stack_pointer_rtx)
9949 vt_init_cfa_base ();
9950 }
9951 }
9952 else if (!crtl->stack_realign_tried)
9953 {
9954 rtx reg, elim;
9955
9956 #ifdef FRAME_POINTER_CFA_OFFSET
9957 reg = frame_pointer_rtx;
9958 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9959 #else
9960 reg = arg_pointer_rtx;
9961 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9962 #endif
9963 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9964 if (elim != reg)
9965 {
9966 if (GET_CODE (elim) == PLUS)
9967 {
9968 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9969 elim = XEXP (elim, 0);
9970 }
9971 if (elim != hard_frame_pointer_rtx)
9972 fp_cfa_offset = -1;
9973 }
9974 else
9975 fp_cfa_offset = -1;
9976 }
9977
9978 /* If the stack is realigned and a DRAP register is used, we're going to
9979 rewrite MEMs based on it representing incoming locations of parameters
9980 passed on the stack into MEMs based on the argument pointer. Although
9981 we aren't going to rewrite other MEMs, we still need to initialize the
9982 virtual CFA pointer in order to ensure that the argument pointer will
9983 be seen as a constant throughout the function.
9984
9985 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9986 else if (stack_realign_drap)
9987 {
9988 rtx reg, elim;
9989
9990 #ifdef FRAME_POINTER_CFA_OFFSET
9991 reg = frame_pointer_rtx;
9992 #else
9993 reg = arg_pointer_rtx;
9994 #endif
9995 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9996 if (elim != reg)
9997 {
9998 if (GET_CODE (elim) == PLUS)
9999 elim = XEXP (elim, 0);
10000 if (elim == hard_frame_pointer_rtx)
10001 vt_init_cfa_base ();
10002 }
10003 }
10004
10005 hard_frame_pointer_adjustment = -1;
10006
10007 vt_add_function_parameters ();
10008
10009 FOR_EACH_BB_FN (bb, cfun)
10010 {
10011 rtx insn;
10012 HOST_WIDE_INT pre, post = 0;
10013 basic_block first_bb, last_bb;
10014
10015 if (MAY_HAVE_DEBUG_INSNS)
10016 {
10017 cselib_record_sets_hook = add_with_sets;
10018 if (dump_file && (dump_flags & TDF_DETAILS))
10019 fprintf (dump_file, "first value: %i\n",
10020 cselib_get_next_uid ());
10021 }
10022
10023 first_bb = bb;
10024 for (;;)
10025 {
10026 edge e;
10027 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10028 || ! single_pred_p (bb->next_bb))
10029 break;
10030 e = find_edge (bb, bb->next_bb);
10031 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10032 break;
10033 bb = bb->next_bb;
10034 }
10035 last_bb = bb;
10036
10037 /* Add the micro-operations to the vector. */
10038 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10039 {
10040 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10041 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10042 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10043 insn = NEXT_INSN (insn))
10044 {
10045 if (INSN_P (insn))
10046 {
10047 if (!frame_pointer_needed)
10048 {
10049 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10050 if (pre)
10051 {
10052 micro_operation mo;
10053 mo.type = MO_ADJUST;
10054 mo.u.adjust = pre;
10055 mo.insn = insn;
10056 if (dump_file && (dump_flags & TDF_DETAILS))
10057 log_op_type (PATTERN (insn), bb, insn,
10058 MO_ADJUST, dump_file);
10059 VTI (bb)->mos.safe_push (mo);
10060 VTI (bb)->out.stack_adjust += pre;
10061 }
10062 }
10063
10064 cselib_hook_called = false;
10065 adjust_insn (bb, insn);
10066 if (MAY_HAVE_DEBUG_INSNS)
10067 {
10068 if (CALL_P (insn))
10069 prepare_call_arguments (bb, insn);
10070 cselib_process_insn (insn);
10071 if (dump_file && (dump_flags & TDF_DETAILS))
10072 {
10073 print_rtl_single (dump_file, insn);
10074 dump_cselib_table (dump_file);
10075 }
10076 }
10077 if (!cselib_hook_called)
10078 add_with_sets (insn, 0, 0);
10079 cancel_changes (0);
10080
10081 if (!frame_pointer_needed && post)
10082 {
10083 micro_operation mo;
10084 mo.type = MO_ADJUST;
10085 mo.u.adjust = post;
10086 mo.insn = insn;
10087 if (dump_file && (dump_flags & TDF_DETAILS))
10088 log_op_type (PATTERN (insn), bb, insn,
10089 MO_ADJUST, dump_file);
10090 VTI (bb)->mos.safe_push (mo);
10091 VTI (bb)->out.stack_adjust += post;
10092 }
10093
10094 if (fp_cfa_offset != -1
10095 && hard_frame_pointer_adjustment == -1
10096 && fp_setter_insn (insn))
10097 {
10098 vt_init_cfa_base ();
10099 hard_frame_pointer_adjustment = fp_cfa_offset;
10100 /* Disassociate sp from fp now. */
10101 if (MAY_HAVE_DEBUG_INSNS)
10102 {
10103 cselib_val *v;
10104 cselib_invalidate_rtx (stack_pointer_rtx);
10105 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10106 VOIDmode);
10107 if (v && !cselib_preserved_value_p (v))
10108 {
10109 cselib_set_value_sp_based (v);
10110 preserve_value (v);
10111 }
10112 }
10113 }
10114 }
10115 }
10116 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10117 }
10118
10119 bb = last_bb;
10120
10121 if (MAY_HAVE_DEBUG_INSNS)
10122 {
10123 cselib_preserve_only_values ();
10124 cselib_reset_table (cselib_get_next_uid ());
10125 cselib_record_sets_hook = NULL;
10126 }
10127 }
10128
10129 hard_frame_pointer_adjustment = -1;
10130 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10131 cfa_base_rtx = NULL_RTX;
10132 return true;
10133 }
10134
10135 /* This is *not* reset after each function. It gives each
10136 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10137 a unique label number. */
10138
10139 static int debug_label_num = 1;
10140
10141 /* Get rid of all debug insns from the insn stream. */
10142
10143 static void
10144 delete_debug_insns (void)
10145 {
10146 basic_block bb;
10147 rtx insn, next;
10148
10149 if (!MAY_HAVE_DEBUG_INSNS)
10150 return;
10151
10152 FOR_EACH_BB_FN (bb, cfun)
10153 {
10154 FOR_BB_INSNS_SAFE (bb, insn, next)
10155 if (DEBUG_INSN_P (insn))
10156 {
10157 tree decl = INSN_VAR_LOCATION_DECL (insn);
10158 if (TREE_CODE (decl) == LABEL_DECL
10159 && DECL_NAME (decl)
10160 && !DECL_RTL_SET_P (decl))
10161 {
10162 PUT_CODE (insn, NOTE);
10163 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10164 NOTE_DELETED_LABEL_NAME (insn)
10165 = IDENTIFIER_POINTER (DECL_NAME (decl));
10166 SET_DECL_RTL (decl, insn);
10167 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10168 }
10169 else
10170 delete_insn (insn);
10171 }
10172 }
10173 }
10174
10175 /* Run a fast, BB-local only version of var tracking, to take care of
10176 information that we don't do global analysis on, such that not all
10177 information is lost. If SKIPPED holds, we're skipping the global
10178 pass entirely, so we should try to use information it would have
10179 handled as well.. */
10180
10181 static void
10182 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10183 {
10184 /* ??? Just skip it all for now. */
10185 delete_debug_insns ();
10186 }
10187
10188 /* Free the data structures needed for variable tracking. */
10189
10190 static void
10191 vt_finalize (void)
10192 {
10193 basic_block bb;
10194
10195 FOR_EACH_BB_FN (bb, cfun)
10196 {
10197 VTI (bb)->mos.release ();
10198 }
10199
10200 FOR_ALL_BB_FN (bb, cfun)
10201 {
10202 dataflow_set_destroy (&VTI (bb)->in);
10203 dataflow_set_destroy (&VTI (bb)->out);
10204 if (VTI (bb)->permp)
10205 {
10206 dataflow_set_destroy (VTI (bb)->permp);
10207 XDELETE (VTI (bb)->permp);
10208 }
10209 }
10210 free_aux_for_blocks ();
10211 empty_shared_hash->htab.dispose ();
10212 changed_variables.dispose ();
10213 free_alloc_pool (attrs_pool);
10214 free_alloc_pool (var_pool);
10215 free_alloc_pool (loc_chain_pool);
10216 free_alloc_pool (shared_hash_pool);
10217
10218 if (MAY_HAVE_DEBUG_INSNS)
10219 {
10220 if (global_get_addr_cache)
10221 pointer_map_destroy (global_get_addr_cache);
10222 global_get_addr_cache = NULL;
10223 if (loc_exp_dep_pool)
10224 free_alloc_pool (loc_exp_dep_pool);
10225 loc_exp_dep_pool = NULL;
10226 free_alloc_pool (valvar_pool);
10227 preserved_values.release ();
10228 cselib_finish ();
10229 BITMAP_FREE (scratch_regs);
10230 scratch_regs = NULL;
10231 }
10232
10233 #ifdef HAVE_window_save
10234 vec_free (windowed_parm_regs);
10235 #endif
10236
10237 if (vui_vec)
10238 XDELETEVEC (vui_vec);
10239 vui_vec = NULL;
10240 vui_allocated = 0;
10241 }
10242
10243 /* The entry point to variable tracking pass. */
10244
10245 static inline unsigned int
10246 variable_tracking_main_1 (void)
10247 {
10248 bool success;
10249
10250 if (flag_var_tracking_assignments < 0)
10251 {
10252 delete_debug_insns ();
10253 return 0;
10254 }
10255
10256 if (n_basic_blocks_for_fn (cfun) > 500 &&
10257 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10258 {
10259 vt_debug_insns_local (true);
10260 return 0;
10261 }
10262
10263 mark_dfs_back_edges ();
10264 if (!vt_initialize ())
10265 {
10266 vt_finalize ();
10267 vt_debug_insns_local (true);
10268 return 0;
10269 }
10270
10271 success = vt_find_locations ();
10272
10273 if (!success && flag_var_tracking_assignments > 0)
10274 {
10275 vt_finalize ();
10276
10277 delete_debug_insns ();
10278
10279 /* This is later restored by our caller. */
10280 flag_var_tracking_assignments = 0;
10281
10282 success = vt_initialize ();
10283 gcc_assert (success);
10284
10285 success = vt_find_locations ();
10286 }
10287
10288 if (!success)
10289 {
10290 vt_finalize ();
10291 vt_debug_insns_local (false);
10292 return 0;
10293 }
10294
10295 if (dump_file && (dump_flags & TDF_DETAILS))
10296 {
10297 dump_dataflow_sets ();
10298 dump_reg_info (dump_file);
10299 dump_flow_info (dump_file, dump_flags);
10300 }
10301
10302 timevar_push (TV_VAR_TRACKING_EMIT);
10303 vt_emit_notes ();
10304 timevar_pop (TV_VAR_TRACKING_EMIT);
10305
10306 vt_finalize ();
10307 vt_debug_insns_local (false);
10308 return 0;
10309 }
10310
10311 unsigned int
10312 variable_tracking_main (void)
10313 {
10314 unsigned int ret;
10315 int save = flag_var_tracking_assignments;
10316
10317 ret = variable_tracking_main_1 ();
10318
10319 flag_var_tracking_assignments = save;
10320
10321 return ret;
10322 }
10323 \f
10324 static bool
10325 gate_handle_var_tracking (void)
10326 {
10327 return (flag_var_tracking && !targetm.delay_vartrack);
10328 }
10329
10330
10331
10332 namespace {
10333
10334 const pass_data pass_data_variable_tracking =
10335 {
10336 RTL_PASS, /* type */
10337 "vartrack", /* name */
10338 OPTGROUP_NONE, /* optinfo_flags */
10339 true, /* has_gate */
10340 true, /* has_execute */
10341 TV_VAR_TRACKING, /* tv_id */
10342 0, /* properties_required */
10343 0, /* properties_provided */
10344 0, /* properties_destroyed */
10345 0, /* todo_flags_start */
10346 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10347 };
10348
10349 class pass_variable_tracking : public rtl_opt_pass
10350 {
10351 public:
10352 pass_variable_tracking (gcc::context *ctxt)
10353 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10354 {}
10355
10356 /* opt_pass methods: */
10357 bool gate () { return gate_handle_var_tracking (); }
10358 unsigned int execute () { return variable_tracking_main (); }
10359
10360 }; // class pass_variable_tracking
10361
10362 } // anon namespace
10363
10364 rtl_opt_pass *
10365 make_pass_variable_tracking (gcc::context *ctxt)
10366 {
10367 return new pass_variable_tracking (ctxt);
10368 }