re PR middle-end/46500 (target.h includes tm.h)
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002, 2003, 2004, 2005, 2007, 2008, 2009, 2010, 2011
3 Free Software Foundation, Inc.
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 /* This file contains the variable tracking pass. It computes where
22 variables are located (which registers or where in memory) at each position
23 in instruction stream and emits notes describing the locations.
24 Debug information (DWARF2 location lists) is finally generated from
25 these notes.
26 With this debug information, it is possible to show variables
27 even when debugging optimized code.
28
29 How does the variable tracking pass work?
30
31 First, it scans RTL code for uses, stores and clobbers (register/memory
32 references in instructions), for call insns and for stack adjustments
33 separately for each basic block and saves them to an array of micro
34 operations.
35 The micro operations of one instruction are ordered so that
36 pre-modifying stack adjustment < use < use with no var < call insn <
37 < set < clobber < post-modifying stack adjustment
38
39 Then, a forward dataflow analysis is performed to find out how locations
40 of variables change through code and to propagate the variable locations
41 along control flow graph.
42 The IN set for basic block BB is computed as a union of OUT sets of BB's
43 predecessors, the OUT set for BB is copied from the IN set for BB and
44 is changed according to micro operations in BB.
45
46 The IN and OUT sets for basic blocks consist of a current stack adjustment
47 (used for adjusting offset of variables addressed using stack pointer),
48 the table of structures describing the locations of parts of a variable
49 and for each physical register a linked list for each physical register.
50 The linked list is a list of variable parts stored in the register,
51 i.e. it is a list of triplets (reg, decl, offset) where decl is
52 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
53 effective deleting appropriate variable parts when we set or clobber the
54 register.
55
56 There may be more than one variable part in a register. The linked lists
57 should be pretty short so it is a good data structure here.
58 For example in the following code, register allocator may assign same
59 register to variables A and B, and both of them are stored in the same
60 register in CODE:
61
62 if (cond)
63 set A;
64 else
65 set B;
66 CODE;
67 if (cond)
68 use A;
69 else
70 use B;
71
72 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
73 are emitted to appropriate positions in RTL code. Each such a note describes
74 the location of one variable at the point in instruction stream where the
75 note is. There is no need to emit a note for each variable before each
76 instruction, we only emit these notes where the location of variable changes
77 (this means that we also emit notes for changes between the OUT set of the
78 previous block and the IN set of the current block).
79
80 The notes consist of two parts:
81 1. the declaration (from REG_EXPR or MEM_EXPR)
82 2. the location of a variable - it is either a simple register/memory
83 reference (for simple variables, for example int),
84 or a parallel of register/memory references (for a large variables
85 which consist of several parts, for example long long).
86
87 */
88
89 #include "config.h"
90 #include "system.h"
91 #include "coretypes.h"
92 #include "tm.h"
93 #include "rtl.h"
94 #include "tree.h"
95 #include "tm_p.h"
96 #include "hard-reg-set.h"
97 #include "basic-block.h"
98 #include "flags.h"
99 #include "output.h"
100 #include "insn-config.h"
101 #include "reload.h"
102 #include "sbitmap.h"
103 #include "alloc-pool.h"
104 #include "fibheap.h"
105 #include "hashtab.h"
106 #include "regs.h"
107 #include "expr.h"
108 #include "timevar.h"
109 #include "tree-pass.h"
110 #include "tree-flow.h"
111 #include "cselib.h"
112 #include "target.h"
113 #include "params.h"
114 #include "diagnostic.h"
115 #include "tree-pretty-print.h"
116 #include "pointer-set.h"
117 #include "recog.h"
118 #include "tm_p.h"
119
120 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
121 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
122 Currently the value is the same as IDENTIFIER_NODE, which has such
123 a property. If this compile time assertion ever fails, make sure that
124 the new tree code that equals (int) VALUE has the same property. */
125 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
126
127 /* Type of micro operation. */
128 enum micro_operation_type
129 {
130 MO_USE, /* Use location (REG or MEM). */
131 MO_USE_NO_VAR,/* Use location which is not associated with a variable
132 or the variable is not trackable. */
133 MO_VAL_USE, /* Use location which is associated with a value. */
134 MO_VAL_LOC, /* Use location which appears in a debug insn. */
135 MO_VAL_SET, /* Set location associated with a value. */
136 MO_SET, /* Set location. */
137 MO_COPY, /* Copy the same portion of a variable from one
138 location to another. */
139 MO_CLOBBER, /* Clobber location. */
140 MO_CALL, /* Call insn. */
141 MO_ADJUST /* Adjust stack pointer. */
142
143 };
144
145 static const char * const ATTRIBUTE_UNUSED
146 micro_operation_type_name[] = {
147 "MO_USE",
148 "MO_USE_NO_VAR",
149 "MO_VAL_USE",
150 "MO_VAL_LOC",
151 "MO_VAL_SET",
152 "MO_SET",
153 "MO_COPY",
154 "MO_CLOBBER",
155 "MO_CALL",
156 "MO_ADJUST"
157 };
158
159 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
160 Notes emitted as AFTER_CALL are to take effect during the call,
161 rather than after the call. */
162 enum emit_note_where
163 {
164 EMIT_NOTE_BEFORE_INSN,
165 EMIT_NOTE_AFTER_INSN,
166 EMIT_NOTE_AFTER_CALL_INSN
167 };
168
169 /* Structure holding information about micro operation. */
170 typedef struct micro_operation_def
171 {
172 /* Type of micro operation. */
173 enum micro_operation_type type;
174
175 /* The instruction which the micro operation is in, for MO_USE,
176 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
177 instruction or note in the original flow (before any var-tracking
178 notes are inserted, to simplify emission of notes), for MO_SET
179 and MO_CLOBBER. */
180 rtx insn;
181
182 union {
183 /* Location. For MO_SET and MO_COPY, this is the SET that
184 performs the assignment, if known, otherwise it is the target
185 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
186 CONCAT of the VALUE and the LOC associated with it. For
187 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
188 associated with it. */
189 rtx loc;
190
191 /* Stack adjustment. */
192 HOST_WIDE_INT adjust;
193 } u;
194 } micro_operation;
195
196 DEF_VEC_O(micro_operation);
197 DEF_VEC_ALLOC_O(micro_operation,heap);
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Structure for passing some other parameters to function
204 emit_note_insn_var_location. */
205 typedef struct emit_note_data_def
206 {
207 /* The instruction which the note will be emitted before/after. */
208 rtx insn;
209
210 /* Where the note will be emitted (before/after insn)? */
211 enum emit_note_where where;
212
213 /* The variables and values active at this point. */
214 htab_t vars;
215 } emit_note_data;
216
217 /* Description of location of a part of a variable. The content of a physical
218 register is described by a chain of these structures.
219 The chains are pretty short (usually 1 or 2 elements) and thus
220 chain is the best data structure. */
221 typedef struct attrs_def
222 {
223 /* Pointer to next member of the list. */
224 struct attrs_def *next;
225
226 /* The rtx of register. */
227 rtx loc;
228
229 /* The declaration corresponding to LOC. */
230 decl_or_value dv;
231
232 /* Offset from start of DECL. */
233 HOST_WIDE_INT offset;
234 } *attrs;
235
236 /* Structure holding a refcounted hash table. If refcount > 1,
237 it must be first unshared before modified. */
238 typedef struct shared_hash_def
239 {
240 /* Reference count. */
241 int refcount;
242
243 /* Actual hash table. */
244 htab_t htab;
245 } *shared_hash;
246
247 /* Structure holding the IN or OUT set for a basic block. */
248 typedef struct dataflow_set_def
249 {
250 /* Adjustment of stack offset. */
251 HOST_WIDE_INT stack_adjust;
252
253 /* Attributes for registers (lists of attrs). */
254 attrs regs[FIRST_PSEUDO_REGISTER];
255
256 /* Variable locations. */
257 shared_hash vars;
258
259 /* Vars that is being traversed. */
260 shared_hash traversed_vars;
261 } dataflow_set;
262
263 /* The structure (one for each basic block) containing the information
264 needed for variable tracking. */
265 typedef struct variable_tracking_info_def
266 {
267 /* The vector of micro operations. */
268 VEC(micro_operation, heap) *mos;
269
270 /* The IN and OUT set for dataflow analysis. */
271 dataflow_set in;
272 dataflow_set out;
273
274 /* The permanent-in dataflow set for this block. This is used to
275 hold values for which we had to compute entry values. ??? This
276 should probably be dynamically allocated, to avoid using more
277 memory in non-debug builds. */
278 dataflow_set *permp;
279
280 /* Has the block been visited in DFS? */
281 bool visited;
282
283 /* Has the block been flooded in VTA? */
284 bool flooded;
285
286 } *variable_tracking_info;
287
288 /* Structure for chaining the locations. */
289 typedef struct location_chain_def
290 {
291 /* Next element in the chain. */
292 struct location_chain_def *next;
293
294 /* The location (REG, MEM or VALUE). */
295 rtx loc;
296
297 /* The "value" stored in this location. */
298 rtx set_src;
299
300 /* Initialized? */
301 enum var_init_status init;
302 } *location_chain;
303
304 /* Structure describing one part of variable. */
305 typedef struct variable_part_def
306 {
307 /* Chain of locations of the part. */
308 location_chain loc_chain;
309
310 /* Location which was last emitted to location list. */
311 rtx cur_loc;
312
313 /* The offset in the variable. */
314 HOST_WIDE_INT offset;
315 } variable_part;
316
317 /* Maximum number of location parts. */
318 #define MAX_VAR_PARTS 16
319
320 /* Structure describing where the variable is located. */
321 typedef struct variable_def
322 {
323 /* The declaration of the variable, or an RTL value being handled
324 like a declaration. */
325 decl_or_value dv;
326
327 /* Reference count. */
328 int refcount;
329
330 /* Number of variable parts. */
331 char n_var_parts;
332
333 /* True if this variable changed (any of its) cur_loc fields
334 during the current emit_notes_for_changes resp.
335 emit_notes_for_differences call. */
336 bool cur_loc_changed;
337
338 /* True if this variable_def struct is currently in the
339 changed_variables hash table. */
340 bool in_changed_variables;
341
342 /* The variable parts. */
343 variable_part var_part[1];
344 } *variable;
345 typedef const struct variable_def *const_variable;
346
347 /* Structure for chaining backlinks from referenced VALUEs to
348 DVs that are referencing them. */
349 typedef struct value_chain_def
350 {
351 /* Next value_chain entry. */
352 struct value_chain_def *next;
353
354 /* The declaration of the variable, or an RTL value
355 being handled like a declaration, whose var_parts[0].loc_chain
356 references the VALUE owning this value_chain. */
357 decl_or_value dv;
358
359 /* Reference count. */
360 int refcount;
361 } *value_chain;
362 typedef const struct value_chain_def *const_value_chain;
363
364 /* Pointer to the BB's information specific to variable tracking pass. */
365 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
366
367 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
368 #define INT_MEM_OFFSET(mem) (MEM_OFFSET (mem) ? INTVAL (MEM_OFFSET (mem)) : 0)
369
370 /* Alloc pool for struct attrs_def. */
371 static alloc_pool attrs_pool;
372
373 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
374 static alloc_pool var_pool;
375
376 /* Alloc pool for struct variable_def with a single var_part entry. */
377 static alloc_pool valvar_pool;
378
379 /* Alloc pool for struct location_chain_def. */
380 static alloc_pool loc_chain_pool;
381
382 /* Alloc pool for struct shared_hash_def. */
383 static alloc_pool shared_hash_pool;
384
385 /* Alloc pool for struct value_chain_def. */
386 static alloc_pool value_chain_pool;
387
388 /* Changed variables, notes will be emitted for them. */
389 static htab_t changed_variables;
390
391 /* Links from VALUEs to DVs referencing them in their current loc_chains. */
392 static htab_t value_chains;
393
394 /* Shall notes be emitted? */
395 static bool emit_notes;
396
397 /* Empty shared hashtable. */
398 static shared_hash empty_shared_hash;
399
400 /* Scratch register bitmap used by cselib_expand_value_rtx. */
401 static bitmap scratch_regs = NULL;
402
403 /* Variable used to tell whether cselib_process_insn called our hook. */
404 static bool cselib_hook_called;
405
406 /* Local function prototypes. */
407 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
408 HOST_WIDE_INT *);
409 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
410 HOST_WIDE_INT *);
411 static bool vt_stack_adjustments (void);
412 static void note_register_arguments (rtx);
413 static hashval_t variable_htab_hash (const void *);
414 static int variable_htab_eq (const void *, const void *);
415 static void variable_htab_free (void *);
416
417 static void init_attrs_list_set (attrs *);
418 static void attrs_list_clear (attrs *);
419 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
420 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
421 static void attrs_list_copy (attrs *, attrs);
422 static void attrs_list_union (attrs *, attrs);
423
424 static void **unshare_variable (dataflow_set *set, void **slot, variable var,
425 enum var_init_status);
426 static void vars_copy (htab_t, htab_t);
427 static tree var_debug_decl (tree);
428 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
429 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
430 enum var_init_status, rtx);
431 static void var_reg_delete (dataflow_set *, rtx, bool);
432 static void var_regno_delete (dataflow_set *, int);
433 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
434 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
435 enum var_init_status, rtx);
436 static void var_mem_delete (dataflow_set *, rtx, bool);
437
438 static void dataflow_set_init (dataflow_set *);
439 static void dataflow_set_clear (dataflow_set *);
440 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
441 static int variable_union_info_cmp_pos (const void *, const void *);
442 static void dataflow_set_union (dataflow_set *, dataflow_set *);
443 static location_chain find_loc_in_1pdv (rtx, variable, htab_t);
444 static bool canon_value_cmp (rtx, rtx);
445 static int loc_cmp (rtx, rtx);
446 static bool variable_part_different_p (variable_part *, variable_part *);
447 static bool onepart_variable_different_p (variable, variable);
448 static bool variable_different_p (variable, variable);
449 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
450 static void dataflow_set_destroy (dataflow_set *);
451
452 static bool contains_symbol_ref (rtx);
453 static bool track_expr_p (tree, bool);
454 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
455 static int add_uses (rtx *, void *);
456 static void add_uses_1 (rtx *, void *);
457 static void add_stores (rtx, const_rtx, void *);
458 static bool compute_bb_dataflow (basic_block);
459 static bool vt_find_locations (void);
460
461 static void dump_attrs_list (attrs);
462 static int dump_var_slot (void **, void *);
463 static void dump_var (variable);
464 static void dump_vars (htab_t);
465 static void dump_dataflow_set (dataflow_set *);
466 static void dump_dataflow_sets (void);
467
468 static void variable_was_changed (variable, dataflow_set *);
469 static void **set_slot_part (dataflow_set *, rtx, void **,
470 decl_or_value, HOST_WIDE_INT,
471 enum var_init_status, rtx);
472 static void set_variable_part (dataflow_set *, rtx,
473 decl_or_value, HOST_WIDE_INT,
474 enum var_init_status, rtx, enum insert_option);
475 static void **clobber_slot_part (dataflow_set *, rtx,
476 void **, HOST_WIDE_INT, rtx);
477 static void clobber_variable_part (dataflow_set *, rtx,
478 decl_or_value, HOST_WIDE_INT, rtx);
479 static void **delete_slot_part (dataflow_set *, rtx, void **, HOST_WIDE_INT);
480 static void delete_variable_part (dataflow_set *, rtx,
481 decl_or_value, HOST_WIDE_INT);
482 static int emit_note_insn_var_location (void **, void *);
483 static void emit_notes_for_changes (rtx, enum emit_note_where, shared_hash);
484 static int emit_notes_for_differences_1 (void **, void *);
485 static int emit_notes_for_differences_2 (void **, void *);
486 static void emit_notes_for_differences (rtx, dataflow_set *, dataflow_set *);
487 static void emit_notes_in_bb (basic_block, dataflow_set *);
488 static void vt_emit_notes (void);
489
490 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
491 static void vt_add_function_parameters (void);
492 static bool vt_initialize (void);
493 static void vt_finalize (void);
494
495 /* Given a SET, calculate the amount of stack adjustment it contains
496 PRE- and POST-modifying stack pointer.
497 This function is similar to stack_adjust_offset. */
498
499 static void
500 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
501 HOST_WIDE_INT *post)
502 {
503 rtx src = SET_SRC (pattern);
504 rtx dest = SET_DEST (pattern);
505 enum rtx_code code;
506
507 if (dest == stack_pointer_rtx)
508 {
509 /* (set (reg sp) (plus (reg sp) (const_int))) */
510 code = GET_CODE (src);
511 if (! (code == PLUS || code == MINUS)
512 || XEXP (src, 0) != stack_pointer_rtx
513 || !CONST_INT_P (XEXP (src, 1)))
514 return;
515
516 if (code == MINUS)
517 *post += INTVAL (XEXP (src, 1));
518 else
519 *post -= INTVAL (XEXP (src, 1));
520 }
521 else if (MEM_P (dest))
522 {
523 /* (set (mem (pre_dec (reg sp))) (foo)) */
524 src = XEXP (dest, 0);
525 code = GET_CODE (src);
526
527 switch (code)
528 {
529 case PRE_MODIFY:
530 case POST_MODIFY:
531 if (XEXP (src, 0) == stack_pointer_rtx)
532 {
533 rtx val = XEXP (XEXP (src, 1), 1);
534 /* We handle only adjustments by constant amount. */
535 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
536 CONST_INT_P (val));
537
538 if (code == PRE_MODIFY)
539 *pre -= INTVAL (val);
540 else
541 *post -= INTVAL (val);
542 break;
543 }
544 return;
545
546 case PRE_DEC:
547 if (XEXP (src, 0) == stack_pointer_rtx)
548 {
549 *pre += GET_MODE_SIZE (GET_MODE (dest));
550 break;
551 }
552 return;
553
554 case POST_DEC:
555 if (XEXP (src, 0) == stack_pointer_rtx)
556 {
557 *post += GET_MODE_SIZE (GET_MODE (dest));
558 break;
559 }
560 return;
561
562 case PRE_INC:
563 if (XEXP (src, 0) == stack_pointer_rtx)
564 {
565 *pre -= GET_MODE_SIZE (GET_MODE (dest));
566 break;
567 }
568 return;
569
570 case POST_INC:
571 if (XEXP (src, 0) == stack_pointer_rtx)
572 {
573 *post -= GET_MODE_SIZE (GET_MODE (dest));
574 break;
575 }
576 return;
577
578 default:
579 return;
580 }
581 }
582 }
583
584 /* Given an INSN, calculate the amount of stack adjustment it contains
585 PRE- and POST-modifying stack pointer. */
586
587 static void
588 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
589 HOST_WIDE_INT *post)
590 {
591 rtx pattern;
592
593 *pre = 0;
594 *post = 0;
595
596 pattern = PATTERN (insn);
597 if (RTX_FRAME_RELATED_P (insn))
598 {
599 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
600 if (expr)
601 pattern = XEXP (expr, 0);
602 }
603
604 if (GET_CODE (pattern) == SET)
605 stack_adjust_offset_pre_post (pattern, pre, post);
606 else if (GET_CODE (pattern) == PARALLEL
607 || GET_CODE (pattern) == SEQUENCE)
608 {
609 int i;
610
611 /* There may be stack adjustments inside compound insns. Search
612 for them. */
613 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
614 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
615 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
616 }
617 }
618
619 /* Compute stack adjustments for all blocks by traversing DFS tree.
620 Return true when the adjustments on all incoming edges are consistent.
621 Heavily borrowed from pre_and_rev_post_order_compute. */
622
623 static bool
624 vt_stack_adjustments (void)
625 {
626 edge_iterator *stack;
627 int sp;
628
629 /* Initialize entry block. */
630 VTI (ENTRY_BLOCK_PTR)->visited = true;
631 VTI (ENTRY_BLOCK_PTR)->in.stack_adjust = INCOMING_FRAME_SP_OFFSET;
632 VTI (ENTRY_BLOCK_PTR)->out.stack_adjust = INCOMING_FRAME_SP_OFFSET;
633
634 /* Allocate stack for back-tracking up CFG. */
635 stack = XNEWVEC (edge_iterator, n_basic_blocks + 1);
636 sp = 0;
637
638 /* Push the first edge on to the stack. */
639 stack[sp++] = ei_start (ENTRY_BLOCK_PTR->succs);
640
641 while (sp)
642 {
643 edge_iterator ei;
644 basic_block src;
645 basic_block dest;
646
647 /* Look at the edge on the top of the stack. */
648 ei = stack[sp - 1];
649 src = ei_edge (ei)->src;
650 dest = ei_edge (ei)->dest;
651
652 /* Check if the edge destination has been visited yet. */
653 if (!VTI (dest)->visited)
654 {
655 rtx insn;
656 HOST_WIDE_INT pre, post, offset;
657 VTI (dest)->visited = true;
658 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
659
660 if (dest != EXIT_BLOCK_PTR)
661 for (insn = BB_HEAD (dest);
662 insn != NEXT_INSN (BB_END (dest));
663 insn = NEXT_INSN (insn))
664 {
665 if (INSN_P (insn))
666 {
667 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
668 offset += pre + post;
669 }
670 if (CALL_P (insn))
671 note_register_arguments (insn);
672 }
673
674 VTI (dest)->out.stack_adjust = offset;
675
676 if (EDGE_COUNT (dest->succs) > 0)
677 /* Since the DEST node has been visited for the first
678 time, check its successors. */
679 stack[sp++] = ei_start (dest->succs);
680 }
681 else
682 {
683 /* Check whether the adjustments on the edges are the same. */
684 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
685 {
686 free (stack);
687 return false;
688 }
689
690 if (! ei_one_before_end_p (ei))
691 /* Go to the next edge. */
692 ei_next (&stack[sp - 1]);
693 else
694 /* Return to previous level if there are no more edges. */
695 sp--;
696 }
697 }
698
699 free (stack);
700 return true;
701 }
702
703 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
704 hard_frame_pointer_rtx is being mapped to it and offset for it. */
705 static rtx cfa_base_rtx;
706 static HOST_WIDE_INT cfa_base_offset;
707
708 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
709 or hard_frame_pointer_rtx. */
710
711 static inline rtx
712 compute_cfa_pointer (HOST_WIDE_INT adjustment)
713 {
714 return plus_constant (cfa_base_rtx, adjustment + cfa_base_offset);
715 }
716
717 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
718 or -1 if the replacement shouldn't be done. */
719 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
720
721 /* Data for adjust_mems callback. */
722
723 struct adjust_mem_data
724 {
725 bool store;
726 enum machine_mode mem_mode;
727 HOST_WIDE_INT stack_adjust;
728 rtx side_effects;
729 };
730
731 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
732 transformation of wider mode arithmetics to narrower mode,
733 -1 if it is suitable and subexpressions shouldn't be
734 traversed and 0 if it is suitable and subexpressions should
735 be traversed. Called through for_each_rtx. */
736
737 static int
738 use_narrower_mode_test (rtx *loc, void *data)
739 {
740 rtx subreg = (rtx) data;
741
742 if (CONSTANT_P (*loc))
743 return -1;
744 switch (GET_CODE (*loc))
745 {
746 case REG:
747 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
748 return 1;
749 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
750 *loc, subreg_lowpart_offset (GET_MODE (subreg),
751 GET_MODE (*loc))))
752 return 1;
753 return -1;
754 case PLUS:
755 case MINUS:
756 case MULT:
757 return 0;
758 case ASHIFT:
759 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
760 return 1;
761 else
762 return -1;
763 default:
764 return 1;
765 }
766 }
767
768 /* Transform X into narrower mode MODE from wider mode WMODE. */
769
770 static rtx
771 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
772 {
773 rtx op0, op1;
774 if (CONSTANT_P (x))
775 return lowpart_subreg (mode, x, wmode);
776 switch (GET_CODE (x))
777 {
778 case REG:
779 return lowpart_subreg (mode, x, wmode);
780 case PLUS:
781 case MINUS:
782 case MULT:
783 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
784 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
785 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
786 case ASHIFT:
787 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
788 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
789 default:
790 gcc_unreachable ();
791 }
792 }
793
794 /* Helper function for adjusting used MEMs. */
795
796 static rtx
797 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
798 {
799 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
800 rtx mem, addr = loc, tem;
801 enum machine_mode mem_mode_save;
802 bool store_save;
803 switch (GET_CODE (loc))
804 {
805 case REG:
806 /* Don't do any sp or fp replacements outside of MEM addresses
807 on the LHS. */
808 if (amd->mem_mode == VOIDmode && amd->store)
809 return loc;
810 if (loc == stack_pointer_rtx
811 && !frame_pointer_needed
812 && cfa_base_rtx)
813 return compute_cfa_pointer (amd->stack_adjust);
814 else if (loc == hard_frame_pointer_rtx
815 && frame_pointer_needed
816 && hard_frame_pointer_adjustment != -1
817 && cfa_base_rtx)
818 return compute_cfa_pointer (hard_frame_pointer_adjustment);
819 gcc_checking_assert (loc != virtual_incoming_args_rtx);
820 return loc;
821 case MEM:
822 mem = loc;
823 if (!amd->store)
824 {
825 mem = targetm.delegitimize_address (mem);
826 if (mem != loc && !MEM_P (mem))
827 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
828 }
829
830 addr = XEXP (mem, 0);
831 mem_mode_save = amd->mem_mode;
832 amd->mem_mode = GET_MODE (mem);
833 store_save = amd->store;
834 amd->store = false;
835 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
836 amd->store = store_save;
837 amd->mem_mode = mem_mode_save;
838 if (mem == loc)
839 addr = targetm.delegitimize_address (addr);
840 if (addr != XEXP (mem, 0))
841 mem = replace_equiv_address_nv (mem, addr);
842 if (!amd->store)
843 mem = avoid_constant_pool_reference (mem);
844 return mem;
845 case PRE_INC:
846 case PRE_DEC:
847 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
848 GEN_INT (GET_CODE (loc) == PRE_INC
849 ? GET_MODE_SIZE (amd->mem_mode)
850 : -GET_MODE_SIZE (amd->mem_mode)));
851 case POST_INC:
852 case POST_DEC:
853 if (addr == loc)
854 addr = XEXP (loc, 0);
855 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
856 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
857 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
858 GEN_INT ((GET_CODE (loc) == PRE_INC
859 || GET_CODE (loc) == POST_INC)
860 ? GET_MODE_SIZE (amd->mem_mode)
861 : -GET_MODE_SIZE (amd->mem_mode)));
862 amd->side_effects = alloc_EXPR_LIST (0,
863 gen_rtx_SET (VOIDmode,
864 XEXP (loc, 0),
865 tem),
866 amd->side_effects);
867 return addr;
868 case PRE_MODIFY:
869 addr = XEXP (loc, 1);
870 case POST_MODIFY:
871 if (addr == loc)
872 addr = XEXP (loc, 0);
873 gcc_assert (amd->mem_mode != VOIDmode);
874 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
875 amd->side_effects = alloc_EXPR_LIST (0,
876 gen_rtx_SET (VOIDmode,
877 XEXP (loc, 0),
878 XEXP (loc, 1)),
879 amd->side_effects);
880 return addr;
881 case SUBREG:
882 /* First try without delegitimization of whole MEMs and
883 avoid_constant_pool_reference, which is more likely to succeed. */
884 store_save = amd->store;
885 amd->store = true;
886 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
887 data);
888 amd->store = store_save;
889 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
890 if (mem == SUBREG_REG (loc))
891 {
892 tem = loc;
893 goto finish_subreg;
894 }
895 tem = simplify_gen_subreg (GET_MODE (loc), mem,
896 GET_MODE (SUBREG_REG (loc)),
897 SUBREG_BYTE (loc));
898 if (tem)
899 goto finish_subreg;
900 tem = simplify_gen_subreg (GET_MODE (loc), addr,
901 GET_MODE (SUBREG_REG (loc)),
902 SUBREG_BYTE (loc));
903 if (tem == NULL_RTX)
904 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
905 finish_subreg:
906 if (MAY_HAVE_DEBUG_INSNS
907 && GET_CODE (tem) == SUBREG
908 && (GET_CODE (SUBREG_REG (tem)) == PLUS
909 || GET_CODE (SUBREG_REG (tem)) == MINUS
910 || GET_CODE (SUBREG_REG (tem)) == MULT
911 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
912 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
913 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
914 && GET_MODE_SIZE (GET_MODE (tem))
915 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
916 && subreg_lowpart_p (tem)
917 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
918 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
919 GET_MODE (SUBREG_REG (tem)));
920 return tem;
921 case ASM_OPERANDS:
922 /* Don't do any replacements in second and following
923 ASM_OPERANDS of inline-asm with multiple sets.
924 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
925 and ASM_OPERANDS_LABEL_VEC need to be equal between
926 all the ASM_OPERANDs in the insn and adjust_insn will
927 fix this up. */
928 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
929 return loc;
930 break;
931 default:
932 break;
933 }
934 return NULL_RTX;
935 }
936
937 /* Helper function for replacement of uses. */
938
939 static void
940 adjust_mem_uses (rtx *x, void *data)
941 {
942 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
943 if (new_x != *x)
944 validate_change (NULL_RTX, x, new_x, true);
945 }
946
947 /* Helper function for replacement of stores. */
948
949 static void
950 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
951 {
952 if (MEM_P (loc))
953 {
954 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
955 adjust_mems, data);
956 if (new_dest != SET_DEST (expr))
957 {
958 rtx xexpr = CONST_CAST_RTX (expr);
959 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
960 }
961 }
962 }
963
964 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
965 replace them with their value in the insn and add the side-effects
966 as other sets to the insn. */
967
968 static void
969 adjust_insn (basic_block bb, rtx insn)
970 {
971 struct adjust_mem_data amd;
972 rtx set;
973 amd.mem_mode = VOIDmode;
974 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
975 amd.side_effects = NULL_RTX;
976
977 amd.store = true;
978 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
979
980 amd.store = false;
981 if (GET_CODE (PATTERN (insn)) == PARALLEL
982 && asm_noperands (PATTERN (insn)) > 0
983 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
984 {
985 rtx body, set0;
986 int i;
987
988 /* inline-asm with multiple sets is tiny bit more complicated,
989 because the 3 vectors in ASM_OPERANDS need to be shared between
990 all ASM_OPERANDS in the instruction. adjust_mems will
991 not touch ASM_OPERANDS other than the first one, asm_noperands
992 test above needs to be called before that (otherwise it would fail)
993 and afterwards this code fixes it up. */
994 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
995 body = PATTERN (insn);
996 set0 = XVECEXP (body, 0, 0);
997 gcc_checking_assert (GET_CODE (set0) == SET
998 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
999 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1000 for (i = 1; i < XVECLEN (body, 0); i++)
1001 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1002 break;
1003 else
1004 {
1005 set = XVECEXP (body, 0, i);
1006 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1007 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1008 == i);
1009 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1010 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1011 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1012 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1013 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1014 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1015 {
1016 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1017 ASM_OPERANDS_INPUT_VEC (newsrc)
1018 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1019 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1020 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1021 ASM_OPERANDS_LABEL_VEC (newsrc)
1022 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1023 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1024 }
1025 }
1026 }
1027 else
1028 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1029
1030 /* For read-only MEMs containing some constant, prefer those
1031 constants. */
1032 set = single_set (insn);
1033 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1034 {
1035 rtx note = find_reg_equal_equiv_note (insn);
1036
1037 if (note && CONSTANT_P (XEXP (note, 0)))
1038 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1039 }
1040
1041 if (amd.side_effects)
1042 {
1043 rtx *pat, new_pat, s;
1044 int i, oldn, newn;
1045
1046 pat = &PATTERN (insn);
1047 if (GET_CODE (*pat) == COND_EXEC)
1048 pat = &COND_EXEC_CODE (*pat);
1049 if (GET_CODE (*pat) == PARALLEL)
1050 oldn = XVECLEN (*pat, 0);
1051 else
1052 oldn = 1;
1053 for (s = amd.side_effects, newn = 0; s; newn++)
1054 s = XEXP (s, 1);
1055 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1056 if (GET_CODE (*pat) == PARALLEL)
1057 for (i = 0; i < oldn; i++)
1058 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1059 else
1060 XVECEXP (new_pat, 0, 0) = *pat;
1061 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1062 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1063 free_EXPR_LIST_list (&amd.side_effects);
1064 validate_change (NULL_RTX, pat, new_pat, true);
1065 }
1066 }
1067
1068 /* Return true if a decl_or_value DV is a DECL or NULL. */
1069 static inline bool
1070 dv_is_decl_p (decl_or_value dv)
1071 {
1072 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
1073 }
1074
1075 /* Return true if a decl_or_value is a VALUE rtl. */
1076 static inline bool
1077 dv_is_value_p (decl_or_value dv)
1078 {
1079 return dv && !dv_is_decl_p (dv);
1080 }
1081
1082 /* Return the decl in the decl_or_value. */
1083 static inline tree
1084 dv_as_decl (decl_or_value dv)
1085 {
1086 gcc_checking_assert (dv_is_decl_p (dv));
1087 return (tree) dv;
1088 }
1089
1090 /* Return the value in the decl_or_value. */
1091 static inline rtx
1092 dv_as_value (decl_or_value dv)
1093 {
1094 gcc_checking_assert (dv_is_value_p (dv));
1095 return (rtx)dv;
1096 }
1097
1098 /* Return the opaque pointer in the decl_or_value. */
1099 static inline void *
1100 dv_as_opaque (decl_or_value dv)
1101 {
1102 return dv;
1103 }
1104
1105 /* Return true if a decl_or_value must not have more than one variable
1106 part. */
1107 static inline bool
1108 dv_onepart_p (decl_or_value dv)
1109 {
1110 tree decl;
1111
1112 if (!MAY_HAVE_DEBUG_INSNS)
1113 return false;
1114
1115 if (dv_is_value_p (dv))
1116 return true;
1117
1118 decl = dv_as_decl (dv);
1119
1120 if (!decl)
1121 return true;
1122
1123 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1124 return true;
1125
1126 return (target_for_debug_bind (decl) != NULL_TREE);
1127 }
1128
1129 /* Return the variable pool to be used for dv, depending on whether it
1130 can have multiple parts or not. */
1131 static inline alloc_pool
1132 dv_pool (decl_or_value dv)
1133 {
1134 return dv_onepart_p (dv) ? valvar_pool : var_pool;
1135 }
1136
1137 /* Build a decl_or_value out of a decl. */
1138 static inline decl_or_value
1139 dv_from_decl (tree decl)
1140 {
1141 decl_or_value dv;
1142 dv = decl;
1143 gcc_checking_assert (dv_is_decl_p (dv));
1144 return dv;
1145 }
1146
1147 /* Build a decl_or_value out of a value. */
1148 static inline decl_or_value
1149 dv_from_value (rtx value)
1150 {
1151 decl_or_value dv;
1152 dv = value;
1153 gcc_checking_assert (dv_is_value_p (dv));
1154 return dv;
1155 }
1156
1157 extern void debug_dv (decl_or_value dv);
1158
1159 DEBUG_FUNCTION void
1160 debug_dv (decl_or_value dv)
1161 {
1162 if (dv_is_value_p (dv))
1163 debug_rtx (dv_as_value (dv));
1164 else
1165 debug_generic_stmt (dv_as_decl (dv));
1166 }
1167
1168 typedef unsigned int dvuid;
1169
1170 /* Return the uid of DV. */
1171
1172 static inline dvuid
1173 dv_uid (decl_or_value dv)
1174 {
1175 if (dv_is_value_p (dv))
1176 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
1177 else
1178 return DECL_UID (dv_as_decl (dv));
1179 }
1180
1181 /* Compute the hash from the uid. */
1182
1183 static inline hashval_t
1184 dv_uid2hash (dvuid uid)
1185 {
1186 return uid;
1187 }
1188
1189 /* The hash function for a mask table in a shared_htab chain. */
1190
1191 static inline hashval_t
1192 dv_htab_hash (decl_or_value dv)
1193 {
1194 return dv_uid2hash (dv_uid (dv));
1195 }
1196
1197 /* The hash function for variable_htab, computes the hash value
1198 from the declaration of variable X. */
1199
1200 static hashval_t
1201 variable_htab_hash (const void *x)
1202 {
1203 const_variable const v = (const_variable) x;
1204
1205 return dv_htab_hash (v->dv);
1206 }
1207
1208 /* Compare the declaration of variable X with declaration Y. */
1209
1210 static int
1211 variable_htab_eq (const void *x, const void *y)
1212 {
1213 const_variable const v = (const_variable) x;
1214 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1215
1216 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
1217 }
1218
1219 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1220
1221 static void
1222 variable_htab_free (void *elem)
1223 {
1224 int i;
1225 variable var = (variable) elem;
1226 location_chain node, next;
1227
1228 gcc_checking_assert (var->refcount > 0);
1229
1230 var->refcount--;
1231 if (var->refcount > 0)
1232 return;
1233
1234 for (i = 0; i < var->n_var_parts; i++)
1235 {
1236 for (node = var->var_part[i].loc_chain; node; node = next)
1237 {
1238 next = node->next;
1239 pool_free (loc_chain_pool, node);
1240 }
1241 var->var_part[i].loc_chain = NULL;
1242 }
1243 pool_free (dv_pool (var->dv), var);
1244 }
1245
1246 /* The hash function for value_chains htab, computes the hash value
1247 from the VALUE. */
1248
1249 static hashval_t
1250 value_chain_htab_hash (const void *x)
1251 {
1252 const_value_chain const v = (const_value_chain) x;
1253
1254 return dv_htab_hash (v->dv);
1255 }
1256
1257 /* Compare the VALUE X with VALUE Y. */
1258
1259 static int
1260 value_chain_htab_eq (const void *x, const void *y)
1261 {
1262 const_value_chain const v = (const_value_chain) x;
1263 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
1264
1265 return dv_as_opaque (v->dv) == dv_as_opaque (dv);
1266 }
1267
1268 /* Initialize the set (array) SET of attrs to empty lists. */
1269
1270 static void
1271 init_attrs_list_set (attrs *set)
1272 {
1273 int i;
1274
1275 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1276 set[i] = NULL;
1277 }
1278
1279 /* Make the list *LISTP empty. */
1280
1281 static void
1282 attrs_list_clear (attrs *listp)
1283 {
1284 attrs list, next;
1285
1286 for (list = *listp; list; list = next)
1287 {
1288 next = list->next;
1289 pool_free (attrs_pool, list);
1290 }
1291 *listp = NULL;
1292 }
1293
1294 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1295
1296 static attrs
1297 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1298 {
1299 for (; list; list = list->next)
1300 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1301 return list;
1302 return NULL;
1303 }
1304
1305 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1306
1307 static void
1308 attrs_list_insert (attrs *listp, decl_or_value dv,
1309 HOST_WIDE_INT offset, rtx loc)
1310 {
1311 attrs list;
1312
1313 list = (attrs) pool_alloc (attrs_pool);
1314 list->loc = loc;
1315 list->dv = dv;
1316 list->offset = offset;
1317 list->next = *listp;
1318 *listp = list;
1319 }
1320
1321 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1322
1323 static void
1324 attrs_list_copy (attrs *dstp, attrs src)
1325 {
1326 attrs n;
1327
1328 attrs_list_clear (dstp);
1329 for (; src; src = src->next)
1330 {
1331 n = (attrs) pool_alloc (attrs_pool);
1332 n->loc = src->loc;
1333 n->dv = src->dv;
1334 n->offset = src->offset;
1335 n->next = *dstp;
1336 *dstp = n;
1337 }
1338 }
1339
1340 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1341
1342 static void
1343 attrs_list_union (attrs *dstp, attrs src)
1344 {
1345 for (; src; src = src->next)
1346 {
1347 if (!attrs_list_member (*dstp, src->dv, src->offset))
1348 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1349 }
1350 }
1351
1352 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1353 *DSTP. */
1354
1355 static void
1356 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1357 {
1358 gcc_assert (!*dstp);
1359 for (; src; src = src->next)
1360 {
1361 if (!dv_onepart_p (src->dv))
1362 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1363 }
1364 for (src = src2; src; src = src->next)
1365 {
1366 if (!dv_onepart_p (src->dv)
1367 && !attrs_list_member (*dstp, src->dv, src->offset))
1368 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1369 }
1370 }
1371
1372 /* Shared hashtable support. */
1373
1374 /* Return true if VARS is shared. */
1375
1376 static inline bool
1377 shared_hash_shared (shared_hash vars)
1378 {
1379 return vars->refcount > 1;
1380 }
1381
1382 /* Return the hash table for VARS. */
1383
1384 static inline htab_t
1385 shared_hash_htab (shared_hash vars)
1386 {
1387 return vars->htab;
1388 }
1389
1390 /* Return true if VAR is shared, or maybe because VARS is shared. */
1391
1392 static inline bool
1393 shared_var_p (variable var, shared_hash vars)
1394 {
1395 /* Don't count an entry in the changed_variables table as a duplicate. */
1396 return ((var->refcount > 1 + (int) var->in_changed_variables)
1397 || shared_hash_shared (vars));
1398 }
1399
1400 /* Copy variables into a new hash table. */
1401
1402 static shared_hash
1403 shared_hash_unshare (shared_hash vars)
1404 {
1405 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1406 gcc_assert (vars->refcount > 1);
1407 new_vars->refcount = 1;
1408 new_vars->htab
1409 = htab_create (htab_elements (vars->htab) + 3, variable_htab_hash,
1410 variable_htab_eq, variable_htab_free);
1411 vars_copy (new_vars->htab, vars->htab);
1412 vars->refcount--;
1413 return new_vars;
1414 }
1415
1416 /* Increment reference counter on VARS and return it. */
1417
1418 static inline shared_hash
1419 shared_hash_copy (shared_hash vars)
1420 {
1421 vars->refcount++;
1422 return vars;
1423 }
1424
1425 /* Decrement reference counter and destroy hash table if not shared
1426 anymore. */
1427
1428 static void
1429 shared_hash_destroy (shared_hash vars)
1430 {
1431 gcc_checking_assert (vars->refcount > 0);
1432 if (--vars->refcount == 0)
1433 {
1434 htab_delete (vars->htab);
1435 pool_free (shared_hash_pool, vars);
1436 }
1437 }
1438
1439 /* Unshare *PVARS if shared and return slot for DV. If INS is
1440 INSERT, insert it if not already present. */
1441
1442 static inline void **
1443 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1444 hashval_t dvhash, enum insert_option ins)
1445 {
1446 if (shared_hash_shared (*pvars))
1447 *pvars = shared_hash_unshare (*pvars);
1448 return htab_find_slot_with_hash (shared_hash_htab (*pvars), dv, dvhash, ins);
1449 }
1450
1451 static inline void **
1452 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1453 enum insert_option ins)
1454 {
1455 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1456 }
1457
1458 /* Return slot for DV, if it is already present in the hash table.
1459 If it is not present, insert it only VARS is not shared, otherwise
1460 return NULL. */
1461
1462 static inline void **
1463 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1464 {
1465 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1466 shared_hash_shared (vars)
1467 ? NO_INSERT : INSERT);
1468 }
1469
1470 static inline void **
1471 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1472 {
1473 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1474 }
1475
1476 /* Return slot for DV only if it is already present in the hash table. */
1477
1478 static inline void **
1479 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1480 hashval_t dvhash)
1481 {
1482 return htab_find_slot_with_hash (shared_hash_htab (vars), dv, dvhash,
1483 NO_INSERT);
1484 }
1485
1486 static inline void **
1487 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1488 {
1489 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1490 }
1491
1492 /* Return variable for DV or NULL if not already present in the hash
1493 table. */
1494
1495 static inline variable
1496 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1497 {
1498 return (variable) htab_find_with_hash (shared_hash_htab (vars), dv, dvhash);
1499 }
1500
1501 static inline variable
1502 shared_hash_find (shared_hash vars, decl_or_value dv)
1503 {
1504 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1505 }
1506
1507 /* Return true if TVAL is better than CVAL as a canonival value. We
1508 choose lowest-numbered VALUEs, using the RTX address as a
1509 tie-breaker. The idea is to arrange them into a star topology,
1510 such that all of them are at most one step away from the canonical
1511 value, and the canonical value has backlinks to all of them, in
1512 addition to all the actual locations. We don't enforce this
1513 topology throughout the entire dataflow analysis, though.
1514 */
1515
1516 static inline bool
1517 canon_value_cmp (rtx tval, rtx cval)
1518 {
1519 return !cval
1520 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1521 }
1522
1523 static bool dst_can_be_shared;
1524
1525 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1526
1527 static void **
1528 unshare_variable (dataflow_set *set, void **slot, variable var,
1529 enum var_init_status initialized)
1530 {
1531 variable new_var;
1532 int i;
1533
1534 new_var = (variable) pool_alloc (dv_pool (var->dv));
1535 new_var->dv = var->dv;
1536 new_var->refcount = 1;
1537 var->refcount--;
1538 new_var->n_var_parts = var->n_var_parts;
1539 new_var->cur_loc_changed = var->cur_loc_changed;
1540 var->cur_loc_changed = false;
1541 new_var->in_changed_variables = false;
1542
1543 if (! flag_var_tracking_uninit)
1544 initialized = VAR_INIT_STATUS_INITIALIZED;
1545
1546 for (i = 0; i < var->n_var_parts; i++)
1547 {
1548 location_chain node;
1549 location_chain *nextp;
1550
1551 new_var->var_part[i].offset = var->var_part[i].offset;
1552 nextp = &new_var->var_part[i].loc_chain;
1553 for (node = var->var_part[i].loc_chain; node; node = node->next)
1554 {
1555 location_chain new_lc;
1556
1557 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1558 new_lc->next = NULL;
1559 if (node->init > initialized)
1560 new_lc->init = node->init;
1561 else
1562 new_lc->init = initialized;
1563 if (node->set_src && !(MEM_P (node->set_src)))
1564 new_lc->set_src = node->set_src;
1565 else
1566 new_lc->set_src = NULL;
1567 new_lc->loc = node->loc;
1568
1569 *nextp = new_lc;
1570 nextp = &new_lc->next;
1571 }
1572
1573 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1574 }
1575
1576 dst_can_be_shared = false;
1577 if (shared_hash_shared (set->vars))
1578 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1579 else if (set->traversed_vars && set->vars != set->traversed_vars)
1580 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1581 *slot = new_var;
1582 if (var->in_changed_variables)
1583 {
1584 void **cslot
1585 = htab_find_slot_with_hash (changed_variables, var->dv,
1586 dv_htab_hash (var->dv), NO_INSERT);
1587 gcc_assert (*cslot == (void *) var);
1588 var->in_changed_variables = false;
1589 variable_htab_free (var);
1590 *cslot = new_var;
1591 new_var->in_changed_variables = true;
1592 }
1593 return slot;
1594 }
1595
1596 /* Copy all variables from hash table SRC to hash table DST. */
1597
1598 static void
1599 vars_copy (htab_t dst, htab_t src)
1600 {
1601 htab_iterator hi;
1602 variable var;
1603
1604 FOR_EACH_HTAB_ELEMENT (src, var, variable, hi)
1605 {
1606 void **dstp;
1607 var->refcount++;
1608 dstp = htab_find_slot_with_hash (dst, var->dv,
1609 dv_htab_hash (var->dv),
1610 INSERT);
1611 *dstp = var;
1612 }
1613 }
1614
1615 /* Map a decl to its main debug decl. */
1616
1617 static inline tree
1618 var_debug_decl (tree decl)
1619 {
1620 if (decl && DECL_P (decl)
1621 && DECL_DEBUG_EXPR_IS_FROM (decl))
1622 {
1623 tree debugdecl = DECL_DEBUG_EXPR (decl);
1624 if (debugdecl && DECL_P (debugdecl))
1625 decl = debugdecl;
1626 }
1627
1628 return decl;
1629 }
1630
1631 /* Set the register LOC to contain DV, OFFSET. */
1632
1633 static void
1634 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1635 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1636 enum insert_option iopt)
1637 {
1638 attrs node;
1639 bool decl_p = dv_is_decl_p (dv);
1640
1641 if (decl_p)
1642 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1643
1644 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1645 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1646 && node->offset == offset)
1647 break;
1648 if (!node)
1649 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1650 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1651 }
1652
1653 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1654
1655 static void
1656 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1657 rtx set_src)
1658 {
1659 tree decl = REG_EXPR (loc);
1660 HOST_WIDE_INT offset = REG_OFFSET (loc);
1661
1662 var_reg_decl_set (set, loc, initialized,
1663 dv_from_decl (decl), offset, set_src, INSERT);
1664 }
1665
1666 static enum var_init_status
1667 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1668 {
1669 variable var;
1670 int i;
1671 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1672
1673 if (! flag_var_tracking_uninit)
1674 return VAR_INIT_STATUS_INITIALIZED;
1675
1676 var = shared_hash_find (set->vars, dv);
1677 if (var)
1678 {
1679 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1680 {
1681 location_chain nextp;
1682 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1683 if (rtx_equal_p (nextp->loc, loc))
1684 {
1685 ret_val = nextp->init;
1686 break;
1687 }
1688 }
1689 }
1690
1691 return ret_val;
1692 }
1693
1694 /* Delete current content of register LOC in dataflow set SET and set
1695 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1696 MODIFY is true, any other live copies of the same variable part are
1697 also deleted from the dataflow set, otherwise the variable part is
1698 assumed to be copied from another location holding the same
1699 part. */
1700
1701 static void
1702 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1703 enum var_init_status initialized, rtx set_src)
1704 {
1705 tree decl = REG_EXPR (loc);
1706 HOST_WIDE_INT offset = REG_OFFSET (loc);
1707 attrs node, next;
1708 attrs *nextp;
1709
1710 decl = var_debug_decl (decl);
1711
1712 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1713 initialized = get_init_value (set, loc, dv_from_decl (decl));
1714
1715 nextp = &set->regs[REGNO (loc)];
1716 for (node = *nextp; node; node = next)
1717 {
1718 next = node->next;
1719 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1720 {
1721 delete_variable_part (set, node->loc, node->dv, node->offset);
1722 pool_free (attrs_pool, node);
1723 *nextp = next;
1724 }
1725 else
1726 {
1727 node->loc = loc;
1728 nextp = &node->next;
1729 }
1730 }
1731 if (modify)
1732 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1733 var_reg_set (set, loc, initialized, set_src);
1734 }
1735
1736 /* Delete the association of register LOC in dataflow set SET with any
1737 variables that aren't onepart. If CLOBBER is true, also delete any
1738 other live copies of the same variable part, and delete the
1739 association with onepart dvs too. */
1740
1741 static void
1742 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1743 {
1744 attrs *nextp = &set->regs[REGNO (loc)];
1745 attrs node, next;
1746
1747 if (clobber)
1748 {
1749 tree decl = REG_EXPR (loc);
1750 HOST_WIDE_INT offset = REG_OFFSET (loc);
1751
1752 decl = var_debug_decl (decl);
1753
1754 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1755 }
1756
1757 for (node = *nextp; node; node = next)
1758 {
1759 next = node->next;
1760 if (clobber || !dv_onepart_p (node->dv))
1761 {
1762 delete_variable_part (set, node->loc, node->dv, node->offset);
1763 pool_free (attrs_pool, node);
1764 *nextp = next;
1765 }
1766 else
1767 nextp = &node->next;
1768 }
1769 }
1770
1771 /* Delete content of register with number REGNO in dataflow set SET. */
1772
1773 static void
1774 var_regno_delete (dataflow_set *set, int regno)
1775 {
1776 attrs *reg = &set->regs[regno];
1777 attrs node, next;
1778
1779 for (node = *reg; node; node = next)
1780 {
1781 next = node->next;
1782 delete_variable_part (set, node->loc, node->dv, node->offset);
1783 pool_free (attrs_pool, node);
1784 }
1785 *reg = NULL;
1786 }
1787
1788 /* Set the location of DV, OFFSET as the MEM LOC. */
1789
1790 static void
1791 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1792 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1793 enum insert_option iopt)
1794 {
1795 if (dv_is_decl_p (dv))
1796 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1797
1798 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1799 }
1800
1801 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
1802 SET to LOC.
1803 Adjust the address first if it is stack pointer based. */
1804
1805 static void
1806 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1807 rtx set_src)
1808 {
1809 tree decl = MEM_EXPR (loc);
1810 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1811
1812 var_mem_decl_set (set, loc, initialized,
1813 dv_from_decl (decl), offset, set_src, INSERT);
1814 }
1815
1816 /* Delete and set the location part of variable MEM_EXPR (LOC) in
1817 dataflow set SET to LOC. If MODIFY is true, any other live copies
1818 of the same variable part are also deleted from the dataflow set,
1819 otherwise the variable part is assumed to be copied from another
1820 location holding the same part.
1821 Adjust the address first if it is stack pointer based. */
1822
1823 static void
1824 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1825 enum var_init_status initialized, rtx set_src)
1826 {
1827 tree decl = MEM_EXPR (loc);
1828 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1829
1830 decl = var_debug_decl (decl);
1831
1832 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1833 initialized = get_init_value (set, loc, dv_from_decl (decl));
1834
1835 if (modify)
1836 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
1837 var_mem_set (set, loc, initialized, set_src);
1838 }
1839
1840 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
1841 true, also delete any other live copies of the same variable part.
1842 Adjust the address first if it is stack pointer based. */
1843
1844 static void
1845 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
1846 {
1847 tree decl = MEM_EXPR (loc);
1848 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
1849
1850 decl = var_debug_decl (decl);
1851 if (clobber)
1852 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1853 delete_variable_part (set, loc, dv_from_decl (decl), offset);
1854 }
1855
1856 /* Bind a value to a location it was just stored in. If MODIFIED
1857 holds, assume the location was modified, detaching it from any
1858 values bound to it. */
1859
1860 static void
1861 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
1862 {
1863 cselib_val *v = CSELIB_VAL_PTR (val);
1864
1865 gcc_assert (cselib_preserved_value_p (v));
1866
1867 if (dump_file)
1868 {
1869 fprintf (dump_file, "%i: ", INSN_UID (insn));
1870 print_inline_rtx (dump_file, val, 0);
1871 fprintf (dump_file, " stored in ");
1872 print_inline_rtx (dump_file, loc, 0);
1873 if (v->locs)
1874 {
1875 struct elt_loc_list *l;
1876 for (l = v->locs; l; l = l->next)
1877 {
1878 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
1879 print_inline_rtx (dump_file, l->loc, 0);
1880 }
1881 }
1882 fprintf (dump_file, "\n");
1883 }
1884
1885 if (REG_P (loc))
1886 {
1887 if (modified)
1888 var_regno_delete (set, REGNO (loc));
1889 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1890 dv_from_value (val), 0, NULL_RTX, INSERT);
1891 }
1892 else if (MEM_P (loc))
1893 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
1894 dv_from_value (val), 0, NULL_RTX, INSERT);
1895 else
1896 set_variable_part (set, loc, dv_from_value (val), 0,
1897 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
1898 }
1899
1900 /* Reset this node, detaching all its equivalences. Return the slot
1901 in the variable hash table that holds dv, if there is one. */
1902
1903 static void
1904 val_reset (dataflow_set *set, decl_or_value dv)
1905 {
1906 variable var = shared_hash_find (set->vars, dv) ;
1907 location_chain node;
1908 rtx cval;
1909
1910 if (!var || !var->n_var_parts)
1911 return;
1912
1913 gcc_assert (var->n_var_parts == 1);
1914
1915 cval = NULL;
1916 for (node = var->var_part[0].loc_chain; node; node = node->next)
1917 if (GET_CODE (node->loc) == VALUE
1918 && canon_value_cmp (node->loc, cval))
1919 cval = node->loc;
1920
1921 for (node = var->var_part[0].loc_chain; node; node = node->next)
1922 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
1923 {
1924 /* Redirect the equivalence link to the new canonical
1925 value, or simply remove it if it would point at
1926 itself. */
1927 if (cval)
1928 set_variable_part (set, cval, dv_from_value (node->loc),
1929 0, node->init, node->set_src, NO_INSERT);
1930 delete_variable_part (set, dv_as_value (dv),
1931 dv_from_value (node->loc), 0);
1932 }
1933
1934 if (cval)
1935 {
1936 decl_or_value cdv = dv_from_value (cval);
1937
1938 /* Keep the remaining values connected, accummulating links
1939 in the canonical value. */
1940 for (node = var->var_part[0].loc_chain; node; node = node->next)
1941 {
1942 if (node->loc == cval)
1943 continue;
1944 else if (GET_CODE (node->loc) == REG)
1945 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
1946 node->set_src, NO_INSERT);
1947 else if (GET_CODE (node->loc) == MEM)
1948 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
1949 node->set_src, NO_INSERT);
1950 else
1951 set_variable_part (set, node->loc, cdv, 0,
1952 node->init, node->set_src, NO_INSERT);
1953 }
1954 }
1955
1956 /* We remove this last, to make sure that the canonical value is not
1957 removed to the point of requiring reinsertion. */
1958 if (cval)
1959 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
1960
1961 clobber_variable_part (set, NULL, dv, 0, NULL);
1962
1963 /* ??? Should we make sure there aren't other available values or
1964 variables whose values involve this one other than by
1965 equivalence? E.g., at the very least we should reset MEMs, those
1966 shouldn't be too hard to find cselib-looking up the value as an
1967 address, then locating the resulting value in our own hash
1968 table. */
1969 }
1970
1971 /* Find the values in a given location and map the val to another
1972 value, if it is unique, or add the location as one holding the
1973 value. */
1974
1975 static void
1976 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
1977 {
1978 decl_or_value dv = dv_from_value (val);
1979
1980 if (dump_file && (dump_flags & TDF_DETAILS))
1981 {
1982 if (insn)
1983 fprintf (dump_file, "%i: ", INSN_UID (insn));
1984 else
1985 fprintf (dump_file, "head: ");
1986 print_inline_rtx (dump_file, val, 0);
1987 fputs (" is at ", dump_file);
1988 print_inline_rtx (dump_file, loc, 0);
1989 fputc ('\n', dump_file);
1990 }
1991
1992 val_reset (set, dv);
1993
1994 if (REG_P (loc))
1995 {
1996 attrs node, found = NULL;
1997
1998 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1999 if (dv_is_value_p (node->dv)
2000 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2001 {
2002 found = node;
2003
2004 /* Map incoming equivalences. ??? Wouldn't it be nice if
2005 we just started sharing the location lists? Maybe a
2006 circular list ending at the value itself or some
2007 such. */
2008 set_variable_part (set, dv_as_value (node->dv),
2009 dv_from_value (val), node->offset,
2010 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2011 set_variable_part (set, val, node->dv, node->offset,
2012 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2013 }
2014
2015 /* If we didn't find any equivalence, we need to remember that
2016 this value is held in the named register. */
2017 if (!found)
2018 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2019 dv_from_value (val), 0, NULL_RTX, INSERT);
2020 }
2021 else if (MEM_P (loc))
2022 /* ??? Merge equivalent MEMs. */
2023 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2024 dv_from_value (val), 0, NULL_RTX, INSERT);
2025 else
2026 /* ??? Merge equivalent expressions. */
2027 set_variable_part (set, loc, dv_from_value (val), 0,
2028 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2029 }
2030
2031 /* Initialize dataflow set SET to be empty.
2032 VARS_SIZE is the initial size of hash table VARS. */
2033
2034 static void
2035 dataflow_set_init (dataflow_set *set)
2036 {
2037 init_attrs_list_set (set->regs);
2038 set->vars = shared_hash_copy (empty_shared_hash);
2039 set->stack_adjust = 0;
2040 set->traversed_vars = NULL;
2041 }
2042
2043 /* Delete the contents of dataflow set SET. */
2044
2045 static void
2046 dataflow_set_clear (dataflow_set *set)
2047 {
2048 int i;
2049
2050 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2051 attrs_list_clear (&set->regs[i]);
2052
2053 shared_hash_destroy (set->vars);
2054 set->vars = shared_hash_copy (empty_shared_hash);
2055 }
2056
2057 /* Copy the contents of dataflow set SRC to DST. */
2058
2059 static void
2060 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2061 {
2062 int i;
2063
2064 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2065 attrs_list_copy (&dst->regs[i], src->regs[i]);
2066
2067 shared_hash_destroy (dst->vars);
2068 dst->vars = shared_hash_copy (src->vars);
2069 dst->stack_adjust = src->stack_adjust;
2070 }
2071
2072 /* Information for merging lists of locations for a given offset of variable.
2073 */
2074 struct variable_union_info
2075 {
2076 /* Node of the location chain. */
2077 location_chain lc;
2078
2079 /* The sum of positions in the input chains. */
2080 int pos;
2081
2082 /* The position in the chain of DST dataflow set. */
2083 int pos_dst;
2084 };
2085
2086 /* Buffer for location list sorting and its allocated size. */
2087 static struct variable_union_info *vui_vec;
2088 static int vui_allocated;
2089
2090 /* Compare function for qsort, order the structures by POS element. */
2091
2092 static int
2093 variable_union_info_cmp_pos (const void *n1, const void *n2)
2094 {
2095 const struct variable_union_info *const i1 =
2096 (const struct variable_union_info *) n1;
2097 const struct variable_union_info *const i2 =
2098 ( const struct variable_union_info *) n2;
2099
2100 if (i1->pos != i2->pos)
2101 return i1->pos - i2->pos;
2102
2103 return (i1->pos_dst - i2->pos_dst);
2104 }
2105
2106 /* Compute union of location parts of variable *SLOT and the same variable
2107 from hash table DATA. Compute "sorted" union of the location chains
2108 for common offsets, i.e. the locations of a variable part are sorted by
2109 a priority where the priority is the sum of the positions in the 2 chains
2110 (if a location is only in one list the position in the second list is
2111 defined to be larger than the length of the chains).
2112 When we are updating the location parts the newest location is in the
2113 beginning of the chain, so when we do the described "sorted" union
2114 we keep the newest locations in the beginning. */
2115
2116 static int
2117 variable_union (variable src, dataflow_set *set)
2118 {
2119 variable dst;
2120 void **dstp;
2121 int i, j, k;
2122
2123 dstp = shared_hash_find_slot (set->vars, src->dv);
2124 if (!dstp || !*dstp)
2125 {
2126 src->refcount++;
2127
2128 dst_can_be_shared = false;
2129 if (!dstp)
2130 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2131
2132 *dstp = src;
2133
2134 /* Continue traversing the hash table. */
2135 return 1;
2136 }
2137 else
2138 dst = (variable) *dstp;
2139
2140 gcc_assert (src->n_var_parts);
2141
2142 /* We can combine one-part variables very efficiently, because their
2143 entries are in canonical order. */
2144 if (dv_onepart_p (src->dv))
2145 {
2146 location_chain *nodep, dnode, snode;
2147
2148 gcc_assert (src->n_var_parts == 1
2149 && dst->n_var_parts == 1);
2150
2151 snode = src->var_part[0].loc_chain;
2152 gcc_assert (snode);
2153
2154 restart_onepart_unshared:
2155 nodep = &dst->var_part[0].loc_chain;
2156 dnode = *nodep;
2157 gcc_assert (dnode);
2158
2159 while (snode)
2160 {
2161 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2162
2163 if (r > 0)
2164 {
2165 location_chain nnode;
2166
2167 if (shared_var_p (dst, set->vars))
2168 {
2169 dstp = unshare_variable (set, dstp, dst,
2170 VAR_INIT_STATUS_INITIALIZED);
2171 dst = (variable)*dstp;
2172 goto restart_onepart_unshared;
2173 }
2174
2175 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2176 nnode->loc = snode->loc;
2177 nnode->init = snode->init;
2178 if (!snode->set_src || MEM_P (snode->set_src))
2179 nnode->set_src = NULL;
2180 else
2181 nnode->set_src = snode->set_src;
2182 nnode->next = dnode;
2183 dnode = nnode;
2184 }
2185 else if (r == 0)
2186 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2187
2188 if (r >= 0)
2189 snode = snode->next;
2190
2191 nodep = &dnode->next;
2192 dnode = *nodep;
2193 }
2194
2195 return 1;
2196 }
2197
2198 /* Count the number of location parts, result is K. */
2199 for (i = 0, j = 0, k = 0;
2200 i < src->n_var_parts && j < dst->n_var_parts; k++)
2201 {
2202 if (src->var_part[i].offset == dst->var_part[j].offset)
2203 {
2204 i++;
2205 j++;
2206 }
2207 else if (src->var_part[i].offset < dst->var_part[j].offset)
2208 i++;
2209 else
2210 j++;
2211 }
2212 k += src->n_var_parts - i;
2213 k += dst->n_var_parts - j;
2214
2215 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2216 thus there are at most MAX_VAR_PARTS different offsets. */
2217 gcc_assert (dv_onepart_p (dst->dv) ? k == 1 : k <= MAX_VAR_PARTS);
2218
2219 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2220 {
2221 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2222 dst = (variable)*dstp;
2223 }
2224
2225 i = src->n_var_parts - 1;
2226 j = dst->n_var_parts - 1;
2227 dst->n_var_parts = k;
2228
2229 for (k--; k >= 0; k--)
2230 {
2231 location_chain node, node2;
2232
2233 if (i >= 0 && j >= 0
2234 && src->var_part[i].offset == dst->var_part[j].offset)
2235 {
2236 /* Compute the "sorted" union of the chains, i.e. the locations which
2237 are in both chains go first, they are sorted by the sum of
2238 positions in the chains. */
2239 int dst_l, src_l;
2240 int ii, jj, n;
2241 struct variable_union_info *vui;
2242
2243 /* If DST is shared compare the location chains.
2244 If they are different we will modify the chain in DST with
2245 high probability so make a copy of DST. */
2246 if (shared_var_p (dst, set->vars))
2247 {
2248 for (node = src->var_part[i].loc_chain,
2249 node2 = dst->var_part[j].loc_chain; node && node2;
2250 node = node->next, node2 = node2->next)
2251 {
2252 if (!((REG_P (node2->loc)
2253 && REG_P (node->loc)
2254 && REGNO (node2->loc) == REGNO (node->loc))
2255 || rtx_equal_p (node2->loc, node->loc)))
2256 {
2257 if (node2->init < node->init)
2258 node2->init = node->init;
2259 break;
2260 }
2261 }
2262 if (node || node2)
2263 {
2264 dstp = unshare_variable (set, dstp, dst,
2265 VAR_INIT_STATUS_UNKNOWN);
2266 dst = (variable)*dstp;
2267 }
2268 }
2269
2270 src_l = 0;
2271 for (node = src->var_part[i].loc_chain; node; node = node->next)
2272 src_l++;
2273 dst_l = 0;
2274 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2275 dst_l++;
2276
2277 if (dst_l == 1)
2278 {
2279 /* The most common case, much simpler, no qsort is needed. */
2280 location_chain dstnode = dst->var_part[j].loc_chain;
2281 dst->var_part[k].loc_chain = dstnode;
2282 dst->var_part[k].offset = dst->var_part[j].offset;
2283 node2 = dstnode;
2284 for (node = src->var_part[i].loc_chain; node; node = node->next)
2285 if (!((REG_P (dstnode->loc)
2286 && REG_P (node->loc)
2287 && REGNO (dstnode->loc) == REGNO (node->loc))
2288 || rtx_equal_p (dstnode->loc, node->loc)))
2289 {
2290 location_chain new_node;
2291
2292 /* Copy the location from SRC. */
2293 new_node = (location_chain) pool_alloc (loc_chain_pool);
2294 new_node->loc = node->loc;
2295 new_node->init = node->init;
2296 if (!node->set_src || MEM_P (node->set_src))
2297 new_node->set_src = NULL;
2298 else
2299 new_node->set_src = node->set_src;
2300 node2->next = new_node;
2301 node2 = new_node;
2302 }
2303 node2->next = NULL;
2304 }
2305 else
2306 {
2307 if (src_l + dst_l > vui_allocated)
2308 {
2309 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2310 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2311 vui_allocated);
2312 }
2313 vui = vui_vec;
2314
2315 /* Fill in the locations from DST. */
2316 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2317 node = node->next, jj++)
2318 {
2319 vui[jj].lc = node;
2320 vui[jj].pos_dst = jj;
2321
2322 /* Pos plus value larger than a sum of 2 valid positions. */
2323 vui[jj].pos = jj + src_l + dst_l;
2324 }
2325
2326 /* Fill in the locations from SRC. */
2327 n = dst_l;
2328 for (node = src->var_part[i].loc_chain, ii = 0; node;
2329 node = node->next, ii++)
2330 {
2331 /* Find location from NODE. */
2332 for (jj = 0; jj < dst_l; jj++)
2333 {
2334 if ((REG_P (vui[jj].lc->loc)
2335 && REG_P (node->loc)
2336 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2337 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2338 {
2339 vui[jj].pos = jj + ii;
2340 break;
2341 }
2342 }
2343 if (jj >= dst_l) /* The location has not been found. */
2344 {
2345 location_chain new_node;
2346
2347 /* Copy the location from SRC. */
2348 new_node = (location_chain) pool_alloc (loc_chain_pool);
2349 new_node->loc = node->loc;
2350 new_node->init = node->init;
2351 if (!node->set_src || MEM_P (node->set_src))
2352 new_node->set_src = NULL;
2353 else
2354 new_node->set_src = node->set_src;
2355 vui[n].lc = new_node;
2356 vui[n].pos_dst = src_l + dst_l;
2357 vui[n].pos = ii + src_l + dst_l;
2358 n++;
2359 }
2360 }
2361
2362 if (dst_l == 2)
2363 {
2364 /* Special case still very common case. For dst_l == 2
2365 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2366 vui[i].pos == i + src_l + dst_l. */
2367 if (vui[0].pos > vui[1].pos)
2368 {
2369 /* Order should be 1, 0, 2... */
2370 dst->var_part[k].loc_chain = vui[1].lc;
2371 vui[1].lc->next = vui[0].lc;
2372 if (n >= 3)
2373 {
2374 vui[0].lc->next = vui[2].lc;
2375 vui[n - 1].lc->next = NULL;
2376 }
2377 else
2378 vui[0].lc->next = NULL;
2379 ii = 3;
2380 }
2381 else
2382 {
2383 dst->var_part[k].loc_chain = vui[0].lc;
2384 if (n >= 3 && vui[2].pos < vui[1].pos)
2385 {
2386 /* Order should be 0, 2, 1, 3... */
2387 vui[0].lc->next = vui[2].lc;
2388 vui[2].lc->next = vui[1].lc;
2389 if (n >= 4)
2390 {
2391 vui[1].lc->next = vui[3].lc;
2392 vui[n - 1].lc->next = NULL;
2393 }
2394 else
2395 vui[1].lc->next = NULL;
2396 ii = 4;
2397 }
2398 else
2399 {
2400 /* Order should be 0, 1, 2... */
2401 ii = 1;
2402 vui[n - 1].lc->next = NULL;
2403 }
2404 }
2405 for (; ii < n; ii++)
2406 vui[ii - 1].lc->next = vui[ii].lc;
2407 }
2408 else
2409 {
2410 qsort (vui, n, sizeof (struct variable_union_info),
2411 variable_union_info_cmp_pos);
2412
2413 /* Reconnect the nodes in sorted order. */
2414 for (ii = 1; ii < n; ii++)
2415 vui[ii - 1].lc->next = vui[ii].lc;
2416 vui[n - 1].lc->next = NULL;
2417 dst->var_part[k].loc_chain = vui[0].lc;
2418 }
2419
2420 dst->var_part[k].offset = dst->var_part[j].offset;
2421 }
2422 i--;
2423 j--;
2424 }
2425 else if ((i >= 0 && j >= 0
2426 && src->var_part[i].offset < dst->var_part[j].offset)
2427 || i < 0)
2428 {
2429 dst->var_part[k] = dst->var_part[j];
2430 j--;
2431 }
2432 else if ((i >= 0 && j >= 0
2433 && src->var_part[i].offset > dst->var_part[j].offset)
2434 || j < 0)
2435 {
2436 location_chain *nextp;
2437
2438 /* Copy the chain from SRC. */
2439 nextp = &dst->var_part[k].loc_chain;
2440 for (node = src->var_part[i].loc_chain; node; node = node->next)
2441 {
2442 location_chain new_lc;
2443
2444 new_lc = (location_chain) pool_alloc (loc_chain_pool);
2445 new_lc->next = NULL;
2446 new_lc->init = node->init;
2447 if (!node->set_src || MEM_P (node->set_src))
2448 new_lc->set_src = NULL;
2449 else
2450 new_lc->set_src = node->set_src;
2451 new_lc->loc = node->loc;
2452
2453 *nextp = new_lc;
2454 nextp = &new_lc->next;
2455 }
2456
2457 dst->var_part[k].offset = src->var_part[i].offset;
2458 i--;
2459 }
2460 dst->var_part[k].cur_loc = NULL;
2461 }
2462
2463 if (flag_var_tracking_uninit)
2464 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
2465 {
2466 location_chain node, node2;
2467 for (node = src->var_part[i].loc_chain; node; node = node->next)
2468 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
2469 if (rtx_equal_p (node->loc, node2->loc))
2470 {
2471 if (node->init > node2->init)
2472 node2->init = node->init;
2473 }
2474 }
2475
2476 /* Continue traversing the hash table. */
2477 return 1;
2478 }
2479
2480 /* Compute union of dataflow sets SRC and DST and store it to DST. */
2481
2482 static void
2483 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
2484 {
2485 int i;
2486
2487 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2488 attrs_list_union (&dst->regs[i], src->regs[i]);
2489
2490 if (dst->vars == empty_shared_hash)
2491 {
2492 shared_hash_destroy (dst->vars);
2493 dst->vars = shared_hash_copy (src->vars);
2494 }
2495 else
2496 {
2497 htab_iterator hi;
2498 variable var;
2499
2500 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (src->vars), var, variable, hi)
2501 variable_union (var, dst);
2502 }
2503 }
2504
2505 /* Whether the value is currently being expanded. */
2506 #define VALUE_RECURSED_INTO(x) \
2507 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
2508 /* Whether the value is in changed_variables hash table. */
2509 #define VALUE_CHANGED(x) \
2510 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
2511 /* Whether the decl is in changed_variables hash table. */
2512 #define DECL_CHANGED(x) TREE_VISITED (x)
2513
2514 /* Record that DV has been added into resp. removed from changed_variables
2515 hashtable. */
2516
2517 static inline void
2518 set_dv_changed (decl_or_value dv, bool newv)
2519 {
2520 if (dv_is_value_p (dv))
2521 VALUE_CHANGED (dv_as_value (dv)) = newv;
2522 else
2523 DECL_CHANGED (dv_as_decl (dv)) = newv;
2524 }
2525
2526 /* Return true if DV is present in changed_variables hash table. */
2527
2528 static inline bool
2529 dv_changed_p (decl_or_value dv)
2530 {
2531 return (dv_is_value_p (dv)
2532 ? VALUE_CHANGED (dv_as_value (dv))
2533 : DECL_CHANGED (dv_as_decl (dv)));
2534 }
2535
2536 /* Return a location list node whose loc is rtx_equal to LOC, in the
2537 location list of a one-part variable or value VAR, or in that of
2538 any values recursively mentioned in the location lists. VARS must
2539 be in star-canonical form. */
2540
2541 static location_chain
2542 find_loc_in_1pdv (rtx loc, variable var, htab_t vars)
2543 {
2544 location_chain node;
2545 enum rtx_code loc_code;
2546
2547 if (!var)
2548 return NULL;
2549
2550 gcc_checking_assert (dv_onepart_p (var->dv));
2551
2552 if (!var->n_var_parts)
2553 return NULL;
2554
2555 gcc_checking_assert (var->var_part[0].offset == 0);
2556 gcc_checking_assert (loc != dv_as_opaque (var->dv));
2557
2558 loc_code = GET_CODE (loc);
2559 for (node = var->var_part[0].loc_chain; node; node = node->next)
2560 {
2561 decl_or_value dv;
2562 variable rvar;
2563
2564 if (GET_CODE (node->loc) != loc_code)
2565 {
2566 if (GET_CODE (node->loc) != VALUE)
2567 continue;
2568 }
2569 else if (loc == node->loc)
2570 return node;
2571 else if (loc_code != VALUE)
2572 {
2573 if (rtx_equal_p (loc, node->loc))
2574 return node;
2575 continue;
2576 }
2577
2578 /* Since we're in star-canonical form, we don't need to visit
2579 non-canonical nodes: one-part variables and non-canonical
2580 values would only point back to the canonical node. */
2581 if (dv_is_value_p (var->dv)
2582 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
2583 {
2584 /* Skip all subsequent VALUEs. */
2585 while (node->next && GET_CODE (node->next->loc) == VALUE)
2586 {
2587 node = node->next;
2588 gcc_checking_assert (!canon_value_cmp (node->loc,
2589 dv_as_value (var->dv)));
2590 if (loc == node->loc)
2591 return node;
2592 }
2593 continue;
2594 }
2595
2596 gcc_checking_assert (node == var->var_part[0].loc_chain);
2597 gcc_checking_assert (!node->next);
2598
2599 dv = dv_from_value (node->loc);
2600 rvar = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
2601 return find_loc_in_1pdv (loc, rvar, vars);
2602 }
2603
2604 return NULL;
2605 }
2606
2607 /* Hash table iteration argument passed to variable_merge. */
2608 struct dfset_merge
2609 {
2610 /* The set in which the merge is to be inserted. */
2611 dataflow_set *dst;
2612 /* The set that we're iterating in. */
2613 dataflow_set *cur;
2614 /* The set that may contain the other dv we are to merge with. */
2615 dataflow_set *src;
2616 /* Number of onepart dvs in src. */
2617 int src_onepart_cnt;
2618 };
2619
2620 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
2621 loc_cmp order, and it is maintained as such. */
2622
2623 static void
2624 insert_into_intersection (location_chain *nodep, rtx loc,
2625 enum var_init_status status)
2626 {
2627 location_chain node;
2628 int r;
2629
2630 for (node = *nodep; node; nodep = &node->next, node = *nodep)
2631 if ((r = loc_cmp (node->loc, loc)) == 0)
2632 {
2633 node->init = MIN (node->init, status);
2634 return;
2635 }
2636 else if (r > 0)
2637 break;
2638
2639 node = (location_chain) pool_alloc (loc_chain_pool);
2640
2641 node->loc = loc;
2642 node->set_src = NULL;
2643 node->init = status;
2644 node->next = *nodep;
2645 *nodep = node;
2646 }
2647
2648 /* Insert in DEST the intersection the locations present in both
2649 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
2650 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
2651 DSM->dst. */
2652
2653 static void
2654 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
2655 location_chain s1node, variable s2var)
2656 {
2657 dataflow_set *s1set = dsm->cur;
2658 dataflow_set *s2set = dsm->src;
2659 location_chain found;
2660
2661 if (s2var)
2662 {
2663 location_chain s2node;
2664
2665 gcc_checking_assert (dv_onepart_p (s2var->dv));
2666
2667 if (s2var->n_var_parts)
2668 {
2669 gcc_checking_assert (s2var->var_part[0].offset == 0);
2670 s2node = s2var->var_part[0].loc_chain;
2671
2672 for (; s1node && s2node;
2673 s1node = s1node->next, s2node = s2node->next)
2674 if (s1node->loc != s2node->loc)
2675 break;
2676 else if (s1node->loc == val)
2677 continue;
2678 else
2679 insert_into_intersection (dest, s1node->loc,
2680 MIN (s1node->init, s2node->init));
2681 }
2682 }
2683
2684 for (; s1node; s1node = s1node->next)
2685 {
2686 if (s1node->loc == val)
2687 continue;
2688
2689 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
2690 shared_hash_htab (s2set->vars))))
2691 {
2692 insert_into_intersection (dest, s1node->loc,
2693 MIN (s1node->init, found->init));
2694 continue;
2695 }
2696
2697 if (GET_CODE (s1node->loc) == VALUE
2698 && !VALUE_RECURSED_INTO (s1node->loc))
2699 {
2700 decl_or_value dv = dv_from_value (s1node->loc);
2701 variable svar = shared_hash_find (s1set->vars, dv);
2702 if (svar)
2703 {
2704 if (svar->n_var_parts == 1)
2705 {
2706 VALUE_RECURSED_INTO (s1node->loc) = true;
2707 intersect_loc_chains (val, dest, dsm,
2708 svar->var_part[0].loc_chain,
2709 s2var);
2710 VALUE_RECURSED_INTO (s1node->loc) = false;
2711 }
2712 }
2713 }
2714
2715 /* ??? if the location is equivalent to any location in src,
2716 searched recursively
2717
2718 add to dst the values needed to represent the equivalence
2719
2720 telling whether locations S is equivalent to another dv's
2721 location list:
2722
2723 for each location D in the list
2724
2725 if S and D satisfy rtx_equal_p, then it is present
2726
2727 else if D is a value, recurse without cycles
2728
2729 else if S and D have the same CODE and MODE
2730
2731 for each operand oS and the corresponding oD
2732
2733 if oS and oD are not equivalent, then S an D are not equivalent
2734
2735 else if they are RTX vectors
2736
2737 if any vector oS element is not equivalent to its respective oD,
2738 then S and D are not equivalent
2739
2740 */
2741
2742
2743 }
2744 }
2745
2746 /* Return -1 if X should be before Y in a location list for a 1-part
2747 variable, 1 if Y should be before X, and 0 if they're equivalent
2748 and should not appear in the list. */
2749
2750 static int
2751 loc_cmp (rtx x, rtx y)
2752 {
2753 int i, j, r;
2754 RTX_CODE code = GET_CODE (x);
2755 const char *fmt;
2756
2757 if (x == y)
2758 return 0;
2759
2760 if (REG_P (x))
2761 {
2762 if (!REG_P (y))
2763 return -1;
2764 gcc_assert (GET_MODE (x) == GET_MODE (y));
2765 if (REGNO (x) == REGNO (y))
2766 return 0;
2767 else if (REGNO (x) < REGNO (y))
2768 return -1;
2769 else
2770 return 1;
2771 }
2772
2773 if (REG_P (y))
2774 return 1;
2775
2776 if (MEM_P (x))
2777 {
2778 if (!MEM_P (y))
2779 return -1;
2780 gcc_assert (GET_MODE (x) == GET_MODE (y));
2781 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
2782 }
2783
2784 if (MEM_P (y))
2785 return 1;
2786
2787 if (GET_CODE (x) == VALUE)
2788 {
2789 if (GET_CODE (y) != VALUE)
2790 return -1;
2791 /* Don't assert the modes are the same, that is true only
2792 when not recursing. (subreg:QI (value:SI 1:1) 0)
2793 and (subreg:QI (value:DI 2:2) 0) can be compared,
2794 even when the modes are different. */
2795 if (canon_value_cmp (x, y))
2796 return -1;
2797 else
2798 return 1;
2799 }
2800
2801 if (GET_CODE (y) == VALUE)
2802 return 1;
2803
2804 if (GET_CODE (x) == GET_CODE (y))
2805 /* Compare operands below. */;
2806 else if (GET_CODE (x) < GET_CODE (y))
2807 return -1;
2808 else
2809 return 1;
2810
2811 gcc_assert (GET_MODE (x) == GET_MODE (y));
2812
2813 if (GET_CODE (x) == DEBUG_EXPR)
2814 {
2815 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2816 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
2817 return -1;
2818 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
2819 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
2820 return 1;
2821 }
2822
2823 fmt = GET_RTX_FORMAT (code);
2824 for (i = 0; i < GET_RTX_LENGTH (code); i++)
2825 switch (fmt[i])
2826 {
2827 case 'w':
2828 if (XWINT (x, i) == XWINT (y, i))
2829 break;
2830 else if (XWINT (x, i) < XWINT (y, i))
2831 return -1;
2832 else
2833 return 1;
2834
2835 case 'n':
2836 case 'i':
2837 if (XINT (x, i) == XINT (y, i))
2838 break;
2839 else if (XINT (x, i) < XINT (y, i))
2840 return -1;
2841 else
2842 return 1;
2843
2844 case 'V':
2845 case 'E':
2846 /* Compare the vector length first. */
2847 if (XVECLEN (x, i) == XVECLEN (y, i))
2848 /* Compare the vectors elements. */;
2849 else if (XVECLEN (x, i) < XVECLEN (y, i))
2850 return -1;
2851 else
2852 return 1;
2853
2854 for (j = 0; j < XVECLEN (x, i); j++)
2855 if ((r = loc_cmp (XVECEXP (x, i, j),
2856 XVECEXP (y, i, j))))
2857 return r;
2858 break;
2859
2860 case 'e':
2861 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
2862 return r;
2863 break;
2864
2865 case 'S':
2866 case 's':
2867 if (XSTR (x, i) == XSTR (y, i))
2868 break;
2869 if (!XSTR (x, i))
2870 return -1;
2871 if (!XSTR (y, i))
2872 return 1;
2873 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
2874 break;
2875 else if (r < 0)
2876 return -1;
2877 else
2878 return 1;
2879
2880 case 'u':
2881 /* These are just backpointers, so they don't matter. */
2882 break;
2883
2884 case '0':
2885 case 't':
2886 break;
2887
2888 /* It is believed that rtx's at this level will never
2889 contain anything but integers and other rtx's,
2890 except for within LABEL_REFs and SYMBOL_REFs. */
2891 default:
2892 gcc_unreachable ();
2893 }
2894
2895 return 0;
2896 }
2897
2898 /* If decl or value DVP refers to VALUE from *LOC, add backlinks
2899 from VALUE to DVP. */
2900
2901 static int
2902 add_value_chain (rtx *loc, void *dvp)
2903 {
2904 decl_or_value dv, ldv;
2905 value_chain vc, nvc;
2906 void **slot;
2907
2908 if (GET_CODE (*loc) == VALUE)
2909 ldv = dv_from_value (*loc);
2910 else if (GET_CODE (*loc) == DEBUG_EXPR)
2911 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
2912 else
2913 return 0;
2914
2915 if (dv_as_opaque (ldv) == dvp)
2916 return 0;
2917
2918 dv = (decl_or_value) dvp;
2919 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
2920 INSERT);
2921 if (!*slot)
2922 {
2923 vc = (value_chain) pool_alloc (value_chain_pool);
2924 vc->dv = ldv;
2925 vc->next = NULL;
2926 vc->refcount = 0;
2927 *slot = (void *) vc;
2928 }
2929 else
2930 {
2931 for (vc = ((value_chain) *slot)->next; vc; vc = vc->next)
2932 if (dv_as_opaque (vc->dv) == dv_as_opaque (dv))
2933 break;
2934 if (vc)
2935 {
2936 vc->refcount++;
2937 return 0;
2938 }
2939 }
2940 vc = (value_chain) *slot;
2941 nvc = (value_chain) pool_alloc (value_chain_pool);
2942 nvc->dv = dv;
2943 nvc->next = vc->next;
2944 nvc->refcount = 1;
2945 vc->next = nvc;
2946 return 0;
2947 }
2948
2949 /* If decl or value DVP refers to VALUEs from within LOC, add backlinks
2950 from those VALUEs to DVP. */
2951
2952 static void
2953 add_value_chains (decl_or_value dv, rtx loc)
2954 {
2955 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
2956 {
2957 add_value_chain (&loc, dv_as_opaque (dv));
2958 return;
2959 }
2960 if (REG_P (loc))
2961 return;
2962 if (MEM_P (loc))
2963 loc = XEXP (loc, 0);
2964 for_each_rtx (&loc, add_value_chain, dv_as_opaque (dv));
2965 }
2966
2967 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, add backlinks from those
2968 VALUEs to DV. Add the same time get rid of ASM_OPERANDS from locs list,
2969 that is something we never can express in .debug_info and can prevent
2970 reverse ops from being used. */
2971
2972 static void
2973 add_cselib_value_chains (decl_or_value dv)
2974 {
2975 struct elt_loc_list **l;
2976
2977 for (l = &CSELIB_VAL_PTR (dv_as_value (dv))->locs; *l;)
2978 if (GET_CODE ((*l)->loc) == ASM_OPERANDS)
2979 *l = (*l)->next;
2980 else
2981 {
2982 for_each_rtx (&(*l)->loc, add_value_chain, dv_as_opaque (dv));
2983 l = &(*l)->next;
2984 }
2985 }
2986
2987 /* If decl or value DVP refers to VALUE from *LOC, remove backlinks
2988 from VALUE to DVP. */
2989
2990 static int
2991 remove_value_chain (rtx *loc, void *dvp)
2992 {
2993 decl_or_value dv, ldv;
2994 value_chain vc;
2995 void **slot;
2996
2997 if (GET_CODE (*loc) == VALUE)
2998 ldv = dv_from_value (*loc);
2999 else if (GET_CODE (*loc) == DEBUG_EXPR)
3000 ldv = dv_from_decl (DEBUG_EXPR_TREE_DECL (*loc));
3001 else
3002 return 0;
3003
3004 if (dv_as_opaque (ldv) == dvp)
3005 return 0;
3006
3007 dv = (decl_or_value) dvp;
3008 slot = htab_find_slot_with_hash (value_chains, ldv, dv_htab_hash (ldv),
3009 NO_INSERT);
3010 for (vc = (value_chain) *slot; vc->next; vc = vc->next)
3011 if (dv_as_opaque (vc->next->dv) == dv_as_opaque (dv))
3012 {
3013 value_chain dvc = vc->next;
3014 gcc_assert (dvc->refcount > 0);
3015 if (--dvc->refcount == 0)
3016 {
3017 vc->next = dvc->next;
3018 pool_free (value_chain_pool, dvc);
3019 if (vc->next == NULL && vc == (value_chain) *slot)
3020 {
3021 pool_free (value_chain_pool, vc);
3022 htab_clear_slot (value_chains, slot);
3023 }
3024 }
3025 return 0;
3026 }
3027 gcc_unreachable ();
3028 }
3029
3030 /* If decl or value DVP refers to VALUEs from within LOC, remove backlinks
3031 from those VALUEs to DVP. */
3032
3033 static void
3034 remove_value_chains (decl_or_value dv, rtx loc)
3035 {
3036 if (GET_CODE (loc) == VALUE || GET_CODE (loc) == DEBUG_EXPR)
3037 {
3038 remove_value_chain (&loc, dv_as_opaque (dv));
3039 return;
3040 }
3041 if (REG_P (loc))
3042 return;
3043 if (MEM_P (loc))
3044 loc = XEXP (loc, 0);
3045 for_each_rtx (&loc, remove_value_chain, dv_as_opaque (dv));
3046 }
3047
3048 #if ENABLE_CHECKING
3049 /* If CSELIB_VAL_PTR of value DV refer to VALUEs, remove backlinks from those
3050 VALUEs to DV. */
3051
3052 static void
3053 remove_cselib_value_chains (decl_or_value dv)
3054 {
3055 struct elt_loc_list *l;
3056
3057 for (l = CSELIB_VAL_PTR (dv_as_value (dv))->locs; l; l = l->next)
3058 for_each_rtx (&l->loc, remove_value_chain, dv_as_opaque (dv));
3059 }
3060
3061 /* Check the order of entries in one-part variables. */
3062
3063 static int
3064 canonicalize_loc_order_check (void **slot, void *data ATTRIBUTE_UNUSED)
3065 {
3066 variable var = (variable) *slot;
3067 decl_or_value dv = var->dv;
3068 location_chain node, next;
3069
3070 #ifdef ENABLE_RTL_CHECKING
3071 int i;
3072 for (i = 0; i < var->n_var_parts; i++)
3073 gcc_assert (var->var_part[0].cur_loc == NULL);
3074 gcc_assert (!var->cur_loc_changed && !var->in_changed_variables);
3075 #endif
3076
3077 if (!dv_onepart_p (dv))
3078 return 1;
3079
3080 gcc_assert (var->n_var_parts == 1);
3081 node = var->var_part[0].loc_chain;
3082 gcc_assert (node);
3083
3084 while ((next = node->next))
3085 {
3086 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3087 node = next;
3088 }
3089
3090 return 1;
3091 }
3092 #endif
3093
3094 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3095 more likely to be chosen as canonical for an equivalence set.
3096 Ensure less likely values can reach more likely neighbors, making
3097 the connections bidirectional. */
3098
3099 static int
3100 canonicalize_values_mark (void **slot, void *data)
3101 {
3102 dataflow_set *set = (dataflow_set *)data;
3103 variable var = (variable) *slot;
3104 decl_or_value dv = var->dv;
3105 rtx val;
3106 location_chain node;
3107
3108 if (!dv_is_value_p (dv))
3109 return 1;
3110
3111 gcc_checking_assert (var->n_var_parts == 1);
3112
3113 val = dv_as_value (dv);
3114
3115 for (node = var->var_part[0].loc_chain; node; node = node->next)
3116 if (GET_CODE (node->loc) == VALUE)
3117 {
3118 if (canon_value_cmp (node->loc, val))
3119 VALUE_RECURSED_INTO (val) = true;
3120 else
3121 {
3122 decl_or_value odv = dv_from_value (node->loc);
3123 void **oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3124
3125 set_slot_part (set, val, oslot, odv, 0,
3126 node->init, NULL_RTX);
3127
3128 VALUE_RECURSED_INTO (node->loc) = true;
3129 }
3130 }
3131
3132 return 1;
3133 }
3134
3135 /* Remove redundant entries from equivalence lists in onepart
3136 variables, canonicalizing equivalence sets into star shapes. */
3137
3138 static int
3139 canonicalize_values_star (void **slot, void *data)
3140 {
3141 dataflow_set *set = (dataflow_set *)data;
3142 variable var = (variable) *slot;
3143 decl_or_value dv = var->dv;
3144 location_chain node;
3145 decl_or_value cdv;
3146 rtx val, cval;
3147 void **cslot;
3148 bool has_value;
3149 bool has_marks;
3150
3151 if (!dv_onepart_p (dv))
3152 return 1;
3153
3154 gcc_checking_assert (var->n_var_parts == 1);
3155
3156 if (dv_is_value_p (dv))
3157 {
3158 cval = dv_as_value (dv);
3159 if (!VALUE_RECURSED_INTO (cval))
3160 return 1;
3161 VALUE_RECURSED_INTO (cval) = false;
3162 }
3163 else
3164 cval = NULL_RTX;
3165
3166 restart:
3167 val = cval;
3168 has_value = false;
3169 has_marks = false;
3170
3171 gcc_assert (var->n_var_parts == 1);
3172
3173 for (node = var->var_part[0].loc_chain; node; node = node->next)
3174 if (GET_CODE (node->loc) == VALUE)
3175 {
3176 has_value = true;
3177 if (VALUE_RECURSED_INTO (node->loc))
3178 has_marks = true;
3179 if (canon_value_cmp (node->loc, cval))
3180 cval = node->loc;
3181 }
3182
3183 if (!has_value)
3184 return 1;
3185
3186 if (cval == val)
3187 {
3188 if (!has_marks || dv_is_decl_p (dv))
3189 return 1;
3190
3191 /* Keep it marked so that we revisit it, either after visiting a
3192 child node, or after visiting a new parent that might be
3193 found out. */
3194 VALUE_RECURSED_INTO (val) = true;
3195
3196 for (node = var->var_part[0].loc_chain; node; node = node->next)
3197 if (GET_CODE (node->loc) == VALUE
3198 && VALUE_RECURSED_INTO (node->loc))
3199 {
3200 cval = node->loc;
3201 restart_with_cval:
3202 VALUE_RECURSED_INTO (cval) = false;
3203 dv = dv_from_value (cval);
3204 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3205 if (!slot)
3206 {
3207 gcc_assert (dv_is_decl_p (var->dv));
3208 /* The canonical value was reset and dropped.
3209 Remove it. */
3210 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3211 return 1;
3212 }
3213 var = (variable)*slot;
3214 gcc_assert (dv_is_value_p (var->dv));
3215 if (var->n_var_parts == 0)
3216 return 1;
3217 gcc_assert (var->n_var_parts == 1);
3218 goto restart;
3219 }
3220
3221 VALUE_RECURSED_INTO (val) = false;
3222
3223 return 1;
3224 }
3225
3226 /* Push values to the canonical one. */
3227 cdv = dv_from_value (cval);
3228 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3229
3230 for (node = var->var_part[0].loc_chain; node; node = node->next)
3231 if (node->loc != cval)
3232 {
3233 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3234 node->init, NULL_RTX);
3235 if (GET_CODE (node->loc) == VALUE)
3236 {
3237 decl_or_value ndv = dv_from_value (node->loc);
3238
3239 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3240 NO_INSERT);
3241
3242 if (canon_value_cmp (node->loc, val))
3243 {
3244 /* If it could have been a local minimum, it's not any more,
3245 since it's now neighbor to cval, so it may have to push
3246 to it. Conversely, if it wouldn't have prevailed over
3247 val, then whatever mark it has is fine: if it was to
3248 push, it will now push to a more canonical node, but if
3249 it wasn't, then it has already pushed any values it might
3250 have to. */
3251 VALUE_RECURSED_INTO (node->loc) = true;
3252 /* Make sure we visit node->loc by ensuring we cval is
3253 visited too. */
3254 VALUE_RECURSED_INTO (cval) = true;
3255 }
3256 else if (!VALUE_RECURSED_INTO (node->loc))
3257 /* If we have no need to "recurse" into this node, it's
3258 already "canonicalized", so drop the link to the old
3259 parent. */
3260 clobber_variable_part (set, cval, ndv, 0, NULL);
3261 }
3262 else if (GET_CODE (node->loc) == REG)
3263 {
3264 attrs list = set->regs[REGNO (node->loc)], *listp;
3265
3266 /* Change an existing attribute referring to dv so that it
3267 refers to cdv, removing any duplicate this might
3268 introduce, and checking that no previous duplicates
3269 existed, all in a single pass. */
3270
3271 while (list)
3272 {
3273 if (list->offset == 0
3274 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3275 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3276 break;
3277
3278 list = list->next;
3279 }
3280
3281 gcc_assert (list);
3282 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3283 {
3284 list->dv = cdv;
3285 for (listp = &list->next; (list = *listp); listp = &list->next)
3286 {
3287 if (list->offset)
3288 continue;
3289
3290 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3291 {
3292 *listp = list->next;
3293 pool_free (attrs_pool, list);
3294 list = *listp;
3295 break;
3296 }
3297
3298 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3299 }
3300 }
3301 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3302 {
3303 for (listp = &list->next; (list = *listp); listp = &list->next)
3304 {
3305 if (list->offset)
3306 continue;
3307
3308 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3309 {
3310 *listp = list->next;
3311 pool_free (attrs_pool, list);
3312 list = *listp;
3313 break;
3314 }
3315
3316 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3317 }
3318 }
3319 else
3320 gcc_unreachable ();
3321
3322 #if ENABLE_CHECKING
3323 while (list)
3324 {
3325 if (list->offset == 0
3326 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3327 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3328 gcc_unreachable ();
3329
3330 list = list->next;
3331 }
3332 #endif
3333 }
3334 }
3335
3336 if (val)
3337 set_slot_part (set, val, cslot, cdv, 0,
3338 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3339
3340 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3341
3342 /* Variable may have been unshared. */
3343 var = (variable)*slot;
3344 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3345 && var->var_part[0].loc_chain->next == NULL);
3346
3347 if (VALUE_RECURSED_INTO (cval))
3348 goto restart_with_cval;
3349
3350 return 1;
3351 }
3352
3353 /* Bind one-part variables to the canonical value in an equivalence
3354 set. Not doing this causes dataflow convergence failure in rare
3355 circumstances, see PR42873. Unfortunately we can't do this
3356 efficiently as part of canonicalize_values_star, since we may not
3357 have determined or even seen the canonical value of a set when we
3358 get to a variable that references another member of the set. */
3359
3360 static int
3361 canonicalize_vars_star (void **slot, void *data)
3362 {
3363 dataflow_set *set = (dataflow_set *)data;
3364 variable var = (variable) *slot;
3365 decl_or_value dv = var->dv;
3366 location_chain node;
3367 rtx cval;
3368 decl_or_value cdv;
3369 void **cslot;
3370 variable cvar;
3371 location_chain cnode;
3372
3373 if (!dv_onepart_p (dv) || dv_is_value_p (dv))
3374 return 1;
3375
3376 gcc_assert (var->n_var_parts == 1);
3377
3378 node = var->var_part[0].loc_chain;
3379
3380 if (GET_CODE (node->loc) != VALUE)
3381 return 1;
3382
3383 gcc_assert (!node->next);
3384 cval = node->loc;
3385
3386 /* Push values to the canonical one. */
3387 cdv = dv_from_value (cval);
3388 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3389 if (!cslot)
3390 return 1;
3391 cvar = (variable)*cslot;
3392 gcc_assert (cvar->n_var_parts == 1);
3393
3394 cnode = cvar->var_part[0].loc_chain;
3395
3396 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3397 that are not “more canonical” than it. */
3398 if (GET_CODE (cnode->loc) != VALUE
3399 || !canon_value_cmp (cnode->loc, cval))
3400 return 1;
3401
3402 /* CVAL was found to be non-canonical. Change the variable to point
3403 to the canonical VALUE. */
3404 gcc_assert (!cnode->next);
3405 cval = cnode->loc;
3406
3407 slot = set_slot_part (set, cval, slot, dv, 0,
3408 node->init, node->set_src);
3409 clobber_slot_part (set, cval, slot, 0, node->set_src);
3410
3411 return 1;
3412 }
3413
3414 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3415 corresponding entry in DSM->src. Multi-part variables are combined
3416 with variable_union, whereas onepart dvs are combined with
3417 intersection. */
3418
3419 static int
3420 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3421 {
3422 dataflow_set *dst = dsm->dst;
3423 void **dstslot;
3424 variable s2var, dvar = NULL;
3425 decl_or_value dv = s1var->dv;
3426 bool onepart = dv_onepart_p (dv);
3427 rtx val;
3428 hashval_t dvhash;
3429 location_chain node, *nodep;
3430
3431 /* If the incoming onepart variable has an empty location list, then
3432 the intersection will be just as empty. For other variables,
3433 it's always union. */
3434 gcc_checking_assert (s1var->n_var_parts
3435 && s1var->var_part[0].loc_chain);
3436
3437 if (!onepart)
3438 return variable_union (s1var, dst);
3439
3440 gcc_checking_assert (s1var->n_var_parts == 1
3441 && s1var->var_part[0].offset == 0);
3442
3443 dvhash = dv_htab_hash (dv);
3444 if (dv_is_value_p (dv))
3445 val = dv_as_value (dv);
3446 else
3447 val = NULL;
3448
3449 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3450 if (!s2var)
3451 {
3452 dst_can_be_shared = false;
3453 return 1;
3454 }
3455
3456 dsm->src_onepart_cnt--;
3457 gcc_assert (s2var->var_part[0].loc_chain
3458 && s2var->n_var_parts == 1
3459 && s2var->var_part[0].offset == 0);
3460
3461 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3462 if (dstslot)
3463 {
3464 dvar = (variable)*dstslot;
3465 gcc_assert (dvar->refcount == 1
3466 && dvar->n_var_parts == 1
3467 && dvar->var_part[0].offset == 0);
3468 nodep = &dvar->var_part[0].loc_chain;
3469 }
3470 else
3471 {
3472 nodep = &node;
3473 node = NULL;
3474 }
3475
3476 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3477 {
3478 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3479 dvhash, INSERT);
3480 *dstslot = dvar = s2var;
3481 dvar->refcount++;
3482 }
3483 else
3484 {
3485 dst_can_be_shared = false;
3486
3487 intersect_loc_chains (val, nodep, dsm,
3488 s1var->var_part[0].loc_chain, s2var);
3489
3490 if (!dstslot)
3491 {
3492 if (node)
3493 {
3494 dvar = (variable) pool_alloc (dv_pool (dv));
3495 dvar->dv = dv;
3496 dvar->refcount = 1;
3497 dvar->n_var_parts = 1;
3498 dvar->cur_loc_changed = false;
3499 dvar->in_changed_variables = false;
3500 dvar->var_part[0].offset = 0;
3501 dvar->var_part[0].loc_chain = node;
3502 dvar->var_part[0].cur_loc = NULL;
3503
3504 dstslot
3505 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3506 INSERT);
3507 gcc_assert (!*dstslot);
3508 *dstslot = dvar;
3509 }
3510 else
3511 return 1;
3512 }
3513 }
3514
3515 nodep = &dvar->var_part[0].loc_chain;
3516 while ((node = *nodep))
3517 {
3518 location_chain *nextp = &node->next;
3519
3520 if (GET_CODE (node->loc) == REG)
3521 {
3522 attrs list;
3523
3524 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
3525 if (GET_MODE (node->loc) == GET_MODE (list->loc)
3526 && dv_is_value_p (list->dv))
3527 break;
3528
3529 if (!list)
3530 attrs_list_insert (&dst->regs[REGNO (node->loc)],
3531 dv, 0, node->loc);
3532 /* If this value became canonical for another value that had
3533 this register, we want to leave it alone. */
3534 else if (dv_as_value (list->dv) != val)
3535 {
3536 dstslot = set_slot_part (dst, dv_as_value (list->dv),
3537 dstslot, dv, 0,
3538 node->init, NULL_RTX);
3539 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
3540
3541 /* Since nextp points into the removed node, we can't
3542 use it. The pointer to the next node moved to nodep.
3543 However, if the variable we're walking is unshared
3544 during our walk, we'll keep walking the location list
3545 of the previously-shared variable, in which case the
3546 node won't have been removed, and we'll want to skip
3547 it. That's why we test *nodep here. */
3548 if (*nodep != node)
3549 nextp = nodep;
3550 }
3551 }
3552 else
3553 /* Canonicalization puts registers first, so we don't have to
3554 walk it all. */
3555 break;
3556 nodep = nextp;
3557 }
3558
3559 if (dvar != (variable)*dstslot)
3560 dvar = (variable)*dstslot;
3561 nodep = &dvar->var_part[0].loc_chain;
3562
3563 if (val)
3564 {
3565 /* Mark all referenced nodes for canonicalization, and make sure
3566 we have mutual equivalence links. */
3567 VALUE_RECURSED_INTO (val) = true;
3568 for (node = *nodep; node; node = node->next)
3569 if (GET_CODE (node->loc) == VALUE)
3570 {
3571 VALUE_RECURSED_INTO (node->loc) = true;
3572 set_variable_part (dst, val, dv_from_value (node->loc), 0,
3573 node->init, NULL, INSERT);
3574 }
3575
3576 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3577 gcc_assert (*dstslot == dvar);
3578 canonicalize_values_star (dstslot, dst);
3579 gcc_checking_assert (dstslot
3580 == shared_hash_find_slot_noinsert_1 (dst->vars,
3581 dv, dvhash));
3582 dvar = (variable)*dstslot;
3583 }
3584 else
3585 {
3586 bool has_value = false, has_other = false;
3587
3588 /* If we have one value and anything else, we're going to
3589 canonicalize this, so make sure all values have an entry in
3590 the table and are marked for canonicalization. */
3591 for (node = *nodep; node; node = node->next)
3592 {
3593 if (GET_CODE (node->loc) == VALUE)
3594 {
3595 /* If this was marked during register canonicalization,
3596 we know we have to canonicalize values. */
3597 if (has_value)
3598 has_other = true;
3599 has_value = true;
3600 if (has_other)
3601 break;
3602 }
3603 else
3604 {
3605 has_other = true;
3606 if (has_value)
3607 break;
3608 }
3609 }
3610
3611 if (has_value && has_other)
3612 {
3613 for (node = *nodep; node; node = node->next)
3614 {
3615 if (GET_CODE (node->loc) == VALUE)
3616 {
3617 decl_or_value dv = dv_from_value (node->loc);
3618 void **slot = NULL;
3619
3620 if (shared_hash_shared (dst->vars))
3621 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
3622 if (!slot)
3623 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
3624 INSERT);
3625 if (!*slot)
3626 {
3627 variable var = (variable) pool_alloc (dv_pool (dv));
3628 var->dv = dv;
3629 var->refcount = 1;
3630 var->n_var_parts = 1;
3631 var->cur_loc_changed = false;
3632 var->in_changed_variables = false;
3633 var->var_part[0].offset = 0;
3634 var->var_part[0].loc_chain = NULL;
3635 var->var_part[0].cur_loc = NULL;
3636 *slot = var;
3637 }
3638
3639 VALUE_RECURSED_INTO (node->loc) = true;
3640 }
3641 }
3642
3643 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3644 gcc_assert (*dstslot == dvar);
3645 canonicalize_values_star (dstslot, dst);
3646 gcc_checking_assert (dstslot
3647 == shared_hash_find_slot_noinsert_1 (dst->vars,
3648 dv, dvhash));
3649 dvar = (variable)*dstslot;
3650 }
3651 }
3652
3653 if (!onepart_variable_different_p (dvar, s2var))
3654 {
3655 variable_htab_free (dvar);
3656 *dstslot = dvar = s2var;
3657 dvar->refcount++;
3658 }
3659 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
3660 {
3661 variable_htab_free (dvar);
3662 *dstslot = dvar = s1var;
3663 dvar->refcount++;
3664 dst_can_be_shared = false;
3665 }
3666 else
3667 dst_can_be_shared = false;
3668
3669 return 1;
3670 }
3671
3672 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
3673 multi-part variable. Unions of multi-part variables and
3674 intersections of one-part ones will be handled in
3675 variable_merge_over_cur(). */
3676
3677 static int
3678 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
3679 {
3680 dataflow_set *dst = dsm->dst;
3681 decl_or_value dv = s2var->dv;
3682 bool onepart = dv_onepart_p (dv);
3683
3684 if (!onepart)
3685 {
3686 void **dstp = shared_hash_find_slot (dst->vars, dv);
3687 *dstp = s2var;
3688 s2var->refcount++;
3689 return 1;
3690 }
3691
3692 dsm->src_onepart_cnt++;
3693 return 1;
3694 }
3695
3696 /* Combine dataflow set information from SRC2 into DST, using PDST
3697 to carry over information across passes. */
3698
3699 static void
3700 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
3701 {
3702 dataflow_set cur = *dst;
3703 dataflow_set *src1 = &cur;
3704 struct dfset_merge dsm;
3705 int i;
3706 size_t src1_elems, src2_elems;
3707 htab_iterator hi;
3708 variable var;
3709
3710 src1_elems = htab_elements (shared_hash_htab (src1->vars));
3711 src2_elems = htab_elements (shared_hash_htab (src2->vars));
3712 dataflow_set_init (dst);
3713 dst->stack_adjust = cur.stack_adjust;
3714 shared_hash_destroy (dst->vars);
3715 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
3716 dst->vars->refcount = 1;
3717 dst->vars->htab
3718 = htab_create (MAX (src1_elems, src2_elems), variable_htab_hash,
3719 variable_htab_eq, variable_htab_free);
3720
3721 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3722 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
3723
3724 dsm.dst = dst;
3725 dsm.src = src2;
3726 dsm.cur = src1;
3727 dsm.src_onepart_cnt = 0;
3728
3729 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.src->vars), var, variable, hi)
3730 variable_merge_over_src (var, &dsm);
3731 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (dsm.cur->vars), var, variable, hi)
3732 variable_merge_over_cur (var, &dsm);
3733
3734 if (dsm.src_onepart_cnt)
3735 dst_can_be_shared = false;
3736
3737 dataflow_set_destroy (src1);
3738 }
3739
3740 /* Mark register equivalences. */
3741
3742 static void
3743 dataflow_set_equiv_regs (dataflow_set *set)
3744 {
3745 int i;
3746 attrs list, *listp;
3747
3748 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3749 {
3750 rtx canon[NUM_MACHINE_MODES];
3751
3752 /* If the list is empty or one entry, no need to canonicalize
3753 anything. */
3754 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
3755 continue;
3756
3757 memset (canon, 0, sizeof (canon));
3758
3759 for (list = set->regs[i]; list; list = list->next)
3760 if (list->offset == 0 && dv_is_value_p (list->dv))
3761 {
3762 rtx val = dv_as_value (list->dv);
3763 rtx *cvalp = &canon[(int)GET_MODE (val)];
3764 rtx cval = *cvalp;
3765
3766 if (canon_value_cmp (val, cval))
3767 *cvalp = val;
3768 }
3769
3770 for (list = set->regs[i]; list; list = list->next)
3771 if (list->offset == 0 && dv_onepart_p (list->dv))
3772 {
3773 rtx cval = canon[(int)GET_MODE (list->loc)];
3774
3775 if (!cval)
3776 continue;
3777
3778 if (dv_is_value_p (list->dv))
3779 {
3780 rtx val = dv_as_value (list->dv);
3781
3782 if (val == cval)
3783 continue;
3784
3785 VALUE_RECURSED_INTO (val) = true;
3786 set_variable_part (set, val, dv_from_value (cval), 0,
3787 VAR_INIT_STATUS_INITIALIZED,
3788 NULL, NO_INSERT);
3789 }
3790
3791 VALUE_RECURSED_INTO (cval) = true;
3792 set_variable_part (set, cval, list->dv, 0,
3793 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
3794 }
3795
3796 for (listp = &set->regs[i]; (list = *listp);
3797 listp = list ? &list->next : listp)
3798 if (list->offset == 0 && dv_onepart_p (list->dv))
3799 {
3800 rtx cval = canon[(int)GET_MODE (list->loc)];
3801 void **slot;
3802
3803 if (!cval)
3804 continue;
3805
3806 if (dv_is_value_p (list->dv))
3807 {
3808 rtx val = dv_as_value (list->dv);
3809 if (!VALUE_RECURSED_INTO (val))
3810 continue;
3811 }
3812
3813 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
3814 canonicalize_values_star (slot, set);
3815 if (*listp != list)
3816 list = NULL;
3817 }
3818 }
3819 }
3820
3821 /* Remove any redundant values in the location list of VAR, which must
3822 be unshared and 1-part. */
3823
3824 static void
3825 remove_duplicate_values (variable var)
3826 {
3827 location_chain node, *nodep;
3828
3829 gcc_assert (dv_onepart_p (var->dv));
3830 gcc_assert (var->n_var_parts == 1);
3831 gcc_assert (var->refcount == 1);
3832
3833 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
3834 {
3835 if (GET_CODE (node->loc) == VALUE)
3836 {
3837 if (VALUE_RECURSED_INTO (node->loc))
3838 {
3839 /* Remove duplicate value node. */
3840 *nodep = node->next;
3841 pool_free (loc_chain_pool, node);
3842 continue;
3843 }
3844 else
3845 VALUE_RECURSED_INTO (node->loc) = true;
3846 }
3847 nodep = &node->next;
3848 }
3849
3850 for (node = var->var_part[0].loc_chain; node; node = node->next)
3851 if (GET_CODE (node->loc) == VALUE)
3852 {
3853 gcc_assert (VALUE_RECURSED_INTO (node->loc));
3854 VALUE_RECURSED_INTO (node->loc) = false;
3855 }
3856 }
3857
3858
3859 /* Hash table iteration argument passed to variable_post_merge. */
3860 struct dfset_post_merge
3861 {
3862 /* The new input set for the current block. */
3863 dataflow_set *set;
3864 /* Pointer to the permanent input set for the current block, or
3865 NULL. */
3866 dataflow_set **permp;
3867 };
3868
3869 /* Create values for incoming expressions associated with one-part
3870 variables that don't have value numbers for them. */
3871
3872 static int
3873 variable_post_merge_new_vals (void **slot, void *info)
3874 {
3875 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
3876 dataflow_set *set = dfpm->set;
3877 variable var = (variable)*slot;
3878 location_chain node;
3879
3880 if (!dv_onepart_p (var->dv) || !var->n_var_parts)
3881 return 1;
3882
3883 gcc_assert (var->n_var_parts == 1);
3884
3885 if (dv_is_decl_p (var->dv))
3886 {
3887 bool check_dupes = false;
3888
3889 restart:
3890 for (node = var->var_part[0].loc_chain; node; node = node->next)
3891 {
3892 if (GET_CODE (node->loc) == VALUE)
3893 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
3894 else if (GET_CODE (node->loc) == REG)
3895 {
3896 attrs att, *attp, *curp = NULL;
3897
3898 if (var->refcount != 1)
3899 {
3900 slot = unshare_variable (set, slot, var,
3901 VAR_INIT_STATUS_INITIALIZED);
3902 var = (variable)*slot;
3903 goto restart;
3904 }
3905
3906 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
3907 attp = &att->next)
3908 if (att->offset == 0
3909 && GET_MODE (att->loc) == GET_MODE (node->loc))
3910 {
3911 if (dv_is_value_p (att->dv))
3912 {
3913 rtx cval = dv_as_value (att->dv);
3914 node->loc = cval;
3915 check_dupes = true;
3916 break;
3917 }
3918 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
3919 curp = attp;
3920 }
3921
3922 if (!curp)
3923 {
3924 curp = attp;
3925 while (*curp)
3926 if ((*curp)->offset == 0
3927 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
3928 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
3929 break;
3930 else
3931 curp = &(*curp)->next;
3932 gcc_assert (*curp);
3933 }
3934
3935 if (!att)
3936 {
3937 decl_or_value cdv;
3938 rtx cval;
3939
3940 if (!*dfpm->permp)
3941 {
3942 *dfpm->permp = XNEW (dataflow_set);
3943 dataflow_set_init (*dfpm->permp);
3944 }
3945
3946 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
3947 att; att = att->next)
3948 if (GET_MODE (att->loc) == GET_MODE (node->loc))
3949 {
3950 gcc_assert (att->offset == 0
3951 && dv_is_value_p (att->dv));
3952 val_reset (set, att->dv);
3953 break;
3954 }
3955
3956 if (att)
3957 {
3958 cdv = att->dv;
3959 cval = dv_as_value (cdv);
3960 }
3961 else
3962 {
3963 /* Create a unique value to hold this register,
3964 that ought to be found and reused in
3965 subsequent rounds. */
3966 cselib_val *v;
3967 gcc_assert (!cselib_lookup (node->loc,
3968 GET_MODE (node->loc), 0,
3969 VOIDmode));
3970 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
3971 VOIDmode);
3972 cselib_preserve_value (v);
3973 cselib_invalidate_rtx (node->loc);
3974 cval = v->val_rtx;
3975 cdv = dv_from_value (cval);
3976 if (dump_file)
3977 fprintf (dump_file,
3978 "Created new value %u:%u for reg %i\n",
3979 v->uid, v->hash, REGNO (node->loc));
3980 }
3981
3982 var_reg_decl_set (*dfpm->permp, node->loc,
3983 VAR_INIT_STATUS_INITIALIZED,
3984 cdv, 0, NULL, INSERT);
3985
3986 node->loc = cval;
3987 check_dupes = true;
3988 }
3989
3990 /* Remove attribute referring to the decl, which now
3991 uses the value for the register, already existing or
3992 to be added when we bring perm in. */
3993 att = *curp;
3994 *curp = att->next;
3995 pool_free (attrs_pool, att);
3996 }
3997 }
3998
3999 if (check_dupes)
4000 remove_duplicate_values (var);
4001 }
4002
4003 return 1;
4004 }
4005
4006 /* Reset values in the permanent set that are not associated with the
4007 chosen expression. */
4008
4009 static int
4010 variable_post_merge_perm_vals (void **pslot, void *info)
4011 {
4012 struct dfset_post_merge *dfpm = (struct dfset_post_merge *)info;
4013 dataflow_set *set = dfpm->set;
4014 variable pvar = (variable)*pslot, var;
4015 location_chain pnode;
4016 decl_or_value dv;
4017 attrs att;
4018
4019 gcc_assert (dv_is_value_p (pvar->dv)
4020 && pvar->n_var_parts == 1);
4021 pnode = pvar->var_part[0].loc_chain;
4022 gcc_assert (pnode
4023 && !pnode->next
4024 && REG_P (pnode->loc));
4025
4026 dv = pvar->dv;
4027
4028 var = shared_hash_find (set->vars, dv);
4029 if (var)
4030 {
4031 /* Although variable_post_merge_new_vals may have made decls
4032 non-star-canonical, values that pre-existed in canonical form
4033 remain canonical, and newly-created values reference a single
4034 REG, so they are canonical as well. Since VAR has the
4035 location list for a VALUE, using find_loc_in_1pdv for it is
4036 fine, since VALUEs don't map back to DECLs. */
4037 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4038 return 1;
4039 val_reset (set, dv);
4040 }
4041
4042 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4043 if (att->offset == 0
4044 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4045 && dv_is_value_p (att->dv))
4046 break;
4047
4048 /* If there is a value associated with this register already, create
4049 an equivalence. */
4050 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4051 {
4052 rtx cval = dv_as_value (att->dv);
4053 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4054 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4055 NULL, INSERT);
4056 }
4057 else if (!att)
4058 {
4059 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4060 dv, 0, pnode->loc);
4061 variable_union (pvar, set);
4062 }
4063
4064 return 1;
4065 }
4066
4067 /* Just checking stuff and registering register attributes for
4068 now. */
4069
4070 static void
4071 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4072 {
4073 struct dfset_post_merge dfpm;
4074
4075 dfpm.set = set;
4076 dfpm.permp = permp;
4077
4078 htab_traverse (shared_hash_htab (set->vars), variable_post_merge_new_vals,
4079 &dfpm);
4080 if (*permp)
4081 htab_traverse (shared_hash_htab ((*permp)->vars),
4082 variable_post_merge_perm_vals, &dfpm);
4083 htab_traverse (shared_hash_htab (set->vars), canonicalize_values_star, set);
4084 htab_traverse (shared_hash_htab (set->vars), canonicalize_vars_star, set);
4085 }
4086
4087 /* Return a node whose loc is a MEM that refers to EXPR in the
4088 location list of a one-part variable or value VAR, or in that of
4089 any values recursively mentioned in the location lists. */
4090
4091 static location_chain
4092 find_mem_expr_in_1pdv (tree expr, rtx val, htab_t vars)
4093 {
4094 location_chain node;
4095 decl_or_value dv;
4096 variable var;
4097 location_chain where = NULL;
4098
4099 if (!val)
4100 return NULL;
4101
4102 gcc_assert (GET_CODE (val) == VALUE
4103 && !VALUE_RECURSED_INTO (val));
4104
4105 dv = dv_from_value (val);
4106 var = (variable) htab_find_with_hash (vars, dv, dv_htab_hash (dv));
4107
4108 if (!var)
4109 return NULL;
4110
4111 gcc_assert (dv_onepart_p (var->dv));
4112
4113 if (!var->n_var_parts)
4114 return NULL;
4115
4116 gcc_assert (var->var_part[0].offset == 0);
4117
4118 VALUE_RECURSED_INTO (val) = true;
4119
4120 for (node = var->var_part[0].loc_chain; node; node = node->next)
4121 if (MEM_P (node->loc)
4122 && MEM_EXPR (node->loc) == expr
4123 && INT_MEM_OFFSET (node->loc) == 0)
4124 {
4125 where = node;
4126 break;
4127 }
4128 else if (GET_CODE (node->loc) == VALUE
4129 && !VALUE_RECURSED_INTO (node->loc)
4130 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4131 break;
4132
4133 VALUE_RECURSED_INTO (val) = false;
4134
4135 return where;
4136 }
4137
4138 /* Return TRUE if the value of MEM may vary across a call. */
4139
4140 static bool
4141 mem_dies_at_call (rtx mem)
4142 {
4143 tree expr = MEM_EXPR (mem);
4144 tree decl;
4145
4146 if (!expr)
4147 return true;
4148
4149 decl = get_base_address (expr);
4150
4151 if (!decl)
4152 return true;
4153
4154 if (!DECL_P (decl))
4155 return true;
4156
4157 return (may_be_aliased (decl)
4158 || (!TREE_READONLY (decl) && is_global_var (decl)));
4159 }
4160
4161 /* Remove all MEMs from the location list of a hash table entry for a
4162 one-part variable, except those whose MEM attributes map back to
4163 the variable itself, directly or within a VALUE. */
4164
4165 static int
4166 dataflow_set_preserve_mem_locs (void **slot, void *data)
4167 {
4168 dataflow_set *set = (dataflow_set *) data;
4169 variable var = (variable) *slot;
4170
4171 if (dv_is_decl_p (var->dv) && dv_onepart_p (var->dv))
4172 {
4173 tree decl = dv_as_decl (var->dv);
4174 location_chain loc, *locp;
4175 bool changed = false;
4176
4177 if (!var->n_var_parts)
4178 return 1;
4179
4180 gcc_assert (var->n_var_parts == 1);
4181
4182 if (shared_var_p (var, set->vars))
4183 {
4184 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4185 {
4186 /* We want to remove dying MEMs that doesn't refer to DECL. */
4187 if (GET_CODE (loc->loc) == MEM
4188 && (MEM_EXPR (loc->loc) != decl
4189 || INT_MEM_OFFSET (loc->loc) != 0)
4190 && !mem_dies_at_call (loc->loc))
4191 break;
4192 /* We want to move here MEMs that do refer to DECL. */
4193 else if (GET_CODE (loc->loc) == VALUE
4194 && find_mem_expr_in_1pdv (decl, loc->loc,
4195 shared_hash_htab (set->vars)))
4196 break;
4197 }
4198
4199 if (!loc)
4200 return 1;
4201
4202 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4203 var = (variable)*slot;
4204 gcc_assert (var->n_var_parts == 1);
4205 }
4206
4207 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4208 loc; loc = *locp)
4209 {
4210 rtx old_loc = loc->loc;
4211 if (GET_CODE (old_loc) == VALUE)
4212 {
4213 location_chain mem_node
4214 = find_mem_expr_in_1pdv (decl, loc->loc,
4215 shared_hash_htab (set->vars));
4216
4217 /* ??? This picks up only one out of multiple MEMs that
4218 refer to the same variable. Do we ever need to be
4219 concerned about dealing with more than one, or, given
4220 that they should all map to the same variable
4221 location, their addresses will have been merged and
4222 they will be regarded as equivalent? */
4223 if (mem_node)
4224 {
4225 loc->loc = mem_node->loc;
4226 loc->set_src = mem_node->set_src;
4227 loc->init = MIN (loc->init, mem_node->init);
4228 }
4229 }
4230
4231 if (GET_CODE (loc->loc) != MEM
4232 || (MEM_EXPR (loc->loc) == decl
4233 && INT_MEM_OFFSET (loc->loc) == 0)
4234 || !mem_dies_at_call (loc->loc))
4235 {
4236 if (old_loc != loc->loc && emit_notes)
4237 {
4238 if (old_loc == var->var_part[0].cur_loc)
4239 {
4240 changed = true;
4241 var->var_part[0].cur_loc = NULL;
4242 var->cur_loc_changed = true;
4243 }
4244 add_value_chains (var->dv, loc->loc);
4245 remove_value_chains (var->dv, old_loc);
4246 }
4247 locp = &loc->next;
4248 continue;
4249 }
4250
4251 if (emit_notes)
4252 {
4253 remove_value_chains (var->dv, old_loc);
4254 if (old_loc == var->var_part[0].cur_loc)
4255 {
4256 changed = true;
4257 var->var_part[0].cur_loc = NULL;
4258 var->cur_loc_changed = true;
4259 }
4260 }
4261 *locp = loc->next;
4262 pool_free (loc_chain_pool, loc);
4263 }
4264
4265 if (!var->var_part[0].loc_chain)
4266 {
4267 var->n_var_parts--;
4268 changed = true;
4269 }
4270 if (changed)
4271 variable_was_changed (var, set);
4272 }
4273
4274 return 1;
4275 }
4276
4277 /* Remove all MEMs from the location list of a hash table entry for a
4278 value. */
4279
4280 static int
4281 dataflow_set_remove_mem_locs (void **slot, void *data)
4282 {
4283 dataflow_set *set = (dataflow_set *) data;
4284 variable var = (variable) *slot;
4285
4286 if (dv_is_value_p (var->dv))
4287 {
4288 location_chain loc, *locp;
4289 bool changed = false;
4290
4291 gcc_assert (var->n_var_parts == 1);
4292
4293 if (shared_var_p (var, set->vars))
4294 {
4295 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4296 if (GET_CODE (loc->loc) == MEM
4297 && mem_dies_at_call (loc->loc))
4298 break;
4299
4300 if (!loc)
4301 return 1;
4302
4303 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4304 var = (variable)*slot;
4305 gcc_assert (var->n_var_parts == 1);
4306 }
4307
4308 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4309 loc; loc = *locp)
4310 {
4311 if (GET_CODE (loc->loc) != MEM
4312 || !mem_dies_at_call (loc->loc))
4313 {
4314 locp = &loc->next;
4315 continue;
4316 }
4317
4318 if (emit_notes)
4319 remove_value_chains (var->dv, loc->loc);
4320 *locp = loc->next;
4321 /* If we have deleted the location which was last emitted
4322 we have to emit new location so add the variable to set
4323 of changed variables. */
4324 if (var->var_part[0].cur_loc == loc->loc)
4325 {
4326 changed = true;
4327 var->var_part[0].cur_loc = NULL;
4328 var->cur_loc_changed = true;
4329 }
4330 pool_free (loc_chain_pool, loc);
4331 }
4332
4333 if (!var->var_part[0].loc_chain)
4334 {
4335 var->n_var_parts--;
4336 changed = true;
4337 }
4338 if (changed)
4339 variable_was_changed (var, set);
4340 }
4341
4342 return 1;
4343 }
4344
4345 /* Remove all variable-location information about call-clobbered
4346 registers, as well as associations between MEMs and VALUEs. */
4347
4348 static void
4349 dataflow_set_clear_at_call (dataflow_set *set)
4350 {
4351 int r;
4352
4353 for (r = 0; r < FIRST_PSEUDO_REGISTER; r++)
4354 if (TEST_HARD_REG_BIT (regs_invalidated_by_call, r))
4355 var_regno_delete (set, r);
4356
4357 if (MAY_HAVE_DEBUG_INSNS)
4358 {
4359 set->traversed_vars = set->vars;
4360 htab_traverse (shared_hash_htab (set->vars),
4361 dataflow_set_preserve_mem_locs, set);
4362 set->traversed_vars = set->vars;
4363 htab_traverse (shared_hash_htab (set->vars), dataflow_set_remove_mem_locs,
4364 set);
4365 set->traversed_vars = NULL;
4366 }
4367 }
4368
4369 static bool
4370 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4371 {
4372 location_chain lc1, lc2;
4373
4374 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4375 {
4376 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4377 {
4378 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4379 {
4380 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4381 break;
4382 }
4383 if (rtx_equal_p (lc1->loc, lc2->loc))
4384 break;
4385 }
4386 if (!lc2)
4387 return true;
4388 }
4389 return false;
4390 }
4391
4392 /* Return true if one-part variables VAR1 and VAR2 are different.
4393 They must be in canonical order. */
4394
4395 static bool
4396 onepart_variable_different_p (variable var1, variable var2)
4397 {
4398 location_chain lc1, lc2;
4399
4400 if (var1 == var2)
4401 return false;
4402
4403 gcc_assert (var1->n_var_parts == 1
4404 && var2->n_var_parts == 1);
4405
4406 lc1 = var1->var_part[0].loc_chain;
4407 lc2 = var2->var_part[0].loc_chain;
4408
4409 gcc_assert (lc1 && lc2);
4410
4411 while (lc1 && lc2)
4412 {
4413 if (loc_cmp (lc1->loc, lc2->loc))
4414 return true;
4415 lc1 = lc1->next;
4416 lc2 = lc2->next;
4417 }
4418
4419 return lc1 != lc2;
4420 }
4421
4422 /* Return true if variables VAR1 and VAR2 are different. */
4423
4424 static bool
4425 variable_different_p (variable var1, variable var2)
4426 {
4427 int i;
4428
4429 if (var1 == var2)
4430 return false;
4431
4432 if (var1->n_var_parts != var2->n_var_parts)
4433 return true;
4434
4435 for (i = 0; i < var1->n_var_parts; i++)
4436 {
4437 if (var1->var_part[i].offset != var2->var_part[i].offset)
4438 return true;
4439 /* One-part values have locations in a canonical order. */
4440 if (i == 0 && var1->var_part[i].offset == 0 && dv_onepart_p (var1->dv))
4441 {
4442 gcc_assert (var1->n_var_parts == 1
4443 && dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv));
4444 return onepart_variable_different_p (var1, var2);
4445 }
4446 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4447 return true;
4448 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4449 return true;
4450 }
4451 return false;
4452 }
4453
4454 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4455
4456 static bool
4457 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4458 {
4459 htab_iterator hi;
4460 variable var1;
4461
4462 if (old_set->vars == new_set->vars)
4463 return false;
4464
4465 if (htab_elements (shared_hash_htab (old_set->vars))
4466 != htab_elements (shared_hash_htab (new_set->vars)))
4467 return true;
4468
4469 FOR_EACH_HTAB_ELEMENT (shared_hash_htab (old_set->vars), var1, variable, hi)
4470 {
4471 htab_t htab = shared_hash_htab (new_set->vars);
4472 variable var2 = (variable) htab_find_with_hash (htab, var1->dv,
4473 dv_htab_hash (var1->dv));
4474 if (!var2)
4475 {
4476 if (dump_file && (dump_flags & TDF_DETAILS))
4477 {
4478 fprintf (dump_file, "dataflow difference found: removal of:\n");
4479 dump_var (var1);
4480 }
4481 return true;
4482 }
4483
4484 if (variable_different_p (var1, var2))
4485 {
4486 if (dump_file && (dump_flags & TDF_DETAILS))
4487 {
4488 fprintf (dump_file, "dataflow difference found: "
4489 "old and new follow:\n");
4490 dump_var (var1);
4491 dump_var (var2);
4492 }
4493 return true;
4494 }
4495 }
4496
4497 /* No need to traverse the second hashtab, if both have the same number
4498 of elements and the second one had all entries found in the first one,
4499 then it can't have any extra entries. */
4500 return false;
4501 }
4502
4503 /* Free the contents of dataflow set SET. */
4504
4505 static void
4506 dataflow_set_destroy (dataflow_set *set)
4507 {
4508 int i;
4509
4510 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4511 attrs_list_clear (&set->regs[i]);
4512
4513 shared_hash_destroy (set->vars);
4514 set->vars = NULL;
4515 }
4516
4517 /* Return true if RTL X contains a SYMBOL_REF. */
4518
4519 static bool
4520 contains_symbol_ref (rtx x)
4521 {
4522 const char *fmt;
4523 RTX_CODE code;
4524 int i;
4525
4526 if (!x)
4527 return false;
4528
4529 code = GET_CODE (x);
4530 if (code == SYMBOL_REF)
4531 return true;
4532
4533 fmt = GET_RTX_FORMAT (code);
4534 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
4535 {
4536 if (fmt[i] == 'e')
4537 {
4538 if (contains_symbol_ref (XEXP (x, i)))
4539 return true;
4540 }
4541 else if (fmt[i] == 'E')
4542 {
4543 int j;
4544 for (j = 0; j < XVECLEN (x, i); j++)
4545 if (contains_symbol_ref (XVECEXP (x, i, j)))
4546 return true;
4547 }
4548 }
4549
4550 return false;
4551 }
4552
4553 /* Shall EXPR be tracked? */
4554
4555 static bool
4556 track_expr_p (tree expr, bool need_rtl)
4557 {
4558 rtx decl_rtl;
4559 tree realdecl;
4560
4561 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
4562 return DECL_RTL_SET_P (expr);
4563
4564 /* If EXPR is not a parameter or a variable do not track it. */
4565 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
4566 return 0;
4567
4568 /* It also must have a name... */
4569 if (!DECL_NAME (expr) && need_rtl)
4570 return 0;
4571
4572 /* ... and a RTL assigned to it. */
4573 decl_rtl = DECL_RTL_IF_SET (expr);
4574 if (!decl_rtl && need_rtl)
4575 return 0;
4576
4577 /* If this expression is really a debug alias of some other declaration, we
4578 don't need to track this expression if the ultimate declaration is
4579 ignored. */
4580 realdecl = expr;
4581 if (DECL_DEBUG_EXPR_IS_FROM (realdecl))
4582 {
4583 realdecl = DECL_DEBUG_EXPR (realdecl);
4584 if (realdecl == NULL_TREE)
4585 realdecl = expr;
4586 else if (!DECL_P (realdecl))
4587 {
4588 if (handled_component_p (realdecl))
4589 {
4590 HOST_WIDE_INT bitsize, bitpos, maxsize;
4591 tree innerdecl
4592 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
4593 &maxsize);
4594 if (!DECL_P (innerdecl)
4595 || DECL_IGNORED_P (innerdecl)
4596 || TREE_STATIC (innerdecl)
4597 || bitsize <= 0
4598 || bitpos + bitsize > 256
4599 || bitsize != maxsize)
4600 return 0;
4601 else
4602 realdecl = expr;
4603 }
4604 else
4605 return 0;
4606 }
4607 }
4608
4609 /* Do not track EXPR if REALDECL it should be ignored for debugging
4610 purposes. */
4611 if (DECL_IGNORED_P (realdecl))
4612 return 0;
4613
4614 /* Do not track global variables until we are able to emit correct location
4615 list for them. */
4616 if (TREE_STATIC (realdecl))
4617 return 0;
4618
4619 /* When the EXPR is a DECL for alias of some variable (see example)
4620 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
4621 DECL_RTL contains SYMBOL_REF.
4622
4623 Example:
4624 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
4625 char **_dl_argv;
4626 */
4627 if (decl_rtl && MEM_P (decl_rtl)
4628 && contains_symbol_ref (XEXP (decl_rtl, 0)))
4629 return 0;
4630
4631 /* If RTX is a memory it should not be very large (because it would be
4632 an array or struct). */
4633 if (decl_rtl && MEM_P (decl_rtl))
4634 {
4635 /* Do not track structures and arrays. */
4636 if (GET_MODE (decl_rtl) == BLKmode
4637 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
4638 return 0;
4639 if (MEM_SIZE (decl_rtl)
4640 && INTVAL (MEM_SIZE (decl_rtl)) > MAX_VAR_PARTS)
4641 return 0;
4642 }
4643
4644 DECL_CHANGED (expr) = 0;
4645 DECL_CHANGED (realdecl) = 0;
4646 return 1;
4647 }
4648
4649 /* Determine whether a given LOC refers to the same variable part as
4650 EXPR+OFFSET. */
4651
4652 static bool
4653 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
4654 {
4655 tree expr2;
4656 HOST_WIDE_INT offset2;
4657
4658 if (! DECL_P (expr))
4659 return false;
4660
4661 if (REG_P (loc))
4662 {
4663 expr2 = REG_EXPR (loc);
4664 offset2 = REG_OFFSET (loc);
4665 }
4666 else if (MEM_P (loc))
4667 {
4668 expr2 = MEM_EXPR (loc);
4669 offset2 = INT_MEM_OFFSET (loc);
4670 }
4671 else
4672 return false;
4673
4674 if (! expr2 || ! DECL_P (expr2))
4675 return false;
4676
4677 expr = var_debug_decl (expr);
4678 expr2 = var_debug_decl (expr2);
4679
4680 return (expr == expr2 && offset == offset2);
4681 }
4682
4683 /* LOC is a REG or MEM that we would like to track if possible.
4684 If EXPR is null, we don't know what expression LOC refers to,
4685 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
4686 LOC is an lvalue register.
4687
4688 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
4689 is something we can track. When returning true, store the mode of
4690 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
4691 from EXPR in *OFFSET_OUT (if nonnull). */
4692
4693 static bool
4694 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
4695 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
4696 {
4697 enum machine_mode mode;
4698
4699 if (expr == NULL || !track_expr_p (expr, true))
4700 return false;
4701
4702 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
4703 whole subreg, but only the old inner part is really relevant. */
4704 mode = GET_MODE (loc);
4705 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
4706 {
4707 enum machine_mode pseudo_mode;
4708
4709 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
4710 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
4711 {
4712 offset += byte_lowpart_offset (pseudo_mode, mode);
4713 mode = pseudo_mode;
4714 }
4715 }
4716
4717 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
4718 Do the same if we are storing to a register and EXPR occupies
4719 the whole of register LOC; in that case, the whole of EXPR is
4720 being changed. We exclude complex modes from the second case
4721 because the real and imaginary parts are represented as separate
4722 pseudo registers, even if the whole complex value fits into one
4723 hard register. */
4724 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
4725 || (store_reg_p
4726 && !COMPLEX_MODE_P (DECL_MODE (expr))
4727 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
4728 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
4729 {
4730 mode = DECL_MODE (expr);
4731 offset = 0;
4732 }
4733
4734 if (offset < 0 || offset >= MAX_VAR_PARTS)
4735 return false;
4736
4737 if (mode_out)
4738 *mode_out = mode;
4739 if (offset_out)
4740 *offset_out = offset;
4741 return true;
4742 }
4743
4744 /* Return the MODE lowpart of LOC, or null if LOC is not something we
4745 want to track. When returning nonnull, make sure that the attributes
4746 on the returned value are updated. */
4747
4748 static rtx
4749 var_lowpart (enum machine_mode mode, rtx loc)
4750 {
4751 unsigned int offset, reg_offset, regno;
4752
4753 if (!REG_P (loc) && !MEM_P (loc))
4754 return NULL;
4755
4756 if (GET_MODE (loc) == mode)
4757 return loc;
4758
4759 offset = byte_lowpart_offset (mode, GET_MODE (loc));
4760
4761 if (MEM_P (loc))
4762 return adjust_address_nv (loc, mode, offset);
4763
4764 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
4765 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
4766 reg_offset, mode);
4767 return gen_rtx_REG_offset (loc, mode, regno, offset);
4768 }
4769
4770 /* Carry information about uses and stores while walking rtx. */
4771
4772 struct count_use_info
4773 {
4774 /* The insn where the RTX is. */
4775 rtx insn;
4776
4777 /* The basic block where insn is. */
4778 basic_block bb;
4779
4780 /* The array of n_sets sets in the insn, as determined by cselib. */
4781 struct cselib_set *sets;
4782 int n_sets;
4783
4784 /* True if we're counting stores, false otherwise. */
4785 bool store_p;
4786 };
4787
4788 /* Find a VALUE corresponding to X. */
4789
4790 static inline cselib_val *
4791 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
4792 {
4793 int i;
4794
4795 if (cui->sets)
4796 {
4797 /* This is called after uses are set up and before stores are
4798 processed by cselib, so it's safe to look up srcs, but not
4799 dsts. So we look up expressions that appear in srcs or in
4800 dest expressions, but we search the sets array for dests of
4801 stores. */
4802 if (cui->store_p)
4803 {
4804 /* Some targets represent memset and memcpy patterns
4805 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
4806 (set (mem:BLK ...) (const_int ...)) or
4807 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
4808 in that case, otherwise we end up with mode mismatches. */
4809 if (mode == BLKmode && MEM_P (x))
4810 return NULL;
4811 for (i = 0; i < cui->n_sets; i++)
4812 if (cui->sets[i].dest == x)
4813 return cui->sets[i].src_elt;
4814 }
4815 else
4816 return cselib_lookup (x, mode, 0, VOIDmode);
4817 }
4818
4819 return NULL;
4820 }
4821
4822 /* Helper function to get mode of MEM's address. */
4823
4824 static inline enum machine_mode
4825 get_address_mode (rtx mem)
4826 {
4827 enum machine_mode mode = GET_MODE (XEXP (mem, 0));
4828 if (mode != VOIDmode)
4829 return mode;
4830 return targetm.addr_space.address_mode (MEM_ADDR_SPACE (mem));
4831 }
4832
4833 /* Replace all registers and addresses in an expression with VALUE
4834 expressions that map back to them, unless the expression is a
4835 register. If no mapping is or can be performed, returns NULL. */
4836
4837 static rtx
4838 replace_expr_with_values (rtx loc)
4839 {
4840 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
4841 return NULL;
4842 else if (MEM_P (loc))
4843 {
4844 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
4845 get_address_mode (loc), 0,
4846 GET_MODE (loc));
4847 if (addr)
4848 return replace_equiv_address_nv (loc, addr->val_rtx);
4849 else
4850 return NULL;
4851 }
4852 else
4853 return cselib_subst_to_values (loc, VOIDmode);
4854 }
4855
4856 /* Determine what kind of micro operation to choose for a USE. Return
4857 MO_CLOBBER if no micro operation is to be generated. */
4858
4859 static enum micro_operation_type
4860 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
4861 {
4862 tree expr;
4863
4864 if (cui && cui->sets)
4865 {
4866 if (GET_CODE (loc) == VAR_LOCATION)
4867 {
4868 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
4869 {
4870 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
4871 if (! VAR_LOC_UNKNOWN_P (ploc))
4872 {
4873 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
4874 VOIDmode);
4875
4876 /* ??? flag_float_store and volatile mems are never
4877 given values, but we could in theory use them for
4878 locations. */
4879 gcc_assert (val || 1);
4880 }
4881 return MO_VAL_LOC;
4882 }
4883 else
4884 return MO_CLOBBER;
4885 }
4886
4887 if (REG_P (loc) || MEM_P (loc))
4888 {
4889 if (modep)
4890 *modep = GET_MODE (loc);
4891 if (cui->store_p)
4892 {
4893 if (REG_P (loc)
4894 || (find_use_val (loc, GET_MODE (loc), cui)
4895 && cselib_lookup (XEXP (loc, 0),
4896 get_address_mode (loc), 0,
4897 GET_MODE (loc))))
4898 return MO_VAL_SET;
4899 }
4900 else
4901 {
4902 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
4903
4904 if (val && !cselib_preserved_value_p (val))
4905 return MO_VAL_USE;
4906 }
4907 }
4908 }
4909
4910 if (REG_P (loc))
4911 {
4912 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
4913
4914 if (loc == cfa_base_rtx)
4915 return MO_CLOBBER;
4916 expr = REG_EXPR (loc);
4917
4918 if (!expr)
4919 return MO_USE_NO_VAR;
4920 else if (target_for_debug_bind (var_debug_decl (expr)))
4921 return MO_CLOBBER;
4922 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
4923 false, modep, NULL))
4924 return MO_USE;
4925 else
4926 return MO_USE_NO_VAR;
4927 }
4928 else if (MEM_P (loc))
4929 {
4930 expr = MEM_EXPR (loc);
4931
4932 if (!expr)
4933 return MO_CLOBBER;
4934 else if (target_for_debug_bind (var_debug_decl (expr)))
4935 return MO_CLOBBER;
4936 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
4937 false, modep, NULL))
4938 return MO_USE;
4939 else
4940 return MO_CLOBBER;
4941 }
4942
4943 return MO_CLOBBER;
4944 }
4945
4946 /* Log to OUT information about micro-operation MOPT involving X in
4947 INSN of BB. */
4948
4949 static inline void
4950 log_op_type (rtx x, basic_block bb, rtx insn,
4951 enum micro_operation_type mopt, FILE *out)
4952 {
4953 fprintf (out, "bb %i op %i insn %i %s ",
4954 bb->index, VEC_length (micro_operation, VTI (bb)->mos),
4955 INSN_UID (insn), micro_operation_type_name[mopt]);
4956 print_inline_rtx (out, x, 2);
4957 fputc ('\n', out);
4958 }
4959
4960 /* Tell whether the CONCAT used to holds a VALUE and its location
4961 needs value resolution, i.e., an attempt of mapping the location
4962 back to other incoming values. */
4963 #define VAL_NEEDS_RESOLUTION(x) \
4964 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
4965 /* Whether the location in the CONCAT is a tracked expression, that
4966 should also be handled like a MO_USE. */
4967 #define VAL_HOLDS_TRACK_EXPR(x) \
4968 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
4969 /* Whether the location in the CONCAT should be handled like a MO_COPY
4970 as well. */
4971 #define VAL_EXPR_IS_COPIED(x) \
4972 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
4973 /* Whether the location in the CONCAT should be handled like a
4974 MO_CLOBBER as well. */
4975 #define VAL_EXPR_IS_CLOBBERED(x) \
4976 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
4977 /* Whether the location is a CONCAT of the MO_VAL_SET expression and
4978 a reverse operation that should be handled afterwards. */
4979 #define VAL_EXPR_HAS_REVERSE(x) \
4980 (RTL_FLAG_CHECK1 ("VAL_EXPR_HAS_REVERSE", (x), CONCAT)->return_val)
4981
4982 /* All preserved VALUEs. */
4983 static VEC (rtx, heap) *preserved_values;
4984
4985 /* Registers used in the current function for passing parameters. */
4986 static HARD_REG_SET argument_reg_set;
4987
4988 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
4989
4990 static void
4991 preserve_value (cselib_val *val)
4992 {
4993 cselib_preserve_value (val);
4994 VEC_safe_push (rtx, heap, preserved_values, val->val_rtx);
4995 }
4996
4997 /* Helper function for MO_VAL_LOC handling. Return non-zero if
4998 any rtxes not suitable for CONST use not replaced by VALUEs
4999 are discovered. */
5000
5001 static int
5002 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5003 {
5004 if (*x == NULL_RTX)
5005 return 0;
5006
5007 switch (GET_CODE (*x))
5008 {
5009 case REG:
5010 case DEBUG_EXPR:
5011 case PC:
5012 case SCRATCH:
5013 case CC0:
5014 case ASM_INPUT:
5015 case ASM_OPERANDS:
5016 return 1;
5017 case MEM:
5018 return !MEM_READONLY_P (*x);
5019 default:
5020 return 0;
5021 }
5022 }
5023
5024 /* Add uses (register and memory references) LOC which will be tracked
5025 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5026
5027 static int
5028 add_uses (rtx *ploc, void *data)
5029 {
5030 rtx loc = *ploc;
5031 enum machine_mode mode = VOIDmode;
5032 struct count_use_info *cui = (struct count_use_info *)data;
5033 enum micro_operation_type type = use_type (loc, cui, &mode);
5034
5035 if (type != MO_CLOBBER)
5036 {
5037 basic_block bb = cui->bb;
5038 micro_operation mo;
5039
5040 mo.type = type;
5041 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5042 mo.insn = cui->insn;
5043
5044 if (type == MO_VAL_LOC)
5045 {
5046 rtx oloc = loc;
5047 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5048 cselib_val *val;
5049
5050 gcc_assert (cui->sets);
5051
5052 if (MEM_P (vloc)
5053 && !REG_P (XEXP (vloc, 0))
5054 && !MEM_P (XEXP (vloc, 0))
5055 && GET_CODE (XEXP (vloc, 0)) != ENTRY_VALUE
5056 && (GET_CODE (XEXP (vloc, 0)) != PLUS
5057 || XEXP (XEXP (vloc, 0), 0) != cfa_base_rtx
5058 || !CONST_INT_P (XEXP (XEXP (vloc, 0), 1))))
5059 {
5060 rtx mloc = vloc;
5061 enum machine_mode address_mode = get_address_mode (mloc);
5062 cselib_val *val
5063 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5064 GET_MODE (mloc));
5065
5066 if (val && !cselib_preserved_value_p (val))
5067 {
5068 micro_operation moa;
5069 preserve_value (val);
5070 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5071 GET_MODE (mloc));
5072 moa.type = MO_VAL_USE;
5073 moa.insn = cui->insn;
5074 moa.u.loc = gen_rtx_CONCAT (address_mode,
5075 val->val_rtx, mloc);
5076 if (dump_file && (dump_flags & TDF_DETAILS))
5077 log_op_type (moa.u.loc, cui->bb, cui->insn,
5078 moa.type, dump_file);
5079 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5080 }
5081 }
5082
5083 if (CONSTANT_P (vloc)
5084 && (GET_CODE (vloc) != CONST
5085 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5086 /* For constants don't look up any value. */;
5087 else if (!VAR_LOC_UNKNOWN_P (vloc)
5088 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5089 {
5090 enum machine_mode mode2;
5091 enum micro_operation_type type2;
5092 rtx nloc = replace_expr_with_values (vloc);
5093
5094 if (nloc)
5095 {
5096 oloc = shallow_copy_rtx (oloc);
5097 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5098 }
5099
5100 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5101
5102 type2 = use_type (vloc, 0, &mode2);
5103
5104 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5105 || type2 == MO_CLOBBER);
5106
5107 if (type2 == MO_CLOBBER
5108 && !cselib_preserved_value_p (val))
5109 {
5110 VAL_NEEDS_RESOLUTION (oloc) = 1;
5111 preserve_value (val);
5112 }
5113 }
5114 else if (!VAR_LOC_UNKNOWN_P (vloc))
5115 {
5116 oloc = shallow_copy_rtx (oloc);
5117 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5118 }
5119
5120 mo.u.loc = oloc;
5121 }
5122 else if (type == MO_VAL_USE)
5123 {
5124 enum machine_mode mode2 = VOIDmode;
5125 enum micro_operation_type type2;
5126 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5127 rtx vloc, oloc = loc, nloc;
5128
5129 gcc_assert (cui->sets);
5130
5131 if (MEM_P (oloc)
5132 && !REG_P (XEXP (oloc, 0))
5133 && !MEM_P (XEXP (oloc, 0))
5134 && GET_CODE (XEXP (oloc, 0)) != ENTRY_VALUE
5135 && (GET_CODE (XEXP (oloc, 0)) != PLUS
5136 || XEXP (XEXP (oloc, 0), 0) != cfa_base_rtx
5137 || !CONST_INT_P (XEXP (XEXP (oloc, 0), 1))))
5138 {
5139 rtx mloc = oloc;
5140 enum machine_mode address_mode = get_address_mode (mloc);
5141 cselib_val *val
5142 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5143 GET_MODE (mloc));
5144
5145 if (val && !cselib_preserved_value_p (val))
5146 {
5147 micro_operation moa;
5148 preserve_value (val);
5149 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5150 GET_MODE (mloc));
5151 moa.type = MO_VAL_USE;
5152 moa.insn = cui->insn;
5153 moa.u.loc = gen_rtx_CONCAT (address_mode,
5154 val->val_rtx, mloc);
5155 if (dump_file && (dump_flags & TDF_DETAILS))
5156 log_op_type (moa.u.loc, cui->bb, cui->insn,
5157 moa.type, dump_file);
5158 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5159 }
5160 }
5161
5162 type2 = use_type (loc, 0, &mode2);
5163
5164 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5165 || type2 == MO_CLOBBER);
5166
5167 if (type2 == MO_USE)
5168 vloc = var_lowpart (mode2, loc);
5169 else
5170 vloc = oloc;
5171
5172 /* The loc of a MO_VAL_USE may have two forms:
5173
5174 (concat val src): val is at src, a value-based
5175 representation.
5176
5177 (concat (concat val use) src): same as above, with use as
5178 the MO_USE tracked value, if it differs from src.
5179
5180 */
5181
5182 nloc = replace_expr_with_values (loc);
5183 if (!nloc)
5184 nloc = oloc;
5185
5186 if (vloc != nloc)
5187 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5188 else
5189 oloc = val->val_rtx;
5190
5191 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5192
5193 if (type2 == MO_USE)
5194 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5195 if (!cselib_preserved_value_p (val))
5196 {
5197 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5198 preserve_value (val);
5199 }
5200 }
5201 else
5202 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5203
5204 if (dump_file && (dump_flags & TDF_DETAILS))
5205 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5206 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5207 }
5208
5209 return 0;
5210 }
5211
5212 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5213
5214 static void
5215 add_uses_1 (rtx *x, void *cui)
5216 {
5217 for_each_rtx (x, add_uses, cui);
5218 }
5219
5220 #define EXPR_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5221
5222 /* Attempt to reverse the EXPR operation in the debug info. Say for
5223 reg1 = reg2 + 6 even when reg2 is no longer live we
5224 can express its value as VAL - 6. */
5225
5226 static rtx
5227 reverse_op (rtx val, const_rtx expr)
5228 {
5229 rtx src, arg, ret;
5230 cselib_val *v;
5231 enum rtx_code code;
5232
5233 if (GET_CODE (expr) != SET)
5234 return NULL_RTX;
5235
5236 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5237 return NULL_RTX;
5238
5239 src = SET_SRC (expr);
5240 switch (GET_CODE (src))
5241 {
5242 case PLUS:
5243 case MINUS:
5244 case XOR:
5245 case NOT:
5246 case NEG:
5247 if (!REG_P (XEXP (src, 0)))
5248 return NULL_RTX;
5249 break;
5250 case SIGN_EXTEND:
5251 case ZERO_EXTEND:
5252 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5253 return NULL_RTX;
5254 break;
5255 default:
5256 return NULL_RTX;
5257 }
5258
5259 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5260 return NULL_RTX;
5261
5262 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5263 if (!v || !cselib_preserved_value_p (v))
5264 return NULL_RTX;
5265
5266 switch (GET_CODE (src))
5267 {
5268 case NOT:
5269 case NEG:
5270 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5271 return NULL_RTX;
5272 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5273 break;
5274 case SIGN_EXTEND:
5275 case ZERO_EXTEND:
5276 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5277 break;
5278 case XOR:
5279 code = XOR;
5280 goto binary;
5281 case PLUS:
5282 code = MINUS;
5283 goto binary;
5284 case MINUS:
5285 code = PLUS;
5286 goto binary;
5287 binary:
5288 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5289 return NULL_RTX;
5290 arg = XEXP (src, 1);
5291 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5292 {
5293 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5294 if (arg == NULL_RTX)
5295 return NULL_RTX;
5296 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5297 return NULL_RTX;
5298 }
5299 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5300 if (ret == val)
5301 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5302 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5303 breaks a lot of routines during var-tracking. */
5304 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5305 break;
5306 default:
5307 gcc_unreachable ();
5308 }
5309
5310 return gen_rtx_CONCAT (GET_MODE (v->val_rtx), v->val_rtx, ret);
5311 }
5312
5313 /* Add stores (register and memory references) LOC which will be tracked
5314 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5315 CUIP->insn is instruction which the LOC is part of. */
5316
5317 static void
5318 add_stores (rtx loc, const_rtx expr, void *cuip)
5319 {
5320 enum machine_mode mode = VOIDmode, mode2;
5321 struct count_use_info *cui = (struct count_use_info *)cuip;
5322 basic_block bb = cui->bb;
5323 micro_operation mo;
5324 rtx oloc = loc, nloc, src = NULL;
5325 enum micro_operation_type type = use_type (loc, cui, &mode);
5326 bool track_p = false;
5327 cselib_val *v;
5328 bool resolve, preserve;
5329 rtx reverse;
5330
5331 if (type == MO_CLOBBER)
5332 return;
5333
5334 mode2 = mode;
5335
5336 if (REG_P (loc))
5337 {
5338 gcc_assert (loc != cfa_base_rtx);
5339 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5340 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5341 || GET_CODE (expr) == CLOBBER)
5342 {
5343 mo.type = MO_CLOBBER;
5344 mo.u.loc = loc;
5345 if (GET_CODE (expr) == SET
5346 && SET_DEST (expr) == loc
5347 && REGNO (loc) < FIRST_PSEUDO_REGISTER
5348 && TEST_HARD_REG_BIT (argument_reg_set, REGNO (loc))
5349 && find_use_val (loc, mode, cui)
5350 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5351 {
5352 gcc_checking_assert (type == MO_VAL_SET);
5353 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5354 }
5355 }
5356 else
5357 {
5358 if (GET_CODE (expr) == SET
5359 && SET_DEST (expr) == loc
5360 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5361 src = var_lowpart (mode2, SET_SRC (expr));
5362 loc = var_lowpart (mode2, loc);
5363
5364 if (src == NULL)
5365 {
5366 mo.type = MO_SET;
5367 mo.u.loc = loc;
5368 }
5369 else
5370 {
5371 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5372 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5373 mo.type = MO_COPY;
5374 else
5375 mo.type = MO_SET;
5376 mo.u.loc = xexpr;
5377 }
5378 }
5379 mo.insn = cui->insn;
5380 }
5381 else if (MEM_P (loc)
5382 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5383 || cui->sets))
5384 {
5385 if (MEM_P (loc) && type == MO_VAL_SET
5386 && !REG_P (XEXP (loc, 0))
5387 && !MEM_P (XEXP (loc, 0))
5388 && GET_CODE (XEXP (loc, 0)) != ENTRY_VALUE
5389 && (GET_CODE (XEXP (loc, 0)) != PLUS
5390 || XEXP (XEXP (loc, 0), 0) != cfa_base_rtx
5391 || !CONST_INT_P (XEXP (XEXP (loc, 0), 1))))
5392 {
5393 rtx mloc = loc;
5394 enum machine_mode address_mode = get_address_mode (mloc);
5395 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5396 address_mode, 0,
5397 GET_MODE (mloc));
5398
5399 if (val && !cselib_preserved_value_p (val))
5400 {
5401 preserve_value (val);
5402 mo.type = MO_VAL_USE;
5403 mloc = cselib_subst_to_values (XEXP (mloc, 0),
5404 GET_MODE (mloc));
5405 mo.u.loc = gen_rtx_CONCAT (address_mode, val->val_rtx, mloc);
5406 mo.insn = cui->insn;
5407 if (dump_file && (dump_flags & TDF_DETAILS))
5408 log_op_type (mo.u.loc, cui->bb, cui->insn,
5409 mo.type, dump_file);
5410 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5411 }
5412 }
5413
5414 if (GET_CODE (expr) == CLOBBER || !track_p)
5415 {
5416 mo.type = MO_CLOBBER;
5417 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5418 }
5419 else
5420 {
5421 if (GET_CODE (expr) == SET
5422 && SET_DEST (expr) == loc
5423 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5424 src = var_lowpart (mode2, SET_SRC (expr));
5425 loc = var_lowpart (mode2, loc);
5426
5427 if (src == NULL)
5428 {
5429 mo.type = MO_SET;
5430 mo.u.loc = loc;
5431 }
5432 else
5433 {
5434 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5435 if (same_variable_part_p (SET_SRC (xexpr),
5436 MEM_EXPR (loc),
5437 INT_MEM_OFFSET (loc)))
5438 mo.type = MO_COPY;
5439 else
5440 mo.type = MO_SET;
5441 mo.u.loc = xexpr;
5442 }
5443 }
5444 mo.insn = cui->insn;
5445 }
5446 else
5447 return;
5448
5449 if (type != MO_VAL_SET)
5450 goto log_and_return;
5451
5452 v = find_use_val (oloc, mode, cui);
5453
5454 if (!v)
5455 goto log_and_return;
5456
5457 resolve = preserve = !cselib_preserved_value_p (v);
5458
5459 nloc = replace_expr_with_values (oloc);
5460 if (nloc)
5461 oloc = nloc;
5462
5463 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5464 {
5465 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5466
5467 gcc_assert (oval != v);
5468 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5469
5470 if (!cselib_preserved_value_p (oval))
5471 {
5472 micro_operation moa;
5473
5474 preserve_value (oval);
5475
5476 moa.type = MO_VAL_USE;
5477 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5478 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5479 moa.insn = cui->insn;
5480
5481 if (dump_file && (dump_flags & TDF_DETAILS))
5482 log_op_type (moa.u.loc, cui->bb, cui->insn,
5483 moa.type, dump_file);
5484 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &moa);
5485 }
5486
5487 resolve = false;
5488 }
5489 else if (resolve && GET_CODE (mo.u.loc) == SET)
5490 {
5491 nloc = replace_expr_with_values (SET_SRC (expr));
5492
5493 /* Avoid the mode mismatch between oexpr and expr. */
5494 if (!nloc && mode != mode2)
5495 {
5496 nloc = SET_SRC (expr);
5497 gcc_assert (oloc == SET_DEST (expr));
5498 }
5499
5500 if (nloc)
5501 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
5502 else
5503 {
5504 if (oloc == SET_DEST (mo.u.loc))
5505 /* No point in duplicating. */
5506 oloc = mo.u.loc;
5507 if (!REG_P (SET_SRC (mo.u.loc)))
5508 resolve = false;
5509 }
5510 }
5511 else if (!resolve)
5512 {
5513 if (GET_CODE (mo.u.loc) == SET
5514 && oloc == SET_DEST (mo.u.loc))
5515 /* No point in duplicating. */
5516 oloc = mo.u.loc;
5517 }
5518 else
5519 resolve = false;
5520
5521 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
5522
5523 if (mo.u.loc != oloc)
5524 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
5525
5526 /* The loc of a MO_VAL_SET may have various forms:
5527
5528 (concat val dst): dst now holds val
5529
5530 (concat val (set dst src)): dst now holds val, copied from src
5531
5532 (concat (concat val dstv) dst): dst now holds val; dstv is dst
5533 after replacing mems and non-top-level regs with values.
5534
5535 (concat (concat val dstv) (set dst src)): dst now holds val,
5536 copied from src. dstv is a value-based representation of dst, if
5537 it differs from dst. If resolution is needed, src is a REG, and
5538 its mode is the same as that of val.
5539
5540 (concat (concat val (set dstv srcv)) (set dst src)): src
5541 copied to dst, holding val. dstv and srcv are value-based
5542 representations of dst and src, respectively.
5543
5544 */
5545
5546 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
5547 {
5548 reverse = reverse_op (v->val_rtx, expr);
5549 if (reverse)
5550 {
5551 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, reverse);
5552 VAL_EXPR_HAS_REVERSE (loc) = 1;
5553 }
5554 }
5555
5556 mo.u.loc = loc;
5557
5558 if (track_p)
5559 VAL_HOLDS_TRACK_EXPR (loc) = 1;
5560 if (preserve)
5561 {
5562 VAL_NEEDS_RESOLUTION (loc) = resolve;
5563 preserve_value (v);
5564 }
5565 if (mo.type == MO_CLOBBER)
5566 VAL_EXPR_IS_CLOBBERED (loc) = 1;
5567 if (mo.type == MO_COPY)
5568 VAL_EXPR_IS_COPIED (loc) = 1;
5569
5570 mo.type = MO_VAL_SET;
5571
5572 log_and_return:
5573 if (dump_file && (dump_flags & TDF_DETAILS))
5574 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5575 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5576 }
5577
5578 /* Arguments to the call. */
5579 static rtx call_arguments;
5580
5581 /* Compute call_arguments. */
5582
5583 static void
5584 prepare_call_arguments (basic_block bb, rtx insn)
5585 {
5586 rtx link, x;
5587 rtx prev, cur, next;
5588 rtx call = PATTERN (insn);
5589 rtx this_arg = NULL_RTX;
5590 tree type = NULL_TREE, t, fndecl = NULL_TREE;
5591 tree obj_type_ref = NULL_TREE;
5592 CUMULATIVE_ARGS args_so_far_v;
5593 cumulative_args_t args_so_far;
5594
5595 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
5596 args_so_far = pack_cumulative_args (&args_so_far_v);
5597 if (GET_CODE (call) == PARALLEL)
5598 call = XVECEXP (call, 0, 0);
5599 if (GET_CODE (call) == SET)
5600 call = SET_SRC (call);
5601 if (GET_CODE (call) == CALL && MEM_P (XEXP (call, 0)))
5602 {
5603 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
5604 {
5605 rtx symbol = XEXP (XEXP (call, 0), 0);
5606 if (SYMBOL_REF_DECL (symbol))
5607 fndecl = SYMBOL_REF_DECL (symbol);
5608 }
5609 if (fndecl == NULL_TREE)
5610 fndecl = MEM_EXPR (XEXP (call, 0));
5611 if (fndecl
5612 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
5613 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
5614 fndecl = NULL_TREE;
5615 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
5616 type = TREE_TYPE (fndecl);
5617 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
5618 {
5619 if (TREE_CODE (fndecl) == INDIRECT_REF
5620 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
5621 obj_type_ref = TREE_OPERAND (fndecl, 0);
5622 fndecl = NULL_TREE;
5623 }
5624 if (type)
5625 {
5626 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
5627 t = TREE_CHAIN (t))
5628 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
5629 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
5630 break;
5631 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
5632 type = NULL;
5633 else
5634 {
5635 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
5636 link = CALL_INSN_FUNCTION_USAGE (insn);
5637 #ifndef PCC_STATIC_STRUCT_RETURN
5638 if (aggregate_value_p (TREE_TYPE (type), type)
5639 && targetm.calls.struct_value_rtx (type, 0) == 0)
5640 {
5641 tree struct_addr = build_pointer_type (TREE_TYPE (type));
5642 enum machine_mode mode = TYPE_MODE (struct_addr);
5643 rtx reg;
5644 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5645 nargs + 1);
5646 reg = targetm.calls.function_arg (args_so_far, mode,
5647 struct_addr, true);
5648 targetm.calls.function_arg_advance (args_so_far, mode,
5649 struct_addr, true);
5650 if (reg == NULL_RTX)
5651 {
5652 for (; link; link = XEXP (link, 1))
5653 if (GET_CODE (XEXP (link, 0)) == USE
5654 && MEM_P (XEXP (XEXP (link, 0), 0)))
5655 {
5656 link = XEXP (link, 1);
5657 break;
5658 }
5659 }
5660 }
5661 else
5662 #endif
5663 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
5664 nargs);
5665 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
5666 {
5667 enum machine_mode mode;
5668 t = TYPE_ARG_TYPES (type);
5669 mode = TYPE_MODE (TREE_VALUE (t));
5670 this_arg = targetm.calls.function_arg (args_so_far, mode,
5671 TREE_VALUE (t), true);
5672 if (this_arg && !REG_P (this_arg))
5673 this_arg = NULL_RTX;
5674 else if (this_arg == NULL_RTX)
5675 {
5676 for (; link; link = XEXP (link, 1))
5677 if (GET_CODE (XEXP (link, 0)) == USE
5678 && MEM_P (XEXP (XEXP (link, 0), 0)))
5679 {
5680 this_arg = XEXP (XEXP (link, 0), 0);
5681 break;
5682 }
5683 }
5684 }
5685 }
5686 }
5687 }
5688 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
5689
5690 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
5691 if (GET_CODE (XEXP (link, 0)) == USE)
5692 {
5693 rtx item = NULL_RTX;
5694 x = XEXP (XEXP (link, 0), 0);
5695 if (REG_P (x))
5696 {
5697 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5698 if (val && cselib_preserved_value_p (val))
5699 item = gen_rtx_CONCAT (GET_MODE (x), x, val->val_rtx);
5700 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
5701 {
5702 enum machine_mode mode = GET_MODE (x);
5703
5704 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
5705 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
5706 {
5707 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
5708
5709 if (reg == NULL_RTX || !REG_P (reg))
5710 continue;
5711 val = cselib_lookup (reg, mode, 0, VOIDmode);
5712 if (val && cselib_preserved_value_p (val))
5713 {
5714 item = gen_rtx_CONCAT (GET_MODE (x), x,
5715 lowpart_subreg (GET_MODE (x),
5716 val->val_rtx,
5717 mode));
5718 break;
5719 }
5720 }
5721 }
5722 }
5723 else if (MEM_P (x))
5724 {
5725 rtx mem = x;
5726 cselib_val *val;
5727
5728 if (!frame_pointer_needed)
5729 {
5730 struct adjust_mem_data amd;
5731 amd.mem_mode = VOIDmode;
5732 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
5733 amd.side_effects = NULL_RTX;
5734 amd.store = true;
5735 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
5736 &amd);
5737 gcc_assert (amd.side_effects == NULL_RTX);
5738 }
5739 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
5740 if (val && cselib_preserved_value_p (val))
5741 item = gen_rtx_CONCAT (GET_MODE (x), copy_rtx (x), val->val_rtx);
5742 }
5743 if (item)
5744 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
5745 if (t && t != void_list_node)
5746 {
5747 tree argtype = TREE_VALUE (t);
5748 enum machine_mode mode = TYPE_MODE (argtype);
5749 rtx reg;
5750 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
5751 {
5752 argtype = build_pointer_type (argtype);
5753 mode = TYPE_MODE (argtype);
5754 }
5755 reg = targetm.calls.function_arg (args_so_far, mode,
5756 argtype, true);
5757 if (TREE_CODE (argtype) == REFERENCE_TYPE
5758 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
5759 && reg
5760 && REG_P (reg)
5761 && GET_MODE (reg) == mode
5762 && GET_MODE_CLASS (mode) == MODE_INT
5763 && REG_P (x)
5764 && REGNO (x) == REGNO (reg)
5765 && GET_MODE (x) == mode
5766 && item)
5767 {
5768 enum machine_mode indmode
5769 = TYPE_MODE (TREE_TYPE (argtype));
5770 rtx mem = gen_rtx_MEM (indmode, x);
5771 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
5772 if (val && cselib_preserved_value_p (val))
5773 {
5774 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
5775 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
5776 call_arguments);
5777 }
5778 else
5779 {
5780 struct elt_loc_list *l;
5781 tree initial;
5782
5783 /* Try harder, when passing address of a constant
5784 pool integer it can be easily read back. */
5785 item = XEXP (item, 1);
5786 if (GET_CODE (item) == SUBREG)
5787 item = SUBREG_REG (item);
5788 gcc_assert (GET_CODE (item) == VALUE);
5789 val = CSELIB_VAL_PTR (item);
5790 for (l = val->locs; l; l = l->next)
5791 if (GET_CODE (l->loc) == SYMBOL_REF
5792 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
5793 && SYMBOL_REF_DECL (l->loc)
5794 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
5795 {
5796 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
5797 if (host_integerp (initial, 0))
5798 {
5799 item = GEN_INT (tree_low_cst (initial, 0));
5800 item = gen_rtx_CONCAT (indmode, mem, item);
5801 call_arguments
5802 = gen_rtx_EXPR_LIST (VOIDmode, item,
5803 call_arguments);
5804 }
5805 break;
5806 }
5807 }
5808 }
5809 targetm.calls.function_arg_advance (args_so_far, mode,
5810 argtype, true);
5811 t = TREE_CHAIN (t);
5812 }
5813 }
5814
5815 /* Reverse call_arguments chain. */
5816 prev = NULL_RTX;
5817 for (cur = call_arguments; cur; cur = next)
5818 {
5819 next = XEXP (cur, 1);
5820 XEXP (cur, 1) = prev;
5821 prev = cur;
5822 }
5823 call_arguments = prev;
5824
5825 x = PATTERN (insn);
5826 if (GET_CODE (x) == PARALLEL)
5827 x = XVECEXP (x, 0, 0);
5828 if (GET_CODE (x) == SET)
5829 x = SET_SRC (x);
5830 if (GET_CODE (x) == CALL && MEM_P (XEXP (x, 0)))
5831 {
5832 x = XEXP (XEXP (x, 0), 0);
5833 if (GET_CODE (x) == SYMBOL_REF)
5834 /* Don't record anything. */;
5835 else if (CONSTANT_P (x))
5836 {
5837 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
5838 pc_rtx, x);
5839 call_arguments
5840 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5841 }
5842 else
5843 {
5844 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
5845 if (val && cselib_preserved_value_p (val))
5846 {
5847 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
5848 call_arguments
5849 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5850 }
5851 }
5852 }
5853 if (this_arg)
5854 {
5855 enum machine_mode mode
5856 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
5857 rtx clobbered = gen_rtx_MEM (mode, this_arg);
5858 HOST_WIDE_INT token
5859 = tree_low_cst (OBJ_TYPE_REF_TOKEN (obj_type_ref), 0);
5860 if (token)
5861 clobbered = plus_constant (clobbered, token * GET_MODE_SIZE (mode));
5862 clobbered = gen_rtx_MEM (mode, clobbered);
5863 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
5864 call_arguments
5865 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
5866 }
5867 }
5868
5869 /* Callback for cselib_record_sets_hook, that records as micro
5870 operations uses and stores in an insn after cselib_record_sets has
5871 analyzed the sets in an insn, but before it modifies the stored
5872 values in the internal tables, unless cselib_record_sets doesn't
5873 call it directly (perhaps because we're not doing cselib in the
5874 first place, in which case sets and n_sets will be 0). */
5875
5876 static void
5877 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
5878 {
5879 basic_block bb = BLOCK_FOR_INSN (insn);
5880 int n1, n2;
5881 struct count_use_info cui;
5882 micro_operation *mos;
5883
5884 cselib_hook_called = true;
5885
5886 cui.insn = insn;
5887 cui.bb = bb;
5888 cui.sets = sets;
5889 cui.n_sets = n_sets;
5890
5891 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5892 cui.store_p = false;
5893 note_uses (&PATTERN (insn), add_uses_1, &cui);
5894 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5895 mos = VEC_address (micro_operation, VTI (bb)->mos);
5896
5897 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
5898 MO_VAL_LOC last. */
5899 while (n1 < n2)
5900 {
5901 while (n1 < n2 && mos[n1].type == MO_USE)
5902 n1++;
5903 while (n1 < n2 && mos[n2].type != MO_USE)
5904 n2--;
5905 if (n1 < n2)
5906 {
5907 micro_operation sw;
5908
5909 sw = mos[n1];
5910 mos[n1] = mos[n2];
5911 mos[n2] = sw;
5912 }
5913 }
5914
5915 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5916 while (n1 < n2)
5917 {
5918 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
5919 n1++;
5920 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
5921 n2--;
5922 if (n1 < n2)
5923 {
5924 micro_operation sw;
5925
5926 sw = mos[n1];
5927 mos[n1] = mos[n2];
5928 mos[n2] = sw;
5929 }
5930 }
5931
5932 if (CALL_P (insn))
5933 {
5934 micro_operation mo;
5935
5936 mo.type = MO_CALL;
5937 mo.insn = insn;
5938 mo.u.loc = call_arguments;
5939 call_arguments = NULL_RTX;
5940
5941 if (dump_file && (dump_flags & TDF_DETAILS))
5942 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
5943 VEC_safe_push (micro_operation, heap, VTI (bb)->mos, &mo);
5944 }
5945
5946 n1 = VEC_length (micro_operation, VTI (bb)->mos);
5947 /* This will record NEXT_INSN (insn), such that we can
5948 insert notes before it without worrying about any
5949 notes that MO_USEs might emit after the insn. */
5950 cui.store_p = true;
5951 note_stores (PATTERN (insn), add_stores, &cui);
5952 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5953 mos = VEC_address (micro_operation, VTI (bb)->mos);
5954
5955 /* Order the MO_VAL_USEs first (note_stores does nothing
5956 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
5957 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
5958 while (n1 < n2)
5959 {
5960 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
5961 n1++;
5962 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
5963 n2--;
5964 if (n1 < n2)
5965 {
5966 micro_operation sw;
5967
5968 sw = mos[n1];
5969 mos[n1] = mos[n2];
5970 mos[n2] = sw;
5971 }
5972 }
5973
5974 n2 = VEC_length (micro_operation, VTI (bb)->mos) - 1;
5975 while (n1 < n2)
5976 {
5977 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
5978 n1++;
5979 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
5980 n2--;
5981 if (n1 < n2)
5982 {
5983 micro_operation sw;
5984
5985 sw = mos[n1];
5986 mos[n1] = mos[n2];
5987 mos[n2] = sw;
5988 }
5989 }
5990 }
5991
5992 static enum var_init_status
5993 find_src_status (dataflow_set *in, rtx src)
5994 {
5995 tree decl = NULL_TREE;
5996 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
5997
5998 if (! flag_var_tracking_uninit)
5999 status = VAR_INIT_STATUS_INITIALIZED;
6000
6001 if (src && REG_P (src))
6002 decl = var_debug_decl (REG_EXPR (src));
6003 else if (src && MEM_P (src))
6004 decl = var_debug_decl (MEM_EXPR (src));
6005
6006 if (src && decl)
6007 status = get_init_value (in, src, dv_from_decl (decl));
6008
6009 return status;
6010 }
6011
6012 /* SRC is the source of an assignment. Use SET to try to find what
6013 was ultimately assigned to SRC. Return that value if known,
6014 otherwise return SRC itself. */
6015
6016 static rtx
6017 find_src_set_src (dataflow_set *set, rtx src)
6018 {
6019 tree decl = NULL_TREE; /* The variable being copied around. */
6020 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6021 variable var;
6022 location_chain nextp;
6023 int i;
6024 bool found;
6025
6026 if (src && REG_P (src))
6027 decl = var_debug_decl (REG_EXPR (src));
6028 else if (src && MEM_P (src))
6029 decl = var_debug_decl (MEM_EXPR (src));
6030
6031 if (src && decl)
6032 {
6033 decl_or_value dv = dv_from_decl (decl);
6034
6035 var = shared_hash_find (set->vars, dv);
6036 if (var)
6037 {
6038 found = false;
6039 for (i = 0; i < var->n_var_parts && !found; i++)
6040 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6041 nextp = nextp->next)
6042 if (rtx_equal_p (nextp->loc, src))
6043 {
6044 set_src = nextp->set_src;
6045 found = true;
6046 }
6047
6048 }
6049 }
6050
6051 return set_src;
6052 }
6053
6054 /* Compute the changes of variable locations in the basic block BB. */
6055
6056 static bool
6057 compute_bb_dataflow (basic_block bb)
6058 {
6059 unsigned int i;
6060 micro_operation *mo;
6061 bool changed;
6062 dataflow_set old_out;
6063 dataflow_set *in = &VTI (bb)->in;
6064 dataflow_set *out = &VTI (bb)->out;
6065
6066 dataflow_set_init (&old_out);
6067 dataflow_set_copy (&old_out, out);
6068 dataflow_set_copy (out, in);
6069
6070 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
6071 {
6072 rtx insn = mo->insn;
6073
6074 switch (mo->type)
6075 {
6076 case MO_CALL:
6077 dataflow_set_clear_at_call (out);
6078 break;
6079
6080 case MO_USE:
6081 {
6082 rtx loc = mo->u.loc;
6083
6084 if (REG_P (loc))
6085 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6086 else if (MEM_P (loc))
6087 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6088 }
6089 break;
6090
6091 case MO_VAL_LOC:
6092 {
6093 rtx loc = mo->u.loc;
6094 rtx val, vloc;
6095 tree var;
6096
6097 if (GET_CODE (loc) == CONCAT)
6098 {
6099 val = XEXP (loc, 0);
6100 vloc = XEXP (loc, 1);
6101 }
6102 else
6103 {
6104 val = NULL_RTX;
6105 vloc = loc;
6106 }
6107
6108 var = PAT_VAR_LOCATION_DECL (vloc);
6109
6110 clobber_variable_part (out, NULL_RTX,
6111 dv_from_decl (var), 0, NULL_RTX);
6112 if (val)
6113 {
6114 if (VAL_NEEDS_RESOLUTION (loc))
6115 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6116 set_variable_part (out, val, dv_from_decl (var), 0,
6117 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6118 INSERT);
6119 }
6120 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6121 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6122 dv_from_decl (var), 0,
6123 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6124 INSERT);
6125 }
6126 break;
6127
6128 case MO_VAL_USE:
6129 {
6130 rtx loc = mo->u.loc;
6131 rtx val, vloc, uloc;
6132
6133 vloc = uloc = XEXP (loc, 1);
6134 val = XEXP (loc, 0);
6135
6136 if (GET_CODE (val) == CONCAT)
6137 {
6138 uloc = XEXP (val, 1);
6139 val = XEXP (val, 0);
6140 }
6141
6142 if (VAL_NEEDS_RESOLUTION (loc))
6143 val_resolve (out, val, vloc, insn);
6144 else
6145 val_store (out, val, uloc, insn, false);
6146
6147 if (VAL_HOLDS_TRACK_EXPR (loc))
6148 {
6149 if (GET_CODE (uloc) == REG)
6150 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6151 NULL);
6152 else if (GET_CODE (uloc) == MEM)
6153 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6154 NULL);
6155 }
6156 }
6157 break;
6158
6159 case MO_VAL_SET:
6160 {
6161 rtx loc = mo->u.loc;
6162 rtx val, vloc, uloc, reverse = NULL_RTX;
6163
6164 vloc = loc;
6165 if (VAL_EXPR_HAS_REVERSE (loc))
6166 {
6167 reverse = XEXP (loc, 1);
6168 vloc = XEXP (loc, 0);
6169 }
6170 uloc = XEXP (vloc, 1);
6171 val = XEXP (vloc, 0);
6172 vloc = uloc;
6173
6174 if (GET_CODE (val) == CONCAT)
6175 {
6176 vloc = XEXP (val, 1);
6177 val = XEXP (val, 0);
6178 }
6179
6180 if (GET_CODE (vloc) == SET)
6181 {
6182 rtx vsrc = SET_SRC (vloc);
6183
6184 gcc_assert (val != vsrc);
6185 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6186
6187 vloc = SET_DEST (vloc);
6188
6189 if (VAL_NEEDS_RESOLUTION (loc))
6190 val_resolve (out, val, vsrc, insn);
6191 }
6192 else if (VAL_NEEDS_RESOLUTION (loc))
6193 {
6194 gcc_assert (GET_CODE (uloc) == SET
6195 && GET_CODE (SET_SRC (uloc)) == REG);
6196 val_resolve (out, val, SET_SRC (uloc), insn);
6197 }
6198
6199 if (VAL_HOLDS_TRACK_EXPR (loc))
6200 {
6201 if (VAL_EXPR_IS_CLOBBERED (loc))
6202 {
6203 if (REG_P (uloc))
6204 var_reg_delete (out, uloc, true);
6205 else if (MEM_P (uloc))
6206 var_mem_delete (out, uloc, true);
6207 }
6208 else
6209 {
6210 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6211 rtx set_src = NULL;
6212 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6213
6214 if (GET_CODE (uloc) == SET)
6215 {
6216 set_src = SET_SRC (uloc);
6217 uloc = SET_DEST (uloc);
6218 }
6219
6220 if (copied_p)
6221 {
6222 if (flag_var_tracking_uninit)
6223 {
6224 status = find_src_status (in, set_src);
6225
6226 if (status == VAR_INIT_STATUS_UNKNOWN)
6227 status = find_src_status (out, set_src);
6228 }
6229
6230 set_src = find_src_set_src (in, set_src);
6231 }
6232
6233 if (REG_P (uloc))
6234 var_reg_delete_and_set (out, uloc, !copied_p,
6235 status, set_src);
6236 else if (MEM_P (uloc))
6237 var_mem_delete_and_set (out, uloc, !copied_p,
6238 status, set_src);
6239 }
6240 }
6241 else if (REG_P (uloc))
6242 var_regno_delete (out, REGNO (uloc));
6243
6244 val_store (out, val, vloc, insn, true);
6245
6246 if (reverse)
6247 val_store (out, XEXP (reverse, 0), XEXP (reverse, 1),
6248 insn, false);
6249 }
6250 break;
6251
6252 case MO_SET:
6253 {
6254 rtx loc = mo->u.loc;
6255 rtx set_src = NULL;
6256
6257 if (GET_CODE (loc) == SET)
6258 {
6259 set_src = SET_SRC (loc);
6260 loc = SET_DEST (loc);
6261 }
6262
6263 if (REG_P (loc))
6264 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6265 set_src);
6266 else if (MEM_P (loc))
6267 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6268 set_src);
6269 }
6270 break;
6271
6272 case MO_COPY:
6273 {
6274 rtx loc = mo->u.loc;
6275 enum var_init_status src_status;
6276 rtx set_src = NULL;
6277
6278 if (GET_CODE (loc) == SET)
6279 {
6280 set_src = SET_SRC (loc);
6281 loc = SET_DEST (loc);
6282 }
6283
6284 if (! flag_var_tracking_uninit)
6285 src_status = VAR_INIT_STATUS_INITIALIZED;
6286 else
6287 {
6288 src_status = find_src_status (in, set_src);
6289
6290 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6291 src_status = find_src_status (out, set_src);
6292 }
6293
6294 set_src = find_src_set_src (in, set_src);
6295
6296 if (REG_P (loc))
6297 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6298 else if (MEM_P (loc))
6299 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6300 }
6301 break;
6302
6303 case MO_USE_NO_VAR:
6304 {
6305 rtx loc = mo->u.loc;
6306
6307 if (REG_P (loc))
6308 var_reg_delete (out, loc, false);
6309 else if (MEM_P (loc))
6310 var_mem_delete (out, loc, false);
6311 }
6312 break;
6313
6314 case MO_CLOBBER:
6315 {
6316 rtx loc = mo->u.loc;
6317
6318 if (REG_P (loc))
6319 var_reg_delete (out, loc, true);
6320 else if (MEM_P (loc))
6321 var_mem_delete (out, loc, true);
6322 }
6323 break;
6324
6325 case MO_ADJUST:
6326 out->stack_adjust += mo->u.adjust;
6327 break;
6328 }
6329 }
6330
6331 if (MAY_HAVE_DEBUG_INSNS)
6332 {
6333 dataflow_set_equiv_regs (out);
6334 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_mark,
6335 out);
6336 htab_traverse (shared_hash_htab (out->vars), canonicalize_values_star,
6337 out);
6338 #if ENABLE_CHECKING
6339 htab_traverse (shared_hash_htab (out->vars),
6340 canonicalize_loc_order_check, out);
6341 #endif
6342 }
6343 changed = dataflow_set_different (&old_out, out);
6344 dataflow_set_destroy (&old_out);
6345 return changed;
6346 }
6347
6348 /* Find the locations of variables in the whole function. */
6349
6350 static bool
6351 vt_find_locations (void)
6352 {
6353 fibheap_t worklist, pending, fibheap_swap;
6354 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6355 basic_block bb;
6356 edge e;
6357 int *bb_order;
6358 int *rc_order;
6359 int i;
6360 int htabsz = 0;
6361 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6362 bool success = true;
6363
6364 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6365 /* Compute reverse completion order of depth first search of the CFG
6366 so that the data-flow runs faster. */
6367 rc_order = XNEWVEC (int, n_basic_blocks - NUM_FIXED_BLOCKS);
6368 bb_order = XNEWVEC (int, last_basic_block);
6369 pre_and_rev_post_order_compute (NULL, rc_order, false);
6370 for (i = 0; i < n_basic_blocks - NUM_FIXED_BLOCKS; i++)
6371 bb_order[rc_order[i]] = i;
6372 free (rc_order);
6373
6374 worklist = fibheap_new ();
6375 pending = fibheap_new ();
6376 visited = sbitmap_alloc (last_basic_block);
6377 in_worklist = sbitmap_alloc (last_basic_block);
6378 in_pending = sbitmap_alloc (last_basic_block);
6379 sbitmap_zero (in_worklist);
6380
6381 FOR_EACH_BB (bb)
6382 fibheap_insert (pending, bb_order[bb->index], bb);
6383 sbitmap_ones (in_pending);
6384
6385 while (success && !fibheap_empty (pending))
6386 {
6387 fibheap_swap = pending;
6388 pending = worklist;
6389 worklist = fibheap_swap;
6390 sbitmap_swap = in_pending;
6391 in_pending = in_worklist;
6392 in_worklist = sbitmap_swap;
6393
6394 sbitmap_zero (visited);
6395
6396 while (!fibheap_empty (worklist))
6397 {
6398 bb = (basic_block) fibheap_extract_min (worklist);
6399 RESET_BIT (in_worklist, bb->index);
6400 gcc_assert (!TEST_BIT (visited, bb->index));
6401 if (!TEST_BIT (visited, bb->index))
6402 {
6403 bool changed;
6404 edge_iterator ei;
6405 int oldinsz, oldoutsz;
6406
6407 SET_BIT (visited, bb->index);
6408
6409 if (VTI (bb)->in.vars)
6410 {
6411 htabsz
6412 -= (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6413 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6414 oldinsz
6415 = htab_elements (shared_hash_htab (VTI (bb)->in.vars));
6416 oldoutsz
6417 = htab_elements (shared_hash_htab (VTI (bb)->out.vars));
6418 }
6419 else
6420 oldinsz = oldoutsz = 0;
6421
6422 if (MAY_HAVE_DEBUG_INSNS)
6423 {
6424 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6425 bool first = true, adjust = false;
6426
6427 /* Calculate the IN set as the intersection of
6428 predecessor OUT sets. */
6429
6430 dataflow_set_clear (in);
6431 dst_can_be_shared = true;
6432
6433 FOR_EACH_EDGE (e, ei, bb->preds)
6434 if (!VTI (e->src)->flooded)
6435 gcc_assert (bb_order[bb->index]
6436 <= bb_order[e->src->index]);
6437 else if (first)
6438 {
6439 dataflow_set_copy (in, &VTI (e->src)->out);
6440 first_out = &VTI (e->src)->out;
6441 first = false;
6442 }
6443 else
6444 {
6445 dataflow_set_merge (in, &VTI (e->src)->out);
6446 adjust = true;
6447 }
6448
6449 if (adjust)
6450 {
6451 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
6452 #if ENABLE_CHECKING
6453 /* Merge and merge_adjust should keep entries in
6454 canonical order. */
6455 htab_traverse (shared_hash_htab (in->vars),
6456 canonicalize_loc_order_check,
6457 in);
6458 #endif
6459 if (dst_can_be_shared)
6460 {
6461 shared_hash_destroy (in->vars);
6462 in->vars = shared_hash_copy (first_out->vars);
6463 }
6464 }
6465
6466 VTI (bb)->flooded = true;
6467 }
6468 else
6469 {
6470 /* Calculate the IN set as union of predecessor OUT sets. */
6471 dataflow_set_clear (&VTI (bb)->in);
6472 FOR_EACH_EDGE (e, ei, bb->preds)
6473 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
6474 }
6475
6476 changed = compute_bb_dataflow (bb);
6477 htabsz += (htab_size (shared_hash_htab (VTI (bb)->in.vars))
6478 + htab_size (shared_hash_htab (VTI (bb)->out.vars)));
6479
6480 if (htabmax && htabsz > htabmax)
6481 {
6482 if (MAY_HAVE_DEBUG_INSNS)
6483 inform (DECL_SOURCE_LOCATION (cfun->decl),
6484 "variable tracking size limit exceeded with "
6485 "-fvar-tracking-assignments, retrying without");
6486 else
6487 inform (DECL_SOURCE_LOCATION (cfun->decl),
6488 "variable tracking size limit exceeded");
6489 success = false;
6490 break;
6491 }
6492
6493 if (changed)
6494 {
6495 FOR_EACH_EDGE (e, ei, bb->succs)
6496 {
6497 if (e->dest == EXIT_BLOCK_PTR)
6498 continue;
6499
6500 if (TEST_BIT (visited, e->dest->index))
6501 {
6502 if (!TEST_BIT (in_pending, e->dest->index))
6503 {
6504 /* Send E->DEST to next round. */
6505 SET_BIT (in_pending, e->dest->index);
6506 fibheap_insert (pending,
6507 bb_order[e->dest->index],
6508 e->dest);
6509 }
6510 }
6511 else if (!TEST_BIT (in_worklist, e->dest->index))
6512 {
6513 /* Add E->DEST to current round. */
6514 SET_BIT (in_worklist, e->dest->index);
6515 fibheap_insert (worklist, bb_order[e->dest->index],
6516 e->dest);
6517 }
6518 }
6519 }
6520
6521 if (dump_file)
6522 fprintf (dump_file,
6523 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
6524 bb->index,
6525 (int)htab_elements (shared_hash_htab (VTI (bb)->in.vars)),
6526 oldinsz,
6527 (int)htab_elements (shared_hash_htab (VTI (bb)->out.vars)),
6528 oldoutsz,
6529 (int)worklist->nodes, (int)pending->nodes, htabsz);
6530
6531 if (dump_file && (dump_flags & TDF_DETAILS))
6532 {
6533 fprintf (dump_file, "BB %i IN:\n", bb->index);
6534 dump_dataflow_set (&VTI (bb)->in);
6535 fprintf (dump_file, "BB %i OUT:\n", bb->index);
6536 dump_dataflow_set (&VTI (bb)->out);
6537 }
6538 }
6539 }
6540 }
6541
6542 if (success && MAY_HAVE_DEBUG_INSNS)
6543 FOR_EACH_BB (bb)
6544 gcc_assert (VTI (bb)->flooded);
6545
6546 free (bb_order);
6547 fibheap_delete (worklist);
6548 fibheap_delete (pending);
6549 sbitmap_free (visited);
6550 sbitmap_free (in_worklist);
6551 sbitmap_free (in_pending);
6552
6553 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
6554 return success;
6555 }
6556
6557 /* Print the content of the LIST to dump file. */
6558
6559 static void
6560 dump_attrs_list (attrs list)
6561 {
6562 for (; list; list = list->next)
6563 {
6564 if (dv_is_decl_p (list->dv))
6565 print_mem_expr (dump_file, dv_as_decl (list->dv));
6566 else
6567 print_rtl_single (dump_file, dv_as_value (list->dv));
6568 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
6569 }
6570 fprintf (dump_file, "\n");
6571 }
6572
6573 /* Print the information about variable *SLOT to dump file. */
6574
6575 static int
6576 dump_var_slot (void **slot, void *data ATTRIBUTE_UNUSED)
6577 {
6578 variable var = (variable) *slot;
6579
6580 dump_var (var);
6581
6582 /* Continue traversing the hash table. */
6583 return 1;
6584 }
6585
6586 /* Print the information about variable VAR to dump file. */
6587
6588 static void
6589 dump_var (variable var)
6590 {
6591 int i;
6592 location_chain node;
6593
6594 if (dv_is_decl_p (var->dv))
6595 {
6596 const_tree decl = dv_as_decl (var->dv);
6597
6598 if (DECL_NAME (decl))
6599 {
6600 fprintf (dump_file, " name: %s",
6601 IDENTIFIER_POINTER (DECL_NAME (decl)));
6602 if (dump_flags & TDF_UID)
6603 fprintf (dump_file, "D.%u", DECL_UID (decl));
6604 }
6605 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
6606 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
6607 else
6608 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
6609 fprintf (dump_file, "\n");
6610 }
6611 else
6612 {
6613 fputc (' ', dump_file);
6614 print_rtl_single (dump_file, dv_as_value (var->dv));
6615 }
6616
6617 for (i = 0; i < var->n_var_parts; i++)
6618 {
6619 fprintf (dump_file, " offset %ld\n",
6620 (long) var->var_part[i].offset);
6621 for (node = var->var_part[i].loc_chain; node; node = node->next)
6622 {
6623 fprintf (dump_file, " ");
6624 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
6625 fprintf (dump_file, "[uninit]");
6626 print_rtl_single (dump_file, node->loc);
6627 }
6628 }
6629 }
6630
6631 /* Print the information about variables from hash table VARS to dump file. */
6632
6633 static void
6634 dump_vars (htab_t vars)
6635 {
6636 if (htab_elements (vars) > 0)
6637 {
6638 fprintf (dump_file, "Variables:\n");
6639 htab_traverse (vars, dump_var_slot, NULL);
6640 }
6641 }
6642
6643 /* Print the dataflow set SET to dump file. */
6644
6645 static void
6646 dump_dataflow_set (dataflow_set *set)
6647 {
6648 int i;
6649
6650 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
6651 set->stack_adjust);
6652 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
6653 {
6654 if (set->regs[i])
6655 {
6656 fprintf (dump_file, "Reg %d:", i);
6657 dump_attrs_list (set->regs[i]);
6658 }
6659 }
6660 dump_vars (shared_hash_htab (set->vars));
6661 fprintf (dump_file, "\n");
6662 }
6663
6664 /* Print the IN and OUT sets for each basic block to dump file. */
6665
6666 static void
6667 dump_dataflow_sets (void)
6668 {
6669 basic_block bb;
6670
6671 FOR_EACH_BB (bb)
6672 {
6673 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
6674 fprintf (dump_file, "IN:\n");
6675 dump_dataflow_set (&VTI (bb)->in);
6676 fprintf (dump_file, "OUT:\n");
6677 dump_dataflow_set (&VTI (bb)->out);
6678 }
6679 }
6680
6681 /* Add variable VAR to the hash table of changed variables and
6682 if it has no locations delete it from SET's hash table. */
6683
6684 static void
6685 variable_was_changed (variable var, dataflow_set *set)
6686 {
6687 hashval_t hash = dv_htab_hash (var->dv);
6688
6689 if (emit_notes)
6690 {
6691 void **slot;
6692 bool old_cur_loc_changed = false;
6693
6694 /* Remember this decl or VALUE has been added to changed_variables. */
6695 set_dv_changed (var->dv, true);
6696
6697 slot = htab_find_slot_with_hash (changed_variables,
6698 var->dv,
6699 hash, INSERT);
6700
6701 if (*slot)
6702 {
6703 variable old_var = (variable) *slot;
6704 gcc_assert (old_var->in_changed_variables);
6705 old_var->in_changed_variables = false;
6706 old_cur_loc_changed = old_var->cur_loc_changed;
6707 variable_htab_free (*slot);
6708 }
6709 if (set && var->n_var_parts == 0)
6710 {
6711 variable empty_var;
6712
6713 empty_var = (variable) pool_alloc (dv_pool (var->dv));
6714 empty_var->dv = var->dv;
6715 empty_var->refcount = 1;
6716 empty_var->n_var_parts = 0;
6717 empty_var->cur_loc_changed = true;
6718 empty_var->in_changed_variables = true;
6719 *slot = empty_var;
6720 goto drop_var;
6721 }
6722 else
6723 {
6724 var->refcount++;
6725 var->in_changed_variables = true;
6726 /* If within processing one uop a variable is deleted
6727 and then readded, we need to assume it has changed. */
6728 if (old_cur_loc_changed)
6729 var->cur_loc_changed = true;
6730 *slot = var;
6731 }
6732 }
6733 else
6734 {
6735 gcc_assert (set);
6736 if (var->n_var_parts == 0)
6737 {
6738 void **slot;
6739
6740 drop_var:
6741 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
6742 if (slot)
6743 {
6744 if (shared_hash_shared (set->vars))
6745 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
6746 NO_INSERT);
6747 htab_clear_slot (shared_hash_htab (set->vars), slot);
6748 }
6749 }
6750 }
6751 }
6752
6753 /* Look for the index in VAR->var_part corresponding to OFFSET.
6754 Return -1 if not found. If INSERTION_POINT is non-NULL, the
6755 referenced int will be set to the index that the part has or should
6756 have, if it should be inserted. */
6757
6758 static inline int
6759 find_variable_location_part (variable var, HOST_WIDE_INT offset,
6760 int *insertion_point)
6761 {
6762 int pos, low, high;
6763
6764 /* Find the location part. */
6765 low = 0;
6766 high = var->n_var_parts;
6767 while (low != high)
6768 {
6769 pos = (low + high) / 2;
6770 if (var->var_part[pos].offset < offset)
6771 low = pos + 1;
6772 else
6773 high = pos;
6774 }
6775 pos = low;
6776
6777 if (insertion_point)
6778 *insertion_point = pos;
6779
6780 if (pos < var->n_var_parts && var->var_part[pos].offset == offset)
6781 return pos;
6782
6783 return -1;
6784 }
6785
6786 static void **
6787 set_slot_part (dataflow_set *set, rtx loc, void **slot,
6788 decl_or_value dv, HOST_WIDE_INT offset,
6789 enum var_init_status initialized, rtx set_src)
6790 {
6791 int pos;
6792 location_chain node, next;
6793 location_chain *nextp;
6794 variable var;
6795 bool onepart = dv_onepart_p (dv);
6796
6797 gcc_assert (offset == 0 || !onepart);
6798 gcc_assert (loc != dv_as_opaque (dv));
6799
6800 var = (variable) *slot;
6801
6802 if (! flag_var_tracking_uninit)
6803 initialized = VAR_INIT_STATUS_INITIALIZED;
6804
6805 if (!var)
6806 {
6807 /* Create new variable information. */
6808 var = (variable) pool_alloc (dv_pool (dv));
6809 var->dv = dv;
6810 var->refcount = 1;
6811 var->n_var_parts = 1;
6812 var->cur_loc_changed = false;
6813 var->in_changed_variables = false;
6814 var->var_part[0].offset = offset;
6815 var->var_part[0].loc_chain = NULL;
6816 var->var_part[0].cur_loc = NULL;
6817 *slot = var;
6818 pos = 0;
6819 nextp = &var->var_part[0].loc_chain;
6820 }
6821 else if (onepart)
6822 {
6823 int r = -1, c = 0;
6824
6825 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
6826
6827 pos = 0;
6828
6829 if (GET_CODE (loc) == VALUE)
6830 {
6831 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6832 nextp = &node->next)
6833 if (GET_CODE (node->loc) == VALUE)
6834 {
6835 if (node->loc == loc)
6836 {
6837 r = 0;
6838 break;
6839 }
6840 if (canon_value_cmp (node->loc, loc))
6841 c++;
6842 else
6843 {
6844 r = 1;
6845 break;
6846 }
6847 }
6848 else if (REG_P (node->loc) || MEM_P (node->loc))
6849 c++;
6850 else
6851 {
6852 r = 1;
6853 break;
6854 }
6855 }
6856 else if (REG_P (loc))
6857 {
6858 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6859 nextp = &node->next)
6860 if (REG_P (node->loc))
6861 {
6862 if (REGNO (node->loc) < REGNO (loc))
6863 c++;
6864 else
6865 {
6866 if (REGNO (node->loc) == REGNO (loc))
6867 r = 0;
6868 else
6869 r = 1;
6870 break;
6871 }
6872 }
6873 else
6874 {
6875 r = 1;
6876 break;
6877 }
6878 }
6879 else if (MEM_P (loc))
6880 {
6881 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6882 nextp = &node->next)
6883 if (REG_P (node->loc))
6884 c++;
6885 else if (MEM_P (node->loc))
6886 {
6887 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
6888 break;
6889 else
6890 c++;
6891 }
6892 else
6893 {
6894 r = 1;
6895 break;
6896 }
6897 }
6898 else
6899 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
6900 nextp = &node->next)
6901 if ((r = loc_cmp (node->loc, loc)) >= 0)
6902 break;
6903 else
6904 c++;
6905
6906 if (r == 0)
6907 return slot;
6908
6909 if (shared_var_p (var, set->vars))
6910 {
6911 slot = unshare_variable (set, slot, var, initialized);
6912 var = (variable)*slot;
6913 for (nextp = &var->var_part[0].loc_chain; c;
6914 nextp = &(*nextp)->next)
6915 c--;
6916 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
6917 }
6918 }
6919 else
6920 {
6921 int inspos = 0;
6922
6923 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
6924
6925 pos = find_variable_location_part (var, offset, &inspos);
6926
6927 if (pos >= 0)
6928 {
6929 node = var->var_part[pos].loc_chain;
6930
6931 if (node
6932 && ((REG_P (node->loc) && REG_P (loc)
6933 && REGNO (node->loc) == REGNO (loc))
6934 || rtx_equal_p (node->loc, loc)))
6935 {
6936 /* LOC is in the beginning of the chain so we have nothing
6937 to do. */
6938 if (node->init < initialized)
6939 node->init = initialized;
6940 if (set_src != NULL)
6941 node->set_src = set_src;
6942
6943 return slot;
6944 }
6945 else
6946 {
6947 /* We have to make a copy of a shared variable. */
6948 if (shared_var_p (var, set->vars))
6949 {
6950 slot = unshare_variable (set, slot, var, initialized);
6951 var = (variable)*slot;
6952 }
6953 }
6954 }
6955 else
6956 {
6957 /* We have not found the location part, new one will be created. */
6958
6959 /* We have to make a copy of the shared variable. */
6960 if (shared_var_p (var, set->vars))
6961 {
6962 slot = unshare_variable (set, slot, var, initialized);
6963 var = (variable)*slot;
6964 }
6965
6966 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
6967 thus there are at most MAX_VAR_PARTS different offsets. */
6968 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
6969 && (!var->n_var_parts || !dv_onepart_p (var->dv)));
6970
6971 /* We have to move the elements of array starting at index
6972 inspos to the next position. */
6973 for (pos = var->n_var_parts; pos > inspos; pos--)
6974 var->var_part[pos] = var->var_part[pos - 1];
6975
6976 var->n_var_parts++;
6977 var->var_part[pos].offset = offset;
6978 var->var_part[pos].loc_chain = NULL;
6979 var->var_part[pos].cur_loc = NULL;
6980 }
6981
6982 /* Delete the location from the list. */
6983 nextp = &var->var_part[pos].loc_chain;
6984 for (node = var->var_part[pos].loc_chain; node; node = next)
6985 {
6986 next = node->next;
6987 if ((REG_P (node->loc) && REG_P (loc)
6988 && REGNO (node->loc) == REGNO (loc))
6989 || rtx_equal_p (node->loc, loc))
6990 {
6991 /* Save these values, to assign to the new node, before
6992 deleting this one. */
6993 if (node->init > initialized)
6994 initialized = node->init;
6995 if (node->set_src != NULL && set_src == NULL)
6996 set_src = node->set_src;
6997 if (var->var_part[pos].cur_loc == node->loc)
6998 {
6999 var->var_part[pos].cur_loc = NULL;
7000 var->cur_loc_changed = true;
7001 }
7002 pool_free (loc_chain_pool, node);
7003 *nextp = next;
7004 break;
7005 }
7006 else
7007 nextp = &node->next;
7008 }
7009
7010 nextp = &var->var_part[pos].loc_chain;
7011 }
7012
7013 /* Add the location to the beginning. */
7014 node = (location_chain) pool_alloc (loc_chain_pool);
7015 node->loc = loc;
7016 node->init = initialized;
7017 node->set_src = set_src;
7018 node->next = *nextp;
7019 *nextp = node;
7020
7021 if (onepart && emit_notes)
7022 add_value_chains (var->dv, loc);
7023
7024 /* If no location was emitted do so. */
7025 if (var->var_part[pos].cur_loc == NULL)
7026 variable_was_changed (var, set);
7027
7028 return slot;
7029 }
7030
7031 /* Set the part of variable's location in the dataflow set SET. The
7032 variable part is specified by variable's declaration in DV and
7033 offset OFFSET and the part's location by LOC. IOPT should be
7034 NO_INSERT if the variable is known to be in SET already and the
7035 variable hash table must not be resized, and INSERT otherwise. */
7036
7037 static void
7038 set_variable_part (dataflow_set *set, rtx loc,
7039 decl_or_value dv, HOST_WIDE_INT offset,
7040 enum var_init_status initialized, rtx set_src,
7041 enum insert_option iopt)
7042 {
7043 void **slot;
7044
7045 if (iopt == NO_INSERT)
7046 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7047 else
7048 {
7049 slot = shared_hash_find_slot (set->vars, dv);
7050 if (!slot)
7051 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7052 }
7053 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7054 }
7055
7056 /* Remove all recorded register locations for the given variable part
7057 from dataflow set SET, except for those that are identical to loc.
7058 The variable part is specified by variable's declaration or value
7059 DV and offset OFFSET. */
7060
7061 static void **
7062 clobber_slot_part (dataflow_set *set, rtx loc, void **slot,
7063 HOST_WIDE_INT offset, rtx set_src)
7064 {
7065 variable var = (variable) *slot;
7066 int pos = find_variable_location_part (var, offset, NULL);
7067
7068 if (pos >= 0)
7069 {
7070 location_chain node, next;
7071
7072 /* Remove the register locations from the dataflow set. */
7073 next = var->var_part[pos].loc_chain;
7074 for (node = next; node; node = next)
7075 {
7076 next = node->next;
7077 if (node->loc != loc
7078 && (!flag_var_tracking_uninit
7079 || !set_src
7080 || MEM_P (set_src)
7081 || !rtx_equal_p (set_src, node->set_src)))
7082 {
7083 if (REG_P (node->loc))
7084 {
7085 attrs anode, anext;
7086 attrs *anextp;
7087
7088 /* Remove the variable part from the register's
7089 list, but preserve any other variable parts
7090 that might be regarded as live in that same
7091 register. */
7092 anextp = &set->regs[REGNO (node->loc)];
7093 for (anode = *anextp; anode; anode = anext)
7094 {
7095 anext = anode->next;
7096 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7097 && anode->offset == offset)
7098 {
7099 pool_free (attrs_pool, anode);
7100 *anextp = anext;
7101 }
7102 else
7103 anextp = &anode->next;
7104 }
7105 }
7106
7107 slot = delete_slot_part (set, node->loc, slot, offset);
7108 }
7109 }
7110 }
7111
7112 return slot;
7113 }
7114
7115 /* Remove all recorded register locations for the given variable part
7116 from dataflow set SET, except for those that are identical to loc.
7117 The variable part is specified by variable's declaration or value
7118 DV and offset OFFSET. */
7119
7120 static void
7121 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7122 HOST_WIDE_INT offset, rtx set_src)
7123 {
7124 void **slot;
7125
7126 if (!dv_as_opaque (dv)
7127 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7128 return;
7129
7130 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7131 if (!slot)
7132 return;
7133
7134 clobber_slot_part (set, loc, slot, offset, set_src);
7135 }
7136
7137 /* Delete the part of variable's location from dataflow set SET. The
7138 variable part is specified by its SET->vars slot SLOT and offset
7139 OFFSET and the part's location by LOC. */
7140
7141 static void **
7142 delete_slot_part (dataflow_set *set, rtx loc, void **slot,
7143 HOST_WIDE_INT offset)
7144 {
7145 variable var = (variable) *slot;
7146 int pos = find_variable_location_part (var, offset, NULL);
7147
7148 if (pos >= 0)
7149 {
7150 location_chain node, next;
7151 location_chain *nextp;
7152 bool changed;
7153
7154 if (shared_var_p (var, set->vars))
7155 {
7156 /* If the variable contains the location part we have to
7157 make a copy of the variable. */
7158 for (node = var->var_part[pos].loc_chain; node;
7159 node = node->next)
7160 {
7161 if ((REG_P (node->loc) && REG_P (loc)
7162 && REGNO (node->loc) == REGNO (loc))
7163 || rtx_equal_p (node->loc, loc))
7164 {
7165 slot = unshare_variable (set, slot, var,
7166 VAR_INIT_STATUS_UNKNOWN);
7167 var = (variable)*slot;
7168 break;
7169 }
7170 }
7171 }
7172
7173 /* Delete the location part. */
7174 changed = false;
7175 nextp = &var->var_part[pos].loc_chain;
7176 for (node = *nextp; node; node = next)
7177 {
7178 next = node->next;
7179 if ((REG_P (node->loc) && REG_P (loc)
7180 && REGNO (node->loc) == REGNO (loc))
7181 || rtx_equal_p (node->loc, loc))
7182 {
7183 if (emit_notes && pos == 0 && dv_onepart_p (var->dv))
7184 remove_value_chains (var->dv, node->loc);
7185 /* If we have deleted the location which was last emitted
7186 we have to emit new location so add the variable to set
7187 of changed variables. */
7188 if (var->var_part[pos].cur_loc == node->loc)
7189 {
7190 changed = true;
7191 var->var_part[pos].cur_loc = NULL;
7192 var->cur_loc_changed = true;
7193 }
7194 pool_free (loc_chain_pool, node);
7195 *nextp = next;
7196 break;
7197 }
7198 else
7199 nextp = &node->next;
7200 }
7201
7202 if (var->var_part[pos].loc_chain == NULL)
7203 {
7204 changed = true;
7205 var->n_var_parts--;
7206 if (emit_notes)
7207 var->cur_loc_changed = true;
7208 while (pos < var->n_var_parts)
7209 {
7210 var->var_part[pos] = var->var_part[pos + 1];
7211 pos++;
7212 }
7213 }
7214 if (changed)
7215 variable_was_changed (var, set);
7216 }
7217
7218 return slot;
7219 }
7220
7221 /* Delete the part of variable's location from dataflow set SET. The
7222 variable part is specified by variable's declaration or value DV
7223 and offset OFFSET and the part's location by LOC. */
7224
7225 static void
7226 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7227 HOST_WIDE_INT offset)
7228 {
7229 void **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7230 if (!slot)
7231 return;
7232
7233 delete_slot_part (set, loc, slot, offset);
7234 }
7235
7236 /* Structure for passing some other parameters to function
7237 vt_expand_loc_callback. */
7238 struct expand_loc_callback_data
7239 {
7240 /* The variables and values active at this point. */
7241 htab_t vars;
7242
7243 /* True in vt_expand_loc_dummy calls, no rtl should be allocated.
7244 Non-NULL should be returned if vt_expand_loc would return
7245 non-NULL in that case, NULL otherwise. cur_loc_changed should be
7246 computed and cur_loc recomputed when possible (but just once
7247 per emit_notes_for_changes call). */
7248 bool dummy;
7249
7250 /* True if expansion of subexpressions had to recompute some
7251 VALUE/DEBUG_EXPR_DECL's cur_loc or used a VALUE/DEBUG_EXPR_DECL
7252 whose cur_loc has been already recomputed during current
7253 emit_notes_for_changes call. */
7254 bool cur_loc_changed;
7255
7256 /* True if cur_loc should be ignored and any possible location
7257 returned. */
7258 bool ignore_cur_loc;
7259 };
7260
7261 /* Callback for cselib_expand_value, that looks for expressions
7262 holding the value in the var-tracking hash tables. Return X for
7263 standard processing, anything else is to be used as-is. */
7264
7265 static rtx
7266 vt_expand_loc_callback (rtx x, bitmap regs, int max_depth, void *data)
7267 {
7268 struct expand_loc_callback_data *elcd
7269 = (struct expand_loc_callback_data *) data;
7270 bool dummy = elcd->dummy;
7271 bool cur_loc_changed = elcd->cur_loc_changed;
7272 rtx cur_loc;
7273 decl_or_value dv;
7274 variable var;
7275 location_chain loc;
7276 rtx result, subreg, xret;
7277
7278 switch (GET_CODE (x))
7279 {
7280 case SUBREG:
7281 if (dummy)
7282 {
7283 if (cselib_dummy_expand_value_rtx_cb (SUBREG_REG (x), regs,
7284 max_depth - 1,
7285 vt_expand_loc_callback, data))
7286 return pc_rtx;
7287 else
7288 return NULL;
7289 }
7290
7291 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
7292 max_depth - 1,
7293 vt_expand_loc_callback, data);
7294
7295 if (!subreg)
7296 return NULL;
7297
7298 result = simplify_gen_subreg (GET_MODE (x), subreg,
7299 GET_MODE (SUBREG_REG (x)),
7300 SUBREG_BYTE (x));
7301
7302 /* Invalid SUBREGs are ok in debug info. ??? We could try
7303 alternate expansions for the VALUE as well. */
7304 if (!result)
7305 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
7306
7307 return result;
7308
7309 case DEBUG_EXPR:
7310 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
7311 xret = NULL;
7312 break;
7313
7314 case VALUE:
7315 dv = dv_from_value (x);
7316 xret = x;
7317 break;
7318
7319 default:
7320 return x;
7321 }
7322
7323 if (VALUE_RECURSED_INTO (x))
7324 return NULL;
7325
7326 var = (variable) htab_find_with_hash (elcd->vars, dv, dv_htab_hash (dv));
7327
7328 if (!var)
7329 {
7330 if (dummy && dv_changed_p (dv))
7331 elcd->cur_loc_changed = true;
7332 return xret;
7333 }
7334
7335 if (var->n_var_parts == 0)
7336 {
7337 if (dummy)
7338 elcd->cur_loc_changed = true;
7339 return xret;
7340 }
7341
7342 gcc_assert (var->n_var_parts == 1);
7343
7344 VALUE_RECURSED_INTO (x) = true;
7345 result = NULL;
7346
7347 if (var->var_part[0].cur_loc && !elcd->ignore_cur_loc)
7348 {
7349 if (dummy)
7350 {
7351 if (cselib_dummy_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7352 max_depth,
7353 vt_expand_loc_callback, data))
7354 result = pc_rtx;
7355 }
7356 else
7357 result = cselib_expand_value_rtx_cb (var->var_part[0].cur_loc, regs,
7358 max_depth,
7359 vt_expand_loc_callback, data);
7360 if (result)
7361 set_dv_changed (dv, false);
7362 cur_loc = var->var_part[0].cur_loc;
7363 }
7364 else
7365 cur_loc = NULL_RTX;
7366 if (!result && (dv_changed_p (dv) || elcd->ignore_cur_loc))
7367 {
7368 if (!elcd->ignore_cur_loc)
7369 set_dv_changed (dv, false);
7370 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
7371 if (loc->loc == cur_loc)
7372 continue;
7373 else if (dummy)
7374 {
7375 elcd->cur_loc_changed = cur_loc_changed;
7376 if (cselib_dummy_expand_value_rtx_cb (loc->loc, regs, max_depth,
7377 vt_expand_loc_callback,
7378 data))
7379 {
7380 result = pc_rtx;
7381 break;
7382 }
7383 }
7384 else
7385 {
7386 result = cselib_expand_value_rtx_cb (loc->loc, regs, max_depth,
7387 vt_expand_loc_callback, data);
7388 if (result)
7389 break;
7390 }
7391 if (dummy && (result || var->var_part[0].cur_loc))
7392 var->cur_loc_changed = true;
7393 if (!elcd->ignore_cur_loc)
7394 var->var_part[0].cur_loc = loc ? loc->loc : NULL_RTX;
7395 }
7396 if (dummy)
7397 {
7398 if (var->cur_loc_changed)
7399 elcd->cur_loc_changed = true;
7400 else if (!result && var->var_part[0].cur_loc == NULL_RTX)
7401 elcd->cur_loc_changed = cur_loc_changed;
7402 }
7403
7404 VALUE_RECURSED_INTO (x) = false;
7405 if (result)
7406 return result;
7407 else
7408 return xret;
7409 }
7410
7411 /* Expand VALUEs in LOC, using VARS as well as cselib's equivalence
7412 tables. */
7413
7414 static rtx
7415 vt_expand_loc (rtx loc, htab_t vars, bool ignore_cur_loc)
7416 {
7417 struct expand_loc_callback_data data;
7418
7419 if (!MAY_HAVE_DEBUG_INSNS)
7420 return loc;
7421
7422 data.vars = vars;
7423 data.dummy = false;
7424 data.cur_loc_changed = false;
7425 data.ignore_cur_loc = ignore_cur_loc;
7426 loc = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7427 vt_expand_loc_callback, &data);
7428
7429 if (loc && MEM_P (loc))
7430 loc = targetm.delegitimize_address (loc);
7431 return loc;
7432 }
7433
7434 /* Like vt_expand_loc, but only return true/false (whether vt_expand_loc
7435 would succeed or not, without actually allocating new rtxes. */
7436
7437 static bool
7438 vt_expand_loc_dummy (rtx loc, htab_t vars, bool *pcur_loc_changed)
7439 {
7440 struct expand_loc_callback_data data;
7441 bool ret;
7442
7443 gcc_assert (MAY_HAVE_DEBUG_INSNS);
7444 data.vars = vars;
7445 data.dummy = true;
7446 data.cur_loc_changed = false;
7447 data.ignore_cur_loc = false;
7448 ret = cselib_dummy_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
7449 vt_expand_loc_callback, &data);
7450 *pcur_loc_changed = data.cur_loc_changed;
7451 return ret;
7452 }
7453
7454 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
7455 additional parameters: WHERE specifies whether the note shall be emitted
7456 before or after instruction INSN. */
7457
7458 static int
7459 emit_note_insn_var_location (void **varp, void *data)
7460 {
7461 variable var = (variable) *varp;
7462 rtx insn = ((emit_note_data *)data)->insn;
7463 enum emit_note_where where = ((emit_note_data *)data)->where;
7464 htab_t vars = ((emit_note_data *)data)->vars;
7465 rtx note, note_vl;
7466 int i, j, n_var_parts;
7467 bool complete;
7468 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
7469 HOST_WIDE_INT last_limit;
7470 tree type_size_unit;
7471 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
7472 rtx loc[MAX_VAR_PARTS];
7473 tree decl;
7474 location_chain lc;
7475
7476 if (dv_is_value_p (var->dv))
7477 goto value_or_debug_decl;
7478
7479 decl = dv_as_decl (var->dv);
7480
7481 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7482 goto value_or_debug_decl;
7483
7484 complete = true;
7485 last_limit = 0;
7486 n_var_parts = 0;
7487 if (!MAY_HAVE_DEBUG_INSNS)
7488 {
7489 for (i = 0; i < var->n_var_parts; i++)
7490 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
7491 {
7492 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
7493 var->cur_loc_changed = true;
7494 }
7495 if (var->n_var_parts == 0)
7496 var->cur_loc_changed = true;
7497 }
7498 if (!var->cur_loc_changed)
7499 goto clear;
7500 for (i = 0; i < var->n_var_parts; i++)
7501 {
7502 enum machine_mode mode, wider_mode;
7503 rtx loc2;
7504
7505 if (last_limit < var->var_part[i].offset)
7506 {
7507 complete = false;
7508 break;
7509 }
7510 else if (last_limit > var->var_part[i].offset)
7511 continue;
7512 offsets[n_var_parts] = var->var_part[i].offset;
7513 if (!var->var_part[i].cur_loc)
7514 {
7515 complete = false;
7516 continue;
7517 }
7518 loc2 = vt_expand_loc (var->var_part[i].cur_loc, vars, false);
7519 if (!loc2)
7520 {
7521 complete = false;
7522 continue;
7523 }
7524 loc[n_var_parts] = loc2;
7525 mode = GET_MODE (var->var_part[i].cur_loc);
7526 if (mode == VOIDmode && dv_onepart_p (var->dv))
7527 mode = DECL_MODE (decl);
7528 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7529 if (var->var_part[i].cur_loc == lc->loc)
7530 {
7531 initialized = lc->init;
7532 break;
7533 }
7534 gcc_assert (lc);
7535 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7536
7537 /* Attempt to merge adjacent registers or memory. */
7538 wider_mode = GET_MODE_WIDER_MODE (mode);
7539 for (j = i + 1; j < var->n_var_parts; j++)
7540 if (last_limit <= var->var_part[j].offset)
7541 break;
7542 if (j < var->n_var_parts
7543 && wider_mode != VOIDmode
7544 && var->var_part[j].cur_loc
7545 && mode == GET_MODE (var->var_part[j].cur_loc)
7546 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
7547 && last_limit == var->var_part[j].offset
7548 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars, false))
7549 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
7550 {
7551 rtx new_loc = NULL;
7552
7553 if (REG_P (loc[n_var_parts])
7554 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
7555 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
7556 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
7557 == REGNO (loc2))
7558 {
7559 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
7560 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
7561 mode, 0);
7562 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
7563 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
7564 if (new_loc)
7565 {
7566 if (!REG_P (new_loc)
7567 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
7568 new_loc = NULL;
7569 else
7570 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
7571 }
7572 }
7573 else if (MEM_P (loc[n_var_parts])
7574 && GET_CODE (XEXP (loc2, 0)) == PLUS
7575 && REG_P (XEXP (XEXP (loc2, 0), 0))
7576 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
7577 {
7578 if ((REG_P (XEXP (loc[n_var_parts], 0))
7579 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
7580 XEXP (XEXP (loc2, 0), 0))
7581 && INTVAL (XEXP (XEXP (loc2, 0), 1))
7582 == GET_MODE_SIZE (mode))
7583 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
7584 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
7585 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
7586 XEXP (XEXP (loc2, 0), 0))
7587 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
7588 + GET_MODE_SIZE (mode)
7589 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
7590 new_loc = adjust_address_nv (loc[n_var_parts],
7591 wider_mode, 0);
7592 }
7593
7594 if (new_loc)
7595 {
7596 loc[n_var_parts] = new_loc;
7597 mode = wider_mode;
7598 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
7599 i = j;
7600 }
7601 }
7602 ++n_var_parts;
7603 }
7604 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
7605 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
7606 complete = false;
7607
7608 if (! flag_var_tracking_uninit)
7609 initialized = VAR_INIT_STATUS_INITIALIZED;
7610
7611 note_vl = NULL_RTX;
7612 if (!complete)
7613 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
7614 (int) initialized);
7615 else if (n_var_parts == 1)
7616 {
7617 rtx expr_list;
7618
7619 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
7620 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
7621 else
7622 expr_list = loc[0];
7623
7624 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
7625 (int) initialized);
7626 }
7627 else if (n_var_parts)
7628 {
7629 rtx parallel;
7630
7631 for (i = 0; i < n_var_parts; i++)
7632 loc[i]
7633 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
7634
7635 parallel = gen_rtx_PARALLEL (VOIDmode,
7636 gen_rtvec_v (n_var_parts, loc));
7637 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
7638 parallel, (int) initialized);
7639 }
7640
7641 if (where != EMIT_NOTE_BEFORE_INSN)
7642 {
7643 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7644 if (where == EMIT_NOTE_AFTER_CALL_INSN)
7645 NOTE_DURING_CALL_P (note) = true;
7646 }
7647 else
7648 {
7649 /* Make sure that the call related notes come first. */
7650 while (NEXT_INSN (insn)
7651 && NOTE_P (insn)
7652 && NOTE_DURING_CALL_P (insn))
7653 insn = NEXT_INSN (insn);
7654 if (NOTE_P (insn) && NOTE_DURING_CALL_P (insn))
7655 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
7656 else
7657 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
7658 }
7659 NOTE_VAR_LOCATION (note) = note_vl;
7660
7661 clear:
7662 set_dv_changed (var->dv, false);
7663 var->cur_loc_changed = false;
7664 gcc_assert (var->in_changed_variables);
7665 var->in_changed_variables = false;
7666 htab_clear_slot (changed_variables, varp);
7667
7668 /* Continue traversing the hash table. */
7669 return 1;
7670
7671 value_or_debug_decl:
7672 if (dv_changed_p (var->dv) && var->n_var_parts)
7673 {
7674 location_chain lc;
7675 bool cur_loc_changed;
7676
7677 if (var->var_part[0].cur_loc
7678 && vt_expand_loc_dummy (var->var_part[0].cur_loc, vars,
7679 &cur_loc_changed))
7680 goto clear;
7681 for (lc = var->var_part[0].loc_chain; lc; lc = lc->next)
7682 if (lc->loc != var->var_part[0].cur_loc
7683 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7684 break;
7685 var->var_part[0].cur_loc = lc ? lc->loc : NULL_RTX;
7686 }
7687 goto clear;
7688 }
7689
7690 DEF_VEC_P (variable);
7691 DEF_VEC_ALLOC_P (variable, heap);
7692
7693 /* Stack of variable_def pointers that need processing with
7694 check_changed_vars_2. */
7695
7696 static VEC (variable, heap) *changed_variables_stack;
7697
7698 /* VALUEs with no variables that need set_dv_changed (val, false)
7699 called before check_changed_vars_3. */
7700
7701 static VEC (rtx, heap) *changed_values_stack;
7702
7703 /* Helper function for check_changed_vars_1 and check_changed_vars_2. */
7704
7705 static void
7706 check_changed_vars_0 (decl_or_value dv, htab_t htab)
7707 {
7708 value_chain vc
7709 = (value_chain) htab_find_with_hash (value_chains, dv, dv_htab_hash (dv));
7710
7711 if (vc == NULL)
7712 return;
7713 for (vc = vc->next; vc; vc = vc->next)
7714 if (!dv_changed_p (vc->dv))
7715 {
7716 variable vcvar
7717 = (variable) htab_find_with_hash (htab, vc->dv,
7718 dv_htab_hash (vc->dv));
7719 if (vcvar)
7720 {
7721 set_dv_changed (vc->dv, true);
7722 VEC_safe_push (variable, heap, changed_variables_stack, vcvar);
7723 }
7724 else if (dv_is_value_p (vc->dv))
7725 {
7726 set_dv_changed (vc->dv, true);
7727 VEC_safe_push (rtx, heap, changed_values_stack,
7728 dv_as_value (vc->dv));
7729 check_changed_vars_0 (vc->dv, htab);
7730 }
7731 }
7732 }
7733
7734 /* Populate changed_variables_stack with variable_def pointers
7735 that need variable_was_changed called on them. */
7736
7737 static int
7738 check_changed_vars_1 (void **slot, void *data)
7739 {
7740 variable var = (variable) *slot;
7741 htab_t htab = (htab_t) data;
7742
7743 if (dv_is_value_p (var->dv)
7744 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7745 check_changed_vars_0 (var->dv, htab);
7746 return 1;
7747 }
7748
7749 /* Add VAR to changed_variables and also for VALUEs add recursively
7750 all DVs that aren't in changed_variables yet but reference the
7751 VALUE from its loc_chain. */
7752
7753 static void
7754 check_changed_vars_2 (variable var, htab_t htab)
7755 {
7756 variable_was_changed (var, NULL);
7757 if (dv_is_value_p (var->dv)
7758 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7759 check_changed_vars_0 (var->dv, htab);
7760 }
7761
7762 /* For each changed decl (except DEBUG_EXPR_DECLs) recompute
7763 cur_loc if needed (and cur_loc of all VALUEs and DEBUG_EXPR_DECLs
7764 it needs and are also in changed variables) and track whether
7765 cur_loc (or anything it uses to compute location) had to change
7766 during the current emit_notes_for_changes call. */
7767
7768 static int
7769 check_changed_vars_3 (void **slot, void *data)
7770 {
7771 variable var = (variable) *slot;
7772 htab_t vars = (htab_t) data;
7773 int i;
7774 location_chain lc;
7775 bool cur_loc_changed;
7776
7777 if (dv_is_value_p (var->dv)
7778 || TREE_CODE (dv_as_decl (var->dv)) == DEBUG_EXPR_DECL)
7779 return 1;
7780
7781 for (i = 0; i < var->n_var_parts; i++)
7782 {
7783 if (var->var_part[i].cur_loc
7784 && vt_expand_loc_dummy (var->var_part[i].cur_loc, vars,
7785 &cur_loc_changed))
7786 {
7787 if (cur_loc_changed)
7788 var->cur_loc_changed = true;
7789 continue;
7790 }
7791 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
7792 if (lc->loc != var->var_part[i].cur_loc
7793 && vt_expand_loc_dummy (lc->loc, vars, &cur_loc_changed))
7794 break;
7795 if (lc || var->var_part[i].cur_loc)
7796 var->cur_loc_changed = true;
7797 var->var_part[i].cur_loc = lc ? lc->loc : NULL_RTX;
7798 }
7799 if (var->n_var_parts == 0)
7800 var->cur_loc_changed = true;
7801 return 1;
7802 }
7803
7804 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
7805 CHANGED_VARIABLES and delete this chain. WHERE specifies whether the notes
7806 shall be emitted before of after instruction INSN. */
7807
7808 static void
7809 emit_notes_for_changes (rtx insn, enum emit_note_where where,
7810 shared_hash vars)
7811 {
7812 emit_note_data data;
7813 htab_t htab = shared_hash_htab (vars);
7814
7815 if (!htab_elements (changed_variables))
7816 return;
7817
7818 if (MAY_HAVE_DEBUG_INSNS)
7819 {
7820 /* Unfortunately this has to be done in two steps, because
7821 we can't traverse a hashtab into which we are inserting
7822 through variable_was_changed. */
7823 htab_traverse (changed_variables, check_changed_vars_1, htab);
7824 while (VEC_length (variable, changed_variables_stack) > 0)
7825 check_changed_vars_2 (VEC_pop (variable, changed_variables_stack),
7826 htab);
7827 while (VEC_length (rtx, changed_values_stack) > 0)
7828 set_dv_changed (dv_from_value (VEC_pop (rtx, changed_values_stack)),
7829 false);
7830 htab_traverse (changed_variables, check_changed_vars_3, htab);
7831 }
7832
7833 data.insn = insn;
7834 data.where = where;
7835 data.vars = htab;
7836
7837 htab_traverse (changed_variables, emit_note_insn_var_location, &data);
7838 }
7839
7840 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
7841 same variable in hash table DATA or is not there at all. */
7842
7843 static int
7844 emit_notes_for_differences_1 (void **slot, void *data)
7845 {
7846 htab_t new_vars = (htab_t) data;
7847 variable old_var, new_var;
7848
7849 old_var = (variable) *slot;
7850 new_var = (variable) htab_find_with_hash (new_vars, old_var->dv,
7851 dv_htab_hash (old_var->dv));
7852
7853 if (!new_var)
7854 {
7855 /* Variable has disappeared. */
7856 variable empty_var;
7857
7858 empty_var = (variable) pool_alloc (dv_pool (old_var->dv));
7859 empty_var->dv = old_var->dv;
7860 empty_var->refcount = 0;
7861 empty_var->n_var_parts = 0;
7862 empty_var->cur_loc_changed = false;
7863 empty_var->in_changed_variables = false;
7864 if (dv_onepart_p (old_var->dv))
7865 {
7866 location_chain lc;
7867
7868 gcc_assert (old_var->n_var_parts == 1);
7869 for (lc = old_var->var_part[0].loc_chain; lc; lc = lc->next)
7870 remove_value_chains (old_var->dv, lc->loc);
7871 }
7872 variable_was_changed (empty_var, NULL);
7873 /* Continue traversing the hash table. */
7874 return 1;
7875 }
7876 if (variable_different_p (old_var, new_var))
7877 {
7878 if (dv_onepart_p (old_var->dv))
7879 {
7880 location_chain lc1, lc2;
7881
7882 gcc_assert (old_var->n_var_parts == 1
7883 && new_var->n_var_parts == 1);
7884 lc1 = old_var->var_part[0].loc_chain;
7885 lc2 = new_var->var_part[0].loc_chain;
7886 while (lc1
7887 && lc2
7888 && ((REG_P (lc1->loc) && REG_P (lc2->loc))
7889 || rtx_equal_p (lc1->loc, lc2->loc)))
7890 {
7891 lc1 = lc1->next;
7892 lc2 = lc2->next;
7893 }
7894 for (; lc2; lc2 = lc2->next)
7895 add_value_chains (old_var->dv, lc2->loc);
7896 for (; lc1; lc1 = lc1->next)
7897 remove_value_chains (old_var->dv, lc1->loc);
7898 }
7899 variable_was_changed (new_var, NULL);
7900 }
7901 /* Update cur_loc. */
7902 if (old_var != new_var)
7903 {
7904 int i;
7905 for (i = 0; i < new_var->n_var_parts; i++)
7906 {
7907 new_var->var_part[i].cur_loc = NULL;
7908 if (old_var->n_var_parts != new_var->n_var_parts
7909 || old_var->var_part[i].offset != new_var->var_part[i].offset)
7910 new_var->cur_loc_changed = true;
7911 else if (old_var->var_part[i].cur_loc != NULL)
7912 {
7913 location_chain lc;
7914 rtx cur_loc = old_var->var_part[i].cur_loc;
7915
7916 for (lc = new_var->var_part[i].loc_chain; lc; lc = lc->next)
7917 if (lc->loc == cur_loc
7918 || rtx_equal_p (cur_loc, lc->loc))
7919 {
7920 new_var->var_part[i].cur_loc = lc->loc;
7921 break;
7922 }
7923 if (lc == NULL)
7924 new_var->cur_loc_changed = true;
7925 }
7926 }
7927 }
7928
7929 /* Continue traversing the hash table. */
7930 return 1;
7931 }
7932
7933 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
7934 table DATA. */
7935
7936 static int
7937 emit_notes_for_differences_2 (void **slot, void *data)
7938 {
7939 htab_t old_vars = (htab_t) data;
7940 variable old_var, new_var;
7941
7942 new_var = (variable) *slot;
7943 old_var = (variable) htab_find_with_hash (old_vars, new_var->dv,
7944 dv_htab_hash (new_var->dv));
7945 if (!old_var)
7946 {
7947 int i;
7948 /* Variable has appeared. */
7949 if (dv_onepart_p (new_var->dv))
7950 {
7951 location_chain lc;
7952
7953 gcc_assert (new_var->n_var_parts == 1);
7954 for (lc = new_var->var_part[0].loc_chain; lc; lc = lc->next)
7955 add_value_chains (new_var->dv, lc->loc);
7956 }
7957 for (i = 0; i < new_var->n_var_parts; i++)
7958 new_var->var_part[i].cur_loc = NULL;
7959 variable_was_changed (new_var, NULL);
7960 }
7961
7962 /* Continue traversing the hash table. */
7963 return 1;
7964 }
7965
7966 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
7967 NEW_SET. */
7968
7969 static void
7970 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
7971 dataflow_set *new_set)
7972 {
7973 htab_traverse (shared_hash_htab (old_set->vars),
7974 emit_notes_for_differences_1,
7975 shared_hash_htab (new_set->vars));
7976 htab_traverse (shared_hash_htab (new_set->vars),
7977 emit_notes_for_differences_2,
7978 shared_hash_htab (old_set->vars));
7979 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
7980 }
7981
7982 /* Emit the notes for changes of location parts in the basic block BB. */
7983
7984 static void
7985 emit_notes_in_bb (basic_block bb, dataflow_set *set)
7986 {
7987 unsigned int i;
7988 micro_operation *mo;
7989
7990 dataflow_set_clear (set);
7991 dataflow_set_copy (set, &VTI (bb)->in);
7992
7993 FOR_EACH_VEC_ELT (micro_operation, VTI (bb)->mos, i, mo)
7994 {
7995 rtx insn = mo->insn;
7996
7997 switch (mo->type)
7998 {
7999 case MO_CALL:
8000 dataflow_set_clear_at_call (set);
8001 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
8002 {
8003 rtx arguments = mo->u.loc, *p = &arguments, note;
8004 while (*p)
8005 {
8006 XEXP (XEXP (*p, 0), 1)
8007 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
8008 shared_hash_htab (set->vars), true);
8009 /* If expansion is successful, keep it in the list. */
8010 if (XEXP (XEXP (*p, 0), 1))
8011 p = &XEXP (*p, 1);
8012 /* Otherwise, if the following item is data_value for it,
8013 drop it too too. */
8014 else if (XEXP (*p, 1)
8015 && REG_P (XEXP (XEXP (*p, 0), 0))
8016 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
8017 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
8018 0))
8019 && REGNO (XEXP (XEXP (*p, 0), 0))
8020 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
8021 0), 0)))
8022 *p = XEXP (XEXP (*p, 1), 1);
8023 /* Just drop this item. */
8024 else
8025 *p = XEXP (*p, 1);
8026 }
8027 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
8028 NOTE_VAR_LOCATION (note) = arguments;
8029 }
8030 break;
8031
8032 case MO_USE:
8033 {
8034 rtx loc = mo->u.loc;
8035
8036 if (REG_P (loc))
8037 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8038 else
8039 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
8040
8041 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8042 }
8043 break;
8044
8045 case MO_VAL_LOC:
8046 {
8047 rtx loc = mo->u.loc;
8048 rtx val, vloc;
8049 tree var;
8050
8051 if (GET_CODE (loc) == CONCAT)
8052 {
8053 val = XEXP (loc, 0);
8054 vloc = XEXP (loc, 1);
8055 }
8056 else
8057 {
8058 val = NULL_RTX;
8059 vloc = loc;
8060 }
8061
8062 var = PAT_VAR_LOCATION_DECL (vloc);
8063
8064 clobber_variable_part (set, NULL_RTX,
8065 dv_from_decl (var), 0, NULL_RTX);
8066 if (val)
8067 {
8068 if (VAL_NEEDS_RESOLUTION (loc))
8069 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
8070 set_variable_part (set, val, dv_from_decl (var), 0,
8071 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8072 INSERT);
8073 }
8074 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
8075 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
8076 dv_from_decl (var), 0,
8077 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
8078 INSERT);
8079
8080 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8081 }
8082 break;
8083
8084 case MO_VAL_USE:
8085 {
8086 rtx loc = mo->u.loc;
8087 rtx val, vloc, uloc;
8088
8089 vloc = uloc = XEXP (loc, 1);
8090 val = XEXP (loc, 0);
8091
8092 if (GET_CODE (val) == CONCAT)
8093 {
8094 uloc = XEXP (val, 1);
8095 val = XEXP (val, 0);
8096 }
8097
8098 if (VAL_NEEDS_RESOLUTION (loc))
8099 val_resolve (set, val, vloc, insn);
8100 else
8101 val_store (set, val, uloc, insn, false);
8102
8103 if (VAL_HOLDS_TRACK_EXPR (loc))
8104 {
8105 if (GET_CODE (uloc) == REG)
8106 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8107 NULL);
8108 else if (GET_CODE (uloc) == MEM)
8109 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
8110 NULL);
8111 }
8112
8113 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
8114 }
8115 break;
8116
8117 case MO_VAL_SET:
8118 {
8119 rtx loc = mo->u.loc;
8120 rtx val, vloc, uloc, reverse = NULL_RTX;
8121
8122 vloc = loc;
8123 if (VAL_EXPR_HAS_REVERSE (loc))
8124 {
8125 reverse = XEXP (loc, 1);
8126 vloc = XEXP (loc, 0);
8127 }
8128 uloc = XEXP (vloc, 1);
8129 val = XEXP (vloc, 0);
8130 vloc = uloc;
8131
8132 if (GET_CODE (val) == CONCAT)
8133 {
8134 vloc = XEXP (val, 1);
8135 val = XEXP (val, 0);
8136 }
8137
8138 if (GET_CODE (vloc) == SET)
8139 {
8140 rtx vsrc = SET_SRC (vloc);
8141
8142 gcc_assert (val != vsrc);
8143 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
8144
8145 vloc = SET_DEST (vloc);
8146
8147 if (VAL_NEEDS_RESOLUTION (loc))
8148 val_resolve (set, val, vsrc, insn);
8149 }
8150 else if (VAL_NEEDS_RESOLUTION (loc))
8151 {
8152 gcc_assert (GET_CODE (uloc) == SET
8153 && GET_CODE (SET_SRC (uloc)) == REG);
8154 val_resolve (set, val, SET_SRC (uloc), insn);
8155 }
8156
8157 if (VAL_HOLDS_TRACK_EXPR (loc))
8158 {
8159 if (VAL_EXPR_IS_CLOBBERED (loc))
8160 {
8161 if (REG_P (uloc))
8162 var_reg_delete (set, uloc, true);
8163 else if (MEM_P (uloc))
8164 var_mem_delete (set, uloc, true);
8165 }
8166 else
8167 {
8168 bool copied_p = VAL_EXPR_IS_COPIED (loc);
8169 rtx set_src = NULL;
8170 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
8171
8172 if (GET_CODE (uloc) == SET)
8173 {
8174 set_src = SET_SRC (uloc);
8175 uloc = SET_DEST (uloc);
8176 }
8177
8178 if (copied_p)
8179 {
8180 status = find_src_status (set, set_src);
8181
8182 set_src = find_src_set_src (set, set_src);
8183 }
8184
8185 if (REG_P (uloc))
8186 var_reg_delete_and_set (set, uloc, !copied_p,
8187 status, set_src);
8188 else if (MEM_P (uloc))
8189 var_mem_delete_and_set (set, uloc, !copied_p,
8190 status, set_src);
8191 }
8192 }
8193 else if (REG_P (uloc))
8194 var_regno_delete (set, REGNO (uloc));
8195
8196 val_store (set, val, vloc, insn, true);
8197
8198 if (reverse)
8199 val_store (set, XEXP (reverse, 0), XEXP (reverse, 1),
8200 insn, false);
8201
8202 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8203 set->vars);
8204 }
8205 break;
8206
8207 case MO_SET:
8208 {
8209 rtx loc = mo->u.loc;
8210 rtx set_src = NULL;
8211
8212 if (GET_CODE (loc) == SET)
8213 {
8214 set_src = SET_SRC (loc);
8215 loc = SET_DEST (loc);
8216 }
8217
8218 if (REG_P (loc))
8219 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8220 set_src);
8221 else
8222 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
8223 set_src);
8224
8225 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8226 set->vars);
8227 }
8228 break;
8229
8230 case MO_COPY:
8231 {
8232 rtx loc = mo->u.loc;
8233 enum var_init_status src_status;
8234 rtx set_src = NULL;
8235
8236 if (GET_CODE (loc) == SET)
8237 {
8238 set_src = SET_SRC (loc);
8239 loc = SET_DEST (loc);
8240 }
8241
8242 src_status = find_src_status (set, set_src);
8243 set_src = find_src_set_src (set, set_src);
8244
8245 if (REG_P (loc))
8246 var_reg_delete_and_set (set, loc, false, src_status, set_src);
8247 else
8248 var_mem_delete_and_set (set, loc, false, src_status, set_src);
8249
8250 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8251 set->vars);
8252 }
8253 break;
8254
8255 case MO_USE_NO_VAR:
8256 {
8257 rtx loc = mo->u.loc;
8258
8259 if (REG_P (loc))
8260 var_reg_delete (set, loc, false);
8261 else
8262 var_mem_delete (set, loc, false);
8263
8264 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
8265 }
8266 break;
8267
8268 case MO_CLOBBER:
8269 {
8270 rtx loc = mo->u.loc;
8271
8272 if (REG_P (loc))
8273 var_reg_delete (set, loc, true);
8274 else
8275 var_mem_delete (set, loc, true);
8276
8277 emit_notes_for_changes (NEXT_INSN (insn), EMIT_NOTE_BEFORE_INSN,
8278 set->vars);
8279 }
8280 break;
8281
8282 case MO_ADJUST:
8283 set->stack_adjust += mo->u.adjust;
8284 break;
8285 }
8286 }
8287 }
8288
8289 /* Emit notes for the whole function. */
8290
8291 static void
8292 vt_emit_notes (void)
8293 {
8294 basic_block bb;
8295 dataflow_set cur;
8296
8297 gcc_assert (!htab_elements (changed_variables));
8298
8299 /* Free memory occupied by the out hash tables, as they aren't used
8300 anymore. */
8301 FOR_EACH_BB (bb)
8302 dataflow_set_clear (&VTI (bb)->out);
8303
8304 /* Enable emitting notes by functions (mainly by set_variable_part and
8305 delete_variable_part). */
8306 emit_notes = true;
8307
8308 if (MAY_HAVE_DEBUG_INSNS)
8309 {
8310 unsigned int i;
8311 rtx val;
8312
8313 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8314 add_cselib_value_chains (dv_from_value (val));
8315 changed_variables_stack = VEC_alloc (variable, heap, 40);
8316 changed_values_stack = VEC_alloc (rtx, heap, 40);
8317 }
8318
8319 dataflow_set_init (&cur);
8320
8321 FOR_EACH_BB (bb)
8322 {
8323 /* Emit the notes for changes of variable locations between two
8324 subsequent basic blocks. */
8325 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
8326
8327 /* Emit the notes for the changes in the basic block itself. */
8328 emit_notes_in_bb (bb, &cur);
8329
8330 /* Free memory occupied by the in hash table, we won't need it
8331 again. */
8332 dataflow_set_clear (&VTI (bb)->in);
8333 }
8334 #ifdef ENABLE_CHECKING
8335 htab_traverse (shared_hash_htab (cur.vars),
8336 emit_notes_for_differences_1,
8337 shared_hash_htab (empty_shared_hash));
8338 if (MAY_HAVE_DEBUG_INSNS)
8339 {
8340 unsigned int i;
8341 rtx val;
8342
8343 FOR_EACH_VEC_ELT (rtx, preserved_values, i, val)
8344 remove_cselib_value_chains (dv_from_value (val));
8345 gcc_assert (htab_elements (value_chains) == 0);
8346 }
8347 #endif
8348 dataflow_set_destroy (&cur);
8349
8350 if (MAY_HAVE_DEBUG_INSNS)
8351 {
8352 VEC_free (variable, heap, changed_variables_stack);
8353 VEC_free (rtx, heap, changed_values_stack);
8354 }
8355
8356 emit_notes = false;
8357 }
8358
8359 /* If there is a declaration and offset associated with register/memory RTL
8360 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
8361
8362 static bool
8363 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
8364 {
8365 if (REG_P (rtl))
8366 {
8367 if (REG_ATTRS (rtl))
8368 {
8369 *declp = REG_EXPR (rtl);
8370 *offsetp = REG_OFFSET (rtl);
8371 return true;
8372 }
8373 }
8374 else if (MEM_P (rtl))
8375 {
8376 if (MEM_ATTRS (rtl))
8377 {
8378 *declp = MEM_EXPR (rtl);
8379 *offsetp = INT_MEM_OFFSET (rtl);
8380 return true;
8381 }
8382 }
8383 return false;
8384 }
8385
8386 /* Helper function for vt_add_function_parameter. RTL is
8387 the expression and VAL corresponding cselib_val pointer
8388 for which ENTRY_VALUE should be created. */
8389
8390 static void
8391 create_entry_value (rtx rtl, cselib_val *val)
8392 {
8393 cselib_val *val2;
8394 struct elt_loc_list *el;
8395 el = (struct elt_loc_list *) ggc_alloc_cleared_atomic (sizeof (*el));
8396 el->next = val->locs;
8397 el->loc = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
8398 ENTRY_VALUE_EXP (el->loc) = rtl;
8399 el->setting_insn = get_insns ();
8400 val->locs = el;
8401 val2 = cselib_lookup_from_insn (el->loc, GET_MODE (rtl), true,
8402 VOIDmode, get_insns ());
8403 if (val2
8404 && val2 != val
8405 && val2->locs
8406 && rtx_equal_p (val2->locs->loc, el->loc))
8407 {
8408 struct elt_loc_list *el2;
8409
8410 preserve_value (val2);
8411 el2 = (struct elt_loc_list *) ggc_alloc_cleared_atomic (sizeof (*el2));
8412 el2->next = val2->locs;
8413 el2->loc = val->val_rtx;
8414 el2->setting_insn = get_insns ();
8415 val2->locs = el2;
8416 }
8417 }
8418
8419 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
8420
8421 static void
8422 vt_add_function_parameter (tree parm)
8423 {
8424 rtx decl_rtl = DECL_RTL_IF_SET (parm);
8425 rtx incoming = DECL_INCOMING_RTL (parm);
8426 tree decl;
8427 enum machine_mode mode;
8428 HOST_WIDE_INT offset;
8429 dataflow_set *out;
8430 decl_or_value dv;
8431
8432 if (TREE_CODE (parm) != PARM_DECL)
8433 return;
8434
8435 if (!decl_rtl || !incoming)
8436 return;
8437
8438 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
8439 return;
8440
8441 /* If there is a DRAP register, rewrite the incoming location of parameters
8442 passed on the stack into MEMs based on the argument pointer, as the DRAP
8443 register can be reused for other purposes and we do not track locations
8444 based on generic registers. But the prerequisite is that this argument
8445 pointer be also the virtual CFA pointer, see vt_initialize. */
8446 if (MEM_P (incoming)
8447 && stack_realign_drap
8448 && arg_pointer_rtx == cfa_base_rtx
8449 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
8450 || (GET_CODE (XEXP (incoming, 0)) == PLUS
8451 && XEXP (XEXP (incoming, 0), 0)
8452 == crtl->args.internal_arg_pointer
8453 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
8454 {
8455 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
8456 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
8457 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
8458 incoming
8459 = replace_equiv_address_nv (incoming,
8460 plus_constant (arg_pointer_rtx, off));
8461 }
8462
8463 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
8464 {
8465 if (REG_P (incoming) || MEM_P (incoming))
8466 {
8467 /* This means argument is passed by invisible reference. */
8468 offset = 0;
8469 decl = parm;
8470 incoming = gen_rtx_MEM (GET_MODE (decl_rtl), incoming);
8471 }
8472 else
8473 {
8474 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
8475 return;
8476 offset += byte_lowpart_offset (GET_MODE (incoming),
8477 GET_MODE (decl_rtl));
8478 }
8479 }
8480
8481 if (!decl)
8482 return;
8483
8484 if (parm != decl)
8485 {
8486 /* Assume that DECL_RTL was a pseudo that got spilled to
8487 memory. The spill slot sharing code will force the
8488 memory to reference spill_slot_decl (%sfp), so we don't
8489 match above. That's ok, the pseudo must have referenced
8490 the entire parameter, so just reset OFFSET. */
8491 gcc_assert (decl == get_spill_slot_decl (false));
8492 offset = 0;
8493 }
8494
8495 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
8496 return;
8497
8498 out = &VTI (ENTRY_BLOCK_PTR)->out;
8499
8500 dv = dv_from_decl (parm);
8501
8502 if (target_for_debug_bind (parm)
8503 /* We can't deal with these right now, because this kind of
8504 variable is single-part. ??? We could handle parallels
8505 that describe multiple locations for the same single
8506 value, but ATM we don't. */
8507 && GET_CODE (incoming) != PARALLEL)
8508 {
8509 cselib_val *val;
8510
8511 /* ??? We shouldn't ever hit this, but it may happen because
8512 arguments passed by invisible reference aren't dealt with
8513 above: incoming-rtl will have Pmode rather than the
8514 expected mode for the type. */
8515 if (offset)
8516 return;
8517
8518 val = cselib_lookup_from_insn (var_lowpart (mode, incoming), mode, true,
8519 VOIDmode, get_insns ());
8520
8521 /* ??? Float-typed values in memory are not handled by
8522 cselib. */
8523 if (val)
8524 {
8525 preserve_value (val);
8526 set_variable_part (out, val->val_rtx, dv, offset,
8527 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8528 dv = dv_from_value (val->val_rtx);
8529 }
8530 }
8531
8532 if (REG_P (incoming))
8533 {
8534 incoming = var_lowpart (mode, incoming);
8535 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
8536 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
8537 incoming);
8538 set_variable_part (out, incoming, dv, offset,
8539 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8540 if (dv_is_value_p (dv))
8541 {
8542 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (dv));
8543 create_entry_value (incoming, val);
8544 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
8545 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
8546 {
8547 enum machine_mode indmode
8548 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
8549 rtx mem = gen_rtx_MEM (indmode, incoming);
8550 val = cselib_lookup_from_insn (mem, indmode, true,
8551 VOIDmode, get_insns ());
8552 if (val)
8553 {
8554 preserve_value (val);
8555 create_entry_value (mem, val);
8556 }
8557 }
8558 }
8559 }
8560 else if (MEM_P (incoming))
8561 {
8562 incoming = var_lowpart (mode, incoming);
8563 set_variable_part (out, incoming, dv, offset,
8564 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
8565 }
8566 }
8567
8568 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
8569
8570 static void
8571 vt_add_function_parameters (void)
8572 {
8573 tree parm;
8574
8575 for (parm = DECL_ARGUMENTS (current_function_decl);
8576 parm; parm = DECL_CHAIN (parm))
8577 vt_add_function_parameter (parm);
8578
8579 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
8580 {
8581 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
8582
8583 if (TREE_CODE (vexpr) == INDIRECT_REF)
8584 vexpr = TREE_OPERAND (vexpr, 0);
8585
8586 if (TREE_CODE (vexpr) == PARM_DECL
8587 && DECL_ARTIFICIAL (vexpr)
8588 && !DECL_IGNORED_P (vexpr)
8589 && DECL_NAMELESS (vexpr))
8590 vt_add_function_parameter (vexpr);
8591 }
8592 }
8593
8594 /* Return true if INSN in the prologue initializes hard_frame_pointer_rtx. */
8595
8596 static bool
8597 fp_setter (rtx insn)
8598 {
8599 rtx pat = PATTERN (insn);
8600 if (RTX_FRAME_RELATED_P (insn))
8601 {
8602 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
8603 if (expr)
8604 pat = XEXP (expr, 0);
8605 }
8606 if (GET_CODE (pat) == SET)
8607 return SET_DEST (pat) == hard_frame_pointer_rtx;
8608 else if (GET_CODE (pat) == PARALLEL)
8609 {
8610 int i;
8611 for (i = XVECLEN (pat, 0) - 1; i >= 0; i--)
8612 if (GET_CODE (XVECEXP (pat, 0, i)) == SET
8613 && SET_DEST (XVECEXP (pat, 0, i)) == hard_frame_pointer_rtx)
8614 return true;
8615 }
8616 return false;
8617 }
8618
8619 /* Gather all registers used for passing arguments to other functions
8620 called from the current routine. */
8621
8622 static void
8623 note_register_arguments (rtx insn)
8624 {
8625 rtx link, x;
8626
8627 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
8628 if (GET_CODE (XEXP (link, 0)) == USE)
8629 {
8630 x = XEXP (XEXP (link, 0), 0);
8631 if (REG_P (x) && REGNO (x) < FIRST_PSEUDO_REGISTER)
8632 SET_HARD_REG_BIT (argument_reg_set, REGNO (x));
8633 }
8634 }
8635
8636 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
8637 ensure it isn't flushed during cselib_reset_table.
8638 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
8639 has been eliminated. */
8640
8641 static void
8642 vt_init_cfa_base (void)
8643 {
8644 cselib_val *val;
8645
8646 #ifdef FRAME_POINTER_CFA_OFFSET
8647 cfa_base_rtx = frame_pointer_rtx;
8648 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
8649 #else
8650 cfa_base_rtx = arg_pointer_rtx;
8651 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
8652 #endif
8653 if (cfa_base_rtx == hard_frame_pointer_rtx
8654 || !fixed_regs[REGNO (cfa_base_rtx)])
8655 {
8656 cfa_base_rtx = NULL_RTX;
8657 return;
8658 }
8659 if (!MAY_HAVE_DEBUG_INSNS)
8660 return;
8661
8662 /* Tell alias analysis that cfa_base_rtx should share
8663 find_base_term value with stack pointer or hard frame pointer. */
8664 if (!frame_pointer_needed)
8665 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
8666 else if (!crtl->stack_realign_tried)
8667 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
8668
8669 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
8670 VOIDmode, get_insns ());
8671 preserve_value (val);
8672 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
8673 var_reg_decl_set (&VTI (ENTRY_BLOCK_PTR)->out, cfa_base_rtx,
8674 VAR_INIT_STATUS_INITIALIZED, dv_from_value (val->val_rtx),
8675 0, NULL_RTX, INSERT);
8676 }
8677
8678 /* Allocate and initialize the data structures for variable tracking
8679 and parse the RTL to get the micro operations. */
8680
8681 static bool
8682 vt_initialize (void)
8683 {
8684 basic_block bb, prologue_bb = single_succ (ENTRY_BLOCK_PTR);
8685 HOST_WIDE_INT fp_cfa_offset = -1;
8686
8687 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
8688
8689 attrs_pool = create_alloc_pool ("attrs_def pool",
8690 sizeof (struct attrs_def), 1024);
8691 var_pool = create_alloc_pool ("variable_def pool",
8692 sizeof (struct variable_def)
8693 + (MAX_VAR_PARTS - 1)
8694 * sizeof (((variable)NULL)->var_part[0]), 64);
8695 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
8696 sizeof (struct location_chain_def),
8697 1024);
8698 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
8699 sizeof (struct shared_hash_def), 256);
8700 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
8701 empty_shared_hash->refcount = 1;
8702 empty_shared_hash->htab
8703 = htab_create (1, variable_htab_hash, variable_htab_eq,
8704 variable_htab_free);
8705 changed_variables = htab_create (10, variable_htab_hash, variable_htab_eq,
8706 variable_htab_free);
8707 if (MAY_HAVE_DEBUG_INSNS)
8708 {
8709 value_chain_pool = create_alloc_pool ("value_chain_def pool",
8710 sizeof (struct value_chain_def),
8711 1024);
8712 value_chains = htab_create (32, value_chain_htab_hash,
8713 value_chain_htab_eq, NULL);
8714 }
8715
8716 /* Init the IN and OUT sets. */
8717 FOR_ALL_BB (bb)
8718 {
8719 VTI (bb)->visited = false;
8720 VTI (bb)->flooded = false;
8721 dataflow_set_init (&VTI (bb)->in);
8722 dataflow_set_init (&VTI (bb)->out);
8723 VTI (bb)->permp = NULL;
8724 }
8725
8726 if (MAY_HAVE_DEBUG_INSNS)
8727 {
8728 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
8729 scratch_regs = BITMAP_ALLOC (NULL);
8730 valvar_pool = create_alloc_pool ("small variable_def pool",
8731 sizeof (struct variable_def), 256);
8732 preserved_values = VEC_alloc (rtx, heap, 256);
8733 }
8734 else
8735 {
8736 scratch_regs = NULL;
8737 valvar_pool = NULL;
8738 }
8739
8740 CLEAR_HARD_REG_SET (argument_reg_set);
8741
8742 /* In order to factor out the adjustments made to the stack pointer or to
8743 the hard frame pointer and thus be able to use DW_OP_fbreg operations
8744 instead of individual location lists, we're going to rewrite MEMs based
8745 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
8746 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
8747 resp. arg_pointer_rtx. We can do this either when there is no frame
8748 pointer in the function and stack adjustments are consistent for all
8749 basic blocks or when there is a frame pointer and no stack realignment.
8750 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
8751 has been eliminated. */
8752 if (!frame_pointer_needed)
8753 {
8754 rtx reg, elim;
8755
8756 if (!vt_stack_adjustments ())
8757 return false;
8758
8759 #ifdef FRAME_POINTER_CFA_OFFSET
8760 reg = frame_pointer_rtx;
8761 #else
8762 reg = arg_pointer_rtx;
8763 #endif
8764 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8765 if (elim != reg)
8766 {
8767 if (GET_CODE (elim) == PLUS)
8768 elim = XEXP (elim, 0);
8769 if (elim == stack_pointer_rtx)
8770 vt_init_cfa_base ();
8771 }
8772 }
8773 else if (!crtl->stack_realign_tried)
8774 {
8775 rtx reg, elim;
8776
8777 #ifdef FRAME_POINTER_CFA_OFFSET
8778 reg = frame_pointer_rtx;
8779 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
8780 #else
8781 reg = arg_pointer_rtx;
8782 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
8783 #endif
8784 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8785 if (elim != reg)
8786 {
8787 if (GET_CODE (elim) == PLUS)
8788 {
8789 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
8790 elim = XEXP (elim, 0);
8791 }
8792 if (elim != hard_frame_pointer_rtx)
8793 fp_cfa_offset = -1;
8794 }
8795 else
8796 fp_cfa_offset = -1;
8797 }
8798
8799 /* If the stack is realigned and a DRAP register is used, we're going to
8800 rewrite MEMs based on it representing incoming locations of parameters
8801 passed on the stack into MEMs based on the argument pointer. Although
8802 we aren't going to rewrite other MEMs, we still need to initialize the
8803 virtual CFA pointer in order to ensure that the argument pointer will
8804 be seen as a constant throughout the function.
8805
8806 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
8807 else if (stack_realign_drap)
8808 {
8809 rtx reg, elim;
8810
8811 #ifdef FRAME_POINTER_CFA_OFFSET
8812 reg = frame_pointer_rtx;
8813 #else
8814 reg = arg_pointer_rtx;
8815 #endif
8816 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
8817 if (elim != reg)
8818 {
8819 if (GET_CODE (elim) == PLUS)
8820 elim = XEXP (elim, 0);
8821 if (elim == hard_frame_pointer_rtx)
8822 vt_init_cfa_base ();
8823 }
8824 }
8825
8826 if (frame_pointer_needed)
8827 {
8828 rtx insn;
8829 for (insn = get_insns (); insn; insn = NEXT_INSN (insn))
8830 if (CALL_P (insn))
8831 note_register_arguments (insn);
8832 }
8833
8834 hard_frame_pointer_adjustment = -1;
8835
8836 vt_add_function_parameters ();
8837
8838 FOR_EACH_BB (bb)
8839 {
8840 rtx insn;
8841 HOST_WIDE_INT pre, post = 0;
8842 basic_block first_bb, last_bb;
8843
8844 if (MAY_HAVE_DEBUG_INSNS)
8845 {
8846 cselib_record_sets_hook = add_with_sets;
8847 if (dump_file && (dump_flags & TDF_DETAILS))
8848 fprintf (dump_file, "first value: %i\n",
8849 cselib_get_next_uid ());
8850 }
8851
8852 first_bb = bb;
8853 for (;;)
8854 {
8855 edge e;
8856 if (bb->next_bb == EXIT_BLOCK_PTR
8857 || ! single_pred_p (bb->next_bb))
8858 break;
8859 e = find_edge (bb, bb->next_bb);
8860 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
8861 break;
8862 bb = bb->next_bb;
8863 }
8864 last_bb = bb;
8865
8866 /* Add the micro-operations to the vector. */
8867 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
8868 {
8869 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
8870 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
8871 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
8872 insn = NEXT_INSN (insn))
8873 {
8874 if (INSN_P (insn))
8875 {
8876 if (!frame_pointer_needed)
8877 {
8878 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
8879 if (pre)
8880 {
8881 micro_operation mo;
8882 mo.type = MO_ADJUST;
8883 mo.u.adjust = pre;
8884 mo.insn = insn;
8885 if (dump_file && (dump_flags & TDF_DETAILS))
8886 log_op_type (PATTERN (insn), bb, insn,
8887 MO_ADJUST, dump_file);
8888 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8889 &mo);
8890 VTI (bb)->out.stack_adjust += pre;
8891 }
8892 }
8893
8894 cselib_hook_called = false;
8895 adjust_insn (bb, insn);
8896 if (MAY_HAVE_DEBUG_INSNS)
8897 {
8898 if (CALL_P (insn))
8899 prepare_call_arguments (bb, insn);
8900 cselib_process_insn (insn);
8901 if (dump_file && (dump_flags & TDF_DETAILS))
8902 {
8903 print_rtl_single (dump_file, insn);
8904 dump_cselib_table (dump_file);
8905 }
8906 }
8907 if (!cselib_hook_called)
8908 add_with_sets (insn, 0, 0);
8909 cancel_changes (0);
8910
8911 if (!frame_pointer_needed && post)
8912 {
8913 micro_operation mo;
8914 mo.type = MO_ADJUST;
8915 mo.u.adjust = post;
8916 mo.insn = insn;
8917 if (dump_file && (dump_flags & TDF_DETAILS))
8918 log_op_type (PATTERN (insn), bb, insn,
8919 MO_ADJUST, dump_file);
8920 VEC_safe_push (micro_operation, heap, VTI (bb)->mos,
8921 &mo);
8922 VTI (bb)->out.stack_adjust += post;
8923 }
8924
8925 if (bb == prologue_bb
8926 && fp_cfa_offset != -1
8927 && hard_frame_pointer_adjustment == -1
8928 && RTX_FRAME_RELATED_P (insn)
8929 && fp_setter (insn))
8930 {
8931 vt_init_cfa_base ();
8932 hard_frame_pointer_adjustment = fp_cfa_offset;
8933 }
8934 }
8935 }
8936 gcc_assert (offset == VTI (bb)->out.stack_adjust);
8937 }
8938
8939 bb = last_bb;
8940
8941 if (MAY_HAVE_DEBUG_INSNS)
8942 {
8943 cselib_preserve_only_values ();
8944 cselib_reset_table (cselib_get_next_uid ());
8945 cselib_record_sets_hook = NULL;
8946 }
8947 }
8948
8949 hard_frame_pointer_adjustment = -1;
8950 VTI (ENTRY_BLOCK_PTR)->flooded = true;
8951 cfa_base_rtx = NULL_RTX;
8952 return true;
8953 }
8954
8955 /* Get rid of all debug insns from the insn stream. */
8956
8957 static void
8958 delete_debug_insns (void)
8959 {
8960 basic_block bb;
8961 rtx insn, next;
8962
8963 if (!MAY_HAVE_DEBUG_INSNS)
8964 return;
8965
8966 FOR_EACH_BB (bb)
8967 {
8968 FOR_BB_INSNS_SAFE (bb, insn, next)
8969 if (DEBUG_INSN_P (insn))
8970 delete_insn (insn);
8971 }
8972 }
8973
8974 /* Run a fast, BB-local only version of var tracking, to take care of
8975 information that we don't do global analysis on, such that not all
8976 information is lost. If SKIPPED holds, we're skipping the global
8977 pass entirely, so we should try to use information it would have
8978 handled as well.. */
8979
8980 static void
8981 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
8982 {
8983 /* ??? Just skip it all for now. */
8984 delete_debug_insns ();
8985 }
8986
8987 /* Free the data structures needed for variable tracking. */
8988
8989 static void
8990 vt_finalize (void)
8991 {
8992 basic_block bb;
8993
8994 FOR_EACH_BB (bb)
8995 {
8996 VEC_free (micro_operation, heap, VTI (bb)->mos);
8997 }
8998
8999 FOR_ALL_BB (bb)
9000 {
9001 dataflow_set_destroy (&VTI (bb)->in);
9002 dataflow_set_destroy (&VTI (bb)->out);
9003 if (VTI (bb)->permp)
9004 {
9005 dataflow_set_destroy (VTI (bb)->permp);
9006 XDELETE (VTI (bb)->permp);
9007 }
9008 }
9009 free_aux_for_blocks ();
9010 htab_delete (empty_shared_hash->htab);
9011 htab_delete (changed_variables);
9012 free_alloc_pool (attrs_pool);
9013 free_alloc_pool (var_pool);
9014 free_alloc_pool (loc_chain_pool);
9015 free_alloc_pool (shared_hash_pool);
9016
9017 if (MAY_HAVE_DEBUG_INSNS)
9018 {
9019 htab_delete (value_chains);
9020 free_alloc_pool (value_chain_pool);
9021 free_alloc_pool (valvar_pool);
9022 VEC_free (rtx, heap, preserved_values);
9023 cselib_finish ();
9024 BITMAP_FREE (scratch_regs);
9025 scratch_regs = NULL;
9026 }
9027
9028 if (vui_vec)
9029 XDELETEVEC (vui_vec);
9030 vui_vec = NULL;
9031 vui_allocated = 0;
9032 }
9033
9034 /* The entry point to variable tracking pass. */
9035
9036 static inline unsigned int
9037 variable_tracking_main_1 (void)
9038 {
9039 bool success;
9040
9041 if (flag_var_tracking_assignments < 0)
9042 {
9043 delete_debug_insns ();
9044 return 0;
9045 }
9046
9047 if (n_basic_blocks > 500 && n_edges / n_basic_blocks >= 20)
9048 {
9049 vt_debug_insns_local (true);
9050 return 0;
9051 }
9052
9053 mark_dfs_back_edges ();
9054 if (!vt_initialize ())
9055 {
9056 vt_finalize ();
9057 vt_debug_insns_local (true);
9058 return 0;
9059 }
9060
9061 success = vt_find_locations ();
9062
9063 if (!success && flag_var_tracking_assignments > 0)
9064 {
9065 vt_finalize ();
9066
9067 delete_debug_insns ();
9068
9069 /* This is later restored by our caller. */
9070 flag_var_tracking_assignments = 0;
9071
9072 success = vt_initialize ();
9073 gcc_assert (success);
9074
9075 success = vt_find_locations ();
9076 }
9077
9078 if (!success)
9079 {
9080 vt_finalize ();
9081 vt_debug_insns_local (false);
9082 return 0;
9083 }
9084
9085 if (dump_file && (dump_flags & TDF_DETAILS))
9086 {
9087 dump_dataflow_sets ();
9088 dump_flow_info (dump_file, dump_flags);
9089 }
9090
9091 timevar_push (TV_VAR_TRACKING_EMIT);
9092 vt_emit_notes ();
9093 timevar_pop (TV_VAR_TRACKING_EMIT);
9094
9095 vt_finalize ();
9096 vt_debug_insns_local (false);
9097 return 0;
9098 }
9099
9100 unsigned int
9101 variable_tracking_main (void)
9102 {
9103 unsigned int ret;
9104 int save = flag_var_tracking_assignments;
9105
9106 ret = variable_tracking_main_1 ();
9107
9108 flag_var_tracking_assignments = save;
9109
9110 return ret;
9111 }
9112 \f
9113 static bool
9114 gate_handle_var_tracking (void)
9115 {
9116 return (flag_var_tracking && !targetm.delay_vartrack);
9117 }
9118
9119
9120
9121 struct rtl_opt_pass pass_variable_tracking =
9122 {
9123 {
9124 RTL_PASS,
9125 "vartrack", /* name */
9126 gate_handle_var_tracking, /* gate */
9127 variable_tracking_main, /* execute */
9128 NULL, /* sub */
9129 NULL, /* next */
9130 0, /* static_pass_number */
9131 TV_VAR_TRACKING, /* tv_id */
9132 0, /* properties_required */
9133 0, /* properties_provided */
9134 0, /* properties_destroyed */
9135 0, /* todo_flags_start */
9136 TODO_verify_rtl_sharing /* todo_flags_finish */
9137 }
9138 };