revert: re PR middle-end/45364 (Compiling wine's directx.c with -O1 -g takes a very...
[gcc.git] / gcc / var-tracking.c
1 /* Variable tracking routines for the GNU compiler.
2 Copyright (C) 2002-2014 Free Software Foundation, Inc.
3
4 This file is part of GCC.
5
6 GCC is free software; you can redistribute it and/or modify it
7 under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3, or (at your option)
9 any later version.
10
11 GCC is distributed in the hope that it will be useful, but WITHOUT
12 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
13 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
14 License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GCC; see the file COPYING3. If not see
18 <http://www.gnu.org/licenses/>. */
19
20 /* This file contains the variable tracking pass. It computes where
21 variables are located (which registers or where in memory) at each position
22 in instruction stream and emits notes describing the locations.
23 Debug information (DWARF2 location lists) is finally generated from
24 these notes.
25 With this debug information, it is possible to show variables
26 even when debugging optimized code.
27
28 How does the variable tracking pass work?
29
30 First, it scans RTL code for uses, stores and clobbers (register/memory
31 references in instructions), for call insns and for stack adjustments
32 separately for each basic block and saves them to an array of micro
33 operations.
34 The micro operations of one instruction are ordered so that
35 pre-modifying stack adjustment < use < use with no var < call insn <
36 < clobber < set < post-modifying stack adjustment
37
38 Then, a forward dataflow analysis is performed to find out how locations
39 of variables change through code and to propagate the variable locations
40 along control flow graph.
41 The IN set for basic block BB is computed as a union of OUT sets of BB's
42 predecessors, the OUT set for BB is copied from the IN set for BB and
43 is changed according to micro operations in BB.
44
45 The IN and OUT sets for basic blocks consist of a current stack adjustment
46 (used for adjusting offset of variables addressed using stack pointer),
47 the table of structures describing the locations of parts of a variable
48 and for each physical register a linked list for each physical register.
49 The linked list is a list of variable parts stored in the register,
50 i.e. it is a list of triplets (reg, decl, offset) where decl is
51 REG_EXPR (reg) and offset is REG_OFFSET (reg). The linked list is used for
52 effective deleting appropriate variable parts when we set or clobber the
53 register.
54
55 There may be more than one variable part in a register. The linked lists
56 should be pretty short so it is a good data structure here.
57 For example in the following code, register allocator may assign same
58 register to variables A and B, and both of them are stored in the same
59 register in CODE:
60
61 if (cond)
62 set A;
63 else
64 set B;
65 CODE;
66 if (cond)
67 use A;
68 else
69 use B;
70
71 Finally, the NOTE_INSN_VAR_LOCATION notes describing the variable locations
72 are emitted to appropriate positions in RTL code. Each such a note describes
73 the location of one variable at the point in instruction stream where the
74 note is. There is no need to emit a note for each variable before each
75 instruction, we only emit these notes where the location of variable changes
76 (this means that we also emit notes for changes between the OUT set of the
77 previous block and the IN set of the current block).
78
79 The notes consist of two parts:
80 1. the declaration (from REG_EXPR or MEM_EXPR)
81 2. the location of a variable - it is either a simple register/memory
82 reference (for simple variables, for example int),
83 or a parallel of register/memory references (for a large variables
84 which consist of several parts, for example long long).
85
86 */
87
88 #include "config.h"
89 #include "system.h"
90 #include "coretypes.h"
91 #include "tm.h"
92 #include "rtl.h"
93 #include "tree.h"
94 #include "varasm.h"
95 #include "stor-layout.h"
96 #include "pointer-set.h"
97 #include "hash-table.h"
98 #include "basic-block.h"
99 #include "tm_p.h"
100 #include "hard-reg-set.h"
101 #include "flags.h"
102 #include "insn-config.h"
103 #include "reload.h"
104 #include "sbitmap.h"
105 #include "alloc-pool.h"
106 #include "fibheap.h"
107 #include "regs.h"
108 #include "expr.h"
109 #include "tree-pass.h"
110 #include "bitmap.h"
111 #include "tree-dfa.h"
112 #include "tree-ssa.h"
113 #include "cselib.h"
114 #include "target.h"
115 #include "params.h"
116 #include "diagnostic.h"
117 #include "tree-pretty-print.h"
118 #include "recog.h"
119 #include "tm_p.h"
120 #include "alias.h"
121
122 /* var-tracking.c assumes that tree code with the same value as VALUE rtx code
123 has no chance to appear in REG_EXPR/MEM_EXPRs and isn't a decl.
124 Currently the value is the same as IDENTIFIER_NODE, which has such
125 a property. If this compile time assertion ever fails, make sure that
126 the new tree code that equals (int) VALUE has the same property. */
127 extern char check_value_val[(int) VALUE == (int) IDENTIFIER_NODE ? 1 : -1];
128
129 /* Type of micro operation. */
130 enum micro_operation_type
131 {
132 MO_USE, /* Use location (REG or MEM). */
133 MO_USE_NO_VAR,/* Use location which is not associated with a variable
134 or the variable is not trackable. */
135 MO_VAL_USE, /* Use location which is associated with a value. */
136 MO_VAL_LOC, /* Use location which appears in a debug insn. */
137 MO_VAL_SET, /* Set location associated with a value. */
138 MO_SET, /* Set location. */
139 MO_COPY, /* Copy the same portion of a variable from one
140 location to another. */
141 MO_CLOBBER, /* Clobber location. */
142 MO_CALL, /* Call insn. */
143 MO_ADJUST /* Adjust stack pointer. */
144
145 };
146
147 static const char * const ATTRIBUTE_UNUSED
148 micro_operation_type_name[] = {
149 "MO_USE",
150 "MO_USE_NO_VAR",
151 "MO_VAL_USE",
152 "MO_VAL_LOC",
153 "MO_VAL_SET",
154 "MO_SET",
155 "MO_COPY",
156 "MO_CLOBBER",
157 "MO_CALL",
158 "MO_ADJUST"
159 };
160
161 /* Where shall the note be emitted? BEFORE or AFTER the instruction.
162 Notes emitted as AFTER_CALL are to take effect during the call,
163 rather than after the call. */
164 enum emit_note_where
165 {
166 EMIT_NOTE_BEFORE_INSN,
167 EMIT_NOTE_AFTER_INSN,
168 EMIT_NOTE_AFTER_CALL_INSN
169 };
170
171 /* Structure holding information about micro operation. */
172 typedef struct micro_operation_def
173 {
174 /* Type of micro operation. */
175 enum micro_operation_type type;
176
177 /* The instruction which the micro operation is in, for MO_USE,
178 MO_USE_NO_VAR, MO_CALL and MO_ADJUST, or the subsequent
179 instruction or note in the original flow (before any var-tracking
180 notes are inserted, to simplify emission of notes), for MO_SET
181 and MO_CLOBBER. */
182 rtx insn;
183
184 union {
185 /* Location. For MO_SET and MO_COPY, this is the SET that
186 performs the assignment, if known, otherwise it is the target
187 of the assignment. For MO_VAL_USE and MO_VAL_SET, it is a
188 CONCAT of the VALUE and the LOC associated with it. For
189 MO_VAL_LOC, it is a CONCAT of the VALUE and the VAR_LOCATION
190 associated with it. */
191 rtx loc;
192
193 /* Stack adjustment. */
194 HOST_WIDE_INT adjust;
195 } u;
196 } micro_operation;
197
198
199 /* A declaration of a variable, or an RTL value being handled like a
200 declaration. */
201 typedef void *decl_or_value;
202
203 /* Return true if a decl_or_value DV is a DECL or NULL. */
204 static inline bool
205 dv_is_decl_p (decl_or_value dv)
206 {
207 return !dv || (int) TREE_CODE ((tree) dv) != (int) VALUE;
208 }
209
210 /* Return true if a decl_or_value is a VALUE rtl. */
211 static inline bool
212 dv_is_value_p (decl_or_value dv)
213 {
214 return dv && !dv_is_decl_p (dv);
215 }
216
217 /* Return the decl in the decl_or_value. */
218 static inline tree
219 dv_as_decl (decl_or_value dv)
220 {
221 gcc_checking_assert (dv_is_decl_p (dv));
222 return (tree) dv;
223 }
224
225 /* Return the value in the decl_or_value. */
226 static inline rtx
227 dv_as_value (decl_or_value dv)
228 {
229 gcc_checking_assert (dv_is_value_p (dv));
230 return (rtx)dv;
231 }
232
233 /* Return the opaque pointer in the decl_or_value. */
234 static inline void *
235 dv_as_opaque (decl_or_value dv)
236 {
237 return dv;
238 }
239
240
241 /* Description of location of a part of a variable. The content of a physical
242 register is described by a chain of these structures.
243 The chains are pretty short (usually 1 or 2 elements) and thus
244 chain is the best data structure. */
245 typedef struct attrs_def
246 {
247 /* Pointer to next member of the list. */
248 struct attrs_def *next;
249
250 /* The rtx of register. */
251 rtx loc;
252
253 /* The declaration corresponding to LOC. */
254 decl_or_value dv;
255
256 /* Offset from start of DECL. */
257 HOST_WIDE_INT offset;
258 } *attrs;
259
260 /* Structure for chaining the locations. */
261 typedef struct location_chain_def
262 {
263 /* Next element in the chain. */
264 struct location_chain_def *next;
265
266 /* The location (REG, MEM or VALUE). */
267 rtx loc;
268
269 /* The "value" stored in this location. */
270 rtx set_src;
271
272 /* Initialized? */
273 enum var_init_status init;
274 } *location_chain;
275
276 /* A vector of loc_exp_dep holds the active dependencies of a one-part
277 DV on VALUEs, i.e., the VALUEs expanded so as to form the current
278 location of DV. Each entry is also part of VALUE' s linked-list of
279 backlinks back to DV. */
280 typedef struct loc_exp_dep_s
281 {
282 /* The dependent DV. */
283 decl_or_value dv;
284 /* The dependency VALUE or DECL_DEBUG. */
285 rtx value;
286 /* The next entry in VALUE's backlinks list. */
287 struct loc_exp_dep_s *next;
288 /* A pointer to the pointer to this entry (head or prev's next) in
289 the doubly-linked list. */
290 struct loc_exp_dep_s **pprev;
291 } loc_exp_dep;
292
293
294 /* This data structure holds information about the depth of a variable
295 expansion. */
296 typedef struct expand_depth_struct
297 {
298 /* This measures the complexity of the expanded expression. It
299 grows by one for each level of expansion that adds more than one
300 operand. */
301 int complexity;
302 /* This counts the number of ENTRY_VALUE expressions in an
303 expansion. We want to minimize their use. */
304 int entryvals;
305 } expand_depth;
306
307 /* This data structure is allocated for one-part variables at the time
308 of emitting notes. */
309 struct onepart_aux
310 {
311 /* Doubly-linked list of dependent DVs. These are DVs whose cur_loc
312 computation used the expansion of this variable, and that ought
313 to be notified should this variable change. If the DV's cur_loc
314 expanded to NULL, all components of the loc list are regarded as
315 active, so that any changes in them give us a chance to get a
316 location. Otherwise, only components of the loc that expanded to
317 non-NULL are regarded as active dependencies. */
318 loc_exp_dep *backlinks;
319 /* This holds the LOC that was expanded into cur_loc. We need only
320 mark a one-part variable as changed if the FROM loc is removed,
321 or if it has no known location and a loc is added, or if it gets
322 a change notification from any of its active dependencies. */
323 rtx from;
324 /* The depth of the cur_loc expression. */
325 expand_depth depth;
326 /* Dependencies actively used when expand FROM into cur_loc. */
327 vec<loc_exp_dep, va_heap, vl_embed> deps;
328 };
329
330 /* Structure describing one part of variable. */
331 typedef struct variable_part_def
332 {
333 /* Chain of locations of the part. */
334 location_chain loc_chain;
335
336 /* Location which was last emitted to location list. */
337 rtx cur_loc;
338
339 union variable_aux
340 {
341 /* The offset in the variable, if !var->onepart. */
342 HOST_WIDE_INT offset;
343
344 /* Pointer to auxiliary data, if var->onepart and emit_notes. */
345 struct onepart_aux *onepaux;
346 } aux;
347 } variable_part;
348
349 /* Maximum number of location parts. */
350 #define MAX_VAR_PARTS 16
351
352 /* Enumeration type used to discriminate various types of one-part
353 variables. */
354 typedef enum onepart_enum
355 {
356 /* Not a one-part variable. */
357 NOT_ONEPART = 0,
358 /* A one-part DECL that is not a DEBUG_EXPR_DECL. */
359 ONEPART_VDECL = 1,
360 /* A DEBUG_EXPR_DECL. */
361 ONEPART_DEXPR = 2,
362 /* A VALUE. */
363 ONEPART_VALUE = 3
364 } onepart_enum_t;
365
366 /* Structure describing where the variable is located. */
367 typedef struct variable_def
368 {
369 /* The declaration of the variable, or an RTL value being handled
370 like a declaration. */
371 decl_or_value dv;
372
373 /* Reference count. */
374 int refcount;
375
376 /* Number of variable parts. */
377 char n_var_parts;
378
379 /* What type of DV this is, according to enum onepart_enum. */
380 ENUM_BITFIELD (onepart_enum) onepart : CHAR_BIT;
381
382 /* True if this variable_def struct is currently in the
383 changed_variables hash table. */
384 bool in_changed_variables;
385
386 /* The variable parts. */
387 variable_part var_part[1];
388 } *variable;
389 typedef const struct variable_def *const_variable;
390
391 /* Pointer to the BB's information specific to variable tracking pass. */
392 #define VTI(BB) ((variable_tracking_info) (BB)->aux)
393
394 /* Macro to access MEM_OFFSET as an HOST_WIDE_INT. Evaluates MEM twice. */
395 #define INT_MEM_OFFSET(mem) (MEM_OFFSET_KNOWN_P (mem) ? MEM_OFFSET (mem) : 0)
396
397 #if ENABLE_CHECKING && (GCC_VERSION >= 2007)
398
399 /* Access VAR's Ith part's offset, checking that it's not a one-part
400 variable. */
401 #define VAR_PART_OFFSET(var, i) __extension__ \
402 (*({ variable const __v = (var); \
403 gcc_checking_assert (!__v->onepart); \
404 &__v->var_part[(i)].aux.offset; }))
405
406 /* Access VAR's one-part auxiliary data, checking that it is a
407 one-part variable. */
408 #define VAR_LOC_1PAUX(var) __extension__ \
409 (*({ variable const __v = (var); \
410 gcc_checking_assert (__v->onepart); \
411 &__v->var_part[0].aux.onepaux; }))
412
413 #else
414 #define VAR_PART_OFFSET(var, i) ((var)->var_part[(i)].aux.offset)
415 #define VAR_LOC_1PAUX(var) ((var)->var_part[0].aux.onepaux)
416 #endif
417
418 /* These are accessor macros for the one-part auxiliary data. When
419 convenient for users, they're guarded by tests that the data was
420 allocated. */
421 #define VAR_LOC_DEP_LST(var) (VAR_LOC_1PAUX (var) \
422 ? VAR_LOC_1PAUX (var)->backlinks \
423 : NULL)
424 #define VAR_LOC_DEP_LSTP(var) (VAR_LOC_1PAUX (var) \
425 ? &VAR_LOC_1PAUX (var)->backlinks \
426 : NULL)
427 #define VAR_LOC_FROM(var) (VAR_LOC_1PAUX (var)->from)
428 #define VAR_LOC_DEPTH(var) (VAR_LOC_1PAUX (var)->depth)
429 #define VAR_LOC_DEP_VEC(var) (VAR_LOC_1PAUX (var) \
430 ? &VAR_LOC_1PAUX (var)->deps \
431 : NULL)
432
433
434
435 typedef unsigned int dvuid;
436
437 /* Return the uid of DV. */
438
439 static inline dvuid
440 dv_uid (decl_or_value dv)
441 {
442 if (dv_is_value_p (dv))
443 return CSELIB_VAL_PTR (dv_as_value (dv))->uid;
444 else
445 return DECL_UID (dv_as_decl (dv));
446 }
447
448 /* Compute the hash from the uid. */
449
450 static inline hashval_t
451 dv_uid2hash (dvuid uid)
452 {
453 return uid;
454 }
455
456 /* The hash function for a mask table in a shared_htab chain. */
457
458 static inline hashval_t
459 dv_htab_hash (decl_or_value dv)
460 {
461 return dv_uid2hash (dv_uid (dv));
462 }
463
464 static void variable_htab_free (void *);
465
466 /* Variable hashtable helpers. */
467
468 struct variable_hasher
469 {
470 typedef variable_def value_type;
471 typedef void compare_type;
472 static inline hashval_t hash (const value_type *);
473 static inline bool equal (const value_type *, const compare_type *);
474 static inline void remove (value_type *);
475 };
476
477 /* The hash function for variable_htab, computes the hash value
478 from the declaration of variable X. */
479
480 inline hashval_t
481 variable_hasher::hash (const value_type *v)
482 {
483 return dv_htab_hash (v->dv);
484 }
485
486 /* Compare the declaration of variable X with declaration Y. */
487
488 inline bool
489 variable_hasher::equal (const value_type *v, const compare_type *y)
490 {
491 decl_or_value dv = CONST_CAST2 (decl_or_value, const void *, y);
492
493 return (dv_as_opaque (v->dv) == dv_as_opaque (dv));
494 }
495
496 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
497
498 inline void
499 variable_hasher::remove (value_type *var)
500 {
501 variable_htab_free (var);
502 }
503
504 typedef hash_table <variable_hasher> variable_table_type;
505 typedef variable_table_type::iterator variable_iterator_type;
506
507 /* Structure for passing some other parameters to function
508 emit_note_insn_var_location. */
509 typedef struct emit_note_data_def
510 {
511 /* The instruction which the note will be emitted before/after. */
512 rtx insn;
513
514 /* Where the note will be emitted (before/after insn)? */
515 enum emit_note_where where;
516
517 /* The variables and values active at this point. */
518 variable_table_type vars;
519 } emit_note_data;
520
521 /* Structure holding a refcounted hash table. If refcount > 1,
522 it must be first unshared before modified. */
523 typedef struct shared_hash_def
524 {
525 /* Reference count. */
526 int refcount;
527
528 /* Actual hash table. */
529 variable_table_type htab;
530 } *shared_hash;
531
532 /* Structure holding the IN or OUT set for a basic block. */
533 typedef struct dataflow_set_def
534 {
535 /* Adjustment of stack offset. */
536 HOST_WIDE_INT stack_adjust;
537
538 /* Attributes for registers (lists of attrs). */
539 attrs regs[FIRST_PSEUDO_REGISTER];
540
541 /* Variable locations. */
542 shared_hash vars;
543
544 /* Vars that is being traversed. */
545 shared_hash traversed_vars;
546 } dataflow_set;
547
548 /* The structure (one for each basic block) containing the information
549 needed for variable tracking. */
550 typedef struct variable_tracking_info_def
551 {
552 /* The vector of micro operations. */
553 vec<micro_operation> mos;
554
555 /* The IN and OUT set for dataflow analysis. */
556 dataflow_set in;
557 dataflow_set out;
558
559 /* The permanent-in dataflow set for this block. This is used to
560 hold values for which we had to compute entry values. ??? This
561 should probably be dynamically allocated, to avoid using more
562 memory in non-debug builds. */
563 dataflow_set *permp;
564
565 /* Has the block been visited in DFS? */
566 bool visited;
567
568 /* Has the block been flooded in VTA? */
569 bool flooded;
570
571 } *variable_tracking_info;
572
573 /* Alloc pool for struct attrs_def. */
574 static alloc_pool attrs_pool;
575
576 /* Alloc pool for struct variable_def with MAX_VAR_PARTS entries. */
577 static alloc_pool var_pool;
578
579 /* Alloc pool for struct variable_def with a single var_part entry. */
580 static alloc_pool valvar_pool;
581
582 /* Alloc pool for struct location_chain_def. */
583 static alloc_pool loc_chain_pool;
584
585 /* Alloc pool for struct shared_hash_def. */
586 static alloc_pool shared_hash_pool;
587
588 /* Alloc pool for struct loc_exp_dep_s for NOT_ONEPART variables. */
589 static alloc_pool loc_exp_dep_pool;
590
591 /* Changed variables, notes will be emitted for them. */
592 static variable_table_type changed_variables;
593
594 /* Shall notes be emitted? */
595 static bool emit_notes;
596
597 /* Values whose dynamic location lists have gone empty, but whose
598 cselib location lists are still usable. Use this to hold the
599 current location, the backlinks, etc, during emit_notes. */
600 static variable_table_type dropped_values;
601
602 /* Empty shared hashtable. */
603 static shared_hash empty_shared_hash;
604
605 /* Scratch register bitmap used by cselib_expand_value_rtx. */
606 static bitmap scratch_regs = NULL;
607
608 #ifdef HAVE_window_save
609 typedef struct GTY(()) parm_reg {
610 rtx outgoing;
611 rtx incoming;
612 } parm_reg_t;
613
614
615 /* Vector of windowed parameter registers, if any. */
616 static vec<parm_reg_t, va_gc> *windowed_parm_regs = NULL;
617 #endif
618
619 /* Variable used to tell whether cselib_process_insn called our hook. */
620 static bool cselib_hook_called;
621
622 /* Local function prototypes. */
623 static void stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
624 HOST_WIDE_INT *);
625 static void insn_stack_adjust_offset_pre_post (rtx, HOST_WIDE_INT *,
626 HOST_WIDE_INT *);
627 static bool vt_stack_adjustments (void);
628
629 static void init_attrs_list_set (attrs *);
630 static void attrs_list_clear (attrs *);
631 static attrs attrs_list_member (attrs, decl_or_value, HOST_WIDE_INT);
632 static void attrs_list_insert (attrs *, decl_or_value, HOST_WIDE_INT, rtx);
633 static void attrs_list_copy (attrs *, attrs);
634 static void attrs_list_union (attrs *, attrs);
635
636 static variable_def **unshare_variable (dataflow_set *set, variable_def **slot,
637 variable var, enum var_init_status);
638 static void vars_copy (variable_table_type, variable_table_type);
639 static tree var_debug_decl (tree);
640 static void var_reg_set (dataflow_set *, rtx, enum var_init_status, rtx);
641 static void var_reg_delete_and_set (dataflow_set *, rtx, bool,
642 enum var_init_status, rtx);
643 static void var_reg_delete (dataflow_set *, rtx, bool);
644 static void var_regno_delete (dataflow_set *, int);
645 static void var_mem_set (dataflow_set *, rtx, enum var_init_status, rtx);
646 static void var_mem_delete_and_set (dataflow_set *, rtx, bool,
647 enum var_init_status, rtx);
648 static void var_mem_delete (dataflow_set *, rtx, bool);
649
650 static void dataflow_set_init (dataflow_set *);
651 static void dataflow_set_clear (dataflow_set *);
652 static void dataflow_set_copy (dataflow_set *, dataflow_set *);
653 static int variable_union_info_cmp_pos (const void *, const void *);
654 static void dataflow_set_union (dataflow_set *, dataflow_set *);
655 static location_chain find_loc_in_1pdv (rtx, variable, variable_table_type);
656 static bool canon_value_cmp (rtx, rtx);
657 static int loc_cmp (rtx, rtx);
658 static bool variable_part_different_p (variable_part *, variable_part *);
659 static bool onepart_variable_different_p (variable, variable);
660 static bool variable_different_p (variable, variable);
661 static bool dataflow_set_different (dataflow_set *, dataflow_set *);
662 static void dataflow_set_destroy (dataflow_set *);
663
664 static bool contains_symbol_ref (rtx);
665 static bool track_expr_p (tree, bool);
666 static bool same_variable_part_p (rtx, tree, HOST_WIDE_INT);
667 static int add_uses (rtx *, void *);
668 static void add_uses_1 (rtx *, void *);
669 static void add_stores (rtx, const_rtx, void *);
670 static bool compute_bb_dataflow (basic_block);
671 static bool vt_find_locations (void);
672
673 static void dump_attrs_list (attrs);
674 static void dump_var (variable);
675 static void dump_vars (variable_table_type);
676 static void dump_dataflow_set (dataflow_set *);
677 static void dump_dataflow_sets (void);
678
679 static void set_dv_changed (decl_or_value, bool);
680 static void variable_was_changed (variable, dataflow_set *);
681 static variable_def **set_slot_part (dataflow_set *, rtx, variable_def **,
682 decl_or_value, HOST_WIDE_INT,
683 enum var_init_status, rtx);
684 static void set_variable_part (dataflow_set *, rtx,
685 decl_or_value, HOST_WIDE_INT,
686 enum var_init_status, rtx, enum insert_option);
687 static variable_def **clobber_slot_part (dataflow_set *, rtx,
688 variable_def **, HOST_WIDE_INT, rtx);
689 static void clobber_variable_part (dataflow_set *, rtx,
690 decl_or_value, HOST_WIDE_INT, rtx);
691 static variable_def **delete_slot_part (dataflow_set *, rtx, variable_def **,
692 HOST_WIDE_INT);
693 static void delete_variable_part (dataflow_set *, rtx,
694 decl_or_value, HOST_WIDE_INT);
695 static void emit_notes_in_bb (basic_block, dataflow_set *);
696 static void vt_emit_notes (void);
697
698 static bool vt_get_decl_and_offset (rtx, tree *, HOST_WIDE_INT *);
699 static void vt_add_function_parameters (void);
700 static bool vt_initialize (void);
701 static void vt_finalize (void);
702
703 /* Given a SET, calculate the amount of stack adjustment it contains
704 PRE- and POST-modifying stack pointer.
705 This function is similar to stack_adjust_offset. */
706
707 static void
708 stack_adjust_offset_pre_post (rtx pattern, HOST_WIDE_INT *pre,
709 HOST_WIDE_INT *post)
710 {
711 rtx src = SET_SRC (pattern);
712 rtx dest = SET_DEST (pattern);
713 enum rtx_code code;
714
715 if (dest == stack_pointer_rtx)
716 {
717 /* (set (reg sp) (plus (reg sp) (const_int))) */
718 code = GET_CODE (src);
719 if (! (code == PLUS || code == MINUS)
720 || XEXP (src, 0) != stack_pointer_rtx
721 || !CONST_INT_P (XEXP (src, 1)))
722 return;
723
724 if (code == MINUS)
725 *post += INTVAL (XEXP (src, 1));
726 else
727 *post -= INTVAL (XEXP (src, 1));
728 }
729 else if (MEM_P (dest))
730 {
731 /* (set (mem (pre_dec (reg sp))) (foo)) */
732 src = XEXP (dest, 0);
733 code = GET_CODE (src);
734
735 switch (code)
736 {
737 case PRE_MODIFY:
738 case POST_MODIFY:
739 if (XEXP (src, 0) == stack_pointer_rtx)
740 {
741 rtx val = XEXP (XEXP (src, 1), 1);
742 /* We handle only adjustments by constant amount. */
743 gcc_assert (GET_CODE (XEXP (src, 1)) == PLUS &&
744 CONST_INT_P (val));
745
746 if (code == PRE_MODIFY)
747 *pre -= INTVAL (val);
748 else
749 *post -= INTVAL (val);
750 break;
751 }
752 return;
753
754 case PRE_DEC:
755 if (XEXP (src, 0) == stack_pointer_rtx)
756 {
757 *pre += GET_MODE_SIZE (GET_MODE (dest));
758 break;
759 }
760 return;
761
762 case POST_DEC:
763 if (XEXP (src, 0) == stack_pointer_rtx)
764 {
765 *post += GET_MODE_SIZE (GET_MODE (dest));
766 break;
767 }
768 return;
769
770 case PRE_INC:
771 if (XEXP (src, 0) == stack_pointer_rtx)
772 {
773 *pre -= GET_MODE_SIZE (GET_MODE (dest));
774 break;
775 }
776 return;
777
778 case POST_INC:
779 if (XEXP (src, 0) == stack_pointer_rtx)
780 {
781 *post -= GET_MODE_SIZE (GET_MODE (dest));
782 break;
783 }
784 return;
785
786 default:
787 return;
788 }
789 }
790 }
791
792 /* Given an INSN, calculate the amount of stack adjustment it contains
793 PRE- and POST-modifying stack pointer. */
794
795 static void
796 insn_stack_adjust_offset_pre_post (rtx insn, HOST_WIDE_INT *pre,
797 HOST_WIDE_INT *post)
798 {
799 rtx pattern;
800
801 *pre = 0;
802 *post = 0;
803
804 pattern = PATTERN (insn);
805 if (RTX_FRAME_RELATED_P (insn))
806 {
807 rtx expr = find_reg_note (insn, REG_FRAME_RELATED_EXPR, NULL_RTX);
808 if (expr)
809 pattern = XEXP (expr, 0);
810 }
811
812 if (GET_CODE (pattern) == SET)
813 stack_adjust_offset_pre_post (pattern, pre, post);
814 else if (GET_CODE (pattern) == PARALLEL
815 || GET_CODE (pattern) == SEQUENCE)
816 {
817 int i;
818
819 /* There may be stack adjustments inside compound insns. Search
820 for them. */
821 for ( i = XVECLEN (pattern, 0) - 1; i >= 0; i--)
822 if (GET_CODE (XVECEXP (pattern, 0, i)) == SET)
823 stack_adjust_offset_pre_post (XVECEXP (pattern, 0, i), pre, post);
824 }
825 }
826
827 /* Compute stack adjustments for all blocks by traversing DFS tree.
828 Return true when the adjustments on all incoming edges are consistent.
829 Heavily borrowed from pre_and_rev_post_order_compute. */
830
831 static bool
832 vt_stack_adjustments (void)
833 {
834 edge_iterator *stack;
835 int sp;
836
837 /* Initialize entry block. */
838 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->visited = true;
839 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->in.stack_adjust =
840 INCOMING_FRAME_SP_OFFSET;
841 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out.stack_adjust =
842 INCOMING_FRAME_SP_OFFSET;
843
844 /* Allocate stack for back-tracking up CFG. */
845 stack = XNEWVEC (edge_iterator, n_basic_blocks_for_fn (cfun) + 1);
846 sp = 0;
847
848 /* Push the first edge on to the stack. */
849 stack[sp++] = ei_start (ENTRY_BLOCK_PTR_FOR_FN (cfun)->succs);
850
851 while (sp)
852 {
853 edge_iterator ei;
854 basic_block src;
855 basic_block dest;
856
857 /* Look at the edge on the top of the stack. */
858 ei = stack[sp - 1];
859 src = ei_edge (ei)->src;
860 dest = ei_edge (ei)->dest;
861
862 /* Check if the edge destination has been visited yet. */
863 if (!VTI (dest)->visited)
864 {
865 rtx insn;
866 HOST_WIDE_INT pre, post, offset;
867 VTI (dest)->visited = true;
868 VTI (dest)->in.stack_adjust = offset = VTI (src)->out.stack_adjust;
869
870 if (dest != EXIT_BLOCK_PTR_FOR_FN (cfun))
871 for (insn = BB_HEAD (dest);
872 insn != NEXT_INSN (BB_END (dest));
873 insn = NEXT_INSN (insn))
874 if (INSN_P (insn))
875 {
876 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
877 offset += pre + post;
878 }
879
880 VTI (dest)->out.stack_adjust = offset;
881
882 if (EDGE_COUNT (dest->succs) > 0)
883 /* Since the DEST node has been visited for the first
884 time, check its successors. */
885 stack[sp++] = ei_start (dest->succs);
886 }
887 else
888 {
889 /* Check whether the adjustments on the edges are the same. */
890 if (VTI (dest)->in.stack_adjust != VTI (src)->out.stack_adjust)
891 {
892 free (stack);
893 return false;
894 }
895
896 if (! ei_one_before_end_p (ei))
897 /* Go to the next edge. */
898 ei_next (&stack[sp - 1]);
899 else
900 /* Return to previous level if there are no more edges. */
901 sp--;
902 }
903 }
904
905 free (stack);
906 return true;
907 }
908
909 /* arg_pointer_rtx resp. frame_pointer_rtx if stack_pointer_rtx or
910 hard_frame_pointer_rtx is being mapped to it and offset for it. */
911 static rtx cfa_base_rtx;
912 static HOST_WIDE_INT cfa_base_offset;
913
914 /* Compute a CFA-based value for an ADJUSTMENT made to stack_pointer_rtx
915 or hard_frame_pointer_rtx. */
916
917 static inline rtx
918 compute_cfa_pointer (HOST_WIDE_INT adjustment)
919 {
920 return plus_constant (Pmode, cfa_base_rtx, adjustment + cfa_base_offset);
921 }
922
923 /* Adjustment for hard_frame_pointer_rtx to cfa base reg,
924 or -1 if the replacement shouldn't be done. */
925 static HOST_WIDE_INT hard_frame_pointer_adjustment = -1;
926
927 /* Data for adjust_mems callback. */
928
929 struct adjust_mem_data
930 {
931 bool store;
932 enum machine_mode mem_mode;
933 HOST_WIDE_INT stack_adjust;
934 rtx side_effects;
935 };
936
937 /* Helper for adjust_mems. Return 1 if *loc is unsuitable for
938 transformation of wider mode arithmetics to narrower mode,
939 -1 if it is suitable and subexpressions shouldn't be
940 traversed and 0 if it is suitable and subexpressions should
941 be traversed. Called through for_each_rtx. */
942
943 static int
944 use_narrower_mode_test (rtx *loc, void *data)
945 {
946 rtx subreg = (rtx) data;
947
948 if (CONSTANT_P (*loc))
949 return -1;
950 switch (GET_CODE (*loc))
951 {
952 case REG:
953 if (cselib_lookup (*loc, GET_MODE (SUBREG_REG (subreg)), 0, VOIDmode))
954 return 1;
955 if (!validate_subreg (GET_MODE (subreg), GET_MODE (*loc),
956 *loc, subreg_lowpart_offset (GET_MODE (subreg),
957 GET_MODE (*loc))))
958 return 1;
959 return -1;
960 case PLUS:
961 case MINUS:
962 case MULT:
963 return 0;
964 case ASHIFT:
965 if (for_each_rtx (&XEXP (*loc, 0), use_narrower_mode_test, data))
966 return 1;
967 else
968 return -1;
969 default:
970 return 1;
971 }
972 }
973
974 /* Transform X into narrower mode MODE from wider mode WMODE. */
975
976 static rtx
977 use_narrower_mode (rtx x, enum machine_mode mode, enum machine_mode wmode)
978 {
979 rtx op0, op1;
980 if (CONSTANT_P (x))
981 return lowpart_subreg (mode, x, wmode);
982 switch (GET_CODE (x))
983 {
984 case REG:
985 return lowpart_subreg (mode, x, wmode);
986 case PLUS:
987 case MINUS:
988 case MULT:
989 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
990 op1 = use_narrower_mode (XEXP (x, 1), mode, wmode);
991 return simplify_gen_binary (GET_CODE (x), mode, op0, op1);
992 case ASHIFT:
993 op0 = use_narrower_mode (XEXP (x, 0), mode, wmode);
994 return simplify_gen_binary (ASHIFT, mode, op0, XEXP (x, 1));
995 default:
996 gcc_unreachable ();
997 }
998 }
999
1000 /* Helper function for adjusting used MEMs. */
1001
1002 static rtx
1003 adjust_mems (rtx loc, const_rtx old_rtx, void *data)
1004 {
1005 struct adjust_mem_data *amd = (struct adjust_mem_data *) data;
1006 rtx mem, addr = loc, tem;
1007 enum machine_mode mem_mode_save;
1008 bool store_save;
1009 switch (GET_CODE (loc))
1010 {
1011 case REG:
1012 /* Don't do any sp or fp replacements outside of MEM addresses
1013 on the LHS. */
1014 if (amd->mem_mode == VOIDmode && amd->store)
1015 return loc;
1016 if (loc == stack_pointer_rtx
1017 && !frame_pointer_needed
1018 && cfa_base_rtx)
1019 return compute_cfa_pointer (amd->stack_adjust);
1020 else if (loc == hard_frame_pointer_rtx
1021 && frame_pointer_needed
1022 && hard_frame_pointer_adjustment != -1
1023 && cfa_base_rtx)
1024 return compute_cfa_pointer (hard_frame_pointer_adjustment);
1025 gcc_checking_assert (loc != virtual_incoming_args_rtx);
1026 return loc;
1027 case MEM:
1028 mem = loc;
1029 if (!amd->store)
1030 {
1031 mem = targetm.delegitimize_address (mem);
1032 if (mem != loc && !MEM_P (mem))
1033 return simplify_replace_fn_rtx (mem, old_rtx, adjust_mems, data);
1034 }
1035
1036 addr = XEXP (mem, 0);
1037 mem_mode_save = amd->mem_mode;
1038 amd->mem_mode = GET_MODE (mem);
1039 store_save = amd->store;
1040 amd->store = false;
1041 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1042 amd->store = store_save;
1043 amd->mem_mode = mem_mode_save;
1044 if (mem == loc)
1045 addr = targetm.delegitimize_address (addr);
1046 if (addr != XEXP (mem, 0))
1047 mem = replace_equiv_address_nv (mem, addr);
1048 if (!amd->store)
1049 mem = avoid_constant_pool_reference (mem);
1050 return mem;
1051 case PRE_INC:
1052 case PRE_DEC:
1053 addr = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1054 gen_int_mode (GET_CODE (loc) == PRE_INC
1055 ? GET_MODE_SIZE (amd->mem_mode)
1056 : -GET_MODE_SIZE (amd->mem_mode),
1057 GET_MODE (loc)));
1058 case POST_INC:
1059 case POST_DEC:
1060 if (addr == loc)
1061 addr = XEXP (loc, 0);
1062 gcc_assert (amd->mem_mode != VOIDmode && amd->mem_mode != BLKmode);
1063 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1064 tem = gen_rtx_PLUS (GET_MODE (loc), XEXP (loc, 0),
1065 gen_int_mode ((GET_CODE (loc) == PRE_INC
1066 || GET_CODE (loc) == POST_INC)
1067 ? GET_MODE_SIZE (amd->mem_mode)
1068 : -GET_MODE_SIZE (amd->mem_mode),
1069 GET_MODE (loc)));
1070 amd->side_effects = alloc_EXPR_LIST (0,
1071 gen_rtx_SET (VOIDmode,
1072 XEXP (loc, 0),
1073 tem),
1074 amd->side_effects);
1075 return addr;
1076 case PRE_MODIFY:
1077 addr = XEXP (loc, 1);
1078 case POST_MODIFY:
1079 if (addr == loc)
1080 addr = XEXP (loc, 0);
1081 gcc_assert (amd->mem_mode != VOIDmode);
1082 addr = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1083 amd->side_effects = alloc_EXPR_LIST (0,
1084 gen_rtx_SET (VOIDmode,
1085 XEXP (loc, 0),
1086 XEXP (loc, 1)),
1087 amd->side_effects);
1088 return addr;
1089 case SUBREG:
1090 /* First try without delegitimization of whole MEMs and
1091 avoid_constant_pool_reference, which is more likely to succeed. */
1092 store_save = amd->store;
1093 amd->store = true;
1094 addr = simplify_replace_fn_rtx (SUBREG_REG (loc), old_rtx, adjust_mems,
1095 data);
1096 amd->store = store_save;
1097 mem = simplify_replace_fn_rtx (addr, old_rtx, adjust_mems, data);
1098 if (mem == SUBREG_REG (loc))
1099 {
1100 tem = loc;
1101 goto finish_subreg;
1102 }
1103 tem = simplify_gen_subreg (GET_MODE (loc), mem,
1104 GET_MODE (SUBREG_REG (loc)),
1105 SUBREG_BYTE (loc));
1106 if (tem)
1107 goto finish_subreg;
1108 tem = simplify_gen_subreg (GET_MODE (loc), addr,
1109 GET_MODE (SUBREG_REG (loc)),
1110 SUBREG_BYTE (loc));
1111 if (tem == NULL_RTX)
1112 tem = gen_rtx_raw_SUBREG (GET_MODE (loc), addr, SUBREG_BYTE (loc));
1113 finish_subreg:
1114 if (MAY_HAVE_DEBUG_INSNS
1115 && GET_CODE (tem) == SUBREG
1116 && (GET_CODE (SUBREG_REG (tem)) == PLUS
1117 || GET_CODE (SUBREG_REG (tem)) == MINUS
1118 || GET_CODE (SUBREG_REG (tem)) == MULT
1119 || GET_CODE (SUBREG_REG (tem)) == ASHIFT)
1120 && GET_MODE_CLASS (GET_MODE (tem)) == MODE_INT
1121 && GET_MODE_CLASS (GET_MODE (SUBREG_REG (tem))) == MODE_INT
1122 && GET_MODE_SIZE (GET_MODE (tem))
1123 < GET_MODE_SIZE (GET_MODE (SUBREG_REG (tem)))
1124 && subreg_lowpart_p (tem)
1125 && !for_each_rtx (&SUBREG_REG (tem), use_narrower_mode_test, tem))
1126 return use_narrower_mode (SUBREG_REG (tem), GET_MODE (tem),
1127 GET_MODE (SUBREG_REG (tem)));
1128 return tem;
1129 case ASM_OPERANDS:
1130 /* Don't do any replacements in second and following
1131 ASM_OPERANDS of inline-asm with multiple sets.
1132 ASM_OPERANDS_INPUT_VEC, ASM_OPERANDS_INPUT_CONSTRAINT_VEC
1133 and ASM_OPERANDS_LABEL_VEC need to be equal between
1134 all the ASM_OPERANDs in the insn and adjust_insn will
1135 fix this up. */
1136 if (ASM_OPERANDS_OUTPUT_IDX (loc) != 0)
1137 return loc;
1138 break;
1139 default:
1140 break;
1141 }
1142 return NULL_RTX;
1143 }
1144
1145 /* Helper function for replacement of uses. */
1146
1147 static void
1148 adjust_mem_uses (rtx *x, void *data)
1149 {
1150 rtx new_x = simplify_replace_fn_rtx (*x, NULL_RTX, adjust_mems, data);
1151 if (new_x != *x)
1152 validate_change (NULL_RTX, x, new_x, true);
1153 }
1154
1155 /* Helper function for replacement of stores. */
1156
1157 static void
1158 adjust_mem_stores (rtx loc, const_rtx expr, void *data)
1159 {
1160 if (MEM_P (loc))
1161 {
1162 rtx new_dest = simplify_replace_fn_rtx (SET_DEST (expr), NULL_RTX,
1163 adjust_mems, data);
1164 if (new_dest != SET_DEST (expr))
1165 {
1166 rtx xexpr = CONST_CAST_RTX (expr);
1167 validate_change (NULL_RTX, &SET_DEST (xexpr), new_dest, true);
1168 }
1169 }
1170 }
1171
1172 /* Simplify INSN. Remove all {PRE,POST}_{INC,DEC,MODIFY} rtxes,
1173 replace them with their value in the insn and add the side-effects
1174 as other sets to the insn. */
1175
1176 static void
1177 adjust_insn (basic_block bb, rtx insn)
1178 {
1179 struct adjust_mem_data amd;
1180 rtx set;
1181
1182 #ifdef HAVE_window_save
1183 /* If the target machine has an explicit window save instruction, the
1184 transformation OUTGOING_REGNO -> INCOMING_REGNO is done there. */
1185 if (RTX_FRAME_RELATED_P (insn)
1186 && find_reg_note (insn, REG_CFA_WINDOW_SAVE, NULL_RTX))
1187 {
1188 unsigned int i, nregs = vec_safe_length (windowed_parm_regs);
1189 rtx rtl = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (nregs * 2));
1190 parm_reg_t *p;
1191
1192 FOR_EACH_VEC_SAFE_ELT (windowed_parm_regs, i, p)
1193 {
1194 XVECEXP (rtl, 0, i * 2)
1195 = gen_rtx_SET (VOIDmode, p->incoming, p->outgoing);
1196 /* Do not clobber the attached DECL, but only the REG. */
1197 XVECEXP (rtl, 0, i * 2 + 1)
1198 = gen_rtx_CLOBBER (GET_MODE (p->outgoing),
1199 gen_raw_REG (GET_MODE (p->outgoing),
1200 REGNO (p->outgoing)));
1201 }
1202
1203 validate_change (NULL_RTX, &PATTERN (insn), rtl, true);
1204 return;
1205 }
1206 #endif
1207
1208 amd.mem_mode = VOIDmode;
1209 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
1210 amd.side_effects = NULL_RTX;
1211
1212 amd.store = true;
1213 note_stores (PATTERN (insn), adjust_mem_stores, &amd);
1214
1215 amd.store = false;
1216 if (GET_CODE (PATTERN (insn)) == PARALLEL
1217 && asm_noperands (PATTERN (insn)) > 0
1218 && GET_CODE (XVECEXP (PATTERN (insn), 0, 0)) == SET)
1219 {
1220 rtx body, set0;
1221 int i;
1222
1223 /* inline-asm with multiple sets is tiny bit more complicated,
1224 because the 3 vectors in ASM_OPERANDS need to be shared between
1225 all ASM_OPERANDS in the instruction. adjust_mems will
1226 not touch ASM_OPERANDS other than the first one, asm_noperands
1227 test above needs to be called before that (otherwise it would fail)
1228 and afterwards this code fixes it up. */
1229 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1230 body = PATTERN (insn);
1231 set0 = XVECEXP (body, 0, 0);
1232 gcc_checking_assert (GET_CODE (set0) == SET
1233 && GET_CODE (SET_SRC (set0)) == ASM_OPERANDS
1234 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set0)) == 0);
1235 for (i = 1; i < XVECLEN (body, 0); i++)
1236 if (GET_CODE (XVECEXP (body, 0, i)) != SET)
1237 break;
1238 else
1239 {
1240 set = XVECEXP (body, 0, i);
1241 gcc_checking_assert (GET_CODE (SET_SRC (set)) == ASM_OPERANDS
1242 && ASM_OPERANDS_OUTPUT_IDX (SET_SRC (set))
1243 == i);
1244 if (ASM_OPERANDS_INPUT_VEC (SET_SRC (set))
1245 != ASM_OPERANDS_INPUT_VEC (SET_SRC (set0))
1246 || ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set))
1247 != ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0))
1248 || ASM_OPERANDS_LABEL_VEC (SET_SRC (set))
1249 != ASM_OPERANDS_LABEL_VEC (SET_SRC (set0)))
1250 {
1251 rtx newsrc = shallow_copy_rtx (SET_SRC (set));
1252 ASM_OPERANDS_INPUT_VEC (newsrc)
1253 = ASM_OPERANDS_INPUT_VEC (SET_SRC (set0));
1254 ASM_OPERANDS_INPUT_CONSTRAINT_VEC (newsrc)
1255 = ASM_OPERANDS_INPUT_CONSTRAINT_VEC (SET_SRC (set0));
1256 ASM_OPERANDS_LABEL_VEC (newsrc)
1257 = ASM_OPERANDS_LABEL_VEC (SET_SRC (set0));
1258 validate_change (NULL_RTX, &SET_SRC (set), newsrc, true);
1259 }
1260 }
1261 }
1262 else
1263 note_uses (&PATTERN (insn), adjust_mem_uses, &amd);
1264
1265 /* For read-only MEMs containing some constant, prefer those
1266 constants. */
1267 set = single_set (insn);
1268 if (set && MEM_P (SET_SRC (set)) && MEM_READONLY_P (SET_SRC (set)))
1269 {
1270 rtx note = find_reg_equal_equiv_note (insn);
1271
1272 if (note && CONSTANT_P (XEXP (note, 0)))
1273 validate_change (NULL_RTX, &SET_SRC (set), XEXP (note, 0), true);
1274 }
1275
1276 if (amd.side_effects)
1277 {
1278 rtx *pat, new_pat, s;
1279 int i, oldn, newn;
1280
1281 pat = &PATTERN (insn);
1282 if (GET_CODE (*pat) == COND_EXEC)
1283 pat = &COND_EXEC_CODE (*pat);
1284 if (GET_CODE (*pat) == PARALLEL)
1285 oldn = XVECLEN (*pat, 0);
1286 else
1287 oldn = 1;
1288 for (s = amd.side_effects, newn = 0; s; newn++)
1289 s = XEXP (s, 1);
1290 new_pat = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (oldn + newn));
1291 if (GET_CODE (*pat) == PARALLEL)
1292 for (i = 0; i < oldn; i++)
1293 XVECEXP (new_pat, 0, i) = XVECEXP (*pat, 0, i);
1294 else
1295 XVECEXP (new_pat, 0, 0) = *pat;
1296 for (s = amd.side_effects, i = oldn; i < oldn + newn; i++, s = XEXP (s, 1))
1297 XVECEXP (new_pat, 0, i) = XEXP (s, 0);
1298 free_EXPR_LIST_list (&amd.side_effects);
1299 validate_change (NULL_RTX, pat, new_pat, true);
1300 }
1301 }
1302
1303 /* Return the DEBUG_EXPR of a DEBUG_EXPR_DECL or the VALUE in DV. */
1304 static inline rtx
1305 dv_as_rtx (decl_or_value dv)
1306 {
1307 tree decl;
1308
1309 if (dv_is_value_p (dv))
1310 return dv_as_value (dv);
1311
1312 decl = dv_as_decl (dv);
1313
1314 gcc_checking_assert (TREE_CODE (decl) == DEBUG_EXPR_DECL);
1315 return DECL_RTL_KNOWN_SET (decl);
1316 }
1317
1318 /* Return nonzero if a decl_or_value must not have more than one
1319 variable part. The returned value discriminates among various
1320 kinds of one-part DVs ccording to enum onepart_enum. */
1321 static inline onepart_enum_t
1322 dv_onepart_p (decl_or_value dv)
1323 {
1324 tree decl;
1325
1326 if (!MAY_HAVE_DEBUG_INSNS)
1327 return NOT_ONEPART;
1328
1329 if (dv_is_value_p (dv))
1330 return ONEPART_VALUE;
1331
1332 decl = dv_as_decl (dv);
1333
1334 if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
1335 return ONEPART_DEXPR;
1336
1337 if (target_for_debug_bind (decl) != NULL_TREE)
1338 return ONEPART_VDECL;
1339
1340 return NOT_ONEPART;
1341 }
1342
1343 /* Return the variable pool to be used for a dv of type ONEPART. */
1344 static inline alloc_pool
1345 onepart_pool (onepart_enum_t onepart)
1346 {
1347 return onepart ? valvar_pool : var_pool;
1348 }
1349
1350 /* Build a decl_or_value out of a decl. */
1351 static inline decl_or_value
1352 dv_from_decl (tree decl)
1353 {
1354 decl_or_value dv;
1355 dv = decl;
1356 gcc_checking_assert (dv_is_decl_p (dv));
1357 return dv;
1358 }
1359
1360 /* Build a decl_or_value out of a value. */
1361 static inline decl_or_value
1362 dv_from_value (rtx value)
1363 {
1364 decl_or_value dv;
1365 dv = value;
1366 gcc_checking_assert (dv_is_value_p (dv));
1367 return dv;
1368 }
1369
1370 /* Return a value or the decl of a debug_expr as a decl_or_value. */
1371 static inline decl_or_value
1372 dv_from_rtx (rtx x)
1373 {
1374 decl_or_value dv;
1375
1376 switch (GET_CODE (x))
1377 {
1378 case DEBUG_EXPR:
1379 dv = dv_from_decl (DEBUG_EXPR_TREE_DECL (x));
1380 gcc_checking_assert (DECL_RTL_KNOWN_SET (DEBUG_EXPR_TREE_DECL (x)) == x);
1381 break;
1382
1383 case VALUE:
1384 dv = dv_from_value (x);
1385 break;
1386
1387 default:
1388 gcc_unreachable ();
1389 }
1390
1391 return dv;
1392 }
1393
1394 extern void debug_dv (decl_or_value dv);
1395
1396 DEBUG_FUNCTION void
1397 debug_dv (decl_or_value dv)
1398 {
1399 if (dv_is_value_p (dv))
1400 debug_rtx (dv_as_value (dv));
1401 else
1402 debug_generic_stmt (dv_as_decl (dv));
1403 }
1404
1405 static void loc_exp_dep_clear (variable var);
1406
1407 /* Free the element of VARIABLE_HTAB (its type is struct variable_def). */
1408
1409 static void
1410 variable_htab_free (void *elem)
1411 {
1412 int i;
1413 variable var = (variable) elem;
1414 location_chain node, next;
1415
1416 gcc_checking_assert (var->refcount > 0);
1417
1418 var->refcount--;
1419 if (var->refcount > 0)
1420 return;
1421
1422 for (i = 0; i < var->n_var_parts; i++)
1423 {
1424 for (node = var->var_part[i].loc_chain; node; node = next)
1425 {
1426 next = node->next;
1427 pool_free (loc_chain_pool, node);
1428 }
1429 var->var_part[i].loc_chain = NULL;
1430 }
1431 if (var->onepart && VAR_LOC_1PAUX (var))
1432 {
1433 loc_exp_dep_clear (var);
1434 if (VAR_LOC_DEP_LST (var))
1435 VAR_LOC_DEP_LST (var)->pprev = NULL;
1436 XDELETE (VAR_LOC_1PAUX (var));
1437 /* These may be reused across functions, so reset
1438 e.g. NO_LOC_P. */
1439 if (var->onepart == ONEPART_DEXPR)
1440 set_dv_changed (var->dv, true);
1441 }
1442 pool_free (onepart_pool (var->onepart), var);
1443 }
1444
1445 /* Initialize the set (array) SET of attrs to empty lists. */
1446
1447 static void
1448 init_attrs_list_set (attrs *set)
1449 {
1450 int i;
1451
1452 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
1453 set[i] = NULL;
1454 }
1455
1456 /* Make the list *LISTP empty. */
1457
1458 static void
1459 attrs_list_clear (attrs *listp)
1460 {
1461 attrs list, next;
1462
1463 for (list = *listp; list; list = next)
1464 {
1465 next = list->next;
1466 pool_free (attrs_pool, list);
1467 }
1468 *listp = NULL;
1469 }
1470
1471 /* Return true if the pair of DECL and OFFSET is the member of the LIST. */
1472
1473 static attrs
1474 attrs_list_member (attrs list, decl_or_value dv, HOST_WIDE_INT offset)
1475 {
1476 for (; list; list = list->next)
1477 if (dv_as_opaque (list->dv) == dv_as_opaque (dv) && list->offset == offset)
1478 return list;
1479 return NULL;
1480 }
1481
1482 /* Insert the triplet DECL, OFFSET, LOC to the list *LISTP. */
1483
1484 static void
1485 attrs_list_insert (attrs *listp, decl_or_value dv,
1486 HOST_WIDE_INT offset, rtx loc)
1487 {
1488 attrs list;
1489
1490 list = (attrs) pool_alloc (attrs_pool);
1491 list->loc = loc;
1492 list->dv = dv;
1493 list->offset = offset;
1494 list->next = *listp;
1495 *listp = list;
1496 }
1497
1498 /* Copy all nodes from SRC and create a list *DSTP of the copies. */
1499
1500 static void
1501 attrs_list_copy (attrs *dstp, attrs src)
1502 {
1503 attrs n;
1504
1505 attrs_list_clear (dstp);
1506 for (; src; src = src->next)
1507 {
1508 n = (attrs) pool_alloc (attrs_pool);
1509 n->loc = src->loc;
1510 n->dv = src->dv;
1511 n->offset = src->offset;
1512 n->next = *dstp;
1513 *dstp = n;
1514 }
1515 }
1516
1517 /* Add all nodes from SRC which are not in *DSTP to *DSTP. */
1518
1519 static void
1520 attrs_list_union (attrs *dstp, attrs src)
1521 {
1522 for (; src; src = src->next)
1523 {
1524 if (!attrs_list_member (*dstp, src->dv, src->offset))
1525 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1526 }
1527 }
1528
1529 /* Combine nodes that are not onepart nodes from SRC and SRC2 into
1530 *DSTP. */
1531
1532 static void
1533 attrs_list_mpdv_union (attrs *dstp, attrs src, attrs src2)
1534 {
1535 gcc_assert (!*dstp);
1536 for (; src; src = src->next)
1537 {
1538 if (!dv_onepart_p (src->dv))
1539 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1540 }
1541 for (src = src2; src; src = src->next)
1542 {
1543 if (!dv_onepart_p (src->dv)
1544 && !attrs_list_member (*dstp, src->dv, src->offset))
1545 attrs_list_insert (dstp, src->dv, src->offset, src->loc);
1546 }
1547 }
1548
1549 /* Shared hashtable support. */
1550
1551 /* Return true if VARS is shared. */
1552
1553 static inline bool
1554 shared_hash_shared (shared_hash vars)
1555 {
1556 return vars->refcount > 1;
1557 }
1558
1559 /* Return the hash table for VARS. */
1560
1561 static inline variable_table_type
1562 shared_hash_htab (shared_hash vars)
1563 {
1564 return vars->htab;
1565 }
1566
1567 /* Return true if VAR is shared, or maybe because VARS is shared. */
1568
1569 static inline bool
1570 shared_var_p (variable var, shared_hash vars)
1571 {
1572 /* Don't count an entry in the changed_variables table as a duplicate. */
1573 return ((var->refcount > 1 + (int) var->in_changed_variables)
1574 || shared_hash_shared (vars));
1575 }
1576
1577 /* Copy variables into a new hash table. */
1578
1579 static shared_hash
1580 shared_hash_unshare (shared_hash vars)
1581 {
1582 shared_hash new_vars = (shared_hash) pool_alloc (shared_hash_pool);
1583 gcc_assert (vars->refcount > 1);
1584 new_vars->refcount = 1;
1585 new_vars->htab.create (vars->htab.elements () + 3);
1586 vars_copy (new_vars->htab, vars->htab);
1587 vars->refcount--;
1588 return new_vars;
1589 }
1590
1591 /* Increment reference counter on VARS and return it. */
1592
1593 static inline shared_hash
1594 shared_hash_copy (shared_hash vars)
1595 {
1596 vars->refcount++;
1597 return vars;
1598 }
1599
1600 /* Decrement reference counter and destroy hash table if not shared
1601 anymore. */
1602
1603 static void
1604 shared_hash_destroy (shared_hash vars)
1605 {
1606 gcc_checking_assert (vars->refcount > 0);
1607 if (--vars->refcount == 0)
1608 {
1609 vars->htab.dispose ();
1610 pool_free (shared_hash_pool, vars);
1611 }
1612 }
1613
1614 /* Unshare *PVARS if shared and return slot for DV. If INS is
1615 INSERT, insert it if not already present. */
1616
1617 static inline variable_def **
1618 shared_hash_find_slot_unshare_1 (shared_hash *pvars, decl_or_value dv,
1619 hashval_t dvhash, enum insert_option ins)
1620 {
1621 if (shared_hash_shared (*pvars))
1622 *pvars = shared_hash_unshare (*pvars);
1623 return shared_hash_htab (*pvars).find_slot_with_hash (dv, dvhash, ins);
1624 }
1625
1626 static inline variable_def **
1627 shared_hash_find_slot_unshare (shared_hash *pvars, decl_or_value dv,
1628 enum insert_option ins)
1629 {
1630 return shared_hash_find_slot_unshare_1 (pvars, dv, dv_htab_hash (dv), ins);
1631 }
1632
1633 /* Return slot for DV, if it is already present in the hash table.
1634 If it is not present, insert it only VARS is not shared, otherwise
1635 return NULL. */
1636
1637 static inline variable_def **
1638 shared_hash_find_slot_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1639 {
1640 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash,
1641 shared_hash_shared (vars)
1642 ? NO_INSERT : INSERT);
1643 }
1644
1645 static inline variable_def **
1646 shared_hash_find_slot (shared_hash vars, decl_or_value dv)
1647 {
1648 return shared_hash_find_slot_1 (vars, dv, dv_htab_hash (dv));
1649 }
1650
1651 /* Return slot for DV only if it is already present in the hash table. */
1652
1653 static inline variable_def **
1654 shared_hash_find_slot_noinsert_1 (shared_hash vars, decl_or_value dv,
1655 hashval_t dvhash)
1656 {
1657 return shared_hash_htab (vars).find_slot_with_hash (dv, dvhash, NO_INSERT);
1658 }
1659
1660 static inline variable_def **
1661 shared_hash_find_slot_noinsert (shared_hash vars, decl_or_value dv)
1662 {
1663 return shared_hash_find_slot_noinsert_1 (vars, dv, dv_htab_hash (dv));
1664 }
1665
1666 /* Return variable for DV or NULL if not already present in the hash
1667 table. */
1668
1669 static inline variable
1670 shared_hash_find_1 (shared_hash vars, decl_or_value dv, hashval_t dvhash)
1671 {
1672 return shared_hash_htab (vars).find_with_hash (dv, dvhash);
1673 }
1674
1675 static inline variable
1676 shared_hash_find (shared_hash vars, decl_or_value dv)
1677 {
1678 return shared_hash_find_1 (vars, dv, dv_htab_hash (dv));
1679 }
1680
1681 /* Return true if TVAL is better than CVAL as a canonival value. We
1682 choose lowest-numbered VALUEs, using the RTX address as a
1683 tie-breaker. The idea is to arrange them into a star topology,
1684 such that all of them are at most one step away from the canonical
1685 value, and the canonical value has backlinks to all of them, in
1686 addition to all the actual locations. We don't enforce this
1687 topology throughout the entire dataflow analysis, though.
1688 */
1689
1690 static inline bool
1691 canon_value_cmp (rtx tval, rtx cval)
1692 {
1693 return !cval
1694 || CSELIB_VAL_PTR (tval)->uid < CSELIB_VAL_PTR (cval)->uid;
1695 }
1696
1697 static bool dst_can_be_shared;
1698
1699 /* Return a copy of a variable VAR and insert it to dataflow set SET. */
1700
1701 static variable_def **
1702 unshare_variable (dataflow_set *set, variable_def **slot, variable var,
1703 enum var_init_status initialized)
1704 {
1705 variable new_var;
1706 int i;
1707
1708 new_var = (variable) pool_alloc (onepart_pool (var->onepart));
1709 new_var->dv = var->dv;
1710 new_var->refcount = 1;
1711 var->refcount--;
1712 new_var->n_var_parts = var->n_var_parts;
1713 new_var->onepart = var->onepart;
1714 new_var->in_changed_variables = false;
1715
1716 if (! flag_var_tracking_uninit)
1717 initialized = VAR_INIT_STATUS_INITIALIZED;
1718
1719 for (i = 0; i < var->n_var_parts; i++)
1720 {
1721 location_chain node;
1722 location_chain *nextp;
1723
1724 if (i == 0 && var->onepart)
1725 {
1726 /* One-part auxiliary data is only used while emitting
1727 notes, so propagate it to the new variable in the active
1728 dataflow set. If we're not emitting notes, this will be
1729 a no-op. */
1730 gcc_checking_assert (!VAR_LOC_1PAUX (var) || emit_notes);
1731 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (var);
1732 VAR_LOC_1PAUX (var) = NULL;
1733 }
1734 else
1735 VAR_PART_OFFSET (new_var, i) = VAR_PART_OFFSET (var, i);
1736 nextp = &new_var->var_part[i].loc_chain;
1737 for (node = var->var_part[i].loc_chain; node; node = node->next)
1738 {
1739 location_chain new_lc;
1740
1741 new_lc = (location_chain) pool_alloc (loc_chain_pool);
1742 new_lc->next = NULL;
1743 if (node->init > initialized)
1744 new_lc->init = node->init;
1745 else
1746 new_lc->init = initialized;
1747 if (node->set_src && !(MEM_P (node->set_src)))
1748 new_lc->set_src = node->set_src;
1749 else
1750 new_lc->set_src = NULL;
1751 new_lc->loc = node->loc;
1752
1753 *nextp = new_lc;
1754 nextp = &new_lc->next;
1755 }
1756
1757 new_var->var_part[i].cur_loc = var->var_part[i].cur_loc;
1758 }
1759
1760 dst_can_be_shared = false;
1761 if (shared_hash_shared (set->vars))
1762 slot = shared_hash_find_slot_unshare (&set->vars, var->dv, NO_INSERT);
1763 else if (set->traversed_vars && set->vars != set->traversed_vars)
1764 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
1765 *slot = new_var;
1766 if (var->in_changed_variables)
1767 {
1768 variable_def **cslot
1769 = changed_variables.find_slot_with_hash (var->dv,
1770 dv_htab_hash (var->dv), NO_INSERT);
1771 gcc_assert (*cslot == (void *) var);
1772 var->in_changed_variables = false;
1773 variable_htab_free (var);
1774 *cslot = new_var;
1775 new_var->in_changed_variables = true;
1776 }
1777 return slot;
1778 }
1779
1780 /* Copy all variables from hash table SRC to hash table DST. */
1781
1782 static void
1783 vars_copy (variable_table_type dst, variable_table_type src)
1784 {
1785 variable_iterator_type hi;
1786 variable var;
1787
1788 FOR_EACH_HASH_TABLE_ELEMENT (src, var, variable, hi)
1789 {
1790 variable_def **dstp;
1791 var->refcount++;
1792 dstp = dst.find_slot_with_hash (var->dv, dv_htab_hash (var->dv), INSERT);
1793 *dstp = var;
1794 }
1795 }
1796
1797 /* Map a decl to its main debug decl. */
1798
1799 static inline tree
1800 var_debug_decl (tree decl)
1801 {
1802 if (decl && TREE_CODE (decl) == VAR_DECL
1803 && DECL_HAS_DEBUG_EXPR_P (decl))
1804 {
1805 tree debugdecl = DECL_DEBUG_EXPR (decl);
1806 if (DECL_P (debugdecl))
1807 decl = debugdecl;
1808 }
1809
1810 return decl;
1811 }
1812
1813 /* Set the register LOC to contain DV, OFFSET. */
1814
1815 static void
1816 var_reg_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1817 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
1818 enum insert_option iopt)
1819 {
1820 attrs node;
1821 bool decl_p = dv_is_decl_p (dv);
1822
1823 if (decl_p)
1824 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
1825
1826 for (node = set->regs[REGNO (loc)]; node; node = node->next)
1827 if (dv_as_opaque (node->dv) == dv_as_opaque (dv)
1828 && node->offset == offset)
1829 break;
1830 if (!node)
1831 attrs_list_insert (&set->regs[REGNO (loc)], dv, offset, loc);
1832 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
1833 }
1834
1835 /* Set the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). */
1836
1837 static void
1838 var_reg_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
1839 rtx set_src)
1840 {
1841 tree decl = REG_EXPR (loc);
1842 HOST_WIDE_INT offset = REG_OFFSET (loc);
1843
1844 var_reg_decl_set (set, loc, initialized,
1845 dv_from_decl (decl), offset, set_src, INSERT);
1846 }
1847
1848 static enum var_init_status
1849 get_init_value (dataflow_set *set, rtx loc, decl_or_value dv)
1850 {
1851 variable var;
1852 int i;
1853 enum var_init_status ret_val = VAR_INIT_STATUS_UNKNOWN;
1854
1855 if (! flag_var_tracking_uninit)
1856 return VAR_INIT_STATUS_INITIALIZED;
1857
1858 var = shared_hash_find (set->vars, dv);
1859 if (var)
1860 {
1861 for (i = 0; i < var->n_var_parts && ret_val == VAR_INIT_STATUS_UNKNOWN; i++)
1862 {
1863 location_chain nextp;
1864 for (nextp = var->var_part[i].loc_chain; nextp; nextp = nextp->next)
1865 if (rtx_equal_p (nextp->loc, loc))
1866 {
1867 ret_val = nextp->init;
1868 break;
1869 }
1870 }
1871 }
1872
1873 return ret_val;
1874 }
1875
1876 /* Delete current content of register LOC in dataflow set SET and set
1877 the register to contain REG_EXPR (LOC), REG_OFFSET (LOC). If
1878 MODIFY is true, any other live copies of the same variable part are
1879 also deleted from the dataflow set, otherwise the variable part is
1880 assumed to be copied from another location holding the same
1881 part. */
1882
1883 static void
1884 var_reg_delete_and_set (dataflow_set *set, rtx loc, bool modify,
1885 enum var_init_status initialized, rtx set_src)
1886 {
1887 tree decl = REG_EXPR (loc);
1888 HOST_WIDE_INT offset = REG_OFFSET (loc);
1889 attrs node, next;
1890 attrs *nextp;
1891
1892 decl = var_debug_decl (decl);
1893
1894 if (initialized == VAR_INIT_STATUS_UNKNOWN)
1895 initialized = get_init_value (set, loc, dv_from_decl (decl));
1896
1897 nextp = &set->regs[REGNO (loc)];
1898 for (node = *nextp; node; node = next)
1899 {
1900 next = node->next;
1901 if (dv_as_opaque (node->dv) != decl || node->offset != offset)
1902 {
1903 delete_variable_part (set, node->loc, node->dv, node->offset);
1904 pool_free (attrs_pool, node);
1905 *nextp = next;
1906 }
1907 else
1908 {
1909 node->loc = loc;
1910 nextp = &node->next;
1911 }
1912 }
1913 if (modify)
1914 clobber_variable_part (set, loc, dv_from_decl (decl), offset, set_src);
1915 var_reg_set (set, loc, initialized, set_src);
1916 }
1917
1918 /* Delete the association of register LOC in dataflow set SET with any
1919 variables that aren't onepart. If CLOBBER is true, also delete any
1920 other live copies of the same variable part, and delete the
1921 association with onepart dvs too. */
1922
1923 static void
1924 var_reg_delete (dataflow_set *set, rtx loc, bool clobber)
1925 {
1926 attrs *nextp = &set->regs[REGNO (loc)];
1927 attrs node, next;
1928
1929 if (clobber)
1930 {
1931 tree decl = REG_EXPR (loc);
1932 HOST_WIDE_INT offset = REG_OFFSET (loc);
1933
1934 decl = var_debug_decl (decl);
1935
1936 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
1937 }
1938
1939 for (node = *nextp; node; node = next)
1940 {
1941 next = node->next;
1942 if (clobber || !dv_onepart_p (node->dv))
1943 {
1944 delete_variable_part (set, node->loc, node->dv, node->offset);
1945 pool_free (attrs_pool, node);
1946 *nextp = next;
1947 }
1948 else
1949 nextp = &node->next;
1950 }
1951 }
1952
1953 /* Delete content of register with number REGNO in dataflow set SET. */
1954
1955 static void
1956 var_regno_delete (dataflow_set *set, int regno)
1957 {
1958 attrs *reg = &set->regs[regno];
1959 attrs node, next;
1960
1961 for (node = *reg; node; node = next)
1962 {
1963 next = node->next;
1964 delete_variable_part (set, node->loc, node->dv, node->offset);
1965 pool_free (attrs_pool, node);
1966 }
1967 *reg = NULL;
1968 }
1969
1970 /* Return true if I is the negated value of a power of two. */
1971 static bool
1972 negative_power_of_two_p (HOST_WIDE_INT i)
1973 {
1974 unsigned HOST_WIDE_INT x = -(unsigned HOST_WIDE_INT)i;
1975 return x == (x & -x);
1976 }
1977
1978 /* Strip constant offsets and alignments off of LOC. Return the base
1979 expression. */
1980
1981 static rtx
1982 vt_get_canonicalize_base (rtx loc)
1983 {
1984 while ((GET_CODE (loc) == PLUS
1985 || GET_CODE (loc) == AND)
1986 && GET_CODE (XEXP (loc, 1)) == CONST_INT
1987 && (GET_CODE (loc) != AND
1988 || negative_power_of_two_p (INTVAL (XEXP (loc, 1)))))
1989 loc = XEXP (loc, 0);
1990
1991 return loc;
1992 }
1993
1994 /* This caches canonicalized addresses for VALUEs, computed using
1995 information in the global cselib table. */
1996 static struct pointer_map_t *global_get_addr_cache;
1997
1998 /* This caches canonicalized addresses for VALUEs, computed using
1999 information from the global cache and information pertaining to a
2000 basic block being analyzed. */
2001 static struct pointer_map_t *local_get_addr_cache;
2002
2003 static rtx vt_canonicalize_addr (dataflow_set *, rtx);
2004
2005 /* Return the canonical address for LOC, that must be a VALUE, using a
2006 cached global equivalence or computing it and storing it in the
2007 global cache. */
2008
2009 static rtx
2010 get_addr_from_global_cache (rtx const loc)
2011 {
2012 rtx x;
2013 void **slot;
2014
2015 gcc_checking_assert (GET_CODE (loc) == VALUE);
2016
2017 slot = pointer_map_insert (global_get_addr_cache, loc);
2018 if (*slot)
2019 return (rtx)*slot;
2020
2021 x = canon_rtx (get_addr (loc));
2022
2023 /* Tentative, avoiding infinite recursion. */
2024 *slot = x;
2025
2026 if (x != loc)
2027 {
2028 rtx nx = vt_canonicalize_addr (NULL, x);
2029 if (nx != x)
2030 {
2031 /* The table may have moved during recursion, recompute
2032 SLOT. */
2033 slot = pointer_map_contains (global_get_addr_cache, loc);
2034 *slot = x = nx;
2035 }
2036 }
2037
2038 return x;
2039 }
2040
2041 /* Return the canonical address for LOC, that must be a VALUE, using a
2042 cached local equivalence or computing it and storing it in the
2043 local cache. */
2044
2045 static rtx
2046 get_addr_from_local_cache (dataflow_set *set, rtx const loc)
2047 {
2048 rtx x;
2049 void **slot;
2050 decl_or_value dv;
2051 variable var;
2052 location_chain l;
2053
2054 gcc_checking_assert (GET_CODE (loc) == VALUE);
2055
2056 slot = pointer_map_insert (local_get_addr_cache, loc);
2057 if (*slot)
2058 return (rtx)*slot;
2059
2060 x = get_addr_from_global_cache (loc);
2061
2062 /* Tentative, avoiding infinite recursion. */
2063 *slot = x;
2064
2065 /* Recurse to cache local expansion of X, or if we need to search
2066 for a VALUE in the expansion. */
2067 if (x != loc)
2068 {
2069 rtx nx = vt_canonicalize_addr (set, x);
2070 if (nx != x)
2071 {
2072 slot = pointer_map_contains (local_get_addr_cache, loc);
2073 *slot = x = nx;
2074 }
2075 return x;
2076 }
2077
2078 dv = dv_from_rtx (x);
2079 var = shared_hash_find (set->vars, dv);
2080 if (!var)
2081 return x;
2082
2083 /* Look for an improved equivalent expression. */
2084 for (l = var->var_part[0].loc_chain; l; l = l->next)
2085 {
2086 rtx base = vt_get_canonicalize_base (l->loc);
2087 if (GET_CODE (base) == VALUE
2088 && canon_value_cmp (base, loc))
2089 {
2090 rtx nx = vt_canonicalize_addr (set, l->loc);
2091 if (x != nx)
2092 {
2093 slot = pointer_map_contains (local_get_addr_cache, loc);
2094 *slot = x = nx;
2095 }
2096 break;
2097 }
2098 }
2099
2100 return x;
2101 }
2102
2103 /* Canonicalize LOC using equivalences from SET in addition to those
2104 in the cselib static table. It expects a VALUE-based expression,
2105 and it will only substitute VALUEs with other VALUEs or
2106 function-global equivalences, so that, if two addresses have base
2107 VALUEs that are locally or globally related in ways that
2108 memrefs_conflict_p cares about, they will both canonicalize to
2109 expressions that have the same base VALUE.
2110
2111 The use of VALUEs as canonical base addresses enables the canonical
2112 RTXs to remain unchanged globally, if they resolve to a constant,
2113 or throughout a basic block otherwise, so that they can be cached
2114 and the cache needs not be invalidated when REGs, MEMs or such
2115 change. */
2116
2117 static rtx
2118 vt_canonicalize_addr (dataflow_set *set, rtx oloc)
2119 {
2120 HOST_WIDE_INT ofst = 0;
2121 enum machine_mode mode = GET_MODE (oloc);
2122 rtx loc = oloc;
2123 rtx x;
2124 bool retry = true;
2125
2126 while (retry)
2127 {
2128 while (GET_CODE (loc) == PLUS
2129 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2130 {
2131 ofst += INTVAL (XEXP (loc, 1));
2132 loc = XEXP (loc, 0);
2133 }
2134
2135 /* Alignment operations can't normally be combined, so just
2136 canonicalize the base and we're done. We'll normally have
2137 only one stack alignment anyway. */
2138 if (GET_CODE (loc) == AND
2139 && GET_CODE (XEXP (loc, 1)) == CONST_INT
2140 && negative_power_of_two_p (INTVAL (XEXP (loc, 1))))
2141 {
2142 x = vt_canonicalize_addr (set, XEXP (loc, 0));
2143 if (x != XEXP (loc, 0))
2144 loc = gen_rtx_AND (mode, x, XEXP (loc, 1));
2145 retry = false;
2146 }
2147
2148 if (GET_CODE (loc) == VALUE)
2149 {
2150 if (set)
2151 loc = get_addr_from_local_cache (set, loc);
2152 else
2153 loc = get_addr_from_global_cache (loc);
2154
2155 /* Consolidate plus_constants. */
2156 while (ofst && GET_CODE (loc) == PLUS
2157 && GET_CODE (XEXP (loc, 1)) == CONST_INT)
2158 {
2159 ofst += INTVAL (XEXP (loc, 1));
2160 loc = XEXP (loc, 0);
2161 }
2162
2163 retry = false;
2164 }
2165 else
2166 {
2167 x = canon_rtx (loc);
2168 if (retry)
2169 retry = (x != loc);
2170 loc = x;
2171 }
2172 }
2173
2174 /* Add OFST back in. */
2175 if (ofst)
2176 {
2177 /* Don't build new RTL if we can help it. */
2178 if (GET_CODE (oloc) == PLUS
2179 && XEXP (oloc, 0) == loc
2180 && INTVAL (XEXP (oloc, 1)) == ofst)
2181 return oloc;
2182
2183 loc = plus_constant (mode, loc, ofst);
2184 }
2185
2186 return loc;
2187 }
2188
2189 /* Return true iff there's a true dependence between MLOC and LOC.
2190 MADDR must be a canonicalized version of MLOC's address. */
2191
2192 static inline bool
2193 vt_canon_true_dep (dataflow_set *set, rtx mloc, rtx maddr, rtx loc)
2194 {
2195 if (GET_CODE (loc) != MEM)
2196 return false;
2197
2198 rtx addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2199 if (!canon_true_dependence (mloc, GET_MODE (mloc), maddr, loc, addr))
2200 return false;
2201
2202 return true;
2203 }
2204
2205 /* Hold parameters for the hashtab traversal function
2206 drop_overlapping_mem_locs, see below. */
2207
2208 struct overlapping_mems
2209 {
2210 dataflow_set *set;
2211 rtx loc, addr;
2212 };
2213
2214 /* Remove all MEMs that overlap with COMS->LOC from the location list
2215 of a hash table entry for a value. COMS->ADDR must be a
2216 canonicalized form of COMS->LOC's address, and COMS->LOC must be
2217 canonicalized itself. */
2218
2219 int
2220 drop_overlapping_mem_locs (variable_def **slot, overlapping_mems *coms)
2221 {
2222 dataflow_set *set = coms->set;
2223 rtx mloc = coms->loc, addr = coms->addr;
2224 variable var = *slot;
2225
2226 if (var->onepart == ONEPART_VALUE)
2227 {
2228 location_chain loc, *locp;
2229 bool changed = false;
2230 rtx cur_loc;
2231
2232 gcc_assert (var->n_var_parts == 1);
2233
2234 if (shared_var_p (var, set->vars))
2235 {
2236 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
2237 if (vt_canon_true_dep (set, mloc, addr, loc->loc))
2238 break;
2239
2240 if (!loc)
2241 return 1;
2242
2243 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
2244 var = *slot;
2245 gcc_assert (var->n_var_parts == 1);
2246 }
2247
2248 if (VAR_LOC_1PAUX (var))
2249 cur_loc = VAR_LOC_FROM (var);
2250 else
2251 cur_loc = var->var_part[0].cur_loc;
2252
2253 for (locp = &var->var_part[0].loc_chain, loc = *locp;
2254 loc; loc = *locp)
2255 {
2256 if (!vt_canon_true_dep (set, mloc, addr, loc->loc))
2257 {
2258 locp = &loc->next;
2259 continue;
2260 }
2261
2262 *locp = loc->next;
2263 /* If we have deleted the location which was last emitted
2264 we have to emit new location so add the variable to set
2265 of changed variables. */
2266 if (cur_loc == loc->loc)
2267 {
2268 changed = true;
2269 var->var_part[0].cur_loc = NULL;
2270 if (VAR_LOC_1PAUX (var))
2271 VAR_LOC_FROM (var) = NULL;
2272 }
2273 pool_free (loc_chain_pool, loc);
2274 }
2275
2276 if (!var->var_part[0].loc_chain)
2277 {
2278 var->n_var_parts--;
2279 changed = true;
2280 }
2281 if (changed)
2282 variable_was_changed (var, set);
2283 }
2284
2285 return 1;
2286 }
2287
2288 /* Remove from SET all VALUE bindings to MEMs that overlap with LOC. */
2289
2290 static void
2291 clobber_overlapping_mems (dataflow_set *set, rtx loc)
2292 {
2293 struct overlapping_mems coms;
2294
2295 gcc_checking_assert (GET_CODE (loc) == MEM);
2296
2297 coms.set = set;
2298 coms.loc = canon_rtx (loc);
2299 coms.addr = vt_canonicalize_addr (set, XEXP (loc, 0));
2300
2301 set->traversed_vars = set->vars;
2302 shared_hash_htab (set->vars)
2303 .traverse <overlapping_mems*, drop_overlapping_mem_locs> (&coms);
2304 set->traversed_vars = NULL;
2305 }
2306
2307 /* Set the location of DV, OFFSET as the MEM LOC. */
2308
2309 static void
2310 var_mem_decl_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2311 decl_or_value dv, HOST_WIDE_INT offset, rtx set_src,
2312 enum insert_option iopt)
2313 {
2314 if (dv_is_decl_p (dv))
2315 dv = dv_from_decl (var_debug_decl (dv_as_decl (dv)));
2316
2317 set_variable_part (set, loc, dv, offset, initialized, set_src, iopt);
2318 }
2319
2320 /* Set the location part of variable MEM_EXPR (LOC) in dataflow set
2321 SET to LOC.
2322 Adjust the address first if it is stack pointer based. */
2323
2324 static void
2325 var_mem_set (dataflow_set *set, rtx loc, enum var_init_status initialized,
2326 rtx set_src)
2327 {
2328 tree decl = MEM_EXPR (loc);
2329 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2330
2331 var_mem_decl_set (set, loc, initialized,
2332 dv_from_decl (decl), offset, set_src, INSERT);
2333 }
2334
2335 /* Delete and set the location part of variable MEM_EXPR (LOC) in
2336 dataflow set SET to LOC. If MODIFY is true, any other live copies
2337 of the same variable part are also deleted from the dataflow set,
2338 otherwise the variable part is assumed to be copied from another
2339 location holding the same part.
2340 Adjust the address first if it is stack pointer based. */
2341
2342 static void
2343 var_mem_delete_and_set (dataflow_set *set, rtx loc, bool modify,
2344 enum var_init_status initialized, rtx set_src)
2345 {
2346 tree decl = MEM_EXPR (loc);
2347 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2348
2349 clobber_overlapping_mems (set, loc);
2350 decl = var_debug_decl (decl);
2351
2352 if (initialized == VAR_INIT_STATUS_UNKNOWN)
2353 initialized = get_init_value (set, loc, dv_from_decl (decl));
2354
2355 if (modify)
2356 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, set_src);
2357 var_mem_set (set, loc, initialized, set_src);
2358 }
2359
2360 /* Delete the location part LOC from dataflow set SET. If CLOBBER is
2361 true, also delete any other live copies of the same variable part.
2362 Adjust the address first if it is stack pointer based. */
2363
2364 static void
2365 var_mem_delete (dataflow_set *set, rtx loc, bool clobber)
2366 {
2367 tree decl = MEM_EXPR (loc);
2368 HOST_WIDE_INT offset = INT_MEM_OFFSET (loc);
2369
2370 clobber_overlapping_mems (set, loc);
2371 decl = var_debug_decl (decl);
2372 if (clobber)
2373 clobber_variable_part (set, NULL, dv_from_decl (decl), offset, NULL);
2374 delete_variable_part (set, loc, dv_from_decl (decl), offset);
2375 }
2376
2377 /* Return true if LOC should not be expanded for location expressions,
2378 or used in them. */
2379
2380 static inline bool
2381 unsuitable_loc (rtx loc)
2382 {
2383 switch (GET_CODE (loc))
2384 {
2385 case PC:
2386 case SCRATCH:
2387 case CC0:
2388 case ASM_INPUT:
2389 case ASM_OPERANDS:
2390 return true;
2391
2392 default:
2393 return false;
2394 }
2395 }
2396
2397 /* Bind VAL to LOC in SET. If MODIFIED, detach LOC from any values
2398 bound to it. */
2399
2400 static inline void
2401 val_bind (dataflow_set *set, rtx val, rtx loc, bool modified)
2402 {
2403 if (REG_P (loc))
2404 {
2405 if (modified)
2406 var_regno_delete (set, REGNO (loc));
2407 var_reg_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2408 dv_from_value (val), 0, NULL_RTX, INSERT);
2409 }
2410 else if (MEM_P (loc))
2411 {
2412 struct elt_loc_list *l = CSELIB_VAL_PTR (val)->locs;
2413
2414 if (modified)
2415 clobber_overlapping_mems (set, loc);
2416
2417 if (l && GET_CODE (l->loc) == VALUE)
2418 l = canonical_cselib_val (CSELIB_VAL_PTR (l->loc))->locs;
2419
2420 /* If this MEM is a global constant, we don't need it in the
2421 dynamic tables. ??? We should test this before emitting the
2422 micro-op in the first place. */
2423 while (l)
2424 if (GET_CODE (l->loc) == MEM && XEXP (l->loc, 0) == XEXP (loc, 0))
2425 break;
2426 else
2427 l = l->next;
2428
2429 if (!l)
2430 var_mem_decl_set (set, loc, VAR_INIT_STATUS_INITIALIZED,
2431 dv_from_value (val), 0, NULL_RTX, INSERT);
2432 }
2433 else
2434 {
2435 /* Other kinds of equivalences are necessarily static, at least
2436 so long as we do not perform substitutions while merging
2437 expressions. */
2438 gcc_unreachable ();
2439 set_variable_part (set, loc, dv_from_value (val), 0,
2440 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2441 }
2442 }
2443
2444 /* Bind a value to a location it was just stored in. If MODIFIED
2445 holds, assume the location was modified, detaching it from any
2446 values bound to it. */
2447
2448 static void
2449 val_store (dataflow_set *set, rtx val, rtx loc, rtx insn, bool modified)
2450 {
2451 cselib_val *v = CSELIB_VAL_PTR (val);
2452
2453 gcc_assert (cselib_preserved_value_p (v));
2454
2455 if (dump_file)
2456 {
2457 fprintf (dump_file, "%i: ", insn ? INSN_UID (insn) : 0);
2458 print_inline_rtx (dump_file, loc, 0);
2459 fprintf (dump_file, " evaluates to ");
2460 print_inline_rtx (dump_file, val, 0);
2461 if (v->locs)
2462 {
2463 struct elt_loc_list *l;
2464 for (l = v->locs; l; l = l->next)
2465 {
2466 fprintf (dump_file, "\n%i: ", INSN_UID (l->setting_insn));
2467 print_inline_rtx (dump_file, l->loc, 0);
2468 }
2469 }
2470 fprintf (dump_file, "\n");
2471 }
2472
2473 gcc_checking_assert (!unsuitable_loc (loc));
2474
2475 val_bind (set, val, loc, modified);
2476 }
2477
2478 /* Clear (canonical address) slots that reference X. */
2479
2480 static bool
2481 local_get_addr_clear_given_value (const void *v ATTRIBUTE_UNUSED,
2482 void **slot, void *x)
2483 {
2484 if (vt_get_canonicalize_base ((rtx)*slot) == x)
2485 *slot = NULL;
2486 return true;
2487 }
2488
2489 /* Reset this node, detaching all its equivalences. Return the slot
2490 in the variable hash table that holds dv, if there is one. */
2491
2492 static void
2493 val_reset (dataflow_set *set, decl_or_value dv)
2494 {
2495 variable var = shared_hash_find (set->vars, dv) ;
2496 location_chain node;
2497 rtx cval;
2498
2499 if (!var || !var->n_var_parts)
2500 return;
2501
2502 gcc_assert (var->n_var_parts == 1);
2503
2504 if (var->onepart == ONEPART_VALUE)
2505 {
2506 rtx x = dv_as_value (dv);
2507 void **slot;
2508
2509 /* Relationships in the global cache don't change, so reset the
2510 local cache entry only. */
2511 slot = pointer_map_contains (local_get_addr_cache, x);
2512 if (slot)
2513 {
2514 /* If the value resolved back to itself, odds are that other
2515 values may have cached it too. These entries now refer
2516 to the old X, so detach them too. Entries that used the
2517 old X but resolved to something else remain ok as long as
2518 that something else isn't also reset. */
2519 if (*slot == x)
2520 pointer_map_traverse (local_get_addr_cache,
2521 local_get_addr_clear_given_value, x);
2522 *slot = NULL;
2523 }
2524 }
2525
2526 cval = NULL;
2527 for (node = var->var_part[0].loc_chain; node; node = node->next)
2528 if (GET_CODE (node->loc) == VALUE
2529 && canon_value_cmp (node->loc, cval))
2530 cval = node->loc;
2531
2532 for (node = var->var_part[0].loc_chain; node; node = node->next)
2533 if (GET_CODE (node->loc) == VALUE && cval != node->loc)
2534 {
2535 /* Redirect the equivalence link to the new canonical
2536 value, or simply remove it if it would point at
2537 itself. */
2538 if (cval)
2539 set_variable_part (set, cval, dv_from_value (node->loc),
2540 0, node->init, node->set_src, NO_INSERT);
2541 delete_variable_part (set, dv_as_value (dv),
2542 dv_from_value (node->loc), 0);
2543 }
2544
2545 if (cval)
2546 {
2547 decl_or_value cdv = dv_from_value (cval);
2548
2549 /* Keep the remaining values connected, accummulating links
2550 in the canonical value. */
2551 for (node = var->var_part[0].loc_chain; node; node = node->next)
2552 {
2553 if (node->loc == cval)
2554 continue;
2555 else if (GET_CODE (node->loc) == REG)
2556 var_reg_decl_set (set, node->loc, node->init, cdv, 0,
2557 node->set_src, NO_INSERT);
2558 else if (GET_CODE (node->loc) == MEM)
2559 var_mem_decl_set (set, node->loc, node->init, cdv, 0,
2560 node->set_src, NO_INSERT);
2561 else
2562 set_variable_part (set, node->loc, cdv, 0,
2563 node->init, node->set_src, NO_INSERT);
2564 }
2565 }
2566
2567 /* We remove this last, to make sure that the canonical value is not
2568 removed to the point of requiring reinsertion. */
2569 if (cval)
2570 delete_variable_part (set, dv_as_value (dv), dv_from_value (cval), 0);
2571
2572 clobber_variable_part (set, NULL, dv, 0, NULL);
2573 }
2574
2575 /* Find the values in a given location and map the val to another
2576 value, if it is unique, or add the location as one holding the
2577 value. */
2578
2579 static void
2580 val_resolve (dataflow_set *set, rtx val, rtx loc, rtx insn)
2581 {
2582 decl_or_value dv = dv_from_value (val);
2583
2584 if (dump_file && (dump_flags & TDF_DETAILS))
2585 {
2586 if (insn)
2587 fprintf (dump_file, "%i: ", INSN_UID (insn));
2588 else
2589 fprintf (dump_file, "head: ");
2590 print_inline_rtx (dump_file, val, 0);
2591 fputs (" is at ", dump_file);
2592 print_inline_rtx (dump_file, loc, 0);
2593 fputc ('\n', dump_file);
2594 }
2595
2596 val_reset (set, dv);
2597
2598 gcc_checking_assert (!unsuitable_loc (loc));
2599
2600 if (REG_P (loc))
2601 {
2602 attrs node, found = NULL;
2603
2604 for (node = set->regs[REGNO (loc)]; node; node = node->next)
2605 if (dv_is_value_p (node->dv)
2606 && GET_MODE (dv_as_value (node->dv)) == GET_MODE (loc))
2607 {
2608 found = node;
2609
2610 /* Map incoming equivalences. ??? Wouldn't it be nice if
2611 we just started sharing the location lists? Maybe a
2612 circular list ending at the value itself or some
2613 such. */
2614 set_variable_part (set, dv_as_value (node->dv),
2615 dv_from_value (val), node->offset,
2616 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2617 set_variable_part (set, val, node->dv, node->offset,
2618 VAR_INIT_STATUS_INITIALIZED, NULL_RTX, INSERT);
2619 }
2620
2621 /* If we didn't find any equivalence, we need to remember that
2622 this value is held in the named register. */
2623 if (found)
2624 return;
2625 }
2626 /* ??? Attempt to find and merge equivalent MEMs or other
2627 expressions too. */
2628
2629 val_bind (set, val, loc, false);
2630 }
2631
2632 /* Initialize dataflow set SET to be empty.
2633 VARS_SIZE is the initial size of hash table VARS. */
2634
2635 static void
2636 dataflow_set_init (dataflow_set *set)
2637 {
2638 init_attrs_list_set (set->regs);
2639 set->vars = shared_hash_copy (empty_shared_hash);
2640 set->stack_adjust = 0;
2641 set->traversed_vars = NULL;
2642 }
2643
2644 /* Delete the contents of dataflow set SET. */
2645
2646 static void
2647 dataflow_set_clear (dataflow_set *set)
2648 {
2649 int i;
2650
2651 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2652 attrs_list_clear (&set->regs[i]);
2653
2654 shared_hash_destroy (set->vars);
2655 set->vars = shared_hash_copy (empty_shared_hash);
2656 }
2657
2658 /* Copy the contents of dataflow set SRC to DST. */
2659
2660 static void
2661 dataflow_set_copy (dataflow_set *dst, dataflow_set *src)
2662 {
2663 int i;
2664
2665 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
2666 attrs_list_copy (&dst->regs[i], src->regs[i]);
2667
2668 shared_hash_destroy (dst->vars);
2669 dst->vars = shared_hash_copy (src->vars);
2670 dst->stack_adjust = src->stack_adjust;
2671 }
2672
2673 /* Information for merging lists of locations for a given offset of variable.
2674 */
2675 struct variable_union_info
2676 {
2677 /* Node of the location chain. */
2678 location_chain lc;
2679
2680 /* The sum of positions in the input chains. */
2681 int pos;
2682
2683 /* The position in the chain of DST dataflow set. */
2684 int pos_dst;
2685 };
2686
2687 /* Buffer for location list sorting and its allocated size. */
2688 static struct variable_union_info *vui_vec;
2689 static int vui_allocated;
2690
2691 /* Compare function for qsort, order the structures by POS element. */
2692
2693 static int
2694 variable_union_info_cmp_pos (const void *n1, const void *n2)
2695 {
2696 const struct variable_union_info *const i1 =
2697 (const struct variable_union_info *) n1;
2698 const struct variable_union_info *const i2 =
2699 ( const struct variable_union_info *) n2;
2700
2701 if (i1->pos != i2->pos)
2702 return i1->pos - i2->pos;
2703
2704 return (i1->pos_dst - i2->pos_dst);
2705 }
2706
2707 /* Compute union of location parts of variable *SLOT and the same variable
2708 from hash table DATA. Compute "sorted" union of the location chains
2709 for common offsets, i.e. the locations of a variable part are sorted by
2710 a priority where the priority is the sum of the positions in the 2 chains
2711 (if a location is only in one list the position in the second list is
2712 defined to be larger than the length of the chains).
2713 When we are updating the location parts the newest location is in the
2714 beginning of the chain, so when we do the described "sorted" union
2715 we keep the newest locations in the beginning. */
2716
2717 static int
2718 variable_union (variable src, dataflow_set *set)
2719 {
2720 variable dst;
2721 variable_def **dstp;
2722 int i, j, k;
2723
2724 dstp = shared_hash_find_slot (set->vars, src->dv);
2725 if (!dstp || !*dstp)
2726 {
2727 src->refcount++;
2728
2729 dst_can_be_shared = false;
2730 if (!dstp)
2731 dstp = shared_hash_find_slot_unshare (&set->vars, src->dv, INSERT);
2732
2733 *dstp = src;
2734
2735 /* Continue traversing the hash table. */
2736 return 1;
2737 }
2738 else
2739 dst = *dstp;
2740
2741 gcc_assert (src->n_var_parts);
2742 gcc_checking_assert (src->onepart == dst->onepart);
2743
2744 /* We can combine one-part variables very efficiently, because their
2745 entries are in canonical order. */
2746 if (src->onepart)
2747 {
2748 location_chain *nodep, dnode, snode;
2749
2750 gcc_assert (src->n_var_parts == 1
2751 && dst->n_var_parts == 1);
2752
2753 snode = src->var_part[0].loc_chain;
2754 gcc_assert (snode);
2755
2756 restart_onepart_unshared:
2757 nodep = &dst->var_part[0].loc_chain;
2758 dnode = *nodep;
2759 gcc_assert (dnode);
2760
2761 while (snode)
2762 {
2763 int r = dnode ? loc_cmp (dnode->loc, snode->loc) : 1;
2764
2765 if (r > 0)
2766 {
2767 location_chain nnode;
2768
2769 if (shared_var_p (dst, set->vars))
2770 {
2771 dstp = unshare_variable (set, dstp, dst,
2772 VAR_INIT_STATUS_INITIALIZED);
2773 dst = *dstp;
2774 goto restart_onepart_unshared;
2775 }
2776
2777 *nodep = nnode = (location_chain) pool_alloc (loc_chain_pool);
2778 nnode->loc = snode->loc;
2779 nnode->init = snode->init;
2780 if (!snode->set_src || MEM_P (snode->set_src))
2781 nnode->set_src = NULL;
2782 else
2783 nnode->set_src = snode->set_src;
2784 nnode->next = dnode;
2785 dnode = nnode;
2786 }
2787 else if (r == 0)
2788 gcc_checking_assert (rtx_equal_p (dnode->loc, snode->loc));
2789
2790 if (r >= 0)
2791 snode = snode->next;
2792
2793 nodep = &dnode->next;
2794 dnode = *nodep;
2795 }
2796
2797 return 1;
2798 }
2799
2800 gcc_checking_assert (!src->onepart);
2801
2802 /* Count the number of location parts, result is K. */
2803 for (i = 0, j = 0, k = 0;
2804 i < src->n_var_parts && j < dst->n_var_parts; k++)
2805 {
2806 if (VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2807 {
2808 i++;
2809 j++;
2810 }
2811 else if (VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
2812 i++;
2813 else
2814 j++;
2815 }
2816 k += src->n_var_parts - i;
2817 k += dst->n_var_parts - j;
2818
2819 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
2820 thus there are at most MAX_VAR_PARTS different offsets. */
2821 gcc_checking_assert (dst->onepart ? k == 1 : k <= MAX_VAR_PARTS);
2822
2823 if (dst->n_var_parts != k && shared_var_p (dst, set->vars))
2824 {
2825 dstp = unshare_variable (set, dstp, dst, VAR_INIT_STATUS_UNKNOWN);
2826 dst = *dstp;
2827 }
2828
2829 i = src->n_var_parts - 1;
2830 j = dst->n_var_parts - 1;
2831 dst->n_var_parts = k;
2832
2833 for (k--; k >= 0; k--)
2834 {
2835 location_chain node, node2;
2836
2837 if (i >= 0 && j >= 0
2838 && VAR_PART_OFFSET (src, i) == VAR_PART_OFFSET (dst, j))
2839 {
2840 /* Compute the "sorted" union of the chains, i.e. the locations which
2841 are in both chains go first, they are sorted by the sum of
2842 positions in the chains. */
2843 int dst_l, src_l;
2844 int ii, jj, n;
2845 struct variable_union_info *vui;
2846
2847 /* If DST is shared compare the location chains.
2848 If they are different we will modify the chain in DST with
2849 high probability so make a copy of DST. */
2850 if (shared_var_p (dst, set->vars))
2851 {
2852 for (node = src->var_part[i].loc_chain,
2853 node2 = dst->var_part[j].loc_chain; node && node2;
2854 node = node->next, node2 = node2->next)
2855 {
2856 if (!((REG_P (node2->loc)
2857 && REG_P (node->loc)
2858 && REGNO (node2->loc) == REGNO (node->loc))
2859 || rtx_equal_p (node2->loc, node->loc)))
2860 {
2861 if (node2->init < node->init)
2862 node2->init = node->init;
2863 break;
2864 }
2865 }
2866 if (node || node2)
2867 {
2868 dstp = unshare_variable (set, dstp, dst,
2869 VAR_INIT_STATUS_UNKNOWN);
2870 dst = (variable)*dstp;
2871 }
2872 }
2873
2874 src_l = 0;
2875 for (node = src->var_part[i].loc_chain; node; node = node->next)
2876 src_l++;
2877 dst_l = 0;
2878 for (node = dst->var_part[j].loc_chain; node; node = node->next)
2879 dst_l++;
2880
2881 if (dst_l == 1)
2882 {
2883 /* The most common case, much simpler, no qsort is needed. */
2884 location_chain dstnode = dst->var_part[j].loc_chain;
2885 dst->var_part[k].loc_chain = dstnode;
2886 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
2887 node2 = dstnode;
2888 for (node = src->var_part[i].loc_chain; node; node = node->next)
2889 if (!((REG_P (dstnode->loc)
2890 && REG_P (node->loc)
2891 && REGNO (dstnode->loc) == REGNO (node->loc))
2892 || rtx_equal_p (dstnode->loc, node->loc)))
2893 {
2894 location_chain new_node;
2895
2896 /* Copy the location from SRC. */
2897 new_node = (location_chain) pool_alloc (loc_chain_pool);
2898 new_node->loc = node->loc;
2899 new_node->init = node->init;
2900 if (!node->set_src || MEM_P (node->set_src))
2901 new_node->set_src = NULL;
2902 else
2903 new_node->set_src = node->set_src;
2904 node2->next = new_node;
2905 node2 = new_node;
2906 }
2907 node2->next = NULL;
2908 }
2909 else
2910 {
2911 if (src_l + dst_l > vui_allocated)
2912 {
2913 vui_allocated = MAX (vui_allocated * 2, src_l + dst_l);
2914 vui_vec = XRESIZEVEC (struct variable_union_info, vui_vec,
2915 vui_allocated);
2916 }
2917 vui = vui_vec;
2918
2919 /* Fill in the locations from DST. */
2920 for (node = dst->var_part[j].loc_chain, jj = 0; node;
2921 node = node->next, jj++)
2922 {
2923 vui[jj].lc = node;
2924 vui[jj].pos_dst = jj;
2925
2926 /* Pos plus value larger than a sum of 2 valid positions. */
2927 vui[jj].pos = jj + src_l + dst_l;
2928 }
2929
2930 /* Fill in the locations from SRC. */
2931 n = dst_l;
2932 for (node = src->var_part[i].loc_chain, ii = 0; node;
2933 node = node->next, ii++)
2934 {
2935 /* Find location from NODE. */
2936 for (jj = 0; jj < dst_l; jj++)
2937 {
2938 if ((REG_P (vui[jj].lc->loc)
2939 && REG_P (node->loc)
2940 && REGNO (vui[jj].lc->loc) == REGNO (node->loc))
2941 || rtx_equal_p (vui[jj].lc->loc, node->loc))
2942 {
2943 vui[jj].pos = jj + ii;
2944 break;
2945 }
2946 }
2947 if (jj >= dst_l) /* The location has not been found. */
2948 {
2949 location_chain new_node;
2950
2951 /* Copy the location from SRC. */
2952 new_node = (location_chain) pool_alloc (loc_chain_pool);
2953 new_node->loc = node->loc;
2954 new_node->init = node->init;
2955 if (!node->set_src || MEM_P (node->set_src))
2956 new_node->set_src = NULL;
2957 else
2958 new_node->set_src = node->set_src;
2959 vui[n].lc = new_node;
2960 vui[n].pos_dst = src_l + dst_l;
2961 vui[n].pos = ii + src_l + dst_l;
2962 n++;
2963 }
2964 }
2965
2966 if (dst_l == 2)
2967 {
2968 /* Special case still very common case. For dst_l == 2
2969 all entries dst_l ... n-1 are sorted, with for i >= dst_l
2970 vui[i].pos == i + src_l + dst_l. */
2971 if (vui[0].pos > vui[1].pos)
2972 {
2973 /* Order should be 1, 0, 2... */
2974 dst->var_part[k].loc_chain = vui[1].lc;
2975 vui[1].lc->next = vui[0].lc;
2976 if (n >= 3)
2977 {
2978 vui[0].lc->next = vui[2].lc;
2979 vui[n - 1].lc->next = NULL;
2980 }
2981 else
2982 vui[0].lc->next = NULL;
2983 ii = 3;
2984 }
2985 else
2986 {
2987 dst->var_part[k].loc_chain = vui[0].lc;
2988 if (n >= 3 && vui[2].pos < vui[1].pos)
2989 {
2990 /* Order should be 0, 2, 1, 3... */
2991 vui[0].lc->next = vui[2].lc;
2992 vui[2].lc->next = vui[1].lc;
2993 if (n >= 4)
2994 {
2995 vui[1].lc->next = vui[3].lc;
2996 vui[n - 1].lc->next = NULL;
2997 }
2998 else
2999 vui[1].lc->next = NULL;
3000 ii = 4;
3001 }
3002 else
3003 {
3004 /* Order should be 0, 1, 2... */
3005 ii = 1;
3006 vui[n - 1].lc->next = NULL;
3007 }
3008 }
3009 for (; ii < n; ii++)
3010 vui[ii - 1].lc->next = vui[ii].lc;
3011 }
3012 else
3013 {
3014 qsort (vui, n, sizeof (struct variable_union_info),
3015 variable_union_info_cmp_pos);
3016
3017 /* Reconnect the nodes in sorted order. */
3018 for (ii = 1; ii < n; ii++)
3019 vui[ii - 1].lc->next = vui[ii].lc;
3020 vui[n - 1].lc->next = NULL;
3021 dst->var_part[k].loc_chain = vui[0].lc;
3022 }
3023
3024 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (dst, j);
3025 }
3026 i--;
3027 j--;
3028 }
3029 else if ((i >= 0 && j >= 0
3030 && VAR_PART_OFFSET (src, i) < VAR_PART_OFFSET (dst, j))
3031 || i < 0)
3032 {
3033 dst->var_part[k] = dst->var_part[j];
3034 j--;
3035 }
3036 else if ((i >= 0 && j >= 0
3037 && VAR_PART_OFFSET (src, i) > VAR_PART_OFFSET (dst, j))
3038 || j < 0)
3039 {
3040 location_chain *nextp;
3041
3042 /* Copy the chain from SRC. */
3043 nextp = &dst->var_part[k].loc_chain;
3044 for (node = src->var_part[i].loc_chain; node; node = node->next)
3045 {
3046 location_chain new_lc;
3047
3048 new_lc = (location_chain) pool_alloc (loc_chain_pool);
3049 new_lc->next = NULL;
3050 new_lc->init = node->init;
3051 if (!node->set_src || MEM_P (node->set_src))
3052 new_lc->set_src = NULL;
3053 else
3054 new_lc->set_src = node->set_src;
3055 new_lc->loc = node->loc;
3056
3057 *nextp = new_lc;
3058 nextp = &new_lc->next;
3059 }
3060
3061 VAR_PART_OFFSET (dst, k) = VAR_PART_OFFSET (src, i);
3062 i--;
3063 }
3064 dst->var_part[k].cur_loc = NULL;
3065 }
3066
3067 if (flag_var_tracking_uninit)
3068 for (i = 0; i < src->n_var_parts && i < dst->n_var_parts; i++)
3069 {
3070 location_chain node, node2;
3071 for (node = src->var_part[i].loc_chain; node; node = node->next)
3072 for (node2 = dst->var_part[i].loc_chain; node2; node2 = node2->next)
3073 if (rtx_equal_p (node->loc, node2->loc))
3074 {
3075 if (node->init > node2->init)
3076 node2->init = node->init;
3077 }
3078 }
3079
3080 /* Continue traversing the hash table. */
3081 return 1;
3082 }
3083
3084 /* Compute union of dataflow sets SRC and DST and store it to DST. */
3085
3086 static void
3087 dataflow_set_union (dataflow_set *dst, dataflow_set *src)
3088 {
3089 int i;
3090
3091 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
3092 attrs_list_union (&dst->regs[i], src->regs[i]);
3093
3094 if (dst->vars == empty_shared_hash)
3095 {
3096 shared_hash_destroy (dst->vars);
3097 dst->vars = shared_hash_copy (src->vars);
3098 }
3099 else
3100 {
3101 variable_iterator_type hi;
3102 variable var;
3103
3104 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (src->vars),
3105 var, variable, hi)
3106 variable_union (var, dst);
3107 }
3108 }
3109
3110 /* Whether the value is currently being expanded. */
3111 #define VALUE_RECURSED_INTO(x) \
3112 (RTL_FLAG_CHECK2 ("VALUE_RECURSED_INTO", (x), VALUE, DEBUG_EXPR)->used)
3113
3114 /* Whether no expansion was found, saving useless lookups.
3115 It must only be set when VALUE_CHANGED is clear. */
3116 #define NO_LOC_P(x) \
3117 (RTL_FLAG_CHECK2 ("NO_LOC_P", (x), VALUE, DEBUG_EXPR)->return_val)
3118
3119 /* Whether cur_loc in the value needs to be (re)computed. */
3120 #define VALUE_CHANGED(x) \
3121 (RTL_FLAG_CHECK1 ("VALUE_CHANGED", (x), VALUE)->frame_related)
3122 /* Whether cur_loc in the decl needs to be (re)computed. */
3123 #define DECL_CHANGED(x) TREE_VISITED (x)
3124
3125 /* Record (if NEWV) that DV needs to have its cur_loc recomputed. For
3126 user DECLs, this means they're in changed_variables. Values and
3127 debug exprs may be left with this flag set if no user variable
3128 requires them to be evaluated. */
3129
3130 static inline void
3131 set_dv_changed (decl_or_value dv, bool newv)
3132 {
3133 switch (dv_onepart_p (dv))
3134 {
3135 case ONEPART_VALUE:
3136 if (newv)
3137 NO_LOC_P (dv_as_value (dv)) = false;
3138 VALUE_CHANGED (dv_as_value (dv)) = newv;
3139 break;
3140
3141 case ONEPART_DEXPR:
3142 if (newv)
3143 NO_LOC_P (DECL_RTL_KNOWN_SET (dv_as_decl (dv))) = false;
3144 /* Fall through... */
3145
3146 default:
3147 DECL_CHANGED (dv_as_decl (dv)) = newv;
3148 break;
3149 }
3150 }
3151
3152 /* Return true if DV needs to have its cur_loc recomputed. */
3153
3154 static inline bool
3155 dv_changed_p (decl_or_value dv)
3156 {
3157 return (dv_is_value_p (dv)
3158 ? VALUE_CHANGED (dv_as_value (dv))
3159 : DECL_CHANGED (dv_as_decl (dv)));
3160 }
3161
3162 /* Return a location list node whose loc is rtx_equal to LOC, in the
3163 location list of a one-part variable or value VAR, or in that of
3164 any values recursively mentioned in the location lists. VARS must
3165 be in star-canonical form. */
3166
3167 static location_chain
3168 find_loc_in_1pdv (rtx loc, variable var, variable_table_type vars)
3169 {
3170 location_chain node;
3171 enum rtx_code loc_code;
3172
3173 if (!var)
3174 return NULL;
3175
3176 gcc_checking_assert (var->onepart);
3177
3178 if (!var->n_var_parts)
3179 return NULL;
3180
3181 gcc_checking_assert (loc != dv_as_opaque (var->dv));
3182
3183 loc_code = GET_CODE (loc);
3184 for (node = var->var_part[0].loc_chain; node; node = node->next)
3185 {
3186 decl_or_value dv;
3187 variable rvar;
3188
3189 if (GET_CODE (node->loc) != loc_code)
3190 {
3191 if (GET_CODE (node->loc) != VALUE)
3192 continue;
3193 }
3194 else if (loc == node->loc)
3195 return node;
3196 else if (loc_code != VALUE)
3197 {
3198 if (rtx_equal_p (loc, node->loc))
3199 return node;
3200 continue;
3201 }
3202
3203 /* Since we're in star-canonical form, we don't need to visit
3204 non-canonical nodes: one-part variables and non-canonical
3205 values would only point back to the canonical node. */
3206 if (dv_is_value_p (var->dv)
3207 && !canon_value_cmp (node->loc, dv_as_value (var->dv)))
3208 {
3209 /* Skip all subsequent VALUEs. */
3210 while (node->next && GET_CODE (node->next->loc) == VALUE)
3211 {
3212 node = node->next;
3213 gcc_checking_assert (!canon_value_cmp (node->loc,
3214 dv_as_value (var->dv)));
3215 if (loc == node->loc)
3216 return node;
3217 }
3218 continue;
3219 }
3220
3221 gcc_checking_assert (node == var->var_part[0].loc_chain);
3222 gcc_checking_assert (!node->next);
3223
3224 dv = dv_from_value (node->loc);
3225 rvar = vars.find_with_hash (dv, dv_htab_hash (dv));
3226 return find_loc_in_1pdv (loc, rvar, vars);
3227 }
3228
3229 /* ??? Gotta look in cselib_val locations too. */
3230
3231 return NULL;
3232 }
3233
3234 /* Hash table iteration argument passed to variable_merge. */
3235 struct dfset_merge
3236 {
3237 /* The set in which the merge is to be inserted. */
3238 dataflow_set *dst;
3239 /* The set that we're iterating in. */
3240 dataflow_set *cur;
3241 /* The set that may contain the other dv we are to merge with. */
3242 dataflow_set *src;
3243 /* Number of onepart dvs in src. */
3244 int src_onepart_cnt;
3245 };
3246
3247 /* Insert LOC in *DNODE, if it's not there yet. The list must be in
3248 loc_cmp order, and it is maintained as such. */
3249
3250 static void
3251 insert_into_intersection (location_chain *nodep, rtx loc,
3252 enum var_init_status status)
3253 {
3254 location_chain node;
3255 int r;
3256
3257 for (node = *nodep; node; nodep = &node->next, node = *nodep)
3258 if ((r = loc_cmp (node->loc, loc)) == 0)
3259 {
3260 node->init = MIN (node->init, status);
3261 return;
3262 }
3263 else if (r > 0)
3264 break;
3265
3266 node = (location_chain) pool_alloc (loc_chain_pool);
3267
3268 node->loc = loc;
3269 node->set_src = NULL;
3270 node->init = status;
3271 node->next = *nodep;
3272 *nodep = node;
3273 }
3274
3275 /* Insert in DEST the intersection of the locations present in both
3276 S1NODE and S2VAR, directly or indirectly. S1NODE is from a
3277 variable in DSM->cur, whereas S2VAR is from DSM->src. dvar is in
3278 DSM->dst. */
3279
3280 static void
3281 intersect_loc_chains (rtx val, location_chain *dest, struct dfset_merge *dsm,
3282 location_chain s1node, variable s2var)
3283 {
3284 dataflow_set *s1set = dsm->cur;
3285 dataflow_set *s2set = dsm->src;
3286 location_chain found;
3287
3288 if (s2var)
3289 {
3290 location_chain s2node;
3291
3292 gcc_checking_assert (s2var->onepart);
3293
3294 if (s2var->n_var_parts)
3295 {
3296 s2node = s2var->var_part[0].loc_chain;
3297
3298 for (; s1node && s2node;
3299 s1node = s1node->next, s2node = s2node->next)
3300 if (s1node->loc != s2node->loc)
3301 break;
3302 else if (s1node->loc == val)
3303 continue;
3304 else
3305 insert_into_intersection (dest, s1node->loc,
3306 MIN (s1node->init, s2node->init));
3307 }
3308 }
3309
3310 for (; s1node; s1node = s1node->next)
3311 {
3312 if (s1node->loc == val)
3313 continue;
3314
3315 if ((found = find_loc_in_1pdv (s1node->loc, s2var,
3316 shared_hash_htab (s2set->vars))))
3317 {
3318 insert_into_intersection (dest, s1node->loc,
3319 MIN (s1node->init, found->init));
3320 continue;
3321 }
3322
3323 if (GET_CODE (s1node->loc) == VALUE
3324 && !VALUE_RECURSED_INTO (s1node->loc))
3325 {
3326 decl_or_value dv = dv_from_value (s1node->loc);
3327 variable svar = shared_hash_find (s1set->vars, dv);
3328 if (svar)
3329 {
3330 if (svar->n_var_parts == 1)
3331 {
3332 VALUE_RECURSED_INTO (s1node->loc) = true;
3333 intersect_loc_chains (val, dest, dsm,
3334 svar->var_part[0].loc_chain,
3335 s2var);
3336 VALUE_RECURSED_INTO (s1node->loc) = false;
3337 }
3338 }
3339 }
3340
3341 /* ??? gotta look in cselib_val locations too. */
3342
3343 /* ??? if the location is equivalent to any location in src,
3344 searched recursively
3345
3346 add to dst the values needed to represent the equivalence
3347
3348 telling whether locations S is equivalent to another dv's
3349 location list:
3350
3351 for each location D in the list
3352
3353 if S and D satisfy rtx_equal_p, then it is present
3354
3355 else if D is a value, recurse without cycles
3356
3357 else if S and D have the same CODE and MODE
3358
3359 for each operand oS and the corresponding oD
3360
3361 if oS and oD are not equivalent, then S an D are not equivalent
3362
3363 else if they are RTX vectors
3364
3365 if any vector oS element is not equivalent to its respective oD,
3366 then S and D are not equivalent
3367
3368 */
3369
3370
3371 }
3372 }
3373
3374 /* Return -1 if X should be before Y in a location list for a 1-part
3375 variable, 1 if Y should be before X, and 0 if they're equivalent
3376 and should not appear in the list. */
3377
3378 static int
3379 loc_cmp (rtx x, rtx y)
3380 {
3381 int i, j, r;
3382 RTX_CODE code = GET_CODE (x);
3383 const char *fmt;
3384
3385 if (x == y)
3386 return 0;
3387
3388 if (REG_P (x))
3389 {
3390 if (!REG_P (y))
3391 return -1;
3392 gcc_assert (GET_MODE (x) == GET_MODE (y));
3393 if (REGNO (x) == REGNO (y))
3394 return 0;
3395 else if (REGNO (x) < REGNO (y))
3396 return -1;
3397 else
3398 return 1;
3399 }
3400
3401 if (REG_P (y))
3402 return 1;
3403
3404 if (MEM_P (x))
3405 {
3406 if (!MEM_P (y))
3407 return -1;
3408 gcc_assert (GET_MODE (x) == GET_MODE (y));
3409 return loc_cmp (XEXP (x, 0), XEXP (y, 0));
3410 }
3411
3412 if (MEM_P (y))
3413 return 1;
3414
3415 if (GET_CODE (x) == VALUE)
3416 {
3417 if (GET_CODE (y) != VALUE)
3418 return -1;
3419 /* Don't assert the modes are the same, that is true only
3420 when not recursing. (subreg:QI (value:SI 1:1) 0)
3421 and (subreg:QI (value:DI 2:2) 0) can be compared,
3422 even when the modes are different. */
3423 if (canon_value_cmp (x, y))
3424 return -1;
3425 else
3426 return 1;
3427 }
3428
3429 if (GET_CODE (y) == VALUE)
3430 return 1;
3431
3432 /* Entry value is the least preferable kind of expression. */
3433 if (GET_CODE (x) == ENTRY_VALUE)
3434 {
3435 if (GET_CODE (y) != ENTRY_VALUE)
3436 return 1;
3437 gcc_assert (GET_MODE (x) == GET_MODE (y));
3438 return loc_cmp (ENTRY_VALUE_EXP (x), ENTRY_VALUE_EXP (y));
3439 }
3440
3441 if (GET_CODE (y) == ENTRY_VALUE)
3442 return -1;
3443
3444 if (GET_CODE (x) == GET_CODE (y))
3445 /* Compare operands below. */;
3446 else if (GET_CODE (x) < GET_CODE (y))
3447 return -1;
3448 else
3449 return 1;
3450
3451 gcc_assert (GET_MODE (x) == GET_MODE (y));
3452
3453 if (GET_CODE (x) == DEBUG_EXPR)
3454 {
3455 if (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3456 < DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)))
3457 return -1;
3458 gcc_checking_assert (DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (x))
3459 > DEBUG_TEMP_UID (DEBUG_EXPR_TREE_DECL (y)));
3460 return 1;
3461 }
3462
3463 fmt = GET_RTX_FORMAT (code);
3464 for (i = 0; i < GET_RTX_LENGTH (code); i++)
3465 switch (fmt[i])
3466 {
3467 case 'w':
3468 if (XWINT (x, i) == XWINT (y, i))
3469 break;
3470 else if (XWINT (x, i) < XWINT (y, i))
3471 return -1;
3472 else
3473 return 1;
3474
3475 case 'n':
3476 case 'i':
3477 if (XINT (x, i) == XINT (y, i))
3478 break;
3479 else if (XINT (x, i) < XINT (y, i))
3480 return -1;
3481 else
3482 return 1;
3483
3484 case 'V':
3485 case 'E':
3486 /* Compare the vector length first. */
3487 if (XVECLEN (x, i) == XVECLEN (y, i))
3488 /* Compare the vectors elements. */;
3489 else if (XVECLEN (x, i) < XVECLEN (y, i))
3490 return -1;
3491 else
3492 return 1;
3493
3494 for (j = 0; j < XVECLEN (x, i); j++)
3495 if ((r = loc_cmp (XVECEXP (x, i, j),
3496 XVECEXP (y, i, j))))
3497 return r;
3498 break;
3499
3500 case 'e':
3501 if ((r = loc_cmp (XEXP (x, i), XEXP (y, i))))
3502 return r;
3503 break;
3504
3505 case 'S':
3506 case 's':
3507 if (XSTR (x, i) == XSTR (y, i))
3508 break;
3509 if (!XSTR (x, i))
3510 return -1;
3511 if (!XSTR (y, i))
3512 return 1;
3513 if ((r = strcmp (XSTR (x, i), XSTR (y, i))) == 0)
3514 break;
3515 else if (r < 0)
3516 return -1;
3517 else
3518 return 1;
3519
3520 case 'u':
3521 /* These are just backpointers, so they don't matter. */
3522 break;
3523
3524 case '0':
3525 case 't':
3526 break;
3527
3528 /* It is believed that rtx's at this level will never
3529 contain anything but integers and other rtx's,
3530 except for within LABEL_REFs and SYMBOL_REFs. */
3531 default:
3532 gcc_unreachable ();
3533 }
3534
3535 return 0;
3536 }
3537
3538 #if ENABLE_CHECKING
3539 /* Check the order of entries in one-part variables. */
3540
3541 int
3542 canonicalize_loc_order_check (variable_def **slot,
3543 dataflow_set *data ATTRIBUTE_UNUSED)
3544 {
3545 variable var = *slot;
3546 location_chain node, next;
3547
3548 #ifdef ENABLE_RTL_CHECKING
3549 int i;
3550 for (i = 0; i < var->n_var_parts; i++)
3551 gcc_assert (var->var_part[0].cur_loc == NULL);
3552 gcc_assert (!var->in_changed_variables);
3553 #endif
3554
3555 if (!var->onepart)
3556 return 1;
3557
3558 gcc_assert (var->n_var_parts == 1);
3559 node = var->var_part[0].loc_chain;
3560 gcc_assert (node);
3561
3562 while ((next = node->next))
3563 {
3564 gcc_assert (loc_cmp (node->loc, next->loc) < 0);
3565 node = next;
3566 }
3567
3568 return 1;
3569 }
3570 #endif
3571
3572 /* Mark with VALUE_RECURSED_INTO values that have neighbors that are
3573 more likely to be chosen as canonical for an equivalence set.
3574 Ensure less likely values can reach more likely neighbors, making
3575 the connections bidirectional. */
3576
3577 int
3578 canonicalize_values_mark (variable_def **slot, dataflow_set *set)
3579 {
3580 variable var = *slot;
3581 decl_or_value dv = var->dv;
3582 rtx val;
3583 location_chain node;
3584
3585 if (!dv_is_value_p (dv))
3586 return 1;
3587
3588 gcc_checking_assert (var->n_var_parts == 1);
3589
3590 val = dv_as_value (dv);
3591
3592 for (node = var->var_part[0].loc_chain; node; node = node->next)
3593 if (GET_CODE (node->loc) == VALUE)
3594 {
3595 if (canon_value_cmp (node->loc, val))
3596 VALUE_RECURSED_INTO (val) = true;
3597 else
3598 {
3599 decl_or_value odv = dv_from_value (node->loc);
3600 variable_def **oslot;
3601 oslot = shared_hash_find_slot_noinsert (set->vars, odv);
3602
3603 set_slot_part (set, val, oslot, odv, 0,
3604 node->init, NULL_RTX);
3605
3606 VALUE_RECURSED_INTO (node->loc) = true;
3607 }
3608 }
3609
3610 return 1;
3611 }
3612
3613 /* Remove redundant entries from equivalence lists in onepart
3614 variables, canonicalizing equivalence sets into star shapes. */
3615
3616 int
3617 canonicalize_values_star (variable_def **slot, dataflow_set *set)
3618 {
3619 variable var = *slot;
3620 decl_or_value dv = var->dv;
3621 location_chain node;
3622 decl_or_value cdv;
3623 rtx val, cval;
3624 variable_def **cslot;
3625 bool has_value;
3626 bool has_marks;
3627
3628 if (!var->onepart)
3629 return 1;
3630
3631 gcc_checking_assert (var->n_var_parts == 1);
3632
3633 if (dv_is_value_p (dv))
3634 {
3635 cval = dv_as_value (dv);
3636 if (!VALUE_RECURSED_INTO (cval))
3637 return 1;
3638 VALUE_RECURSED_INTO (cval) = false;
3639 }
3640 else
3641 cval = NULL_RTX;
3642
3643 restart:
3644 val = cval;
3645 has_value = false;
3646 has_marks = false;
3647
3648 gcc_assert (var->n_var_parts == 1);
3649
3650 for (node = var->var_part[0].loc_chain; node; node = node->next)
3651 if (GET_CODE (node->loc) == VALUE)
3652 {
3653 has_value = true;
3654 if (VALUE_RECURSED_INTO (node->loc))
3655 has_marks = true;
3656 if (canon_value_cmp (node->loc, cval))
3657 cval = node->loc;
3658 }
3659
3660 if (!has_value)
3661 return 1;
3662
3663 if (cval == val)
3664 {
3665 if (!has_marks || dv_is_decl_p (dv))
3666 return 1;
3667
3668 /* Keep it marked so that we revisit it, either after visiting a
3669 child node, or after visiting a new parent that might be
3670 found out. */
3671 VALUE_RECURSED_INTO (val) = true;
3672
3673 for (node = var->var_part[0].loc_chain; node; node = node->next)
3674 if (GET_CODE (node->loc) == VALUE
3675 && VALUE_RECURSED_INTO (node->loc))
3676 {
3677 cval = node->loc;
3678 restart_with_cval:
3679 VALUE_RECURSED_INTO (cval) = false;
3680 dv = dv_from_value (cval);
3681 slot = shared_hash_find_slot_noinsert (set->vars, dv);
3682 if (!slot)
3683 {
3684 gcc_assert (dv_is_decl_p (var->dv));
3685 /* The canonical value was reset and dropped.
3686 Remove it. */
3687 clobber_variable_part (set, NULL, var->dv, 0, NULL);
3688 return 1;
3689 }
3690 var = *slot;
3691 gcc_assert (dv_is_value_p (var->dv));
3692 if (var->n_var_parts == 0)
3693 return 1;
3694 gcc_assert (var->n_var_parts == 1);
3695 goto restart;
3696 }
3697
3698 VALUE_RECURSED_INTO (val) = false;
3699
3700 return 1;
3701 }
3702
3703 /* Push values to the canonical one. */
3704 cdv = dv_from_value (cval);
3705 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3706
3707 for (node = var->var_part[0].loc_chain; node; node = node->next)
3708 if (node->loc != cval)
3709 {
3710 cslot = set_slot_part (set, node->loc, cslot, cdv, 0,
3711 node->init, NULL_RTX);
3712 if (GET_CODE (node->loc) == VALUE)
3713 {
3714 decl_or_value ndv = dv_from_value (node->loc);
3715
3716 set_variable_part (set, cval, ndv, 0, node->init, NULL_RTX,
3717 NO_INSERT);
3718
3719 if (canon_value_cmp (node->loc, val))
3720 {
3721 /* If it could have been a local minimum, it's not any more,
3722 since it's now neighbor to cval, so it may have to push
3723 to it. Conversely, if it wouldn't have prevailed over
3724 val, then whatever mark it has is fine: if it was to
3725 push, it will now push to a more canonical node, but if
3726 it wasn't, then it has already pushed any values it might
3727 have to. */
3728 VALUE_RECURSED_INTO (node->loc) = true;
3729 /* Make sure we visit node->loc by ensuring we cval is
3730 visited too. */
3731 VALUE_RECURSED_INTO (cval) = true;
3732 }
3733 else if (!VALUE_RECURSED_INTO (node->loc))
3734 /* If we have no need to "recurse" into this node, it's
3735 already "canonicalized", so drop the link to the old
3736 parent. */
3737 clobber_variable_part (set, cval, ndv, 0, NULL);
3738 }
3739 else if (GET_CODE (node->loc) == REG)
3740 {
3741 attrs list = set->regs[REGNO (node->loc)], *listp;
3742
3743 /* Change an existing attribute referring to dv so that it
3744 refers to cdv, removing any duplicate this might
3745 introduce, and checking that no previous duplicates
3746 existed, all in a single pass. */
3747
3748 while (list)
3749 {
3750 if (list->offset == 0
3751 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3752 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3753 break;
3754
3755 list = list->next;
3756 }
3757
3758 gcc_assert (list);
3759 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3760 {
3761 list->dv = cdv;
3762 for (listp = &list->next; (list = *listp); listp = &list->next)
3763 {
3764 if (list->offset)
3765 continue;
3766
3767 if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3768 {
3769 *listp = list->next;
3770 pool_free (attrs_pool, list);
3771 list = *listp;
3772 break;
3773 }
3774
3775 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (dv));
3776 }
3777 }
3778 else if (dv_as_opaque (list->dv) == dv_as_opaque (cdv))
3779 {
3780 for (listp = &list->next; (list = *listp); listp = &list->next)
3781 {
3782 if (list->offset)
3783 continue;
3784
3785 if (dv_as_opaque (list->dv) == dv_as_opaque (dv))
3786 {
3787 *listp = list->next;
3788 pool_free (attrs_pool, list);
3789 list = *listp;
3790 break;
3791 }
3792
3793 gcc_assert (dv_as_opaque (list->dv) != dv_as_opaque (cdv));
3794 }
3795 }
3796 else
3797 gcc_unreachable ();
3798
3799 #if ENABLE_CHECKING
3800 while (list)
3801 {
3802 if (list->offset == 0
3803 && (dv_as_opaque (list->dv) == dv_as_opaque (dv)
3804 || dv_as_opaque (list->dv) == dv_as_opaque (cdv)))
3805 gcc_unreachable ();
3806
3807 list = list->next;
3808 }
3809 #endif
3810 }
3811 }
3812
3813 if (val)
3814 set_slot_part (set, val, cslot, cdv, 0,
3815 VAR_INIT_STATUS_INITIALIZED, NULL_RTX);
3816
3817 slot = clobber_slot_part (set, cval, slot, 0, NULL);
3818
3819 /* Variable may have been unshared. */
3820 var = *slot;
3821 gcc_checking_assert (var->n_var_parts && var->var_part[0].loc_chain->loc == cval
3822 && var->var_part[0].loc_chain->next == NULL);
3823
3824 if (VALUE_RECURSED_INTO (cval))
3825 goto restart_with_cval;
3826
3827 return 1;
3828 }
3829
3830 /* Bind one-part variables to the canonical value in an equivalence
3831 set. Not doing this causes dataflow convergence failure in rare
3832 circumstances, see PR42873. Unfortunately we can't do this
3833 efficiently as part of canonicalize_values_star, since we may not
3834 have determined or even seen the canonical value of a set when we
3835 get to a variable that references another member of the set. */
3836
3837 int
3838 canonicalize_vars_star (variable_def **slot, dataflow_set *set)
3839 {
3840 variable var = *slot;
3841 decl_or_value dv = var->dv;
3842 location_chain node;
3843 rtx cval;
3844 decl_or_value cdv;
3845 variable_def **cslot;
3846 variable cvar;
3847 location_chain cnode;
3848
3849 if (!var->onepart || var->onepart == ONEPART_VALUE)
3850 return 1;
3851
3852 gcc_assert (var->n_var_parts == 1);
3853
3854 node = var->var_part[0].loc_chain;
3855
3856 if (GET_CODE (node->loc) != VALUE)
3857 return 1;
3858
3859 gcc_assert (!node->next);
3860 cval = node->loc;
3861
3862 /* Push values to the canonical one. */
3863 cdv = dv_from_value (cval);
3864 cslot = shared_hash_find_slot_noinsert (set->vars, cdv);
3865 if (!cslot)
3866 return 1;
3867 cvar = *cslot;
3868 gcc_assert (cvar->n_var_parts == 1);
3869
3870 cnode = cvar->var_part[0].loc_chain;
3871
3872 /* CVAL is canonical if its value list contains non-VALUEs or VALUEs
3873 that are not “more canonical” than it. */
3874 if (GET_CODE (cnode->loc) != VALUE
3875 || !canon_value_cmp (cnode->loc, cval))
3876 return 1;
3877
3878 /* CVAL was found to be non-canonical. Change the variable to point
3879 to the canonical VALUE. */
3880 gcc_assert (!cnode->next);
3881 cval = cnode->loc;
3882
3883 slot = set_slot_part (set, cval, slot, dv, 0,
3884 node->init, node->set_src);
3885 clobber_slot_part (set, cval, slot, 0, node->set_src);
3886
3887 return 1;
3888 }
3889
3890 /* Combine variable or value in *S1SLOT (in DSM->cur) with the
3891 corresponding entry in DSM->src. Multi-part variables are combined
3892 with variable_union, whereas onepart dvs are combined with
3893 intersection. */
3894
3895 static int
3896 variable_merge_over_cur (variable s1var, struct dfset_merge *dsm)
3897 {
3898 dataflow_set *dst = dsm->dst;
3899 variable_def **dstslot;
3900 variable s2var, dvar = NULL;
3901 decl_or_value dv = s1var->dv;
3902 onepart_enum_t onepart = s1var->onepart;
3903 rtx val;
3904 hashval_t dvhash;
3905 location_chain node, *nodep;
3906
3907 /* If the incoming onepart variable has an empty location list, then
3908 the intersection will be just as empty. For other variables,
3909 it's always union. */
3910 gcc_checking_assert (s1var->n_var_parts
3911 && s1var->var_part[0].loc_chain);
3912
3913 if (!onepart)
3914 return variable_union (s1var, dst);
3915
3916 gcc_checking_assert (s1var->n_var_parts == 1);
3917
3918 dvhash = dv_htab_hash (dv);
3919 if (dv_is_value_p (dv))
3920 val = dv_as_value (dv);
3921 else
3922 val = NULL;
3923
3924 s2var = shared_hash_find_1 (dsm->src->vars, dv, dvhash);
3925 if (!s2var)
3926 {
3927 dst_can_be_shared = false;
3928 return 1;
3929 }
3930
3931 dsm->src_onepart_cnt--;
3932 gcc_assert (s2var->var_part[0].loc_chain
3933 && s2var->onepart == onepart
3934 && s2var->n_var_parts == 1);
3935
3936 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
3937 if (dstslot)
3938 {
3939 dvar = *dstslot;
3940 gcc_assert (dvar->refcount == 1
3941 && dvar->onepart == onepart
3942 && dvar->n_var_parts == 1);
3943 nodep = &dvar->var_part[0].loc_chain;
3944 }
3945 else
3946 {
3947 nodep = &node;
3948 node = NULL;
3949 }
3950
3951 if (!dstslot && !onepart_variable_different_p (s1var, s2var))
3952 {
3953 dstslot = shared_hash_find_slot_unshare_1 (&dst->vars, dv,
3954 dvhash, INSERT);
3955 *dstslot = dvar = s2var;
3956 dvar->refcount++;
3957 }
3958 else
3959 {
3960 dst_can_be_shared = false;
3961
3962 intersect_loc_chains (val, nodep, dsm,
3963 s1var->var_part[0].loc_chain, s2var);
3964
3965 if (!dstslot)
3966 {
3967 if (node)
3968 {
3969 dvar = (variable) pool_alloc (onepart_pool (onepart));
3970 dvar->dv = dv;
3971 dvar->refcount = 1;
3972 dvar->n_var_parts = 1;
3973 dvar->onepart = onepart;
3974 dvar->in_changed_variables = false;
3975 dvar->var_part[0].loc_chain = node;
3976 dvar->var_part[0].cur_loc = NULL;
3977 if (onepart)
3978 VAR_LOC_1PAUX (dvar) = NULL;
3979 else
3980 VAR_PART_OFFSET (dvar, 0) = 0;
3981
3982 dstslot
3983 = shared_hash_find_slot_unshare_1 (&dst->vars, dv, dvhash,
3984 INSERT);
3985 gcc_assert (!*dstslot);
3986 *dstslot = dvar;
3987 }
3988 else
3989 return 1;
3990 }
3991 }
3992
3993 nodep = &dvar->var_part[0].loc_chain;
3994 while ((node = *nodep))
3995 {
3996 location_chain *nextp = &node->next;
3997
3998 if (GET_CODE (node->loc) == REG)
3999 {
4000 attrs list;
4001
4002 for (list = dst->regs[REGNO (node->loc)]; list; list = list->next)
4003 if (GET_MODE (node->loc) == GET_MODE (list->loc)
4004 && dv_is_value_p (list->dv))
4005 break;
4006
4007 if (!list)
4008 attrs_list_insert (&dst->regs[REGNO (node->loc)],
4009 dv, 0, node->loc);
4010 /* If this value became canonical for another value that had
4011 this register, we want to leave it alone. */
4012 else if (dv_as_value (list->dv) != val)
4013 {
4014 dstslot = set_slot_part (dst, dv_as_value (list->dv),
4015 dstslot, dv, 0,
4016 node->init, NULL_RTX);
4017 dstslot = delete_slot_part (dst, node->loc, dstslot, 0);
4018
4019 /* Since nextp points into the removed node, we can't
4020 use it. The pointer to the next node moved to nodep.
4021 However, if the variable we're walking is unshared
4022 during our walk, we'll keep walking the location list
4023 of the previously-shared variable, in which case the
4024 node won't have been removed, and we'll want to skip
4025 it. That's why we test *nodep here. */
4026 if (*nodep != node)
4027 nextp = nodep;
4028 }
4029 }
4030 else
4031 /* Canonicalization puts registers first, so we don't have to
4032 walk it all. */
4033 break;
4034 nodep = nextp;
4035 }
4036
4037 if (dvar != *dstslot)
4038 dvar = *dstslot;
4039 nodep = &dvar->var_part[0].loc_chain;
4040
4041 if (val)
4042 {
4043 /* Mark all referenced nodes for canonicalization, and make sure
4044 we have mutual equivalence links. */
4045 VALUE_RECURSED_INTO (val) = true;
4046 for (node = *nodep; node; node = node->next)
4047 if (GET_CODE (node->loc) == VALUE)
4048 {
4049 VALUE_RECURSED_INTO (node->loc) = true;
4050 set_variable_part (dst, val, dv_from_value (node->loc), 0,
4051 node->init, NULL, INSERT);
4052 }
4053
4054 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4055 gcc_assert (*dstslot == dvar);
4056 canonicalize_values_star (dstslot, dst);
4057 gcc_checking_assert (dstslot
4058 == shared_hash_find_slot_noinsert_1 (dst->vars,
4059 dv, dvhash));
4060 dvar = *dstslot;
4061 }
4062 else
4063 {
4064 bool has_value = false, has_other = false;
4065
4066 /* If we have one value and anything else, we're going to
4067 canonicalize this, so make sure all values have an entry in
4068 the table and are marked for canonicalization. */
4069 for (node = *nodep; node; node = node->next)
4070 {
4071 if (GET_CODE (node->loc) == VALUE)
4072 {
4073 /* If this was marked during register canonicalization,
4074 we know we have to canonicalize values. */
4075 if (has_value)
4076 has_other = true;
4077 has_value = true;
4078 if (has_other)
4079 break;
4080 }
4081 else
4082 {
4083 has_other = true;
4084 if (has_value)
4085 break;
4086 }
4087 }
4088
4089 if (has_value && has_other)
4090 {
4091 for (node = *nodep; node; node = node->next)
4092 {
4093 if (GET_CODE (node->loc) == VALUE)
4094 {
4095 decl_or_value dv = dv_from_value (node->loc);
4096 variable_def **slot = NULL;
4097
4098 if (shared_hash_shared (dst->vars))
4099 slot = shared_hash_find_slot_noinsert (dst->vars, dv);
4100 if (!slot)
4101 slot = shared_hash_find_slot_unshare (&dst->vars, dv,
4102 INSERT);
4103 if (!*slot)
4104 {
4105 variable var = (variable) pool_alloc (onepart_pool
4106 (ONEPART_VALUE));
4107 var->dv = dv;
4108 var->refcount = 1;
4109 var->n_var_parts = 1;
4110 var->onepart = ONEPART_VALUE;
4111 var->in_changed_variables = false;
4112 var->var_part[0].loc_chain = NULL;
4113 var->var_part[0].cur_loc = NULL;
4114 VAR_LOC_1PAUX (var) = NULL;
4115 *slot = var;
4116 }
4117
4118 VALUE_RECURSED_INTO (node->loc) = true;
4119 }
4120 }
4121
4122 dstslot = shared_hash_find_slot_noinsert_1 (dst->vars, dv, dvhash);
4123 gcc_assert (*dstslot == dvar);
4124 canonicalize_values_star (dstslot, dst);
4125 gcc_checking_assert (dstslot
4126 == shared_hash_find_slot_noinsert_1 (dst->vars,
4127 dv, dvhash));
4128 dvar = *dstslot;
4129 }
4130 }
4131
4132 if (!onepart_variable_different_p (dvar, s2var))
4133 {
4134 variable_htab_free (dvar);
4135 *dstslot = dvar = s2var;
4136 dvar->refcount++;
4137 }
4138 else if (s2var != s1var && !onepart_variable_different_p (dvar, s1var))
4139 {
4140 variable_htab_free (dvar);
4141 *dstslot = dvar = s1var;
4142 dvar->refcount++;
4143 dst_can_be_shared = false;
4144 }
4145 else
4146 dst_can_be_shared = false;
4147
4148 return 1;
4149 }
4150
4151 /* Copy s2slot (in DSM->src) to DSM->dst if the variable is a
4152 multi-part variable. Unions of multi-part variables and
4153 intersections of one-part ones will be handled in
4154 variable_merge_over_cur(). */
4155
4156 static int
4157 variable_merge_over_src (variable s2var, struct dfset_merge *dsm)
4158 {
4159 dataflow_set *dst = dsm->dst;
4160 decl_or_value dv = s2var->dv;
4161
4162 if (!s2var->onepart)
4163 {
4164 variable_def **dstp = shared_hash_find_slot (dst->vars, dv);
4165 *dstp = s2var;
4166 s2var->refcount++;
4167 return 1;
4168 }
4169
4170 dsm->src_onepart_cnt++;
4171 return 1;
4172 }
4173
4174 /* Combine dataflow set information from SRC2 into DST, using PDST
4175 to carry over information across passes. */
4176
4177 static void
4178 dataflow_set_merge (dataflow_set *dst, dataflow_set *src2)
4179 {
4180 dataflow_set cur = *dst;
4181 dataflow_set *src1 = &cur;
4182 struct dfset_merge dsm;
4183 int i;
4184 size_t src1_elems, src2_elems;
4185 variable_iterator_type hi;
4186 variable var;
4187
4188 src1_elems = shared_hash_htab (src1->vars).elements ();
4189 src2_elems = shared_hash_htab (src2->vars).elements ();
4190 dataflow_set_init (dst);
4191 dst->stack_adjust = cur.stack_adjust;
4192 shared_hash_destroy (dst->vars);
4193 dst->vars = (shared_hash) pool_alloc (shared_hash_pool);
4194 dst->vars->refcount = 1;
4195 dst->vars->htab.create (MAX (src1_elems, src2_elems));
4196
4197 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4198 attrs_list_mpdv_union (&dst->regs[i], src1->regs[i], src2->regs[i]);
4199
4200 dsm.dst = dst;
4201 dsm.src = src2;
4202 dsm.cur = src1;
4203 dsm.src_onepart_cnt = 0;
4204
4205 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.src->vars),
4206 var, variable, hi)
4207 variable_merge_over_src (var, &dsm);
4208 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (dsm.cur->vars),
4209 var, variable, hi)
4210 variable_merge_over_cur (var, &dsm);
4211
4212 if (dsm.src_onepart_cnt)
4213 dst_can_be_shared = false;
4214
4215 dataflow_set_destroy (src1);
4216 }
4217
4218 /* Mark register equivalences. */
4219
4220 static void
4221 dataflow_set_equiv_regs (dataflow_set *set)
4222 {
4223 int i;
4224 attrs list, *listp;
4225
4226 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4227 {
4228 rtx canon[NUM_MACHINE_MODES];
4229
4230 /* If the list is empty or one entry, no need to canonicalize
4231 anything. */
4232 if (set->regs[i] == NULL || set->regs[i]->next == NULL)
4233 continue;
4234
4235 memset (canon, 0, sizeof (canon));
4236
4237 for (list = set->regs[i]; list; list = list->next)
4238 if (list->offset == 0 && dv_is_value_p (list->dv))
4239 {
4240 rtx val = dv_as_value (list->dv);
4241 rtx *cvalp = &canon[(int)GET_MODE (val)];
4242 rtx cval = *cvalp;
4243
4244 if (canon_value_cmp (val, cval))
4245 *cvalp = val;
4246 }
4247
4248 for (list = set->regs[i]; list; list = list->next)
4249 if (list->offset == 0 && dv_onepart_p (list->dv))
4250 {
4251 rtx cval = canon[(int)GET_MODE (list->loc)];
4252
4253 if (!cval)
4254 continue;
4255
4256 if (dv_is_value_p (list->dv))
4257 {
4258 rtx val = dv_as_value (list->dv);
4259
4260 if (val == cval)
4261 continue;
4262
4263 VALUE_RECURSED_INTO (val) = true;
4264 set_variable_part (set, val, dv_from_value (cval), 0,
4265 VAR_INIT_STATUS_INITIALIZED,
4266 NULL, NO_INSERT);
4267 }
4268
4269 VALUE_RECURSED_INTO (cval) = true;
4270 set_variable_part (set, cval, list->dv, 0,
4271 VAR_INIT_STATUS_INITIALIZED, NULL, NO_INSERT);
4272 }
4273
4274 for (listp = &set->regs[i]; (list = *listp);
4275 listp = list ? &list->next : listp)
4276 if (list->offset == 0 && dv_onepart_p (list->dv))
4277 {
4278 rtx cval = canon[(int)GET_MODE (list->loc)];
4279 variable_def **slot;
4280
4281 if (!cval)
4282 continue;
4283
4284 if (dv_is_value_p (list->dv))
4285 {
4286 rtx val = dv_as_value (list->dv);
4287 if (!VALUE_RECURSED_INTO (val))
4288 continue;
4289 }
4290
4291 slot = shared_hash_find_slot_noinsert (set->vars, list->dv);
4292 canonicalize_values_star (slot, set);
4293 if (*listp != list)
4294 list = NULL;
4295 }
4296 }
4297 }
4298
4299 /* Remove any redundant values in the location list of VAR, which must
4300 be unshared and 1-part. */
4301
4302 static void
4303 remove_duplicate_values (variable var)
4304 {
4305 location_chain node, *nodep;
4306
4307 gcc_assert (var->onepart);
4308 gcc_assert (var->n_var_parts == 1);
4309 gcc_assert (var->refcount == 1);
4310
4311 for (nodep = &var->var_part[0].loc_chain; (node = *nodep); )
4312 {
4313 if (GET_CODE (node->loc) == VALUE)
4314 {
4315 if (VALUE_RECURSED_INTO (node->loc))
4316 {
4317 /* Remove duplicate value node. */
4318 *nodep = node->next;
4319 pool_free (loc_chain_pool, node);
4320 continue;
4321 }
4322 else
4323 VALUE_RECURSED_INTO (node->loc) = true;
4324 }
4325 nodep = &node->next;
4326 }
4327
4328 for (node = var->var_part[0].loc_chain; node; node = node->next)
4329 if (GET_CODE (node->loc) == VALUE)
4330 {
4331 gcc_assert (VALUE_RECURSED_INTO (node->loc));
4332 VALUE_RECURSED_INTO (node->loc) = false;
4333 }
4334 }
4335
4336
4337 /* Hash table iteration argument passed to variable_post_merge. */
4338 struct dfset_post_merge
4339 {
4340 /* The new input set for the current block. */
4341 dataflow_set *set;
4342 /* Pointer to the permanent input set for the current block, or
4343 NULL. */
4344 dataflow_set **permp;
4345 };
4346
4347 /* Create values for incoming expressions associated with one-part
4348 variables that don't have value numbers for them. */
4349
4350 int
4351 variable_post_merge_new_vals (variable_def **slot, dfset_post_merge *dfpm)
4352 {
4353 dataflow_set *set = dfpm->set;
4354 variable var = *slot;
4355 location_chain node;
4356
4357 if (!var->onepart || !var->n_var_parts)
4358 return 1;
4359
4360 gcc_assert (var->n_var_parts == 1);
4361
4362 if (dv_is_decl_p (var->dv))
4363 {
4364 bool check_dupes = false;
4365
4366 restart:
4367 for (node = var->var_part[0].loc_chain; node; node = node->next)
4368 {
4369 if (GET_CODE (node->loc) == VALUE)
4370 gcc_assert (!VALUE_RECURSED_INTO (node->loc));
4371 else if (GET_CODE (node->loc) == REG)
4372 {
4373 attrs att, *attp, *curp = NULL;
4374
4375 if (var->refcount != 1)
4376 {
4377 slot = unshare_variable (set, slot, var,
4378 VAR_INIT_STATUS_INITIALIZED);
4379 var = *slot;
4380 goto restart;
4381 }
4382
4383 for (attp = &set->regs[REGNO (node->loc)]; (att = *attp);
4384 attp = &att->next)
4385 if (att->offset == 0
4386 && GET_MODE (att->loc) == GET_MODE (node->loc))
4387 {
4388 if (dv_is_value_p (att->dv))
4389 {
4390 rtx cval = dv_as_value (att->dv);
4391 node->loc = cval;
4392 check_dupes = true;
4393 break;
4394 }
4395 else if (dv_as_opaque (att->dv) == dv_as_opaque (var->dv))
4396 curp = attp;
4397 }
4398
4399 if (!curp)
4400 {
4401 curp = attp;
4402 while (*curp)
4403 if ((*curp)->offset == 0
4404 && GET_MODE ((*curp)->loc) == GET_MODE (node->loc)
4405 && dv_as_opaque ((*curp)->dv) == dv_as_opaque (var->dv))
4406 break;
4407 else
4408 curp = &(*curp)->next;
4409 gcc_assert (*curp);
4410 }
4411
4412 if (!att)
4413 {
4414 decl_or_value cdv;
4415 rtx cval;
4416
4417 if (!*dfpm->permp)
4418 {
4419 *dfpm->permp = XNEW (dataflow_set);
4420 dataflow_set_init (*dfpm->permp);
4421 }
4422
4423 for (att = (*dfpm->permp)->regs[REGNO (node->loc)];
4424 att; att = att->next)
4425 if (GET_MODE (att->loc) == GET_MODE (node->loc))
4426 {
4427 gcc_assert (att->offset == 0
4428 && dv_is_value_p (att->dv));
4429 val_reset (set, att->dv);
4430 break;
4431 }
4432
4433 if (att)
4434 {
4435 cdv = att->dv;
4436 cval = dv_as_value (cdv);
4437 }
4438 else
4439 {
4440 /* Create a unique value to hold this register,
4441 that ought to be found and reused in
4442 subsequent rounds. */
4443 cselib_val *v;
4444 gcc_assert (!cselib_lookup (node->loc,
4445 GET_MODE (node->loc), 0,
4446 VOIDmode));
4447 v = cselib_lookup (node->loc, GET_MODE (node->loc), 1,
4448 VOIDmode);
4449 cselib_preserve_value (v);
4450 cselib_invalidate_rtx (node->loc);
4451 cval = v->val_rtx;
4452 cdv = dv_from_value (cval);
4453 if (dump_file)
4454 fprintf (dump_file,
4455 "Created new value %u:%u for reg %i\n",
4456 v->uid, v->hash, REGNO (node->loc));
4457 }
4458
4459 var_reg_decl_set (*dfpm->permp, node->loc,
4460 VAR_INIT_STATUS_INITIALIZED,
4461 cdv, 0, NULL, INSERT);
4462
4463 node->loc = cval;
4464 check_dupes = true;
4465 }
4466
4467 /* Remove attribute referring to the decl, which now
4468 uses the value for the register, already existing or
4469 to be added when we bring perm in. */
4470 att = *curp;
4471 *curp = att->next;
4472 pool_free (attrs_pool, att);
4473 }
4474 }
4475
4476 if (check_dupes)
4477 remove_duplicate_values (var);
4478 }
4479
4480 return 1;
4481 }
4482
4483 /* Reset values in the permanent set that are not associated with the
4484 chosen expression. */
4485
4486 int
4487 variable_post_merge_perm_vals (variable_def **pslot, dfset_post_merge *dfpm)
4488 {
4489 dataflow_set *set = dfpm->set;
4490 variable pvar = *pslot, var;
4491 location_chain pnode;
4492 decl_or_value dv;
4493 attrs att;
4494
4495 gcc_assert (dv_is_value_p (pvar->dv)
4496 && pvar->n_var_parts == 1);
4497 pnode = pvar->var_part[0].loc_chain;
4498 gcc_assert (pnode
4499 && !pnode->next
4500 && REG_P (pnode->loc));
4501
4502 dv = pvar->dv;
4503
4504 var = shared_hash_find (set->vars, dv);
4505 if (var)
4506 {
4507 /* Although variable_post_merge_new_vals may have made decls
4508 non-star-canonical, values that pre-existed in canonical form
4509 remain canonical, and newly-created values reference a single
4510 REG, so they are canonical as well. Since VAR has the
4511 location list for a VALUE, using find_loc_in_1pdv for it is
4512 fine, since VALUEs don't map back to DECLs. */
4513 if (find_loc_in_1pdv (pnode->loc, var, shared_hash_htab (set->vars)))
4514 return 1;
4515 val_reset (set, dv);
4516 }
4517
4518 for (att = set->regs[REGNO (pnode->loc)]; att; att = att->next)
4519 if (att->offset == 0
4520 && GET_MODE (att->loc) == GET_MODE (pnode->loc)
4521 && dv_is_value_p (att->dv))
4522 break;
4523
4524 /* If there is a value associated with this register already, create
4525 an equivalence. */
4526 if (att && dv_as_value (att->dv) != dv_as_value (dv))
4527 {
4528 rtx cval = dv_as_value (att->dv);
4529 set_variable_part (set, cval, dv, 0, pnode->init, NULL, INSERT);
4530 set_variable_part (set, dv_as_value (dv), att->dv, 0, pnode->init,
4531 NULL, INSERT);
4532 }
4533 else if (!att)
4534 {
4535 attrs_list_insert (&set->regs[REGNO (pnode->loc)],
4536 dv, 0, pnode->loc);
4537 variable_union (pvar, set);
4538 }
4539
4540 return 1;
4541 }
4542
4543 /* Just checking stuff and registering register attributes for
4544 now. */
4545
4546 static void
4547 dataflow_post_merge_adjust (dataflow_set *set, dataflow_set **permp)
4548 {
4549 struct dfset_post_merge dfpm;
4550
4551 dfpm.set = set;
4552 dfpm.permp = permp;
4553
4554 shared_hash_htab (set->vars)
4555 .traverse <dfset_post_merge*, variable_post_merge_new_vals> (&dfpm);
4556 if (*permp)
4557 shared_hash_htab ((*permp)->vars)
4558 .traverse <dfset_post_merge*, variable_post_merge_perm_vals> (&dfpm);
4559 shared_hash_htab (set->vars)
4560 .traverse <dataflow_set *, canonicalize_values_star> (set);
4561 shared_hash_htab (set->vars)
4562 .traverse <dataflow_set *, canonicalize_vars_star> (set);
4563 }
4564
4565 /* Return a node whose loc is a MEM that refers to EXPR in the
4566 location list of a one-part variable or value VAR, or in that of
4567 any values recursively mentioned in the location lists. */
4568
4569 static location_chain
4570 find_mem_expr_in_1pdv (tree expr, rtx val, variable_table_type vars)
4571 {
4572 location_chain node;
4573 decl_or_value dv;
4574 variable var;
4575 location_chain where = NULL;
4576
4577 if (!val)
4578 return NULL;
4579
4580 gcc_assert (GET_CODE (val) == VALUE
4581 && !VALUE_RECURSED_INTO (val));
4582
4583 dv = dv_from_value (val);
4584 var = vars.find_with_hash (dv, dv_htab_hash (dv));
4585
4586 if (!var)
4587 return NULL;
4588
4589 gcc_assert (var->onepart);
4590
4591 if (!var->n_var_parts)
4592 return NULL;
4593
4594 VALUE_RECURSED_INTO (val) = true;
4595
4596 for (node = var->var_part[0].loc_chain; node; node = node->next)
4597 if (MEM_P (node->loc)
4598 && MEM_EXPR (node->loc) == expr
4599 && INT_MEM_OFFSET (node->loc) == 0)
4600 {
4601 where = node;
4602 break;
4603 }
4604 else if (GET_CODE (node->loc) == VALUE
4605 && !VALUE_RECURSED_INTO (node->loc)
4606 && (where = find_mem_expr_in_1pdv (expr, node->loc, vars)))
4607 break;
4608
4609 VALUE_RECURSED_INTO (val) = false;
4610
4611 return where;
4612 }
4613
4614 /* Return TRUE if the value of MEM may vary across a call. */
4615
4616 static bool
4617 mem_dies_at_call (rtx mem)
4618 {
4619 tree expr = MEM_EXPR (mem);
4620 tree decl;
4621
4622 if (!expr)
4623 return true;
4624
4625 decl = get_base_address (expr);
4626
4627 if (!decl)
4628 return true;
4629
4630 if (!DECL_P (decl))
4631 return true;
4632
4633 return (may_be_aliased (decl)
4634 || (!TREE_READONLY (decl) && is_global_var (decl)));
4635 }
4636
4637 /* Remove all MEMs from the location list of a hash table entry for a
4638 one-part variable, except those whose MEM attributes map back to
4639 the variable itself, directly or within a VALUE. */
4640
4641 int
4642 dataflow_set_preserve_mem_locs (variable_def **slot, dataflow_set *set)
4643 {
4644 variable var = *slot;
4645
4646 if (var->onepart == ONEPART_VDECL || var->onepart == ONEPART_DEXPR)
4647 {
4648 tree decl = dv_as_decl (var->dv);
4649 location_chain loc, *locp;
4650 bool changed = false;
4651
4652 if (!var->n_var_parts)
4653 return 1;
4654
4655 gcc_assert (var->n_var_parts == 1);
4656
4657 if (shared_var_p (var, set->vars))
4658 {
4659 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4660 {
4661 /* We want to remove dying MEMs that doesn't refer to DECL. */
4662 if (GET_CODE (loc->loc) == MEM
4663 && (MEM_EXPR (loc->loc) != decl
4664 || INT_MEM_OFFSET (loc->loc) != 0)
4665 && !mem_dies_at_call (loc->loc))
4666 break;
4667 /* We want to move here MEMs that do refer to DECL. */
4668 else if (GET_CODE (loc->loc) == VALUE
4669 && find_mem_expr_in_1pdv (decl, loc->loc,
4670 shared_hash_htab (set->vars)))
4671 break;
4672 }
4673
4674 if (!loc)
4675 return 1;
4676
4677 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4678 var = *slot;
4679 gcc_assert (var->n_var_parts == 1);
4680 }
4681
4682 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4683 loc; loc = *locp)
4684 {
4685 rtx old_loc = loc->loc;
4686 if (GET_CODE (old_loc) == VALUE)
4687 {
4688 location_chain mem_node
4689 = find_mem_expr_in_1pdv (decl, loc->loc,
4690 shared_hash_htab (set->vars));
4691
4692 /* ??? This picks up only one out of multiple MEMs that
4693 refer to the same variable. Do we ever need to be
4694 concerned about dealing with more than one, or, given
4695 that they should all map to the same variable
4696 location, their addresses will have been merged and
4697 they will be regarded as equivalent? */
4698 if (mem_node)
4699 {
4700 loc->loc = mem_node->loc;
4701 loc->set_src = mem_node->set_src;
4702 loc->init = MIN (loc->init, mem_node->init);
4703 }
4704 }
4705
4706 if (GET_CODE (loc->loc) != MEM
4707 || (MEM_EXPR (loc->loc) == decl
4708 && INT_MEM_OFFSET (loc->loc) == 0)
4709 || !mem_dies_at_call (loc->loc))
4710 {
4711 if (old_loc != loc->loc && emit_notes)
4712 {
4713 if (old_loc == var->var_part[0].cur_loc)
4714 {
4715 changed = true;
4716 var->var_part[0].cur_loc = NULL;
4717 }
4718 }
4719 locp = &loc->next;
4720 continue;
4721 }
4722
4723 if (emit_notes)
4724 {
4725 if (old_loc == var->var_part[0].cur_loc)
4726 {
4727 changed = true;
4728 var->var_part[0].cur_loc = NULL;
4729 }
4730 }
4731 *locp = loc->next;
4732 pool_free (loc_chain_pool, loc);
4733 }
4734
4735 if (!var->var_part[0].loc_chain)
4736 {
4737 var->n_var_parts--;
4738 changed = true;
4739 }
4740 if (changed)
4741 variable_was_changed (var, set);
4742 }
4743
4744 return 1;
4745 }
4746
4747 /* Remove all MEMs from the location list of a hash table entry for a
4748 value. */
4749
4750 int
4751 dataflow_set_remove_mem_locs (variable_def **slot, dataflow_set *set)
4752 {
4753 variable var = *slot;
4754
4755 if (var->onepart == ONEPART_VALUE)
4756 {
4757 location_chain loc, *locp;
4758 bool changed = false;
4759 rtx cur_loc;
4760
4761 gcc_assert (var->n_var_parts == 1);
4762
4763 if (shared_var_p (var, set->vars))
4764 {
4765 for (loc = var->var_part[0].loc_chain; loc; loc = loc->next)
4766 if (GET_CODE (loc->loc) == MEM
4767 && mem_dies_at_call (loc->loc))
4768 break;
4769
4770 if (!loc)
4771 return 1;
4772
4773 slot = unshare_variable (set, slot, var, VAR_INIT_STATUS_UNKNOWN);
4774 var = *slot;
4775 gcc_assert (var->n_var_parts == 1);
4776 }
4777
4778 if (VAR_LOC_1PAUX (var))
4779 cur_loc = VAR_LOC_FROM (var);
4780 else
4781 cur_loc = var->var_part[0].cur_loc;
4782
4783 for (locp = &var->var_part[0].loc_chain, loc = *locp;
4784 loc; loc = *locp)
4785 {
4786 if (GET_CODE (loc->loc) != MEM
4787 || !mem_dies_at_call (loc->loc))
4788 {
4789 locp = &loc->next;
4790 continue;
4791 }
4792
4793 *locp = loc->next;
4794 /* If we have deleted the location which was last emitted
4795 we have to emit new location so add the variable to set
4796 of changed variables. */
4797 if (cur_loc == loc->loc)
4798 {
4799 changed = true;
4800 var->var_part[0].cur_loc = NULL;
4801 if (VAR_LOC_1PAUX (var))
4802 VAR_LOC_FROM (var) = NULL;
4803 }
4804 pool_free (loc_chain_pool, loc);
4805 }
4806
4807 if (!var->var_part[0].loc_chain)
4808 {
4809 var->n_var_parts--;
4810 changed = true;
4811 }
4812 if (changed)
4813 variable_was_changed (var, set);
4814 }
4815
4816 return 1;
4817 }
4818
4819 /* Remove all variable-location information about call-clobbered
4820 registers, as well as associations between MEMs and VALUEs. */
4821
4822 static void
4823 dataflow_set_clear_at_call (dataflow_set *set)
4824 {
4825 unsigned int r;
4826 hard_reg_set_iterator hrsi;
4827
4828 EXECUTE_IF_SET_IN_HARD_REG_SET (regs_invalidated_by_call, 0, r, hrsi)
4829 var_regno_delete (set, r);
4830
4831 if (MAY_HAVE_DEBUG_INSNS)
4832 {
4833 set->traversed_vars = set->vars;
4834 shared_hash_htab (set->vars)
4835 .traverse <dataflow_set *, dataflow_set_preserve_mem_locs> (set);
4836 set->traversed_vars = set->vars;
4837 shared_hash_htab (set->vars)
4838 .traverse <dataflow_set *, dataflow_set_remove_mem_locs> (set);
4839 set->traversed_vars = NULL;
4840 }
4841 }
4842
4843 static bool
4844 variable_part_different_p (variable_part *vp1, variable_part *vp2)
4845 {
4846 location_chain lc1, lc2;
4847
4848 for (lc1 = vp1->loc_chain; lc1; lc1 = lc1->next)
4849 {
4850 for (lc2 = vp2->loc_chain; lc2; lc2 = lc2->next)
4851 {
4852 if (REG_P (lc1->loc) && REG_P (lc2->loc))
4853 {
4854 if (REGNO (lc1->loc) == REGNO (lc2->loc))
4855 break;
4856 }
4857 if (rtx_equal_p (lc1->loc, lc2->loc))
4858 break;
4859 }
4860 if (!lc2)
4861 return true;
4862 }
4863 return false;
4864 }
4865
4866 /* Return true if one-part variables VAR1 and VAR2 are different.
4867 They must be in canonical order. */
4868
4869 static bool
4870 onepart_variable_different_p (variable var1, variable var2)
4871 {
4872 location_chain lc1, lc2;
4873
4874 if (var1 == var2)
4875 return false;
4876
4877 gcc_assert (var1->n_var_parts == 1
4878 && var2->n_var_parts == 1);
4879
4880 lc1 = var1->var_part[0].loc_chain;
4881 lc2 = var2->var_part[0].loc_chain;
4882
4883 gcc_assert (lc1 && lc2);
4884
4885 while (lc1 && lc2)
4886 {
4887 if (loc_cmp (lc1->loc, lc2->loc))
4888 return true;
4889 lc1 = lc1->next;
4890 lc2 = lc2->next;
4891 }
4892
4893 return lc1 != lc2;
4894 }
4895
4896 /* Return true if variables VAR1 and VAR2 are different. */
4897
4898 static bool
4899 variable_different_p (variable var1, variable var2)
4900 {
4901 int i;
4902
4903 if (var1 == var2)
4904 return false;
4905
4906 if (var1->onepart != var2->onepart)
4907 return true;
4908
4909 if (var1->n_var_parts != var2->n_var_parts)
4910 return true;
4911
4912 if (var1->onepart && var1->n_var_parts)
4913 {
4914 gcc_checking_assert (dv_as_opaque (var1->dv) == dv_as_opaque (var2->dv)
4915 && var1->n_var_parts == 1);
4916 /* One-part values have locations in a canonical order. */
4917 return onepart_variable_different_p (var1, var2);
4918 }
4919
4920 for (i = 0; i < var1->n_var_parts; i++)
4921 {
4922 if (VAR_PART_OFFSET (var1, i) != VAR_PART_OFFSET (var2, i))
4923 return true;
4924 if (variable_part_different_p (&var1->var_part[i], &var2->var_part[i]))
4925 return true;
4926 if (variable_part_different_p (&var2->var_part[i], &var1->var_part[i]))
4927 return true;
4928 }
4929 return false;
4930 }
4931
4932 /* Return true if dataflow sets OLD_SET and NEW_SET differ. */
4933
4934 static bool
4935 dataflow_set_different (dataflow_set *old_set, dataflow_set *new_set)
4936 {
4937 variable_iterator_type hi;
4938 variable var1;
4939
4940 if (old_set->vars == new_set->vars)
4941 return false;
4942
4943 if (shared_hash_htab (old_set->vars).elements ()
4944 != shared_hash_htab (new_set->vars).elements ())
4945 return true;
4946
4947 FOR_EACH_HASH_TABLE_ELEMENT (shared_hash_htab (old_set->vars),
4948 var1, variable, hi)
4949 {
4950 variable_table_type htab = shared_hash_htab (new_set->vars);
4951 variable var2 = htab.find_with_hash (var1->dv, dv_htab_hash (var1->dv));
4952 if (!var2)
4953 {
4954 if (dump_file && (dump_flags & TDF_DETAILS))
4955 {
4956 fprintf (dump_file, "dataflow difference found: removal of:\n");
4957 dump_var (var1);
4958 }
4959 return true;
4960 }
4961
4962 if (variable_different_p (var1, var2))
4963 {
4964 if (dump_file && (dump_flags & TDF_DETAILS))
4965 {
4966 fprintf (dump_file, "dataflow difference found: "
4967 "old and new follow:\n");
4968 dump_var (var1);
4969 dump_var (var2);
4970 }
4971 return true;
4972 }
4973 }
4974
4975 /* No need to traverse the second hashtab, if both have the same number
4976 of elements and the second one had all entries found in the first one,
4977 then it can't have any extra entries. */
4978 return false;
4979 }
4980
4981 /* Free the contents of dataflow set SET. */
4982
4983 static void
4984 dataflow_set_destroy (dataflow_set *set)
4985 {
4986 int i;
4987
4988 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
4989 attrs_list_clear (&set->regs[i]);
4990
4991 shared_hash_destroy (set->vars);
4992 set->vars = NULL;
4993 }
4994
4995 /* Return true if RTL X contains a SYMBOL_REF. */
4996
4997 static bool
4998 contains_symbol_ref (rtx x)
4999 {
5000 const char *fmt;
5001 RTX_CODE code;
5002 int i;
5003
5004 if (!x)
5005 return false;
5006
5007 code = GET_CODE (x);
5008 if (code == SYMBOL_REF)
5009 return true;
5010
5011 fmt = GET_RTX_FORMAT (code);
5012 for (i = GET_RTX_LENGTH (code) - 1; i >= 0; i--)
5013 {
5014 if (fmt[i] == 'e')
5015 {
5016 if (contains_symbol_ref (XEXP (x, i)))
5017 return true;
5018 }
5019 else if (fmt[i] == 'E')
5020 {
5021 int j;
5022 for (j = 0; j < XVECLEN (x, i); j++)
5023 if (contains_symbol_ref (XVECEXP (x, i, j)))
5024 return true;
5025 }
5026 }
5027
5028 return false;
5029 }
5030
5031 /* Shall EXPR be tracked? */
5032
5033 static bool
5034 track_expr_p (tree expr, bool need_rtl)
5035 {
5036 rtx decl_rtl;
5037 tree realdecl;
5038
5039 if (TREE_CODE (expr) == DEBUG_EXPR_DECL)
5040 return DECL_RTL_SET_P (expr);
5041
5042 /* If EXPR is not a parameter or a variable do not track it. */
5043 if (TREE_CODE (expr) != VAR_DECL && TREE_CODE (expr) != PARM_DECL)
5044 return 0;
5045
5046 /* It also must have a name... */
5047 if (!DECL_NAME (expr) && need_rtl)
5048 return 0;
5049
5050 /* ... and a RTL assigned to it. */
5051 decl_rtl = DECL_RTL_IF_SET (expr);
5052 if (!decl_rtl && need_rtl)
5053 return 0;
5054
5055 /* If this expression is really a debug alias of some other declaration, we
5056 don't need to track this expression if the ultimate declaration is
5057 ignored. */
5058 realdecl = expr;
5059 if (TREE_CODE (realdecl) == VAR_DECL && DECL_HAS_DEBUG_EXPR_P (realdecl))
5060 {
5061 realdecl = DECL_DEBUG_EXPR (realdecl);
5062 if (!DECL_P (realdecl))
5063 {
5064 if (handled_component_p (realdecl)
5065 || (TREE_CODE (realdecl) == MEM_REF
5066 && TREE_CODE (TREE_OPERAND (realdecl, 0)) == ADDR_EXPR))
5067 {
5068 HOST_WIDE_INT bitsize, bitpos, maxsize;
5069 tree innerdecl
5070 = get_ref_base_and_extent (realdecl, &bitpos, &bitsize,
5071 &maxsize);
5072 if (!DECL_P (innerdecl)
5073 || DECL_IGNORED_P (innerdecl)
5074 /* Do not track declarations for parts of tracked parameters
5075 since we want to track them as a whole instead. */
5076 || (TREE_CODE (innerdecl) == PARM_DECL
5077 && DECL_MODE (innerdecl) != BLKmode
5078 && TREE_CODE (TREE_TYPE (innerdecl)) != UNION_TYPE)
5079 || TREE_STATIC (innerdecl)
5080 || bitsize <= 0
5081 || bitpos + bitsize > 256
5082 || bitsize != maxsize)
5083 return 0;
5084 else
5085 realdecl = expr;
5086 }
5087 else
5088 return 0;
5089 }
5090 }
5091
5092 /* Do not track EXPR if REALDECL it should be ignored for debugging
5093 purposes. */
5094 if (DECL_IGNORED_P (realdecl))
5095 return 0;
5096
5097 /* Do not track global variables until we are able to emit correct location
5098 list for them. */
5099 if (TREE_STATIC (realdecl))
5100 return 0;
5101
5102 /* When the EXPR is a DECL for alias of some variable (see example)
5103 the TREE_STATIC flag is not used. Disable tracking all DECLs whose
5104 DECL_RTL contains SYMBOL_REF.
5105
5106 Example:
5107 extern char **_dl_argv_internal __attribute__ ((alias ("_dl_argv")));
5108 char **_dl_argv;
5109 */
5110 if (decl_rtl && MEM_P (decl_rtl)
5111 && contains_symbol_ref (XEXP (decl_rtl, 0)))
5112 return 0;
5113
5114 /* If RTX is a memory it should not be very large (because it would be
5115 an array or struct). */
5116 if (decl_rtl && MEM_P (decl_rtl))
5117 {
5118 /* Do not track structures and arrays. */
5119 if (GET_MODE (decl_rtl) == BLKmode
5120 || AGGREGATE_TYPE_P (TREE_TYPE (realdecl)))
5121 return 0;
5122 if (MEM_SIZE_KNOWN_P (decl_rtl)
5123 && MEM_SIZE (decl_rtl) > MAX_VAR_PARTS)
5124 return 0;
5125 }
5126
5127 DECL_CHANGED (expr) = 0;
5128 DECL_CHANGED (realdecl) = 0;
5129 return 1;
5130 }
5131
5132 /* Determine whether a given LOC refers to the same variable part as
5133 EXPR+OFFSET. */
5134
5135 static bool
5136 same_variable_part_p (rtx loc, tree expr, HOST_WIDE_INT offset)
5137 {
5138 tree expr2;
5139 HOST_WIDE_INT offset2;
5140
5141 if (! DECL_P (expr))
5142 return false;
5143
5144 if (REG_P (loc))
5145 {
5146 expr2 = REG_EXPR (loc);
5147 offset2 = REG_OFFSET (loc);
5148 }
5149 else if (MEM_P (loc))
5150 {
5151 expr2 = MEM_EXPR (loc);
5152 offset2 = INT_MEM_OFFSET (loc);
5153 }
5154 else
5155 return false;
5156
5157 if (! expr2 || ! DECL_P (expr2))
5158 return false;
5159
5160 expr = var_debug_decl (expr);
5161 expr2 = var_debug_decl (expr2);
5162
5163 return (expr == expr2 && offset == offset2);
5164 }
5165
5166 /* LOC is a REG or MEM that we would like to track if possible.
5167 If EXPR is null, we don't know what expression LOC refers to,
5168 otherwise it refers to EXPR + OFFSET. STORE_REG_P is true if
5169 LOC is an lvalue register.
5170
5171 Return true if EXPR is nonnull and if LOC, or some lowpart of it,
5172 is something we can track. When returning true, store the mode of
5173 the lowpart we can track in *MODE_OUT (if nonnull) and its offset
5174 from EXPR in *OFFSET_OUT (if nonnull). */
5175
5176 static bool
5177 track_loc_p (rtx loc, tree expr, HOST_WIDE_INT offset, bool store_reg_p,
5178 enum machine_mode *mode_out, HOST_WIDE_INT *offset_out)
5179 {
5180 enum machine_mode mode;
5181
5182 if (expr == NULL || !track_expr_p (expr, true))
5183 return false;
5184
5185 /* If REG was a paradoxical subreg, its REG_ATTRS will describe the
5186 whole subreg, but only the old inner part is really relevant. */
5187 mode = GET_MODE (loc);
5188 if (REG_P (loc) && !HARD_REGISTER_NUM_P (ORIGINAL_REGNO (loc)))
5189 {
5190 enum machine_mode pseudo_mode;
5191
5192 pseudo_mode = PSEUDO_REGNO_MODE (ORIGINAL_REGNO (loc));
5193 if (GET_MODE_SIZE (mode) > GET_MODE_SIZE (pseudo_mode))
5194 {
5195 offset += byte_lowpart_offset (pseudo_mode, mode);
5196 mode = pseudo_mode;
5197 }
5198 }
5199
5200 /* If LOC is a paradoxical lowpart of EXPR, refer to EXPR itself.
5201 Do the same if we are storing to a register and EXPR occupies
5202 the whole of register LOC; in that case, the whole of EXPR is
5203 being changed. We exclude complex modes from the second case
5204 because the real and imaginary parts are represented as separate
5205 pseudo registers, even if the whole complex value fits into one
5206 hard register. */
5207 if ((GET_MODE_SIZE (mode) > GET_MODE_SIZE (DECL_MODE (expr))
5208 || (store_reg_p
5209 && !COMPLEX_MODE_P (DECL_MODE (expr))
5210 && hard_regno_nregs[REGNO (loc)][DECL_MODE (expr)] == 1))
5211 && offset + byte_lowpart_offset (DECL_MODE (expr), mode) == 0)
5212 {
5213 mode = DECL_MODE (expr);
5214 offset = 0;
5215 }
5216
5217 if (offset < 0 || offset >= MAX_VAR_PARTS)
5218 return false;
5219
5220 if (mode_out)
5221 *mode_out = mode;
5222 if (offset_out)
5223 *offset_out = offset;
5224 return true;
5225 }
5226
5227 /* Return the MODE lowpart of LOC, or null if LOC is not something we
5228 want to track. When returning nonnull, make sure that the attributes
5229 on the returned value are updated. */
5230
5231 static rtx
5232 var_lowpart (enum machine_mode mode, rtx loc)
5233 {
5234 unsigned int offset, reg_offset, regno;
5235
5236 if (GET_MODE (loc) == mode)
5237 return loc;
5238
5239 if (!REG_P (loc) && !MEM_P (loc))
5240 return NULL;
5241
5242 offset = byte_lowpart_offset (mode, GET_MODE (loc));
5243
5244 if (MEM_P (loc))
5245 return adjust_address_nv (loc, mode, offset);
5246
5247 reg_offset = subreg_lowpart_offset (mode, GET_MODE (loc));
5248 regno = REGNO (loc) + subreg_regno_offset (REGNO (loc), GET_MODE (loc),
5249 reg_offset, mode);
5250 return gen_rtx_REG_offset (loc, mode, regno, offset);
5251 }
5252
5253 /* Carry information about uses and stores while walking rtx. */
5254
5255 struct count_use_info
5256 {
5257 /* The insn where the RTX is. */
5258 rtx insn;
5259
5260 /* The basic block where insn is. */
5261 basic_block bb;
5262
5263 /* The array of n_sets sets in the insn, as determined by cselib. */
5264 struct cselib_set *sets;
5265 int n_sets;
5266
5267 /* True if we're counting stores, false otherwise. */
5268 bool store_p;
5269 };
5270
5271 /* Find a VALUE corresponding to X. */
5272
5273 static inline cselib_val *
5274 find_use_val (rtx x, enum machine_mode mode, struct count_use_info *cui)
5275 {
5276 int i;
5277
5278 if (cui->sets)
5279 {
5280 /* This is called after uses are set up and before stores are
5281 processed by cselib, so it's safe to look up srcs, but not
5282 dsts. So we look up expressions that appear in srcs or in
5283 dest expressions, but we search the sets array for dests of
5284 stores. */
5285 if (cui->store_p)
5286 {
5287 /* Some targets represent memset and memcpy patterns
5288 by (set (mem:BLK ...) (reg:[QHSD]I ...)) or
5289 (set (mem:BLK ...) (const_int ...)) or
5290 (set (mem:BLK ...) (mem:BLK ...)). Don't return anything
5291 in that case, otherwise we end up with mode mismatches. */
5292 if (mode == BLKmode && MEM_P (x))
5293 return NULL;
5294 for (i = 0; i < cui->n_sets; i++)
5295 if (cui->sets[i].dest == x)
5296 return cui->sets[i].src_elt;
5297 }
5298 else
5299 return cselib_lookup (x, mode, 0, VOIDmode);
5300 }
5301
5302 return NULL;
5303 }
5304
5305 /* Replace all registers and addresses in an expression with VALUE
5306 expressions that map back to them, unless the expression is a
5307 register. If no mapping is or can be performed, returns NULL. */
5308
5309 static rtx
5310 replace_expr_with_values (rtx loc)
5311 {
5312 if (REG_P (loc) || GET_CODE (loc) == ENTRY_VALUE)
5313 return NULL;
5314 else if (MEM_P (loc))
5315 {
5316 cselib_val *addr = cselib_lookup (XEXP (loc, 0),
5317 get_address_mode (loc), 0,
5318 GET_MODE (loc));
5319 if (addr)
5320 return replace_equiv_address_nv (loc, addr->val_rtx);
5321 else
5322 return NULL;
5323 }
5324 else
5325 return cselib_subst_to_values (loc, VOIDmode);
5326 }
5327
5328 /* Return true if *X is a DEBUG_EXPR. Usable as an argument to
5329 for_each_rtx to tell whether there are any DEBUG_EXPRs within
5330 RTX. */
5331
5332 static int
5333 rtx_debug_expr_p (rtx *x, void *data ATTRIBUTE_UNUSED)
5334 {
5335 rtx loc = *x;
5336
5337 return GET_CODE (loc) == DEBUG_EXPR;
5338 }
5339
5340 /* Determine what kind of micro operation to choose for a USE. Return
5341 MO_CLOBBER if no micro operation is to be generated. */
5342
5343 static enum micro_operation_type
5344 use_type (rtx loc, struct count_use_info *cui, enum machine_mode *modep)
5345 {
5346 tree expr;
5347
5348 if (cui && cui->sets)
5349 {
5350 if (GET_CODE (loc) == VAR_LOCATION)
5351 {
5352 if (track_expr_p (PAT_VAR_LOCATION_DECL (loc), false))
5353 {
5354 rtx ploc = PAT_VAR_LOCATION_LOC (loc);
5355 if (! VAR_LOC_UNKNOWN_P (ploc))
5356 {
5357 cselib_val *val = cselib_lookup (ploc, GET_MODE (loc), 1,
5358 VOIDmode);
5359
5360 /* ??? flag_float_store and volatile mems are never
5361 given values, but we could in theory use them for
5362 locations. */
5363 gcc_assert (val || 1);
5364 }
5365 return MO_VAL_LOC;
5366 }
5367 else
5368 return MO_CLOBBER;
5369 }
5370
5371 if (REG_P (loc) || MEM_P (loc))
5372 {
5373 if (modep)
5374 *modep = GET_MODE (loc);
5375 if (cui->store_p)
5376 {
5377 if (REG_P (loc)
5378 || (find_use_val (loc, GET_MODE (loc), cui)
5379 && cselib_lookup (XEXP (loc, 0),
5380 get_address_mode (loc), 0,
5381 GET_MODE (loc))))
5382 return MO_VAL_SET;
5383 }
5384 else
5385 {
5386 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5387
5388 if (val && !cselib_preserved_value_p (val))
5389 return MO_VAL_USE;
5390 }
5391 }
5392 }
5393
5394 if (REG_P (loc))
5395 {
5396 gcc_assert (REGNO (loc) < FIRST_PSEUDO_REGISTER);
5397
5398 if (loc == cfa_base_rtx)
5399 return MO_CLOBBER;
5400 expr = REG_EXPR (loc);
5401
5402 if (!expr)
5403 return MO_USE_NO_VAR;
5404 else if (target_for_debug_bind (var_debug_decl (expr)))
5405 return MO_CLOBBER;
5406 else if (track_loc_p (loc, expr, REG_OFFSET (loc),
5407 false, modep, NULL))
5408 return MO_USE;
5409 else
5410 return MO_USE_NO_VAR;
5411 }
5412 else if (MEM_P (loc))
5413 {
5414 expr = MEM_EXPR (loc);
5415
5416 if (!expr)
5417 return MO_CLOBBER;
5418 else if (target_for_debug_bind (var_debug_decl (expr)))
5419 return MO_CLOBBER;
5420 else if (track_loc_p (loc, expr, INT_MEM_OFFSET (loc),
5421 false, modep, NULL)
5422 /* Multi-part variables shouldn't refer to one-part
5423 variable names such as VALUEs (never happens) or
5424 DEBUG_EXPRs (only happens in the presence of debug
5425 insns). */
5426 && (!MAY_HAVE_DEBUG_INSNS
5427 || !for_each_rtx (&XEXP (loc, 0), rtx_debug_expr_p, NULL)))
5428 return MO_USE;
5429 else
5430 return MO_CLOBBER;
5431 }
5432
5433 return MO_CLOBBER;
5434 }
5435
5436 /* Log to OUT information about micro-operation MOPT involving X in
5437 INSN of BB. */
5438
5439 static inline void
5440 log_op_type (rtx x, basic_block bb, rtx insn,
5441 enum micro_operation_type mopt, FILE *out)
5442 {
5443 fprintf (out, "bb %i op %i insn %i %s ",
5444 bb->index, VTI (bb)->mos.length (),
5445 INSN_UID (insn), micro_operation_type_name[mopt]);
5446 print_inline_rtx (out, x, 2);
5447 fputc ('\n', out);
5448 }
5449
5450 /* Tell whether the CONCAT used to holds a VALUE and its location
5451 needs value resolution, i.e., an attempt of mapping the location
5452 back to other incoming values. */
5453 #define VAL_NEEDS_RESOLUTION(x) \
5454 (RTL_FLAG_CHECK1 ("VAL_NEEDS_RESOLUTION", (x), CONCAT)->volatil)
5455 /* Whether the location in the CONCAT is a tracked expression, that
5456 should also be handled like a MO_USE. */
5457 #define VAL_HOLDS_TRACK_EXPR(x) \
5458 (RTL_FLAG_CHECK1 ("VAL_HOLDS_TRACK_EXPR", (x), CONCAT)->used)
5459 /* Whether the location in the CONCAT should be handled like a MO_COPY
5460 as well. */
5461 #define VAL_EXPR_IS_COPIED(x) \
5462 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_COPIED", (x), CONCAT)->jump)
5463 /* Whether the location in the CONCAT should be handled like a
5464 MO_CLOBBER as well. */
5465 #define VAL_EXPR_IS_CLOBBERED(x) \
5466 (RTL_FLAG_CHECK1 ("VAL_EXPR_IS_CLOBBERED", (x), CONCAT)->unchanging)
5467
5468 /* All preserved VALUEs. */
5469 static vec<rtx> preserved_values;
5470
5471 /* Ensure VAL is preserved and remember it in a vector for vt_emit_notes. */
5472
5473 static void
5474 preserve_value (cselib_val *val)
5475 {
5476 cselib_preserve_value (val);
5477 preserved_values.safe_push (val->val_rtx);
5478 }
5479
5480 /* Helper function for MO_VAL_LOC handling. Return non-zero if
5481 any rtxes not suitable for CONST use not replaced by VALUEs
5482 are discovered. */
5483
5484 static int
5485 non_suitable_const (rtx *x, void *data ATTRIBUTE_UNUSED)
5486 {
5487 if (*x == NULL_RTX)
5488 return 0;
5489
5490 switch (GET_CODE (*x))
5491 {
5492 case REG:
5493 case DEBUG_EXPR:
5494 case PC:
5495 case SCRATCH:
5496 case CC0:
5497 case ASM_INPUT:
5498 case ASM_OPERANDS:
5499 return 1;
5500 case MEM:
5501 return !MEM_READONLY_P (*x);
5502 default:
5503 return 0;
5504 }
5505 }
5506
5507 /* Add uses (register and memory references) LOC which will be tracked
5508 to VTI (bb)->mos. INSN is instruction which the LOC is part of. */
5509
5510 static int
5511 add_uses (rtx *ploc, void *data)
5512 {
5513 rtx loc = *ploc;
5514 enum machine_mode mode = VOIDmode;
5515 struct count_use_info *cui = (struct count_use_info *)data;
5516 enum micro_operation_type type = use_type (loc, cui, &mode);
5517
5518 if (type != MO_CLOBBER)
5519 {
5520 basic_block bb = cui->bb;
5521 micro_operation mo;
5522
5523 mo.type = type;
5524 mo.u.loc = type == MO_USE ? var_lowpart (mode, loc) : loc;
5525 mo.insn = cui->insn;
5526
5527 if (type == MO_VAL_LOC)
5528 {
5529 rtx oloc = loc;
5530 rtx vloc = PAT_VAR_LOCATION_LOC (oloc);
5531 cselib_val *val;
5532
5533 gcc_assert (cui->sets);
5534
5535 if (MEM_P (vloc)
5536 && !REG_P (XEXP (vloc, 0))
5537 && !MEM_P (XEXP (vloc, 0)))
5538 {
5539 rtx mloc = vloc;
5540 enum machine_mode address_mode = get_address_mode (mloc);
5541 cselib_val *val
5542 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5543 GET_MODE (mloc));
5544
5545 if (val && !cselib_preserved_value_p (val))
5546 preserve_value (val);
5547 }
5548
5549 if (CONSTANT_P (vloc)
5550 && (GET_CODE (vloc) != CONST
5551 || for_each_rtx (&vloc, non_suitable_const, NULL)))
5552 /* For constants don't look up any value. */;
5553 else if (!VAR_LOC_UNKNOWN_P (vloc) && !unsuitable_loc (vloc)
5554 && (val = find_use_val (vloc, GET_MODE (oloc), cui)))
5555 {
5556 enum machine_mode mode2;
5557 enum micro_operation_type type2;
5558 rtx nloc = NULL;
5559 bool resolvable = REG_P (vloc) || MEM_P (vloc);
5560
5561 if (resolvable)
5562 nloc = replace_expr_with_values (vloc);
5563
5564 if (nloc)
5565 {
5566 oloc = shallow_copy_rtx (oloc);
5567 PAT_VAR_LOCATION_LOC (oloc) = nloc;
5568 }
5569
5570 oloc = gen_rtx_CONCAT (mode, val->val_rtx, oloc);
5571
5572 type2 = use_type (vloc, 0, &mode2);
5573
5574 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5575 || type2 == MO_CLOBBER);
5576
5577 if (type2 == MO_CLOBBER
5578 && !cselib_preserved_value_p (val))
5579 {
5580 VAL_NEEDS_RESOLUTION (oloc) = resolvable;
5581 preserve_value (val);
5582 }
5583 }
5584 else if (!VAR_LOC_UNKNOWN_P (vloc))
5585 {
5586 oloc = shallow_copy_rtx (oloc);
5587 PAT_VAR_LOCATION_LOC (oloc) = gen_rtx_UNKNOWN_VAR_LOC ();
5588 }
5589
5590 mo.u.loc = oloc;
5591 }
5592 else if (type == MO_VAL_USE)
5593 {
5594 enum machine_mode mode2 = VOIDmode;
5595 enum micro_operation_type type2;
5596 cselib_val *val = find_use_val (loc, GET_MODE (loc), cui);
5597 rtx vloc, oloc = loc, nloc;
5598
5599 gcc_assert (cui->sets);
5600
5601 if (MEM_P (oloc)
5602 && !REG_P (XEXP (oloc, 0))
5603 && !MEM_P (XEXP (oloc, 0)))
5604 {
5605 rtx mloc = oloc;
5606 enum machine_mode address_mode = get_address_mode (mloc);
5607 cselib_val *val
5608 = cselib_lookup (XEXP (mloc, 0), address_mode, 0,
5609 GET_MODE (mloc));
5610
5611 if (val && !cselib_preserved_value_p (val))
5612 preserve_value (val);
5613 }
5614
5615 type2 = use_type (loc, 0, &mode2);
5616
5617 gcc_assert (type2 == MO_USE || type2 == MO_USE_NO_VAR
5618 || type2 == MO_CLOBBER);
5619
5620 if (type2 == MO_USE)
5621 vloc = var_lowpart (mode2, loc);
5622 else
5623 vloc = oloc;
5624
5625 /* The loc of a MO_VAL_USE may have two forms:
5626
5627 (concat val src): val is at src, a value-based
5628 representation.
5629
5630 (concat (concat val use) src): same as above, with use as
5631 the MO_USE tracked value, if it differs from src.
5632
5633 */
5634
5635 gcc_checking_assert (REG_P (loc) || MEM_P (loc));
5636 nloc = replace_expr_with_values (loc);
5637 if (!nloc)
5638 nloc = oloc;
5639
5640 if (vloc != nloc)
5641 oloc = gen_rtx_CONCAT (mode2, val->val_rtx, vloc);
5642 else
5643 oloc = val->val_rtx;
5644
5645 mo.u.loc = gen_rtx_CONCAT (mode, oloc, nloc);
5646
5647 if (type2 == MO_USE)
5648 VAL_HOLDS_TRACK_EXPR (mo.u.loc) = 1;
5649 if (!cselib_preserved_value_p (val))
5650 {
5651 VAL_NEEDS_RESOLUTION (mo.u.loc) = 1;
5652 preserve_value (val);
5653 }
5654 }
5655 else
5656 gcc_assert (type == MO_USE || type == MO_USE_NO_VAR);
5657
5658 if (dump_file && (dump_flags & TDF_DETAILS))
5659 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
5660 VTI (bb)->mos.safe_push (mo);
5661 }
5662
5663 return 0;
5664 }
5665
5666 /* Helper function for finding all uses of REG/MEM in X in insn INSN. */
5667
5668 static void
5669 add_uses_1 (rtx *x, void *cui)
5670 {
5671 for_each_rtx (x, add_uses, cui);
5672 }
5673
5674 /* This is the value used during expansion of locations. We want it
5675 to be unbounded, so that variables expanded deep in a recursion
5676 nest are fully evaluated, so that their values are cached
5677 correctly. We avoid recursion cycles through other means, and we
5678 don't unshare RTL, so excess complexity is not a problem. */
5679 #define EXPR_DEPTH (INT_MAX)
5680 /* We use this to keep too-complex expressions from being emitted as
5681 location notes, and then to debug information. Users can trade
5682 compile time for ridiculously complex expressions, although they're
5683 seldom useful, and they may often have to be discarded as not
5684 representable anyway. */
5685 #define EXPR_USE_DEPTH (PARAM_VALUE (PARAM_MAX_VARTRACK_EXPR_DEPTH))
5686
5687 /* Attempt to reverse the EXPR operation in the debug info and record
5688 it in the cselib table. Say for reg1 = reg2 + 6 even when reg2 is
5689 no longer live we can express its value as VAL - 6. */
5690
5691 static void
5692 reverse_op (rtx val, const_rtx expr, rtx insn)
5693 {
5694 rtx src, arg, ret;
5695 cselib_val *v;
5696 struct elt_loc_list *l;
5697 enum rtx_code code;
5698 int count;
5699
5700 if (GET_CODE (expr) != SET)
5701 return;
5702
5703 if (!REG_P (SET_DEST (expr)) || GET_MODE (val) != GET_MODE (SET_DEST (expr)))
5704 return;
5705
5706 src = SET_SRC (expr);
5707 switch (GET_CODE (src))
5708 {
5709 case PLUS:
5710 case MINUS:
5711 case XOR:
5712 case NOT:
5713 case NEG:
5714 if (!REG_P (XEXP (src, 0)))
5715 return;
5716 break;
5717 case SIGN_EXTEND:
5718 case ZERO_EXTEND:
5719 if (!REG_P (XEXP (src, 0)) && !MEM_P (XEXP (src, 0)))
5720 return;
5721 break;
5722 default:
5723 return;
5724 }
5725
5726 if (!SCALAR_INT_MODE_P (GET_MODE (src)) || XEXP (src, 0) == cfa_base_rtx)
5727 return;
5728
5729 v = cselib_lookup (XEXP (src, 0), GET_MODE (XEXP (src, 0)), 0, VOIDmode);
5730 if (!v || !cselib_preserved_value_p (v))
5731 return;
5732
5733 /* Use canonical V to avoid creating multiple redundant expressions
5734 for different VALUES equivalent to V. */
5735 v = canonical_cselib_val (v);
5736
5737 /* Adding a reverse op isn't useful if V already has an always valid
5738 location. Ignore ENTRY_VALUE, while it is always constant, we should
5739 prefer non-ENTRY_VALUE locations whenever possible. */
5740 for (l = v->locs, count = 0; l; l = l->next, count++)
5741 if (CONSTANT_P (l->loc)
5742 && (GET_CODE (l->loc) != CONST || !references_value_p (l->loc, 0)))
5743 return;
5744 /* Avoid creating too large locs lists. */
5745 else if (count == PARAM_VALUE (PARAM_MAX_VARTRACK_REVERSE_OP_SIZE))
5746 return;
5747
5748 switch (GET_CODE (src))
5749 {
5750 case NOT:
5751 case NEG:
5752 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5753 return;
5754 ret = gen_rtx_fmt_e (GET_CODE (src), GET_MODE (val), val);
5755 break;
5756 case SIGN_EXTEND:
5757 case ZERO_EXTEND:
5758 ret = gen_lowpart_SUBREG (GET_MODE (v->val_rtx), val);
5759 break;
5760 case XOR:
5761 code = XOR;
5762 goto binary;
5763 case PLUS:
5764 code = MINUS;
5765 goto binary;
5766 case MINUS:
5767 code = PLUS;
5768 goto binary;
5769 binary:
5770 if (GET_MODE (v->val_rtx) != GET_MODE (val))
5771 return;
5772 arg = XEXP (src, 1);
5773 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5774 {
5775 arg = cselib_expand_value_rtx (arg, scratch_regs, 5);
5776 if (arg == NULL_RTX)
5777 return;
5778 if (!CONST_INT_P (arg) && GET_CODE (arg) != SYMBOL_REF)
5779 return;
5780 }
5781 ret = simplify_gen_binary (code, GET_MODE (val), val, arg);
5782 if (ret == val)
5783 /* Ensure ret isn't VALUE itself (which can happen e.g. for
5784 (plus (reg1) (reg2)) when reg2 is known to be 0), as that
5785 breaks a lot of routines during var-tracking. */
5786 ret = gen_rtx_fmt_ee (PLUS, GET_MODE (val), val, const0_rtx);
5787 break;
5788 default:
5789 gcc_unreachable ();
5790 }
5791
5792 cselib_add_permanent_equiv (v, ret, insn);
5793 }
5794
5795 /* Add stores (register and memory references) LOC which will be tracked
5796 to VTI (bb)->mos. EXPR is the RTL expression containing the store.
5797 CUIP->insn is instruction which the LOC is part of. */
5798
5799 static void
5800 add_stores (rtx loc, const_rtx expr, void *cuip)
5801 {
5802 enum machine_mode mode = VOIDmode, mode2;
5803 struct count_use_info *cui = (struct count_use_info *)cuip;
5804 basic_block bb = cui->bb;
5805 micro_operation mo;
5806 rtx oloc = loc, nloc, src = NULL;
5807 enum micro_operation_type type = use_type (loc, cui, &mode);
5808 bool track_p = false;
5809 cselib_val *v;
5810 bool resolve, preserve;
5811
5812 if (type == MO_CLOBBER)
5813 return;
5814
5815 mode2 = mode;
5816
5817 if (REG_P (loc))
5818 {
5819 gcc_assert (loc != cfa_base_rtx);
5820 if ((GET_CODE (expr) == CLOBBER && type != MO_VAL_SET)
5821 || !(track_p = use_type (loc, NULL, &mode2) == MO_USE)
5822 || GET_CODE (expr) == CLOBBER)
5823 {
5824 mo.type = MO_CLOBBER;
5825 mo.u.loc = loc;
5826 if (GET_CODE (expr) == SET
5827 && SET_DEST (expr) == loc
5828 && !unsuitable_loc (SET_SRC (expr))
5829 && find_use_val (loc, mode, cui))
5830 {
5831 gcc_checking_assert (type == MO_VAL_SET);
5832 mo.u.loc = gen_rtx_SET (VOIDmode, loc, SET_SRC (expr));
5833 }
5834 }
5835 else
5836 {
5837 if (GET_CODE (expr) == SET
5838 && SET_DEST (expr) == loc
5839 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5840 src = var_lowpart (mode2, SET_SRC (expr));
5841 loc = var_lowpart (mode2, loc);
5842
5843 if (src == NULL)
5844 {
5845 mo.type = MO_SET;
5846 mo.u.loc = loc;
5847 }
5848 else
5849 {
5850 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5851 if (same_variable_part_p (src, REG_EXPR (loc), REG_OFFSET (loc)))
5852 {
5853 /* If this is an instruction copying (part of) a parameter
5854 passed by invisible reference to its register location,
5855 pretend it's a SET so that the initial memory location
5856 is discarded, as the parameter register can be reused
5857 for other purposes and we do not track locations based
5858 on generic registers. */
5859 if (MEM_P (src)
5860 && REG_EXPR (loc)
5861 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5862 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5863 && MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5864 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0)
5865 != arg_pointer_rtx)
5866 mo.type = MO_SET;
5867 else
5868 mo.type = MO_COPY;
5869 }
5870 else
5871 mo.type = MO_SET;
5872 mo.u.loc = xexpr;
5873 }
5874 }
5875 mo.insn = cui->insn;
5876 }
5877 else if (MEM_P (loc)
5878 && ((track_p = use_type (loc, NULL, &mode2) == MO_USE)
5879 || cui->sets))
5880 {
5881 if (MEM_P (loc) && type == MO_VAL_SET
5882 && !REG_P (XEXP (loc, 0))
5883 && !MEM_P (XEXP (loc, 0)))
5884 {
5885 rtx mloc = loc;
5886 enum machine_mode address_mode = get_address_mode (mloc);
5887 cselib_val *val = cselib_lookup (XEXP (mloc, 0),
5888 address_mode, 0,
5889 GET_MODE (mloc));
5890
5891 if (val && !cselib_preserved_value_p (val))
5892 preserve_value (val);
5893 }
5894
5895 if (GET_CODE (expr) == CLOBBER || !track_p)
5896 {
5897 mo.type = MO_CLOBBER;
5898 mo.u.loc = track_p ? var_lowpart (mode2, loc) : loc;
5899 }
5900 else
5901 {
5902 if (GET_CODE (expr) == SET
5903 && SET_DEST (expr) == loc
5904 && GET_CODE (SET_SRC (expr)) != ASM_OPERANDS)
5905 src = var_lowpart (mode2, SET_SRC (expr));
5906 loc = var_lowpart (mode2, loc);
5907
5908 if (src == NULL)
5909 {
5910 mo.type = MO_SET;
5911 mo.u.loc = loc;
5912 }
5913 else
5914 {
5915 rtx xexpr = gen_rtx_SET (VOIDmode, loc, src);
5916 if (same_variable_part_p (SET_SRC (xexpr),
5917 MEM_EXPR (loc),
5918 INT_MEM_OFFSET (loc)))
5919 mo.type = MO_COPY;
5920 else
5921 mo.type = MO_SET;
5922 mo.u.loc = xexpr;
5923 }
5924 }
5925 mo.insn = cui->insn;
5926 }
5927 else
5928 return;
5929
5930 if (type != MO_VAL_SET)
5931 goto log_and_return;
5932
5933 v = find_use_val (oloc, mode, cui);
5934
5935 if (!v)
5936 goto log_and_return;
5937
5938 resolve = preserve = !cselib_preserved_value_p (v);
5939
5940 /* We cannot track values for multiple-part variables, so we track only
5941 locations for tracked parameters passed either by invisible reference
5942 or directly in multiple locations. */
5943 if (track_p
5944 && REG_P (loc)
5945 && REG_EXPR (loc)
5946 && TREE_CODE (REG_EXPR (loc)) == PARM_DECL
5947 && DECL_MODE (REG_EXPR (loc)) != BLKmode
5948 && TREE_CODE (TREE_TYPE (REG_EXPR (loc))) != UNION_TYPE
5949 && ((MEM_P (DECL_INCOMING_RTL (REG_EXPR (loc)))
5950 && XEXP (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) != arg_pointer_rtx)
5951 || (GET_CODE (DECL_INCOMING_RTL (REG_EXPR (loc))) == PARALLEL
5952 && XVECLEN (DECL_INCOMING_RTL (REG_EXPR (loc)), 0) > 1)))
5953 {
5954 /* Although we don't use the value here, it could be used later by the
5955 mere virtue of its existence as the operand of the reverse operation
5956 that gave rise to it (typically extension/truncation). Make sure it
5957 is preserved as required by vt_expand_var_loc_chain. */
5958 if (preserve)
5959 preserve_value (v);
5960 goto log_and_return;
5961 }
5962
5963 if (loc == stack_pointer_rtx
5964 && hard_frame_pointer_adjustment != -1
5965 && preserve)
5966 cselib_set_value_sp_based (v);
5967
5968 nloc = replace_expr_with_values (oloc);
5969 if (nloc)
5970 oloc = nloc;
5971
5972 if (GET_CODE (PATTERN (cui->insn)) == COND_EXEC)
5973 {
5974 cselib_val *oval = cselib_lookup (oloc, GET_MODE (oloc), 0, VOIDmode);
5975
5976 gcc_assert (oval != v);
5977 gcc_assert (REG_P (oloc) || MEM_P (oloc));
5978
5979 if (oval && !cselib_preserved_value_p (oval))
5980 {
5981 micro_operation moa;
5982
5983 preserve_value (oval);
5984
5985 moa.type = MO_VAL_USE;
5986 moa.u.loc = gen_rtx_CONCAT (mode, oval->val_rtx, oloc);
5987 VAL_NEEDS_RESOLUTION (moa.u.loc) = 1;
5988 moa.insn = cui->insn;
5989
5990 if (dump_file && (dump_flags & TDF_DETAILS))
5991 log_op_type (moa.u.loc, cui->bb, cui->insn,
5992 moa.type, dump_file);
5993 VTI (bb)->mos.safe_push (moa);
5994 }
5995
5996 resolve = false;
5997 }
5998 else if (resolve && GET_CODE (mo.u.loc) == SET)
5999 {
6000 if (REG_P (SET_SRC (expr)) || MEM_P (SET_SRC (expr)))
6001 nloc = replace_expr_with_values (SET_SRC (expr));
6002 else
6003 nloc = NULL_RTX;
6004
6005 /* Avoid the mode mismatch between oexpr and expr. */
6006 if (!nloc && mode != mode2)
6007 {
6008 nloc = SET_SRC (expr);
6009 gcc_assert (oloc == SET_DEST (expr));
6010 }
6011
6012 if (nloc && nloc != SET_SRC (mo.u.loc))
6013 oloc = gen_rtx_SET (GET_MODE (mo.u.loc), oloc, nloc);
6014 else
6015 {
6016 if (oloc == SET_DEST (mo.u.loc))
6017 /* No point in duplicating. */
6018 oloc = mo.u.loc;
6019 if (!REG_P (SET_SRC (mo.u.loc)))
6020 resolve = false;
6021 }
6022 }
6023 else if (!resolve)
6024 {
6025 if (GET_CODE (mo.u.loc) == SET
6026 && oloc == SET_DEST (mo.u.loc))
6027 /* No point in duplicating. */
6028 oloc = mo.u.loc;
6029 }
6030 else
6031 resolve = false;
6032
6033 loc = gen_rtx_CONCAT (mode, v->val_rtx, oloc);
6034
6035 if (mo.u.loc != oloc)
6036 loc = gen_rtx_CONCAT (GET_MODE (mo.u.loc), loc, mo.u.loc);
6037
6038 /* The loc of a MO_VAL_SET may have various forms:
6039
6040 (concat val dst): dst now holds val
6041
6042 (concat val (set dst src)): dst now holds val, copied from src
6043
6044 (concat (concat val dstv) dst): dst now holds val; dstv is dst
6045 after replacing mems and non-top-level regs with values.
6046
6047 (concat (concat val dstv) (set dst src)): dst now holds val,
6048 copied from src. dstv is a value-based representation of dst, if
6049 it differs from dst. If resolution is needed, src is a REG, and
6050 its mode is the same as that of val.
6051
6052 (concat (concat val (set dstv srcv)) (set dst src)): src
6053 copied to dst, holding val. dstv and srcv are value-based
6054 representations of dst and src, respectively.
6055
6056 */
6057
6058 if (GET_CODE (PATTERN (cui->insn)) != COND_EXEC)
6059 reverse_op (v->val_rtx, expr, cui->insn);
6060
6061 mo.u.loc = loc;
6062
6063 if (track_p)
6064 VAL_HOLDS_TRACK_EXPR (loc) = 1;
6065 if (preserve)
6066 {
6067 VAL_NEEDS_RESOLUTION (loc) = resolve;
6068 preserve_value (v);
6069 }
6070 if (mo.type == MO_CLOBBER)
6071 VAL_EXPR_IS_CLOBBERED (loc) = 1;
6072 if (mo.type == MO_COPY)
6073 VAL_EXPR_IS_COPIED (loc) = 1;
6074
6075 mo.type = MO_VAL_SET;
6076
6077 log_and_return:
6078 if (dump_file && (dump_flags & TDF_DETAILS))
6079 log_op_type (mo.u.loc, cui->bb, cui->insn, mo.type, dump_file);
6080 VTI (bb)->mos.safe_push (mo);
6081 }
6082
6083 /* Arguments to the call. */
6084 static rtx call_arguments;
6085
6086 /* Compute call_arguments. */
6087
6088 static void
6089 prepare_call_arguments (basic_block bb, rtx insn)
6090 {
6091 rtx link, x, call;
6092 rtx prev, cur, next;
6093 rtx this_arg = NULL_RTX;
6094 tree type = NULL_TREE, t, fndecl = NULL_TREE;
6095 tree obj_type_ref = NULL_TREE;
6096 CUMULATIVE_ARGS args_so_far_v;
6097 cumulative_args_t args_so_far;
6098
6099 memset (&args_so_far_v, 0, sizeof (args_so_far_v));
6100 args_so_far = pack_cumulative_args (&args_so_far_v);
6101 call = get_call_rtx_from (insn);
6102 if (call)
6103 {
6104 if (GET_CODE (XEXP (XEXP (call, 0), 0)) == SYMBOL_REF)
6105 {
6106 rtx symbol = XEXP (XEXP (call, 0), 0);
6107 if (SYMBOL_REF_DECL (symbol))
6108 fndecl = SYMBOL_REF_DECL (symbol);
6109 }
6110 if (fndecl == NULL_TREE)
6111 fndecl = MEM_EXPR (XEXP (call, 0));
6112 if (fndecl
6113 && TREE_CODE (TREE_TYPE (fndecl)) != FUNCTION_TYPE
6114 && TREE_CODE (TREE_TYPE (fndecl)) != METHOD_TYPE)
6115 fndecl = NULL_TREE;
6116 if (fndecl && TYPE_ARG_TYPES (TREE_TYPE (fndecl)))
6117 type = TREE_TYPE (fndecl);
6118 if (fndecl && TREE_CODE (fndecl) != FUNCTION_DECL)
6119 {
6120 if (TREE_CODE (fndecl) == INDIRECT_REF
6121 && TREE_CODE (TREE_OPERAND (fndecl, 0)) == OBJ_TYPE_REF)
6122 obj_type_ref = TREE_OPERAND (fndecl, 0);
6123 fndecl = NULL_TREE;
6124 }
6125 if (type)
6126 {
6127 for (t = TYPE_ARG_TYPES (type); t && t != void_list_node;
6128 t = TREE_CHAIN (t))
6129 if (TREE_CODE (TREE_VALUE (t)) == REFERENCE_TYPE
6130 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_VALUE (t))))
6131 break;
6132 if ((t == NULL || t == void_list_node) && obj_type_ref == NULL_TREE)
6133 type = NULL;
6134 else
6135 {
6136 int nargs ATTRIBUTE_UNUSED = list_length (TYPE_ARG_TYPES (type));
6137 link = CALL_INSN_FUNCTION_USAGE (insn);
6138 #ifndef PCC_STATIC_STRUCT_RETURN
6139 if (aggregate_value_p (TREE_TYPE (type), type)
6140 && targetm.calls.struct_value_rtx (type, 0) == 0)
6141 {
6142 tree struct_addr = build_pointer_type (TREE_TYPE (type));
6143 enum machine_mode mode = TYPE_MODE (struct_addr);
6144 rtx reg;
6145 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6146 nargs + 1);
6147 reg = targetm.calls.function_arg (args_so_far, mode,
6148 struct_addr, true);
6149 targetm.calls.function_arg_advance (args_so_far, mode,
6150 struct_addr, true);
6151 if (reg == NULL_RTX)
6152 {
6153 for (; link; link = XEXP (link, 1))
6154 if (GET_CODE (XEXP (link, 0)) == USE
6155 && MEM_P (XEXP (XEXP (link, 0), 0)))
6156 {
6157 link = XEXP (link, 1);
6158 break;
6159 }
6160 }
6161 }
6162 else
6163 #endif
6164 INIT_CUMULATIVE_ARGS (args_so_far_v, type, NULL_RTX, fndecl,
6165 nargs);
6166 if (obj_type_ref && TYPE_ARG_TYPES (type) != void_list_node)
6167 {
6168 enum machine_mode mode;
6169 t = TYPE_ARG_TYPES (type);
6170 mode = TYPE_MODE (TREE_VALUE (t));
6171 this_arg = targetm.calls.function_arg (args_so_far, mode,
6172 TREE_VALUE (t), true);
6173 if (this_arg && !REG_P (this_arg))
6174 this_arg = NULL_RTX;
6175 else if (this_arg == NULL_RTX)
6176 {
6177 for (; link; link = XEXP (link, 1))
6178 if (GET_CODE (XEXP (link, 0)) == USE
6179 && MEM_P (XEXP (XEXP (link, 0), 0)))
6180 {
6181 this_arg = XEXP (XEXP (link, 0), 0);
6182 break;
6183 }
6184 }
6185 }
6186 }
6187 }
6188 }
6189 t = type ? TYPE_ARG_TYPES (type) : NULL_TREE;
6190
6191 for (link = CALL_INSN_FUNCTION_USAGE (insn); link; link = XEXP (link, 1))
6192 if (GET_CODE (XEXP (link, 0)) == USE)
6193 {
6194 rtx item = NULL_RTX;
6195 x = XEXP (XEXP (link, 0), 0);
6196 if (GET_MODE (link) == VOIDmode
6197 || GET_MODE (link) == BLKmode
6198 || (GET_MODE (link) != GET_MODE (x)
6199 && (GET_MODE_CLASS (GET_MODE (link)) != MODE_INT
6200 || GET_MODE_CLASS (GET_MODE (x)) != MODE_INT)))
6201 /* Can't do anything for these, if the original type mode
6202 isn't known or can't be converted. */;
6203 else if (REG_P (x))
6204 {
6205 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6206 if (val && cselib_preserved_value_p (val))
6207 item = val->val_rtx;
6208 else if (GET_MODE_CLASS (GET_MODE (x)) == MODE_INT)
6209 {
6210 enum machine_mode mode = GET_MODE (x);
6211
6212 while ((mode = GET_MODE_WIDER_MODE (mode)) != VOIDmode
6213 && GET_MODE_BITSIZE (mode) <= BITS_PER_WORD)
6214 {
6215 rtx reg = simplify_subreg (mode, x, GET_MODE (x), 0);
6216
6217 if (reg == NULL_RTX || !REG_P (reg))
6218 continue;
6219 val = cselib_lookup (reg, mode, 0, VOIDmode);
6220 if (val && cselib_preserved_value_p (val))
6221 {
6222 item = val->val_rtx;
6223 break;
6224 }
6225 }
6226 }
6227 }
6228 else if (MEM_P (x))
6229 {
6230 rtx mem = x;
6231 cselib_val *val;
6232
6233 if (!frame_pointer_needed)
6234 {
6235 struct adjust_mem_data amd;
6236 amd.mem_mode = VOIDmode;
6237 amd.stack_adjust = -VTI (bb)->out.stack_adjust;
6238 amd.side_effects = NULL_RTX;
6239 amd.store = true;
6240 mem = simplify_replace_fn_rtx (mem, NULL_RTX, adjust_mems,
6241 &amd);
6242 gcc_assert (amd.side_effects == NULL_RTX);
6243 }
6244 val = cselib_lookup (mem, GET_MODE (mem), 0, VOIDmode);
6245 if (val && cselib_preserved_value_p (val))
6246 item = val->val_rtx;
6247 else if (GET_MODE_CLASS (GET_MODE (mem)) != MODE_INT)
6248 {
6249 /* For non-integer stack argument see also if they weren't
6250 initialized by integers. */
6251 enum machine_mode imode = int_mode_for_mode (GET_MODE (mem));
6252 if (imode != GET_MODE (mem) && imode != BLKmode)
6253 {
6254 val = cselib_lookup (adjust_address_nv (mem, imode, 0),
6255 imode, 0, VOIDmode);
6256 if (val && cselib_preserved_value_p (val))
6257 item = lowpart_subreg (GET_MODE (x), val->val_rtx,
6258 imode);
6259 }
6260 }
6261 }
6262 if (item)
6263 {
6264 rtx x2 = x;
6265 if (GET_MODE (item) != GET_MODE (link))
6266 item = lowpart_subreg (GET_MODE (link), item, GET_MODE (item));
6267 if (GET_MODE (x2) != GET_MODE (link))
6268 x2 = lowpart_subreg (GET_MODE (link), x2, GET_MODE (x2));
6269 item = gen_rtx_CONCAT (GET_MODE (link), x2, item);
6270 call_arguments
6271 = gen_rtx_EXPR_LIST (VOIDmode, item, call_arguments);
6272 }
6273 if (t && t != void_list_node)
6274 {
6275 tree argtype = TREE_VALUE (t);
6276 enum machine_mode mode = TYPE_MODE (argtype);
6277 rtx reg;
6278 if (pass_by_reference (&args_so_far_v, mode, argtype, true))
6279 {
6280 argtype = build_pointer_type (argtype);
6281 mode = TYPE_MODE (argtype);
6282 }
6283 reg = targetm.calls.function_arg (args_so_far, mode,
6284 argtype, true);
6285 if (TREE_CODE (argtype) == REFERENCE_TYPE
6286 && INTEGRAL_TYPE_P (TREE_TYPE (argtype))
6287 && reg
6288 && REG_P (reg)
6289 && GET_MODE (reg) == mode
6290 && GET_MODE_CLASS (mode) == MODE_INT
6291 && REG_P (x)
6292 && REGNO (x) == REGNO (reg)
6293 && GET_MODE (x) == mode
6294 && item)
6295 {
6296 enum machine_mode indmode
6297 = TYPE_MODE (TREE_TYPE (argtype));
6298 rtx mem = gen_rtx_MEM (indmode, x);
6299 cselib_val *val = cselib_lookup (mem, indmode, 0, VOIDmode);
6300 if (val && cselib_preserved_value_p (val))
6301 {
6302 item = gen_rtx_CONCAT (indmode, mem, val->val_rtx);
6303 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6304 call_arguments);
6305 }
6306 else
6307 {
6308 struct elt_loc_list *l;
6309 tree initial;
6310
6311 /* Try harder, when passing address of a constant
6312 pool integer it can be easily read back. */
6313 item = XEXP (item, 1);
6314 if (GET_CODE (item) == SUBREG)
6315 item = SUBREG_REG (item);
6316 gcc_assert (GET_CODE (item) == VALUE);
6317 val = CSELIB_VAL_PTR (item);
6318 for (l = val->locs; l; l = l->next)
6319 if (GET_CODE (l->loc) == SYMBOL_REF
6320 && TREE_CONSTANT_POOL_ADDRESS_P (l->loc)
6321 && SYMBOL_REF_DECL (l->loc)
6322 && DECL_INITIAL (SYMBOL_REF_DECL (l->loc)))
6323 {
6324 initial = DECL_INITIAL (SYMBOL_REF_DECL (l->loc));
6325 if (tree_fits_shwi_p (initial))
6326 {
6327 item = GEN_INT (tree_to_shwi (initial));
6328 item = gen_rtx_CONCAT (indmode, mem, item);
6329 call_arguments
6330 = gen_rtx_EXPR_LIST (VOIDmode, item,
6331 call_arguments);
6332 }
6333 break;
6334 }
6335 }
6336 }
6337 targetm.calls.function_arg_advance (args_so_far, mode,
6338 argtype, true);
6339 t = TREE_CHAIN (t);
6340 }
6341 }
6342
6343 /* Add debug arguments. */
6344 if (fndecl
6345 && TREE_CODE (fndecl) == FUNCTION_DECL
6346 && DECL_HAS_DEBUG_ARGS_P (fndecl))
6347 {
6348 vec<tree, va_gc> **debug_args = decl_debug_args_lookup (fndecl);
6349 if (debug_args)
6350 {
6351 unsigned int ix;
6352 tree param;
6353 for (ix = 0; vec_safe_iterate (*debug_args, ix, &param); ix += 2)
6354 {
6355 rtx item;
6356 tree dtemp = (**debug_args)[ix + 1];
6357 enum machine_mode mode = DECL_MODE (dtemp);
6358 item = gen_rtx_DEBUG_PARAMETER_REF (mode, param);
6359 item = gen_rtx_CONCAT (mode, item, DECL_RTL_KNOWN_SET (dtemp));
6360 call_arguments = gen_rtx_EXPR_LIST (VOIDmode, item,
6361 call_arguments);
6362 }
6363 }
6364 }
6365
6366 /* Reverse call_arguments chain. */
6367 prev = NULL_RTX;
6368 for (cur = call_arguments; cur; cur = next)
6369 {
6370 next = XEXP (cur, 1);
6371 XEXP (cur, 1) = prev;
6372 prev = cur;
6373 }
6374 call_arguments = prev;
6375
6376 x = get_call_rtx_from (insn);
6377 if (x)
6378 {
6379 x = XEXP (XEXP (x, 0), 0);
6380 if (GET_CODE (x) == SYMBOL_REF)
6381 /* Don't record anything. */;
6382 else if (CONSTANT_P (x))
6383 {
6384 x = gen_rtx_CONCAT (GET_MODE (x) == VOIDmode ? Pmode : GET_MODE (x),
6385 pc_rtx, x);
6386 call_arguments
6387 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6388 }
6389 else
6390 {
6391 cselib_val *val = cselib_lookup (x, GET_MODE (x), 0, VOIDmode);
6392 if (val && cselib_preserved_value_p (val))
6393 {
6394 x = gen_rtx_CONCAT (GET_MODE (x), pc_rtx, val->val_rtx);
6395 call_arguments
6396 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6397 }
6398 }
6399 }
6400 if (this_arg)
6401 {
6402 enum machine_mode mode
6403 = TYPE_MODE (TREE_TYPE (OBJ_TYPE_REF_EXPR (obj_type_ref)));
6404 rtx clobbered = gen_rtx_MEM (mode, this_arg);
6405 HOST_WIDE_INT token
6406 = tree_to_shwi (OBJ_TYPE_REF_TOKEN (obj_type_ref));
6407 if (token)
6408 clobbered = plus_constant (mode, clobbered,
6409 token * GET_MODE_SIZE (mode));
6410 clobbered = gen_rtx_MEM (mode, clobbered);
6411 x = gen_rtx_CONCAT (mode, gen_rtx_CLOBBER (VOIDmode, pc_rtx), clobbered);
6412 call_arguments
6413 = gen_rtx_EXPR_LIST (VOIDmode, x, call_arguments);
6414 }
6415 }
6416
6417 /* Callback for cselib_record_sets_hook, that records as micro
6418 operations uses and stores in an insn after cselib_record_sets has
6419 analyzed the sets in an insn, but before it modifies the stored
6420 values in the internal tables, unless cselib_record_sets doesn't
6421 call it directly (perhaps because we're not doing cselib in the
6422 first place, in which case sets and n_sets will be 0). */
6423
6424 static void
6425 add_with_sets (rtx insn, struct cselib_set *sets, int n_sets)
6426 {
6427 basic_block bb = BLOCK_FOR_INSN (insn);
6428 int n1, n2;
6429 struct count_use_info cui;
6430 micro_operation *mos;
6431
6432 cselib_hook_called = true;
6433
6434 cui.insn = insn;
6435 cui.bb = bb;
6436 cui.sets = sets;
6437 cui.n_sets = n_sets;
6438
6439 n1 = VTI (bb)->mos.length ();
6440 cui.store_p = false;
6441 note_uses (&PATTERN (insn), add_uses_1, &cui);
6442 n2 = VTI (bb)->mos.length () - 1;
6443 mos = VTI (bb)->mos.address ();
6444
6445 /* Order the MO_USEs to be before MO_USE_NO_VARs and MO_VAL_USE, and
6446 MO_VAL_LOC last. */
6447 while (n1 < n2)
6448 {
6449 while (n1 < n2 && mos[n1].type == MO_USE)
6450 n1++;
6451 while (n1 < n2 && mos[n2].type != MO_USE)
6452 n2--;
6453 if (n1 < n2)
6454 {
6455 micro_operation sw;
6456
6457 sw = mos[n1];
6458 mos[n1] = mos[n2];
6459 mos[n2] = sw;
6460 }
6461 }
6462
6463 n2 = VTI (bb)->mos.length () - 1;
6464 while (n1 < n2)
6465 {
6466 while (n1 < n2 && mos[n1].type != MO_VAL_LOC)
6467 n1++;
6468 while (n1 < n2 && mos[n2].type == MO_VAL_LOC)
6469 n2--;
6470 if (n1 < n2)
6471 {
6472 micro_operation sw;
6473
6474 sw = mos[n1];
6475 mos[n1] = mos[n2];
6476 mos[n2] = sw;
6477 }
6478 }
6479
6480 if (CALL_P (insn))
6481 {
6482 micro_operation mo;
6483
6484 mo.type = MO_CALL;
6485 mo.insn = insn;
6486 mo.u.loc = call_arguments;
6487 call_arguments = NULL_RTX;
6488
6489 if (dump_file && (dump_flags & TDF_DETAILS))
6490 log_op_type (PATTERN (insn), bb, insn, mo.type, dump_file);
6491 VTI (bb)->mos.safe_push (mo);
6492 }
6493
6494 n1 = VTI (bb)->mos.length ();
6495 /* This will record NEXT_INSN (insn), such that we can
6496 insert notes before it without worrying about any
6497 notes that MO_USEs might emit after the insn. */
6498 cui.store_p = true;
6499 note_stores (PATTERN (insn), add_stores, &cui);
6500 n2 = VTI (bb)->mos.length () - 1;
6501 mos = VTI (bb)->mos.address ();
6502
6503 /* Order the MO_VAL_USEs first (note_stores does nothing
6504 on DEBUG_INSNs, so there are no MO_VAL_LOCs from this
6505 insn), then MO_CLOBBERs, then MO_SET/MO_COPY/MO_VAL_SET. */
6506 while (n1 < n2)
6507 {
6508 while (n1 < n2 && mos[n1].type == MO_VAL_USE)
6509 n1++;
6510 while (n1 < n2 && mos[n2].type != MO_VAL_USE)
6511 n2--;
6512 if (n1 < n2)
6513 {
6514 micro_operation sw;
6515
6516 sw = mos[n1];
6517 mos[n1] = mos[n2];
6518 mos[n2] = sw;
6519 }
6520 }
6521
6522 n2 = VTI (bb)->mos.length () - 1;
6523 while (n1 < n2)
6524 {
6525 while (n1 < n2 && mos[n1].type == MO_CLOBBER)
6526 n1++;
6527 while (n1 < n2 && mos[n2].type != MO_CLOBBER)
6528 n2--;
6529 if (n1 < n2)
6530 {
6531 micro_operation sw;
6532
6533 sw = mos[n1];
6534 mos[n1] = mos[n2];
6535 mos[n2] = sw;
6536 }
6537 }
6538 }
6539
6540 static enum var_init_status
6541 find_src_status (dataflow_set *in, rtx src)
6542 {
6543 tree decl = NULL_TREE;
6544 enum var_init_status status = VAR_INIT_STATUS_UNINITIALIZED;
6545
6546 if (! flag_var_tracking_uninit)
6547 status = VAR_INIT_STATUS_INITIALIZED;
6548
6549 if (src && REG_P (src))
6550 decl = var_debug_decl (REG_EXPR (src));
6551 else if (src && MEM_P (src))
6552 decl = var_debug_decl (MEM_EXPR (src));
6553
6554 if (src && decl)
6555 status = get_init_value (in, src, dv_from_decl (decl));
6556
6557 return status;
6558 }
6559
6560 /* SRC is the source of an assignment. Use SET to try to find what
6561 was ultimately assigned to SRC. Return that value if known,
6562 otherwise return SRC itself. */
6563
6564 static rtx
6565 find_src_set_src (dataflow_set *set, rtx src)
6566 {
6567 tree decl = NULL_TREE; /* The variable being copied around. */
6568 rtx set_src = NULL_RTX; /* The value for "decl" stored in "src". */
6569 variable var;
6570 location_chain nextp;
6571 int i;
6572 bool found;
6573
6574 if (src && REG_P (src))
6575 decl = var_debug_decl (REG_EXPR (src));
6576 else if (src && MEM_P (src))
6577 decl = var_debug_decl (MEM_EXPR (src));
6578
6579 if (src && decl)
6580 {
6581 decl_or_value dv = dv_from_decl (decl);
6582
6583 var = shared_hash_find (set->vars, dv);
6584 if (var)
6585 {
6586 found = false;
6587 for (i = 0; i < var->n_var_parts && !found; i++)
6588 for (nextp = var->var_part[i].loc_chain; nextp && !found;
6589 nextp = nextp->next)
6590 if (rtx_equal_p (nextp->loc, src))
6591 {
6592 set_src = nextp->set_src;
6593 found = true;
6594 }
6595
6596 }
6597 }
6598
6599 return set_src;
6600 }
6601
6602 /* Compute the changes of variable locations in the basic block BB. */
6603
6604 static bool
6605 compute_bb_dataflow (basic_block bb)
6606 {
6607 unsigned int i;
6608 micro_operation *mo;
6609 bool changed;
6610 dataflow_set old_out;
6611 dataflow_set *in = &VTI (bb)->in;
6612 dataflow_set *out = &VTI (bb)->out;
6613
6614 dataflow_set_init (&old_out);
6615 dataflow_set_copy (&old_out, out);
6616 dataflow_set_copy (out, in);
6617
6618 if (MAY_HAVE_DEBUG_INSNS)
6619 local_get_addr_cache = pointer_map_create ();
6620
6621 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
6622 {
6623 rtx insn = mo->insn;
6624
6625 switch (mo->type)
6626 {
6627 case MO_CALL:
6628 dataflow_set_clear_at_call (out);
6629 break;
6630
6631 case MO_USE:
6632 {
6633 rtx loc = mo->u.loc;
6634
6635 if (REG_P (loc))
6636 var_reg_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6637 else if (MEM_P (loc))
6638 var_mem_set (out, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
6639 }
6640 break;
6641
6642 case MO_VAL_LOC:
6643 {
6644 rtx loc = mo->u.loc;
6645 rtx val, vloc;
6646 tree var;
6647
6648 if (GET_CODE (loc) == CONCAT)
6649 {
6650 val = XEXP (loc, 0);
6651 vloc = XEXP (loc, 1);
6652 }
6653 else
6654 {
6655 val = NULL_RTX;
6656 vloc = loc;
6657 }
6658
6659 var = PAT_VAR_LOCATION_DECL (vloc);
6660
6661 clobber_variable_part (out, NULL_RTX,
6662 dv_from_decl (var), 0, NULL_RTX);
6663 if (val)
6664 {
6665 if (VAL_NEEDS_RESOLUTION (loc))
6666 val_resolve (out, val, PAT_VAR_LOCATION_LOC (vloc), insn);
6667 set_variable_part (out, val, dv_from_decl (var), 0,
6668 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6669 INSERT);
6670 }
6671 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
6672 set_variable_part (out, PAT_VAR_LOCATION_LOC (vloc),
6673 dv_from_decl (var), 0,
6674 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
6675 INSERT);
6676 }
6677 break;
6678
6679 case MO_VAL_USE:
6680 {
6681 rtx loc = mo->u.loc;
6682 rtx val, vloc, uloc;
6683
6684 vloc = uloc = XEXP (loc, 1);
6685 val = XEXP (loc, 0);
6686
6687 if (GET_CODE (val) == CONCAT)
6688 {
6689 uloc = XEXP (val, 1);
6690 val = XEXP (val, 0);
6691 }
6692
6693 if (VAL_NEEDS_RESOLUTION (loc))
6694 val_resolve (out, val, vloc, insn);
6695 else
6696 val_store (out, val, uloc, insn, false);
6697
6698 if (VAL_HOLDS_TRACK_EXPR (loc))
6699 {
6700 if (GET_CODE (uloc) == REG)
6701 var_reg_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6702 NULL);
6703 else if (GET_CODE (uloc) == MEM)
6704 var_mem_set (out, uloc, VAR_INIT_STATUS_UNINITIALIZED,
6705 NULL);
6706 }
6707 }
6708 break;
6709
6710 case MO_VAL_SET:
6711 {
6712 rtx loc = mo->u.loc;
6713 rtx val, vloc, uloc;
6714 rtx dstv, srcv;
6715
6716 vloc = loc;
6717 uloc = XEXP (vloc, 1);
6718 val = XEXP (vloc, 0);
6719 vloc = uloc;
6720
6721 if (GET_CODE (uloc) == SET)
6722 {
6723 dstv = SET_DEST (uloc);
6724 srcv = SET_SRC (uloc);
6725 }
6726 else
6727 {
6728 dstv = uloc;
6729 srcv = NULL;
6730 }
6731
6732 if (GET_CODE (val) == CONCAT)
6733 {
6734 dstv = vloc = XEXP (val, 1);
6735 val = XEXP (val, 0);
6736 }
6737
6738 if (GET_CODE (vloc) == SET)
6739 {
6740 srcv = SET_SRC (vloc);
6741
6742 gcc_assert (val != srcv);
6743 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
6744
6745 dstv = vloc = SET_DEST (vloc);
6746
6747 if (VAL_NEEDS_RESOLUTION (loc))
6748 val_resolve (out, val, srcv, insn);
6749 }
6750 else if (VAL_NEEDS_RESOLUTION (loc))
6751 {
6752 gcc_assert (GET_CODE (uloc) == SET
6753 && GET_CODE (SET_SRC (uloc)) == REG);
6754 val_resolve (out, val, SET_SRC (uloc), insn);
6755 }
6756
6757 if (VAL_HOLDS_TRACK_EXPR (loc))
6758 {
6759 if (VAL_EXPR_IS_CLOBBERED (loc))
6760 {
6761 if (REG_P (uloc))
6762 var_reg_delete (out, uloc, true);
6763 else if (MEM_P (uloc))
6764 {
6765 gcc_assert (MEM_P (dstv));
6766 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
6767 var_mem_delete (out, dstv, true);
6768 }
6769 }
6770 else
6771 {
6772 bool copied_p = VAL_EXPR_IS_COPIED (loc);
6773 rtx src = NULL, dst = uloc;
6774 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
6775
6776 if (GET_CODE (uloc) == SET)
6777 {
6778 src = SET_SRC (uloc);
6779 dst = SET_DEST (uloc);
6780 }
6781
6782 if (copied_p)
6783 {
6784 if (flag_var_tracking_uninit)
6785 {
6786 status = find_src_status (in, src);
6787
6788 if (status == VAR_INIT_STATUS_UNKNOWN)
6789 status = find_src_status (out, src);
6790 }
6791
6792 src = find_src_set_src (in, src);
6793 }
6794
6795 if (REG_P (dst))
6796 var_reg_delete_and_set (out, dst, !copied_p,
6797 status, srcv);
6798 else if (MEM_P (dst))
6799 {
6800 gcc_assert (MEM_P (dstv));
6801 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
6802 var_mem_delete_and_set (out, dstv, !copied_p,
6803 status, srcv);
6804 }
6805 }
6806 }
6807 else if (REG_P (uloc))
6808 var_regno_delete (out, REGNO (uloc));
6809 else if (MEM_P (uloc))
6810 {
6811 gcc_checking_assert (GET_CODE (vloc) == MEM);
6812 gcc_checking_assert (dstv == vloc);
6813 if (dstv != vloc)
6814 clobber_overlapping_mems (out, vloc);
6815 }
6816
6817 val_store (out, val, dstv, insn, true);
6818 }
6819 break;
6820
6821 case MO_SET:
6822 {
6823 rtx loc = mo->u.loc;
6824 rtx set_src = NULL;
6825
6826 if (GET_CODE (loc) == SET)
6827 {
6828 set_src = SET_SRC (loc);
6829 loc = SET_DEST (loc);
6830 }
6831
6832 if (REG_P (loc))
6833 var_reg_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6834 set_src);
6835 else if (MEM_P (loc))
6836 var_mem_delete_and_set (out, loc, true, VAR_INIT_STATUS_INITIALIZED,
6837 set_src);
6838 }
6839 break;
6840
6841 case MO_COPY:
6842 {
6843 rtx loc = mo->u.loc;
6844 enum var_init_status src_status;
6845 rtx set_src = NULL;
6846
6847 if (GET_CODE (loc) == SET)
6848 {
6849 set_src = SET_SRC (loc);
6850 loc = SET_DEST (loc);
6851 }
6852
6853 if (! flag_var_tracking_uninit)
6854 src_status = VAR_INIT_STATUS_INITIALIZED;
6855 else
6856 {
6857 src_status = find_src_status (in, set_src);
6858
6859 if (src_status == VAR_INIT_STATUS_UNKNOWN)
6860 src_status = find_src_status (out, set_src);
6861 }
6862
6863 set_src = find_src_set_src (in, set_src);
6864
6865 if (REG_P (loc))
6866 var_reg_delete_and_set (out, loc, false, src_status, set_src);
6867 else if (MEM_P (loc))
6868 var_mem_delete_and_set (out, loc, false, src_status, set_src);
6869 }
6870 break;
6871
6872 case MO_USE_NO_VAR:
6873 {
6874 rtx loc = mo->u.loc;
6875
6876 if (REG_P (loc))
6877 var_reg_delete (out, loc, false);
6878 else if (MEM_P (loc))
6879 var_mem_delete (out, loc, false);
6880 }
6881 break;
6882
6883 case MO_CLOBBER:
6884 {
6885 rtx loc = mo->u.loc;
6886
6887 if (REG_P (loc))
6888 var_reg_delete (out, loc, true);
6889 else if (MEM_P (loc))
6890 var_mem_delete (out, loc, true);
6891 }
6892 break;
6893
6894 case MO_ADJUST:
6895 out->stack_adjust += mo->u.adjust;
6896 break;
6897 }
6898 }
6899
6900 if (MAY_HAVE_DEBUG_INSNS)
6901 {
6902 pointer_map_destroy (local_get_addr_cache);
6903 local_get_addr_cache = NULL;
6904
6905 dataflow_set_equiv_regs (out);
6906 shared_hash_htab (out->vars)
6907 .traverse <dataflow_set *, canonicalize_values_mark> (out);
6908 shared_hash_htab (out->vars)
6909 .traverse <dataflow_set *, canonicalize_values_star> (out);
6910 #if ENABLE_CHECKING
6911 shared_hash_htab (out->vars)
6912 .traverse <dataflow_set *, canonicalize_loc_order_check> (out);
6913 #endif
6914 }
6915 changed = dataflow_set_different (&old_out, out);
6916 dataflow_set_destroy (&old_out);
6917 return changed;
6918 }
6919
6920 /* Find the locations of variables in the whole function. */
6921
6922 static bool
6923 vt_find_locations (void)
6924 {
6925 fibheap_t worklist, pending, fibheap_swap;
6926 sbitmap visited, in_worklist, in_pending, sbitmap_swap;
6927 basic_block bb;
6928 edge e;
6929 int *bb_order;
6930 int *rc_order;
6931 int i;
6932 int htabsz = 0;
6933 int htabmax = PARAM_VALUE (PARAM_MAX_VARTRACK_SIZE);
6934 bool success = true;
6935
6936 timevar_push (TV_VAR_TRACKING_DATAFLOW);
6937 /* Compute reverse completion order of depth first search of the CFG
6938 so that the data-flow runs faster. */
6939 rc_order = XNEWVEC (int, n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS);
6940 bb_order = XNEWVEC (int, last_basic_block_for_fn (cfun));
6941 pre_and_rev_post_order_compute (NULL, rc_order, false);
6942 for (i = 0; i < n_basic_blocks_for_fn (cfun) - NUM_FIXED_BLOCKS; i++)
6943 bb_order[rc_order[i]] = i;
6944 free (rc_order);
6945
6946 worklist = fibheap_new ();
6947 pending = fibheap_new ();
6948 visited = sbitmap_alloc (last_basic_block_for_fn (cfun));
6949 in_worklist = sbitmap_alloc (last_basic_block_for_fn (cfun));
6950 in_pending = sbitmap_alloc (last_basic_block_for_fn (cfun));
6951 bitmap_clear (in_worklist);
6952
6953 FOR_EACH_BB_FN (bb, cfun)
6954 fibheap_insert (pending, bb_order[bb->index], bb);
6955 bitmap_ones (in_pending);
6956
6957 while (success && !fibheap_empty (pending))
6958 {
6959 fibheap_swap = pending;
6960 pending = worklist;
6961 worklist = fibheap_swap;
6962 sbitmap_swap = in_pending;
6963 in_pending = in_worklist;
6964 in_worklist = sbitmap_swap;
6965
6966 bitmap_clear (visited);
6967
6968 while (!fibheap_empty (worklist))
6969 {
6970 bb = (basic_block) fibheap_extract_min (worklist);
6971 bitmap_clear_bit (in_worklist, bb->index);
6972 gcc_assert (!bitmap_bit_p (visited, bb->index));
6973 if (!bitmap_bit_p (visited, bb->index))
6974 {
6975 bool changed;
6976 edge_iterator ei;
6977 int oldinsz, oldoutsz;
6978
6979 bitmap_set_bit (visited, bb->index);
6980
6981 if (VTI (bb)->in.vars)
6982 {
6983 htabsz
6984 -= shared_hash_htab (VTI (bb)->in.vars).size ()
6985 + shared_hash_htab (VTI (bb)->out.vars).size ();
6986 oldinsz = shared_hash_htab (VTI (bb)->in.vars).elements ();
6987 oldoutsz = shared_hash_htab (VTI (bb)->out.vars).elements ();
6988 }
6989 else
6990 oldinsz = oldoutsz = 0;
6991
6992 if (MAY_HAVE_DEBUG_INSNS)
6993 {
6994 dataflow_set *in = &VTI (bb)->in, *first_out = NULL;
6995 bool first = true, adjust = false;
6996
6997 /* Calculate the IN set as the intersection of
6998 predecessor OUT sets. */
6999
7000 dataflow_set_clear (in);
7001 dst_can_be_shared = true;
7002
7003 FOR_EACH_EDGE (e, ei, bb->preds)
7004 if (!VTI (e->src)->flooded)
7005 gcc_assert (bb_order[bb->index]
7006 <= bb_order[e->src->index]);
7007 else if (first)
7008 {
7009 dataflow_set_copy (in, &VTI (e->src)->out);
7010 first_out = &VTI (e->src)->out;
7011 first = false;
7012 }
7013 else
7014 {
7015 dataflow_set_merge (in, &VTI (e->src)->out);
7016 adjust = true;
7017 }
7018
7019 if (adjust)
7020 {
7021 dataflow_post_merge_adjust (in, &VTI (bb)->permp);
7022 #if ENABLE_CHECKING
7023 /* Merge and merge_adjust should keep entries in
7024 canonical order. */
7025 shared_hash_htab (in->vars)
7026 .traverse <dataflow_set *,
7027 canonicalize_loc_order_check> (in);
7028 #endif
7029 if (dst_can_be_shared)
7030 {
7031 shared_hash_destroy (in->vars);
7032 in->vars = shared_hash_copy (first_out->vars);
7033 }
7034 }
7035
7036 VTI (bb)->flooded = true;
7037 }
7038 else
7039 {
7040 /* Calculate the IN set as union of predecessor OUT sets. */
7041 dataflow_set_clear (&VTI (bb)->in);
7042 FOR_EACH_EDGE (e, ei, bb->preds)
7043 dataflow_set_union (&VTI (bb)->in, &VTI (e->src)->out);
7044 }
7045
7046 changed = compute_bb_dataflow (bb);
7047 htabsz += shared_hash_htab (VTI (bb)->in.vars).size ()
7048 + shared_hash_htab (VTI (bb)->out.vars).size ();
7049
7050 if (htabmax && htabsz > htabmax)
7051 {
7052 if (MAY_HAVE_DEBUG_INSNS)
7053 inform (DECL_SOURCE_LOCATION (cfun->decl),
7054 "variable tracking size limit exceeded with "
7055 "-fvar-tracking-assignments, retrying without");
7056 else
7057 inform (DECL_SOURCE_LOCATION (cfun->decl),
7058 "variable tracking size limit exceeded");
7059 success = false;
7060 break;
7061 }
7062
7063 if (changed)
7064 {
7065 FOR_EACH_EDGE (e, ei, bb->succs)
7066 {
7067 if (e->dest == EXIT_BLOCK_PTR_FOR_FN (cfun))
7068 continue;
7069
7070 if (bitmap_bit_p (visited, e->dest->index))
7071 {
7072 if (!bitmap_bit_p (in_pending, e->dest->index))
7073 {
7074 /* Send E->DEST to next round. */
7075 bitmap_set_bit (in_pending, e->dest->index);
7076 fibheap_insert (pending,
7077 bb_order[e->dest->index],
7078 e->dest);
7079 }
7080 }
7081 else if (!bitmap_bit_p (in_worklist, e->dest->index))
7082 {
7083 /* Add E->DEST to current round. */
7084 bitmap_set_bit (in_worklist, e->dest->index);
7085 fibheap_insert (worklist, bb_order[e->dest->index],
7086 e->dest);
7087 }
7088 }
7089 }
7090
7091 if (dump_file)
7092 fprintf (dump_file,
7093 "BB %i: in %i (was %i), out %i (was %i), rem %i + %i, tsz %i\n",
7094 bb->index,
7095 (int)shared_hash_htab (VTI (bb)->in.vars).size (),
7096 oldinsz,
7097 (int)shared_hash_htab (VTI (bb)->out.vars).size (),
7098 oldoutsz,
7099 (int)worklist->nodes, (int)pending->nodes, htabsz);
7100
7101 if (dump_file && (dump_flags & TDF_DETAILS))
7102 {
7103 fprintf (dump_file, "BB %i IN:\n", bb->index);
7104 dump_dataflow_set (&VTI (bb)->in);
7105 fprintf (dump_file, "BB %i OUT:\n", bb->index);
7106 dump_dataflow_set (&VTI (bb)->out);
7107 }
7108 }
7109 }
7110 }
7111
7112 if (success && MAY_HAVE_DEBUG_INSNS)
7113 FOR_EACH_BB_FN (bb, cfun)
7114 gcc_assert (VTI (bb)->flooded);
7115
7116 free (bb_order);
7117 fibheap_delete (worklist);
7118 fibheap_delete (pending);
7119 sbitmap_free (visited);
7120 sbitmap_free (in_worklist);
7121 sbitmap_free (in_pending);
7122
7123 timevar_pop (TV_VAR_TRACKING_DATAFLOW);
7124 return success;
7125 }
7126
7127 /* Print the content of the LIST to dump file. */
7128
7129 static void
7130 dump_attrs_list (attrs list)
7131 {
7132 for (; list; list = list->next)
7133 {
7134 if (dv_is_decl_p (list->dv))
7135 print_mem_expr (dump_file, dv_as_decl (list->dv));
7136 else
7137 print_rtl_single (dump_file, dv_as_value (list->dv));
7138 fprintf (dump_file, "+" HOST_WIDE_INT_PRINT_DEC, list->offset);
7139 }
7140 fprintf (dump_file, "\n");
7141 }
7142
7143 /* Print the information about variable *SLOT to dump file. */
7144
7145 int
7146 dump_var_tracking_slot (variable_def **slot, void *data ATTRIBUTE_UNUSED)
7147 {
7148 variable var = *slot;
7149
7150 dump_var (var);
7151
7152 /* Continue traversing the hash table. */
7153 return 1;
7154 }
7155
7156 /* Print the information about variable VAR to dump file. */
7157
7158 static void
7159 dump_var (variable var)
7160 {
7161 int i;
7162 location_chain node;
7163
7164 if (dv_is_decl_p (var->dv))
7165 {
7166 const_tree decl = dv_as_decl (var->dv);
7167
7168 if (DECL_NAME (decl))
7169 {
7170 fprintf (dump_file, " name: %s",
7171 IDENTIFIER_POINTER (DECL_NAME (decl)));
7172 if (dump_flags & TDF_UID)
7173 fprintf (dump_file, "D.%u", DECL_UID (decl));
7174 }
7175 else if (TREE_CODE (decl) == DEBUG_EXPR_DECL)
7176 fprintf (dump_file, " name: D#%u", DEBUG_TEMP_UID (decl));
7177 else
7178 fprintf (dump_file, " name: D.%u", DECL_UID (decl));
7179 fprintf (dump_file, "\n");
7180 }
7181 else
7182 {
7183 fputc (' ', dump_file);
7184 print_rtl_single (dump_file, dv_as_value (var->dv));
7185 }
7186
7187 for (i = 0; i < var->n_var_parts; i++)
7188 {
7189 fprintf (dump_file, " offset %ld\n",
7190 (long)(var->onepart ? 0 : VAR_PART_OFFSET (var, i)));
7191 for (node = var->var_part[i].loc_chain; node; node = node->next)
7192 {
7193 fprintf (dump_file, " ");
7194 if (node->init == VAR_INIT_STATUS_UNINITIALIZED)
7195 fprintf (dump_file, "[uninit]");
7196 print_rtl_single (dump_file, node->loc);
7197 }
7198 }
7199 }
7200
7201 /* Print the information about variables from hash table VARS to dump file. */
7202
7203 static void
7204 dump_vars (variable_table_type vars)
7205 {
7206 if (vars.elements () > 0)
7207 {
7208 fprintf (dump_file, "Variables:\n");
7209 vars.traverse <void *, dump_var_tracking_slot> (NULL);
7210 }
7211 }
7212
7213 /* Print the dataflow set SET to dump file. */
7214
7215 static void
7216 dump_dataflow_set (dataflow_set *set)
7217 {
7218 int i;
7219
7220 fprintf (dump_file, "Stack adjustment: " HOST_WIDE_INT_PRINT_DEC "\n",
7221 set->stack_adjust);
7222 for (i = 0; i < FIRST_PSEUDO_REGISTER; i++)
7223 {
7224 if (set->regs[i])
7225 {
7226 fprintf (dump_file, "Reg %d:", i);
7227 dump_attrs_list (set->regs[i]);
7228 }
7229 }
7230 dump_vars (shared_hash_htab (set->vars));
7231 fprintf (dump_file, "\n");
7232 }
7233
7234 /* Print the IN and OUT sets for each basic block to dump file. */
7235
7236 static void
7237 dump_dataflow_sets (void)
7238 {
7239 basic_block bb;
7240
7241 FOR_EACH_BB_FN (bb, cfun)
7242 {
7243 fprintf (dump_file, "\nBasic block %d:\n", bb->index);
7244 fprintf (dump_file, "IN:\n");
7245 dump_dataflow_set (&VTI (bb)->in);
7246 fprintf (dump_file, "OUT:\n");
7247 dump_dataflow_set (&VTI (bb)->out);
7248 }
7249 }
7250
7251 /* Return the variable for DV in dropped_values, inserting one if
7252 requested with INSERT. */
7253
7254 static inline variable
7255 variable_from_dropped (decl_or_value dv, enum insert_option insert)
7256 {
7257 variable_def **slot;
7258 variable empty_var;
7259 onepart_enum_t onepart;
7260
7261 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv), insert);
7262
7263 if (!slot)
7264 return NULL;
7265
7266 if (*slot)
7267 return *slot;
7268
7269 gcc_checking_assert (insert == INSERT);
7270
7271 onepart = dv_onepart_p (dv);
7272
7273 gcc_checking_assert (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR);
7274
7275 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7276 empty_var->dv = dv;
7277 empty_var->refcount = 1;
7278 empty_var->n_var_parts = 0;
7279 empty_var->onepart = onepart;
7280 empty_var->in_changed_variables = false;
7281 empty_var->var_part[0].loc_chain = NULL;
7282 empty_var->var_part[0].cur_loc = NULL;
7283 VAR_LOC_1PAUX (empty_var) = NULL;
7284 set_dv_changed (dv, true);
7285
7286 *slot = empty_var;
7287
7288 return empty_var;
7289 }
7290
7291 /* Recover the one-part aux from dropped_values. */
7292
7293 static struct onepart_aux *
7294 recover_dropped_1paux (variable var)
7295 {
7296 variable dvar;
7297
7298 gcc_checking_assert (var->onepart);
7299
7300 if (VAR_LOC_1PAUX (var))
7301 return VAR_LOC_1PAUX (var);
7302
7303 if (var->onepart == ONEPART_VDECL)
7304 return NULL;
7305
7306 dvar = variable_from_dropped (var->dv, NO_INSERT);
7307
7308 if (!dvar)
7309 return NULL;
7310
7311 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (dvar);
7312 VAR_LOC_1PAUX (dvar) = NULL;
7313
7314 return VAR_LOC_1PAUX (var);
7315 }
7316
7317 /* Add variable VAR to the hash table of changed variables and
7318 if it has no locations delete it from SET's hash table. */
7319
7320 static void
7321 variable_was_changed (variable var, dataflow_set *set)
7322 {
7323 hashval_t hash = dv_htab_hash (var->dv);
7324
7325 if (emit_notes)
7326 {
7327 variable_def **slot;
7328
7329 /* Remember this decl or VALUE has been added to changed_variables. */
7330 set_dv_changed (var->dv, true);
7331
7332 slot = changed_variables.find_slot_with_hash (var->dv, hash, INSERT);
7333
7334 if (*slot)
7335 {
7336 variable old_var = *slot;
7337 gcc_assert (old_var->in_changed_variables);
7338 old_var->in_changed_variables = false;
7339 if (var != old_var && var->onepart)
7340 {
7341 /* Restore the auxiliary info from an empty variable
7342 previously created for changed_variables, so it is
7343 not lost. */
7344 gcc_checking_assert (!VAR_LOC_1PAUX (var));
7345 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (old_var);
7346 VAR_LOC_1PAUX (old_var) = NULL;
7347 }
7348 variable_htab_free (*slot);
7349 }
7350
7351 if (set && var->n_var_parts == 0)
7352 {
7353 onepart_enum_t onepart = var->onepart;
7354 variable empty_var = NULL;
7355 variable_def **dslot = NULL;
7356
7357 if (onepart == ONEPART_VALUE || onepart == ONEPART_DEXPR)
7358 {
7359 dslot = dropped_values.find_slot_with_hash (var->dv,
7360 dv_htab_hash (var->dv),
7361 INSERT);
7362 empty_var = *dslot;
7363
7364 if (empty_var)
7365 {
7366 gcc_checking_assert (!empty_var->in_changed_variables);
7367 if (!VAR_LOC_1PAUX (var))
7368 {
7369 VAR_LOC_1PAUX (var) = VAR_LOC_1PAUX (empty_var);
7370 VAR_LOC_1PAUX (empty_var) = NULL;
7371 }
7372 else
7373 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
7374 }
7375 }
7376
7377 if (!empty_var)
7378 {
7379 empty_var = (variable) pool_alloc (onepart_pool (onepart));
7380 empty_var->dv = var->dv;
7381 empty_var->refcount = 1;
7382 empty_var->n_var_parts = 0;
7383 empty_var->onepart = onepart;
7384 if (dslot)
7385 {
7386 empty_var->refcount++;
7387 *dslot = empty_var;
7388 }
7389 }
7390 else
7391 empty_var->refcount++;
7392 empty_var->in_changed_variables = true;
7393 *slot = empty_var;
7394 if (onepart)
7395 {
7396 empty_var->var_part[0].loc_chain = NULL;
7397 empty_var->var_part[0].cur_loc = NULL;
7398 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (var);
7399 VAR_LOC_1PAUX (var) = NULL;
7400 }
7401 goto drop_var;
7402 }
7403 else
7404 {
7405 if (var->onepart && !VAR_LOC_1PAUX (var))
7406 recover_dropped_1paux (var);
7407 var->refcount++;
7408 var->in_changed_variables = true;
7409 *slot = var;
7410 }
7411 }
7412 else
7413 {
7414 gcc_assert (set);
7415 if (var->n_var_parts == 0)
7416 {
7417 variable_def **slot;
7418
7419 drop_var:
7420 slot = shared_hash_find_slot_noinsert (set->vars, var->dv);
7421 if (slot)
7422 {
7423 if (shared_hash_shared (set->vars))
7424 slot = shared_hash_find_slot_unshare (&set->vars, var->dv,
7425 NO_INSERT);
7426 shared_hash_htab (set->vars).clear_slot (slot);
7427 }
7428 }
7429 }
7430 }
7431
7432 /* Look for the index in VAR->var_part corresponding to OFFSET.
7433 Return -1 if not found. If INSERTION_POINT is non-NULL, the
7434 referenced int will be set to the index that the part has or should
7435 have, if it should be inserted. */
7436
7437 static inline int
7438 find_variable_location_part (variable var, HOST_WIDE_INT offset,
7439 int *insertion_point)
7440 {
7441 int pos, low, high;
7442
7443 if (var->onepart)
7444 {
7445 if (offset != 0)
7446 return -1;
7447
7448 if (insertion_point)
7449 *insertion_point = 0;
7450
7451 return var->n_var_parts - 1;
7452 }
7453
7454 /* Find the location part. */
7455 low = 0;
7456 high = var->n_var_parts;
7457 while (low != high)
7458 {
7459 pos = (low + high) / 2;
7460 if (VAR_PART_OFFSET (var, pos) < offset)
7461 low = pos + 1;
7462 else
7463 high = pos;
7464 }
7465 pos = low;
7466
7467 if (insertion_point)
7468 *insertion_point = pos;
7469
7470 if (pos < var->n_var_parts && VAR_PART_OFFSET (var, pos) == offset)
7471 return pos;
7472
7473 return -1;
7474 }
7475
7476 static variable_def **
7477 set_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7478 decl_or_value dv, HOST_WIDE_INT offset,
7479 enum var_init_status initialized, rtx set_src)
7480 {
7481 int pos;
7482 location_chain node, next;
7483 location_chain *nextp;
7484 variable var;
7485 onepart_enum_t onepart;
7486
7487 var = *slot;
7488
7489 if (var)
7490 onepart = var->onepart;
7491 else
7492 onepart = dv_onepart_p (dv);
7493
7494 gcc_checking_assert (offset == 0 || !onepart);
7495 gcc_checking_assert (loc != dv_as_opaque (dv));
7496
7497 if (! flag_var_tracking_uninit)
7498 initialized = VAR_INIT_STATUS_INITIALIZED;
7499
7500 if (!var)
7501 {
7502 /* Create new variable information. */
7503 var = (variable) pool_alloc (onepart_pool (onepart));
7504 var->dv = dv;
7505 var->refcount = 1;
7506 var->n_var_parts = 1;
7507 var->onepart = onepart;
7508 var->in_changed_variables = false;
7509 if (var->onepart)
7510 VAR_LOC_1PAUX (var) = NULL;
7511 else
7512 VAR_PART_OFFSET (var, 0) = offset;
7513 var->var_part[0].loc_chain = NULL;
7514 var->var_part[0].cur_loc = NULL;
7515 *slot = var;
7516 pos = 0;
7517 nextp = &var->var_part[0].loc_chain;
7518 }
7519 else if (onepart)
7520 {
7521 int r = -1, c = 0;
7522
7523 gcc_assert (dv_as_opaque (var->dv) == dv_as_opaque (dv));
7524
7525 pos = 0;
7526
7527 if (GET_CODE (loc) == VALUE)
7528 {
7529 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7530 nextp = &node->next)
7531 if (GET_CODE (node->loc) == VALUE)
7532 {
7533 if (node->loc == loc)
7534 {
7535 r = 0;
7536 break;
7537 }
7538 if (canon_value_cmp (node->loc, loc))
7539 c++;
7540 else
7541 {
7542 r = 1;
7543 break;
7544 }
7545 }
7546 else if (REG_P (node->loc) || MEM_P (node->loc))
7547 c++;
7548 else
7549 {
7550 r = 1;
7551 break;
7552 }
7553 }
7554 else if (REG_P (loc))
7555 {
7556 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7557 nextp = &node->next)
7558 if (REG_P (node->loc))
7559 {
7560 if (REGNO (node->loc) < REGNO (loc))
7561 c++;
7562 else
7563 {
7564 if (REGNO (node->loc) == REGNO (loc))
7565 r = 0;
7566 else
7567 r = 1;
7568 break;
7569 }
7570 }
7571 else
7572 {
7573 r = 1;
7574 break;
7575 }
7576 }
7577 else if (MEM_P (loc))
7578 {
7579 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7580 nextp = &node->next)
7581 if (REG_P (node->loc))
7582 c++;
7583 else if (MEM_P (node->loc))
7584 {
7585 if ((r = loc_cmp (XEXP (node->loc, 0), XEXP (loc, 0))) >= 0)
7586 break;
7587 else
7588 c++;
7589 }
7590 else
7591 {
7592 r = 1;
7593 break;
7594 }
7595 }
7596 else
7597 for (nextp = &var->var_part[0].loc_chain; (node = *nextp);
7598 nextp = &node->next)
7599 if ((r = loc_cmp (node->loc, loc)) >= 0)
7600 break;
7601 else
7602 c++;
7603
7604 if (r == 0)
7605 return slot;
7606
7607 if (shared_var_p (var, set->vars))
7608 {
7609 slot = unshare_variable (set, slot, var, initialized);
7610 var = *slot;
7611 for (nextp = &var->var_part[0].loc_chain; c;
7612 nextp = &(*nextp)->next)
7613 c--;
7614 gcc_assert ((!node && !*nextp) || node->loc == (*nextp)->loc);
7615 }
7616 }
7617 else
7618 {
7619 int inspos = 0;
7620
7621 gcc_assert (dv_as_decl (var->dv) == dv_as_decl (dv));
7622
7623 pos = find_variable_location_part (var, offset, &inspos);
7624
7625 if (pos >= 0)
7626 {
7627 node = var->var_part[pos].loc_chain;
7628
7629 if (node
7630 && ((REG_P (node->loc) && REG_P (loc)
7631 && REGNO (node->loc) == REGNO (loc))
7632 || rtx_equal_p (node->loc, loc)))
7633 {
7634 /* LOC is in the beginning of the chain so we have nothing
7635 to do. */
7636 if (node->init < initialized)
7637 node->init = initialized;
7638 if (set_src != NULL)
7639 node->set_src = set_src;
7640
7641 return slot;
7642 }
7643 else
7644 {
7645 /* We have to make a copy of a shared variable. */
7646 if (shared_var_p (var, set->vars))
7647 {
7648 slot = unshare_variable (set, slot, var, initialized);
7649 var = *slot;
7650 }
7651 }
7652 }
7653 else
7654 {
7655 /* We have not found the location part, new one will be created. */
7656
7657 /* We have to make a copy of the shared variable. */
7658 if (shared_var_p (var, set->vars))
7659 {
7660 slot = unshare_variable (set, slot, var, initialized);
7661 var = *slot;
7662 }
7663
7664 /* We track only variables whose size is <= MAX_VAR_PARTS bytes
7665 thus there are at most MAX_VAR_PARTS different offsets. */
7666 gcc_assert (var->n_var_parts < MAX_VAR_PARTS
7667 && (!var->n_var_parts || !onepart));
7668
7669 /* We have to move the elements of array starting at index
7670 inspos to the next position. */
7671 for (pos = var->n_var_parts; pos > inspos; pos--)
7672 var->var_part[pos] = var->var_part[pos - 1];
7673
7674 var->n_var_parts++;
7675 gcc_checking_assert (!onepart);
7676 VAR_PART_OFFSET (var, pos) = offset;
7677 var->var_part[pos].loc_chain = NULL;
7678 var->var_part[pos].cur_loc = NULL;
7679 }
7680
7681 /* Delete the location from the list. */
7682 nextp = &var->var_part[pos].loc_chain;
7683 for (node = var->var_part[pos].loc_chain; node; node = next)
7684 {
7685 next = node->next;
7686 if ((REG_P (node->loc) && REG_P (loc)
7687 && REGNO (node->loc) == REGNO (loc))
7688 || rtx_equal_p (node->loc, loc))
7689 {
7690 /* Save these values, to assign to the new node, before
7691 deleting this one. */
7692 if (node->init > initialized)
7693 initialized = node->init;
7694 if (node->set_src != NULL && set_src == NULL)
7695 set_src = node->set_src;
7696 if (var->var_part[pos].cur_loc == node->loc)
7697 var->var_part[pos].cur_loc = NULL;
7698 pool_free (loc_chain_pool, node);
7699 *nextp = next;
7700 break;
7701 }
7702 else
7703 nextp = &node->next;
7704 }
7705
7706 nextp = &var->var_part[pos].loc_chain;
7707 }
7708
7709 /* Add the location to the beginning. */
7710 node = (location_chain) pool_alloc (loc_chain_pool);
7711 node->loc = loc;
7712 node->init = initialized;
7713 node->set_src = set_src;
7714 node->next = *nextp;
7715 *nextp = node;
7716
7717 /* If no location was emitted do so. */
7718 if (var->var_part[pos].cur_loc == NULL)
7719 variable_was_changed (var, set);
7720
7721 return slot;
7722 }
7723
7724 /* Set the part of variable's location in the dataflow set SET. The
7725 variable part is specified by variable's declaration in DV and
7726 offset OFFSET and the part's location by LOC. IOPT should be
7727 NO_INSERT if the variable is known to be in SET already and the
7728 variable hash table must not be resized, and INSERT otherwise. */
7729
7730 static void
7731 set_variable_part (dataflow_set *set, rtx loc,
7732 decl_or_value dv, HOST_WIDE_INT offset,
7733 enum var_init_status initialized, rtx set_src,
7734 enum insert_option iopt)
7735 {
7736 variable_def **slot;
7737
7738 if (iopt == NO_INSERT)
7739 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7740 else
7741 {
7742 slot = shared_hash_find_slot (set->vars, dv);
7743 if (!slot)
7744 slot = shared_hash_find_slot_unshare (&set->vars, dv, iopt);
7745 }
7746 set_slot_part (set, loc, slot, dv, offset, initialized, set_src);
7747 }
7748
7749 /* Remove all recorded register locations for the given variable part
7750 from dataflow set SET, except for those that are identical to loc.
7751 The variable part is specified by variable's declaration or value
7752 DV and offset OFFSET. */
7753
7754 static variable_def **
7755 clobber_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7756 HOST_WIDE_INT offset, rtx set_src)
7757 {
7758 variable var = *slot;
7759 int pos = find_variable_location_part (var, offset, NULL);
7760
7761 if (pos >= 0)
7762 {
7763 location_chain node, next;
7764
7765 /* Remove the register locations from the dataflow set. */
7766 next = var->var_part[pos].loc_chain;
7767 for (node = next; node; node = next)
7768 {
7769 next = node->next;
7770 if (node->loc != loc
7771 && (!flag_var_tracking_uninit
7772 || !set_src
7773 || MEM_P (set_src)
7774 || !rtx_equal_p (set_src, node->set_src)))
7775 {
7776 if (REG_P (node->loc))
7777 {
7778 attrs anode, anext;
7779 attrs *anextp;
7780
7781 /* Remove the variable part from the register's
7782 list, but preserve any other variable parts
7783 that might be regarded as live in that same
7784 register. */
7785 anextp = &set->regs[REGNO (node->loc)];
7786 for (anode = *anextp; anode; anode = anext)
7787 {
7788 anext = anode->next;
7789 if (dv_as_opaque (anode->dv) == dv_as_opaque (var->dv)
7790 && anode->offset == offset)
7791 {
7792 pool_free (attrs_pool, anode);
7793 *anextp = anext;
7794 }
7795 else
7796 anextp = &anode->next;
7797 }
7798 }
7799
7800 slot = delete_slot_part (set, node->loc, slot, offset);
7801 }
7802 }
7803 }
7804
7805 return slot;
7806 }
7807
7808 /* Remove all recorded register locations for the given variable part
7809 from dataflow set SET, except for those that are identical to loc.
7810 The variable part is specified by variable's declaration or value
7811 DV and offset OFFSET. */
7812
7813 static void
7814 clobber_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7815 HOST_WIDE_INT offset, rtx set_src)
7816 {
7817 variable_def **slot;
7818
7819 if (!dv_as_opaque (dv)
7820 || (!dv_is_value_p (dv) && ! DECL_P (dv_as_decl (dv))))
7821 return;
7822
7823 slot = shared_hash_find_slot_noinsert (set->vars, dv);
7824 if (!slot)
7825 return;
7826
7827 clobber_slot_part (set, loc, slot, offset, set_src);
7828 }
7829
7830 /* Delete the part of variable's location from dataflow set SET. The
7831 variable part is specified by its SET->vars slot SLOT and offset
7832 OFFSET and the part's location by LOC. */
7833
7834 static variable_def **
7835 delete_slot_part (dataflow_set *set, rtx loc, variable_def **slot,
7836 HOST_WIDE_INT offset)
7837 {
7838 variable var = *slot;
7839 int pos = find_variable_location_part (var, offset, NULL);
7840
7841 if (pos >= 0)
7842 {
7843 location_chain node, next;
7844 location_chain *nextp;
7845 bool changed;
7846 rtx cur_loc;
7847
7848 if (shared_var_p (var, set->vars))
7849 {
7850 /* If the variable contains the location part we have to
7851 make a copy of the variable. */
7852 for (node = var->var_part[pos].loc_chain; node;
7853 node = node->next)
7854 {
7855 if ((REG_P (node->loc) && REG_P (loc)
7856 && REGNO (node->loc) == REGNO (loc))
7857 || rtx_equal_p (node->loc, loc))
7858 {
7859 slot = unshare_variable (set, slot, var,
7860 VAR_INIT_STATUS_UNKNOWN);
7861 var = *slot;
7862 break;
7863 }
7864 }
7865 }
7866
7867 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7868 cur_loc = VAR_LOC_FROM (var);
7869 else
7870 cur_loc = var->var_part[pos].cur_loc;
7871
7872 /* Delete the location part. */
7873 changed = false;
7874 nextp = &var->var_part[pos].loc_chain;
7875 for (node = *nextp; node; node = next)
7876 {
7877 next = node->next;
7878 if ((REG_P (node->loc) && REG_P (loc)
7879 && REGNO (node->loc) == REGNO (loc))
7880 || rtx_equal_p (node->loc, loc))
7881 {
7882 /* If we have deleted the location which was last emitted
7883 we have to emit new location so add the variable to set
7884 of changed variables. */
7885 if (cur_loc == node->loc)
7886 {
7887 changed = true;
7888 var->var_part[pos].cur_loc = NULL;
7889 if (pos == 0 && var->onepart && VAR_LOC_1PAUX (var))
7890 VAR_LOC_FROM (var) = NULL;
7891 }
7892 pool_free (loc_chain_pool, node);
7893 *nextp = next;
7894 break;
7895 }
7896 else
7897 nextp = &node->next;
7898 }
7899
7900 if (var->var_part[pos].loc_chain == NULL)
7901 {
7902 changed = true;
7903 var->n_var_parts--;
7904 while (pos < var->n_var_parts)
7905 {
7906 var->var_part[pos] = var->var_part[pos + 1];
7907 pos++;
7908 }
7909 }
7910 if (changed)
7911 variable_was_changed (var, set);
7912 }
7913
7914 return slot;
7915 }
7916
7917 /* Delete the part of variable's location from dataflow set SET. The
7918 variable part is specified by variable's declaration or value DV
7919 and offset OFFSET and the part's location by LOC. */
7920
7921 static void
7922 delete_variable_part (dataflow_set *set, rtx loc, decl_or_value dv,
7923 HOST_WIDE_INT offset)
7924 {
7925 variable_def **slot = shared_hash_find_slot_noinsert (set->vars, dv);
7926 if (!slot)
7927 return;
7928
7929 delete_slot_part (set, loc, slot, offset);
7930 }
7931
7932
7933 /* Structure for passing some other parameters to function
7934 vt_expand_loc_callback. */
7935 struct expand_loc_callback_data
7936 {
7937 /* The variables and values active at this point. */
7938 variable_table_type vars;
7939
7940 /* Stack of values and debug_exprs under expansion, and their
7941 children. */
7942 auto_vec<rtx, 4> expanding;
7943
7944 /* Stack of values and debug_exprs whose expansion hit recursion
7945 cycles. They will have VALUE_RECURSED_INTO marked when added to
7946 this list. This flag will be cleared if any of its dependencies
7947 resolves to a valid location. So, if the flag remains set at the
7948 end of the search, we know no valid location for this one can
7949 possibly exist. */
7950 auto_vec<rtx, 4> pending;
7951
7952 /* The maximum depth among the sub-expressions under expansion.
7953 Zero indicates no expansion so far. */
7954 expand_depth depth;
7955 };
7956
7957 /* Allocate the one-part auxiliary data structure for VAR, with enough
7958 room for COUNT dependencies. */
7959
7960 static void
7961 loc_exp_dep_alloc (variable var, int count)
7962 {
7963 size_t allocsize;
7964
7965 gcc_checking_assert (var->onepart);
7966
7967 /* We can be called with COUNT == 0 to allocate the data structure
7968 without any dependencies, e.g. for the backlinks only. However,
7969 if we are specifying a COUNT, then the dependency list must have
7970 been emptied before. It would be possible to adjust pointers or
7971 force it empty here, but this is better done at an earlier point
7972 in the algorithm, so we instead leave an assertion to catch
7973 errors. */
7974 gcc_checking_assert (!count
7975 || VAR_LOC_DEP_VEC (var) == NULL
7976 || VAR_LOC_DEP_VEC (var)->is_empty ());
7977
7978 if (VAR_LOC_1PAUX (var) && VAR_LOC_DEP_VEC (var)->space (count))
7979 return;
7980
7981 allocsize = offsetof (struct onepart_aux, deps)
7982 + vec<loc_exp_dep, va_heap, vl_embed>::embedded_size (count);
7983
7984 if (VAR_LOC_1PAUX (var))
7985 {
7986 VAR_LOC_1PAUX (var) = XRESIZEVAR (struct onepart_aux,
7987 VAR_LOC_1PAUX (var), allocsize);
7988 /* If the reallocation moves the onepaux structure, the
7989 back-pointer to BACKLINKS in the first list member will still
7990 point to its old location. Adjust it. */
7991 if (VAR_LOC_DEP_LST (var))
7992 VAR_LOC_DEP_LST (var)->pprev = VAR_LOC_DEP_LSTP (var);
7993 }
7994 else
7995 {
7996 VAR_LOC_1PAUX (var) = XNEWVAR (struct onepart_aux, allocsize);
7997 *VAR_LOC_DEP_LSTP (var) = NULL;
7998 VAR_LOC_FROM (var) = NULL;
7999 VAR_LOC_DEPTH (var).complexity = 0;
8000 VAR_LOC_DEPTH (var).entryvals = 0;
8001 }
8002 VAR_LOC_DEP_VEC (var)->embedded_init (count);
8003 }
8004
8005 /* Remove all entries from the vector of active dependencies of VAR,
8006 removing them from the back-links lists too. */
8007
8008 static void
8009 loc_exp_dep_clear (variable var)
8010 {
8011 while (VAR_LOC_DEP_VEC (var) && !VAR_LOC_DEP_VEC (var)->is_empty ())
8012 {
8013 loc_exp_dep *led = &VAR_LOC_DEP_VEC (var)->last ();
8014 if (led->next)
8015 led->next->pprev = led->pprev;
8016 if (led->pprev)
8017 *led->pprev = led->next;
8018 VAR_LOC_DEP_VEC (var)->pop ();
8019 }
8020 }
8021
8022 /* Insert an active dependency from VAR on X to the vector of
8023 dependencies, and add the corresponding back-link to X's list of
8024 back-links in VARS. */
8025
8026 static void
8027 loc_exp_insert_dep (variable var, rtx x, variable_table_type vars)
8028 {
8029 decl_or_value dv;
8030 variable xvar;
8031 loc_exp_dep *led;
8032
8033 dv = dv_from_rtx (x);
8034
8035 /* ??? Build a vector of variables parallel to EXPANDING, to avoid
8036 an additional look up? */
8037 xvar = vars.find_with_hash (dv, dv_htab_hash (dv));
8038
8039 if (!xvar)
8040 {
8041 xvar = variable_from_dropped (dv, NO_INSERT);
8042 gcc_checking_assert (xvar);
8043 }
8044
8045 /* No point in adding the same backlink more than once. This may
8046 arise if say the same value appears in two complex expressions in
8047 the same loc_list, or even more than once in a single
8048 expression. */
8049 if (VAR_LOC_DEP_LST (xvar) && VAR_LOC_DEP_LST (xvar)->dv == var->dv)
8050 return;
8051
8052 if (var->onepart == NOT_ONEPART)
8053 led = (loc_exp_dep *) pool_alloc (loc_exp_dep_pool);
8054 else
8055 {
8056 loc_exp_dep empty;
8057 memset (&empty, 0, sizeof (empty));
8058 VAR_LOC_DEP_VEC (var)->quick_push (empty);
8059 led = &VAR_LOC_DEP_VEC (var)->last ();
8060 }
8061 led->dv = var->dv;
8062 led->value = x;
8063
8064 loc_exp_dep_alloc (xvar, 0);
8065 led->pprev = VAR_LOC_DEP_LSTP (xvar);
8066 led->next = *led->pprev;
8067 if (led->next)
8068 led->next->pprev = &led->next;
8069 *led->pprev = led;
8070 }
8071
8072 /* Create active dependencies of VAR on COUNT values starting at
8073 VALUE, and corresponding back-links to the entries in VARS. Return
8074 true if we found any pending-recursion results. */
8075
8076 static bool
8077 loc_exp_dep_set (variable var, rtx result, rtx *value, int count,
8078 variable_table_type vars)
8079 {
8080 bool pending_recursion = false;
8081
8082 gcc_checking_assert (VAR_LOC_DEP_VEC (var) == NULL
8083 || VAR_LOC_DEP_VEC (var)->is_empty ());
8084
8085 /* Set up all dependencies from last_child (as set up at the end of
8086 the loop above) to the end. */
8087 loc_exp_dep_alloc (var, count);
8088
8089 while (count--)
8090 {
8091 rtx x = *value++;
8092
8093 if (!pending_recursion)
8094 pending_recursion = !result && VALUE_RECURSED_INTO (x);
8095
8096 loc_exp_insert_dep (var, x, vars);
8097 }
8098
8099 return pending_recursion;
8100 }
8101
8102 /* Notify the back-links of IVAR that are pending recursion that we
8103 have found a non-NIL value for it, so they are cleared for another
8104 attempt to compute a current location. */
8105
8106 static void
8107 notify_dependents_of_resolved_value (variable ivar, variable_table_type vars)
8108 {
8109 loc_exp_dep *led, *next;
8110
8111 for (led = VAR_LOC_DEP_LST (ivar); led; led = next)
8112 {
8113 decl_or_value dv = led->dv;
8114 variable var;
8115
8116 next = led->next;
8117
8118 if (dv_is_value_p (dv))
8119 {
8120 rtx value = dv_as_value (dv);
8121
8122 /* If we have already resolved it, leave it alone. */
8123 if (!VALUE_RECURSED_INTO (value))
8124 continue;
8125
8126 /* Check that VALUE_RECURSED_INTO, true from the test above,
8127 implies NO_LOC_P. */
8128 gcc_checking_assert (NO_LOC_P (value));
8129
8130 /* We won't notify variables that are being expanded,
8131 because their dependency list is cleared before
8132 recursing. */
8133 NO_LOC_P (value) = false;
8134 VALUE_RECURSED_INTO (value) = false;
8135
8136 gcc_checking_assert (dv_changed_p (dv));
8137 }
8138 else
8139 {
8140 gcc_checking_assert (dv_onepart_p (dv) != NOT_ONEPART);
8141 if (!dv_changed_p (dv))
8142 continue;
8143 }
8144
8145 var = vars.find_with_hash (dv, dv_htab_hash (dv));
8146
8147 if (!var)
8148 var = variable_from_dropped (dv, NO_INSERT);
8149
8150 if (var)
8151 notify_dependents_of_resolved_value (var, vars);
8152
8153 if (next)
8154 next->pprev = led->pprev;
8155 if (led->pprev)
8156 *led->pprev = next;
8157 led->next = NULL;
8158 led->pprev = NULL;
8159 }
8160 }
8161
8162 static rtx vt_expand_loc_callback (rtx x, bitmap regs,
8163 int max_depth, void *data);
8164
8165 /* Return the combined depth, when one sub-expression evaluated to
8166 BEST_DEPTH and the previous known depth was SAVED_DEPTH. */
8167
8168 static inline expand_depth
8169 update_depth (expand_depth saved_depth, expand_depth best_depth)
8170 {
8171 /* If we didn't find anything, stick with what we had. */
8172 if (!best_depth.complexity)
8173 return saved_depth;
8174
8175 /* If we found hadn't found anything, use the depth of the current
8176 expression. Do NOT add one extra level, we want to compute the
8177 maximum depth among sub-expressions. We'll increment it later,
8178 if appropriate. */
8179 if (!saved_depth.complexity)
8180 return best_depth;
8181
8182 /* Combine the entryval count so that regardless of which one we
8183 return, the entryval count is accurate. */
8184 best_depth.entryvals = saved_depth.entryvals
8185 = best_depth.entryvals + saved_depth.entryvals;
8186
8187 if (saved_depth.complexity < best_depth.complexity)
8188 return best_depth;
8189 else
8190 return saved_depth;
8191 }
8192
8193 /* Expand VAR to a location RTX, updating its cur_loc. Use REGS and
8194 DATA for cselib expand callback. If PENDRECP is given, indicate in
8195 it whether any sub-expression couldn't be fully evaluated because
8196 it is pending recursion resolution. */
8197
8198 static inline rtx
8199 vt_expand_var_loc_chain (variable var, bitmap regs, void *data, bool *pendrecp)
8200 {
8201 struct expand_loc_callback_data *elcd
8202 = (struct expand_loc_callback_data *) data;
8203 location_chain loc, next;
8204 rtx result = NULL;
8205 int first_child, result_first_child, last_child;
8206 bool pending_recursion;
8207 rtx loc_from = NULL;
8208 struct elt_loc_list *cloc = NULL;
8209 expand_depth depth = { 0, 0 }, saved_depth = elcd->depth;
8210 int wanted_entryvals, found_entryvals = 0;
8211
8212 /* Clear all backlinks pointing at this, so that we're not notified
8213 while we're active. */
8214 loc_exp_dep_clear (var);
8215
8216 retry:
8217 if (var->onepart == ONEPART_VALUE)
8218 {
8219 cselib_val *val = CSELIB_VAL_PTR (dv_as_value (var->dv));
8220
8221 gcc_checking_assert (cselib_preserved_value_p (val));
8222
8223 cloc = val->locs;
8224 }
8225
8226 first_child = result_first_child = last_child
8227 = elcd->expanding.length ();
8228
8229 wanted_entryvals = found_entryvals;
8230
8231 /* Attempt to expand each available location in turn. */
8232 for (next = loc = var->n_var_parts ? var->var_part[0].loc_chain : NULL;
8233 loc || cloc; loc = next)
8234 {
8235 result_first_child = last_child;
8236
8237 if (!loc)
8238 {
8239 loc_from = cloc->loc;
8240 next = loc;
8241 cloc = cloc->next;
8242 if (unsuitable_loc (loc_from))
8243 continue;
8244 }
8245 else
8246 {
8247 loc_from = loc->loc;
8248 next = loc->next;
8249 }
8250
8251 gcc_checking_assert (!unsuitable_loc (loc_from));
8252
8253 elcd->depth.complexity = elcd->depth.entryvals = 0;
8254 result = cselib_expand_value_rtx_cb (loc_from, regs, EXPR_DEPTH,
8255 vt_expand_loc_callback, data);
8256 last_child = elcd->expanding.length ();
8257
8258 if (result)
8259 {
8260 depth = elcd->depth;
8261
8262 gcc_checking_assert (depth.complexity
8263 || result_first_child == last_child);
8264
8265 if (last_child - result_first_child != 1)
8266 {
8267 if (!depth.complexity && GET_CODE (result) == ENTRY_VALUE)
8268 depth.entryvals++;
8269 depth.complexity++;
8270 }
8271
8272 if (depth.complexity <= EXPR_USE_DEPTH)
8273 {
8274 if (depth.entryvals <= wanted_entryvals)
8275 break;
8276 else if (!found_entryvals || depth.entryvals < found_entryvals)
8277 found_entryvals = depth.entryvals;
8278 }
8279
8280 result = NULL;
8281 }
8282
8283 /* Set it up in case we leave the loop. */
8284 depth.complexity = depth.entryvals = 0;
8285 loc_from = NULL;
8286 result_first_child = first_child;
8287 }
8288
8289 if (!loc_from && wanted_entryvals < found_entryvals)
8290 {
8291 /* We found entries with ENTRY_VALUEs and skipped them. Since
8292 we could not find any expansions without ENTRY_VALUEs, but we
8293 found at least one with them, go back and get an entry with
8294 the minimum number ENTRY_VALUE count that we found. We could
8295 avoid looping, but since each sub-loc is already resolved,
8296 the re-expansion should be trivial. ??? Should we record all
8297 attempted locs as dependencies, so that we retry the
8298 expansion should any of them change, in the hope it can give
8299 us a new entry without an ENTRY_VALUE? */
8300 elcd->expanding.truncate (first_child);
8301 goto retry;
8302 }
8303
8304 /* Register all encountered dependencies as active. */
8305 pending_recursion = loc_exp_dep_set
8306 (var, result, elcd->expanding.address () + result_first_child,
8307 last_child - result_first_child, elcd->vars);
8308
8309 elcd->expanding.truncate (first_child);
8310
8311 /* Record where the expansion came from. */
8312 gcc_checking_assert (!result || !pending_recursion);
8313 VAR_LOC_FROM (var) = loc_from;
8314 VAR_LOC_DEPTH (var) = depth;
8315
8316 gcc_checking_assert (!depth.complexity == !result);
8317
8318 elcd->depth = update_depth (saved_depth, depth);
8319
8320 /* Indicate whether any of the dependencies are pending recursion
8321 resolution. */
8322 if (pendrecp)
8323 *pendrecp = pending_recursion;
8324
8325 if (!pendrecp || !pending_recursion)
8326 var->var_part[0].cur_loc = result;
8327
8328 return result;
8329 }
8330
8331 /* Callback for cselib_expand_value, that looks for expressions
8332 holding the value in the var-tracking hash tables. Return X for
8333 standard processing, anything else is to be used as-is. */
8334
8335 static rtx
8336 vt_expand_loc_callback (rtx x, bitmap regs,
8337 int max_depth ATTRIBUTE_UNUSED,
8338 void *data)
8339 {
8340 struct expand_loc_callback_data *elcd
8341 = (struct expand_loc_callback_data *) data;
8342 decl_or_value dv;
8343 variable var;
8344 rtx result, subreg;
8345 bool pending_recursion = false;
8346 bool from_empty = false;
8347
8348 switch (GET_CODE (x))
8349 {
8350 case SUBREG:
8351 subreg = cselib_expand_value_rtx_cb (SUBREG_REG (x), regs,
8352 EXPR_DEPTH,
8353 vt_expand_loc_callback, data);
8354
8355 if (!subreg)
8356 return NULL;
8357
8358 result = simplify_gen_subreg (GET_MODE (x), subreg,
8359 GET_MODE (SUBREG_REG (x)),
8360 SUBREG_BYTE (x));
8361
8362 /* Invalid SUBREGs are ok in debug info. ??? We could try
8363 alternate expansions for the VALUE as well. */
8364 if (!result)
8365 result = gen_rtx_raw_SUBREG (GET_MODE (x), subreg, SUBREG_BYTE (x));
8366
8367 return result;
8368
8369 case DEBUG_EXPR:
8370 case VALUE:
8371 dv = dv_from_rtx (x);
8372 break;
8373
8374 default:
8375 return x;
8376 }
8377
8378 elcd->expanding.safe_push (x);
8379
8380 /* Check that VALUE_RECURSED_INTO implies NO_LOC_P. */
8381 gcc_checking_assert (!VALUE_RECURSED_INTO (x) || NO_LOC_P (x));
8382
8383 if (NO_LOC_P (x))
8384 {
8385 gcc_checking_assert (VALUE_RECURSED_INTO (x) || !dv_changed_p (dv));
8386 return NULL;
8387 }
8388
8389 var = elcd->vars.find_with_hash (dv, dv_htab_hash (dv));
8390
8391 if (!var)
8392 {
8393 from_empty = true;
8394 var = variable_from_dropped (dv, INSERT);
8395 }
8396
8397 gcc_checking_assert (var);
8398
8399 if (!dv_changed_p (dv))
8400 {
8401 gcc_checking_assert (!NO_LOC_P (x));
8402 gcc_checking_assert (var->var_part[0].cur_loc);
8403 gcc_checking_assert (VAR_LOC_1PAUX (var));
8404 gcc_checking_assert (VAR_LOC_1PAUX (var)->depth.complexity);
8405
8406 elcd->depth = update_depth (elcd->depth, VAR_LOC_1PAUX (var)->depth);
8407
8408 return var->var_part[0].cur_loc;
8409 }
8410
8411 VALUE_RECURSED_INTO (x) = true;
8412 /* This is tentative, but it makes some tests simpler. */
8413 NO_LOC_P (x) = true;
8414
8415 gcc_checking_assert (var->n_var_parts == 1 || from_empty);
8416
8417 result = vt_expand_var_loc_chain (var, regs, data, &pending_recursion);
8418
8419 if (pending_recursion)
8420 {
8421 gcc_checking_assert (!result);
8422 elcd->pending.safe_push (x);
8423 }
8424 else
8425 {
8426 NO_LOC_P (x) = !result;
8427 VALUE_RECURSED_INTO (x) = false;
8428 set_dv_changed (dv, false);
8429
8430 if (result)
8431 notify_dependents_of_resolved_value (var, elcd->vars);
8432 }
8433
8434 return result;
8435 }
8436
8437 /* While expanding variables, we may encounter recursion cycles
8438 because of mutual (possibly indirect) dependencies between two
8439 particular variables (or values), say A and B. If we're trying to
8440 expand A when we get to B, which in turn attempts to expand A, if
8441 we can't find any other expansion for B, we'll add B to this
8442 pending-recursion stack, and tentatively return NULL for its
8443 location. This tentative value will be used for any other
8444 occurrences of B, unless A gets some other location, in which case
8445 it will notify B that it is worth another try at computing a
8446 location for it, and it will use the location computed for A then.
8447 At the end of the expansion, the tentative NULL locations become
8448 final for all members of PENDING that didn't get a notification.
8449 This function performs this finalization of NULL locations. */
8450
8451 static void
8452 resolve_expansions_pending_recursion (vec<rtx, va_heap> *pending)
8453 {
8454 while (!pending->is_empty ())
8455 {
8456 rtx x = pending->pop ();
8457 decl_or_value dv;
8458
8459 if (!VALUE_RECURSED_INTO (x))
8460 continue;
8461
8462 gcc_checking_assert (NO_LOC_P (x));
8463 VALUE_RECURSED_INTO (x) = false;
8464 dv = dv_from_rtx (x);
8465 gcc_checking_assert (dv_changed_p (dv));
8466 set_dv_changed (dv, false);
8467 }
8468 }
8469
8470 /* Initialize expand_loc_callback_data D with variable hash table V.
8471 It must be a macro because of alloca (vec stack). */
8472 #define INIT_ELCD(d, v) \
8473 do \
8474 { \
8475 (d).vars = (v); \
8476 (d).depth.complexity = (d).depth.entryvals = 0; \
8477 } \
8478 while (0)
8479 /* Finalize expand_loc_callback_data D, resolved to location L. */
8480 #define FINI_ELCD(d, l) \
8481 do \
8482 { \
8483 resolve_expansions_pending_recursion (&(d).pending); \
8484 (d).pending.release (); \
8485 (d).expanding.release (); \
8486 \
8487 if ((l) && MEM_P (l)) \
8488 (l) = targetm.delegitimize_address (l); \
8489 } \
8490 while (0)
8491
8492 /* Expand VALUEs and DEBUG_EXPRs in LOC to a location, using the
8493 equivalences in VARS, updating their CUR_LOCs in the process. */
8494
8495 static rtx
8496 vt_expand_loc (rtx loc, variable_table_type vars)
8497 {
8498 struct expand_loc_callback_data data;
8499 rtx result;
8500
8501 if (!MAY_HAVE_DEBUG_INSNS)
8502 return loc;
8503
8504 INIT_ELCD (data, vars);
8505
8506 result = cselib_expand_value_rtx_cb (loc, scratch_regs, EXPR_DEPTH,
8507 vt_expand_loc_callback, &data);
8508
8509 FINI_ELCD (data, result);
8510
8511 return result;
8512 }
8513
8514 /* Expand the one-part VARiable to a location, using the equivalences
8515 in VARS, updating their CUR_LOCs in the process. */
8516
8517 static rtx
8518 vt_expand_1pvar (variable var, variable_table_type vars)
8519 {
8520 struct expand_loc_callback_data data;
8521 rtx loc;
8522
8523 gcc_checking_assert (var->onepart && var->n_var_parts == 1);
8524
8525 if (!dv_changed_p (var->dv))
8526 return var->var_part[0].cur_loc;
8527
8528 INIT_ELCD (data, vars);
8529
8530 loc = vt_expand_var_loc_chain (var, scratch_regs, &data, NULL);
8531
8532 gcc_checking_assert (data.expanding.is_empty ());
8533
8534 FINI_ELCD (data, loc);
8535
8536 return loc;
8537 }
8538
8539 /* Emit the NOTE_INSN_VAR_LOCATION for variable *VARP. DATA contains
8540 additional parameters: WHERE specifies whether the note shall be emitted
8541 before or after instruction INSN. */
8542
8543 int
8544 emit_note_insn_var_location (variable_def **varp, emit_note_data *data)
8545 {
8546 variable var = *varp;
8547 rtx insn = data->insn;
8548 enum emit_note_where where = data->where;
8549 variable_table_type vars = data->vars;
8550 rtx note, note_vl;
8551 int i, j, n_var_parts;
8552 bool complete;
8553 enum var_init_status initialized = VAR_INIT_STATUS_UNINITIALIZED;
8554 HOST_WIDE_INT last_limit;
8555 tree type_size_unit;
8556 HOST_WIDE_INT offsets[MAX_VAR_PARTS];
8557 rtx loc[MAX_VAR_PARTS];
8558 tree decl;
8559 location_chain lc;
8560
8561 gcc_checking_assert (var->onepart == NOT_ONEPART
8562 || var->onepart == ONEPART_VDECL);
8563
8564 decl = dv_as_decl (var->dv);
8565
8566 complete = true;
8567 last_limit = 0;
8568 n_var_parts = 0;
8569 if (!var->onepart)
8570 for (i = 0; i < var->n_var_parts; i++)
8571 if (var->var_part[i].cur_loc == NULL && var->var_part[i].loc_chain)
8572 var->var_part[i].cur_loc = var->var_part[i].loc_chain->loc;
8573 for (i = 0; i < var->n_var_parts; i++)
8574 {
8575 enum machine_mode mode, wider_mode;
8576 rtx loc2;
8577 HOST_WIDE_INT offset;
8578
8579 if (i == 0 && var->onepart)
8580 {
8581 gcc_checking_assert (var->n_var_parts == 1);
8582 offset = 0;
8583 initialized = VAR_INIT_STATUS_INITIALIZED;
8584 loc2 = vt_expand_1pvar (var, vars);
8585 }
8586 else
8587 {
8588 if (last_limit < VAR_PART_OFFSET (var, i))
8589 {
8590 complete = false;
8591 break;
8592 }
8593 else if (last_limit > VAR_PART_OFFSET (var, i))
8594 continue;
8595 offset = VAR_PART_OFFSET (var, i);
8596 loc2 = var->var_part[i].cur_loc;
8597 if (loc2 && GET_CODE (loc2) == MEM
8598 && GET_CODE (XEXP (loc2, 0)) == VALUE)
8599 {
8600 rtx depval = XEXP (loc2, 0);
8601
8602 loc2 = vt_expand_loc (loc2, vars);
8603
8604 if (loc2)
8605 loc_exp_insert_dep (var, depval, vars);
8606 }
8607 if (!loc2)
8608 {
8609 complete = false;
8610 continue;
8611 }
8612 gcc_checking_assert (GET_CODE (loc2) != VALUE);
8613 for (lc = var->var_part[i].loc_chain; lc; lc = lc->next)
8614 if (var->var_part[i].cur_loc == lc->loc)
8615 {
8616 initialized = lc->init;
8617 break;
8618 }
8619 gcc_assert (lc);
8620 }
8621
8622 offsets[n_var_parts] = offset;
8623 if (!loc2)
8624 {
8625 complete = false;
8626 continue;
8627 }
8628 loc[n_var_parts] = loc2;
8629 mode = GET_MODE (var->var_part[i].cur_loc);
8630 if (mode == VOIDmode && var->onepart)
8631 mode = DECL_MODE (decl);
8632 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8633
8634 /* Attempt to merge adjacent registers or memory. */
8635 wider_mode = GET_MODE_WIDER_MODE (mode);
8636 for (j = i + 1; j < var->n_var_parts; j++)
8637 if (last_limit <= VAR_PART_OFFSET (var, j))
8638 break;
8639 if (j < var->n_var_parts
8640 && wider_mode != VOIDmode
8641 && var->var_part[j].cur_loc
8642 && mode == GET_MODE (var->var_part[j].cur_loc)
8643 && (REG_P (loc[n_var_parts]) || MEM_P (loc[n_var_parts]))
8644 && last_limit == (var->onepart ? 0 : VAR_PART_OFFSET (var, j))
8645 && (loc2 = vt_expand_loc (var->var_part[j].cur_loc, vars))
8646 && GET_CODE (loc[n_var_parts]) == GET_CODE (loc2))
8647 {
8648 rtx new_loc = NULL;
8649
8650 if (REG_P (loc[n_var_parts])
8651 && hard_regno_nregs[REGNO (loc[n_var_parts])][mode] * 2
8652 == hard_regno_nregs[REGNO (loc[n_var_parts])][wider_mode]
8653 && end_hard_regno (mode, REGNO (loc[n_var_parts]))
8654 == REGNO (loc2))
8655 {
8656 if (! WORDS_BIG_ENDIAN && ! BYTES_BIG_ENDIAN)
8657 new_loc = simplify_subreg (wider_mode, loc[n_var_parts],
8658 mode, 0);
8659 else if (WORDS_BIG_ENDIAN && BYTES_BIG_ENDIAN)
8660 new_loc = simplify_subreg (wider_mode, loc2, mode, 0);
8661 if (new_loc)
8662 {
8663 if (!REG_P (new_loc)
8664 || REGNO (new_loc) != REGNO (loc[n_var_parts]))
8665 new_loc = NULL;
8666 else
8667 REG_ATTRS (new_loc) = REG_ATTRS (loc[n_var_parts]);
8668 }
8669 }
8670 else if (MEM_P (loc[n_var_parts])
8671 && GET_CODE (XEXP (loc2, 0)) == PLUS
8672 && REG_P (XEXP (XEXP (loc2, 0), 0))
8673 && CONST_INT_P (XEXP (XEXP (loc2, 0), 1)))
8674 {
8675 if ((REG_P (XEXP (loc[n_var_parts], 0))
8676 && rtx_equal_p (XEXP (loc[n_var_parts], 0),
8677 XEXP (XEXP (loc2, 0), 0))
8678 && INTVAL (XEXP (XEXP (loc2, 0), 1))
8679 == GET_MODE_SIZE (mode))
8680 || (GET_CODE (XEXP (loc[n_var_parts], 0)) == PLUS
8681 && CONST_INT_P (XEXP (XEXP (loc[n_var_parts], 0), 1))
8682 && rtx_equal_p (XEXP (XEXP (loc[n_var_parts], 0), 0),
8683 XEXP (XEXP (loc2, 0), 0))
8684 && INTVAL (XEXP (XEXP (loc[n_var_parts], 0), 1))
8685 + GET_MODE_SIZE (mode)
8686 == INTVAL (XEXP (XEXP (loc2, 0), 1))))
8687 new_loc = adjust_address_nv (loc[n_var_parts],
8688 wider_mode, 0);
8689 }
8690
8691 if (new_loc)
8692 {
8693 loc[n_var_parts] = new_loc;
8694 mode = wider_mode;
8695 last_limit = offsets[n_var_parts] + GET_MODE_SIZE (mode);
8696 i = j;
8697 }
8698 }
8699 ++n_var_parts;
8700 }
8701 type_size_unit = TYPE_SIZE_UNIT (TREE_TYPE (decl));
8702 if ((unsigned HOST_WIDE_INT) last_limit < TREE_INT_CST_LOW (type_size_unit))
8703 complete = false;
8704
8705 if (! flag_var_tracking_uninit)
8706 initialized = VAR_INIT_STATUS_INITIALIZED;
8707
8708 note_vl = NULL_RTX;
8709 if (!complete)
8710 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, NULL_RTX,
8711 (int) initialized);
8712 else if (n_var_parts == 1)
8713 {
8714 rtx expr_list;
8715
8716 if (offsets[0] || GET_CODE (loc[0]) == PARALLEL)
8717 expr_list = gen_rtx_EXPR_LIST (VOIDmode, loc[0], GEN_INT (offsets[0]));
8718 else
8719 expr_list = loc[0];
8720
8721 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl, expr_list,
8722 (int) initialized);
8723 }
8724 else if (n_var_parts)
8725 {
8726 rtx parallel;
8727
8728 for (i = 0; i < n_var_parts; i++)
8729 loc[i]
8730 = gen_rtx_EXPR_LIST (VOIDmode, loc[i], GEN_INT (offsets[i]));
8731
8732 parallel = gen_rtx_PARALLEL (VOIDmode,
8733 gen_rtvec_v (n_var_parts, loc));
8734 note_vl = gen_rtx_VAR_LOCATION (VOIDmode, decl,
8735 parallel, (int) initialized);
8736 }
8737
8738 if (where != EMIT_NOTE_BEFORE_INSN)
8739 {
8740 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8741 if (where == EMIT_NOTE_AFTER_CALL_INSN)
8742 NOTE_DURING_CALL_P (note) = true;
8743 }
8744 else
8745 {
8746 /* Make sure that the call related notes come first. */
8747 while (NEXT_INSN (insn)
8748 && NOTE_P (insn)
8749 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8750 && NOTE_DURING_CALL_P (insn))
8751 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8752 insn = NEXT_INSN (insn);
8753 if (NOTE_P (insn)
8754 && ((NOTE_KIND (insn) == NOTE_INSN_VAR_LOCATION
8755 && NOTE_DURING_CALL_P (insn))
8756 || NOTE_KIND (insn) == NOTE_INSN_CALL_ARG_LOCATION))
8757 note = emit_note_after (NOTE_INSN_VAR_LOCATION, insn);
8758 else
8759 note = emit_note_before (NOTE_INSN_VAR_LOCATION, insn);
8760 }
8761 NOTE_VAR_LOCATION (note) = note_vl;
8762
8763 set_dv_changed (var->dv, false);
8764 gcc_assert (var->in_changed_variables);
8765 var->in_changed_variables = false;
8766 changed_variables.clear_slot (varp);
8767
8768 /* Continue traversing the hash table. */
8769 return 1;
8770 }
8771
8772 /* While traversing changed_variables, push onto DATA (a stack of RTX
8773 values) entries that aren't user variables. */
8774
8775 int
8776 var_track_values_to_stack (variable_def **slot,
8777 vec<rtx, va_heap> *changed_values_stack)
8778 {
8779 variable var = *slot;
8780
8781 if (var->onepart == ONEPART_VALUE)
8782 changed_values_stack->safe_push (dv_as_value (var->dv));
8783 else if (var->onepart == ONEPART_DEXPR)
8784 changed_values_stack->safe_push (DECL_RTL_KNOWN_SET (dv_as_decl (var->dv)));
8785
8786 return 1;
8787 }
8788
8789 /* Remove from changed_variables the entry whose DV corresponds to
8790 value or debug_expr VAL. */
8791 static void
8792 remove_value_from_changed_variables (rtx val)
8793 {
8794 decl_or_value dv = dv_from_rtx (val);
8795 variable_def **slot;
8796 variable var;
8797
8798 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8799 NO_INSERT);
8800 var = *slot;
8801 var->in_changed_variables = false;
8802 changed_variables.clear_slot (slot);
8803 }
8804
8805 /* If VAL (a value or debug_expr) has backlinks to variables actively
8806 dependent on it in HTAB or in CHANGED_VARIABLES, mark them as
8807 changed, adding to CHANGED_VALUES_STACK any dependencies that may
8808 have dependencies of their own to notify. */
8809
8810 static void
8811 notify_dependents_of_changed_value (rtx val, variable_table_type htab,
8812 vec<rtx, va_heap> *changed_values_stack)
8813 {
8814 variable_def **slot;
8815 variable var;
8816 loc_exp_dep *led;
8817 decl_or_value dv = dv_from_rtx (val);
8818
8819 slot = changed_variables.find_slot_with_hash (dv, dv_htab_hash (dv),
8820 NO_INSERT);
8821 if (!slot)
8822 slot = htab.find_slot_with_hash (dv, dv_htab_hash (dv), NO_INSERT);
8823 if (!slot)
8824 slot = dropped_values.find_slot_with_hash (dv, dv_htab_hash (dv),
8825 NO_INSERT);
8826 var = *slot;
8827
8828 while ((led = VAR_LOC_DEP_LST (var)))
8829 {
8830 decl_or_value ldv = led->dv;
8831 variable ivar;
8832
8833 /* Deactivate and remove the backlink, as it was “used up”. It
8834 makes no sense to attempt to notify the same entity again:
8835 either it will be recomputed and re-register an active
8836 dependency, or it will still have the changed mark. */
8837 if (led->next)
8838 led->next->pprev = led->pprev;
8839 if (led->pprev)
8840 *led->pprev = led->next;
8841 led->next = NULL;
8842 led->pprev = NULL;
8843
8844 if (dv_changed_p (ldv))
8845 continue;
8846
8847 switch (dv_onepart_p (ldv))
8848 {
8849 case ONEPART_VALUE:
8850 case ONEPART_DEXPR:
8851 set_dv_changed (ldv, true);
8852 changed_values_stack->safe_push (dv_as_rtx (ldv));
8853 break;
8854
8855 case ONEPART_VDECL:
8856 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8857 gcc_checking_assert (!VAR_LOC_DEP_LST (ivar));
8858 variable_was_changed (ivar, NULL);
8859 break;
8860
8861 case NOT_ONEPART:
8862 pool_free (loc_exp_dep_pool, led);
8863 ivar = htab.find_with_hash (ldv, dv_htab_hash (ldv));
8864 if (ivar)
8865 {
8866 int i = ivar->n_var_parts;
8867 while (i--)
8868 {
8869 rtx loc = ivar->var_part[i].cur_loc;
8870
8871 if (loc && GET_CODE (loc) == MEM
8872 && XEXP (loc, 0) == val)
8873 {
8874 variable_was_changed (ivar, NULL);
8875 break;
8876 }
8877 }
8878 }
8879 break;
8880
8881 default:
8882 gcc_unreachable ();
8883 }
8884 }
8885 }
8886
8887 /* Take out of changed_variables any entries that don't refer to use
8888 variables. Back-propagate change notifications from values and
8889 debug_exprs to their active dependencies in HTAB or in
8890 CHANGED_VARIABLES. */
8891
8892 static void
8893 process_changed_values (variable_table_type htab)
8894 {
8895 int i, n;
8896 rtx val;
8897 auto_vec<rtx, 20> changed_values_stack;
8898
8899 /* Move values from changed_variables to changed_values_stack. */
8900 changed_variables
8901 .traverse <vec<rtx, va_heap>*, var_track_values_to_stack>
8902 (&changed_values_stack);
8903
8904 /* Back-propagate change notifications in values while popping
8905 them from the stack. */
8906 for (n = i = changed_values_stack.length ();
8907 i > 0; i = changed_values_stack.length ())
8908 {
8909 val = changed_values_stack.pop ();
8910 notify_dependents_of_changed_value (val, htab, &changed_values_stack);
8911
8912 /* This condition will hold when visiting each of the entries
8913 originally in changed_variables. We can't remove them
8914 earlier because this could drop the backlinks before we got a
8915 chance to use them. */
8916 if (i == n)
8917 {
8918 remove_value_from_changed_variables (val);
8919 n--;
8920 }
8921 }
8922 }
8923
8924 /* Emit NOTE_INSN_VAR_LOCATION note for each variable from a chain
8925 CHANGED_VARIABLES and delete this chain. WHERE specifies whether
8926 the notes shall be emitted before of after instruction INSN. */
8927
8928 static void
8929 emit_notes_for_changes (rtx insn, enum emit_note_where where,
8930 shared_hash vars)
8931 {
8932 emit_note_data data;
8933 variable_table_type htab = shared_hash_htab (vars);
8934
8935 if (!changed_variables.elements ())
8936 return;
8937
8938 if (MAY_HAVE_DEBUG_INSNS)
8939 process_changed_values (htab);
8940
8941 data.insn = insn;
8942 data.where = where;
8943 data.vars = htab;
8944
8945 changed_variables
8946 .traverse <emit_note_data*, emit_note_insn_var_location> (&data);
8947 }
8948
8949 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it differs from the
8950 same variable in hash table DATA or is not there at all. */
8951
8952 int
8953 emit_notes_for_differences_1 (variable_def **slot, variable_table_type new_vars)
8954 {
8955 variable old_var, new_var;
8956
8957 old_var = *slot;
8958 new_var = new_vars.find_with_hash (old_var->dv, dv_htab_hash (old_var->dv));
8959
8960 if (!new_var)
8961 {
8962 /* Variable has disappeared. */
8963 variable empty_var = NULL;
8964
8965 if (old_var->onepart == ONEPART_VALUE
8966 || old_var->onepart == ONEPART_DEXPR)
8967 {
8968 empty_var = variable_from_dropped (old_var->dv, NO_INSERT);
8969 if (empty_var)
8970 {
8971 gcc_checking_assert (!empty_var->in_changed_variables);
8972 if (!VAR_LOC_1PAUX (old_var))
8973 {
8974 VAR_LOC_1PAUX (old_var) = VAR_LOC_1PAUX (empty_var);
8975 VAR_LOC_1PAUX (empty_var) = NULL;
8976 }
8977 else
8978 gcc_checking_assert (!VAR_LOC_1PAUX (empty_var));
8979 }
8980 }
8981
8982 if (!empty_var)
8983 {
8984 empty_var = (variable) pool_alloc (onepart_pool (old_var->onepart));
8985 empty_var->dv = old_var->dv;
8986 empty_var->refcount = 0;
8987 empty_var->n_var_parts = 0;
8988 empty_var->onepart = old_var->onepart;
8989 empty_var->in_changed_variables = false;
8990 }
8991
8992 if (empty_var->onepart)
8993 {
8994 /* Propagate the auxiliary data to (ultimately)
8995 changed_variables. */
8996 empty_var->var_part[0].loc_chain = NULL;
8997 empty_var->var_part[0].cur_loc = NULL;
8998 VAR_LOC_1PAUX (empty_var) = VAR_LOC_1PAUX (old_var);
8999 VAR_LOC_1PAUX (old_var) = NULL;
9000 }
9001 variable_was_changed (empty_var, NULL);
9002 /* Continue traversing the hash table. */
9003 return 1;
9004 }
9005 /* Update cur_loc and one-part auxiliary data, before new_var goes
9006 through variable_was_changed. */
9007 if (old_var != new_var && new_var->onepart)
9008 {
9009 gcc_checking_assert (VAR_LOC_1PAUX (new_var) == NULL);
9010 VAR_LOC_1PAUX (new_var) = VAR_LOC_1PAUX (old_var);
9011 VAR_LOC_1PAUX (old_var) = NULL;
9012 new_var->var_part[0].cur_loc = old_var->var_part[0].cur_loc;
9013 }
9014 if (variable_different_p (old_var, new_var))
9015 variable_was_changed (new_var, NULL);
9016
9017 /* Continue traversing the hash table. */
9018 return 1;
9019 }
9020
9021 /* Add variable *SLOT to the chain CHANGED_VARIABLES if it is not in hash
9022 table DATA. */
9023
9024 int
9025 emit_notes_for_differences_2 (variable_def **slot, variable_table_type old_vars)
9026 {
9027 variable old_var, new_var;
9028
9029 new_var = *slot;
9030 old_var = old_vars.find_with_hash (new_var->dv, dv_htab_hash (new_var->dv));
9031 if (!old_var)
9032 {
9033 int i;
9034 for (i = 0; i < new_var->n_var_parts; i++)
9035 new_var->var_part[i].cur_loc = NULL;
9036 variable_was_changed (new_var, NULL);
9037 }
9038
9039 /* Continue traversing the hash table. */
9040 return 1;
9041 }
9042
9043 /* Emit notes before INSN for differences between dataflow sets OLD_SET and
9044 NEW_SET. */
9045
9046 static void
9047 emit_notes_for_differences (rtx insn, dataflow_set *old_set,
9048 dataflow_set *new_set)
9049 {
9050 shared_hash_htab (old_set->vars)
9051 .traverse <variable_table_type, emit_notes_for_differences_1>
9052 (shared_hash_htab (new_set->vars));
9053 shared_hash_htab (new_set->vars)
9054 .traverse <variable_table_type, emit_notes_for_differences_2>
9055 (shared_hash_htab (old_set->vars));
9056 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, new_set->vars);
9057 }
9058
9059 /* Return the next insn after INSN that is not a NOTE_INSN_VAR_LOCATION. */
9060
9061 static rtx
9062 next_non_note_insn_var_location (rtx insn)
9063 {
9064 while (insn)
9065 {
9066 insn = NEXT_INSN (insn);
9067 if (insn == 0
9068 || !NOTE_P (insn)
9069 || NOTE_KIND (insn) != NOTE_INSN_VAR_LOCATION)
9070 break;
9071 }
9072
9073 return insn;
9074 }
9075
9076 /* Emit the notes for changes of location parts in the basic block BB. */
9077
9078 static void
9079 emit_notes_in_bb (basic_block bb, dataflow_set *set)
9080 {
9081 unsigned int i;
9082 micro_operation *mo;
9083
9084 dataflow_set_clear (set);
9085 dataflow_set_copy (set, &VTI (bb)->in);
9086
9087 FOR_EACH_VEC_ELT (VTI (bb)->mos, i, mo)
9088 {
9089 rtx insn = mo->insn;
9090 rtx next_insn = next_non_note_insn_var_location (insn);
9091
9092 switch (mo->type)
9093 {
9094 case MO_CALL:
9095 dataflow_set_clear_at_call (set);
9096 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_CALL_INSN, set->vars);
9097 {
9098 rtx arguments = mo->u.loc, *p = &arguments, note;
9099 while (*p)
9100 {
9101 XEXP (XEXP (*p, 0), 1)
9102 = vt_expand_loc (XEXP (XEXP (*p, 0), 1),
9103 shared_hash_htab (set->vars));
9104 /* If expansion is successful, keep it in the list. */
9105 if (XEXP (XEXP (*p, 0), 1))
9106 p = &XEXP (*p, 1);
9107 /* Otherwise, if the following item is data_value for it,
9108 drop it too too. */
9109 else if (XEXP (*p, 1)
9110 && REG_P (XEXP (XEXP (*p, 0), 0))
9111 && MEM_P (XEXP (XEXP (XEXP (*p, 1), 0), 0))
9112 && REG_P (XEXP (XEXP (XEXP (XEXP (*p, 1), 0), 0),
9113 0))
9114 && REGNO (XEXP (XEXP (*p, 0), 0))
9115 == REGNO (XEXP (XEXP (XEXP (XEXP (*p, 1), 0),
9116 0), 0)))
9117 *p = XEXP (XEXP (*p, 1), 1);
9118 /* Just drop this item. */
9119 else
9120 *p = XEXP (*p, 1);
9121 }
9122 note = emit_note_after (NOTE_INSN_CALL_ARG_LOCATION, insn);
9123 NOTE_VAR_LOCATION (note) = arguments;
9124 }
9125 break;
9126
9127 case MO_USE:
9128 {
9129 rtx loc = mo->u.loc;
9130
9131 if (REG_P (loc))
9132 var_reg_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9133 else
9134 var_mem_set (set, loc, VAR_INIT_STATUS_UNINITIALIZED, NULL);
9135
9136 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9137 }
9138 break;
9139
9140 case MO_VAL_LOC:
9141 {
9142 rtx loc = mo->u.loc;
9143 rtx val, vloc;
9144 tree var;
9145
9146 if (GET_CODE (loc) == CONCAT)
9147 {
9148 val = XEXP (loc, 0);
9149 vloc = XEXP (loc, 1);
9150 }
9151 else
9152 {
9153 val = NULL_RTX;
9154 vloc = loc;
9155 }
9156
9157 var = PAT_VAR_LOCATION_DECL (vloc);
9158
9159 clobber_variable_part (set, NULL_RTX,
9160 dv_from_decl (var), 0, NULL_RTX);
9161 if (val)
9162 {
9163 if (VAL_NEEDS_RESOLUTION (loc))
9164 val_resolve (set, val, PAT_VAR_LOCATION_LOC (vloc), insn);
9165 set_variable_part (set, val, dv_from_decl (var), 0,
9166 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9167 INSERT);
9168 }
9169 else if (!VAR_LOC_UNKNOWN_P (PAT_VAR_LOCATION_LOC (vloc)))
9170 set_variable_part (set, PAT_VAR_LOCATION_LOC (vloc),
9171 dv_from_decl (var), 0,
9172 VAR_INIT_STATUS_INITIALIZED, NULL_RTX,
9173 INSERT);
9174
9175 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9176 }
9177 break;
9178
9179 case MO_VAL_USE:
9180 {
9181 rtx loc = mo->u.loc;
9182 rtx val, vloc, uloc;
9183
9184 vloc = uloc = XEXP (loc, 1);
9185 val = XEXP (loc, 0);
9186
9187 if (GET_CODE (val) == CONCAT)
9188 {
9189 uloc = XEXP (val, 1);
9190 val = XEXP (val, 0);
9191 }
9192
9193 if (VAL_NEEDS_RESOLUTION (loc))
9194 val_resolve (set, val, vloc, insn);
9195 else
9196 val_store (set, val, uloc, insn, false);
9197
9198 if (VAL_HOLDS_TRACK_EXPR (loc))
9199 {
9200 if (GET_CODE (uloc) == REG)
9201 var_reg_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9202 NULL);
9203 else if (GET_CODE (uloc) == MEM)
9204 var_mem_set (set, uloc, VAR_INIT_STATUS_UNINITIALIZED,
9205 NULL);
9206 }
9207
9208 emit_notes_for_changes (insn, EMIT_NOTE_BEFORE_INSN, set->vars);
9209 }
9210 break;
9211
9212 case MO_VAL_SET:
9213 {
9214 rtx loc = mo->u.loc;
9215 rtx val, vloc, uloc;
9216 rtx dstv, srcv;
9217
9218 vloc = loc;
9219 uloc = XEXP (vloc, 1);
9220 val = XEXP (vloc, 0);
9221 vloc = uloc;
9222
9223 if (GET_CODE (uloc) == SET)
9224 {
9225 dstv = SET_DEST (uloc);
9226 srcv = SET_SRC (uloc);
9227 }
9228 else
9229 {
9230 dstv = uloc;
9231 srcv = NULL;
9232 }
9233
9234 if (GET_CODE (val) == CONCAT)
9235 {
9236 dstv = vloc = XEXP (val, 1);
9237 val = XEXP (val, 0);
9238 }
9239
9240 if (GET_CODE (vloc) == SET)
9241 {
9242 srcv = SET_SRC (vloc);
9243
9244 gcc_assert (val != srcv);
9245 gcc_assert (vloc == uloc || VAL_NEEDS_RESOLUTION (loc));
9246
9247 dstv = vloc = SET_DEST (vloc);
9248
9249 if (VAL_NEEDS_RESOLUTION (loc))
9250 val_resolve (set, val, srcv, insn);
9251 }
9252 else if (VAL_NEEDS_RESOLUTION (loc))
9253 {
9254 gcc_assert (GET_CODE (uloc) == SET
9255 && GET_CODE (SET_SRC (uloc)) == REG);
9256 val_resolve (set, val, SET_SRC (uloc), insn);
9257 }
9258
9259 if (VAL_HOLDS_TRACK_EXPR (loc))
9260 {
9261 if (VAL_EXPR_IS_CLOBBERED (loc))
9262 {
9263 if (REG_P (uloc))
9264 var_reg_delete (set, uloc, true);
9265 else if (MEM_P (uloc))
9266 {
9267 gcc_assert (MEM_P (dstv));
9268 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (uloc));
9269 var_mem_delete (set, dstv, true);
9270 }
9271 }
9272 else
9273 {
9274 bool copied_p = VAL_EXPR_IS_COPIED (loc);
9275 rtx src = NULL, dst = uloc;
9276 enum var_init_status status = VAR_INIT_STATUS_INITIALIZED;
9277
9278 if (GET_CODE (uloc) == SET)
9279 {
9280 src = SET_SRC (uloc);
9281 dst = SET_DEST (uloc);
9282 }
9283
9284 if (copied_p)
9285 {
9286 status = find_src_status (set, src);
9287
9288 src = find_src_set_src (set, src);
9289 }
9290
9291 if (REG_P (dst))
9292 var_reg_delete_and_set (set, dst, !copied_p,
9293 status, srcv);
9294 else if (MEM_P (dst))
9295 {
9296 gcc_assert (MEM_P (dstv));
9297 gcc_assert (MEM_ATTRS (dstv) == MEM_ATTRS (dst));
9298 var_mem_delete_and_set (set, dstv, !copied_p,
9299 status, srcv);
9300 }
9301 }
9302 }
9303 else if (REG_P (uloc))
9304 var_regno_delete (set, REGNO (uloc));
9305 else if (MEM_P (uloc))
9306 {
9307 gcc_checking_assert (GET_CODE (vloc) == MEM);
9308 gcc_checking_assert (vloc == dstv);
9309 if (vloc != dstv)
9310 clobber_overlapping_mems (set, vloc);
9311 }
9312
9313 val_store (set, val, dstv, insn, true);
9314
9315 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9316 set->vars);
9317 }
9318 break;
9319
9320 case MO_SET:
9321 {
9322 rtx loc = mo->u.loc;
9323 rtx set_src = NULL;
9324
9325 if (GET_CODE (loc) == SET)
9326 {
9327 set_src = SET_SRC (loc);
9328 loc = SET_DEST (loc);
9329 }
9330
9331 if (REG_P (loc))
9332 var_reg_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9333 set_src);
9334 else
9335 var_mem_delete_and_set (set, loc, true, VAR_INIT_STATUS_INITIALIZED,
9336 set_src);
9337
9338 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9339 set->vars);
9340 }
9341 break;
9342
9343 case MO_COPY:
9344 {
9345 rtx loc = mo->u.loc;
9346 enum var_init_status src_status;
9347 rtx set_src = NULL;
9348
9349 if (GET_CODE (loc) == SET)
9350 {
9351 set_src = SET_SRC (loc);
9352 loc = SET_DEST (loc);
9353 }
9354
9355 src_status = find_src_status (set, set_src);
9356 set_src = find_src_set_src (set, set_src);
9357
9358 if (REG_P (loc))
9359 var_reg_delete_and_set (set, loc, false, src_status, set_src);
9360 else
9361 var_mem_delete_and_set (set, loc, false, src_status, set_src);
9362
9363 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9364 set->vars);
9365 }
9366 break;
9367
9368 case MO_USE_NO_VAR:
9369 {
9370 rtx loc = mo->u.loc;
9371
9372 if (REG_P (loc))
9373 var_reg_delete (set, loc, false);
9374 else
9375 var_mem_delete (set, loc, false);
9376
9377 emit_notes_for_changes (insn, EMIT_NOTE_AFTER_INSN, set->vars);
9378 }
9379 break;
9380
9381 case MO_CLOBBER:
9382 {
9383 rtx loc = mo->u.loc;
9384
9385 if (REG_P (loc))
9386 var_reg_delete (set, loc, true);
9387 else
9388 var_mem_delete (set, loc, true);
9389
9390 emit_notes_for_changes (next_insn, EMIT_NOTE_BEFORE_INSN,
9391 set->vars);
9392 }
9393 break;
9394
9395 case MO_ADJUST:
9396 set->stack_adjust += mo->u.adjust;
9397 break;
9398 }
9399 }
9400 }
9401
9402 /* Emit notes for the whole function. */
9403
9404 static void
9405 vt_emit_notes (void)
9406 {
9407 basic_block bb;
9408 dataflow_set cur;
9409
9410 gcc_assert (!changed_variables.elements ());
9411
9412 /* Free memory occupied by the out hash tables, as they aren't used
9413 anymore. */
9414 FOR_EACH_BB_FN (bb, cfun)
9415 dataflow_set_clear (&VTI (bb)->out);
9416
9417 /* Enable emitting notes by functions (mainly by set_variable_part and
9418 delete_variable_part). */
9419 emit_notes = true;
9420
9421 if (MAY_HAVE_DEBUG_INSNS)
9422 {
9423 dropped_values.create (cselib_get_next_uid () * 2);
9424 loc_exp_dep_pool = create_alloc_pool ("loc_exp_dep pool",
9425 sizeof (loc_exp_dep), 64);
9426 }
9427
9428 dataflow_set_init (&cur);
9429
9430 FOR_EACH_BB_FN (bb, cfun)
9431 {
9432 /* Emit the notes for changes of variable locations between two
9433 subsequent basic blocks. */
9434 emit_notes_for_differences (BB_HEAD (bb), &cur, &VTI (bb)->in);
9435
9436 if (MAY_HAVE_DEBUG_INSNS)
9437 local_get_addr_cache = pointer_map_create ();
9438
9439 /* Emit the notes for the changes in the basic block itself. */
9440 emit_notes_in_bb (bb, &cur);
9441
9442 if (MAY_HAVE_DEBUG_INSNS)
9443 pointer_map_destroy (local_get_addr_cache);
9444 local_get_addr_cache = NULL;
9445
9446 /* Free memory occupied by the in hash table, we won't need it
9447 again. */
9448 dataflow_set_clear (&VTI (bb)->in);
9449 }
9450 #ifdef ENABLE_CHECKING
9451 shared_hash_htab (cur.vars)
9452 .traverse <variable_table_type, emit_notes_for_differences_1>
9453 (shared_hash_htab (empty_shared_hash));
9454 #endif
9455 dataflow_set_destroy (&cur);
9456
9457 if (MAY_HAVE_DEBUG_INSNS)
9458 dropped_values.dispose ();
9459
9460 emit_notes = false;
9461 }
9462
9463 /* If there is a declaration and offset associated with register/memory RTL
9464 assign declaration to *DECLP and offset to *OFFSETP, and return true. */
9465
9466 static bool
9467 vt_get_decl_and_offset (rtx rtl, tree *declp, HOST_WIDE_INT *offsetp)
9468 {
9469 if (REG_P (rtl))
9470 {
9471 if (REG_ATTRS (rtl))
9472 {
9473 *declp = REG_EXPR (rtl);
9474 *offsetp = REG_OFFSET (rtl);
9475 return true;
9476 }
9477 }
9478 else if (GET_CODE (rtl) == PARALLEL)
9479 {
9480 tree decl = NULL_TREE;
9481 HOST_WIDE_INT offset = MAX_VAR_PARTS;
9482 int len = XVECLEN (rtl, 0), i;
9483
9484 for (i = 0; i < len; i++)
9485 {
9486 rtx reg = XEXP (XVECEXP (rtl, 0, i), 0);
9487 if (!REG_P (reg) || !REG_ATTRS (reg))
9488 break;
9489 if (!decl)
9490 decl = REG_EXPR (reg);
9491 if (REG_EXPR (reg) != decl)
9492 break;
9493 if (REG_OFFSET (reg) < offset)
9494 offset = REG_OFFSET (reg);
9495 }
9496
9497 if (i == len)
9498 {
9499 *declp = decl;
9500 *offsetp = offset;
9501 return true;
9502 }
9503 }
9504 else if (MEM_P (rtl))
9505 {
9506 if (MEM_ATTRS (rtl))
9507 {
9508 *declp = MEM_EXPR (rtl);
9509 *offsetp = INT_MEM_OFFSET (rtl);
9510 return true;
9511 }
9512 }
9513 return false;
9514 }
9515
9516 /* Record the value for the ENTRY_VALUE of RTL as a global equivalence
9517 of VAL. */
9518
9519 static void
9520 record_entry_value (cselib_val *val, rtx rtl)
9521 {
9522 rtx ev = gen_rtx_ENTRY_VALUE (GET_MODE (rtl));
9523
9524 ENTRY_VALUE_EXP (ev) = rtl;
9525
9526 cselib_add_permanent_equiv (val, ev, get_insns ());
9527 }
9528
9529 /* Insert function parameter PARM in IN and OUT sets of ENTRY_BLOCK. */
9530
9531 static void
9532 vt_add_function_parameter (tree parm)
9533 {
9534 rtx decl_rtl = DECL_RTL_IF_SET (parm);
9535 rtx incoming = DECL_INCOMING_RTL (parm);
9536 tree decl;
9537 enum machine_mode mode;
9538 HOST_WIDE_INT offset;
9539 dataflow_set *out;
9540 decl_or_value dv;
9541
9542 if (TREE_CODE (parm) != PARM_DECL)
9543 return;
9544
9545 if (!decl_rtl || !incoming)
9546 return;
9547
9548 if (GET_MODE (decl_rtl) == BLKmode || GET_MODE (incoming) == BLKmode)
9549 return;
9550
9551 /* If there is a DRAP register or a pseudo in internal_arg_pointer,
9552 rewrite the incoming location of parameters passed on the stack
9553 into MEMs based on the argument pointer, so that incoming doesn't
9554 depend on a pseudo. */
9555 if (MEM_P (incoming)
9556 && (XEXP (incoming, 0) == crtl->args.internal_arg_pointer
9557 || (GET_CODE (XEXP (incoming, 0)) == PLUS
9558 && XEXP (XEXP (incoming, 0), 0)
9559 == crtl->args.internal_arg_pointer
9560 && CONST_INT_P (XEXP (XEXP (incoming, 0), 1)))))
9561 {
9562 HOST_WIDE_INT off = -FIRST_PARM_OFFSET (current_function_decl);
9563 if (GET_CODE (XEXP (incoming, 0)) == PLUS)
9564 off += INTVAL (XEXP (XEXP (incoming, 0), 1));
9565 incoming
9566 = replace_equiv_address_nv (incoming,
9567 plus_constant (Pmode,
9568 arg_pointer_rtx, off));
9569 }
9570
9571 #ifdef HAVE_window_save
9572 /* DECL_INCOMING_RTL uses the INCOMING_REGNO of parameter registers.
9573 If the target machine has an explicit window save instruction, the
9574 actual entry value is the corresponding OUTGOING_REGNO instead. */
9575 if (HAVE_window_save && !crtl->uses_only_leaf_regs)
9576 {
9577 if (REG_P (incoming)
9578 && HARD_REGISTER_P (incoming)
9579 && OUTGOING_REGNO (REGNO (incoming)) != REGNO (incoming))
9580 {
9581 parm_reg_t p;
9582 p.incoming = incoming;
9583 incoming
9584 = gen_rtx_REG_offset (incoming, GET_MODE (incoming),
9585 OUTGOING_REGNO (REGNO (incoming)), 0);
9586 p.outgoing = incoming;
9587 vec_safe_push (windowed_parm_regs, p);
9588 }
9589 else if (GET_CODE (incoming) == PARALLEL)
9590 {
9591 rtx outgoing
9592 = gen_rtx_PARALLEL (VOIDmode, rtvec_alloc (XVECLEN (incoming, 0)));
9593 int i;
9594
9595 for (i = 0; i < XVECLEN (incoming, 0); i++)
9596 {
9597 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9598 parm_reg_t p;
9599 p.incoming = reg;
9600 reg = gen_rtx_REG_offset (reg, GET_MODE (reg),
9601 OUTGOING_REGNO (REGNO (reg)), 0);
9602 p.outgoing = reg;
9603 XVECEXP (outgoing, 0, i)
9604 = gen_rtx_EXPR_LIST (VOIDmode, reg,
9605 XEXP (XVECEXP (incoming, 0, i), 1));
9606 vec_safe_push (windowed_parm_regs, p);
9607 }
9608
9609 incoming = outgoing;
9610 }
9611 else if (MEM_P (incoming)
9612 && REG_P (XEXP (incoming, 0))
9613 && HARD_REGISTER_P (XEXP (incoming, 0)))
9614 {
9615 rtx reg = XEXP (incoming, 0);
9616 if (OUTGOING_REGNO (REGNO (reg)) != REGNO (reg))
9617 {
9618 parm_reg_t p;
9619 p.incoming = reg;
9620 reg = gen_raw_REG (GET_MODE (reg), OUTGOING_REGNO (REGNO (reg)));
9621 p.outgoing = reg;
9622 vec_safe_push (windowed_parm_regs, p);
9623 incoming = replace_equiv_address_nv (incoming, reg);
9624 }
9625 }
9626 }
9627 #endif
9628
9629 if (!vt_get_decl_and_offset (incoming, &decl, &offset))
9630 {
9631 if (MEM_P (incoming))
9632 {
9633 /* This means argument is passed by invisible reference. */
9634 offset = 0;
9635 decl = parm;
9636 }
9637 else
9638 {
9639 if (!vt_get_decl_and_offset (decl_rtl, &decl, &offset))
9640 return;
9641 offset += byte_lowpart_offset (GET_MODE (incoming),
9642 GET_MODE (decl_rtl));
9643 }
9644 }
9645
9646 if (!decl)
9647 return;
9648
9649 if (parm != decl)
9650 {
9651 /* If that DECL_RTL wasn't a pseudo that got spilled to
9652 memory, bail out. Otherwise, the spill slot sharing code
9653 will force the memory to reference spill_slot_decl (%sfp),
9654 so we don't match above. That's ok, the pseudo must have
9655 referenced the entire parameter, so just reset OFFSET. */
9656 if (decl != get_spill_slot_decl (false))
9657 return;
9658 offset = 0;
9659 }
9660
9661 if (!track_loc_p (incoming, parm, offset, false, &mode, &offset))
9662 return;
9663
9664 out = &VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->out;
9665
9666 dv = dv_from_decl (parm);
9667
9668 if (target_for_debug_bind (parm)
9669 /* We can't deal with these right now, because this kind of
9670 variable is single-part. ??? We could handle parallels
9671 that describe multiple locations for the same single
9672 value, but ATM we don't. */
9673 && GET_CODE (incoming) != PARALLEL)
9674 {
9675 cselib_val *val;
9676 rtx lowpart;
9677
9678 /* ??? We shouldn't ever hit this, but it may happen because
9679 arguments passed by invisible reference aren't dealt with
9680 above: incoming-rtl will have Pmode rather than the
9681 expected mode for the type. */
9682 if (offset)
9683 return;
9684
9685 lowpart = var_lowpart (mode, incoming);
9686 if (!lowpart)
9687 return;
9688
9689 val = cselib_lookup_from_insn (lowpart, mode, true,
9690 VOIDmode, get_insns ());
9691
9692 /* ??? Float-typed values in memory are not handled by
9693 cselib. */
9694 if (val)
9695 {
9696 preserve_value (val);
9697 set_variable_part (out, val->val_rtx, dv, offset,
9698 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9699 dv = dv_from_value (val->val_rtx);
9700 }
9701
9702 if (MEM_P (incoming))
9703 {
9704 val = cselib_lookup_from_insn (XEXP (incoming, 0), mode, true,
9705 VOIDmode, get_insns ());
9706 if (val)
9707 {
9708 preserve_value (val);
9709 incoming = replace_equiv_address_nv (incoming, val->val_rtx);
9710 }
9711 }
9712 }
9713
9714 if (REG_P (incoming))
9715 {
9716 incoming = var_lowpart (mode, incoming);
9717 gcc_assert (REGNO (incoming) < FIRST_PSEUDO_REGISTER);
9718 attrs_list_insert (&out->regs[REGNO (incoming)], dv, offset,
9719 incoming);
9720 set_variable_part (out, incoming, dv, offset,
9721 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9722 if (dv_is_value_p (dv))
9723 {
9724 record_entry_value (CSELIB_VAL_PTR (dv_as_value (dv)), incoming);
9725 if (TREE_CODE (TREE_TYPE (parm)) == REFERENCE_TYPE
9726 && INTEGRAL_TYPE_P (TREE_TYPE (TREE_TYPE (parm))))
9727 {
9728 enum machine_mode indmode
9729 = TYPE_MODE (TREE_TYPE (TREE_TYPE (parm)));
9730 rtx mem = gen_rtx_MEM (indmode, incoming);
9731 cselib_val *val = cselib_lookup_from_insn (mem, indmode, true,
9732 VOIDmode,
9733 get_insns ());
9734 if (val)
9735 {
9736 preserve_value (val);
9737 record_entry_value (val, mem);
9738 set_variable_part (out, mem, dv_from_value (val->val_rtx), 0,
9739 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9740 }
9741 }
9742 }
9743 }
9744 else if (GET_CODE (incoming) == PARALLEL && !dv_onepart_p (dv))
9745 {
9746 int i;
9747
9748 for (i = 0; i < XVECLEN (incoming, 0); i++)
9749 {
9750 rtx reg = XEXP (XVECEXP (incoming, 0, i), 0);
9751 offset = REG_OFFSET (reg);
9752 gcc_assert (REGNO (reg) < FIRST_PSEUDO_REGISTER);
9753 attrs_list_insert (&out->regs[REGNO (reg)], dv, offset, reg);
9754 set_variable_part (out, reg, dv, offset,
9755 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9756 }
9757 }
9758 else if (MEM_P (incoming))
9759 {
9760 incoming = var_lowpart (mode, incoming);
9761 set_variable_part (out, incoming, dv, offset,
9762 VAR_INIT_STATUS_INITIALIZED, NULL, INSERT);
9763 }
9764 }
9765
9766 /* Insert function parameters to IN and OUT sets of ENTRY_BLOCK. */
9767
9768 static void
9769 vt_add_function_parameters (void)
9770 {
9771 tree parm;
9772
9773 for (parm = DECL_ARGUMENTS (current_function_decl);
9774 parm; parm = DECL_CHAIN (parm))
9775 vt_add_function_parameter (parm);
9776
9777 if (DECL_HAS_VALUE_EXPR_P (DECL_RESULT (current_function_decl)))
9778 {
9779 tree vexpr = DECL_VALUE_EXPR (DECL_RESULT (current_function_decl));
9780
9781 if (TREE_CODE (vexpr) == INDIRECT_REF)
9782 vexpr = TREE_OPERAND (vexpr, 0);
9783
9784 if (TREE_CODE (vexpr) == PARM_DECL
9785 && DECL_ARTIFICIAL (vexpr)
9786 && !DECL_IGNORED_P (vexpr)
9787 && DECL_NAMELESS (vexpr))
9788 vt_add_function_parameter (vexpr);
9789 }
9790 }
9791
9792 /* Initialize cfa_base_rtx, create a preserved VALUE for it and
9793 ensure it isn't flushed during cselib_reset_table.
9794 Can be called only if frame_pointer_rtx resp. arg_pointer_rtx
9795 has been eliminated. */
9796
9797 static void
9798 vt_init_cfa_base (void)
9799 {
9800 cselib_val *val;
9801
9802 #ifdef FRAME_POINTER_CFA_OFFSET
9803 cfa_base_rtx = frame_pointer_rtx;
9804 cfa_base_offset = -FRAME_POINTER_CFA_OFFSET (current_function_decl);
9805 #else
9806 cfa_base_rtx = arg_pointer_rtx;
9807 cfa_base_offset = -ARG_POINTER_CFA_OFFSET (current_function_decl);
9808 #endif
9809 if (cfa_base_rtx == hard_frame_pointer_rtx
9810 || !fixed_regs[REGNO (cfa_base_rtx)])
9811 {
9812 cfa_base_rtx = NULL_RTX;
9813 return;
9814 }
9815 if (!MAY_HAVE_DEBUG_INSNS)
9816 return;
9817
9818 /* Tell alias analysis that cfa_base_rtx should share
9819 find_base_term value with stack pointer or hard frame pointer. */
9820 if (!frame_pointer_needed)
9821 vt_equate_reg_base_value (cfa_base_rtx, stack_pointer_rtx);
9822 else if (!crtl->stack_realign_tried)
9823 vt_equate_reg_base_value (cfa_base_rtx, hard_frame_pointer_rtx);
9824
9825 val = cselib_lookup_from_insn (cfa_base_rtx, GET_MODE (cfa_base_rtx), 1,
9826 VOIDmode, get_insns ());
9827 preserve_value (val);
9828 cselib_preserve_cfa_base_value (val, REGNO (cfa_base_rtx));
9829 }
9830
9831 /* Allocate and initialize the data structures for variable tracking
9832 and parse the RTL to get the micro operations. */
9833
9834 static bool
9835 vt_initialize (void)
9836 {
9837 basic_block bb;
9838 HOST_WIDE_INT fp_cfa_offset = -1;
9839
9840 alloc_aux_for_blocks (sizeof (struct variable_tracking_info_def));
9841
9842 attrs_pool = create_alloc_pool ("attrs_def pool",
9843 sizeof (struct attrs_def), 1024);
9844 var_pool = create_alloc_pool ("variable_def pool",
9845 sizeof (struct variable_def)
9846 + (MAX_VAR_PARTS - 1)
9847 * sizeof (((variable)NULL)->var_part[0]), 64);
9848 loc_chain_pool = create_alloc_pool ("location_chain_def pool",
9849 sizeof (struct location_chain_def),
9850 1024);
9851 shared_hash_pool = create_alloc_pool ("shared_hash_def pool",
9852 sizeof (struct shared_hash_def), 256);
9853 empty_shared_hash = (shared_hash) pool_alloc (shared_hash_pool);
9854 empty_shared_hash->refcount = 1;
9855 empty_shared_hash->htab.create (1);
9856 changed_variables.create (10);
9857
9858 /* Init the IN and OUT sets. */
9859 FOR_ALL_BB_FN (bb, cfun)
9860 {
9861 VTI (bb)->visited = false;
9862 VTI (bb)->flooded = false;
9863 dataflow_set_init (&VTI (bb)->in);
9864 dataflow_set_init (&VTI (bb)->out);
9865 VTI (bb)->permp = NULL;
9866 }
9867
9868 if (MAY_HAVE_DEBUG_INSNS)
9869 {
9870 cselib_init (CSELIB_RECORD_MEMORY | CSELIB_PRESERVE_CONSTANTS);
9871 scratch_regs = BITMAP_ALLOC (NULL);
9872 valvar_pool = create_alloc_pool ("small variable_def pool",
9873 sizeof (struct variable_def), 256);
9874 preserved_values.create (256);
9875 global_get_addr_cache = pointer_map_create ();
9876 }
9877 else
9878 {
9879 scratch_regs = NULL;
9880 valvar_pool = NULL;
9881 global_get_addr_cache = NULL;
9882 }
9883
9884 if (MAY_HAVE_DEBUG_INSNS)
9885 {
9886 rtx reg, expr;
9887 int ofst;
9888 cselib_val *val;
9889
9890 #ifdef FRAME_POINTER_CFA_OFFSET
9891 reg = frame_pointer_rtx;
9892 ofst = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9893 #else
9894 reg = arg_pointer_rtx;
9895 ofst = ARG_POINTER_CFA_OFFSET (current_function_decl);
9896 #endif
9897
9898 ofst -= INCOMING_FRAME_SP_OFFSET;
9899
9900 val = cselib_lookup_from_insn (reg, GET_MODE (reg), 1,
9901 VOIDmode, get_insns ());
9902 preserve_value (val);
9903 cselib_preserve_cfa_base_value (val, REGNO (reg));
9904 expr = plus_constant (GET_MODE (stack_pointer_rtx),
9905 stack_pointer_rtx, -ofst);
9906 cselib_add_permanent_equiv (val, expr, get_insns ());
9907
9908 if (ofst)
9909 {
9910 val = cselib_lookup_from_insn (stack_pointer_rtx,
9911 GET_MODE (stack_pointer_rtx), 1,
9912 VOIDmode, get_insns ());
9913 preserve_value (val);
9914 expr = plus_constant (GET_MODE (reg), reg, ofst);
9915 cselib_add_permanent_equiv (val, expr, get_insns ());
9916 }
9917 }
9918
9919 /* In order to factor out the adjustments made to the stack pointer or to
9920 the hard frame pointer and thus be able to use DW_OP_fbreg operations
9921 instead of individual location lists, we're going to rewrite MEMs based
9922 on them into MEMs based on the CFA by de-eliminating stack_pointer_rtx
9923 or hard_frame_pointer_rtx to the virtual CFA pointer frame_pointer_rtx
9924 resp. arg_pointer_rtx. We can do this either when there is no frame
9925 pointer in the function and stack adjustments are consistent for all
9926 basic blocks or when there is a frame pointer and no stack realignment.
9927 But we first have to check that frame_pointer_rtx resp. arg_pointer_rtx
9928 has been eliminated. */
9929 if (!frame_pointer_needed)
9930 {
9931 rtx reg, elim;
9932
9933 if (!vt_stack_adjustments ())
9934 return false;
9935
9936 #ifdef FRAME_POINTER_CFA_OFFSET
9937 reg = frame_pointer_rtx;
9938 #else
9939 reg = arg_pointer_rtx;
9940 #endif
9941 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9942 if (elim != reg)
9943 {
9944 if (GET_CODE (elim) == PLUS)
9945 elim = XEXP (elim, 0);
9946 if (elim == stack_pointer_rtx)
9947 vt_init_cfa_base ();
9948 }
9949 }
9950 else if (!crtl->stack_realign_tried)
9951 {
9952 rtx reg, elim;
9953
9954 #ifdef FRAME_POINTER_CFA_OFFSET
9955 reg = frame_pointer_rtx;
9956 fp_cfa_offset = FRAME_POINTER_CFA_OFFSET (current_function_decl);
9957 #else
9958 reg = arg_pointer_rtx;
9959 fp_cfa_offset = ARG_POINTER_CFA_OFFSET (current_function_decl);
9960 #endif
9961 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9962 if (elim != reg)
9963 {
9964 if (GET_CODE (elim) == PLUS)
9965 {
9966 fp_cfa_offset -= INTVAL (XEXP (elim, 1));
9967 elim = XEXP (elim, 0);
9968 }
9969 if (elim != hard_frame_pointer_rtx)
9970 fp_cfa_offset = -1;
9971 }
9972 else
9973 fp_cfa_offset = -1;
9974 }
9975
9976 /* If the stack is realigned and a DRAP register is used, we're going to
9977 rewrite MEMs based on it representing incoming locations of parameters
9978 passed on the stack into MEMs based on the argument pointer. Although
9979 we aren't going to rewrite other MEMs, we still need to initialize the
9980 virtual CFA pointer in order to ensure that the argument pointer will
9981 be seen as a constant throughout the function.
9982
9983 ??? This doesn't work if FRAME_POINTER_CFA_OFFSET is defined. */
9984 else if (stack_realign_drap)
9985 {
9986 rtx reg, elim;
9987
9988 #ifdef FRAME_POINTER_CFA_OFFSET
9989 reg = frame_pointer_rtx;
9990 #else
9991 reg = arg_pointer_rtx;
9992 #endif
9993 elim = eliminate_regs (reg, VOIDmode, NULL_RTX);
9994 if (elim != reg)
9995 {
9996 if (GET_CODE (elim) == PLUS)
9997 elim = XEXP (elim, 0);
9998 if (elim == hard_frame_pointer_rtx)
9999 vt_init_cfa_base ();
10000 }
10001 }
10002
10003 hard_frame_pointer_adjustment = -1;
10004
10005 vt_add_function_parameters ();
10006
10007 FOR_EACH_BB_FN (bb, cfun)
10008 {
10009 rtx insn;
10010 HOST_WIDE_INT pre, post = 0;
10011 basic_block first_bb, last_bb;
10012
10013 if (MAY_HAVE_DEBUG_INSNS)
10014 {
10015 cselib_record_sets_hook = add_with_sets;
10016 if (dump_file && (dump_flags & TDF_DETAILS))
10017 fprintf (dump_file, "first value: %i\n",
10018 cselib_get_next_uid ());
10019 }
10020
10021 first_bb = bb;
10022 for (;;)
10023 {
10024 edge e;
10025 if (bb->next_bb == EXIT_BLOCK_PTR_FOR_FN (cfun)
10026 || ! single_pred_p (bb->next_bb))
10027 break;
10028 e = find_edge (bb, bb->next_bb);
10029 if (! e || (e->flags & EDGE_FALLTHRU) == 0)
10030 break;
10031 bb = bb->next_bb;
10032 }
10033 last_bb = bb;
10034
10035 /* Add the micro-operations to the vector. */
10036 FOR_BB_BETWEEN (bb, first_bb, last_bb->next_bb, next_bb)
10037 {
10038 HOST_WIDE_INT offset = VTI (bb)->out.stack_adjust;
10039 VTI (bb)->out.stack_adjust = VTI (bb)->in.stack_adjust;
10040 for (insn = BB_HEAD (bb); insn != NEXT_INSN (BB_END (bb));
10041 insn = NEXT_INSN (insn))
10042 {
10043 if (INSN_P (insn))
10044 {
10045 if (!frame_pointer_needed)
10046 {
10047 insn_stack_adjust_offset_pre_post (insn, &pre, &post);
10048 if (pre)
10049 {
10050 micro_operation mo;
10051 mo.type = MO_ADJUST;
10052 mo.u.adjust = pre;
10053 mo.insn = insn;
10054 if (dump_file && (dump_flags & TDF_DETAILS))
10055 log_op_type (PATTERN (insn), bb, insn,
10056 MO_ADJUST, dump_file);
10057 VTI (bb)->mos.safe_push (mo);
10058 VTI (bb)->out.stack_adjust += pre;
10059 }
10060 }
10061
10062 cselib_hook_called = false;
10063 adjust_insn (bb, insn);
10064 if (MAY_HAVE_DEBUG_INSNS)
10065 {
10066 if (CALL_P (insn))
10067 prepare_call_arguments (bb, insn);
10068 cselib_process_insn (insn);
10069 if (dump_file && (dump_flags & TDF_DETAILS))
10070 {
10071 print_rtl_single (dump_file, insn);
10072 dump_cselib_table (dump_file);
10073 }
10074 }
10075 if (!cselib_hook_called)
10076 add_with_sets (insn, 0, 0);
10077 cancel_changes (0);
10078
10079 if (!frame_pointer_needed && post)
10080 {
10081 micro_operation mo;
10082 mo.type = MO_ADJUST;
10083 mo.u.adjust = post;
10084 mo.insn = insn;
10085 if (dump_file && (dump_flags & TDF_DETAILS))
10086 log_op_type (PATTERN (insn), bb, insn,
10087 MO_ADJUST, dump_file);
10088 VTI (bb)->mos.safe_push (mo);
10089 VTI (bb)->out.stack_adjust += post;
10090 }
10091
10092 if (fp_cfa_offset != -1
10093 && hard_frame_pointer_adjustment == -1
10094 && fp_setter_insn (insn))
10095 {
10096 vt_init_cfa_base ();
10097 hard_frame_pointer_adjustment = fp_cfa_offset;
10098 /* Disassociate sp from fp now. */
10099 if (MAY_HAVE_DEBUG_INSNS)
10100 {
10101 cselib_val *v;
10102 cselib_invalidate_rtx (stack_pointer_rtx);
10103 v = cselib_lookup (stack_pointer_rtx, Pmode, 1,
10104 VOIDmode);
10105 if (v && !cselib_preserved_value_p (v))
10106 {
10107 cselib_set_value_sp_based (v);
10108 preserve_value (v);
10109 }
10110 }
10111 }
10112 }
10113 }
10114 gcc_assert (offset == VTI (bb)->out.stack_adjust);
10115 }
10116
10117 bb = last_bb;
10118
10119 if (MAY_HAVE_DEBUG_INSNS)
10120 {
10121 cselib_preserve_only_values ();
10122 cselib_reset_table (cselib_get_next_uid ());
10123 cselib_record_sets_hook = NULL;
10124 }
10125 }
10126
10127 hard_frame_pointer_adjustment = -1;
10128 VTI (ENTRY_BLOCK_PTR_FOR_FN (cfun))->flooded = true;
10129 cfa_base_rtx = NULL_RTX;
10130 return true;
10131 }
10132
10133 /* This is *not* reset after each function. It gives each
10134 NOTE_INSN_DELETED_DEBUG_LABEL in the entire compilation
10135 a unique label number. */
10136
10137 static int debug_label_num = 1;
10138
10139 /* Get rid of all debug insns from the insn stream. */
10140
10141 static void
10142 delete_debug_insns (void)
10143 {
10144 basic_block bb;
10145 rtx insn, next;
10146
10147 if (!MAY_HAVE_DEBUG_INSNS)
10148 return;
10149
10150 FOR_EACH_BB_FN (bb, cfun)
10151 {
10152 FOR_BB_INSNS_SAFE (bb, insn, next)
10153 if (DEBUG_INSN_P (insn))
10154 {
10155 tree decl = INSN_VAR_LOCATION_DECL (insn);
10156 if (TREE_CODE (decl) == LABEL_DECL
10157 && DECL_NAME (decl)
10158 && !DECL_RTL_SET_P (decl))
10159 {
10160 PUT_CODE (insn, NOTE);
10161 NOTE_KIND (insn) = NOTE_INSN_DELETED_DEBUG_LABEL;
10162 NOTE_DELETED_LABEL_NAME (insn)
10163 = IDENTIFIER_POINTER (DECL_NAME (decl));
10164 SET_DECL_RTL (decl, insn);
10165 CODE_LABEL_NUMBER (insn) = debug_label_num++;
10166 }
10167 else
10168 delete_insn (insn);
10169 }
10170 }
10171 }
10172
10173 /* Run a fast, BB-local only version of var tracking, to take care of
10174 information that we don't do global analysis on, such that not all
10175 information is lost. If SKIPPED holds, we're skipping the global
10176 pass entirely, so we should try to use information it would have
10177 handled as well.. */
10178
10179 static void
10180 vt_debug_insns_local (bool skipped ATTRIBUTE_UNUSED)
10181 {
10182 /* ??? Just skip it all for now. */
10183 delete_debug_insns ();
10184 }
10185
10186 /* Free the data structures needed for variable tracking. */
10187
10188 static void
10189 vt_finalize (void)
10190 {
10191 basic_block bb;
10192
10193 FOR_EACH_BB_FN (bb, cfun)
10194 {
10195 VTI (bb)->mos.release ();
10196 }
10197
10198 FOR_ALL_BB_FN (bb, cfun)
10199 {
10200 dataflow_set_destroy (&VTI (bb)->in);
10201 dataflow_set_destroy (&VTI (bb)->out);
10202 if (VTI (bb)->permp)
10203 {
10204 dataflow_set_destroy (VTI (bb)->permp);
10205 XDELETE (VTI (bb)->permp);
10206 }
10207 }
10208 free_aux_for_blocks ();
10209 empty_shared_hash->htab.dispose ();
10210 changed_variables.dispose ();
10211 free_alloc_pool (attrs_pool);
10212 free_alloc_pool (var_pool);
10213 free_alloc_pool (loc_chain_pool);
10214 free_alloc_pool (shared_hash_pool);
10215
10216 if (MAY_HAVE_DEBUG_INSNS)
10217 {
10218 if (global_get_addr_cache)
10219 pointer_map_destroy (global_get_addr_cache);
10220 global_get_addr_cache = NULL;
10221 if (loc_exp_dep_pool)
10222 free_alloc_pool (loc_exp_dep_pool);
10223 loc_exp_dep_pool = NULL;
10224 free_alloc_pool (valvar_pool);
10225 preserved_values.release ();
10226 cselib_finish ();
10227 BITMAP_FREE (scratch_regs);
10228 scratch_regs = NULL;
10229 }
10230
10231 #ifdef HAVE_window_save
10232 vec_free (windowed_parm_regs);
10233 #endif
10234
10235 if (vui_vec)
10236 XDELETEVEC (vui_vec);
10237 vui_vec = NULL;
10238 vui_allocated = 0;
10239 }
10240
10241 /* The entry point to variable tracking pass. */
10242
10243 static inline unsigned int
10244 variable_tracking_main_1 (void)
10245 {
10246 bool success;
10247
10248 if (flag_var_tracking_assignments < 0)
10249 {
10250 delete_debug_insns ();
10251 return 0;
10252 }
10253
10254 if (n_basic_blocks_for_fn (cfun) > 500 &&
10255 n_edges_for_fn (cfun) / n_basic_blocks_for_fn (cfun) >= 20)
10256 {
10257 vt_debug_insns_local (true);
10258 return 0;
10259 }
10260
10261 mark_dfs_back_edges ();
10262 if (!vt_initialize ())
10263 {
10264 vt_finalize ();
10265 vt_debug_insns_local (true);
10266 return 0;
10267 }
10268
10269 success = vt_find_locations ();
10270
10271 if (!success && flag_var_tracking_assignments > 0)
10272 {
10273 vt_finalize ();
10274
10275 delete_debug_insns ();
10276
10277 /* This is later restored by our caller. */
10278 flag_var_tracking_assignments = 0;
10279
10280 success = vt_initialize ();
10281 gcc_assert (success);
10282
10283 success = vt_find_locations ();
10284 }
10285
10286 if (!success)
10287 {
10288 vt_finalize ();
10289 vt_debug_insns_local (false);
10290 return 0;
10291 }
10292
10293 if (dump_file && (dump_flags & TDF_DETAILS))
10294 {
10295 dump_dataflow_sets ();
10296 dump_reg_info (dump_file);
10297 dump_flow_info (dump_file, dump_flags);
10298 }
10299
10300 timevar_push (TV_VAR_TRACKING_EMIT);
10301 vt_emit_notes ();
10302 timevar_pop (TV_VAR_TRACKING_EMIT);
10303
10304 vt_finalize ();
10305 vt_debug_insns_local (false);
10306 return 0;
10307 }
10308
10309 unsigned int
10310 variable_tracking_main (void)
10311 {
10312 unsigned int ret;
10313 int save = flag_var_tracking_assignments;
10314
10315 ret = variable_tracking_main_1 ();
10316
10317 flag_var_tracking_assignments = save;
10318
10319 return ret;
10320 }
10321 \f
10322 static bool
10323 gate_handle_var_tracking (void)
10324 {
10325 return (flag_var_tracking && !targetm.delay_vartrack);
10326 }
10327
10328
10329
10330 namespace {
10331
10332 const pass_data pass_data_variable_tracking =
10333 {
10334 RTL_PASS, /* type */
10335 "vartrack", /* name */
10336 OPTGROUP_NONE, /* optinfo_flags */
10337 true, /* has_gate */
10338 true, /* has_execute */
10339 TV_VAR_TRACKING, /* tv_id */
10340 0, /* properties_required */
10341 0, /* properties_provided */
10342 0, /* properties_destroyed */
10343 0, /* todo_flags_start */
10344 ( TODO_verify_rtl_sharing | TODO_verify_flow ), /* todo_flags_finish */
10345 };
10346
10347 class pass_variable_tracking : public rtl_opt_pass
10348 {
10349 public:
10350 pass_variable_tracking (gcc::context *ctxt)
10351 : rtl_opt_pass (pass_data_variable_tracking, ctxt)
10352 {}
10353
10354 /* opt_pass methods: */
10355 bool gate () { return gate_handle_var_tracking (); }
10356 unsigned int execute () { return variable_tracking_main (); }
10357
10358 }; // class pass_variable_tracking
10359
10360 } // anon namespace
10361
10362 rtl_opt_pass *
10363 make_pass_variable_tracking (gcc::context *ctxt)
10364 {
10365 return new pass_variable_tracking (ctxt);
10366 }