cond.md (stzx_16): Use register_operand for operand 0.
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
29
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
40
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
42
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54 # endif // GCC_GGC_H
55 #endif // VEC_GC_ENABLED
56
57 /* Templated vector type and associated interfaces.
58
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
62
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
68
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
72 (it dies if there is not). The latter will reallocate the
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
82 specific size from the get go.
83
84 You should prefer the push and pop operations, as they append and
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
93 array using insert that will maintain sorted order.
94
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
98
99 Four allocation strategies are supported:
100
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
103
104 - GC: allocation is done using ggc_alloc/ggc_free.
105
106 - GC atomic: same as GC with the exception that the elements
107 themselves are assumed to be of an atomic type that does
108 not need to be garbage collected. This means that marking
109 routines do not need to traverse the array marking the
110 individual elements. This increases the performance of
111 GC activities.
112
113 Two physical layouts are supported:
114
115 - Embedded: The vector is structured using the trailing array
116 idiom. The last member of the structure is an array of size
117 1. When the vector is initially allocated, a single memory
118 block is created to hold the vector's control data and the
119 array of elements. These vectors cannot grow without
120 reallocation (see discussion on embeddable vectors below).
121
122 - Space efficient: The vector is structured as a pointer to an
123 embedded vector. This is the default layout. It means that
124 vectors occupy a single word of storage before initial
125 allocation. Vectors are allowed to grow (the internal
126 pointer is reallocated but the main vector instance does not
127 need to relocate).
128
129 The type, allocation and layout are specified when the vector is
130 declared.
131
132 If you need to directly manipulate a vector, then the 'address'
133 accessor will return the address of the start of the vector. Also
134 the 'space' predicate will tell you whether there is spare capacity
135 in the vector. You will not normally need to use these two functions.
136
137 Notes on the different layout strategies
138
139 * Embeddable vectors (vec<T, A, vl_embed>)
140
141 These vectors are suitable to be embedded in other data
142 structures so that they can be pre-allocated in a contiguous
143 memory block.
144
145 Embeddable vectors are implemented using the trailing array
146 idiom, thus they are not resizeable without changing the address
147 of the vector object itself. This means you cannot have
148 variables or fields of embeddable vector type -- always use a
149 pointer to a vector. The one exception is the final field of a
150 structure, which could be a vector type.
151
152 You will have to use the embedded_size & embedded_init calls to
153 create such objects, and they will not be resizeable (so the
154 'safe' allocation variants are not available).
155
156 Properties of embeddable vectors:
157
158 - The whole vector and control data are allocated in a single
159 contiguous block. It uses the trailing-vector idiom, so
160 allocation must reserve enough space for all the elements
161 in the vector plus its control data.
162 - The vector cannot be re-allocated.
163 - The vector cannot grow nor shrink.
164 - No indirections needed for access/manipulation.
165 - It requires 2 words of storage (prior to vector allocation).
166
167
168 * Space efficient vector (vec<T, A, vl_ptr>)
169
170 These vectors can grow dynamically and are allocated together
171 with their control data. They are suited to be included in data
172 structures. Prior to initial allocation, they only take a single
173 word of storage.
174
175 These vectors are implemented as a pointer to embeddable vectors.
176 The semantics allow for this pointer to be NULL to represent
177 empty vectors. This way, empty vectors occupy minimal space in
178 the structure containing them.
179
180 Properties:
181
182 - The whole vector and control data are allocated in a single
183 contiguous block.
184 - The whole vector may be re-allocated.
185 - Vector data may grow and shrink.
186 - Access and manipulation requires a pointer test and
187 indirection.
188 - It requires 1 word of storage (prior to vector allocation).
189
190 An example of their use would be,
191
192 struct my_struct {
193 // A space-efficient vector of tree pointers in GC memory.
194 vec<tree, va_gc, vl_ptr> v;
195 };
196
197 struct my_struct *s;
198
199 if (s->v.length ()) { we have some contents }
200 s->v.safe_push (decl); // append some decl onto the end
201 for (ix = 0; s->v.iterate (ix, &elt); ix++)
202 { do something with elt }
203 */
204
205 /* Support function for statistics. */
206 extern void dump_vec_loc_statistics (void);
207
208
209 /* Control data for vectors. This contains the number of allocated
210 and used slots inside a vector. */
211
212 struct vec_prefix
213 {
214 /* FIXME - These fields should be private, but we need to cater to
215 compilers that have stricter notions of PODness for types. */
216
217 /* Memory allocation support routines in vec.c. */
218 void register_overhead (size_t, const char *, int, const char *);
219 void release_overhead (void);
220 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
221
222 /* Note that vec_prefix should be a base class for vec, but we use
223 offsetof() on vector fields of tree structures (e.g.,
224 tree_binfo::base_binfos), and offsetof only supports base types.
225
226 To compensate, we make vec_prefix a field inside vec and make
227 vec a friend class of vec_prefix so it can access its fields. */
228 template <typename, typename, typename> friend struct vec;
229
230 /* The allocator types also need access to our internals. */
231 friend struct va_gc;
232 friend struct va_gc_atomic;
233 friend struct va_heap;
234
235 unsigned m_alloc : 31;
236 unsigned m_has_auto_buf : 1;
237 unsigned m_num;
238 };
239
240 template<typename, typename, typename> struct vec;
241
242 /* Valid vector layouts
243
244 vl_embed - Embeddable vector that uses the trailing array idiom.
245 vl_ptr - Space efficient vector that uses a pointer to an
246 embeddable vector. */
247 struct vl_embed { };
248 struct vl_ptr { };
249
250
251 /* Types of supported allocations
252
253 va_heap - Allocation uses malloc/free.
254 va_gc - Allocation uses ggc_alloc.
255 va_gc_atomic - Same as GC, but individual elements of the array
256 do not need to be marked during collection. */
257
258 /* Allocator type for heap vectors. */
259 struct va_heap
260 {
261 /* Heap vectors are frequently regular instances, so use the vl_ptr
262 layout for them. */
263 typedef vl_ptr default_layout;
264
265 template<typename T>
266 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
267 CXX_MEM_STAT_INFO);
268
269 template<typename T>
270 static void release (vec<T, va_heap, vl_embed> *&);
271 };
272
273
274 /* Allocator for heap memory. Ensure there are at least RESERVE free
275 slots in V. If EXACT is true, grow exactly, else grow
276 exponentially. As a special case, if the vector had not been
277 allocated and and RESERVE is 0, no vector will be created. */
278
279 template<typename T>
280 inline void
281 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
282 MEM_STAT_DECL)
283 {
284 unsigned alloc
285 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
286 gcc_assert (alloc);
287
288 if (GATHER_STATISTICS && v)
289 v->m_vecpfx.release_overhead ();
290
291 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
292 unsigned nelem = v ? v->length () : 0;
293 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
294 v->embedded_init (alloc, nelem);
295
296 if (GATHER_STATISTICS)
297 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
298 }
299
300
301 /* Free the heap space allocated for vector V. */
302
303 template<typename T>
304 void
305 va_heap::release (vec<T, va_heap, vl_embed> *&v)
306 {
307 if (v == NULL)
308 return;
309
310 if (GATHER_STATISTICS)
311 v->m_vecpfx.release_overhead ();
312 ::free (v);
313 v = NULL;
314 }
315
316
317 /* Allocator type for GC vectors. Notice that we need the structure
318 declaration even if GC is not enabled. */
319
320 struct va_gc
321 {
322 /* Use vl_embed as the default layout for GC vectors. Due to GTY
323 limitations, GC vectors must always be pointers, so it is more
324 efficient to use a pointer to the vl_embed layout, rather than
325 using a pointer to a pointer as would be the case with vl_ptr. */
326 typedef vl_embed default_layout;
327
328 template<typename T, typename A>
329 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
330 CXX_MEM_STAT_INFO);
331
332 template<typename T, typename A>
333 static void release (vec<T, A, vl_embed> *&v);
334 };
335
336
337 /* Free GC memory used by V and reset V to NULL. */
338
339 template<typename T, typename A>
340 inline void
341 va_gc::release (vec<T, A, vl_embed> *&v)
342 {
343 if (v)
344 ::ggc_free (v);
345 v = NULL;
346 }
347
348
349 /* Allocator for GC memory. Ensure there are at least RESERVE free
350 slots in V. If EXACT is true, grow exactly, else grow
351 exponentially. As a special case, if the vector had not been
352 allocated and and RESERVE is 0, no vector will be created. */
353
354 template<typename T, typename A>
355 void
356 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
357 MEM_STAT_DECL)
358 {
359 unsigned alloc
360 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
361 if (!alloc)
362 {
363 ::ggc_free (v);
364 v = NULL;
365 return;
366 }
367
368 /* Calculate the amount of space we want. */
369 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
370
371 /* Ask the allocator how much space it will really give us. */
372 size = ::ggc_round_alloc_size (size);
373
374 /* Adjust the number of slots accordingly. */
375 size_t vec_offset = sizeof (vec_prefix);
376 size_t elt_size = sizeof (T);
377 alloc = (size - vec_offset) / elt_size;
378
379 /* And finally, recalculate the amount of space we ask for. */
380 size = vec_offset + alloc * elt_size;
381
382 unsigned nelem = v ? v->length () : 0;
383 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
384 PASS_MEM_STAT));
385 v->embedded_init (alloc, nelem);
386 }
387
388
389 /* Allocator type for GC vectors. This is for vectors of types
390 atomics w.r.t. collection, so allocation and deallocation is
391 completely inherited from va_gc. */
392 struct va_gc_atomic : va_gc
393 {
394 };
395
396
397 /* Generic vector template. Default values for A and L indicate the
398 most commonly used strategies.
399
400 FIXME - Ideally, they would all be vl_ptr to encourage using regular
401 instances for vectors, but the existing GTY machinery is limited
402 in that it can only deal with GC objects that are pointers
403 themselves.
404
405 This means that vector operations that need to deal with
406 potentially NULL pointers, must be provided as free
407 functions (see the vec_safe_* functions above). */
408 template<typename T,
409 typename A = va_heap,
410 typename L = typename A::default_layout>
411 struct GTY((user)) vec
412 {
413 };
414
415 /* Type to provide NULL values for vec<T, A, L>. This is used to
416 provide nil initializers for vec instances. Since vec must be
417 a POD, we cannot have proper ctor/dtor for it. To initialize
418 a vec instance, you can assign it the value vNULL. */
419 struct vnull
420 {
421 template <typename T, typename A, typename L>
422 operator vec<T, A, L> () { return vec<T, A, L>(); }
423 };
424 extern vnull vNULL;
425
426
427 /* Embeddable vector. These vectors are suitable to be embedded
428 in other data structures so that they can be pre-allocated in a
429 contiguous memory block.
430
431 Embeddable vectors are implemented using the trailing array idiom,
432 thus they are not resizeable without changing the address of the
433 vector object itself. This means you cannot have variables or
434 fields of embeddable vector type -- always use a pointer to a
435 vector. The one exception is the final field of a structure, which
436 could be a vector type.
437
438 You will have to use the embedded_size & embedded_init calls to
439 create such objects, and they will not be resizeable (so the 'safe'
440 allocation variants are not available).
441
442 Properties:
443
444 - The whole vector and control data are allocated in a single
445 contiguous block. It uses the trailing-vector idiom, so
446 allocation must reserve enough space for all the elements
447 in the vector plus its control data.
448 - The vector cannot be re-allocated.
449 - The vector cannot grow nor shrink.
450 - No indirections needed for access/manipulation.
451 - It requires 2 words of storage (prior to vector allocation). */
452
453 template<typename T, typename A>
454 struct GTY((user)) vec<T, A, vl_embed>
455 {
456 public:
457 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
458 unsigned length (void) const { return m_vecpfx.m_num; }
459 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
460 T *address (void) { return m_vecdata; }
461 const T *address (void) const { return m_vecdata; }
462 const T &operator[] (unsigned) const;
463 T &operator[] (unsigned);
464 T &last (void);
465 bool space (unsigned) const;
466 bool iterate (unsigned, T *) const;
467 bool iterate (unsigned, T **) const;
468 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
469 void splice (vec &);
470 void splice (vec *src);
471 T *quick_push (const T &);
472 T &pop (void);
473 void truncate (unsigned);
474 void quick_insert (unsigned, const T &);
475 void ordered_remove (unsigned);
476 void unordered_remove (unsigned);
477 void block_remove (unsigned, unsigned);
478 void qsort (int (*) (const void *, const void *));
479 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
480 static size_t embedded_size (unsigned);
481 void embedded_init (unsigned, unsigned = 0);
482 void quick_grow (unsigned len);
483 void quick_grow_cleared (unsigned len);
484
485 /* vec class can access our internal data and functions. */
486 template <typename, typename, typename> friend struct vec;
487
488 /* The allocator types also need access to our internals. */
489 friend struct va_gc;
490 friend struct va_gc_atomic;
491 friend struct va_heap;
492
493 /* FIXME - These fields should be private, but we need to cater to
494 compilers that have stricter notions of PODness for types. */
495 vec_prefix m_vecpfx;
496 T m_vecdata[1];
497 };
498
499
500 /* Convenience wrapper functions to use when dealing with pointers to
501 embedded vectors. Some functionality for these vectors must be
502 provided via free functions for these reasons:
503
504 1- The pointer may be NULL (e.g., before initial allocation).
505
506 2- When the vector needs to grow, it must be reallocated, so
507 the pointer will change its value.
508
509 Because of limitations with the current GC machinery, all vectors
510 in GC memory *must* be pointers. */
511
512
513 /* If V contains no room for NELEMS elements, return false. Otherwise,
514 return true. */
515 template<typename T, typename A>
516 inline bool
517 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
518 {
519 return v ? v->space (nelems) : nelems == 0;
520 }
521
522
523 /* If V is NULL, return 0. Otherwise, return V->length(). */
524 template<typename T, typename A>
525 inline unsigned
526 vec_safe_length (const vec<T, A, vl_embed> *v)
527 {
528 return v ? v->length () : 0;
529 }
530
531
532 /* If V is NULL, return NULL. Otherwise, return V->address(). */
533 template<typename T, typename A>
534 inline T *
535 vec_safe_address (vec<T, A, vl_embed> *v)
536 {
537 return v ? v->address () : NULL;
538 }
539
540
541 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
542 template<typename T, typename A>
543 inline bool
544 vec_safe_is_empty (vec<T, A, vl_embed> *v)
545 {
546 return v ? v->is_empty () : true;
547 }
548
549
550 /* If V does not have space for NELEMS elements, call
551 V->reserve(NELEMS, EXACT). */
552 template<typename T, typename A>
553 inline bool
554 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
555 CXX_MEM_STAT_INFO)
556 {
557 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
558 if (extend)
559 A::reserve (v, nelems, exact PASS_MEM_STAT);
560 return extend;
561 }
562
563 template<typename T, typename A>
564 inline bool
565 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
566 CXX_MEM_STAT_INFO)
567 {
568 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
569 }
570
571
572 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
573 is 0, V is initialized to NULL. */
574
575 template<typename T, typename A>
576 inline void
577 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
578 {
579 v = NULL;
580 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
581 }
582
583
584 /* Free the GC memory allocated by vector V and set it to NULL. */
585
586 template<typename T, typename A>
587 inline void
588 vec_free (vec<T, A, vl_embed> *&v)
589 {
590 A::release (v);
591 }
592
593
594 /* Grow V to length LEN. Allocate it, if necessary. */
595 template<typename T, typename A>
596 inline void
597 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
598 {
599 unsigned oldlen = vec_safe_length (v);
600 gcc_checking_assert (len >= oldlen);
601 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
602 v->quick_grow (len);
603 }
604
605
606 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
607 template<typename T, typename A>
608 inline void
609 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
610 {
611 unsigned oldlen = vec_safe_length (v);
612 vec_safe_grow (v, len PASS_MEM_STAT);
613 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
614 }
615
616
617 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
618 template<typename T, typename A>
619 inline bool
620 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
621 {
622 if (v)
623 return v->iterate (ix, ptr);
624 else
625 {
626 *ptr = 0;
627 return false;
628 }
629 }
630
631 template<typename T, typename A>
632 inline bool
633 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
634 {
635 if (v)
636 return v->iterate (ix, ptr);
637 else
638 {
639 *ptr = 0;
640 return false;
641 }
642 }
643
644
645 /* If V has no room for one more element, reallocate it. Then call
646 V->quick_push(OBJ). */
647 template<typename T, typename A>
648 inline T *
649 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
650 {
651 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
652 return v->quick_push (obj);
653 }
654
655
656 /* if V has no room for one more element, reallocate it. Then call
657 V->quick_insert(IX, OBJ). */
658 template<typename T, typename A>
659 inline void
660 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
661 CXX_MEM_STAT_INFO)
662 {
663 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
664 v->quick_insert (ix, obj);
665 }
666
667
668 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
669 template<typename T, typename A>
670 inline void
671 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
672 {
673 if (v)
674 v->truncate (size);
675 }
676
677
678 /* If SRC is not NULL, return a pointer to a copy of it. */
679 template<typename T, typename A>
680 inline vec<T, A, vl_embed> *
681 vec_safe_copy (vec<T, A, vl_embed> *src)
682 {
683 return src ? src->copy () : NULL;
684 }
685
686 /* Copy the elements from SRC to the end of DST as if by memcpy.
687 Reallocate DST, if necessary. */
688 template<typename T, typename A>
689 inline void
690 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
691 CXX_MEM_STAT_INFO)
692 {
693 unsigned src_len = vec_safe_length (src);
694 if (src_len)
695 {
696 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
697 PASS_MEM_STAT);
698 dst->splice (*src);
699 }
700 }
701
702
703 /* Index into vector. Return the IX'th element. IX must be in the
704 domain of the vector. */
705
706 template<typename T, typename A>
707 inline const T &
708 vec<T, A, vl_embed>::operator[] (unsigned ix) const
709 {
710 gcc_checking_assert (ix < m_vecpfx.m_num);
711 return m_vecdata[ix];
712 }
713
714 template<typename T, typename A>
715 inline T &
716 vec<T, A, vl_embed>::operator[] (unsigned ix)
717 {
718 gcc_checking_assert (ix < m_vecpfx.m_num);
719 return m_vecdata[ix];
720 }
721
722
723 /* Get the final element of the vector, which must not be empty. */
724
725 template<typename T, typename A>
726 inline T &
727 vec<T, A, vl_embed>::last (void)
728 {
729 gcc_checking_assert (m_vecpfx.m_num > 0);
730 return (*this)[m_vecpfx.m_num - 1];
731 }
732
733
734 /* If this vector has space for NELEMS additional entries, return
735 true. You usually only need to use this if you are doing your
736 own vector reallocation, for instance on an embedded vector. This
737 returns true in exactly the same circumstances that vec::reserve
738 will. */
739
740 template<typename T, typename A>
741 inline bool
742 vec<T, A, vl_embed>::space (unsigned nelems) const
743 {
744 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
745 }
746
747
748 /* Return iteration condition and update PTR to point to the IX'th
749 element of this vector. Use this to iterate over the elements of a
750 vector as follows,
751
752 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
753 continue; */
754
755 template<typename T, typename A>
756 inline bool
757 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
758 {
759 if (ix < m_vecpfx.m_num)
760 {
761 *ptr = m_vecdata[ix];
762 return true;
763 }
764 else
765 {
766 *ptr = 0;
767 return false;
768 }
769 }
770
771
772 /* Return iteration condition and update *PTR to point to the
773 IX'th element of this vector. Use this to iterate over the
774 elements of a vector as follows,
775
776 for (ix = 0; v->iterate (ix, &ptr); ix++)
777 continue;
778
779 This variant is for vectors of objects. */
780
781 template<typename T, typename A>
782 inline bool
783 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
784 {
785 if (ix < m_vecpfx.m_num)
786 {
787 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
788 return true;
789 }
790 else
791 {
792 *ptr = 0;
793 return false;
794 }
795 }
796
797
798 /* Return a pointer to a copy of this vector. */
799
800 template<typename T, typename A>
801 inline vec<T, A, vl_embed> *
802 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
803 {
804 vec<T, A, vl_embed> *new_vec = NULL;
805 unsigned len = length ();
806 if (len)
807 {
808 vec_alloc (new_vec, len PASS_MEM_STAT);
809 new_vec->embedded_init (len, len);
810 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
811 }
812 return new_vec;
813 }
814
815
816 /* Copy the elements from SRC to the end of this vector as if by memcpy.
817 The vector must have sufficient headroom available. */
818
819 template<typename T, typename A>
820 inline void
821 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
822 {
823 unsigned len = src.length ();
824 if (len)
825 {
826 gcc_checking_assert (space (len));
827 memcpy (address () + length (), src.address (), len * sizeof (T));
828 m_vecpfx.m_num += len;
829 }
830 }
831
832 template<typename T, typename A>
833 inline void
834 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
835 {
836 if (src)
837 splice (*src);
838 }
839
840
841 /* Push OBJ (a new element) onto the end of the vector. There must be
842 sufficient space in the vector. Return a pointer to the slot
843 where OBJ was inserted. */
844
845 template<typename T, typename A>
846 inline T *
847 vec<T, A, vl_embed>::quick_push (const T &obj)
848 {
849 gcc_checking_assert (space (1));
850 T *slot = &m_vecdata[m_vecpfx.m_num++];
851 *slot = obj;
852 return slot;
853 }
854
855
856 /* Pop and return the last element off the end of the vector. */
857
858 template<typename T, typename A>
859 inline T &
860 vec<T, A, vl_embed>::pop (void)
861 {
862 gcc_checking_assert (length () > 0);
863 return m_vecdata[--m_vecpfx.m_num];
864 }
865
866
867 /* Set the length of the vector to SIZE. The new length must be less
868 than or equal to the current length. This is an O(1) operation. */
869
870 template<typename T, typename A>
871 inline void
872 vec<T, A, vl_embed>::truncate (unsigned size)
873 {
874 gcc_checking_assert (length () >= size);
875 m_vecpfx.m_num = size;
876 }
877
878
879 /* Insert an element, OBJ, at the IXth position of this vector. There
880 must be sufficient space. */
881
882 template<typename T, typename A>
883 inline void
884 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
885 {
886 gcc_checking_assert (length () < allocated ());
887 gcc_checking_assert (ix <= length ());
888 T *slot = &m_vecdata[ix];
889 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
890 *slot = obj;
891 }
892
893
894 /* Remove an element from the IXth position of this vector. Ordering of
895 remaining elements is preserved. This is an O(N) operation due to
896 memmove. */
897
898 template<typename T, typename A>
899 inline void
900 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
901 {
902 gcc_checking_assert (ix < length ());
903 T *slot = &m_vecdata[ix];
904 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
905 }
906
907
908 /* Remove an element from the IXth position of this vector. Ordering of
909 remaining elements is destroyed. This is an O(1) operation. */
910
911 template<typename T, typename A>
912 inline void
913 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
914 {
915 gcc_checking_assert (ix < length ());
916 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
917 }
918
919
920 /* Remove LEN elements starting at the IXth. Ordering is retained.
921 This is an O(N) operation due to memmove. */
922
923 template<typename T, typename A>
924 inline void
925 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
926 {
927 gcc_checking_assert (ix + len <= length ());
928 T *slot = &m_vecdata[ix];
929 m_vecpfx.m_num -= len;
930 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
931 }
932
933
934 /* Sort the contents of this vector with qsort. CMP is the comparison
935 function to pass to qsort. */
936
937 template<typename T, typename A>
938 inline void
939 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
940 {
941 ::qsort (address (), length (), sizeof (T), cmp);
942 }
943
944
945 /* Find and return the first position in which OBJ could be inserted
946 without changing the ordering of this vector. LESSTHAN is a
947 function that returns true if the first argument is strictly less
948 than the second. */
949
950 template<typename T, typename A>
951 unsigned
952 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
953 const
954 {
955 unsigned int len = length ();
956 unsigned int half, middle;
957 unsigned int first = 0;
958 while (len > 0)
959 {
960 half = len / 2;
961 middle = first;
962 middle += half;
963 T middle_elem = (*this)[middle];
964 if (lessthan (middle_elem, obj))
965 {
966 first = middle;
967 ++first;
968 len = len - half - 1;
969 }
970 else
971 len = half;
972 }
973 return first;
974 }
975
976
977 /* Return the number of bytes needed to embed an instance of an
978 embeddable vec inside another data structure.
979
980 Use these methods to determine the required size and initialization
981 of a vector V of type T embedded within another structure (as the
982 final member):
983
984 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
985 void v->embedded_init (unsigned alloc, unsigned num);
986
987 These allow the caller to perform the memory allocation. */
988
989 template<typename T, typename A>
990 inline size_t
991 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
992 {
993 typedef vec<T, A, vl_embed> vec_embedded;
994 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
995 }
996
997
998 /* Initialize the vector to contain room for ALLOC elements and
999 NUM active elements. */
1000
1001 template<typename T, typename A>
1002 inline void
1003 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num)
1004 {
1005 m_vecpfx.m_alloc = alloc;
1006 m_vecpfx.m_has_auto_buf = 0;
1007 m_vecpfx.m_num = num;
1008 }
1009
1010
1011 /* Grow the vector to a specific length. LEN must be as long or longer than
1012 the current length. The new elements are uninitialized. */
1013
1014 template<typename T, typename A>
1015 inline void
1016 vec<T, A, vl_embed>::quick_grow (unsigned len)
1017 {
1018 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1019 m_vecpfx.m_num = len;
1020 }
1021
1022
1023 /* Grow the vector to a specific length. LEN must be as long or longer than
1024 the current length. The new elements are initialized to zero. */
1025
1026 template<typename T, typename A>
1027 inline void
1028 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1029 {
1030 unsigned oldlen = length ();
1031 quick_grow (len);
1032 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1033 }
1034
1035
1036 /* Garbage collection support for vec<T, A, vl_embed>. */
1037
1038 template<typename T>
1039 void
1040 gt_ggc_mx (vec<T, va_gc> *v)
1041 {
1042 extern void gt_ggc_mx (T &);
1043 for (unsigned i = 0; i < v->length (); i++)
1044 gt_ggc_mx ((*v)[i]);
1045 }
1046
1047 template<typename T>
1048 void
1049 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1050 {
1051 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1052 be traversed. */
1053 }
1054
1055
1056 /* PCH support for vec<T, A, vl_embed>. */
1057
1058 template<typename T, typename A>
1059 void
1060 gt_pch_nx (vec<T, A, vl_embed> *v)
1061 {
1062 extern void gt_pch_nx (T &);
1063 for (unsigned i = 0; i < v->length (); i++)
1064 gt_pch_nx ((*v)[i]);
1065 }
1066
1067 template<typename T, typename A>
1068 void
1069 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1070 {
1071 for (unsigned i = 0; i < v->length (); i++)
1072 op (&((*v)[i]), cookie);
1073 }
1074
1075 template<typename T, typename A>
1076 void
1077 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1078 {
1079 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1080 for (unsigned i = 0; i < v->length (); i++)
1081 gt_pch_nx (&((*v)[i]), op, cookie);
1082 }
1083
1084
1085 /* Space efficient vector. These vectors can grow dynamically and are
1086 allocated together with their control data. They are suited to be
1087 included in data structures. Prior to initial allocation, they
1088 only take a single word of storage.
1089
1090 These vectors are implemented as a pointer to an embeddable vector.
1091 The semantics allow for this pointer to be NULL to represent empty
1092 vectors. This way, empty vectors occupy minimal space in the
1093 structure containing them.
1094
1095 Properties:
1096
1097 - The whole vector and control data are allocated in a single
1098 contiguous block.
1099 - The whole vector may be re-allocated.
1100 - Vector data may grow and shrink.
1101 - Access and manipulation requires a pointer test and
1102 indirection.
1103 - It requires 1 word of storage (prior to vector allocation).
1104
1105
1106 Limitations:
1107
1108 These vectors must be PODs because they are stored in unions.
1109 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1110 As long as we use C++03, we cannot have constructors nor
1111 destructors in classes that are stored in unions. */
1112
1113 template<typename T>
1114 struct vec<T, va_heap, vl_ptr>
1115 {
1116 public:
1117 /* Memory allocation and deallocation for the embedded vector.
1118 Needed because we cannot have proper ctors/dtors defined. */
1119 void create (unsigned nelems CXX_MEM_STAT_INFO);
1120 void release (void);
1121
1122 /* Vector operations. */
1123 bool exists (void) const
1124 { return m_vec != NULL; }
1125
1126 bool is_empty (void) const
1127 { return m_vec ? m_vec->is_empty () : true; }
1128
1129 unsigned length (void) const
1130 { return m_vec ? m_vec->length () : 0; }
1131
1132 T *address (void)
1133 { return m_vec ? m_vec->m_vecdata : NULL; }
1134
1135 const T *address (void) const
1136 { return m_vec ? m_vec->m_vecdata : NULL; }
1137
1138 const T &operator[] (unsigned ix) const
1139 { return (*m_vec)[ix]; }
1140
1141 bool operator!=(const vec &other) const
1142 { return !(*this == other); }
1143
1144 bool operator==(const vec &other) const
1145 { return address () == other.address (); }
1146
1147 T &operator[] (unsigned ix)
1148 { return (*m_vec)[ix]; }
1149
1150 T &last (void)
1151 { return m_vec->last (); }
1152
1153 bool space (int nelems) const
1154 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1155
1156 bool iterate (unsigned ix, T *p) const;
1157 bool iterate (unsigned ix, T **p) const;
1158 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1159 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1160 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1161 void splice (vec &);
1162 void safe_splice (vec & CXX_MEM_STAT_INFO);
1163 T *quick_push (const T &);
1164 T *safe_push (const T &CXX_MEM_STAT_INFO);
1165 T &pop (void);
1166 void truncate (unsigned);
1167 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1168 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1169 void quick_grow (unsigned);
1170 void quick_grow_cleared (unsigned);
1171 void quick_insert (unsigned, const T &);
1172 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1173 void ordered_remove (unsigned);
1174 void unordered_remove (unsigned);
1175 void block_remove (unsigned, unsigned);
1176 void qsort (int (*) (const void *, const void *));
1177 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1178
1179 bool using_auto_storage () const;
1180
1181 /* FIXME - This field should be private, but we need to cater to
1182 compilers that have stricter notions of PODness for types. */
1183 vec<T, va_heap, vl_embed> *m_vec;
1184 };
1185
1186
1187 /* auto_vec is a sub class of vec whose storage is released when it is
1188 destroyed. */
1189 template<typename T>
1190 class auto_vec : public vec<T, va_heap>
1191 {
1192 public:
1193 auto_vec () { this->m_vec = NULL; }
1194 auto_vec (size_t n) { this->create (n); }
1195 ~auto_vec () { this->release (); }
1196 };
1197
1198 /* stack_vec is a subclass of vec containing N elements of internal storage.
1199 You probably only want to allocate this on the stack because if the array
1200 ends up being larger or much smaller than N it will be wasting space. */
1201 template<typename T, size_t N>
1202 class stack_vec : public vec<T, va_heap>
1203 {
1204 public:
1205 stack_vec ()
1206 {
1207 m_header.m_alloc = N;
1208 m_header.m_has_auto_buf = 1;
1209 m_header.m_num = 0;
1210 this->m_vec = reinterpret_cast<vec<T, va_heap, vl_embed> *> (&m_header);
1211 }
1212
1213 ~stack_vec ()
1214 {
1215 this->release ();
1216 }
1217
1218 private:
1219 friend class vec<T, va_heap, vl_ptr>;
1220
1221 vec_prefix m_header;
1222 T m_data[N];
1223 };
1224
1225
1226 /* Allocate heap memory for pointer V and create the internal vector
1227 with space for NELEMS elements. If NELEMS is 0, the internal
1228 vector is initialized to empty. */
1229
1230 template<typename T>
1231 inline void
1232 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1233 {
1234 v = new vec<T>;
1235 v->create (nelems PASS_MEM_STAT);
1236 }
1237
1238
1239 /* Conditionally allocate heap memory for VEC and its internal vector. */
1240
1241 template<typename T>
1242 inline void
1243 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1244 {
1245 if (!vec)
1246 vec_alloc (vec, nelems PASS_MEM_STAT);
1247 }
1248
1249
1250 /* Free the heap memory allocated by vector V and set it to NULL. */
1251
1252 template<typename T>
1253 inline void
1254 vec_free (vec<T> *&v)
1255 {
1256 if (v == NULL)
1257 return;
1258
1259 v->release ();
1260 delete v;
1261 v = NULL;
1262 }
1263
1264
1265 /* Return iteration condition and update PTR to point to the IX'th
1266 element of this vector. Use this to iterate over the elements of a
1267 vector as follows,
1268
1269 for (ix = 0; v.iterate (ix, &ptr); ix++)
1270 continue; */
1271
1272 template<typename T>
1273 inline bool
1274 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1275 {
1276 if (m_vec)
1277 return m_vec->iterate (ix, ptr);
1278 else
1279 {
1280 *ptr = 0;
1281 return false;
1282 }
1283 }
1284
1285
1286 /* Return iteration condition and update *PTR to point to the
1287 IX'th element of this vector. Use this to iterate over the
1288 elements of a vector as follows,
1289
1290 for (ix = 0; v->iterate (ix, &ptr); ix++)
1291 continue;
1292
1293 This variant is for vectors of objects. */
1294
1295 template<typename T>
1296 inline bool
1297 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1298 {
1299 if (m_vec)
1300 return m_vec->iterate (ix, ptr);
1301 else
1302 {
1303 *ptr = 0;
1304 return false;
1305 }
1306 }
1307
1308
1309 /* Convenience macro for forward iteration. */
1310 #define FOR_EACH_VEC_ELT(V, I, P) \
1311 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1312
1313 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1314 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1315
1316 /* Likewise, but start from FROM rather than 0. */
1317 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1318 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1319
1320 /* Convenience macro for reverse iteration. */
1321 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1322 for (I = (V).length () - 1; \
1323 (V).iterate ((I), &(P)); \
1324 (I)--)
1325
1326 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1327 for (I = vec_safe_length (V) - 1; \
1328 vec_safe_iterate ((V), (I), &(P)); \
1329 (I)--)
1330
1331
1332 /* Return a copy of this vector. */
1333
1334 template<typename T>
1335 inline vec<T, va_heap, vl_ptr>
1336 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1337 {
1338 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1339 if (length ())
1340 new_vec.m_vec = m_vec->copy ();
1341 return new_vec;
1342 }
1343
1344
1345 /* Ensure that the vector has at least RESERVE slots available (if
1346 EXACT is false), or exactly RESERVE slots available (if EXACT is
1347 true).
1348
1349 This may create additional headroom if EXACT is false.
1350
1351 Note that this can cause the embedded vector to be reallocated.
1352 Returns true iff reallocation actually occurred. */
1353
1354 template<typename T>
1355 inline bool
1356 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1357 {
1358 if (!nelems || space (nelems))
1359 return false;
1360
1361 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1362 this is necessary because it doesn't have enough information to know the
1363 embedded vector is in auto storage, and so should not be freed. */
1364 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1365 unsigned int oldsize = 0;
1366 bool handle_auto_vec = m_vec && using_auto_storage ();
1367 if (handle_auto_vec)
1368 {
1369 m_vec = NULL;
1370 oldsize = oldvec->length ();
1371 nelems += oldsize;
1372 }
1373
1374 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1375 if (handle_auto_vec)
1376 {
1377 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1378 m_vec->m_vecpfx.m_num = oldsize;
1379 }
1380
1381 return true;
1382 }
1383
1384
1385 /* Ensure that this vector has exactly NELEMS slots available. This
1386 will not create additional headroom. Note this can cause the
1387 embedded vector to be reallocated. Returns true iff reallocation
1388 actually occurred. */
1389
1390 template<typename T>
1391 inline bool
1392 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1393 {
1394 return reserve (nelems, true PASS_MEM_STAT);
1395 }
1396
1397
1398 /* Create the internal vector and reserve NELEMS for it. This is
1399 exactly like vec::reserve, but the internal vector is
1400 unconditionally allocated from scratch. The old one, if it
1401 existed, is lost. */
1402
1403 template<typename T>
1404 inline void
1405 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1406 {
1407 m_vec = NULL;
1408 if (nelems > 0)
1409 reserve_exact (nelems PASS_MEM_STAT);
1410 }
1411
1412
1413 /* Free the memory occupied by the embedded vector. */
1414
1415 template<typename T>
1416 inline void
1417 vec<T, va_heap, vl_ptr>::release (void)
1418 {
1419 if (!m_vec)
1420 return;
1421
1422 if (using_auto_storage ())
1423 {
1424 static_cast<stack_vec<T, 1> *> (this)->m_header.m_num = 0;
1425 return;
1426 }
1427
1428 va_heap::release (m_vec);
1429 }
1430
1431 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1432 SRC and this vector must be allocated with the same memory
1433 allocation mechanism. This vector is assumed to have sufficient
1434 headroom available. */
1435
1436 template<typename T>
1437 inline void
1438 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1439 {
1440 if (src.m_vec)
1441 m_vec->splice (*(src.m_vec));
1442 }
1443
1444
1445 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1446 SRC and this vector must be allocated with the same mechanism.
1447 If there is not enough headroom in this vector, it will be reallocated
1448 as needed. */
1449
1450 template<typename T>
1451 inline void
1452 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1453 MEM_STAT_DECL)
1454 {
1455 if (src.length ())
1456 {
1457 reserve_exact (src.length ());
1458 splice (src);
1459 }
1460 }
1461
1462
1463 /* Push OBJ (a new element) onto the end of the vector. There must be
1464 sufficient space in the vector. Return a pointer to the slot
1465 where OBJ was inserted. */
1466
1467 template<typename T>
1468 inline T *
1469 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1470 {
1471 return m_vec->quick_push (obj);
1472 }
1473
1474
1475 /* Push a new element OBJ onto the end of this vector. Reallocates
1476 the embedded vector, if needed. Return a pointer to the slot where
1477 OBJ was inserted. */
1478
1479 template<typename T>
1480 inline T *
1481 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1482 {
1483 reserve (1, false PASS_MEM_STAT);
1484 return quick_push (obj);
1485 }
1486
1487
1488 /* Pop and return the last element off the end of the vector. */
1489
1490 template<typename T>
1491 inline T &
1492 vec<T, va_heap, vl_ptr>::pop (void)
1493 {
1494 return m_vec->pop ();
1495 }
1496
1497
1498 /* Set the length of the vector to LEN. The new length must be less
1499 than or equal to the current length. This is an O(1) operation. */
1500
1501 template<typename T>
1502 inline void
1503 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1504 {
1505 if (m_vec)
1506 m_vec->truncate (size);
1507 else
1508 gcc_checking_assert (size == 0);
1509 }
1510
1511
1512 /* Grow the vector to a specific length. LEN must be as long or
1513 longer than the current length. The new elements are
1514 uninitialized. Reallocate the internal vector, if needed. */
1515
1516 template<typename T>
1517 inline void
1518 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1519 {
1520 unsigned oldlen = length ();
1521 gcc_checking_assert (oldlen <= len);
1522 reserve_exact (len - oldlen PASS_MEM_STAT);
1523 m_vec->quick_grow (len);
1524 }
1525
1526
1527 /* Grow the embedded vector to a specific length. LEN must be as
1528 long or longer than the current length. The new elements are
1529 initialized to zero. Reallocate the internal vector, if needed. */
1530
1531 template<typename T>
1532 inline void
1533 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1534 {
1535 unsigned oldlen = length ();
1536 safe_grow (len PASS_MEM_STAT);
1537 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1538 }
1539
1540
1541 /* Same as vec::safe_grow but without reallocation of the internal vector.
1542 If the vector cannot be extended, a runtime assertion will be triggered. */
1543
1544 template<typename T>
1545 inline void
1546 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1547 {
1548 gcc_checking_assert (m_vec);
1549 m_vec->quick_grow (len);
1550 }
1551
1552
1553 /* Same as vec::quick_grow_cleared but without reallocation of the
1554 internal vector. If the vector cannot be extended, a runtime
1555 assertion will be triggered. */
1556
1557 template<typename T>
1558 inline void
1559 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1560 {
1561 gcc_checking_assert (m_vec);
1562 m_vec->quick_grow_cleared (len);
1563 }
1564
1565
1566 /* Insert an element, OBJ, at the IXth position of this vector. There
1567 must be sufficient space. */
1568
1569 template<typename T>
1570 inline void
1571 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1572 {
1573 m_vec->quick_insert (ix, obj);
1574 }
1575
1576
1577 /* Insert an element, OBJ, at the IXth position of the vector.
1578 Reallocate the embedded vector, if necessary. */
1579
1580 template<typename T>
1581 inline void
1582 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1583 {
1584 reserve (1, false PASS_MEM_STAT);
1585 quick_insert (ix, obj);
1586 }
1587
1588
1589 /* Remove an element from the IXth position of this vector. Ordering of
1590 remaining elements is preserved. This is an O(N) operation due to
1591 a memmove. */
1592
1593 template<typename T>
1594 inline void
1595 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1596 {
1597 m_vec->ordered_remove (ix);
1598 }
1599
1600
1601 /* Remove an element from the IXth position of this vector. Ordering
1602 of remaining elements is destroyed. This is an O(1) operation. */
1603
1604 template<typename T>
1605 inline void
1606 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1607 {
1608 m_vec->unordered_remove (ix);
1609 }
1610
1611
1612 /* Remove LEN elements starting at the IXth. Ordering is retained.
1613 This is an O(N) operation due to memmove. */
1614
1615 template<typename T>
1616 inline void
1617 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1618 {
1619 m_vec->block_remove (ix, len);
1620 }
1621
1622
1623 /* Sort the contents of this vector with qsort. CMP is the comparison
1624 function to pass to qsort. */
1625
1626 template<typename T>
1627 inline void
1628 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1629 {
1630 if (m_vec)
1631 m_vec->qsort (cmp);
1632 }
1633
1634
1635 /* Find and return the first position in which OBJ could be inserted
1636 without changing the ordering of this vector. LESSTHAN is a
1637 function that returns true if the first argument is strictly less
1638 than the second. */
1639
1640 template<typename T>
1641 inline unsigned
1642 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1643 bool (*lessthan)(const T &, const T &))
1644 const
1645 {
1646 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1647 }
1648
1649 template<typename T>
1650 inline bool
1651 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1652 {
1653 if (!m_vec->m_vecpfx.m_has_auto_buf)
1654 return false;
1655
1656 const vec_prefix *auto_header
1657 = &static_cast<const stack_vec<T, 1> *> (this)->m_header;
1658 return reinterpret_cast<vec_prefix *> (m_vec) == auto_header;
1659 }
1660
1661 #if (GCC_VERSION >= 3000)
1662 # pragma GCC poison m_vec m_vecpfx m_vecdata
1663 #endif
1664
1665 #endif // GCC_VEC_H