re PR ada/37139 (DEP prevents using Ada tasking)
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34 /* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180 */
181
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
184
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
187
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191 struct vec_prefix
192 {
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218 };
219
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227 {
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234
235 template<typename, typename, typename> struct vec;
236
237 /* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
244
245
246 /* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253 /* Allocator type for heap vectors. */
254 struct va_heap
255 {
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266 };
267
268
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278 {
279 unsigned alloc
280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
281 gcc_checking_assert (alloc);
282
283 if (GATHER_STATISTICS && v)
284 v->m_vecpfx.release_overhead (v, v->allocated (), false);
285
286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287 unsigned nelem = v ? v->length () : 0;
288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289 v->embedded_init (alloc, nelem);
290
291 if (GATHER_STATISTICS)
292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
293 }
294
295
296 /* Free the heap space allocated for vector V. */
297
298 template<typename T>
299 void
300 va_heap::release (vec<T, va_heap, vl_embed> *&v)
301 {
302 if (v == NULL)
303 return;
304
305 if (GATHER_STATISTICS)
306 v->m_vecpfx.release_overhead (v, v->allocated (), true);
307 ::free (v);
308 v = NULL;
309 }
310
311
312 /* Allocator type for GC vectors. Notice that we need the structure
313 declaration even if GC is not enabled. */
314
315 struct va_gc
316 {
317 /* Use vl_embed as the default layout for GC vectors. Due to GTY
318 limitations, GC vectors must always be pointers, so it is more
319 efficient to use a pointer to the vl_embed layout, rather than
320 using a pointer to a pointer as would be the case with vl_ptr. */
321 typedef vl_embed default_layout;
322
323 template<typename T, typename A>
324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 CXX_MEM_STAT_INFO);
326
327 template<typename T, typename A>
328 static void release (vec<T, A, vl_embed> *&v);
329 };
330
331
332 /* Free GC memory used by V and reset V to NULL. */
333
334 template<typename T, typename A>
335 inline void
336 va_gc::release (vec<T, A, vl_embed> *&v)
337 {
338 if (v)
339 ::ggc_free (v);
340 v = NULL;
341 }
342
343
344 /* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
347 allocated and RESERVE is 0, no vector will be created. */
348
349 template<typename T, typename A>
350 void
351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
353 {
354 unsigned alloc
355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
356 if (!alloc)
357 {
358 ::ggc_free (v);
359 v = NULL;
360 return;
361 }
362
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
365
366 /* Ask the allocator how much space it will really give us. */
367 size = ::ggc_round_alloc_size (size);
368
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
373
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
376
377 unsigned nelem = v ? v->length () : 0;
378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
379 PASS_MEM_STAT));
380 v->embedded_init (alloc, nelem);
381 }
382
383
384 /* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387 struct va_gc_atomic : va_gc
388 {
389 };
390
391
392 /* Generic vector template. Default values for A and L indicate the
393 most commonly used strategies.
394
395 FIXME - Ideally, they would all be vl_ptr to encourage using regular
396 instances for vectors, but the existing GTY machinery is limited
397 in that it can only deal with GC objects that are pointers
398 themselves.
399
400 This means that vector operations that need to deal with
401 potentially NULL pointers, must be provided as free
402 functions (see the vec_safe_* functions above). */
403 template<typename T,
404 typename A = va_heap,
405 typename L = typename A::default_layout>
406 struct GTY((user)) vec
407 {
408 };
409
410 /* Type to provide NULL values for vec<T, A, L>. This is used to
411 provide nil initializers for vec instances. Since vec must be
412 a POD, we cannot have proper ctor/dtor for it. To initialize
413 a vec instance, you can assign it the value vNULL. This isn't
414 needed for file-scope and function-local static vectors, which
415 are zero-initialized by default. */
416 struct vnull
417 {
418 template <typename T, typename A, typename L>
419 #if __cpp_constexpr >= 200704
420 constexpr
421 #endif
422 operator vec<T, A, L> () { return vec<T, A, L>(); }
423 };
424 extern vnull vNULL;
425
426
427 /* Embeddable vector. These vectors are suitable to be embedded
428 in other data structures so that they can be pre-allocated in a
429 contiguous memory block.
430
431 Embeddable vectors are implemented using the trailing array idiom,
432 thus they are not resizeable without changing the address of the
433 vector object itself. This means you cannot have variables or
434 fields of embeddable vector type -- always use a pointer to a
435 vector. The one exception is the final field of a structure, which
436 could be a vector type.
437
438 You will have to use the embedded_size & embedded_init calls to
439 create such objects, and they will not be resizeable (so the 'safe'
440 allocation variants are not available).
441
442 Properties:
443
444 - The whole vector and control data are allocated in a single
445 contiguous block. It uses the trailing-vector idiom, so
446 allocation must reserve enough space for all the elements
447 in the vector plus its control data.
448 - The vector cannot be re-allocated.
449 - The vector cannot grow nor shrink.
450 - No indirections needed for access/manipulation.
451 - It requires 2 words of storage (prior to vector allocation). */
452
453 template<typename T, typename A>
454 struct GTY((user)) vec<T, A, vl_embed>
455 {
456 public:
457 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
458 unsigned length (void) const { return m_vecpfx.m_num; }
459 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
460 T *address (void) { return m_vecdata; }
461 const T *address (void) const { return m_vecdata; }
462 T *begin () { return address (); }
463 const T *begin () const { return address (); }
464 T *end () { return address () + length (); }
465 const T *end () const { return address () + length (); }
466 const T &operator[] (unsigned) const;
467 T &operator[] (unsigned);
468 T &last (void);
469 bool space (unsigned) const;
470 bool iterate (unsigned, T *) const;
471 bool iterate (unsigned, T **) const;
472 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
473 void splice (const vec &);
474 void splice (const vec *src);
475 T *quick_push (const T &);
476 T &pop (void);
477 void truncate (unsigned);
478 void quick_insert (unsigned, const T &);
479 void ordered_remove (unsigned);
480 void unordered_remove (unsigned);
481 void block_remove (unsigned, unsigned);
482 void qsort (int (*) (const void *, const void *));
483 T *bsearch (const void *key, int (*compar)(const void *, const void *));
484 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
485 bool contains (const T &search) const;
486 static size_t embedded_size (unsigned);
487 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
488 void quick_grow (unsigned len);
489 void quick_grow_cleared (unsigned len);
490
491 /* vec class can access our internal data and functions. */
492 template <typename, typename, typename> friend struct vec;
493
494 /* The allocator types also need access to our internals. */
495 friend struct va_gc;
496 friend struct va_gc_atomic;
497 friend struct va_heap;
498
499 /* FIXME - These fields should be private, but we need to cater to
500 compilers that have stricter notions of PODness for types. */
501 vec_prefix m_vecpfx;
502 T m_vecdata[1];
503 };
504
505
506 /* Convenience wrapper functions to use when dealing with pointers to
507 embedded vectors. Some functionality for these vectors must be
508 provided via free functions for these reasons:
509
510 1- The pointer may be NULL (e.g., before initial allocation).
511
512 2- When the vector needs to grow, it must be reallocated, so
513 the pointer will change its value.
514
515 Because of limitations with the current GC machinery, all vectors
516 in GC memory *must* be pointers. */
517
518
519 /* If V contains no room for NELEMS elements, return false. Otherwise,
520 return true. */
521 template<typename T, typename A>
522 inline bool
523 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
524 {
525 return v ? v->space (nelems) : nelems == 0;
526 }
527
528
529 /* If V is NULL, return 0. Otherwise, return V->length(). */
530 template<typename T, typename A>
531 inline unsigned
532 vec_safe_length (const vec<T, A, vl_embed> *v)
533 {
534 return v ? v->length () : 0;
535 }
536
537
538 /* If V is NULL, return NULL. Otherwise, return V->address(). */
539 template<typename T, typename A>
540 inline T *
541 vec_safe_address (vec<T, A, vl_embed> *v)
542 {
543 return v ? v->address () : NULL;
544 }
545
546
547 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
548 template<typename T, typename A>
549 inline bool
550 vec_safe_is_empty (vec<T, A, vl_embed> *v)
551 {
552 return v ? v->is_empty () : true;
553 }
554
555 /* If V does not have space for NELEMS elements, call
556 V->reserve(NELEMS, EXACT). */
557 template<typename T, typename A>
558 inline bool
559 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
560 CXX_MEM_STAT_INFO)
561 {
562 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
563 if (extend)
564 A::reserve (v, nelems, exact PASS_MEM_STAT);
565 return extend;
566 }
567
568 template<typename T, typename A>
569 inline bool
570 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
571 CXX_MEM_STAT_INFO)
572 {
573 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
574 }
575
576
577 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
578 is 0, V is initialized to NULL. */
579
580 template<typename T, typename A>
581 inline void
582 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
583 {
584 v = NULL;
585 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
586 }
587
588
589 /* Free the GC memory allocated by vector V and set it to NULL. */
590
591 template<typename T, typename A>
592 inline void
593 vec_free (vec<T, A, vl_embed> *&v)
594 {
595 A::release (v);
596 }
597
598
599 /* Grow V to length LEN. Allocate it, if necessary. */
600 template<typename T, typename A>
601 inline void
602 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
603 {
604 unsigned oldlen = vec_safe_length (v);
605 gcc_checking_assert (len >= oldlen);
606 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
607 v->quick_grow (len);
608 }
609
610
611 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
612 template<typename T, typename A>
613 inline void
614 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
615 {
616 unsigned oldlen = vec_safe_length (v);
617 vec_safe_grow (v, len PASS_MEM_STAT);
618 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
619 }
620
621
622 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
623 template<typename T, typename A>
624 inline bool
625 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
626 {
627 if (v)
628 return v->iterate (ix, ptr);
629 else
630 {
631 *ptr = 0;
632 return false;
633 }
634 }
635
636 template<typename T, typename A>
637 inline bool
638 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
639 {
640 if (v)
641 return v->iterate (ix, ptr);
642 else
643 {
644 *ptr = 0;
645 return false;
646 }
647 }
648
649
650 /* If V has no room for one more element, reallocate it. Then call
651 V->quick_push(OBJ). */
652 template<typename T, typename A>
653 inline T *
654 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
655 {
656 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
657 return v->quick_push (obj);
658 }
659
660
661 /* if V has no room for one more element, reallocate it. Then call
662 V->quick_insert(IX, OBJ). */
663 template<typename T, typename A>
664 inline void
665 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
666 CXX_MEM_STAT_INFO)
667 {
668 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
669 v->quick_insert (ix, obj);
670 }
671
672
673 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
674 template<typename T, typename A>
675 inline void
676 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
677 {
678 if (v)
679 v->truncate (size);
680 }
681
682
683 /* If SRC is not NULL, return a pointer to a copy of it. */
684 template<typename T, typename A>
685 inline vec<T, A, vl_embed> *
686 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
687 {
688 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
689 }
690
691 /* Copy the elements from SRC to the end of DST as if by memcpy.
692 Reallocate DST, if necessary. */
693 template<typename T, typename A>
694 inline void
695 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
696 CXX_MEM_STAT_INFO)
697 {
698 unsigned src_len = vec_safe_length (src);
699 if (src_len)
700 {
701 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
702 PASS_MEM_STAT);
703 dst->splice (*src);
704 }
705 }
706
707 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
708 size of the vector and so should be used with care. */
709
710 template<typename T, typename A>
711 inline bool
712 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
713 {
714 return v ? v->contains (search) : false;
715 }
716
717 /* Index into vector. Return the IX'th element. IX must be in the
718 domain of the vector. */
719
720 template<typename T, typename A>
721 inline const T &
722 vec<T, A, vl_embed>::operator[] (unsigned ix) const
723 {
724 gcc_checking_assert (ix < m_vecpfx.m_num);
725 return m_vecdata[ix];
726 }
727
728 template<typename T, typename A>
729 inline T &
730 vec<T, A, vl_embed>::operator[] (unsigned ix)
731 {
732 gcc_checking_assert (ix < m_vecpfx.m_num);
733 return m_vecdata[ix];
734 }
735
736
737 /* Get the final element of the vector, which must not be empty. */
738
739 template<typename T, typename A>
740 inline T &
741 vec<T, A, vl_embed>::last (void)
742 {
743 gcc_checking_assert (m_vecpfx.m_num > 0);
744 return (*this)[m_vecpfx.m_num - 1];
745 }
746
747
748 /* If this vector has space for NELEMS additional entries, return
749 true. You usually only need to use this if you are doing your
750 own vector reallocation, for instance on an embedded vector. This
751 returns true in exactly the same circumstances that vec::reserve
752 will. */
753
754 template<typename T, typename A>
755 inline bool
756 vec<T, A, vl_embed>::space (unsigned nelems) const
757 {
758 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
759 }
760
761
762 /* Return iteration condition and update PTR to point to the IX'th
763 element of this vector. Use this to iterate over the elements of a
764 vector as follows,
765
766 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
767 continue; */
768
769 template<typename T, typename A>
770 inline bool
771 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
772 {
773 if (ix < m_vecpfx.m_num)
774 {
775 *ptr = m_vecdata[ix];
776 return true;
777 }
778 else
779 {
780 *ptr = 0;
781 return false;
782 }
783 }
784
785
786 /* Return iteration condition and update *PTR to point to the
787 IX'th element of this vector. Use this to iterate over the
788 elements of a vector as follows,
789
790 for (ix = 0; v->iterate (ix, &ptr); ix++)
791 continue;
792
793 This variant is for vectors of objects. */
794
795 template<typename T, typename A>
796 inline bool
797 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
798 {
799 if (ix < m_vecpfx.m_num)
800 {
801 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
802 return true;
803 }
804 else
805 {
806 *ptr = 0;
807 return false;
808 }
809 }
810
811
812 /* Return a pointer to a copy of this vector. */
813
814 template<typename T, typename A>
815 inline vec<T, A, vl_embed> *
816 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
817 {
818 vec<T, A, vl_embed> *new_vec = NULL;
819 unsigned len = length ();
820 if (len)
821 {
822 vec_alloc (new_vec, len PASS_MEM_STAT);
823 new_vec->embedded_init (len, len);
824 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
825 }
826 return new_vec;
827 }
828
829
830 /* Copy the elements from SRC to the end of this vector as if by memcpy.
831 The vector must have sufficient headroom available. */
832
833 template<typename T, typename A>
834 inline void
835 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
836 {
837 unsigned len = src.length ();
838 if (len)
839 {
840 gcc_checking_assert (space (len));
841 memcpy (address () + length (), src.address (), len * sizeof (T));
842 m_vecpfx.m_num += len;
843 }
844 }
845
846 template<typename T, typename A>
847 inline void
848 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
849 {
850 if (src)
851 splice (*src);
852 }
853
854
855 /* Push OBJ (a new element) onto the end of the vector. There must be
856 sufficient space in the vector. Return a pointer to the slot
857 where OBJ was inserted. */
858
859 template<typename T, typename A>
860 inline T *
861 vec<T, A, vl_embed>::quick_push (const T &obj)
862 {
863 gcc_checking_assert (space (1));
864 T *slot = &m_vecdata[m_vecpfx.m_num++];
865 *slot = obj;
866 return slot;
867 }
868
869
870 /* Pop and return the last element off the end of the vector. */
871
872 template<typename T, typename A>
873 inline T &
874 vec<T, A, vl_embed>::pop (void)
875 {
876 gcc_checking_assert (length () > 0);
877 return m_vecdata[--m_vecpfx.m_num];
878 }
879
880
881 /* Set the length of the vector to SIZE. The new length must be less
882 than or equal to the current length. This is an O(1) operation. */
883
884 template<typename T, typename A>
885 inline void
886 vec<T, A, vl_embed>::truncate (unsigned size)
887 {
888 gcc_checking_assert (length () >= size);
889 m_vecpfx.m_num = size;
890 }
891
892
893 /* Insert an element, OBJ, at the IXth position of this vector. There
894 must be sufficient space. */
895
896 template<typename T, typename A>
897 inline void
898 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
899 {
900 gcc_checking_assert (length () < allocated ());
901 gcc_checking_assert (ix <= length ());
902 T *slot = &m_vecdata[ix];
903 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
904 *slot = obj;
905 }
906
907
908 /* Remove an element from the IXth position of this vector. Ordering of
909 remaining elements is preserved. This is an O(N) operation due to
910 memmove. */
911
912 template<typename T, typename A>
913 inline void
914 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
915 {
916 gcc_checking_assert (ix < length ());
917 T *slot = &m_vecdata[ix];
918 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
919 }
920
921
922 /* Remove an element from the IXth position of this vector. Ordering of
923 remaining elements is destroyed. This is an O(1) operation. */
924
925 template<typename T, typename A>
926 inline void
927 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
928 {
929 gcc_checking_assert (ix < length ());
930 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
931 }
932
933
934 /* Remove LEN elements starting at the IXth. Ordering is retained.
935 This is an O(N) operation due to memmove. */
936
937 template<typename T, typename A>
938 inline void
939 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
940 {
941 gcc_checking_assert (ix + len <= length ());
942 T *slot = &m_vecdata[ix];
943 m_vecpfx.m_num -= len;
944 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
945 }
946
947
948 /* Sort the contents of this vector with qsort. CMP is the comparison
949 function to pass to qsort. */
950
951 template<typename T, typename A>
952 inline void
953 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
954 {
955 if (length () > 1)
956 ::qsort (address (), length (), sizeof (T), cmp);
957 }
958
959
960 /* Search the contents of the sorted vector with a binary search.
961 CMP is the comparison function to pass to bsearch. */
962
963 template<typename T, typename A>
964 inline T *
965 vec<T, A, vl_embed>::bsearch (const void *key,
966 int (*compar) (const void *, const void *))
967 {
968 const void *base = this->address ();
969 size_t nmemb = this->length ();
970 size_t size = sizeof (T);
971 /* The following is a copy of glibc stdlib-bsearch.h. */
972 size_t l, u, idx;
973 const void *p;
974 int comparison;
975
976 l = 0;
977 u = nmemb;
978 while (l < u)
979 {
980 idx = (l + u) / 2;
981 p = (const void *) (((const char *) base) + (idx * size));
982 comparison = (*compar) (key, p);
983 if (comparison < 0)
984 u = idx;
985 else if (comparison > 0)
986 l = idx + 1;
987 else
988 return (T *)const_cast<void *>(p);
989 }
990
991 return NULL;
992 }
993
994 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
995 size of the vector and so should be used with care. */
996
997 template<typename T, typename A>
998 inline bool
999 vec<T, A, vl_embed>::contains (const T &search) const
1000 {
1001 unsigned int len = length ();
1002 for (unsigned int i = 0; i < len; i++)
1003 if ((*this)[i] == search)
1004 return true;
1005
1006 return false;
1007 }
1008
1009 /* Find and return the first position in which OBJ could be inserted
1010 without changing the ordering of this vector. LESSTHAN is a
1011 function that returns true if the first argument is strictly less
1012 than the second. */
1013
1014 template<typename T, typename A>
1015 unsigned
1016 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1017 const
1018 {
1019 unsigned int len = length ();
1020 unsigned int half, middle;
1021 unsigned int first = 0;
1022 while (len > 0)
1023 {
1024 half = len / 2;
1025 middle = first;
1026 middle += half;
1027 T middle_elem = (*this)[middle];
1028 if (lessthan (middle_elem, obj))
1029 {
1030 first = middle;
1031 ++first;
1032 len = len - half - 1;
1033 }
1034 else
1035 len = half;
1036 }
1037 return first;
1038 }
1039
1040
1041 /* Return the number of bytes needed to embed an instance of an
1042 embeddable vec inside another data structure.
1043
1044 Use these methods to determine the required size and initialization
1045 of a vector V of type T embedded within another structure (as the
1046 final member):
1047
1048 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1049 void v->embedded_init (unsigned alloc, unsigned num);
1050
1051 These allow the caller to perform the memory allocation. */
1052
1053 template<typename T, typename A>
1054 inline size_t
1055 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1056 {
1057 typedef vec<T, A, vl_embed> vec_embedded;
1058 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1059 }
1060
1061
1062 /* Initialize the vector to contain room for ALLOC elements and
1063 NUM active elements. */
1064
1065 template<typename T, typename A>
1066 inline void
1067 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1068 {
1069 m_vecpfx.m_alloc = alloc;
1070 m_vecpfx.m_using_auto_storage = aut;
1071 m_vecpfx.m_num = num;
1072 }
1073
1074
1075 /* Grow the vector to a specific length. LEN must be as long or longer than
1076 the current length. The new elements are uninitialized. */
1077
1078 template<typename T, typename A>
1079 inline void
1080 vec<T, A, vl_embed>::quick_grow (unsigned len)
1081 {
1082 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1083 m_vecpfx.m_num = len;
1084 }
1085
1086
1087 /* Grow the vector to a specific length. LEN must be as long or longer than
1088 the current length. The new elements are initialized to zero. */
1089
1090 template<typename T, typename A>
1091 inline void
1092 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1093 {
1094 unsigned oldlen = length ();
1095 quick_grow (len);
1096 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1097 }
1098
1099
1100 /* Garbage collection support for vec<T, A, vl_embed>. */
1101
1102 template<typename T>
1103 void
1104 gt_ggc_mx (vec<T, va_gc> *v)
1105 {
1106 extern void gt_ggc_mx (T &);
1107 for (unsigned i = 0; i < v->length (); i++)
1108 gt_ggc_mx ((*v)[i]);
1109 }
1110
1111 template<typename T>
1112 void
1113 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1114 {
1115 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1116 be traversed. */
1117 }
1118
1119
1120 /* PCH support for vec<T, A, vl_embed>. */
1121
1122 template<typename T, typename A>
1123 void
1124 gt_pch_nx (vec<T, A, vl_embed> *v)
1125 {
1126 extern void gt_pch_nx (T &);
1127 for (unsigned i = 0; i < v->length (); i++)
1128 gt_pch_nx ((*v)[i]);
1129 }
1130
1131 template<typename T, typename A>
1132 void
1133 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1134 {
1135 for (unsigned i = 0; i < v->length (); i++)
1136 op (&((*v)[i]), cookie);
1137 }
1138
1139 template<typename T, typename A>
1140 void
1141 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1142 {
1143 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1144 for (unsigned i = 0; i < v->length (); i++)
1145 gt_pch_nx (&((*v)[i]), op, cookie);
1146 }
1147
1148
1149 /* Space efficient vector. These vectors can grow dynamically and are
1150 allocated together with their control data. They are suited to be
1151 included in data structures. Prior to initial allocation, they
1152 only take a single word of storage.
1153
1154 These vectors are implemented as a pointer to an embeddable vector.
1155 The semantics allow for this pointer to be NULL to represent empty
1156 vectors. This way, empty vectors occupy minimal space in the
1157 structure containing them.
1158
1159 Properties:
1160
1161 - The whole vector and control data are allocated in a single
1162 contiguous block.
1163 - The whole vector may be re-allocated.
1164 - Vector data may grow and shrink.
1165 - Access and manipulation requires a pointer test and
1166 indirection.
1167 - It requires 1 word of storage (prior to vector allocation).
1168
1169
1170 Limitations:
1171
1172 These vectors must be PODs because they are stored in unions.
1173 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1174 As long as we use C++03, we cannot have constructors nor
1175 destructors in classes that are stored in unions. */
1176
1177 template<typename T>
1178 struct vec<T, va_heap, vl_ptr>
1179 {
1180 public:
1181 /* Memory allocation and deallocation for the embedded vector.
1182 Needed because we cannot have proper ctors/dtors defined. */
1183 void create (unsigned nelems CXX_MEM_STAT_INFO);
1184 void release (void);
1185
1186 /* Vector operations. */
1187 bool exists (void) const
1188 { return m_vec != NULL; }
1189
1190 bool is_empty (void) const
1191 { return m_vec ? m_vec->is_empty () : true; }
1192
1193 unsigned length (void) const
1194 { return m_vec ? m_vec->length () : 0; }
1195
1196 T *address (void)
1197 { return m_vec ? m_vec->m_vecdata : NULL; }
1198
1199 const T *address (void) const
1200 { return m_vec ? m_vec->m_vecdata : NULL; }
1201
1202 T *begin () { return address (); }
1203 const T *begin () const { return address (); }
1204 T *end () { return begin () + length (); }
1205 const T *end () const { return begin () + length (); }
1206 const T &operator[] (unsigned ix) const
1207 { return (*m_vec)[ix]; }
1208
1209 bool operator!=(const vec &other) const
1210 { return !(*this == other); }
1211
1212 bool operator==(const vec &other) const
1213 { return address () == other.address (); }
1214
1215 T &operator[] (unsigned ix)
1216 { return (*m_vec)[ix]; }
1217
1218 T &last (void)
1219 { return m_vec->last (); }
1220
1221 bool space (int nelems) const
1222 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1223
1224 bool iterate (unsigned ix, T *p) const;
1225 bool iterate (unsigned ix, T **p) const;
1226 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1227 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1228 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1229 void splice (const vec &);
1230 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1231 T *quick_push (const T &);
1232 T *safe_push (const T &CXX_MEM_STAT_INFO);
1233 T &pop (void);
1234 void truncate (unsigned);
1235 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1236 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1237 void quick_grow (unsigned);
1238 void quick_grow_cleared (unsigned);
1239 void quick_insert (unsigned, const T &);
1240 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1241 void ordered_remove (unsigned);
1242 void unordered_remove (unsigned);
1243 void block_remove (unsigned, unsigned);
1244 void qsort (int (*) (const void *, const void *));
1245 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1246 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1247 bool contains (const T &search) const;
1248
1249 bool using_auto_storage () const;
1250
1251 /* FIXME - This field should be private, but we need to cater to
1252 compilers that have stricter notions of PODness for types. */
1253 vec<T, va_heap, vl_embed> *m_vec;
1254 };
1255
1256
1257 /* auto_vec is a subclass of vec that automatically manages creating and
1258 releasing the internal vector. If N is non zero then it has N elements of
1259 internal storage. The default is no internal storage, and you probably only
1260 want to ask for internal storage for vectors on the stack because if the
1261 size of the vector is larger than the internal storage that space is wasted.
1262 */
1263 template<typename T, size_t N = 0>
1264 class auto_vec : public vec<T, va_heap>
1265 {
1266 public:
1267 auto_vec ()
1268 {
1269 m_auto.embedded_init (MAX (N, 2), 0, 1);
1270 this->m_vec = &m_auto;
1271 }
1272
1273 ~auto_vec ()
1274 {
1275 this->release ();
1276 }
1277
1278 private:
1279 vec<T, va_heap, vl_embed> m_auto;
1280 T m_data[MAX (N - 1, 1)];
1281 };
1282
1283 /* auto_vec is a sub class of vec whose storage is released when it is
1284 destroyed. */
1285 template<typename T>
1286 class auto_vec<T, 0> : public vec<T, va_heap>
1287 {
1288 public:
1289 auto_vec () { this->m_vec = NULL; }
1290 auto_vec (size_t n) { this->create (n); }
1291 ~auto_vec () { this->release (); }
1292 };
1293
1294
1295 /* Allocate heap memory for pointer V and create the internal vector
1296 with space for NELEMS elements. If NELEMS is 0, the internal
1297 vector is initialized to empty. */
1298
1299 template<typename T>
1300 inline void
1301 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1302 {
1303 v = new vec<T>;
1304 v->create (nelems PASS_MEM_STAT);
1305 }
1306
1307
1308 /* Conditionally allocate heap memory for VEC and its internal vector. */
1309
1310 template<typename T>
1311 inline void
1312 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1313 {
1314 if (!vec)
1315 vec_alloc (vec, nelems PASS_MEM_STAT);
1316 }
1317
1318
1319 /* Free the heap memory allocated by vector V and set it to NULL. */
1320
1321 template<typename T>
1322 inline void
1323 vec_free (vec<T> *&v)
1324 {
1325 if (v == NULL)
1326 return;
1327
1328 v->release ();
1329 delete v;
1330 v = NULL;
1331 }
1332
1333
1334 /* Return iteration condition and update PTR to point to the IX'th
1335 element of this vector. Use this to iterate over the elements of a
1336 vector as follows,
1337
1338 for (ix = 0; v.iterate (ix, &ptr); ix++)
1339 continue; */
1340
1341 template<typename T>
1342 inline bool
1343 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1344 {
1345 if (m_vec)
1346 return m_vec->iterate (ix, ptr);
1347 else
1348 {
1349 *ptr = 0;
1350 return false;
1351 }
1352 }
1353
1354
1355 /* Return iteration condition and update *PTR to point to the
1356 IX'th element of this vector. Use this to iterate over the
1357 elements of a vector as follows,
1358
1359 for (ix = 0; v->iterate (ix, &ptr); ix++)
1360 continue;
1361
1362 This variant is for vectors of objects. */
1363
1364 template<typename T>
1365 inline bool
1366 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1367 {
1368 if (m_vec)
1369 return m_vec->iterate (ix, ptr);
1370 else
1371 {
1372 *ptr = 0;
1373 return false;
1374 }
1375 }
1376
1377
1378 /* Convenience macro for forward iteration. */
1379 #define FOR_EACH_VEC_ELT(V, I, P) \
1380 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1381
1382 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1383 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1384
1385 /* Likewise, but start from FROM rather than 0. */
1386 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1387 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1388
1389 /* Convenience macro for reverse iteration. */
1390 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1391 for (I = (V).length () - 1; \
1392 (V).iterate ((I), &(P)); \
1393 (I)--)
1394
1395 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1396 for (I = vec_safe_length (V) - 1; \
1397 vec_safe_iterate ((V), (I), &(P)); \
1398 (I)--)
1399
1400
1401 /* Return a copy of this vector. */
1402
1403 template<typename T>
1404 inline vec<T, va_heap, vl_ptr>
1405 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1406 {
1407 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1408 if (length ())
1409 new_vec.m_vec = m_vec->copy ();
1410 return new_vec;
1411 }
1412
1413
1414 /* Ensure that the vector has at least RESERVE slots available (if
1415 EXACT is false), or exactly RESERVE slots available (if EXACT is
1416 true).
1417
1418 This may create additional headroom if EXACT is false.
1419
1420 Note that this can cause the embedded vector to be reallocated.
1421 Returns true iff reallocation actually occurred. */
1422
1423 template<typename T>
1424 inline bool
1425 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1426 {
1427 if (space (nelems))
1428 return false;
1429
1430 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1431 this is necessary because it doesn't have enough information to know the
1432 embedded vector is in auto storage, and so should not be freed. */
1433 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1434 unsigned int oldsize = 0;
1435 bool handle_auto_vec = m_vec && using_auto_storage ();
1436 if (handle_auto_vec)
1437 {
1438 m_vec = NULL;
1439 oldsize = oldvec->length ();
1440 nelems += oldsize;
1441 }
1442
1443 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1444 if (handle_auto_vec)
1445 {
1446 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1447 m_vec->m_vecpfx.m_num = oldsize;
1448 }
1449
1450 return true;
1451 }
1452
1453
1454 /* Ensure that this vector has exactly NELEMS slots available. This
1455 will not create additional headroom. Note this can cause the
1456 embedded vector to be reallocated. Returns true iff reallocation
1457 actually occurred. */
1458
1459 template<typename T>
1460 inline bool
1461 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1462 {
1463 return reserve (nelems, true PASS_MEM_STAT);
1464 }
1465
1466
1467 /* Create the internal vector and reserve NELEMS for it. This is
1468 exactly like vec::reserve, but the internal vector is
1469 unconditionally allocated from scratch. The old one, if it
1470 existed, is lost. */
1471
1472 template<typename T>
1473 inline void
1474 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1475 {
1476 m_vec = NULL;
1477 if (nelems > 0)
1478 reserve_exact (nelems PASS_MEM_STAT);
1479 }
1480
1481
1482 /* Free the memory occupied by the embedded vector. */
1483
1484 template<typename T>
1485 inline void
1486 vec<T, va_heap, vl_ptr>::release (void)
1487 {
1488 if (!m_vec)
1489 return;
1490
1491 if (using_auto_storage ())
1492 {
1493 m_vec->m_vecpfx.m_num = 0;
1494 return;
1495 }
1496
1497 va_heap::release (m_vec);
1498 }
1499
1500 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1501 SRC and this vector must be allocated with the same memory
1502 allocation mechanism. This vector is assumed to have sufficient
1503 headroom available. */
1504
1505 template<typename T>
1506 inline void
1507 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1508 {
1509 if (src.m_vec)
1510 m_vec->splice (*(src.m_vec));
1511 }
1512
1513
1514 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1515 SRC and this vector must be allocated with the same mechanism.
1516 If there is not enough headroom in this vector, it will be reallocated
1517 as needed. */
1518
1519 template<typename T>
1520 inline void
1521 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1522 MEM_STAT_DECL)
1523 {
1524 if (src.length ())
1525 {
1526 reserve_exact (src.length ());
1527 splice (src);
1528 }
1529 }
1530
1531
1532 /* Push OBJ (a new element) onto the end of the vector. There must be
1533 sufficient space in the vector. Return a pointer to the slot
1534 where OBJ was inserted. */
1535
1536 template<typename T>
1537 inline T *
1538 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1539 {
1540 return m_vec->quick_push (obj);
1541 }
1542
1543
1544 /* Push a new element OBJ onto the end of this vector. Reallocates
1545 the embedded vector, if needed. Return a pointer to the slot where
1546 OBJ was inserted. */
1547
1548 template<typename T>
1549 inline T *
1550 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1551 {
1552 reserve (1, false PASS_MEM_STAT);
1553 return quick_push (obj);
1554 }
1555
1556
1557 /* Pop and return the last element off the end of the vector. */
1558
1559 template<typename T>
1560 inline T &
1561 vec<T, va_heap, vl_ptr>::pop (void)
1562 {
1563 return m_vec->pop ();
1564 }
1565
1566
1567 /* Set the length of the vector to LEN. The new length must be less
1568 than or equal to the current length. This is an O(1) operation. */
1569
1570 template<typename T>
1571 inline void
1572 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1573 {
1574 if (m_vec)
1575 m_vec->truncate (size);
1576 else
1577 gcc_checking_assert (size == 0);
1578 }
1579
1580
1581 /* Grow the vector to a specific length. LEN must be as long or
1582 longer than the current length. The new elements are
1583 uninitialized. Reallocate the internal vector, if needed. */
1584
1585 template<typename T>
1586 inline void
1587 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1588 {
1589 unsigned oldlen = length ();
1590 gcc_checking_assert (oldlen <= len);
1591 reserve_exact (len - oldlen PASS_MEM_STAT);
1592 if (m_vec)
1593 m_vec->quick_grow (len);
1594 else
1595 gcc_checking_assert (len == 0);
1596 }
1597
1598
1599 /* Grow the embedded vector to a specific length. LEN must be as
1600 long or longer than the current length. The new elements are
1601 initialized to zero. Reallocate the internal vector, if needed. */
1602
1603 template<typename T>
1604 inline void
1605 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1606 {
1607 unsigned oldlen = length ();
1608 safe_grow (len PASS_MEM_STAT);
1609 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1610 }
1611
1612
1613 /* Same as vec::safe_grow but without reallocation of the internal vector.
1614 If the vector cannot be extended, a runtime assertion will be triggered. */
1615
1616 template<typename T>
1617 inline void
1618 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1619 {
1620 gcc_checking_assert (m_vec);
1621 m_vec->quick_grow (len);
1622 }
1623
1624
1625 /* Same as vec::quick_grow_cleared but without reallocation of the
1626 internal vector. If the vector cannot be extended, a runtime
1627 assertion will be triggered. */
1628
1629 template<typename T>
1630 inline void
1631 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1632 {
1633 gcc_checking_assert (m_vec);
1634 m_vec->quick_grow_cleared (len);
1635 }
1636
1637
1638 /* Insert an element, OBJ, at the IXth position of this vector. There
1639 must be sufficient space. */
1640
1641 template<typename T>
1642 inline void
1643 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1644 {
1645 m_vec->quick_insert (ix, obj);
1646 }
1647
1648
1649 /* Insert an element, OBJ, at the IXth position of the vector.
1650 Reallocate the embedded vector, if necessary. */
1651
1652 template<typename T>
1653 inline void
1654 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1655 {
1656 reserve (1, false PASS_MEM_STAT);
1657 quick_insert (ix, obj);
1658 }
1659
1660
1661 /* Remove an element from the IXth position of this vector. Ordering of
1662 remaining elements is preserved. This is an O(N) operation due to
1663 a memmove. */
1664
1665 template<typename T>
1666 inline void
1667 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1668 {
1669 m_vec->ordered_remove (ix);
1670 }
1671
1672
1673 /* Remove an element from the IXth position of this vector. Ordering
1674 of remaining elements is destroyed. This is an O(1) operation. */
1675
1676 template<typename T>
1677 inline void
1678 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1679 {
1680 m_vec->unordered_remove (ix);
1681 }
1682
1683
1684 /* Remove LEN elements starting at the IXth. Ordering is retained.
1685 This is an O(N) operation due to memmove. */
1686
1687 template<typename T>
1688 inline void
1689 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1690 {
1691 m_vec->block_remove (ix, len);
1692 }
1693
1694
1695 /* Sort the contents of this vector with qsort. CMP is the comparison
1696 function to pass to qsort. */
1697
1698 template<typename T>
1699 inline void
1700 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1701 {
1702 if (m_vec)
1703 m_vec->qsort (cmp);
1704 }
1705
1706
1707 /* Search the contents of the sorted vector with a binary search.
1708 CMP is the comparison function to pass to bsearch. */
1709
1710 template<typename T>
1711 inline T *
1712 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1713 int (*cmp) (const void *, const void *))
1714 {
1715 if (m_vec)
1716 return m_vec->bsearch (key, cmp);
1717 return NULL;
1718 }
1719
1720
1721 /* Find and return the first position in which OBJ could be inserted
1722 without changing the ordering of this vector. LESSTHAN is a
1723 function that returns true if the first argument is strictly less
1724 than the second. */
1725
1726 template<typename T>
1727 inline unsigned
1728 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1729 bool (*lessthan)(const T &, const T &))
1730 const
1731 {
1732 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1733 }
1734
1735 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1736 size of the vector and so should be used with care. */
1737
1738 template<typename T>
1739 inline bool
1740 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1741 {
1742 return m_vec ? m_vec->contains (search) : false;
1743 }
1744
1745 template<typename T>
1746 inline bool
1747 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1748 {
1749 return m_vec->m_vecpfx.m_using_auto_storage;
1750 }
1751
1752 /* Release VEC and call release of all element vectors. */
1753
1754 template<typename T>
1755 inline void
1756 release_vec_vec (vec<vec<T> > &vec)
1757 {
1758 for (unsigned i = 0; i < vec.length (); i++)
1759 vec[i].release ();
1760
1761 vec.release ();
1762 }
1763
1764 #if (GCC_VERSION >= 3000)
1765 # pragma GCC poison m_vec m_vecpfx m_vecdata
1766 #endif
1767
1768 #endif // GCC_VEC_H