rs6000.c (output_vec_const_move): Handle little-endian code generation.
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
29
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
40
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
42
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51
52 extern void ggc_free (void *);
53 extern size_t ggc_round_alloc_size (size_t requested_size);
54 extern void *ggc_realloc (void *, size_t CXX_MEM_STAT_INFO);
55 # endif // GCC_GGC_H
56 #endif // VEC_GC_ENABLED
57
58 /* Templated vector type and associated interfaces.
59
60 The interface functions are typesafe and use inline functions,
61 sometimes backed by out-of-line generic functions. The vectors are
62 designed to interoperate with the GTY machinery.
63
64 There are both 'index' and 'iterate' accessors. The index accessor
65 is implemented by operator[]. The iterator returns a boolean
66 iteration condition and updates the iteration variable passed by
67 reference. Because the iterator will be inlined, the address-of
68 can be optimized away.
69
70 Each operation that increases the number of active elements is
71 available in 'quick' and 'safe' variants. The former presumes that
72 there is sufficient allocated space for the operation to succeed
73 (it dies if there is not). The latter will reallocate the
74 vector, if needed. Reallocation causes an exponential increase in
75 vector size. If you know you will be adding N elements, it would
76 be more efficient to use the reserve operation before adding the
77 elements with the 'quick' operation. This will ensure there are at
78 least as many elements as you ask for, it will exponentially
79 increase if there are too few spare slots. If you want reserve a
80 specific number of slots, but do not want the exponential increase
81 (for instance, you know this is the last allocation), use the
82 reserve_exact operation. You can also create a vector of a
83 specific size from the get go.
84
85 You should prefer the push and pop operations, as they append and
86 remove from the end of the vector. If you need to remove several
87 items in one go, use the truncate operation. The insert and remove
88 operations allow you to change elements in the middle of the
89 vector. There are two remove operations, one which preserves the
90 element ordering 'ordered_remove', and one which does not
91 'unordered_remove'. The latter function copies the end element
92 into the removed slot, rather than invoke a memmove operation. The
93 'lower_bound' function will determine where to place an item in the
94 array using insert that will maintain sorted order.
95
96 Vectors are template types with three arguments: the type of the
97 elements in the vector, the allocation strategy, and the physical
98 layout to use
99
100 Four allocation strategies are supported:
101
102 - Heap: allocation is done using malloc/free. This is the
103 default allocation strategy.
104
105 - GC: allocation is done using ggc_alloc/ggc_free.
106
107 - GC atomic: same as GC with the exception that the elements
108 themselves are assumed to be of an atomic type that does
109 not need to be garbage collected. This means that marking
110 routines do not need to traverse the array marking the
111 individual elements. This increases the performance of
112 GC activities.
113
114 Two physical layouts are supported:
115
116 - Embedded: The vector is structured using the trailing array
117 idiom. The last member of the structure is an array of size
118 1. When the vector is initially allocated, a single memory
119 block is created to hold the vector's control data and the
120 array of elements. These vectors cannot grow without
121 reallocation (see discussion on embeddable vectors below).
122
123 - Space efficient: The vector is structured as a pointer to an
124 embedded vector. This is the default layout. It means that
125 vectors occupy a single word of storage before initial
126 allocation. Vectors are allowed to grow (the internal
127 pointer is reallocated but the main vector instance does not
128 need to relocate).
129
130 The type, allocation and layout are specified when the vector is
131 declared.
132
133 If you need to directly manipulate a vector, then the 'address'
134 accessor will return the address of the start of the vector. Also
135 the 'space' predicate will tell you whether there is spare capacity
136 in the vector. You will not normally need to use these two functions.
137
138 Notes on the different layout strategies
139
140 * Embeddable vectors (vec<T, A, vl_embed>)
141
142 These vectors are suitable to be embedded in other data
143 structures so that they can be pre-allocated in a contiguous
144 memory block.
145
146 Embeddable vectors are implemented using the trailing array
147 idiom, thus they are not resizeable without changing the address
148 of the vector object itself. This means you cannot have
149 variables or fields of embeddable vector type -- always use a
150 pointer to a vector. The one exception is the final field of a
151 structure, which could be a vector type.
152
153 You will have to use the embedded_size & embedded_init calls to
154 create such objects, and they will not be resizeable (so the
155 'safe' allocation variants are not available).
156
157 Properties of embeddable vectors:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block. It uses the trailing-vector idiom, so
161 allocation must reserve enough space for all the elements
162 in the vector plus its control data.
163 - The vector cannot be re-allocated.
164 - The vector cannot grow nor shrink.
165 - No indirections needed for access/manipulation.
166 - It requires 2 words of storage (prior to vector allocation).
167
168
169 * Space efficient vector (vec<T, A, vl_ptr>)
170
171 These vectors can grow dynamically and are allocated together
172 with their control data. They are suited to be included in data
173 structures. Prior to initial allocation, they only take a single
174 word of storage.
175
176 These vectors are implemented as a pointer to embeddable vectors.
177 The semantics allow for this pointer to be NULL to represent
178 empty vectors. This way, empty vectors occupy minimal space in
179 the structure containing them.
180
181 Properties:
182
183 - The whole vector and control data are allocated in a single
184 contiguous block.
185 - The whole vector may be re-allocated.
186 - Vector data may grow and shrink.
187 - Access and manipulation requires a pointer test and
188 indirection.
189 - It requires 1 word of storage (prior to vector allocation).
190
191 An example of their use would be,
192
193 struct my_struct {
194 // A space-efficient vector of tree pointers in GC memory.
195 vec<tree, va_gc, vl_ptr> v;
196 };
197
198 struct my_struct *s;
199
200 if (s->v.length ()) { we have some contents }
201 s->v.safe_push (decl); // append some decl onto the end
202 for (ix = 0; s->v.iterate (ix, &elt); ix++)
203 { do something with elt }
204 */
205
206 /* Support function for statistics. */
207 extern void dump_vec_loc_statistics (void);
208
209
210 /* Control data for vectors. This contains the number of allocated
211 and used slots inside a vector. */
212
213 struct vec_prefix
214 {
215 /* FIXME - These fields should be private, but we need to cater to
216 compilers that have stricter notions of PODness for types. */
217
218 /* Memory allocation support routines in vec.c. */
219 void register_overhead (size_t, const char *, int, const char *);
220 void release_overhead (void);
221 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
222 static unsigned calculate_allocation_1 (unsigned, unsigned);
223
224 /* Note that vec_prefix should be a base class for vec, but we use
225 offsetof() on vector fields of tree structures (e.g.,
226 tree_binfo::base_binfos), and offsetof only supports base types.
227
228 To compensate, we make vec_prefix a field inside vec and make
229 vec a friend class of vec_prefix so it can access its fields. */
230 template <typename, typename, typename> friend struct vec;
231
232 /* The allocator types also need access to our internals. */
233 friend struct va_gc;
234 friend struct va_gc_atomic;
235 friend struct va_heap;
236
237 unsigned m_alloc : 31;
238 unsigned m_using_auto_storage : 1;
239 unsigned m_num;
240 };
241
242 /* Calculate the number of slots to reserve a vector, making sure that
243 RESERVE slots are free. If EXACT grow exactly, otherwise grow
244 exponentially. PFX is the control data for the vector. */
245
246 inline unsigned
247 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
248 bool exact)
249 {
250 if (exact)
251 return (pfx ? pfx->m_num : 0) + reserve;
252 else if (!pfx)
253 return MAX (4, reserve);
254 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
255 }
256
257 template<typename, typename, typename> struct vec;
258
259 /* Valid vector layouts
260
261 vl_embed - Embeddable vector that uses the trailing array idiom.
262 vl_ptr - Space efficient vector that uses a pointer to an
263 embeddable vector. */
264 struct vl_embed { };
265 struct vl_ptr { };
266
267
268 /* Types of supported allocations
269
270 va_heap - Allocation uses malloc/free.
271 va_gc - Allocation uses ggc_alloc.
272 va_gc_atomic - Same as GC, but individual elements of the array
273 do not need to be marked during collection. */
274
275 /* Allocator type for heap vectors. */
276 struct va_heap
277 {
278 /* Heap vectors are frequently regular instances, so use the vl_ptr
279 layout for them. */
280 typedef vl_ptr default_layout;
281
282 template<typename T>
283 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
284 CXX_MEM_STAT_INFO);
285
286 template<typename T>
287 static void release (vec<T, va_heap, vl_embed> *&);
288 };
289
290
291 /* Allocator for heap memory. Ensure there are at least RESERVE free
292 slots in V. If EXACT is true, grow exactly, else grow
293 exponentially. As a special case, if the vector had not been
294 allocated and and RESERVE is 0, no vector will be created. */
295
296 template<typename T>
297 inline void
298 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
299 MEM_STAT_DECL)
300 {
301 unsigned alloc
302 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
303 gcc_checking_assert (alloc);
304
305 if (GATHER_STATISTICS && v)
306 v->m_vecpfx.release_overhead ();
307
308 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
309 unsigned nelem = v ? v->length () : 0;
310 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
311 v->embedded_init (alloc, nelem);
312
313 if (GATHER_STATISTICS)
314 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
315 }
316
317
318 /* Free the heap space allocated for vector V. */
319
320 template<typename T>
321 void
322 va_heap::release (vec<T, va_heap, vl_embed> *&v)
323 {
324 if (v == NULL)
325 return;
326
327 if (GATHER_STATISTICS)
328 v->m_vecpfx.release_overhead ();
329 ::free (v);
330 v = NULL;
331 }
332
333
334 /* Allocator type for GC vectors. Notice that we need the structure
335 declaration even if GC is not enabled. */
336
337 struct va_gc
338 {
339 /* Use vl_embed as the default layout for GC vectors. Due to GTY
340 limitations, GC vectors must always be pointers, so it is more
341 efficient to use a pointer to the vl_embed layout, rather than
342 using a pointer to a pointer as would be the case with vl_ptr. */
343 typedef vl_embed default_layout;
344
345 template<typename T, typename A>
346 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
347 CXX_MEM_STAT_INFO);
348
349 template<typename T, typename A>
350 static void release (vec<T, A, vl_embed> *&v);
351 };
352
353
354 /* Free GC memory used by V and reset V to NULL. */
355
356 template<typename T, typename A>
357 inline void
358 va_gc::release (vec<T, A, vl_embed> *&v)
359 {
360 if (v)
361 ::ggc_free (v);
362 v = NULL;
363 }
364
365
366 /* Allocator for GC memory. Ensure there are at least RESERVE free
367 slots in V. If EXACT is true, grow exactly, else grow
368 exponentially. As a special case, if the vector had not been
369 allocated and and RESERVE is 0, no vector will be created. */
370
371 template<typename T, typename A>
372 void
373 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
374 MEM_STAT_DECL)
375 {
376 unsigned alloc
377 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
378 if (!alloc)
379 {
380 ::ggc_free (v);
381 v = NULL;
382 return;
383 }
384
385 /* Calculate the amount of space we want. */
386 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
387
388 /* Ask the allocator how much space it will really give us. */
389 size = ::ggc_round_alloc_size (size);
390
391 /* Adjust the number of slots accordingly. */
392 size_t vec_offset = sizeof (vec_prefix);
393 size_t elt_size = sizeof (T);
394 alloc = (size - vec_offset) / elt_size;
395
396 /* And finally, recalculate the amount of space we ask for. */
397 size = vec_offset + alloc * elt_size;
398
399 unsigned nelem = v ? v->length () : 0;
400 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
401 PASS_MEM_STAT));
402 v->embedded_init (alloc, nelem);
403 }
404
405
406 /* Allocator type for GC vectors. This is for vectors of types
407 atomics w.r.t. collection, so allocation and deallocation is
408 completely inherited from va_gc. */
409 struct va_gc_atomic : va_gc
410 {
411 };
412
413
414 /* Generic vector template. Default values for A and L indicate the
415 most commonly used strategies.
416
417 FIXME - Ideally, they would all be vl_ptr to encourage using regular
418 instances for vectors, but the existing GTY machinery is limited
419 in that it can only deal with GC objects that are pointers
420 themselves.
421
422 This means that vector operations that need to deal with
423 potentially NULL pointers, must be provided as free
424 functions (see the vec_safe_* functions above). */
425 template<typename T,
426 typename A = va_heap,
427 typename L = typename A::default_layout>
428 struct GTY((user)) vec
429 {
430 };
431
432 /* Type to provide NULL values for vec<T, A, L>. This is used to
433 provide nil initializers for vec instances. Since vec must be
434 a POD, we cannot have proper ctor/dtor for it. To initialize
435 a vec instance, you can assign it the value vNULL. */
436 struct vnull
437 {
438 template <typename T, typename A, typename L>
439 operator vec<T, A, L> () { return vec<T, A, L>(); }
440 };
441 extern vnull vNULL;
442
443
444 /* Embeddable vector. These vectors are suitable to be embedded
445 in other data structures so that they can be pre-allocated in a
446 contiguous memory block.
447
448 Embeddable vectors are implemented using the trailing array idiom,
449 thus they are not resizeable without changing the address of the
450 vector object itself. This means you cannot have variables or
451 fields of embeddable vector type -- always use a pointer to a
452 vector. The one exception is the final field of a structure, which
453 could be a vector type.
454
455 You will have to use the embedded_size & embedded_init calls to
456 create such objects, and they will not be resizeable (so the 'safe'
457 allocation variants are not available).
458
459 Properties:
460
461 - The whole vector and control data are allocated in a single
462 contiguous block. It uses the trailing-vector idiom, so
463 allocation must reserve enough space for all the elements
464 in the vector plus its control data.
465 - The vector cannot be re-allocated.
466 - The vector cannot grow nor shrink.
467 - No indirections needed for access/manipulation.
468 - It requires 2 words of storage (prior to vector allocation). */
469
470 template<typename T, typename A>
471 struct GTY((user)) vec<T, A, vl_embed>
472 {
473 public:
474 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
475 unsigned length (void) const { return m_vecpfx.m_num; }
476 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
477 T *address (void) { return m_vecdata; }
478 const T *address (void) const { return m_vecdata; }
479 const T &operator[] (unsigned) const;
480 T &operator[] (unsigned);
481 T &last (void);
482 bool space (unsigned) const;
483 bool iterate (unsigned, T *) const;
484 bool iterate (unsigned, T **) const;
485 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
486 void splice (vec &);
487 void splice (vec *src);
488 T *quick_push (const T &);
489 T &pop (void);
490 void truncate (unsigned);
491 void quick_insert (unsigned, const T &);
492 void ordered_remove (unsigned);
493 void unordered_remove (unsigned);
494 void block_remove (unsigned, unsigned);
495 void qsort (int (*) (const void *, const void *));
496 T *bsearch (const void *key, int (*compar)(const void *, const void *));
497 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
498 static size_t embedded_size (unsigned);
499 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
500 void quick_grow (unsigned len);
501 void quick_grow_cleared (unsigned len);
502
503 /* vec class can access our internal data and functions. */
504 template <typename, typename, typename> friend struct vec;
505
506 /* The allocator types also need access to our internals. */
507 friend struct va_gc;
508 friend struct va_gc_atomic;
509 friend struct va_heap;
510
511 /* FIXME - These fields should be private, but we need to cater to
512 compilers that have stricter notions of PODness for types. */
513 vec_prefix m_vecpfx;
514 T m_vecdata[1];
515 };
516
517
518 /* Convenience wrapper functions to use when dealing with pointers to
519 embedded vectors. Some functionality for these vectors must be
520 provided via free functions for these reasons:
521
522 1- The pointer may be NULL (e.g., before initial allocation).
523
524 2- When the vector needs to grow, it must be reallocated, so
525 the pointer will change its value.
526
527 Because of limitations with the current GC machinery, all vectors
528 in GC memory *must* be pointers. */
529
530
531 /* If V contains no room for NELEMS elements, return false. Otherwise,
532 return true. */
533 template<typename T, typename A>
534 inline bool
535 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
536 {
537 return v ? v->space (nelems) : nelems == 0;
538 }
539
540
541 /* If V is NULL, return 0. Otherwise, return V->length(). */
542 template<typename T, typename A>
543 inline unsigned
544 vec_safe_length (const vec<T, A, vl_embed> *v)
545 {
546 return v ? v->length () : 0;
547 }
548
549
550 /* If V is NULL, return NULL. Otherwise, return V->address(). */
551 template<typename T, typename A>
552 inline T *
553 vec_safe_address (vec<T, A, vl_embed> *v)
554 {
555 return v ? v->address () : NULL;
556 }
557
558
559 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
560 template<typename T, typename A>
561 inline bool
562 vec_safe_is_empty (vec<T, A, vl_embed> *v)
563 {
564 return v ? v->is_empty () : true;
565 }
566
567
568 /* If V does not have space for NELEMS elements, call
569 V->reserve(NELEMS, EXACT). */
570 template<typename T, typename A>
571 inline bool
572 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
573 CXX_MEM_STAT_INFO)
574 {
575 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
576 if (extend)
577 A::reserve (v, nelems, exact PASS_MEM_STAT);
578 return extend;
579 }
580
581 template<typename T, typename A>
582 inline bool
583 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
584 CXX_MEM_STAT_INFO)
585 {
586 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
587 }
588
589
590 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
591 is 0, V is initialized to NULL. */
592
593 template<typename T, typename A>
594 inline void
595 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
596 {
597 v = NULL;
598 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
599 }
600
601
602 /* Free the GC memory allocated by vector V and set it to NULL. */
603
604 template<typename T, typename A>
605 inline void
606 vec_free (vec<T, A, vl_embed> *&v)
607 {
608 A::release (v);
609 }
610
611
612 /* Grow V to length LEN. Allocate it, if necessary. */
613 template<typename T, typename A>
614 inline void
615 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
616 {
617 unsigned oldlen = vec_safe_length (v);
618 gcc_checking_assert (len >= oldlen);
619 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
620 v->quick_grow (len);
621 }
622
623
624 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
625 template<typename T, typename A>
626 inline void
627 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
628 {
629 unsigned oldlen = vec_safe_length (v);
630 vec_safe_grow (v, len PASS_MEM_STAT);
631 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
632 }
633
634
635 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
636 template<typename T, typename A>
637 inline bool
638 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
639 {
640 if (v)
641 return v->iterate (ix, ptr);
642 else
643 {
644 *ptr = 0;
645 return false;
646 }
647 }
648
649 template<typename T, typename A>
650 inline bool
651 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
652 {
653 if (v)
654 return v->iterate (ix, ptr);
655 else
656 {
657 *ptr = 0;
658 return false;
659 }
660 }
661
662
663 /* If V has no room for one more element, reallocate it. Then call
664 V->quick_push(OBJ). */
665 template<typename T, typename A>
666 inline T *
667 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
668 {
669 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
670 return v->quick_push (obj);
671 }
672
673
674 /* if V has no room for one more element, reallocate it. Then call
675 V->quick_insert(IX, OBJ). */
676 template<typename T, typename A>
677 inline void
678 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
679 CXX_MEM_STAT_INFO)
680 {
681 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
682 v->quick_insert (ix, obj);
683 }
684
685
686 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
687 template<typename T, typename A>
688 inline void
689 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
690 {
691 if (v)
692 v->truncate (size);
693 }
694
695
696 /* If SRC is not NULL, return a pointer to a copy of it. */
697 template<typename T, typename A>
698 inline vec<T, A, vl_embed> *
699 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
700 {
701 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
702 }
703
704 /* Copy the elements from SRC to the end of DST as if by memcpy.
705 Reallocate DST, if necessary. */
706 template<typename T, typename A>
707 inline void
708 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
709 CXX_MEM_STAT_INFO)
710 {
711 unsigned src_len = vec_safe_length (src);
712 if (src_len)
713 {
714 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
715 PASS_MEM_STAT);
716 dst->splice (*src);
717 }
718 }
719
720
721 /* Index into vector. Return the IX'th element. IX must be in the
722 domain of the vector. */
723
724 template<typename T, typename A>
725 inline const T &
726 vec<T, A, vl_embed>::operator[] (unsigned ix) const
727 {
728 gcc_checking_assert (ix < m_vecpfx.m_num);
729 return m_vecdata[ix];
730 }
731
732 template<typename T, typename A>
733 inline T &
734 vec<T, A, vl_embed>::operator[] (unsigned ix)
735 {
736 gcc_checking_assert (ix < m_vecpfx.m_num);
737 return m_vecdata[ix];
738 }
739
740
741 /* Get the final element of the vector, which must not be empty. */
742
743 template<typename T, typename A>
744 inline T &
745 vec<T, A, vl_embed>::last (void)
746 {
747 gcc_checking_assert (m_vecpfx.m_num > 0);
748 return (*this)[m_vecpfx.m_num - 1];
749 }
750
751
752 /* If this vector has space for NELEMS additional entries, return
753 true. You usually only need to use this if you are doing your
754 own vector reallocation, for instance on an embedded vector. This
755 returns true in exactly the same circumstances that vec::reserve
756 will. */
757
758 template<typename T, typename A>
759 inline bool
760 vec<T, A, vl_embed>::space (unsigned nelems) const
761 {
762 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
763 }
764
765
766 /* Return iteration condition and update PTR to point to the IX'th
767 element of this vector. Use this to iterate over the elements of a
768 vector as follows,
769
770 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
771 continue; */
772
773 template<typename T, typename A>
774 inline bool
775 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
776 {
777 if (ix < m_vecpfx.m_num)
778 {
779 *ptr = m_vecdata[ix];
780 return true;
781 }
782 else
783 {
784 *ptr = 0;
785 return false;
786 }
787 }
788
789
790 /* Return iteration condition and update *PTR to point to the
791 IX'th element of this vector. Use this to iterate over the
792 elements of a vector as follows,
793
794 for (ix = 0; v->iterate (ix, &ptr); ix++)
795 continue;
796
797 This variant is for vectors of objects. */
798
799 template<typename T, typename A>
800 inline bool
801 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
802 {
803 if (ix < m_vecpfx.m_num)
804 {
805 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
806 return true;
807 }
808 else
809 {
810 *ptr = 0;
811 return false;
812 }
813 }
814
815
816 /* Return a pointer to a copy of this vector. */
817
818 template<typename T, typename A>
819 inline vec<T, A, vl_embed> *
820 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
821 {
822 vec<T, A, vl_embed> *new_vec = NULL;
823 unsigned len = length ();
824 if (len)
825 {
826 vec_alloc (new_vec, len PASS_MEM_STAT);
827 new_vec->embedded_init (len, len);
828 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
829 }
830 return new_vec;
831 }
832
833
834 /* Copy the elements from SRC to the end of this vector as if by memcpy.
835 The vector must have sufficient headroom available. */
836
837 template<typename T, typename A>
838 inline void
839 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
840 {
841 unsigned len = src.length ();
842 if (len)
843 {
844 gcc_checking_assert (space (len));
845 memcpy (address () + length (), src.address (), len * sizeof (T));
846 m_vecpfx.m_num += len;
847 }
848 }
849
850 template<typename T, typename A>
851 inline void
852 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
853 {
854 if (src)
855 splice (*src);
856 }
857
858
859 /* Push OBJ (a new element) onto the end of the vector. There must be
860 sufficient space in the vector. Return a pointer to the slot
861 where OBJ was inserted. */
862
863 template<typename T, typename A>
864 inline T *
865 vec<T, A, vl_embed>::quick_push (const T &obj)
866 {
867 gcc_checking_assert (space (1));
868 T *slot = &m_vecdata[m_vecpfx.m_num++];
869 *slot = obj;
870 return slot;
871 }
872
873
874 /* Pop and return the last element off the end of the vector. */
875
876 template<typename T, typename A>
877 inline T &
878 vec<T, A, vl_embed>::pop (void)
879 {
880 gcc_checking_assert (length () > 0);
881 return m_vecdata[--m_vecpfx.m_num];
882 }
883
884
885 /* Set the length of the vector to SIZE. The new length must be less
886 than or equal to the current length. This is an O(1) operation. */
887
888 template<typename T, typename A>
889 inline void
890 vec<T, A, vl_embed>::truncate (unsigned size)
891 {
892 gcc_checking_assert (length () >= size);
893 m_vecpfx.m_num = size;
894 }
895
896
897 /* Insert an element, OBJ, at the IXth position of this vector. There
898 must be sufficient space. */
899
900 template<typename T, typename A>
901 inline void
902 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
903 {
904 gcc_checking_assert (length () < allocated ());
905 gcc_checking_assert (ix <= length ());
906 T *slot = &m_vecdata[ix];
907 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
908 *slot = obj;
909 }
910
911
912 /* Remove an element from the IXth position of this vector. Ordering of
913 remaining elements is preserved. This is an O(N) operation due to
914 memmove. */
915
916 template<typename T, typename A>
917 inline void
918 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
919 {
920 gcc_checking_assert (ix < length ());
921 T *slot = &m_vecdata[ix];
922 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
923 }
924
925
926 /* Remove an element from the IXth position of this vector. Ordering of
927 remaining elements is destroyed. This is an O(1) operation. */
928
929 template<typename T, typename A>
930 inline void
931 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
932 {
933 gcc_checking_assert (ix < length ());
934 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
935 }
936
937
938 /* Remove LEN elements starting at the IXth. Ordering is retained.
939 This is an O(N) operation due to memmove. */
940
941 template<typename T, typename A>
942 inline void
943 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
944 {
945 gcc_checking_assert (ix + len <= length ());
946 T *slot = &m_vecdata[ix];
947 m_vecpfx.m_num -= len;
948 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
949 }
950
951
952 /* Sort the contents of this vector with qsort. CMP is the comparison
953 function to pass to qsort. */
954
955 template<typename T, typename A>
956 inline void
957 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
958 {
959 if (length () > 1)
960 ::qsort (address (), length (), sizeof (T), cmp);
961 }
962
963
964 /* Search the contents of the sorted vector with a binary search.
965 CMP is the comparison function to pass to bsearch. */
966
967 template<typename T, typename A>
968 inline T *
969 vec<T, A, vl_embed>::bsearch (const void *key,
970 int (*compar) (const void *, const void *))
971 {
972 const void *base = this->address ();
973 size_t nmemb = this->length ();
974 size_t size = sizeof (T);
975 /* The following is a copy of glibc stdlib-bsearch.h. */
976 size_t l, u, idx;
977 const void *p;
978 int comparison;
979
980 l = 0;
981 u = nmemb;
982 while (l < u)
983 {
984 idx = (l + u) / 2;
985 p = (const void *) (((const char *) base) + (idx * size));
986 comparison = (*compar) (key, p);
987 if (comparison < 0)
988 u = idx;
989 else if (comparison > 0)
990 l = idx + 1;
991 else
992 return (T *)const_cast<void *>(p);
993 }
994
995 return NULL;
996 }
997
998
999 /* Find and return the first position in which OBJ could be inserted
1000 without changing the ordering of this vector. LESSTHAN is a
1001 function that returns true if the first argument is strictly less
1002 than the second. */
1003
1004 template<typename T, typename A>
1005 unsigned
1006 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1007 const
1008 {
1009 unsigned int len = length ();
1010 unsigned int half, middle;
1011 unsigned int first = 0;
1012 while (len > 0)
1013 {
1014 half = len / 2;
1015 middle = first;
1016 middle += half;
1017 T middle_elem = (*this)[middle];
1018 if (lessthan (middle_elem, obj))
1019 {
1020 first = middle;
1021 ++first;
1022 len = len - half - 1;
1023 }
1024 else
1025 len = half;
1026 }
1027 return first;
1028 }
1029
1030
1031 /* Return the number of bytes needed to embed an instance of an
1032 embeddable vec inside another data structure.
1033
1034 Use these methods to determine the required size and initialization
1035 of a vector V of type T embedded within another structure (as the
1036 final member):
1037
1038 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1039 void v->embedded_init (unsigned alloc, unsigned num);
1040
1041 These allow the caller to perform the memory allocation. */
1042
1043 template<typename T, typename A>
1044 inline size_t
1045 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1046 {
1047 typedef vec<T, A, vl_embed> vec_embedded;
1048 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1049 }
1050
1051
1052 /* Initialize the vector to contain room for ALLOC elements and
1053 NUM active elements. */
1054
1055 template<typename T, typename A>
1056 inline void
1057 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1058 {
1059 m_vecpfx.m_alloc = alloc;
1060 m_vecpfx.m_using_auto_storage = aut;
1061 m_vecpfx.m_num = num;
1062 }
1063
1064
1065 /* Grow the vector to a specific length. LEN must be as long or longer than
1066 the current length. The new elements are uninitialized. */
1067
1068 template<typename T, typename A>
1069 inline void
1070 vec<T, A, vl_embed>::quick_grow (unsigned len)
1071 {
1072 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1073 m_vecpfx.m_num = len;
1074 }
1075
1076
1077 /* Grow the vector to a specific length. LEN must be as long or longer than
1078 the current length. The new elements are initialized to zero. */
1079
1080 template<typename T, typename A>
1081 inline void
1082 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1083 {
1084 unsigned oldlen = length ();
1085 quick_grow (len);
1086 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1087 }
1088
1089
1090 /* Garbage collection support for vec<T, A, vl_embed>. */
1091
1092 template<typename T>
1093 void
1094 gt_ggc_mx (vec<T, va_gc> *v)
1095 {
1096 extern void gt_ggc_mx (T &);
1097 for (unsigned i = 0; i < v->length (); i++)
1098 gt_ggc_mx ((*v)[i]);
1099 }
1100
1101 template<typename T>
1102 void
1103 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1104 {
1105 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1106 be traversed. */
1107 }
1108
1109
1110 /* PCH support for vec<T, A, vl_embed>. */
1111
1112 template<typename T, typename A>
1113 void
1114 gt_pch_nx (vec<T, A, vl_embed> *v)
1115 {
1116 extern void gt_pch_nx (T &);
1117 for (unsigned i = 0; i < v->length (); i++)
1118 gt_pch_nx ((*v)[i]);
1119 }
1120
1121 template<typename T, typename A>
1122 void
1123 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1124 {
1125 for (unsigned i = 0; i < v->length (); i++)
1126 op (&((*v)[i]), cookie);
1127 }
1128
1129 template<typename T, typename A>
1130 void
1131 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1132 {
1133 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1134 for (unsigned i = 0; i < v->length (); i++)
1135 gt_pch_nx (&((*v)[i]), op, cookie);
1136 }
1137
1138
1139 /* Space efficient vector. These vectors can grow dynamically and are
1140 allocated together with their control data. They are suited to be
1141 included in data structures. Prior to initial allocation, they
1142 only take a single word of storage.
1143
1144 These vectors are implemented as a pointer to an embeddable vector.
1145 The semantics allow for this pointer to be NULL to represent empty
1146 vectors. This way, empty vectors occupy minimal space in the
1147 structure containing them.
1148
1149 Properties:
1150
1151 - The whole vector and control data are allocated in a single
1152 contiguous block.
1153 - The whole vector may be re-allocated.
1154 - Vector data may grow and shrink.
1155 - Access and manipulation requires a pointer test and
1156 indirection.
1157 - It requires 1 word of storage (prior to vector allocation).
1158
1159
1160 Limitations:
1161
1162 These vectors must be PODs because they are stored in unions.
1163 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1164 As long as we use C++03, we cannot have constructors nor
1165 destructors in classes that are stored in unions. */
1166
1167 template<typename T>
1168 struct vec<T, va_heap, vl_ptr>
1169 {
1170 public:
1171 /* Memory allocation and deallocation for the embedded vector.
1172 Needed because we cannot have proper ctors/dtors defined. */
1173 void create (unsigned nelems CXX_MEM_STAT_INFO);
1174 void release (void);
1175
1176 /* Vector operations. */
1177 bool exists (void) const
1178 { return m_vec != NULL; }
1179
1180 bool is_empty (void) const
1181 { return m_vec ? m_vec->is_empty () : true; }
1182
1183 unsigned length (void) const
1184 { return m_vec ? m_vec->length () : 0; }
1185
1186 T *address (void)
1187 { return m_vec ? m_vec->m_vecdata : NULL; }
1188
1189 const T *address (void) const
1190 { return m_vec ? m_vec->m_vecdata : NULL; }
1191
1192 const T &operator[] (unsigned ix) const
1193 { return (*m_vec)[ix]; }
1194
1195 bool operator!=(const vec &other) const
1196 { return !(*this == other); }
1197
1198 bool operator==(const vec &other) const
1199 { return address () == other.address (); }
1200
1201 T &operator[] (unsigned ix)
1202 { return (*m_vec)[ix]; }
1203
1204 T &last (void)
1205 { return m_vec->last (); }
1206
1207 bool space (int nelems) const
1208 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1209
1210 bool iterate (unsigned ix, T *p) const;
1211 bool iterate (unsigned ix, T **p) const;
1212 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1213 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1214 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1215 void splice (vec &);
1216 void safe_splice (vec & CXX_MEM_STAT_INFO);
1217 T *quick_push (const T &);
1218 T *safe_push (const T &CXX_MEM_STAT_INFO);
1219 T &pop (void);
1220 void truncate (unsigned);
1221 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1222 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1223 void quick_grow (unsigned);
1224 void quick_grow_cleared (unsigned);
1225 void quick_insert (unsigned, const T &);
1226 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1227 void ordered_remove (unsigned);
1228 void unordered_remove (unsigned);
1229 void block_remove (unsigned, unsigned);
1230 void qsort (int (*) (const void *, const void *));
1231 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1232 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1233
1234 bool using_auto_storage () const;
1235
1236 /* FIXME - This field should be private, but we need to cater to
1237 compilers that have stricter notions of PODness for types. */
1238 vec<T, va_heap, vl_embed> *m_vec;
1239 };
1240
1241
1242 /* auto_vec is a subclass of vec that automatically manages creating and
1243 releasing the internal vector. If N is non zero then it has N elements of
1244 internal storage. The default is no internal storage, and you probably only
1245 want to ask for internal storage for vectors on the stack because if the
1246 size of the vector is larger than the internal storage that space is wasted.
1247 */
1248 template<typename T, size_t N = 0>
1249 class auto_vec : public vec<T, va_heap>
1250 {
1251 public:
1252 auto_vec ()
1253 {
1254 m_auto.embedded_init (MAX (N, 2), 0, 1);
1255 this->m_vec = &m_auto;
1256 }
1257
1258 ~auto_vec ()
1259 {
1260 this->release ();
1261 }
1262
1263 private:
1264 vec<T, va_heap, vl_embed> m_auto;
1265 T m_data[MAX (N - 1, 1)];
1266 };
1267
1268 /* auto_vec is a sub class of vec whose storage is released when it is
1269 destroyed. */
1270 template<typename T>
1271 class auto_vec<T, 0> : public vec<T, va_heap>
1272 {
1273 public:
1274 auto_vec () { this->m_vec = NULL; }
1275 auto_vec (size_t n) { this->create (n); }
1276 ~auto_vec () { this->release (); }
1277 };
1278
1279
1280 /* Allocate heap memory for pointer V and create the internal vector
1281 with space for NELEMS elements. If NELEMS is 0, the internal
1282 vector is initialized to empty. */
1283
1284 template<typename T>
1285 inline void
1286 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1287 {
1288 v = new vec<T>;
1289 v->create (nelems PASS_MEM_STAT);
1290 }
1291
1292
1293 /* Conditionally allocate heap memory for VEC and its internal vector. */
1294
1295 template<typename T>
1296 inline void
1297 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1298 {
1299 if (!vec)
1300 vec_alloc (vec, nelems PASS_MEM_STAT);
1301 }
1302
1303
1304 /* Free the heap memory allocated by vector V and set it to NULL. */
1305
1306 template<typename T>
1307 inline void
1308 vec_free (vec<T> *&v)
1309 {
1310 if (v == NULL)
1311 return;
1312
1313 v->release ();
1314 delete v;
1315 v = NULL;
1316 }
1317
1318
1319 /* Return iteration condition and update PTR to point to the IX'th
1320 element of this vector. Use this to iterate over the elements of a
1321 vector as follows,
1322
1323 for (ix = 0; v.iterate (ix, &ptr); ix++)
1324 continue; */
1325
1326 template<typename T>
1327 inline bool
1328 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1329 {
1330 if (m_vec)
1331 return m_vec->iterate (ix, ptr);
1332 else
1333 {
1334 *ptr = 0;
1335 return false;
1336 }
1337 }
1338
1339
1340 /* Return iteration condition and update *PTR to point to the
1341 IX'th element of this vector. Use this to iterate over the
1342 elements of a vector as follows,
1343
1344 for (ix = 0; v->iterate (ix, &ptr); ix++)
1345 continue;
1346
1347 This variant is for vectors of objects. */
1348
1349 template<typename T>
1350 inline bool
1351 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1352 {
1353 if (m_vec)
1354 return m_vec->iterate (ix, ptr);
1355 else
1356 {
1357 *ptr = 0;
1358 return false;
1359 }
1360 }
1361
1362
1363 /* Convenience macro for forward iteration. */
1364 #define FOR_EACH_VEC_ELT(V, I, P) \
1365 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1366
1367 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1368 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1369
1370 /* Likewise, but start from FROM rather than 0. */
1371 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1372 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1373
1374 /* Convenience macro for reverse iteration. */
1375 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1376 for (I = (V).length () - 1; \
1377 (V).iterate ((I), &(P)); \
1378 (I)--)
1379
1380 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1381 for (I = vec_safe_length (V) - 1; \
1382 vec_safe_iterate ((V), (I), &(P)); \
1383 (I)--)
1384
1385
1386 /* Return a copy of this vector. */
1387
1388 template<typename T>
1389 inline vec<T, va_heap, vl_ptr>
1390 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1391 {
1392 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1393 if (length ())
1394 new_vec.m_vec = m_vec->copy ();
1395 return new_vec;
1396 }
1397
1398
1399 /* Ensure that the vector has at least RESERVE slots available (if
1400 EXACT is false), or exactly RESERVE slots available (if EXACT is
1401 true).
1402
1403 This may create additional headroom if EXACT is false.
1404
1405 Note that this can cause the embedded vector to be reallocated.
1406 Returns true iff reallocation actually occurred. */
1407
1408 template<typename T>
1409 inline bool
1410 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1411 {
1412 if (space (nelems))
1413 return false;
1414
1415 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1416 this is necessary because it doesn't have enough information to know the
1417 embedded vector is in auto storage, and so should not be freed. */
1418 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1419 unsigned int oldsize = 0;
1420 bool handle_auto_vec = m_vec && using_auto_storage ();
1421 if (handle_auto_vec)
1422 {
1423 m_vec = NULL;
1424 oldsize = oldvec->length ();
1425 nelems += oldsize;
1426 }
1427
1428 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1429 if (handle_auto_vec)
1430 {
1431 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1432 m_vec->m_vecpfx.m_num = oldsize;
1433 }
1434
1435 return true;
1436 }
1437
1438
1439 /* Ensure that this vector has exactly NELEMS slots available. This
1440 will not create additional headroom. Note this can cause the
1441 embedded vector to be reallocated. Returns true iff reallocation
1442 actually occurred. */
1443
1444 template<typename T>
1445 inline bool
1446 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1447 {
1448 return reserve (nelems, true PASS_MEM_STAT);
1449 }
1450
1451
1452 /* Create the internal vector and reserve NELEMS for it. This is
1453 exactly like vec::reserve, but the internal vector is
1454 unconditionally allocated from scratch. The old one, if it
1455 existed, is lost. */
1456
1457 template<typename T>
1458 inline void
1459 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1460 {
1461 m_vec = NULL;
1462 if (nelems > 0)
1463 reserve_exact (nelems PASS_MEM_STAT);
1464 }
1465
1466
1467 /* Free the memory occupied by the embedded vector. */
1468
1469 template<typename T>
1470 inline void
1471 vec<T, va_heap, vl_ptr>::release (void)
1472 {
1473 if (!m_vec)
1474 return;
1475
1476 if (using_auto_storage ())
1477 {
1478 m_vec->m_vecpfx.m_num = 0;
1479 return;
1480 }
1481
1482 va_heap::release (m_vec);
1483 }
1484
1485 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1486 SRC and this vector must be allocated with the same memory
1487 allocation mechanism. This vector is assumed to have sufficient
1488 headroom available. */
1489
1490 template<typename T>
1491 inline void
1492 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1493 {
1494 if (src.m_vec)
1495 m_vec->splice (*(src.m_vec));
1496 }
1497
1498
1499 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1500 SRC and this vector must be allocated with the same mechanism.
1501 If there is not enough headroom in this vector, it will be reallocated
1502 as needed. */
1503
1504 template<typename T>
1505 inline void
1506 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1507 MEM_STAT_DECL)
1508 {
1509 if (src.length ())
1510 {
1511 reserve_exact (src.length ());
1512 splice (src);
1513 }
1514 }
1515
1516
1517 /* Push OBJ (a new element) onto the end of the vector. There must be
1518 sufficient space in the vector. Return a pointer to the slot
1519 where OBJ was inserted. */
1520
1521 template<typename T>
1522 inline T *
1523 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1524 {
1525 return m_vec->quick_push (obj);
1526 }
1527
1528
1529 /* Push a new element OBJ onto the end of this vector. Reallocates
1530 the embedded vector, if needed. Return a pointer to the slot where
1531 OBJ was inserted. */
1532
1533 template<typename T>
1534 inline T *
1535 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1536 {
1537 reserve (1, false PASS_MEM_STAT);
1538 return quick_push (obj);
1539 }
1540
1541
1542 /* Pop and return the last element off the end of the vector. */
1543
1544 template<typename T>
1545 inline T &
1546 vec<T, va_heap, vl_ptr>::pop (void)
1547 {
1548 return m_vec->pop ();
1549 }
1550
1551
1552 /* Set the length of the vector to LEN. The new length must be less
1553 than or equal to the current length. This is an O(1) operation. */
1554
1555 template<typename T>
1556 inline void
1557 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1558 {
1559 if (m_vec)
1560 m_vec->truncate (size);
1561 else
1562 gcc_checking_assert (size == 0);
1563 }
1564
1565
1566 /* Grow the vector to a specific length. LEN must be as long or
1567 longer than the current length. The new elements are
1568 uninitialized. Reallocate the internal vector, if needed. */
1569
1570 template<typename T>
1571 inline void
1572 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1573 {
1574 unsigned oldlen = length ();
1575 gcc_checking_assert (oldlen <= len);
1576 reserve_exact (len - oldlen PASS_MEM_STAT);
1577 m_vec->quick_grow (len);
1578 }
1579
1580
1581 /* Grow the embedded vector to a specific length. LEN must be as
1582 long or longer than the current length. The new elements are
1583 initialized to zero. Reallocate the internal vector, if needed. */
1584
1585 template<typename T>
1586 inline void
1587 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1588 {
1589 unsigned oldlen = length ();
1590 safe_grow (len PASS_MEM_STAT);
1591 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1592 }
1593
1594
1595 /* Same as vec::safe_grow but without reallocation of the internal vector.
1596 If the vector cannot be extended, a runtime assertion will be triggered. */
1597
1598 template<typename T>
1599 inline void
1600 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1601 {
1602 gcc_checking_assert (m_vec);
1603 m_vec->quick_grow (len);
1604 }
1605
1606
1607 /* Same as vec::quick_grow_cleared but without reallocation of the
1608 internal vector. If the vector cannot be extended, a runtime
1609 assertion will be triggered. */
1610
1611 template<typename T>
1612 inline void
1613 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1614 {
1615 gcc_checking_assert (m_vec);
1616 m_vec->quick_grow_cleared (len);
1617 }
1618
1619
1620 /* Insert an element, OBJ, at the IXth position of this vector. There
1621 must be sufficient space. */
1622
1623 template<typename T>
1624 inline void
1625 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1626 {
1627 m_vec->quick_insert (ix, obj);
1628 }
1629
1630
1631 /* Insert an element, OBJ, at the IXth position of the vector.
1632 Reallocate the embedded vector, if necessary. */
1633
1634 template<typename T>
1635 inline void
1636 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1637 {
1638 reserve (1, false PASS_MEM_STAT);
1639 quick_insert (ix, obj);
1640 }
1641
1642
1643 /* Remove an element from the IXth position of this vector. Ordering of
1644 remaining elements is preserved. This is an O(N) operation due to
1645 a memmove. */
1646
1647 template<typename T>
1648 inline void
1649 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1650 {
1651 m_vec->ordered_remove (ix);
1652 }
1653
1654
1655 /* Remove an element from the IXth position of this vector. Ordering
1656 of remaining elements is destroyed. This is an O(1) operation. */
1657
1658 template<typename T>
1659 inline void
1660 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1661 {
1662 m_vec->unordered_remove (ix);
1663 }
1664
1665
1666 /* Remove LEN elements starting at the IXth. Ordering is retained.
1667 This is an O(N) operation due to memmove. */
1668
1669 template<typename T>
1670 inline void
1671 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1672 {
1673 m_vec->block_remove (ix, len);
1674 }
1675
1676
1677 /* Sort the contents of this vector with qsort. CMP is the comparison
1678 function to pass to qsort. */
1679
1680 template<typename T>
1681 inline void
1682 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1683 {
1684 if (m_vec)
1685 m_vec->qsort (cmp);
1686 }
1687
1688
1689 /* Search the contents of the sorted vector with a binary search.
1690 CMP is the comparison function to pass to bsearch. */
1691
1692 template<typename T>
1693 inline T *
1694 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1695 int (*cmp) (const void *, const void *))
1696 {
1697 if (m_vec)
1698 return m_vec->bsearch (key, cmp);
1699 return NULL;
1700 }
1701
1702
1703 /* Find and return the first position in which OBJ could be inserted
1704 without changing the ordering of this vector. LESSTHAN is a
1705 function that returns true if the first argument is strictly less
1706 than the second. */
1707
1708 template<typename T>
1709 inline unsigned
1710 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1711 bool (*lessthan)(const T &, const T &))
1712 const
1713 {
1714 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1715 }
1716
1717 template<typename T>
1718 inline bool
1719 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1720 {
1721 return m_vec->m_vecpfx.m_using_auto_storage;
1722 }
1723
1724 #if (GCC_VERSION >= 3000)
1725 # pragma GCC poison m_vec m_vecpfx m_vecdata
1726 #endif
1727
1728 #endif // GCC_VEC_H