pr60092.c: Remove default dg-skip-if arguments.
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2014 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
29
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
40
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
42
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54 # endif // GCC_GGC_H
55 #endif // VEC_GC_ENABLED
56
57 /* Templated vector type and associated interfaces.
58
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
62
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
68
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
72 (it dies if there is not). The latter will reallocate the
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
82 specific size from the get go.
83
84 You should prefer the push and pop operations, as they append and
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
93 array using insert that will maintain sorted order.
94
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
98
99 Four allocation strategies are supported:
100
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
103
104 - GC: allocation is done using ggc_alloc/ggc_free.
105
106 - GC atomic: same as GC with the exception that the elements
107 themselves are assumed to be of an atomic type that does
108 not need to be garbage collected. This means that marking
109 routines do not need to traverse the array marking the
110 individual elements. This increases the performance of
111 GC activities.
112
113 Two physical layouts are supported:
114
115 - Embedded: The vector is structured using the trailing array
116 idiom. The last member of the structure is an array of size
117 1. When the vector is initially allocated, a single memory
118 block is created to hold the vector's control data and the
119 array of elements. These vectors cannot grow without
120 reallocation (see discussion on embeddable vectors below).
121
122 - Space efficient: The vector is structured as a pointer to an
123 embedded vector. This is the default layout. It means that
124 vectors occupy a single word of storage before initial
125 allocation. Vectors are allowed to grow (the internal
126 pointer is reallocated but the main vector instance does not
127 need to relocate).
128
129 The type, allocation and layout are specified when the vector is
130 declared.
131
132 If you need to directly manipulate a vector, then the 'address'
133 accessor will return the address of the start of the vector. Also
134 the 'space' predicate will tell you whether there is spare capacity
135 in the vector. You will not normally need to use these two functions.
136
137 Notes on the different layout strategies
138
139 * Embeddable vectors (vec<T, A, vl_embed>)
140
141 These vectors are suitable to be embedded in other data
142 structures so that they can be pre-allocated in a contiguous
143 memory block.
144
145 Embeddable vectors are implemented using the trailing array
146 idiom, thus they are not resizeable without changing the address
147 of the vector object itself. This means you cannot have
148 variables or fields of embeddable vector type -- always use a
149 pointer to a vector. The one exception is the final field of a
150 structure, which could be a vector type.
151
152 You will have to use the embedded_size & embedded_init calls to
153 create such objects, and they will not be resizeable (so the
154 'safe' allocation variants are not available).
155
156 Properties of embeddable vectors:
157
158 - The whole vector and control data are allocated in a single
159 contiguous block. It uses the trailing-vector idiom, so
160 allocation must reserve enough space for all the elements
161 in the vector plus its control data.
162 - The vector cannot be re-allocated.
163 - The vector cannot grow nor shrink.
164 - No indirections needed for access/manipulation.
165 - It requires 2 words of storage (prior to vector allocation).
166
167
168 * Space efficient vector (vec<T, A, vl_ptr>)
169
170 These vectors can grow dynamically and are allocated together
171 with their control data. They are suited to be included in data
172 structures. Prior to initial allocation, they only take a single
173 word of storage.
174
175 These vectors are implemented as a pointer to embeddable vectors.
176 The semantics allow for this pointer to be NULL to represent
177 empty vectors. This way, empty vectors occupy minimal space in
178 the structure containing them.
179
180 Properties:
181
182 - The whole vector and control data are allocated in a single
183 contiguous block.
184 - The whole vector may be re-allocated.
185 - Vector data may grow and shrink.
186 - Access and manipulation requires a pointer test and
187 indirection.
188 - It requires 1 word of storage (prior to vector allocation).
189
190 An example of their use would be,
191
192 struct my_struct {
193 // A space-efficient vector of tree pointers in GC memory.
194 vec<tree, va_gc, vl_ptr> v;
195 };
196
197 struct my_struct *s;
198
199 if (s->v.length ()) { we have some contents }
200 s->v.safe_push (decl); // append some decl onto the end
201 for (ix = 0; s->v.iterate (ix, &elt); ix++)
202 { do something with elt }
203 */
204
205 /* Support function for statistics. */
206 extern void dump_vec_loc_statistics (void);
207
208
209 /* Control data for vectors. This contains the number of allocated
210 and used slots inside a vector. */
211
212 struct vec_prefix
213 {
214 /* FIXME - These fields should be private, but we need to cater to
215 compilers that have stricter notions of PODness for types. */
216
217 /* Memory allocation support routines in vec.c. */
218 void register_overhead (size_t, const char *, int, const char *);
219 void release_overhead (void);
220 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
221 static unsigned calculate_allocation_1 (unsigned, unsigned);
222
223 /* Note that vec_prefix should be a base class for vec, but we use
224 offsetof() on vector fields of tree structures (e.g.,
225 tree_binfo::base_binfos), and offsetof only supports base types.
226
227 To compensate, we make vec_prefix a field inside vec and make
228 vec a friend class of vec_prefix so it can access its fields. */
229 template <typename, typename, typename> friend struct vec;
230
231 /* The allocator types also need access to our internals. */
232 friend struct va_gc;
233 friend struct va_gc_atomic;
234 friend struct va_heap;
235
236 unsigned m_alloc : 31;
237 unsigned m_using_auto_storage : 1;
238 unsigned m_num;
239 };
240
241 /* Calculate the number of slots to reserve a vector, making sure that
242 RESERVE slots are free. If EXACT grow exactly, otherwise grow
243 exponentially. PFX is the control data for the vector. */
244
245 inline unsigned
246 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
247 bool exact)
248 {
249 if (exact)
250 return (pfx ? pfx->m_num : 0) + reserve;
251 else if (!pfx)
252 return MAX (4, reserve);
253 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
254 }
255
256 template<typename, typename, typename> struct vec;
257
258 /* Valid vector layouts
259
260 vl_embed - Embeddable vector that uses the trailing array idiom.
261 vl_ptr - Space efficient vector that uses a pointer to an
262 embeddable vector. */
263 struct vl_embed { };
264 struct vl_ptr { };
265
266
267 /* Types of supported allocations
268
269 va_heap - Allocation uses malloc/free.
270 va_gc - Allocation uses ggc_alloc.
271 va_gc_atomic - Same as GC, but individual elements of the array
272 do not need to be marked during collection. */
273
274 /* Allocator type for heap vectors. */
275 struct va_heap
276 {
277 /* Heap vectors are frequently regular instances, so use the vl_ptr
278 layout for them. */
279 typedef vl_ptr default_layout;
280
281 template<typename T>
282 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
283 CXX_MEM_STAT_INFO);
284
285 template<typename T>
286 static void release (vec<T, va_heap, vl_embed> *&);
287 };
288
289
290 /* Allocator for heap memory. Ensure there are at least RESERVE free
291 slots in V. If EXACT is true, grow exactly, else grow
292 exponentially. As a special case, if the vector had not been
293 allocated and and RESERVE is 0, no vector will be created. */
294
295 template<typename T>
296 inline void
297 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
298 MEM_STAT_DECL)
299 {
300 unsigned alloc
301 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
302 gcc_checking_assert (alloc);
303
304 if (GATHER_STATISTICS && v)
305 v->m_vecpfx.release_overhead ();
306
307 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
308 unsigned nelem = v ? v->length () : 0;
309 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
310 v->embedded_init (alloc, nelem);
311
312 if (GATHER_STATISTICS)
313 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
314 }
315
316
317 /* Free the heap space allocated for vector V. */
318
319 template<typename T>
320 void
321 va_heap::release (vec<T, va_heap, vl_embed> *&v)
322 {
323 if (v == NULL)
324 return;
325
326 if (GATHER_STATISTICS)
327 v->m_vecpfx.release_overhead ();
328 ::free (v);
329 v = NULL;
330 }
331
332
333 /* Allocator type for GC vectors. Notice that we need the structure
334 declaration even if GC is not enabled. */
335
336 struct va_gc
337 {
338 /* Use vl_embed as the default layout for GC vectors. Due to GTY
339 limitations, GC vectors must always be pointers, so it is more
340 efficient to use a pointer to the vl_embed layout, rather than
341 using a pointer to a pointer as would be the case with vl_ptr. */
342 typedef vl_embed default_layout;
343
344 template<typename T, typename A>
345 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
346 CXX_MEM_STAT_INFO);
347
348 template<typename T, typename A>
349 static void release (vec<T, A, vl_embed> *&v);
350 };
351
352
353 /* Free GC memory used by V and reset V to NULL. */
354
355 template<typename T, typename A>
356 inline void
357 va_gc::release (vec<T, A, vl_embed> *&v)
358 {
359 if (v)
360 ::ggc_free (v);
361 v = NULL;
362 }
363
364
365 /* Allocator for GC memory. Ensure there are at least RESERVE free
366 slots in V. If EXACT is true, grow exactly, else grow
367 exponentially. As a special case, if the vector had not been
368 allocated and and RESERVE is 0, no vector will be created. */
369
370 template<typename T, typename A>
371 void
372 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
373 MEM_STAT_DECL)
374 {
375 unsigned alloc
376 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
377 if (!alloc)
378 {
379 ::ggc_free (v);
380 v = NULL;
381 return;
382 }
383
384 /* Calculate the amount of space we want. */
385 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
386
387 /* Ask the allocator how much space it will really give us. */
388 size = ::ggc_round_alloc_size (size);
389
390 /* Adjust the number of slots accordingly. */
391 size_t vec_offset = sizeof (vec_prefix);
392 size_t elt_size = sizeof (T);
393 alloc = (size - vec_offset) / elt_size;
394
395 /* And finally, recalculate the amount of space we ask for. */
396 size = vec_offset + alloc * elt_size;
397
398 unsigned nelem = v ? v->length () : 0;
399 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
400 PASS_MEM_STAT));
401 v->embedded_init (alloc, nelem);
402 }
403
404
405 /* Allocator type for GC vectors. This is for vectors of types
406 atomics w.r.t. collection, so allocation and deallocation is
407 completely inherited from va_gc. */
408 struct va_gc_atomic : va_gc
409 {
410 };
411
412
413 /* Generic vector template. Default values for A and L indicate the
414 most commonly used strategies.
415
416 FIXME - Ideally, they would all be vl_ptr to encourage using regular
417 instances for vectors, but the existing GTY machinery is limited
418 in that it can only deal with GC objects that are pointers
419 themselves.
420
421 This means that vector operations that need to deal with
422 potentially NULL pointers, must be provided as free
423 functions (see the vec_safe_* functions above). */
424 template<typename T,
425 typename A = va_heap,
426 typename L = typename A::default_layout>
427 struct GTY((user)) vec
428 {
429 };
430
431 /* Type to provide NULL values for vec<T, A, L>. This is used to
432 provide nil initializers for vec instances. Since vec must be
433 a POD, we cannot have proper ctor/dtor for it. To initialize
434 a vec instance, you can assign it the value vNULL. */
435 struct vnull
436 {
437 template <typename T, typename A, typename L>
438 operator vec<T, A, L> () { return vec<T, A, L>(); }
439 };
440 extern vnull vNULL;
441
442
443 /* Embeddable vector. These vectors are suitable to be embedded
444 in other data structures so that they can be pre-allocated in a
445 contiguous memory block.
446
447 Embeddable vectors are implemented using the trailing array idiom,
448 thus they are not resizeable without changing the address of the
449 vector object itself. This means you cannot have variables or
450 fields of embeddable vector type -- always use a pointer to a
451 vector. The one exception is the final field of a structure, which
452 could be a vector type.
453
454 You will have to use the embedded_size & embedded_init calls to
455 create such objects, and they will not be resizeable (so the 'safe'
456 allocation variants are not available).
457
458 Properties:
459
460 - The whole vector and control data are allocated in a single
461 contiguous block. It uses the trailing-vector idiom, so
462 allocation must reserve enough space for all the elements
463 in the vector plus its control data.
464 - The vector cannot be re-allocated.
465 - The vector cannot grow nor shrink.
466 - No indirections needed for access/manipulation.
467 - It requires 2 words of storage (prior to vector allocation). */
468
469 template<typename T, typename A>
470 struct GTY((user)) vec<T, A, vl_embed>
471 {
472 public:
473 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
474 unsigned length (void) const { return m_vecpfx.m_num; }
475 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
476 T *address (void) { return m_vecdata; }
477 const T *address (void) const { return m_vecdata; }
478 const T &operator[] (unsigned) const;
479 T &operator[] (unsigned);
480 T &last (void);
481 bool space (unsigned) const;
482 bool iterate (unsigned, T *) const;
483 bool iterate (unsigned, T **) const;
484 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
485 void splice (vec &);
486 void splice (vec *src);
487 T *quick_push (const T &);
488 T &pop (void);
489 void truncate (unsigned);
490 void quick_insert (unsigned, const T &);
491 void ordered_remove (unsigned);
492 void unordered_remove (unsigned);
493 void block_remove (unsigned, unsigned);
494 void qsort (int (*) (const void *, const void *));
495 T *bsearch (const void *key, int (*compar)(const void *, const void *));
496 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
497 static size_t embedded_size (unsigned);
498 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
499 void quick_grow (unsigned len);
500 void quick_grow_cleared (unsigned len);
501
502 /* vec class can access our internal data and functions. */
503 template <typename, typename, typename> friend struct vec;
504
505 /* The allocator types also need access to our internals. */
506 friend struct va_gc;
507 friend struct va_gc_atomic;
508 friend struct va_heap;
509
510 /* FIXME - These fields should be private, but we need to cater to
511 compilers that have stricter notions of PODness for types. */
512 vec_prefix m_vecpfx;
513 T m_vecdata[1];
514 };
515
516
517 /* Convenience wrapper functions to use when dealing with pointers to
518 embedded vectors. Some functionality for these vectors must be
519 provided via free functions for these reasons:
520
521 1- The pointer may be NULL (e.g., before initial allocation).
522
523 2- When the vector needs to grow, it must be reallocated, so
524 the pointer will change its value.
525
526 Because of limitations with the current GC machinery, all vectors
527 in GC memory *must* be pointers. */
528
529
530 /* If V contains no room for NELEMS elements, return false. Otherwise,
531 return true. */
532 template<typename T, typename A>
533 inline bool
534 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
535 {
536 return v ? v->space (nelems) : nelems == 0;
537 }
538
539
540 /* If V is NULL, return 0. Otherwise, return V->length(). */
541 template<typename T, typename A>
542 inline unsigned
543 vec_safe_length (const vec<T, A, vl_embed> *v)
544 {
545 return v ? v->length () : 0;
546 }
547
548
549 /* If V is NULL, return NULL. Otherwise, return V->address(). */
550 template<typename T, typename A>
551 inline T *
552 vec_safe_address (vec<T, A, vl_embed> *v)
553 {
554 return v ? v->address () : NULL;
555 }
556
557
558 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
559 template<typename T, typename A>
560 inline bool
561 vec_safe_is_empty (vec<T, A, vl_embed> *v)
562 {
563 return v ? v->is_empty () : true;
564 }
565
566
567 /* If V does not have space for NELEMS elements, call
568 V->reserve(NELEMS, EXACT). */
569 template<typename T, typename A>
570 inline bool
571 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
572 CXX_MEM_STAT_INFO)
573 {
574 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
575 if (extend)
576 A::reserve (v, nelems, exact PASS_MEM_STAT);
577 return extend;
578 }
579
580 template<typename T, typename A>
581 inline bool
582 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
583 CXX_MEM_STAT_INFO)
584 {
585 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
586 }
587
588
589 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
590 is 0, V is initialized to NULL. */
591
592 template<typename T, typename A>
593 inline void
594 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
595 {
596 v = NULL;
597 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
598 }
599
600
601 /* Free the GC memory allocated by vector V and set it to NULL. */
602
603 template<typename T, typename A>
604 inline void
605 vec_free (vec<T, A, vl_embed> *&v)
606 {
607 A::release (v);
608 }
609
610
611 /* Grow V to length LEN. Allocate it, if necessary. */
612 template<typename T, typename A>
613 inline void
614 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
615 {
616 unsigned oldlen = vec_safe_length (v);
617 gcc_checking_assert (len >= oldlen);
618 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
619 v->quick_grow (len);
620 }
621
622
623 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
624 template<typename T, typename A>
625 inline void
626 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
627 {
628 unsigned oldlen = vec_safe_length (v);
629 vec_safe_grow (v, len PASS_MEM_STAT);
630 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
631 }
632
633
634 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
635 template<typename T, typename A>
636 inline bool
637 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
638 {
639 if (v)
640 return v->iterate (ix, ptr);
641 else
642 {
643 *ptr = 0;
644 return false;
645 }
646 }
647
648 template<typename T, typename A>
649 inline bool
650 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
651 {
652 if (v)
653 return v->iterate (ix, ptr);
654 else
655 {
656 *ptr = 0;
657 return false;
658 }
659 }
660
661
662 /* If V has no room for one more element, reallocate it. Then call
663 V->quick_push(OBJ). */
664 template<typename T, typename A>
665 inline T *
666 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
667 {
668 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
669 return v->quick_push (obj);
670 }
671
672
673 /* if V has no room for one more element, reallocate it. Then call
674 V->quick_insert(IX, OBJ). */
675 template<typename T, typename A>
676 inline void
677 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
678 CXX_MEM_STAT_INFO)
679 {
680 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
681 v->quick_insert (ix, obj);
682 }
683
684
685 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
686 template<typename T, typename A>
687 inline void
688 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
689 {
690 if (v)
691 v->truncate (size);
692 }
693
694
695 /* If SRC is not NULL, return a pointer to a copy of it. */
696 template<typename T, typename A>
697 inline vec<T, A, vl_embed> *
698 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
699 {
700 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
701 }
702
703 /* Copy the elements from SRC to the end of DST as if by memcpy.
704 Reallocate DST, if necessary. */
705 template<typename T, typename A>
706 inline void
707 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
708 CXX_MEM_STAT_INFO)
709 {
710 unsigned src_len = vec_safe_length (src);
711 if (src_len)
712 {
713 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
714 PASS_MEM_STAT);
715 dst->splice (*src);
716 }
717 }
718
719
720 /* Index into vector. Return the IX'th element. IX must be in the
721 domain of the vector. */
722
723 template<typename T, typename A>
724 inline const T &
725 vec<T, A, vl_embed>::operator[] (unsigned ix) const
726 {
727 gcc_checking_assert (ix < m_vecpfx.m_num);
728 return m_vecdata[ix];
729 }
730
731 template<typename T, typename A>
732 inline T &
733 vec<T, A, vl_embed>::operator[] (unsigned ix)
734 {
735 gcc_checking_assert (ix < m_vecpfx.m_num);
736 return m_vecdata[ix];
737 }
738
739
740 /* Get the final element of the vector, which must not be empty. */
741
742 template<typename T, typename A>
743 inline T &
744 vec<T, A, vl_embed>::last (void)
745 {
746 gcc_checking_assert (m_vecpfx.m_num > 0);
747 return (*this)[m_vecpfx.m_num - 1];
748 }
749
750
751 /* If this vector has space for NELEMS additional entries, return
752 true. You usually only need to use this if you are doing your
753 own vector reallocation, for instance on an embedded vector. This
754 returns true in exactly the same circumstances that vec::reserve
755 will. */
756
757 template<typename T, typename A>
758 inline bool
759 vec<T, A, vl_embed>::space (unsigned nelems) const
760 {
761 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
762 }
763
764
765 /* Return iteration condition and update PTR to point to the IX'th
766 element of this vector. Use this to iterate over the elements of a
767 vector as follows,
768
769 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
770 continue; */
771
772 template<typename T, typename A>
773 inline bool
774 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
775 {
776 if (ix < m_vecpfx.m_num)
777 {
778 *ptr = m_vecdata[ix];
779 return true;
780 }
781 else
782 {
783 *ptr = 0;
784 return false;
785 }
786 }
787
788
789 /* Return iteration condition and update *PTR to point to the
790 IX'th element of this vector. Use this to iterate over the
791 elements of a vector as follows,
792
793 for (ix = 0; v->iterate (ix, &ptr); ix++)
794 continue;
795
796 This variant is for vectors of objects. */
797
798 template<typename T, typename A>
799 inline bool
800 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
801 {
802 if (ix < m_vecpfx.m_num)
803 {
804 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
805 return true;
806 }
807 else
808 {
809 *ptr = 0;
810 return false;
811 }
812 }
813
814
815 /* Return a pointer to a copy of this vector. */
816
817 template<typename T, typename A>
818 inline vec<T, A, vl_embed> *
819 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
820 {
821 vec<T, A, vl_embed> *new_vec = NULL;
822 unsigned len = length ();
823 if (len)
824 {
825 vec_alloc (new_vec, len PASS_MEM_STAT);
826 new_vec->embedded_init (len, len);
827 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
828 }
829 return new_vec;
830 }
831
832
833 /* Copy the elements from SRC to the end of this vector as if by memcpy.
834 The vector must have sufficient headroom available. */
835
836 template<typename T, typename A>
837 inline void
838 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
839 {
840 unsigned len = src.length ();
841 if (len)
842 {
843 gcc_checking_assert (space (len));
844 memcpy (address () + length (), src.address (), len * sizeof (T));
845 m_vecpfx.m_num += len;
846 }
847 }
848
849 template<typename T, typename A>
850 inline void
851 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
852 {
853 if (src)
854 splice (*src);
855 }
856
857
858 /* Push OBJ (a new element) onto the end of the vector. There must be
859 sufficient space in the vector. Return a pointer to the slot
860 where OBJ was inserted. */
861
862 template<typename T, typename A>
863 inline T *
864 vec<T, A, vl_embed>::quick_push (const T &obj)
865 {
866 gcc_checking_assert (space (1));
867 T *slot = &m_vecdata[m_vecpfx.m_num++];
868 *slot = obj;
869 return slot;
870 }
871
872
873 /* Pop and return the last element off the end of the vector. */
874
875 template<typename T, typename A>
876 inline T &
877 vec<T, A, vl_embed>::pop (void)
878 {
879 gcc_checking_assert (length () > 0);
880 return m_vecdata[--m_vecpfx.m_num];
881 }
882
883
884 /* Set the length of the vector to SIZE. The new length must be less
885 than or equal to the current length. This is an O(1) operation. */
886
887 template<typename T, typename A>
888 inline void
889 vec<T, A, vl_embed>::truncate (unsigned size)
890 {
891 gcc_checking_assert (length () >= size);
892 m_vecpfx.m_num = size;
893 }
894
895
896 /* Insert an element, OBJ, at the IXth position of this vector. There
897 must be sufficient space. */
898
899 template<typename T, typename A>
900 inline void
901 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
902 {
903 gcc_checking_assert (length () < allocated ());
904 gcc_checking_assert (ix <= length ());
905 T *slot = &m_vecdata[ix];
906 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
907 *slot = obj;
908 }
909
910
911 /* Remove an element from the IXth position of this vector. Ordering of
912 remaining elements is preserved. This is an O(N) operation due to
913 memmove. */
914
915 template<typename T, typename A>
916 inline void
917 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
918 {
919 gcc_checking_assert (ix < length ());
920 T *slot = &m_vecdata[ix];
921 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
922 }
923
924
925 /* Remove an element from the IXth position of this vector. Ordering of
926 remaining elements is destroyed. This is an O(1) operation. */
927
928 template<typename T, typename A>
929 inline void
930 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
931 {
932 gcc_checking_assert (ix < length ());
933 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
934 }
935
936
937 /* Remove LEN elements starting at the IXth. Ordering is retained.
938 This is an O(N) operation due to memmove. */
939
940 template<typename T, typename A>
941 inline void
942 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
943 {
944 gcc_checking_assert (ix + len <= length ());
945 T *slot = &m_vecdata[ix];
946 m_vecpfx.m_num -= len;
947 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
948 }
949
950
951 /* Sort the contents of this vector with qsort. CMP is the comparison
952 function to pass to qsort. */
953
954 template<typename T, typename A>
955 inline void
956 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
957 {
958 if (length () > 1)
959 ::qsort (address (), length (), sizeof (T), cmp);
960 }
961
962
963 /* Search the contents of the sorted vector with a binary search.
964 CMP is the comparison function to pass to bsearch. */
965
966 template<typename T, typename A>
967 inline T *
968 vec<T, A, vl_embed>::bsearch (const void *key,
969 int (*compar) (const void *, const void *))
970 {
971 const void *base = this->address ();
972 size_t nmemb = this->length ();
973 size_t size = sizeof (T);
974 /* The following is a copy of glibc stdlib-bsearch.h. */
975 size_t l, u, idx;
976 const void *p;
977 int comparison;
978
979 l = 0;
980 u = nmemb;
981 while (l < u)
982 {
983 idx = (l + u) / 2;
984 p = (const void *) (((const char *) base) + (idx * size));
985 comparison = (*compar) (key, p);
986 if (comparison < 0)
987 u = idx;
988 else if (comparison > 0)
989 l = idx + 1;
990 else
991 return (T *)const_cast<void *>(p);
992 }
993
994 return NULL;
995 }
996
997
998 /* Find and return the first position in which OBJ could be inserted
999 without changing the ordering of this vector. LESSTHAN is a
1000 function that returns true if the first argument is strictly less
1001 than the second. */
1002
1003 template<typename T, typename A>
1004 unsigned
1005 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1006 const
1007 {
1008 unsigned int len = length ();
1009 unsigned int half, middle;
1010 unsigned int first = 0;
1011 while (len > 0)
1012 {
1013 half = len / 2;
1014 middle = first;
1015 middle += half;
1016 T middle_elem = (*this)[middle];
1017 if (lessthan (middle_elem, obj))
1018 {
1019 first = middle;
1020 ++first;
1021 len = len - half - 1;
1022 }
1023 else
1024 len = half;
1025 }
1026 return first;
1027 }
1028
1029
1030 /* Return the number of bytes needed to embed an instance of an
1031 embeddable vec inside another data structure.
1032
1033 Use these methods to determine the required size and initialization
1034 of a vector V of type T embedded within another structure (as the
1035 final member):
1036
1037 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1038 void v->embedded_init (unsigned alloc, unsigned num);
1039
1040 These allow the caller to perform the memory allocation. */
1041
1042 template<typename T, typename A>
1043 inline size_t
1044 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1045 {
1046 typedef vec<T, A, vl_embed> vec_embedded;
1047 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1048 }
1049
1050
1051 /* Initialize the vector to contain room for ALLOC elements and
1052 NUM active elements. */
1053
1054 template<typename T, typename A>
1055 inline void
1056 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1057 {
1058 m_vecpfx.m_alloc = alloc;
1059 m_vecpfx.m_using_auto_storage = aut;
1060 m_vecpfx.m_num = num;
1061 }
1062
1063
1064 /* Grow the vector to a specific length. LEN must be as long or longer than
1065 the current length. The new elements are uninitialized. */
1066
1067 template<typename T, typename A>
1068 inline void
1069 vec<T, A, vl_embed>::quick_grow (unsigned len)
1070 {
1071 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1072 m_vecpfx.m_num = len;
1073 }
1074
1075
1076 /* Grow the vector to a specific length. LEN must be as long or longer than
1077 the current length. The new elements are initialized to zero. */
1078
1079 template<typename T, typename A>
1080 inline void
1081 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1082 {
1083 unsigned oldlen = length ();
1084 quick_grow (len);
1085 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1086 }
1087
1088
1089 /* Garbage collection support for vec<T, A, vl_embed>. */
1090
1091 template<typename T>
1092 void
1093 gt_ggc_mx (vec<T, va_gc> *v)
1094 {
1095 extern void gt_ggc_mx (T &);
1096 for (unsigned i = 0; i < v->length (); i++)
1097 gt_ggc_mx ((*v)[i]);
1098 }
1099
1100 template<typename T>
1101 void
1102 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1103 {
1104 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1105 be traversed. */
1106 }
1107
1108
1109 /* PCH support for vec<T, A, vl_embed>. */
1110
1111 template<typename T, typename A>
1112 void
1113 gt_pch_nx (vec<T, A, vl_embed> *v)
1114 {
1115 extern void gt_pch_nx (T &);
1116 for (unsigned i = 0; i < v->length (); i++)
1117 gt_pch_nx ((*v)[i]);
1118 }
1119
1120 template<typename T, typename A>
1121 void
1122 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1123 {
1124 for (unsigned i = 0; i < v->length (); i++)
1125 op (&((*v)[i]), cookie);
1126 }
1127
1128 template<typename T, typename A>
1129 void
1130 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1131 {
1132 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1133 for (unsigned i = 0; i < v->length (); i++)
1134 gt_pch_nx (&((*v)[i]), op, cookie);
1135 }
1136
1137
1138 /* Space efficient vector. These vectors can grow dynamically and are
1139 allocated together with their control data. They are suited to be
1140 included in data structures. Prior to initial allocation, they
1141 only take a single word of storage.
1142
1143 These vectors are implemented as a pointer to an embeddable vector.
1144 The semantics allow for this pointer to be NULL to represent empty
1145 vectors. This way, empty vectors occupy minimal space in the
1146 structure containing them.
1147
1148 Properties:
1149
1150 - The whole vector and control data are allocated in a single
1151 contiguous block.
1152 - The whole vector may be re-allocated.
1153 - Vector data may grow and shrink.
1154 - Access and manipulation requires a pointer test and
1155 indirection.
1156 - It requires 1 word of storage (prior to vector allocation).
1157
1158
1159 Limitations:
1160
1161 These vectors must be PODs because they are stored in unions.
1162 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1163 As long as we use C++03, we cannot have constructors nor
1164 destructors in classes that are stored in unions. */
1165
1166 template<typename T>
1167 struct vec<T, va_heap, vl_ptr>
1168 {
1169 public:
1170 /* Memory allocation and deallocation for the embedded vector.
1171 Needed because we cannot have proper ctors/dtors defined. */
1172 void create (unsigned nelems CXX_MEM_STAT_INFO);
1173 void release (void);
1174
1175 /* Vector operations. */
1176 bool exists (void) const
1177 { return m_vec != NULL; }
1178
1179 bool is_empty (void) const
1180 { return m_vec ? m_vec->is_empty () : true; }
1181
1182 unsigned length (void) const
1183 { return m_vec ? m_vec->length () : 0; }
1184
1185 T *address (void)
1186 { return m_vec ? m_vec->m_vecdata : NULL; }
1187
1188 const T *address (void) const
1189 { return m_vec ? m_vec->m_vecdata : NULL; }
1190
1191 const T &operator[] (unsigned ix) const
1192 { return (*m_vec)[ix]; }
1193
1194 bool operator!=(const vec &other) const
1195 { return !(*this == other); }
1196
1197 bool operator==(const vec &other) const
1198 { return address () == other.address (); }
1199
1200 T &operator[] (unsigned ix)
1201 { return (*m_vec)[ix]; }
1202
1203 T &last (void)
1204 { return m_vec->last (); }
1205
1206 bool space (int nelems) const
1207 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1208
1209 bool iterate (unsigned ix, T *p) const;
1210 bool iterate (unsigned ix, T **p) const;
1211 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1212 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1213 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1214 void splice (vec &);
1215 void safe_splice (vec & CXX_MEM_STAT_INFO);
1216 T *quick_push (const T &);
1217 T *safe_push (const T &CXX_MEM_STAT_INFO);
1218 T &pop (void);
1219 void truncate (unsigned);
1220 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1221 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1222 void quick_grow (unsigned);
1223 void quick_grow_cleared (unsigned);
1224 void quick_insert (unsigned, const T &);
1225 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1226 void ordered_remove (unsigned);
1227 void unordered_remove (unsigned);
1228 void block_remove (unsigned, unsigned);
1229 void qsort (int (*) (const void *, const void *));
1230 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1231 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1232
1233 bool using_auto_storage () const;
1234
1235 /* FIXME - This field should be private, but we need to cater to
1236 compilers that have stricter notions of PODness for types. */
1237 vec<T, va_heap, vl_embed> *m_vec;
1238 };
1239
1240
1241 /* auto_vec is a subclass of vec that automatically manages creating and
1242 releasing the internal vector. If N is non zero then it has N elements of
1243 internal storage. The default is no internal storage, and you probably only
1244 want to ask for internal storage for vectors on the stack because if the
1245 size of the vector is larger than the internal storage that space is wasted.
1246 */
1247 template<typename T, size_t N = 0>
1248 class auto_vec : public vec<T, va_heap>
1249 {
1250 public:
1251 auto_vec ()
1252 {
1253 m_auto.embedded_init (MAX (N, 2), 0, 1);
1254 this->m_vec = &m_auto;
1255 }
1256
1257 ~auto_vec ()
1258 {
1259 this->release ();
1260 }
1261
1262 private:
1263 vec<T, va_heap, vl_embed> m_auto;
1264 T m_data[MAX (N - 1, 1)];
1265 };
1266
1267 /* auto_vec is a sub class of vec whose storage is released when it is
1268 destroyed. */
1269 template<typename T>
1270 class auto_vec<T, 0> : public vec<T, va_heap>
1271 {
1272 public:
1273 auto_vec () { this->m_vec = NULL; }
1274 auto_vec (size_t n) { this->create (n); }
1275 ~auto_vec () { this->release (); }
1276 };
1277
1278
1279 /* Allocate heap memory for pointer V and create the internal vector
1280 with space for NELEMS elements. If NELEMS is 0, the internal
1281 vector is initialized to empty. */
1282
1283 template<typename T>
1284 inline void
1285 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1286 {
1287 v = new vec<T>;
1288 v->create (nelems PASS_MEM_STAT);
1289 }
1290
1291
1292 /* Conditionally allocate heap memory for VEC and its internal vector. */
1293
1294 template<typename T>
1295 inline void
1296 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1297 {
1298 if (!vec)
1299 vec_alloc (vec, nelems PASS_MEM_STAT);
1300 }
1301
1302
1303 /* Free the heap memory allocated by vector V and set it to NULL. */
1304
1305 template<typename T>
1306 inline void
1307 vec_free (vec<T> *&v)
1308 {
1309 if (v == NULL)
1310 return;
1311
1312 v->release ();
1313 delete v;
1314 v = NULL;
1315 }
1316
1317
1318 /* Return iteration condition and update PTR to point to the IX'th
1319 element of this vector. Use this to iterate over the elements of a
1320 vector as follows,
1321
1322 for (ix = 0; v.iterate (ix, &ptr); ix++)
1323 continue; */
1324
1325 template<typename T>
1326 inline bool
1327 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1328 {
1329 if (m_vec)
1330 return m_vec->iterate (ix, ptr);
1331 else
1332 {
1333 *ptr = 0;
1334 return false;
1335 }
1336 }
1337
1338
1339 /* Return iteration condition and update *PTR to point to the
1340 IX'th element of this vector. Use this to iterate over the
1341 elements of a vector as follows,
1342
1343 for (ix = 0; v->iterate (ix, &ptr); ix++)
1344 continue;
1345
1346 This variant is for vectors of objects. */
1347
1348 template<typename T>
1349 inline bool
1350 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1351 {
1352 if (m_vec)
1353 return m_vec->iterate (ix, ptr);
1354 else
1355 {
1356 *ptr = 0;
1357 return false;
1358 }
1359 }
1360
1361
1362 /* Convenience macro for forward iteration. */
1363 #define FOR_EACH_VEC_ELT(V, I, P) \
1364 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1365
1366 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1367 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1368
1369 /* Likewise, but start from FROM rather than 0. */
1370 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1371 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1372
1373 /* Convenience macro for reverse iteration. */
1374 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1375 for (I = (V).length () - 1; \
1376 (V).iterate ((I), &(P)); \
1377 (I)--)
1378
1379 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1380 for (I = vec_safe_length (V) - 1; \
1381 vec_safe_iterate ((V), (I), &(P)); \
1382 (I)--)
1383
1384
1385 /* Return a copy of this vector. */
1386
1387 template<typename T>
1388 inline vec<T, va_heap, vl_ptr>
1389 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1390 {
1391 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1392 if (length ())
1393 new_vec.m_vec = m_vec->copy ();
1394 return new_vec;
1395 }
1396
1397
1398 /* Ensure that the vector has at least RESERVE slots available (if
1399 EXACT is false), or exactly RESERVE slots available (if EXACT is
1400 true).
1401
1402 This may create additional headroom if EXACT is false.
1403
1404 Note that this can cause the embedded vector to be reallocated.
1405 Returns true iff reallocation actually occurred. */
1406
1407 template<typename T>
1408 inline bool
1409 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1410 {
1411 if (space (nelems))
1412 return false;
1413
1414 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1415 this is necessary because it doesn't have enough information to know the
1416 embedded vector is in auto storage, and so should not be freed. */
1417 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1418 unsigned int oldsize = 0;
1419 bool handle_auto_vec = m_vec && using_auto_storage ();
1420 if (handle_auto_vec)
1421 {
1422 m_vec = NULL;
1423 oldsize = oldvec->length ();
1424 nelems += oldsize;
1425 }
1426
1427 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1428 if (handle_auto_vec)
1429 {
1430 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1431 m_vec->m_vecpfx.m_num = oldsize;
1432 }
1433
1434 return true;
1435 }
1436
1437
1438 /* Ensure that this vector has exactly NELEMS slots available. This
1439 will not create additional headroom. Note this can cause the
1440 embedded vector to be reallocated. Returns true iff reallocation
1441 actually occurred. */
1442
1443 template<typename T>
1444 inline bool
1445 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1446 {
1447 return reserve (nelems, true PASS_MEM_STAT);
1448 }
1449
1450
1451 /* Create the internal vector and reserve NELEMS for it. This is
1452 exactly like vec::reserve, but the internal vector is
1453 unconditionally allocated from scratch. The old one, if it
1454 existed, is lost. */
1455
1456 template<typename T>
1457 inline void
1458 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1459 {
1460 m_vec = NULL;
1461 if (nelems > 0)
1462 reserve_exact (nelems PASS_MEM_STAT);
1463 }
1464
1465
1466 /* Free the memory occupied by the embedded vector. */
1467
1468 template<typename T>
1469 inline void
1470 vec<T, va_heap, vl_ptr>::release (void)
1471 {
1472 if (!m_vec)
1473 return;
1474
1475 if (using_auto_storage ())
1476 {
1477 m_vec->m_vecpfx.m_num = 0;
1478 return;
1479 }
1480
1481 va_heap::release (m_vec);
1482 }
1483
1484 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1485 SRC and this vector must be allocated with the same memory
1486 allocation mechanism. This vector is assumed to have sufficient
1487 headroom available. */
1488
1489 template<typename T>
1490 inline void
1491 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1492 {
1493 if (src.m_vec)
1494 m_vec->splice (*(src.m_vec));
1495 }
1496
1497
1498 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1499 SRC and this vector must be allocated with the same mechanism.
1500 If there is not enough headroom in this vector, it will be reallocated
1501 as needed. */
1502
1503 template<typename T>
1504 inline void
1505 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1506 MEM_STAT_DECL)
1507 {
1508 if (src.length ())
1509 {
1510 reserve_exact (src.length ());
1511 splice (src);
1512 }
1513 }
1514
1515
1516 /* Push OBJ (a new element) onto the end of the vector. There must be
1517 sufficient space in the vector. Return a pointer to the slot
1518 where OBJ was inserted. */
1519
1520 template<typename T>
1521 inline T *
1522 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1523 {
1524 return m_vec->quick_push (obj);
1525 }
1526
1527
1528 /* Push a new element OBJ onto the end of this vector. Reallocates
1529 the embedded vector, if needed. Return a pointer to the slot where
1530 OBJ was inserted. */
1531
1532 template<typename T>
1533 inline T *
1534 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1535 {
1536 reserve (1, false PASS_MEM_STAT);
1537 return quick_push (obj);
1538 }
1539
1540
1541 /* Pop and return the last element off the end of the vector. */
1542
1543 template<typename T>
1544 inline T &
1545 vec<T, va_heap, vl_ptr>::pop (void)
1546 {
1547 return m_vec->pop ();
1548 }
1549
1550
1551 /* Set the length of the vector to LEN. The new length must be less
1552 than or equal to the current length. This is an O(1) operation. */
1553
1554 template<typename T>
1555 inline void
1556 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1557 {
1558 if (m_vec)
1559 m_vec->truncate (size);
1560 else
1561 gcc_checking_assert (size == 0);
1562 }
1563
1564
1565 /* Grow the vector to a specific length. LEN must be as long or
1566 longer than the current length. The new elements are
1567 uninitialized. Reallocate the internal vector, if needed. */
1568
1569 template<typename T>
1570 inline void
1571 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1572 {
1573 unsigned oldlen = length ();
1574 gcc_checking_assert (oldlen <= len);
1575 reserve_exact (len - oldlen PASS_MEM_STAT);
1576 m_vec->quick_grow (len);
1577 }
1578
1579
1580 /* Grow the embedded vector to a specific length. LEN must be as
1581 long or longer than the current length. The new elements are
1582 initialized to zero. Reallocate the internal vector, if needed. */
1583
1584 template<typename T>
1585 inline void
1586 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1587 {
1588 unsigned oldlen = length ();
1589 safe_grow (len PASS_MEM_STAT);
1590 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1591 }
1592
1593
1594 /* Same as vec::safe_grow but without reallocation of the internal vector.
1595 If the vector cannot be extended, a runtime assertion will be triggered. */
1596
1597 template<typename T>
1598 inline void
1599 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1600 {
1601 gcc_checking_assert (m_vec);
1602 m_vec->quick_grow (len);
1603 }
1604
1605
1606 /* Same as vec::quick_grow_cleared but without reallocation of the
1607 internal vector. If the vector cannot be extended, a runtime
1608 assertion will be triggered. */
1609
1610 template<typename T>
1611 inline void
1612 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1613 {
1614 gcc_checking_assert (m_vec);
1615 m_vec->quick_grow_cleared (len);
1616 }
1617
1618
1619 /* Insert an element, OBJ, at the IXth position of this vector. There
1620 must be sufficient space. */
1621
1622 template<typename T>
1623 inline void
1624 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1625 {
1626 m_vec->quick_insert (ix, obj);
1627 }
1628
1629
1630 /* Insert an element, OBJ, at the IXth position of the vector.
1631 Reallocate the embedded vector, if necessary. */
1632
1633 template<typename T>
1634 inline void
1635 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1636 {
1637 reserve (1, false PASS_MEM_STAT);
1638 quick_insert (ix, obj);
1639 }
1640
1641
1642 /* Remove an element from the IXth position of this vector. Ordering of
1643 remaining elements is preserved. This is an O(N) operation due to
1644 a memmove. */
1645
1646 template<typename T>
1647 inline void
1648 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1649 {
1650 m_vec->ordered_remove (ix);
1651 }
1652
1653
1654 /* Remove an element from the IXth position of this vector. Ordering
1655 of remaining elements is destroyed. This is an O(1) operation. */
1656
1657 template<typename T>
1658 inline void
1659 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1660 {
1661 m_vec->unordered_remove (ix);
1662 }
1663
1664
1665 /* Remove LEN elements starting at the IXth. Ordering is retained.
1666 This is an O(N) operation due to memmove. */
1667
1668 template<typename T>
1669 inline void
1670 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1671 {
1672 m_vec->block_remove (ix, len);
1673 }
1674
1675
1676 /* Sort the contents of this vector with qsort. CMP is the comparison
1677 function to pass to qsort. */
1678
1679 template<typename T>
1680 inline void
1681 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1682 {
1683 if (m_vec)
1684 m_vec->qsort (cmp);
1685 }
1686
1687
1688 /* Search the contents of the sorted vector with a binary search.
1689 CMP is the comparison function to pass to bsearch. */
1690
1691 template<typename T>
1692 inline T *
1693 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1694 int (*cmp) (const void *, const void *))
1695 {
1696 if (m_vec)
1697 return m_vec->bsearch (key, cmp);
1698 return NULL;
1699 }
1700
1701
1702 /* Find and return the first position in which OBJ could be inserted
1703 without changing the ordering of this vector. LESSTHAN is a
1704 function that returns true if the first argument is strictly less
1705 than the second. */
1706
1707 template<typename T>
1708 inline unsigned
1709 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1710 bool (*lessthan)(const T &, const T &))
1711 const
1712 {
1713 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1714 }
1715
1716 template<typename T>
1717 inline bool
1718 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1719 {
1720 return m_vec->m_vecpfx.m_using_auto_storage;
1721 }
1722
1723 #if (GCC_VERSION >= 3000)
1724 # pragma GCC poison m_vec m_vecpfx m_vecdata
1725 #endif
1726
1727 #endif // GCC_VEC_H