vec: add exact argument for various grow functions.
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2020 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34 /* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180 */
181
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
184
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
187
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191 struct vec_prefix
192 {
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218 };
219
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227 {
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234
235 template<typename, typename, typename> struct vec;
236
237 /* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
244
245
246 /* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253 /* Allocator type for heap vectors. */
254 struct va_heap
255 {
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266 };
267
268
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278 {
279 size_t elt_size = sizeof (T);
280 unsigned alloc
281 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
282 gcc_checking_assert (alloc);
283
284 if (GATHER_STATISTICS && v)
285 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
286 v->allocated (), false);
287
288 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
289 unsigned nelem = v ? v->length () : 0;
290 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
291 v->embedded_init (alloc, nelem);
292
293 if (GATHER_STATISTICS)
294 v->m_vecpfx.register_overhead (v, alloc, elt_size PASS_MEM_STAT);
295 }
296
297
298 #if GCC_VERSION >= 4007
299 #pragma GCC diagnostic push
300 #pragma GCC diagnostic ignored "-Wfree-nonheap-object"
301 #endif
302
303 /* Free the heap space allocated for vector V. */
304
305 template<typename T>
306 void
307 va_heap::release (vec<T, va_heap, vl_embed> *&v)
308 {
309 size_t elt_size = sizeof (T);
310 if (v == NULL)
311 return;
312
313 if (GATHER_STATISTICS)
314 v->m_vecpfx.release_overhead (v, elt_size * v->allocated (),
315 v->allocated (), true);
316 ::free (v);
317 v = NULL;
318 }
319
320 #if GCC_VERSION >= 4007
321 #pragma GCC diagnostic pop
322 #endif
323
324 /* Allocator type for GC vectors. Notice that we need the structure
325 declaration even if GC is not enabled. */
326
327 struct va_gc
328 {
329 /* Use vl_embed as the default layout for GC vectors. Due to GTY
330 limitations, GC vectors must always be pointers, so it is more
331 efficient to use a pointer to the vl_embed layout, rather than
332 using a pointer to a pointer as would be the case with vl_ptr. */
333 typedef vl_embed default_layout;
334
335 template<typename T, typename A>
336 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
337 CXX_MEM_STAT_INFO);
338
339 template<typename T, typename A>
340 static void release (vec<T, A, vl_embed> *&v);
341 };
342
343
344 /* Free GC memory used by V and reset V to NULL. */
345
346 template<typename T, typename A>
347 inline void
348 va_gc::release (vec<T, A, vl_embed> *&v)
349 {
350 if (v)
351 ::ggc_free (v);
352 v = NULL;
353 }
354
355
356 /* Allocator for GC memory. Ensure there are at least RESERVE free
357 slots in V. If EXACT is true, grow exactly, else grow
358 exponentially. As a special case, if the vector had not been
359 allocated and RESERVE is 0, no vector will be created. */
360
361 template<typename T, typename A>
362 void
363 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
364 MEM_STAT_DECL)
365 {
366 unsigned alloc
367 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
368 if (!alloc)
369 {
370 ::ggc_free (v);
371 v = NULL;
372 return;
373 }
374
375 /* Calculate the amount of space we want. */
376 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
377
378 /* Ask the allocator how much space it will really give us. */
379 size = ::ggc_round_alloc_size (size);
380
381 /* Adjust the number of slots accordingly. */
382 size_t vec_offset = sizeof (vec_prefix);
383 size_t elt_size = sizeof (T);
384 alloc = (size - vec_offset) / elt_size;
385
386 /* And finally, recalculate the amount of space we ask for. */
387 size = vec_offset + alloc * elt_size;
388
389 unsigned nelem = v ? v->length () : 0;
390 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
391 PASS_MEM_STAT));
392 v->embedded_init (alloc, nelem);
393 }
394
395
396 /* Allocator type for GC vectors. This is for vectors of types
397 atomics w.r.t. collection, so allocation and deallocation is
398 completely inherited from va_gc. */
399 struct va_gc_atomic : va_gc
400 {
401 };
402
403
404 /* Generic vector template. Default values for A and L indicate the
405 most commonly used strategies.
406
407 FIXME - Ideally, they would all be vl_ptr to encourage using regular
408 instances for vectors, but the existing GTY machinery is limited
409 in that it can only deal with GC objects that are pointers
410 themselves.
411
412 This means that vector operations that need to deal with
413 potentially NULL pointers, must be provided as free
414 functions (see the vec_safe_* functions above). */
415 template<typename T,
416 typename A = va_heap,
417 typename L = typename A::default_layout>
418 struct GTY((user)) vec
419 {
420 };
421
422 /* Generic vec<> debug helpers.
423
424 These need to be instantiated for each vec<TYPE> used throughout
425 the compiler like this:
426
427 DEFINE_DEBUG_VEC (TYPE)
428
429 The reason we have a debug_helper() is because GDB can't
430 disambiguate a plain call to debug(some_vec), and it must be called
431 like debug<TYPE>(some_vec). */
432
433 template<typename T>
434 void
435 debug_helper (vec<T> &ref)
436 {
437 unsigned i;
438 for (i = 0; i < ref.length (); ++i)
439 {
440 fprintf (stderr, "[%d] = ", i);
441 debug_slim (ref[i]);
442 fputc ('\n', stderr);
443 }
444 }
445
446 /* We need a separate va_gc variant here because default template
447 argument for functions cannot be used in c++-98. Once this
448 restriction is removed, those variant should be folded with the
449 above debug_helper. */
450
451 template<typename T>
452 void
453 debug_helper (vec<T, va_gc> &ref)
454 {
455 unsigned i;
456 for (i = 0; i < ref.length (); ++i)
457 {
458 fprintf (stderr, "[%d] = ", i);
459 debug_slim (ref[i]);
460 fputc ('\n', stderr);
461 }
462 }
463
464 /* Macro to define debug(vec<T>) and debug(vec<T, va_gc>) helper
465 functions for a type T. */
466
467 #define DEFINE_DEBUG_VEC(T) \
468 template void debug_helper (vec<T> &); \
469 template void debug_helper (vec<T, va_gc> &); \
470 /* Define the vec<T> debug functions. */ \
471 DEBUG_FUNCTION void \
472 debug (vec<T> &ref) \
473 { \
474 debug_helper <T> (ref); \
475 } \
476 DEBUG_FUNCTION void \
477 debug (vec<T> *ptr) \
478 { \
479 if (ptr) \
480 debug (*ptr); \
481 else \
482 fprintf (stderr, "<nil>\n"); \
483 } \
484 /* Define the vec<T, va_gc> debug functions. */ \
485 DEBUG_FUNCTION void \
486 debug (vec<T, va_gc> &ref) \
487 { \
488 debug_helper <T> (ref); \
489 } \
490 DEBUG_FUNCTION void \
491 debug (vec<T, va_gc> *ptr) \
492 { \
493 if (ptr) \
494 debug (*ptr); \
495 else \
496 fprintf (stderr, "<nil>\n"); \
497 }
498
499 /* Default-construct N elements in DST. */
500
501 template <typename T>
502 inline void
503 vec_default_construct (T *dst, unsigned n)
504 {
505 #ifdef BROKEN_VALUE_INITIALIZATION
506 /* Versions of GCC before 4.4 sometimes leave certain objects
507 uninitialized when value initialized, though if the type has
508 user defined default ctor, that ctor is invoked. As a workaround
509 perform clearing first and then the value initialization, which
510 fixes the case when value initialization doesn't initialize due to
511 the bugs and should initialize to all zeros, but still allows
512 vectors for types with user defined default ctor that initializes
513 some or all elements to non-zero. If T has no user defined
514 default ctor and some non-static data members have user defined
515 default ctors that initialize to non-zero the workaround will
516 still not work properly; in that case we just need to provide
517 user defined default ctor. */
518 memset (dst, '\0', sizeof (T) * n);
519 #endif
520 for ( ; n; ++dst, --n)
521 ::new (static_cast<void*>(dst)) T ();
522 }
523
524 /* Copy-construct N elements in DST from *SRC. */
525
526 template <typename T>
527 inline void
528 vec_copy_construct (T *dst, const T *src, unsigned n)
529 {
530 for ( ; n; ++dst, ++src, --n)
531 ::new (static_cast<void*>(dst)) T (*src);
532 }
533
534 /* Type to provide NULL values for vec<T, A, L>. This is used to
535 provide nil initializers for vec instances. Since vec must be
536 a POD, we cannot have proper ctor/dtor for it. To initialize
537 a vec instance, you can assign it the value vNULL. This isn't
538 needed for file-scope and function-local static vectors, which
539 are zero-initialized by default. */
540 struct vnull
541 {
542 template <typename T, typename A, typename L>
543 CONSTEXPR operator vec<T, A, L> () { return vec<T, A, L>(); }
544 };
545 extern vnull vNULL;
546
547
548 /* Embeddable vector. These vectors are suitable to be embedded
549 in other data structures so that they can be pre-allocated in a
550 contiguous memory block.
551
552 Embeddable vectors are implemented using the trailing array idiom,
553 thus they are not resizeable without changing the address of the
554 vector object itself. This means you cannot have variables or
555 fields of embeddable vector type -- always use a pointer to a
556 vector. The one exception is the final field of a structure, which
557 could be a vector type.
558
559 You will have to use the embedded_size & embedded_init calls to
560 create such objects, and they will not be resizeable (so the 'safe'
561 allocation variants are not available).
562
563 Properties:
564
565 - The whole vector and control data are allocated in a single
566 contiguous block. It uses the trailing-vector idiom, so
567 allocation must reserve enough space for all the elements
568 in the vector plus its control data.
569 - The vector cannot be re-allocated.
570 - The vector cannot grow nor shrink.
571 - No indirections needed for access/manipulation.
572 - It requires 2 words of storage (prior to vector allocation). */
573
574 template<typename T, typename A>
575 struct GTY((user)) vec<T, A, vl_embed>
576 {
577 public:
578 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
579 unsigned length (void) const { return m_vecpfx.m_num; }
580 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
581 T *address (void) { return m_vecdata; }
582 const T *address (void) const { return m_vecdata; }
583 T *begin () { return address (); }
584 const T *begin () const { return address (); }
585 T *end () { return address () + length (); }
586 const T *end () const { return address () + length (); }
587 const T &operator[] (unsigned) const;
588 T &operator[] (unsigned);
589 T &last (void);
590 bool space (unsigned) const;
591 bool iterate (unsigned, T *) const;
592 bool iterate (unsigned, T **) const;
593 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
594 void splice (const vec &);
595 void splice (const vec *src);
596 T *quick_push (const T &);
597 T &pop (void);
598 void truncate (unsigned);
599 void quick_insert (unsigned, const T &);
600 void ordered_remove (unsigned);
601 void unordered_remove (unsigned);
602 void block_remove (unsigned, unsigned);
603 void qsort (int (*) (const void *, const void *));
604 void sort (int (*) (const void *, const void *, void *), void *);
605 T *bsearch (const void *key, int (*compar)(const void *, const void *));
606 T *bsearch (const void *key,
607 int (*compar)(const void *, const void *, void *), void *);
608 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
609 bool contains (const T &search) const;
610 static size_t embedded_size (unsigned);
611 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
612 void quick_grow (unsigned len);
613 void quick_grow_cleared (unsigned len);
614
615 /* vec class can access our internal data and functions. */
616 template <typename, typename, typename> friend struct vec;
617
618 /* The allocator types also need access to our internals. */
619 friend struct va_gc;
620 friend struct va_gc_atomic;
621 friend struct va_heap;
622
623 /* FIXME - These fields should be private, but we need to cater to
624 compilers that have stricter notions of PODness for types. */
625 vec_prefix m_vecpfx;
626 T m_vecdata[1];
627 };
628
629
630 /* Convenience wrapper functions to use when dealing with pointers to
631 embedded vectors. Some functionality for these vectors must be
632 provided via free functions for these reasons:
633
634 1- The pointer may be NULL (e.g., before initial allocation).
635
636 2- When the vector needs to grow, it must be reallocated, so
637 the pointer will change its value.
638
639 Because of limitations with the current GC machinery, all vectors
640 in GC memory *must* be pointers. */
641
642
643 /* If V contains no room for NELEMS elements, return false. Otherwise,
644 return true. */
645 template<typename T, typename A>
646 inline bool
647 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
648 {
649 return v ? v->space (nelems) : nelems == 0;
650 }
651
652
653 /* If V is NULL, return 0. Otherwise, return V->length(). */
654 template<typename T, typename A>
655 inline unsigned
656 vec_safe_length (const vec<T, A, vl_embed> *v)
657 {
658 return v ? v->length () : 0;
659 }
660
661
662 /* If V is NULL, return NULL. Otherwise, return V->address(). */
663 template<typename T, typename A>
664 inline T *
665 vec_safe_address (vec<T, A, vl_embed> *v)
666 {
667 return v ? v->address () : NULL;
668 }
669
670
671 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
672 template<typename T, typename A>
673 inline bool
674 vec_safe_is_empty (vec<T, A, vl_embed> *v)
675 {
676 return v ? v->is_empty () : true;
677 }
678
679 /* If V does not have space for NELEMS elements, call
680 V->reserve(NELEMS, EXACT). */
681 template<typename T, typename A>
682 inline bool
683 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
684 CXX_MEM_STAT_INFO)
685 {
686 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
687 if (extend)
688 A::reserve (v, nelems, exact PASS_MEM_STAT);
689 return extend;
690 }
691
692 template<typename T, typename A>
693 inline bool
694 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
695 CXX_MEM_STAT_INFO)
696 {
697 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
698 }
699
700
701 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
702 is 0, V is initialized to NULL. */
703
704 template<typename T, typename A>
705 inline void
706 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
707 {
708 v = NULL;
709 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
710 }
711
712
713 /* Free the GC memory allocated by vector V and set it to NULL. */
714
715 template<typename T, typename A>
716 inline void
717 vec_free (vec<T, A, vl_embed> *&v)
718 {
719 A::release (v);
720 }
721
722
723 /* Grow V to length LEN. Allocate it, if necessary. */
724 template<typename T, typename A>
725 inline void
726 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len,
727 bool exact CXX_MEM_STAT_INFO)
728 {
729 unsigned oldlen = vec_safe_length (v);
730 gcc_checking_assert (len >= oldlen);
731 vec_safe_reserve (v, len - oldlen, exact PASS_MEM_STAT);
732 v->quick_grow (len);
733 }
734
735
736 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
737 template<typename T, typename A>
738 inline void
739 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len,
740 bool exact CXX_MEM_STAT_INFO)
741 {
742 unsigned oldlen = vec_safe_length (v);
743 vec_safe_grow (v, len, exact PASS_MEM_STAT);
744 vec_default_construct (v->address () + oldlen, len - oldlen);
745 }
746
747
748 /* Assume V is not NULL. */
749
750 template<typename T>
751 inline void
752 vec_safe_grow_cleared (vec<T, va_heap, vl_ptr> *&v,
753 unsigned len, bool exact CXX_MEM_STAT_INFO)
754 {
755 v->safe_grow_cleared (len, exact PASS_MEM_STAT);
756 }
757
758 /* If V does not have space for NELEMS elements, call
759 V->reserve(NELEMS, EXACT). */
760
761 template<typename T>
762 inline bool
763 vec_safe_reserve (vec<T, va_heap, vl_ptr> *&v, unsigned nelems, bool exact = false
764 CXX_MEM_STAT_INFO)
765 {
766 return v->reserve (nelems, exact);
767 }
768
769
770 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
771 template<typename T, typename A>
772 inline bool
773 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
774 {
775 if (v)
776 return v->iterate (ix, ptr);
777 else
778 {
779 *ptr = 0;
780 return false;
781 }
782 }
783
784 template<typename T, typename A>
785 inline bool
786 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
787 {
788 if (v)
789 return v->iterate (ix, ptr);
790 else
791 {
792 *ptr = 0;
793 return false;
794 }
795 }
796
797
798 /* If V has no room for one more element, reallocate it. Then call
799 V->quick_push(OBJ). */
800 template<typename T, typename A>
801 inline T *
802 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
803 {
804 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
805 return v->quick_push (obj);
806 }
807
808
809 /* if V has no room for one more element, reallocate it. Then call
810 V->quick_insert(IX, OBJ). */
811 template<typename T, typename A>
812 inline void
813 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
814 CXX_MEM_STAT_INFO)
815 {
816 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
817 v->quick_insert (ix, obj);
818 }
819
820
821 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
822 template<typename T, typename A>
823 inline void
824 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
825 {
826 if (v)
827 v->truncate (size);
828 }
829
830
831 /* If SRC is not NULL, return a pointer to a copy of it. */
832 template<typename T, typename A>
833 inline vec<T, A, vl_embed> *
834 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
835 {
836 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
837 }
838
839 /* Copy the elements from SRC to the end of DST as if by memcpy.
840 Reallocate DST, if necessary. */
841 template<typename T, typename A>
842 inline void
843 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
844 CXX_MEM_STAT_INFO)
845 {
846 unsigned src_len = vec_safe_length (src);
847 if (src_len)
848 {
849 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
850 PASS_MEM_STAT);
851 dst->splice (*src);
852 }
853 }
854
855 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
856 size of the vector and so should be used with care. */
857
858 template<typename T, typename A>
859 inline bool
860 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
861 {
862 return v ? v->contains (search) : false;
863 }
864
865 /* Index into vector. Return the IX'th element. IX must be in the
866 domain of the vector. */
867
868 template<typename T, typename A>
869 inline const T &
870 vec<T, A, vl_embed>::operator[] (unsigned ix) const
871 {
872 gcc_checking_assert (ix < m_vecpfx.m_num);
873 return m_vecdata[ix];
874 }
875
876 template<typename T, typename A>
877 inline T &
878 vec<T, A, vl_embed>::operator[] (unsigned ix)
879 {
880 gcc_checking_assert (ix < m_vecpfx.m_num);
881 return m_vecdata[ix];
882 }
883
884
885 /* Get the final element of the vector, which must not be empty. */
886
887 template<typename T, typename A>
888 inline T &
889 vec<T, A, vl_embed>::last (void)
890 {
891 gcc_checking_assert (m_vecpfx.m_num > 0);
892 return (*this)[m_vecpfx.m_num - 1];
893 }
894
895
896 /* If this vector has space for NELEMS additional entries, return
897 true. You usually only need to use this if you are doing your
898 own vector reallocation, for instance on an embedded vector. This
899 returns true in exactly the same circumstances that vec::reserve
900 will. */
901
902 template<typename T, typename A>
903 inline bool
904 vec<T, A, vl_embed>::space (unsigned nelems) const
905 {
906 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
907 }
908
909
910 /* Return iteration condition and update PTR to point to the IX'th
911 element of this vector. Use this to iterate over the elements of a
912 vector as follows,
913
914 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
915 continue; */
916
917 template<typename T, typename A>
918 inline bool
919 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
920 {
921 if (ix < m_vecpfx.m_num)
922 {
923 *ptr = m_vecdata[ix];
924 return true;
925 }
926 else
927 {
928 *ptr = 0;
929 return false;
930 }
931 }
932
933
934 /* Return iteration condition and update *PTR to point to the
935 IX'th element of this vector. Use this to iterate over the
936 elements of a vector as follows,
937
938 for (ix = 0; v->iterate (ix, &ptr); ix++)
939 continue;
940
941 This variant is for vectors of objects. */
942
943 template<typename T, typename A>
944 inline bool
945 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
946 {
947 if (ix < m_vecpfx.m_num)
948 {
949 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
950 return true;
951 }
952 else
953 {
954 *ptr = 0;
955 return false;
956 }
957 }
958
959
960 /* Return a pointer to a copy of this vector. */
961
962 template<typename T, typename A>
963 inline vec<T, A, vl_embed> *
964 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
965 {
966 vec<T, A, vl_embed> *new_vec = NULL;
967 unsigned len = length ();
968 if (len)
969 {
970 vec_alloc (new_vec, len PASS_MEM_STAT);
971 new_vec->embedded_init (len, len);
972 vec_copy_construct (new_vec->address (), m_vecdata, len);
973 }
974 return new_vec;
975 }
976
977
978 /* Copy the elements from SRC to the end of this vector as if by memcpy.
979 The vector must have sufficient headroom available. */
980
981 template<typename T, typename A>
982 inline void
983 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
984 {
985 unsigned len = src.length ();
986 if (len)
987 {
988 gcc_checking_assert (space (len));
989 vec_copy_construct (end (), src.address (), len);
990 m_vecpfx.m_num += len;
991 }
992 }
993
994 template<typename T, typename A>
995 inline void
996 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
997 {
998 if (src)
999 splice (*src);
1000 }
1001
1002
1003 /* Push OBJ (a new element) onto the end of the vector. There must be
1004 sufficient space in the vector. Return a pointer to the slot
1005 where OBJ was inserted. */
1006
1007 template<typename T, typename A>
1008 inline T *
1009 vec<T, A, vl_embed>::quick_push (const T &obj)
1010 {
1011 gcc_checking_assert (space (1));
1012 T *slot = &m_vecdata[m_vecpfx.m_num++];
1013 *slot = obj;
1014 return slot;
1015 }
1016
1017
1018 /* Pop and return the last element off the end of the vector. */
1019
1020 template<typename T, typename A>
1021 inline T &
1022 vec<T, A, vl_embed>::pop (void)
1023 {
1024 gcc_checking_assert (length () > 0);
1025 return m_vecdata[--m_vecpfx.m_num];
1026 }
1027
1028
1029 /* Set the length of the vector to SIZE. The new length must be less
1030 than or equal to the current length. This is an O(1) operation. */
1031
1032 template<typename T, typename A>
1033 inline void
1034 vec<T, A, vl_embed>::truncate (unsigned size)
1035 {
1036 gcc_checking_assert (length () >= size);
1037 m_vecpfx.m_num = size;
1038 }
1039
1040
1041 /* Insert an element, OBJ, at the IXth position of this vector. There
1042 must be sufficient space. */
1043
1044 template<typename T, typename A>
1045 inline void
1046 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
1047 {
1048 gcc_checking_assert (length () < allocated ());
1049 gcc_checking_assert (ix <= length ());
1050 T *slot = &m_vecdata[ix];
1051 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
1052 *slot = obj;
1053 }
1054
1055
1056 /* Remove an element from the IXth position of this vector. Ordering of
1057 remaining elements is preserved. This is an O(N) operation due to
1058 memmove. */
1059
1060 template<typename T, typename A>
1061 inline void
1062 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
1063 {
1064 gcc_checking_assert (ix < length ());
1065 T *slot = &m_vecdata[ix];
1066 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
1067 }
1068
1069
1070 /* Remove elements in [START, END) from VEC for which COND holds. Ordering of
1071 remaining elements is preserved. This is an O(N) operation. */
1072
1073 #define VEC_ORDERED_REMOVE_IF_FROM_TO(vec, read_index, write_index, \
1074 elem_ptr, start, end, cond) \
1075 { \
1076 gcc_assert ((end) <= (vec).length ()); \
1077 for (read_index = write_index = (start); read_index < (end); \
1078 ++read_index) \
1079 { \
1080 elem_ptr = &(vec)[read_index]; \
1081 bool remove_p = (cond); \
1082 if (remove_p) \
1083 continue; \
1084 \
1085 if (read_index != write_index) \
1086 (vec)[write_index] = (vec)[read_index]; \
1087 \
1088 write_index++; \
1089 } \
1090 \
1091 if (read_index - write_index > 0) \
1092 (vec).block_remove (write_index, read_index - write_index); \
1093 }
1094
1095
1096 /* Remove elements from VEC for which COND holds. Ordering of remaining
1097 elements is preserved. This is an O(N) operation. */
1098
1099 #define VEC_ORDERED_REMOVE_IF(vec, read_index, write_index, elem_ptr, \
1100 cond) \
1101 VEC_ORDERED_REMOVE_IF_FROM_TO ((vec), read_index, write_index, \
1102 elem_ptr, 0, (vec).length (), (cond))
1103
1104 /* Remove an element from the IXth position of this vector. Ordering of
1105 remaining elements is destroyed. This is an O(1) operation. */
1106
1107 template<typename T, typename A>
1108 inline void
1109 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
1110 {
1111 gcc_checking_assert (ix < length ());
1112 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
1113 }
1114
1115
1116 /* Remove LEN elements starting at the IXth. Ordering is retained.
1117 This is an O(N) operation due to memmove. */
1118
1119 template<typename T, typename A>
1120 inline void
1121 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
1122 {
1123 gcc_checking_assert (ix + len <= length ());
1124 T *slot = &m_vecdata[ix];
1125 m_vecpfx.m_num -= len;
1126 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
1127 }
1128
1129
1130 /* Sort the contents of this vector with qsort. CMP is the comparison
1131 function to pass to qsort. */
1132
1133 template<typename T, typename A>
1134 inline void
1135 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
1136 {
1137 if (length () > 1)
1138 gcc_qsort (address (), length (), sizeof (T), cmp);
1139 }
1140
1141 /* Sort the contents of this vector with qsort. CMP is the comparison
1142 function to pass to qsort. */
1143
1144 template<typename T, typename A>
1145 inline void
1146 vec<T, A, vl_embed>::sort (int (*cmp) (const void *, const void *, void *),
1147 void *data)
1148 {
1149 if (length () > 1)
1150 gcc_sort_r (address (), length (), sizeof (T), cmp, data);
1151 }
1152
1153
1154 /* Search the contents of the sorted vector with a binary search.
1155 CMP is the comparison function to pass to bsearch. */
1156
1157 template<typename T, typename A>
1158 inline T *
1159 vec<T, A, vl_embed>::bsearch (const void *key,
1160 int (*compar) (const void *, const void *))
1161 {
1162 const void *base = this->address ();
1163 size_t nmemb = this->length ();
1164 size_t size = sizeof (T);
1165 /* The following is a copy of glibc stdlib-bsearch.h. */
1166 size_t l, u, idx;
1167 const void *p;
1168 int comparison;
1169
1170 l = 0;
1171 u = nmemb;
1172 while (l < u)
1173 {
1174 idx = (l + u) / 2;
1175 p = (const void *) (((const char *) base) + (idx * size));
1176 comparison = (*compar) (key, p);
1177 if (comparison < 0)
1178 u = idx;
1179 else if (comparison > 0)
1180 l = idx + 1;
1181 else
1182 return (T *)const_cast<void *>(p);
1183 }
1184
1185 return NULL;
1186 }
1187
1188 /* Search the contents of the sorted vector with a binary search.
1189 CMP is the comparison function to pass to bsearch. */
1190
1191 template<typename T, typename A>
1192 inline T *
1193 vec<T, A, vl_embed>::bsearch (const void *key,
1194 int (*compar) (const void *, const void *,
1195 void *), void *data)
1196 {
1197 const void *base = this->address ();
1198 size_t nmemb = this->length ();
1199 size_t size = sizeof (T);
1200 /* The following is a copy of glibc stdlib-bsearch.h. */
1201 size_t l, u, idx;
1202 const void *p;
1203 int comparison;
1204
1205 l = 0;
1206 u = nmemb;
1207 while (l < u)
1208 {
1209 idx = (l + u) / 2;
1210 p = (const void *) (((const char *) base) + (idx * size));
1211 comparison = (*compar) (key, p, data);
1212 if (comparison < 0)
1213 u = idx;
1214 else if (comparison > 0)
1215 l = idx + 1;
1216 else
1217 return (T *)const_cast<void *>(p);
1218 }
1219
1220 return NULL;
1221 }
1222
1223 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1224 size of the vector and so should be used with care. */
1225
1226 template<typename T, typename A>
1227 inline bool
1228 vec<T, A, vl_embed>::contains (const T &search) const
1229 {
1230 unsigned int len = length ();
1231 for (unsigned int i = 0; i < len; i++)
1232 if ((*this)[i] == search)
1233 return true;
1234
1235 return false;
1236 }
1237
1238 /* Find and return the first position in which OBJ could be inserted
1239 without changing the ordering of this vector. LESSTHAN is a
1240 function that returns true if the first argument is strictly less
1241 than the second. */
1242
1243 template<typename T, typename A>
1244 unsigned
1245 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1246 const
1247 {
1248 unsigned int len = length ();
1249 unsigned int half, middle;
1250 unsigned int first = 0;
1251 while (len > 0)
1252 {
1253 half = len / 2;
1254 middle = first;
1255 middle += half;
1256 T middle_elem = (*this)[middle];
1257 if (lessthan (middle_elem, obj))
1258 {
1259 first = middle;
1260 ++first;
1261 len = len - half - 1;
1262 }
1263 else
1264 len = half;
1265 }
1266 return first;
1267 }
1268
1269
1270 /* Return the number of bytes needed to embed an instance of an
1271 embeddable vec inside another data structure.
1272
1273 Use these methods to determine the required size and initialization
1274 of a vector V of type T embedded within another structure (as the
1275 final member):
1276
1277 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1278 void v->embedded_init (unsigned alloc, unsigned num);
1279
1280 These allow the caller to perform the memory allocation. */
1281
1282 template<typename T, typename A>
1283 inline size_t
1284 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1285 {
1286 struct alignas (T) U { char data[sizeof (T)]; };
1287 typedef vec<U, A, vl_embed> vec_embedded;
1288 typedef typename std::conditional<std::is_standard_layout<T>::value,
1289 vec, vec_embedded>::type vec_stdlayout;
1290 static_assert (sizeof (vec_stdlayout) == sizeof (vec), "");
1291 static_assert (alignof (vec_stdlayout) == alignof (vec), "");
1292 return offsetof (vec_stdlayout, m_vecdata) + alloc * sizeof (T);
1293 }
1294
1295
1296 /* Initialize the vector to contain room for ALLOC elements and
1297 NUM active elements. */
1298
1299 template<typename T, typename A>
1300 inline void
1301 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1302 {
1303 m_vecpfx.m_alloc = alloc;
1304 m_vecpfx.m_using_auto_storage = aut;
1305 m_vecpfx.m_num = num;
1306 }
1307
1308
1309 /* Grow the vector to a specific length. LEN must be as long or longer than
1310 the current length. The new elements are uninitialized. */
1311
1312 template<typename T, typename A>
1313 inline void
1314 vec<T, A, vl_embed>::quick_grow (unsigned len)
1315 {
1316 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1317 m_vecpfx.m_num = len;
1318 }
1319
1320
1321 /* Grow the vector to a specific length. LEN must be as long or longer than
1322 the current length. The new elements are initialized to zero. */
1323
1324 template<typename T, typename A>
1325 inline void
1326 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1327 {
1328 unsigned oldlen = length ();
1329 size_t growby = len - oldlen;
1330 quick_grow (len);
1331 if (growby != 0)
1332 vec_default_construct (address () + oldlen, growby);
1333 }
1334
1335 /* Garbage collection support for vec<T, A, vl_embed>. */
1336
1337 template<typename T>
1338 void
1339 gt_ggc_mx (vec<T, va_gc> *v)
1340 {
1341 extern void gt_ggc_mx (T &);
1342 for (unsigned i = 0; i < v->length (); i++)
1343 gt_ggc_mx ((*v)[i]);
1344 }
1345
1346 template<typename T>
1347 void
1348 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1349 {
1350 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1351 be traversed. */
1352 }
1353
1354
1355 /* PCH support for vec<T, A, vl_embed>. */
1356
1357 template<typename T, typename A>
1358 void
1359 gt_pch_nx (vec<T, A, vl_embed> *v)
1360 {
1361 extern void gt_pch_nx (T &);
1362 for (unsigned i = 0; i < v->length (); i++)
1363 gt_pch_nx ((*v)[i]);
1364 }
1365
1366 template<typename T, typename A>
1367 void
1368 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1369 {
1370 for (unsigned i = 0; i < v->length (); i++)
1371 op (&((*v)[i]), cookie);
1372 }
1373
1374 template<typename T, typename A>
1375 void
1376 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1377 {
1378 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1379 for (unsigned i = 0; i < v->length (); i++)
1380 gt_pch_nx (&((*v)[i]), op, cookie);
1381 }
1382
1383
1384 /* Space efficient vector. These vectors can grow dynamically and are
1385 allocated together with their control data. They are suited to be
1386 included in data structures. Prior to initial allocation, they
1387 only take a single word of storage.
1388
1389 These vectors are implemented as a pointer to an embeddable vector.
1390 The semantics allow for this pointer to be NULL to represent empty
1391 vectors. This way, empty vectors occupy minimal space in the
1392 structure containing them.
1393
1394 Properties:
1395
1396 - The whole vector and control data are allocated in a single
1397 contiguous block.
1398 - The whole vector may be re-allocated.
1399 - Vector data may grow and shrink.
1400 - Access and manipulation requires a pointer test and
1401 indirection.
1402 - It requires 1 word of storage (prior to vector allocation).
1403
1404
1405 Limitations:
1406
1407 These vectors must be PODs because they are stored in unions.
1408 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1409 As long as we use C++03, we cannot have constructors nor
1410 destructors in classes that are stored in unions. */
1411
1412 template<typename T>
1413 struct vec<T, va_heap, vl_ptr>
1414 {
1415 public:
1416 /* Memory allocation and deallocation for the embedded vector.
1417 Needed because we cannot have proper ctors/dtors defined. */
1418 void create (unsigned nelems CXX_MEM_STAT_INFO);
1419 void release (void);
1420
1421 /* Vector operations. */
1422 bool exists (void) const
1423 { return m_vec != NULL; }
1424
1425 bool is_empty (void) const
1426 { return m_vec ? m_vec->is_empty () : true; }
1427
1428 unsigned length (void) const
1429 { return m_vec ? m_vec->length () : 0; }
1430
1431 T *address (void)
1432 { return m_vec ? m_vec->m_vecdata : NULL; }
1433
1434 const T *address (void) const
1435 { return m_vec ? m_vec->m_vecdata : NULL; }
1436
1437 T *begin () { return address (); }
1438 const T *begin () const { return address (); }
1439 T *end () { return begin () + length (); }
1440 const T *end () const { return begin () + length (); }
1441 const T &operator[] (unsigned ix) const
1442 { return (*m_vec)[ix]; }
1443
1444 bool operator!=(const vec &other) const
1445 { return !(*this == other); }
1446
1447 bool operator==(const vec &other) const
1448 { return address () == other.address (); }
1449
1450 T &operator[] (unsigned ix)
1451 { return (*m_vec)[ix]; }
1452
1453 T &last (void)
1454 { return m_vec->last (); }
1455
1456 bool space (int nelems) const
1457 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1458
1459 bool iterate (unsigned ix, T *p) const;
1460 bool iterate (unsigned ix, T **p) const;
1461 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1462 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1463 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1464 void splice (const vec &);
1465 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1466 T *quick_push (const T &);
1467 T *safe_push (const T &CXX_MEM_STAT_INFO);
1468 T &pop (void);
1469 void truncate (unsigned);
1470 void safe_grow (unsigned, bool CXX_MEM_STAT_INFO);
1471 void safe_grow_cleared (unsigned, bool CXX_MEM_STAT_INFO);
1472 void quick_grow (unsigned);
1473 void quick_grow_cleared (unsigned);
1474 void quick_insert (unsigned, const T &);
1475 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1476 void ordered_remove (unsigned);
1477 void unordered_remove (unsigned);
1478 void block_remove (unsigned, unsigned);
1479 void qsort (int (*) (const void *, const void *));
1480 void sort (int (*) (const void *, const void *, void *), void *);
1481 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1482 T *bsearch (const void *key,
1483 int (*compar)(const void *, const void *, void *), void *);
1484 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1485 bool contains (const T &search) const;
1486 void reverse (void);
1487
1488 bool using_auto_storage () const;
1489
1490 /* FIXME - This field should be private, but we need to cater to
1491 compilers that have stricter notions of PODness for types. */
1492 vec<T, va_heap, vl_embed> *m_vec;
1493 };
1494
1495
1496 /* auto_vec is a subclass of vec that automatically manages creating and
1497 releasing the internal vector. If N is non zero then it has N elements of
1498 internal storage. The default is no internal storage, and you probably only
1499 want to ask for internal storage for vectors on the stack because if the
1500 size of the vector is larger than the internal storage that space is wasted.
1501 */
1502 template<typename T, size_t N = 0>
1503 class auto_vec : public vec<T, va_heap>
1504 {
1505 public:
1506 auto_vec ()
1507 {
1508 m_auto.embedded_init (MAX (N, 2), 0, 1);
1509 this->m_vec = &m_auto;
1510 }
1511
1512 auto_vec (size_t s)
1513 {
1514 if (s > N)
1515 {
1516 this->create (s);
1517 return;
1518 }
1519
1520 m_auto.embedded_init (MAX (N, 2), 0, 1);
1521 this->m_vec = &m_auto;
1522 }
1523
1524 ~auto_vec ()
1525 {
1526 this->release ();
1527 }
1528
1529 private:
1530 vec<T, va_heap, vl_embed> m_auto;
1531 T m_data[MAX (N - 1, 1)];
1532 };
1533
1534 /* auto_vec is a sub class of vec whose storage is released when it is
1535 destroyed. */
1536 template<typename T>
1537 class auto_vec<T, 0> : public vec<T, va_heap>
1538 {
1539 public:
1540 auto_vec () { this->m_vec = NULL; }
1541 auto_vec (size_t n) { this->create (n); }
1542 ~auto_vec () { this->release (); }
1543 };
1544
1545
1546 /* Allocate heap memory for pointer V and create the internal vector
1547 with space for NELEMS elements. If NELEMS is 0, the internal
1548 vector is initialized to empty. */
1549
1550 template<typename T>
1551 inline void
1552 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1553 {
1554 v = new vec<T>;
1555 v->create (nelems PASS_MEM_STAT);
1556 }
1557
1558
1559 /* A subclass of auto_vec <char *> that frees all of its elements on
1560 deletion. */
1561
1562 class auto_string_vec : public auto_vec <char *>
1563 {
1564 public:
1565 ~auto_string_vec ();
1566 };
1567
1568 /* A subclass of auto_vec <T *> that deletes all of its elements on
1569 destruction.
1570
1571 This is a crude way for a vec to "own" the objects it points to
1572 and clean up automatically.
1573
1574 For example, no attempt is made to delete elements when an item
1575 within the vec is overwritten.
1576
1577 We can't rely on gnu::unique_ptr within a container,
1578 since we can't rely on move semantics in C++98. */
1579
1580 template <typename T>
1581 class auto_delete_vec : public auto_vec <T *>
1582 {
1583 public:
1584 auto_delete_vec () {}
1585 auto_delete_vec (size_t s) : auto_vec <T *> (s) {}
1586
1587 ~auto_delete_vec ();
1588
1589 private:
1590 DISABLE_COPY_AND_ASSIGN(auto_delete_vec<T>);
1591 };
1592
1593 /* Conditionally allocate heap memory for VEC and its internal vector. */
1594
1595 template<typename T>
1596 inline void
1597 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1598 {
1599 if (!vec)
1600 vec_alloc (vec, nelems PASS_MEM_STAT);
1601 }
1602
1603
1604 /* Free the heap memory allocated by vector V and set it to NULL. */
1605
1606 template<typename T>
1607 inline void
1608 vec_free (vec<T> *&v)
1609 {
1610 if (v == NULL)
1611 return;
1612
1613 v->release ();
1614 delete v;
1615 v = NULL;
1616 }
1617
1618
1619 /* Return iteration condition and update PTR to point to the IX'th
1620 element of this vector. Use this to iterate over the elements of a
1621 vector as follows,
1622
1623 for (ix = 0; v.iterate (ix, &ptr); ix++)
1624 continue; */
1625
1626 template<typename T>
1627 inline bool
1628 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1629 {
1630 if (m_vec)
1631 return m_vec->iterate (ix, ptr);
1632 else
1633 {
1634 *ptr = 0;
1635 return false;
1636 }
1637 }
1638
1639
1640 /* Return iteration condition and update *PTR to point to the
1641 IX'th element of this vector. Use this to iterate over the
1642 elements of a vector as follows,
1643
1644 for (ix = 0; v->iterate (ix, &ptr); ix++)
1645 continue;
1646
1647 This variant is for vectors of objects. */
1648
1649 template<typename T>
1650 inline bool
1651 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1652 {
1653 if (m_vec)
1654 return m_vec->iterate (ix, ptr);
1655 else
1656 {
1657 *ptr = 0;
1658 return false;
1659 }
1660 }
1661
1662
1663 /* Convenience macro for forward iteration. */
1664 #define FOR_EACH_VEC_ELT(V, I, P) \
1665 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1666
1667 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1668 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1669
1670 /* Likewise, but start from FROM rather than 0. */
1671 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1672 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1673
1674 /* Convenience macro for reverse iteration. */
1675 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1676 for (I = (V).length () - 1; \
1677 (V).iterate ((I), &(P)); \
1678 (I)--)
1679
1680 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1681 for (I = vec_safe_length (V) - 1; \
1682 vec_safe_iterate ((V), (I), &(P)); \
1683 (I)--)
1684
1685 /* auto_string_vec's dtor, freeing all contained strings, automatically
1686 chaining up to ~auto_vec <char *>, which frees the internal buffer. */
1687
1688 inline
1689 auto_string_vec::~auto_string_vec ()
1690 {
1691 int i;
1692 char *str;
1693 FOR_EACH_VEC_ELT (*this, i, str)
1694 free (str);
1695 }
1696
1697 /* auto_delete_vec's dtor, deleting all contained items, automatically
1698 chaining up to ~auto_vec <T*>, which frees the internal buffer. */
1699
1700 template <typename T>
1701 inline
1702 auto_delete_vec<T>::~auto_delete_vec ()
1703 {
1704 int i;
1705 T *item;
1706 FOR_EACH_VEC_ELT (*this, i, item)
1707 delete item;
1708 }
1709
1710
1711 /* Return a copy of this vector. */
1712
1713 template<typename T>
1714 inline vec<T, va_heap, vl_ptr>
1715 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1716 {
1717 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1718 if (length ())
1719 new_vec.m_vec = m_vec->copy ();
1720 return new_vec;
1721 }
1722
1723
1724 /* Ensure that the vector has at least RESERVE slots available (if
1725 EXACT is false), or exactly RESERVE slots available (if EXACT is
1726 true).
1727
1728 This may create additional headroom if EXACT is false.
1729
1730 Note that this can cause the embedded vector to be reallocated.
1731 Returns true iff reallocation actually occurred. */
1732
1733 template<typename T>
1734 inline bool
1735 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1736 {
1737 if (space (nelems))
1738 return false;
1739
1740 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1741 this is necessary because it doesn't have enough information to know the
1742 embedded vector is in auto storage, and so should not be freed. */
1743 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1744 unsigned int oldsize = 0;
1745 bool handle_auto_vec = m_vec && using_auto_storage ();
1746 if (handle_auto_vec)
1747 {
1748 m_vec = NULL;
1749 oldsize = oldvec->length ();
1750 nelems += oldsize;
1751 }
1752
1753 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1754 if (handle_auto_vec)
1755 {
1756 vec_copy_construct (m_vec->address (), oldvec->address (), oldsize);
1757 m_vec->m_vecpfx.m_num = oldsize;
1758 }
1759
1760 return true;
1761 }
1762
1763
1764 /* Ensure that this vector has exactly NELEMS slots available. This
1765 will not create additional headroom. Note this can cause the
1766 embedded vector to be reallocated. Returns true iff reallocation
1767 actually occurred. */
1768
1769 template<typename T>
1770 inline bool
1771 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1772 {
1773 return reserve (nelems, true PASS_MEM_STAT);
1774 }
1775
1776
1777 /* Create the internal vector and reserve NELEMS for it. This is
1778 exactly like vec::reserve, but the internal vector is
1779 unconditionally allocated from scratch. The old one, if it
1780 existed, is lost. */
1781
1782 template<typename T>
1783 inline void
1784 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1785 {
1786 m_vec = NULL;
1787 if (nelems > 0)
1788 reserve_exact (nelems PASS_MEM_STAT);
1789 }
1790
1791
1792 /* Free the memory occupied by the embedded vector. */
1793
1794 template<typename T>
1795 inline void
1796 vec<T, va_heap, vl_ptr>::release (void)
1797 {
1798 if (!m_vec)
1799 return;
1800
1801 if (using_auto_storage ())
1802 {
1803 m_vec->m_vecpfx.m_num = 0;
1804 return;
1805 }
1806
1807 va_heap::release (m_vec);
1808 }
1809
1810 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1811 SRC and this vector must be allocated with the same memory
1812 allocation mechanism. This vector is assumed to have sufficient
1813 headroom available. */
1814
1815 template<typename T>
1816 inline void
1817 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1818 {
1819 if (src.length ())
1820 m_vec->splice (*(src.m_vec));
1821 }
1822
1823
1824 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1825 SRC and this vector must be allocated with the same mechanism.
1826 If there is not enough headroom in this vector, it will be reallocated
1827 as needed. */
1828
1829 template<typename T>
1830 inline void
1831 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1832 MEM_STAT_DECL)
1833 {
1834 if (src.length ())
1835 {
1836 reserve_exact (src.length ());
1837 splice (src);
1838 }
1839 }
1840
1841
1842 /* Push OBJ (a new element) onto the end of the vector. There must be
1843 sufficient space in the vector. Return a pointer to the slot
1844 where OBJ was inserted. */
1845
1846 template<typename T>
1847 inline T *
1848 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1849 {
1850 return m_vec->quick_push (obj);
1851 }
1852
1853
1854 /* Push a new element OBJ onto the end of this vector. Reallocates
1855 the embedded vector, if needed. Return a pointer to the slot where
1856 OBJ was inserted. */
1857
1858 template<typename T>
1859 inline T *
1860 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1861 {
1862 reserve (1, false PASS_MEM_STAT);
1863 return quick_push (obj);
1864 }
1865
1866
1867 /* Pop and return the last element off the end of the vector. */
1868
1869 template<typename T>
1870 inline T &
1871 vec<T, va_heap, vl_ptr>::pop (void)
1872 {
1873 return m_vec->pop ();
1874 }
1875
1876
1877 /* Set the length of the vector to LEN. The new length must be less
1878 than or equal to the current length. This is an O(1) operation. */
1879
1880 template<typename T>
1881 inline void
1882 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1883 {
1884 if (m_vec)
1885 m_vec->truncate (size);
1886 else
1887 gcc_checking_assert (size == 0);
1888 }
1889
1890
1891 /* Grow the vector to a specific length. LEN must be as long or
1892 longer than the current length. The new elements are
1893 uninitialized. Reallocate the internal vector, if needed. */
1894
1895 template<typename T>
1896 inline void
1897 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len, bool exact MEM_STAT_DECL)
1898 {
1899 unsigned oldlen = length ();
1900 gcc_checking_assert (oldlen <= len);
1901 reserve (len - oldlen, exact PASS_MEM_STAT);
1902 if (m_vec)
1903 m_vec->quick_grow (len);
1904 else
1905 gcc_checking_assert (len == 0);
1906 }
1907
1908
1909 /* Grow the embedded vector to a specific length. LEN must be as
1910 long or longer than the current length. The new elements are
1911 initialized to zero. Reallocate the internal vector, if needed. */
1912
1913 template<typename T>
1914 inline void
1915 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len, bool exact
1916 MEM_STAT_DECL)
1917 {
1918 unsigned oldlen = length ();
1919 size_t growby = len - oldlen;
1920 safe_grow (len, exact PASS_MEM_STAT);
1921 if (growby != 0)
1922 vec_default_construct (address () + oldlen, growby);
1923 }
1924
1925
1926 /* Same as vec::safe_grow but without reallocation of the internal vector.
1927 If the vector cannot be extended, a runtime assertion will be triggered. */
1928
1929 template<typename T>
1930 inline void
1931 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1932 {
1933 gcc_checking_assert (m_vec);
1934 m_vec->quick_grow (len);
1935 }
1936
1937
1938 /* Same as vec::quick_grow_cleared but without reallocation of the
1939 internal vector. If the vector cannot be extended, a runtime
1940 assertion will be triggered. */
1941
1942 template<typename T>
1943 inline void
1944 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1945 {
1946 gcc_checking_assert (m_vec);
1947 m_vec->quick_grow_cleared (len);
1948 }
1949
1950
1951 /* Insert an element, OBJ, at the IXth position of this vector. There
1952 must be sufficient space. */
1953
1954 template<typename T>
1955 inline void
1956 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1957 {
1958 m_vec->quick_insert (ix, obj);
1959 }
1960
1961
1962 /* Insert an element, OBJ, at the IXth position of the vector.
1963 Reallocate the embedded vector, if necessary. */
1964
1965 template<typename T>
1966 inline void
1967 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1968 {
1969 reserve (1, false PASS_MEM_STAT);
1970 quick_insert (ix, obj);
1971 }
1972
1973
1974 /* Remove an element from the IXth position of this vector. Ordering of
1975 remaining elements is preserved. This is an O(N) operation due to
1976 a memmove. */
1977
1978 template<typename T>
1979 inline void
1980 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1981 {
1982 m_vec->ordered_remove (ix);
1983 }
1984
1985
1986 /* Remove an element from the IXth position of this vector. Ordering
1987 of remaining elements is destroyed. This is an O(1) operation. */
1988
1989 template<typename T>
1990 inline void
1991 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1992 {
1993 m_vec->unordered_remove (ix);
1994 }
1995
1996
1997 /* Remove LEN elements starting at the IXth. Ordering is retained.
1998 This is an O(N) operation due to memmove. */
1999
2000 template<typename T>
2001 inline void
2002 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
2003 {
2004 m_vec->block_remove (ix, len);
2005 }
2006
2007
2008 /* Sort the contents of this vector with qsort. CMP is the comparison
2009 function to pass to qsort. */
2010
2011 template<typename T>
2012 inline void
2013 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
2014 {
2015 if (m_vec)
2016 m_vec->qsort (cmp);
2017 }
2018
2019 /* Sort the contents of this vector with qsort. CMP is the comparison
2020 function to pass to qsort. */
2021
2022 template<typename T>
2023 inline void
2024 vec<T, va_heap, vl_ptr>::sort (int (*cmp) (const void *, const void *,
2025 void *), void *data)
2026 {
2027 if (m_vec)
2028 m_vec->sort (cmp, data);
2029 }
2030
2031
2032 /* Search the contents of the sorted vector with a binary search.
2033 CMP is the comparison function to pass to bsearch. */
2034
2035 template<typename T>
2036 inline T *
2037 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2038 int (*cmp) (const void *, const void *))
2039 {
2040 if (m_vec)
2041 return m_vec->bsearch (key, cmp);
2042 return NULL;
2043 }
2044
2045 /* Search the contents of the sorted vector with a binary search.
2046 CMP is the comparison function to pass to bsearch. */
2047
2048 template<typename T>
2049 inline T *
2050 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
2051 int (*cmp) (const void *, const void *,
2052 void *), void *data)
2053 {
2054 if (m_vec)
2055 return m_vec->bsearch (key, cmp, data);
2056 return NULL;
2057 }
2058
2059
2060 /* Find and return the first position in which OBJ could be inserted
2061 without changing the ordering of this vector. LESSTHAN is a
2062 function that returns true if the first argument is strictly less
2063 than the second. */
2064
2065 template<typename T>
2066 inline unsigned
2067 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
2068 bool (*lessthan)(const T &, const T &))
2069 const
2070 {
2071 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
2072 }
2073
2074 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
2075 size of the vector and so should be used with care. */
2076
2077 template<typename T>
2078 inline bool
2079 vec<T, va_heap, vl_ptr>::contains (const T &search) const
2080 {
2081 return m_vec ? m_vec->contains (search) : false;
2082 }
2083
2084 /* Reverse content of the vector. */
2085
2086 template<typename T>
2087 inline void
2088 vec<T, va_heap, vl_ptr>::reverse (void)
2089 {
2090 unsigned l = length ();
2091 T *ptr = address ();
2092
2093 for (unsigned i = 0; i < l / 2; i++)
2094 std::swap (ptr[i], ptr[l - i - 1]);
2095 }
2096
2097 template<typename T>
2098 inline bool
2099 vec<T, va_heap, vl_ptr>::using_auto_storage () const
2100 {
2101 return m_vec->m_vecpfx.m_using_auto_storage;
2102 }
2103
2104 /* Release VEC and call release of all element vectors. */
2105
2106 template<typename T>
2107 inline void
2108 release_vec_vec (vec<vec<T> > &vec)
2109 {
2110 for (unsigned i = 0; i < vec.length (); i++)
2111 vec[i].release ();
2112
2113 vec.release ();
2114 }
2115
2116 #if (GCC_VERSION >= 3000)
2117 # pragma GCC poison m_vec m_vecpfx m_vecdata
2118 #endif
2119
2120 #endif // GCC_VEC_H