neon-vcond-gt.c: Scan for vbsl or vbit or vbif.
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2013 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* FIXME - When compiling some of the gen* binaries, we cannot enable GC
26 support because the headers generated by gengtype are still not
27 present. In particular, the header file gtype-desc.h is missing,
28 so compilation may fail if we try to include ggc.h.
29
30 Since we use some of those declarations, we need to provide them
31 (even if the GC-based templates are not used). This is not a
32 problem because the code that runs before gengtype is built will
33 never need to use GC vectors. But it does force us to declare
34 these functions more than once. */
35 #ifdef GENERATOR_FILE
36 #define VEC_GC_ENABLED 0
37 #else
38 #define VEC_GC_ENABLED 1
39 #endif // GENERATOR_FILE
40
41 #include "statistics.h" // For CXX_MEM_STAT_INFO.
42
43 #if VEC_GC_ENABLED
44 #include "ggc.h"
45 #else
46 # ifndef GCC_GGC_H
47 /* Even if we think that GC is not enabled, the test that sets it is
48 weak. There are files compiled with -DGENERATOR_FILE that already
49 include ggc.h. We only need to provide these definitions if ggc.h
50 has not been included. Sigh. */
51 extern void ggc_free (void *);
52 extern size_t ggc_round_alloc_size (size_t requested_size);
53 extern void *ggc_realloc_stat (void *, size_t MEM_STAT_DECL);
54 # endif // GCC_GGC_H
55 #endif // VEC_GC_ENABLED
56
57 /* Templated vector type and associated interfaces.
58
59 The interface functions are typesafe and use inline functions,
60 sometimes backed by out-of-line generic functions. The vectors are
61 designed to interoperate with the GTY machinery.
62
63 There are both 'index' and 'iterate' accessors. The index accessor
64 is implemented by operator[]. The iterator returns a boolean
65 iteration condition and updates the iteration variable passed by
66 reference. Because the iterator will be inlined, the address-of
67 can be optimized away.
68
69 Each operation that increases the number of active elements is
70 available in 'quick' and 'safe' variants. The former presumes that
71 there is sufficient allocated space for the operation to succeed
72 (it dies if there is not). The latter will reallocate the
73 vector, if needed. Reallocation causes an exponential increase in
74 vector size. If you know you will be adding N elements, it would
75 be more efficient to use the reserve operation before adding the
76 elements with the 'quick' operation. This will ensure there are at
77 least as many elements as you ask for, it will exponentially
78 increase if there are too few spare slots. If you want reserve a
79 specific number of slots, but do not want the exponential increase
80 (for instance, you know this is the last allocation), use the
81 reserve_exact operation. You can also create a vector of a
82 specific size from the get go.
83
84 You should prefer the push and pop operations, as they append and
85 remove from the end of the vector. If you need to remove several
86 items in one go, use the truncate operation. The insert and remove
87 operations allow you to change elements in the middle of the
88 vector. There are two remove operations, one which preserves the
89 element ordering 'ordered_remove', and one which does not
90 'unordered_remove'. The latter function copies the end element
91 into the removed slot, rather than invoke a memmove operation. The
92 'lower_bound' function will determine where to place an item in the
93 array using insert that will maintain sorted order.
94
95 Vectors are template types with three arguments: the type of the
96 elements in the vector, the allocation strategy, and the physical
97 layout to use
98
99 Four allocation strategies are supported:
100
101 - Heap: allocation is done using malloc/free. This is the
102 default allocation strategy.
103
104 - GC: allocation is done using ggc_alloc/ggc_free.
105
106 - GC atomic: same as GC with the exception that the elements
107 themselves are assumed to be of an atomic type that does
108 not need to be garbage collected. This means that marking
109 routines do not need to traverse the array marking the
110 individual elements. This increases the performance of
111 GC activities.
112
113 Two physical layouts are supported:
114
115 - Embedded: The vector is structured using the trailing array
116 idiom. The last member of the structure is an array of size
117 1. When the vector is initially allocated, a single memory
118 block is created to hold the vector's control data and the
119 array of elements. These vectors cannot grow without
120 reallocation (see discussion on embeddable vectors below).
121
122 - Space efficient: The vector is structured as a pointer to an
123 embedded vector. This is the default layout. It means that
124 vectors occupy a single word of storage before initial
125 allocation. Vectors are allowed to grow (the internal
126 pointer is reallocated but the main vector instance does not
127 need to relocate).
128
129 The type, allocation and layout are specified when the vector is
130 declared.
131
132 If you need to directly manipulate a vector, then the 'address'
133 accessor will return the address of the start of the vector. Also
134 the 'space' predicate will tell you whether there is spare capacity
135 in the vector. You will not normally need to use these two functions.
136
137 Notes on the different layout strategies
138
139 * Embeddable vectors (vec<T, A, vl_embed>)
140
141 These vectors are suitable to be embedded in other data
142 structures so that they can be pre-allocated in a contiguous
143 memory block.
144
145 Embeddable vectors are implemented using the trailing array
146 idiom, thus they are not resizeable without changing the address
147 of the vector object itself. This means you cannot have
148 variables or fields of embeddable vector type -- always use a
149 pointer to a vector. The one exception is the final field of a
150 structure, which could be a vector type.
151
152 You will have to use the embedded_size & embedded_init calls to
153 create such objects, and they will not be resizeable (so the
154 'safe' allocation variants are not available).
155
156 Properties of embeddable vectors:
157
158 - The whole vector and control data are allocated in a single
159 contiguous block. It uses the trailing-vector idiom, so
160 allocation must reserve enough space for all the elements
161 in the vector plus its control data.
162 - The vector cannot be re-allocated.
163 - The vector cannot grow nor shrink.
164 - No indirections needed for access/manipulation.
165 - It requires 2 words of storage (prior to vector allocation).
166
167
168 * Space efficient vector (vec<T, A, vl_ptr>)
169
170 These vectors can grow dynamically and are allocated together
171 with their control data. They are suited to be included in data
172 structures. Prior to initial allocation, they only take a single
173 word of storage.
174
175 These vectors are implemented as a pointer to embeddable vectors.
176 The semantics allow for this pointer to be NULL to represent
177 empty vectors. This way, empty vectors occupy minimal space in
178 the structure containing them.
179
180 Properties:
181
182 - The whole vector and control data are allocated in a single
183 contiguous block.
184 - The whole vector may be re-allocated.
185 - Vector data may grow and shrink.
186 - Access and manipulation requires a pointer test and
187 indirection.
188 - It requires 1 word of storage (prior to vector allocation).
189
190 An example of their use would be,
191
192 struct my_struct {
193 // A space-efficient vector of tree pointers in GC memory.
194 vec<tree, va_gc, vl_ptr> v;
195 };
196
197 struct my_struct *s;
198
199 if (s->v.length ()) { we have some contents }
200 s->v.safe_push (decl); // append some decl onto the end
201 for (ix = 0; s->v.iterate (ix, &elt); ix++)
202 { do something with elt }
203 */
204
205 /* Support function for statistics. */
206 extern void dump_vec_loc_statistics (void);
207
208
209 /* Control data for vectors. This contains the number of allocated
210 and used slots inside a vector. */
211
212 struct vec_prefix
213 {
214 /* FIXME - These fields should be private, but we need to cater to
215 compilers that have stricter notions of PODness for types. */
216
217 /* Memory allocation support routines in vec.c. */
218 void register_overhead (size_t, const char *, int, const char *);
219 void release_overhead (void);
220 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
221
222 /* Note that vec_prefix should be a base class for vec, but we use
223 offsetof() on vector fields of tree structures (e.g.,
224 tree_binfo::base_binfos), and offsetof only supports base types.
225
226 To compensate, we make vec_prefix a field inside vec and make
227 vec a friend class of vec_prefix so it can access its fields. */
228 template <typename, typename, typename> friend struct vec;
229
230 /* The allocator types also need access to our internals. */
231 friend struct va_gc;
232 friend struct va_gc_atomic;
233 friend struct va_heap;
234
235 unsigned m_alloc : 31;
236 unsigned m_has_auto_buf : 1;
237 unsigned m_num;
238 };
239
240 template<typename, typename, typename> struct vec;
241
242 /* Valid vector layouts
243
244 vl_embed - Embeddable vector that uses the trailing array idiom.
245 vl_ptr - Space efficient vector that uses a pointer to an
246 embeddable vector. */
247 struct vl_embed { };
248 struct vl_ptr { };
249
250
251 /* Types of supported allocations
252
253 va_heap - Allocation uses malloc/free.
254 va_gc - Allocation uses ggc_alloc.
255 va_gc_atomic - Same as GC, but individual elements of the array
256 do not need to be marked during collection. */
257
258 /* Allocator type for heap vectors. */
259 struct va_heap
260 {
261 /* Heap vectors are frequently regular instances, so use the vl_ptr
262 layout for them. */
263 typedef vl_ptr default_layout;
264
265 template<typename T>
266 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
267 CXX_MEM_STAT_INFO);
268
269 template<typename T>
270 static void release (vec<T, va_heap, vl_embed> *&);
271 };
272
273
274 /* Allocator for heap memory. Ensure there are at least RESERVE free
275 slots in V. If EXACT is true, grow exactly, else grow
276 exponentially. As a special case, if the vector had not been
277 allocated and and RESERVE is 0, no vector will be created. */
278
279 template<typename T>
280 inline void
281 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
282 MEM_STAT_DECL)
283 {
284 unsigned alloc
285 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
286 if (!alloc)
287 {
288 release (v);
289 return;
290 }
291
292 if (GATHER_STATISTICS && v)
293 v->m_vecpfx.release_overhead ();
294
295 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
296 unsigned nelem = v ? v->length () : 0;
297 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
298 v->embedded_init (alloc, nelem);
299
300 if (GATHER_STATISTICS)
301 v->m_vecpfx.register_overhead (size FINAL_PASS_MEM_STAT);
302 }
303
304
305 /* Free the heap space allocated for vector V. */
306
307 template<typename T>
308 void
309 va_heap::release (vec<T, va_heap, vl_embed> *&v)
310 {
311 if (v == NULL)
312 return;
313
314 if (GATHER_STATISTICS)
315 v->m_vecpfx.release_overhead ();
316 ::free (v);
317 v = NULL;
318 }
319
320
321 /* Allocator type for GC vectors. Notice that we need the structure
322 declaration even if GC is not enabled. */
323
324 struct va_gc
325 {
326 /* Use vl_embed as the default layout for GC vectors. Due to GTY
327 limitations, GC vectors must always be pointers, so it is more
328 efficient to use a pointer to the vl_embed layout, rather than
329 using a pointer to a pointer as would be the case with vl_ptr. */
330 typedef vl_embed default_layout;
331
332 template<typename T, typename A>
333 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
334 CXX_MEM_STAT_INFO);
335
336 template<typename T, typename A>
337 static void release (vec<T, A, vl_embed> *&v);
338 };
339
340
341 /* Free GC memory used by V and reset V to NULL. */
342
343 template<typename T, typename A>
344 inline void
345 va_gc::release (vec<T, A, vl_embed> *&v)
346 {
347 if (v)
348 ::ggc_free (v);
349 v = NULL;
350 }
351
352
353 /* Allocator for GC memory. Ensure there are at least RESERVE free
354 slots in V. If EXACT is true, grow exactly, else grow
355 exponentially. As a special case, if the vector had not been
356 allocated and and RESERVE is 0, no vector will be created. */
357
358 template<typename T, typename A>
359 void
360 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
361 MEM_STAT_DECL)
362 {
363 unsigned alloc
364 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
365 if (!alloc)
366 {
367 ::ggc_free (v);
368 v = NULL;
369 return;
370 }
371
372 /* Calculate the amount of space we want. */
373 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
374
375 /* Ask the allocator how much space it will really give us. */
376 size = ::ggc_round_alloc_size (size);
377
378 /* Adjust the number of slots accordingly. */
379 size_t vec_offset = sizeof (vec_prefix);
380 size_t elt_size = sizeof (T);
381 alloc = (size - vec_offset) / elt_size;
382
383 /* And finally, recalculate the amount of space we ask for. */
384 size = vec_offset + alloc * elt_size;
385
386 unsigned nelem = v ? v->length () : 0;
387 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc_stat (v, size
388 PASS_MEM_STAT));
389 v->embedded_init (alloc, nelem);
390 }
391
392
393 /* Allocator type for GC vectors. This is for vectors of types
394 atomics w.r.t. collection, so allocation and deallocation is
395 completely inherited from va_gc. */
396 struct va_gc_atomic : va_gc
397 {
398 };
399
400
401 /* Generic vector template. Default values for A and L indicate the
402 most commonly used strategies.
403
404 FIXME - Ideally, they would all be vl_ptr to encourage using regular
405 instances for vectors, but the existing GTY machinery is limited
406 in that it can only deal with GC objects that are pointers
407 themselves.
408
409 This means that vector operations that need to deal with
410 potentially NULL pointers, must be provided as free
411 functions (see the vec_safe_* functions above). */
412 template<typename T,
413 typename A = va_heap,
414 typename L = typename A::default_layout>
415 struct GTY((user)) vec
416 {
417 };
418
419 /* Type to provide NULL values for vec<T, A, L>. This is used to
420 provide nil initializers for vec instances. Since vec must be
421 a POD, we cannot have proper ctor/dtor for it. To initialize
422 a vec instance, you can assign it the value vNULL. */
423 struct vnull
424 {
425 template <typename T, typename A, typename L>
426 operator vec<T, A, L> () { return vec<T, A, L>(); }
427 };
428 extern vnull vNULL;
429
430
431 /* Embeddable vector. These vectors are suitable to be embedded
432 in other data structures so that they can be pre-allocated in a
433 contiguous memory block.
434
435 Embeddable vectors are implemented using the trailing array idiom,
436 thus they are not resizeable without changing the address of the
437 vector object itself. This means you cannot have variables or
438 fields of embeddable vector type -- always use a pointer to a
439 vector. The one exception is the final field of a structure, which
440 could be a vector type.
441
442 You will have to use the embedded_size & embedded_init calls to
443 create such objects, and they will not be resizeable (so the 'safe'
444 allocation variants are not available).
445
446 Properties:
447
448 - The whole vector and control data are allocated in a single
449 contiguous block. It uses the trailing-vector idiom, so
450 allocation must reserve enough space for all the elements
451 in the vector plus its control data.
452 - The vector cannot be re-allocated.
453 - The vector cannot grow nor shrink.
454 - No indirections needed for access/manipulation.
455 - It requires 2 words of storage (prior to vector allocation). */
456
457 template<typename T, typename A>
458 struct GTY((user)) vec<T, A, vl_embed>
459 {
460 public:
461 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
462 unsigned length (void) const { return m_vecpfx.m_num; }
463 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
464 T *address (void) { return m_vecdata; }
465 const T *address (void) const { return m_vecdata; }
466 const T &operator[] (unsigned) const;
467 T &operator[] (unsigned);
468 T &last (void);
469 bool space (unsigned) const;
470 bool iterate (unsigned, T *) const;
471 bool iterate (unsigned, T **) const;
472 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
473 void splice (vec &);
474 void splice (vec *src);
475 T *quick_push (const T &);
476 T &pop (void);
477 void truncate (unsigned);
478 void quick_insert (unsigned, const T &);
479 void ordered_remove (unsigned);
480 void unordered_remove (unsigned);
481 void block_remove (unsigned, unsigned);
482 void qsort (int (*) (const void *, const void *));
483 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
484 static size_t embedded_size (unsigned);
485 void embedded_init (unsigned, unsigned = 0);
486 void quick_grow (unsigned len);
487 void quick_grow_cleared (unsigned len);
488
489 /* vec class can access our internal data and functions. */
490 template <typename, typename, typename> friend struct vec;
491
492 /* The allocator types also need access to our internals. */
493 friend struct va_gc;
494 friend struct va_gc_atomic;
495 friend struct va_heap;
496
497 /* FIXME - These fields should be private, but we need to cater to
498 compilers that have stricter notions of PODness for types. */
499 vec_prefix m_vecpfx;
500 T m_vecdata[1];
501 };
502
503
504 /* Convenience wrapper functions to use when dealing with pointers to
505 embedded vectors. Some functionality for these vectors must be
506 provided via free functions for these reasons:
507
508 1- The pointer may be NULL (e.g., before initial allocation).
509
510 2- When the vector needs to grow, it must be reallocated, so
511 the pointer will change its value.
512
513 Because of limitations with the current GC machinery, all vectors
514 in GC memory *must* be pointers. */
515
516
517 /* If V contains no room for NELEMS elements, return false. Otherwise,
518 return true. */
519 template<typename T, typename A>
520 inline bool
521 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
522 {
523 return v ? v->space (nelems) : nelems == 0;
524 }
525
526
527 /* If V is NULL, return 0. Otherwise, return V->length(). */
528 template<typename T, typename A>
529 inline unsigned
530 vec_safe_length (const vec<T, A, vl_embed> *v)
531 {
532 return v ? v->length () : 0;
533 }
534
535
536 /* If V is NULL, return NULL. Otherwise, return V->address(). */
537 template<typename T, typename A>
538 inline T *
539 vec_safe_address (vec<T, A, vl_embed> *v)
540 {
541 return v ? v->address () : NULL;
542 }
543
544
545 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
546 template<typename T, typename A>
547 inline bool
548 vec_safe_is_empty (vec<T, A, vl_embed> *v)
549 {
550 return v ? v->is_empty () : true;
551 }
552
553
554 /* If V does not have space for NELEMS elements, call
555 V->reserve(NELEMS, EXACT). */
556 template<typename T, typename A>
557 inline bool
558 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
559 CXX_MEM_STAT_INFO)
560 {
561 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
562 if (extend)
563 A::reserve (v, nelems, exact PASS_MEM_STAT);
564 return extend;
565 }
566
567 template<typename T, typename A>
568 inline bool
569 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
570 CXX_MEM_STAT_INFO)
571 {
572 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
573 }
574
575
576 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
577 is 0, V is initialized to NULL. */
578
579 template<typename T, typename A>
580 inline void
581 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
582 {
583 v = NULL;
584 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
585 }
586
587
588 /* Free the GC memory allocated by vector V and set it to NULL. */
589
590 template<typename T, typename A>
591 inline void
592 vec_free (vec<T, A, vl_embed> *&v)
593 {
594 A::release (v);
595 }
596
597
598 /* Grow V to length LEN. Allocate it, if necessary. */
599 template<typename T, typename A>
600 inline void
601 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
602 {
603 unsigned oldlen = vec_safe_length (v);
604 gcc_checking_assert (len >= oldlen);
605 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
606 v->quick_grow (len);
607 }
608
609
610 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
611 template<typename T, typename A>
612 inline void
613 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
614 {
615 unsigned oldlen = vec_safe_length (v);
616 vec_safe_grow (v, len PASS_MEM_STAT);
617 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
618 }
619
620
621 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
622 template<typename T, typename A>
623 inline bool
624 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
625 {
626 if (v)
627 return v->iterate (ix, ptr);
628 else
629 {
630 *ptr = 0;
631 return false;
632 }
633 }
634
635 template<typename T, typename A>
636 inline bool
637 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
638 {
639 if (v)
640 return v->iterate (ix, ptr);
641 else
642 {
643 *ptr = 0;
644 return false;
645 }
646 }
647
648
649 /* If V has no room for one more element, reallocate it. Then call
650 V->quick_push(OBJ). */
651 template<typename T, typename A>
652 inline T *
653 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
654 {
655 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
656 return v->quick_push (obj);
657 }
658
659
660 /* if V has no room for one more element, reallocate it. Then call
661 V->quick_insert(IX, OBJ). */
662 template<typename T, typename A>
663 inline void
664 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
665 CXX_MEM_STAT_INFO)
666 {
667 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
668 v->quick_insert (ix, obj);
669 }
670
671
672 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
673 template<typename T, typename A>
674 inline void
675 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
676 {
677 if (v)
678 v->truncate (size);
679 }
680
681
682 /* If SRC is not NULL, return a pointer to a copy of it. */
683 template<typename T, typename A>
684 inline vec<T, A, vl_embed> *
685 vec_safe_copy (vec<T, A, vl_embed> *src)
686 {
687 return src ? src->copy () : NULL;
688 }
689
690 /* Copy the elements from SRC to the end of DST as if by memcpy.
691 Reallocate DST, if necessary. */
692 template<typename T, typename A>
693 inline void
694 vec_safe_splice (vec<T, A, vl_embed> *&dst, vec<T, A, vl_embed> *src
695 CXX_MEM_STAT_INFO)
696 {
697 unsigned src_len = vec_safe_length (src);
698 if (src_len)
699 {
700 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
701 PASS_MEM_STAT);
702 dst->splice (*src);
703 }
704 }
705
706
707 /* Index into vector. Return the IX'th element. IX must be in the
708 domain of the vector. */
709
710 template<typename T, typename A>
711 inline const T &
712 vec<T, A, vl_embed>::operator[] (unsigned ix) const
713 {
714 gcc_checking_assert (ix < m_vecpfx.m_num);
715 return m_vecdata[ix];
716 }
717
718 template<typename T, typename A>
719 inline T &
720 vec<T, A, vl_embed>::operator[] (unsigned ix)
721 {
722 gcc_checking_assert (ix < m_vecpfx.m_num);
723 return m_vecdata[ix];
724 }
725
726
727 /* Get the final element of the vector, which must not be empty. */
728
729 template<typename T, typename A>
730 inline T &
731 vec<T, A, vl_embed>::last (void)
732 {
733 gcc_checking_assert (m_vecpfx.m_num > 0);
734 return (*this)[m_vecpfx.m_num - 1];
735 }
736
737
738 /* If this vector has space for NELEMS additional entries, return
739 true. You usually only need to use this if you are doing your
740 own vector reallocation, for instance on an embedded vector. This
741 returns true in exactly the same circumstances that vec::reserve
742 will. */
743
744 template<typename T, typename A>
745 inline bool
746 vec<T, A, vl_embed>::space (unsigned nelems) const
747 {
748 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
749 }
750
751
752 /* Return iteration condition and update PTR to point to the IX'th
753 element of this vector. Use this to iterate over the elements of a
754 vector as follows,
755
756 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
757 continue; */
758
759 template<typename T, typename A>
760 inline bool
761 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
762 {
763 if (ix < m_vecpfx.m_num)
764 {
765 *ptr = m_vecdata[ix];
766 return true;
767 }
768 else
769 {
770 *ptr = 0;
771 return false;
772 }
773 }
774
775
776 /* Return iteration condition and update *PTR to point to the
777 IX'th element of this vector. Use this to iterate over the
778 elements of a vector as follows,
779
780 for (ix = 0; v->iterate (ix, &ptr); ix++)
781 continue;
782
783 This variant is for vectors of objects. */
784
785 template<typename T, typename A>
786 inline bool
787 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
788 {
789 if (ix < m_vecpfx.m_num)
790 {
791 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
792 return true;
793 }
794 else
795 {
796 *ptr = 0;
797 return false;
798 }
799 }
800
801
802 /* Return a pointer to a copy of this vector. */
803
804 template<typename T, typename A>
805 inline vec<T, A, vl_embed> *
806 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
807 {
808 vec<T, A, vl_embed> *new_vec = NULL;
809 unsigned len = length ();
810 if (len)
811 {
812 vec_alloc (new_vec, len PASS_MEM_STAT);
813 new_vec->embedded_init (len, len);
814 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
815 }
816 return new_vec;
817 }
818
819
820 /* Copy the elements from SRC to the end of this vector as if by memcpy.
821 The vector must have sufficient headroom available. */
822
823 template<typename T, typename A>
824 inline void
825 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> &src)
826 {
827 unsigned len = src.length ();
828 if (len)
829 {
830 gcc_checking_assert (space (len));
831 memcpy (address () + length (), src.address (), len * sizeof (T));
832 m_vecpfx.m_num += len;
833 }
834 }
835
836 template<typename T, typename A>
837 inline void
838 vec<T, A, vl_embed>::splice (vec<T, A, vl_embed> *src)
839 {
840 if (src)
841 splice (*src);
842 }
843
844
845 /* Push OBJ (a new element) onto the end of the vector. There must be
846 sufficient space in the vector. Return a pointer to the slot
847 where OBJ was inserted. */
848
849 template<typename T, typename A>
850 inline T *
851 vec<T, A, vl_embed>::quick_push (const T &obj)
852 {
853 gcc_checking_assert (space (1));
854 T *slot = &m_vecdata[m_vecpfx.m_num++];
855 *slot = obj;
856 return slot;
857 }
858
859
860 /* Pop and return the last element off the end of the vector. */
861
862 template<typename T, typename A>
863 inline T &
864 vec<T, A, vl_embed>::pop (void)
865 {
866 gcc_checking_assert (length () > 0);
867 return m_vecdata[--m_vecpfx.m_num];
868 }
869
870
871 /* Set the length of the vector to SIZE. The new length must be less
872 than or equal to the current length. This is an O(1) operation. */
873
874 template<typename T, typename A>
875 inline void
876 vec<T, A, vl_embed>::truncate (unsigned size)
877 {
878 gcc_checking_assert (length () >= size);
879 m_vecpfx.m_num = size;
880 }
881
882
883 /* Insert an element, OBJ, at the IXth position of this vector. There
884 must be sufficient space. */
885
886 template<typename T, typename A>
887 inline void
888 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
889 {
890 gcc_checking_assert (length () < allocated ());
891 gcc_checking_assert (ix <= length ());
892 T *slot = &m_vecdata[ix];
893 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
894 *slot = obj;
895 }
896
897
898 /* Remove an element from the IXth position of this vector. Ordering of
899 remaining elements is preserved. This is an O(N) operation due to
900 memmove. */
901
902 template<typename T, typename A>
903 inline void
904 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
905 {
906 gcc_checking_assert (ix < length ());
907 T *slot = &m_vecdata[ix];
908 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
909 }
910
911
912 /* Remove an element from the IXth position of this vector. Ordering of
913 remaining elements is destroyed. This is an O(1) operation. */
914
915 template<typename T, typename A>
916 inline void
917 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
918 {
919 gcc_checking_assert (ix < length ());
920 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
921 }
922
923
924 /* Remove LEN elements starting at the IXth. Ordering is retained.
925 This is an O(N) operation due to memmove. */
926
927 template<typename T, typename A>
928 inline void
929 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
930 {
931 gcc_checking_assert (ix + len <= length ());
932 T *slot = &m_vecdata[ix];
933 m_vecpfx.m_num -= len;
934 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
935 }
936
937
938 /* Sort the contents of this vector with qsort. CMP is the comparison
939 function to pass to qsort. */
940
941 template<typename T, typename A>
942 inline void
943 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
944 {
945 ::qsort (address (), length (), sizeof (T), cmp);
946 }
947
948
949 /* Find and return the first position in which OBJ could be inserted
950 without changing the ordering of this vector. LESSTHAN is a
951 function that returns true if the first argument is strictly less
952 than the second. */
953
954 template<typename T, typename A>
955 unsigned
956 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
957 const
958 {
959 unsigned int len = length ();
960 unsigned int half, middle;
961 unsigned int first = 0;
962 while (len > 0)
963 {
964 half = len / 2;
965 middle = first;
966 middle += half;
967 T middle_elem = (*this)[middle];
968 if (lessthan (middle_elem, obj))
969 {
970 first = middle;
971 ++first;
972 len = len - half - 1;
973 }
974 else
975 len = half;
976 }
977 return first;
978 }
979
980
981 /* Return the number of bytes needed to embed an instance of an
982 embeddable vec inside another data structure.
983
984 Use these methods to determine the required size and initialization
985 of a vector V of type T embedded within another structure (as the
986 final member):
987
988 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
989 void v->embedded_init (unsigned alloc, unsigned num);
990
991 These allow the caller to perform the memory allocation. */
992
993 template<typename T, typename A>
994 inline size_t
995 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
996 {
997 typedef vec<T, A, vl_embed> vec_embedded;
998 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
999 }
1000
1001
1002 /* Initialize the vector to contain room for ALLOC elements and
1003 NUM active elements. */
1004
1005 template<typename T, typename A>
1006 inline void
1007 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num)
1008 {
1009 m_vecpfx.m_alloc = alloc;
1010 m_vecpfx.m_has_auto_buf = 0;
1011 m_vecpfx.m_num = num;
1012 }
1013
1014
1015 /* Grow the vector to a specific length. LEN must be as long or longer than
1016 the current length. The new elements are uninitialized. */
1017
1018 template<typename T, typename A>
1019 inline void
1020 vec<T, A, vl_embed>::quick_grow (unsigned len)
1021 {
1022 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1023 m_vecpfx.m_num = len;
1024 }
1025
1026
1027 /* Grow the vector to a specific length. LEN must be as long or longer than
1028 the current length. The new elements are initialized to zero. */
1029
1030 template<typename T, typename A>
1031 inline void
1032 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1033 {
1034 unsigned oldlen = length ();
1035 quick_grow (len);
1036 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1037 }
1038
1039
1040 /* Garbage collection support for vec<T, A, vl_embed>. */
1041
1042 template<typename T>
1043 void
1044 gt_ggc_mx (vec<T, va_gc> *v)
1045 {
1046 extern void gt_ggc_mx (T &);
1047 for (unsigned i = 0; i < v->length (); i++)
1048 gt_ggc_mx ((*v)[i]);
1049 }
1050
1051 template<typename T>
1052 void
1053 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1054 {
1055 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1056 be traversed. */
1057 }
1058
1059
1060 /* PCH support for vec<T, A, vl_embed>. */
1061
1062 template<typename T, typename A>
1063 void
1064 gt_pch_nx (vec<T, A, vl_embed> *v)
1065 {
1066 extern void gt_pch_nx (T &);
1067 for (unsigned i = 0; i < v->length (); i++)
1068 gt_pch_nx ((*v)[i]);
1069 }
1070
1071 template<typename T, typename A>
1072 void
1073 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1074 {
1075 for (unsigned i = 0; i < v->length (); i++)
1076 op (&((*v)[i]), cookie);
1077 }
1078
1079 template<typename T, typename A>
1080 void
1081 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1082 {
1083 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1084 for (unsigned i = 0; i < v->length (); i++)
1085 gt_pch_nx (&((*v)[i]), op, cookie);
1086 }
1087
1088
1089 /* Space efficient vector. These vectors can grow dynamically and are
1090 allocated together with their control data. They are suited to be
1091 included in data structures. Prior to initial allocation, they
1092 only take a single word of storage.
1093
1094 These vectors are implemented as a pointer to an embeddable vector.
1095 The semantics allow for this pointer to be NULL to represent empty
1096 vectors. This way, empty vectors occupy minimal space in the
1097 structure containing them.
1098
1099 Properties:
1100
1101 - The whole vector and control data are allocated in a single
1102 contiguous block.
1103 - The whole vector may be re-allocated.
1104 - Vector data may grow and shrink.
1105 - Access and manipulation requires a pointer test and
1106 indirection.
1107 - It requires 1 word of storage (prior to vector allocation).
1108
1109
1110 Limitations:
1111
1112 These vectors must be PODs because they are stored in unions.
1113 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1114 As long as we use C++03, we cannot have constructors nor
1115 destructors in classes that are stored in unions. */
1116
1117 template<typename T>
1118 struct vec<T, va_heap, vl_ptr>
1119 {
1120 public:
1121 /* Memory allocation and deallocation for the embedded vector.
1122 Needed because we cannot have proper ctors/dtors defined. */
1123 void create (unsigned nelems CXX_MEM_STAT_INFO);
1124 void release (void);
1125
1126 /* Vector operations. */
1127 bool exists (void) const
1128 { return m_vec != NULL; }
1129
1130 bool is_empty (void) const
1131 { return m_vec ? m_vec->is_empty () : true; }
1132
1133 unsigned length (void) const
1134 { return m_vec ? m_vec->length () : 0; }
1135
1136 T *address (void)
1137 { return m_vec ? m_vec->m_vecdata : NULL; }
1138
1139 const T *address (void) const
1140 { return m_vec ? m_vec->m_vecdata : NULL; }
1141
1142 const T &operator[] (unsigned ix) const
1143 { return (*m_vec)[ix]; }
1144
1145 bool operator!=(const vec &other) const
1146 { return !(*this == other); }
1147
1148 bool operator==(const vec &other) const
1149 { return address () == other.address (); }
1150
1151 T &operator[] (unsigned ix)
1152 { return (*m_vec)[ix]; }
1153
1154 T &last (void)
1155 { return m_vec->last (); }
1156
1157 bool space (int nelems) const
1158 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1159
1160 bool iterate (unsigned ix, T *p) const;
1161 bool iterate (unsigned ix, T **p) const;
1162 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1163 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1164 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1165 void splice (vec &);
1166 void safe_splice (vec & CXX_MEM_STAT_INFO);
1167 T *quick_push (const T &);
1168 T *safe_push (const T &CXX_MEM_STAT_INFO);
1169 T &pop (void);
1170 void truncate (unsigned);
1171 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1172 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1173 void quick_grow (unsigned);
1174 void quick_grow_cleared (unsigned);
1175 void quick_insert (unsigned, const T &);
1176 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1177 void ordered_remove (unsigned);
1178 void unordered_remove (unsigned);
1179 void block_remove (unsigned, unsigned);
1180 void qsort (int (*) (const void *, const void *));
1181 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1182
1183 bool using_auto_storage () const;
1184
1185 /* FIXME - This field should be private, but we need to cater to
1186 compilers that have stricter notions of PODness for types. */
1187 vec<T, va_heap, vl_embed> *m_vec;
1188 };
1189
1190
1191 /* stack_vec is a subclass of vec containing N elements of internal storage.
1192 You probably only want to allocate this on the stack because if the array
1193 ends up being larger or much smaller than N it will be wasting space. */
1194 template<typename T, size_t N>
1195 class stack_vec : public vec<T, va_heap>
1196 {
1197 public:
1198 stack_vec ()
1199 {
1200 m_header.m_alloc = N;
1201 m_header.m_has_auto_buf = 1;
1202 m_header.m_num = 0;
1203 this->m_vec = reinterpret_cast<vec<T, va_heap, vl_embed> *> (&m_header);
1204 }
1205
1206 ~stack_vec ()
1207 {
1208 this->release ();
1209 }
1210
1211 private:
1212 friend class vec<T, va_heap, vl_ptr>;
1213
1214 vec_prefix m_header;
1215 T m_data[N];
1216 };
1217
1218
1219 /* Allocate heap memory for pointer V and create the internal vector
1220 with space for NELEMS elements. If NELEMS is 0, the internal
1221 vector is initialized to empty. */
1222
1223 template<typename T>
1224 inline void
1225 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1226 {
1227 v = new vec<T>;
1228 v->create (nelems PASS_MEM_STAT);
1229 }
1230
1231
1232 /* Conditionally allocate heap memory for VEC and its internal vector. */
1233
1234 template<typename T>
1235 inline void
1236 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1237 {
1238 if (!vec)
1239 vec_alloc (vec, nelems PASS_MEM_STAT);
1240 }
1241
1242
1243 /* Free the heap memory allocated by vector V and set it to NULL. */
1244
1245 template<typename T>
1246 inline void
1247 vec_free (vec<T> *&v)
1248 {
1249 if (v == NULL)
1250 return;
1251
1252 v->release ();
1253 delete v;
1254 v = NULL;
1255 }
1256
1257
1258 /* Return iteration condition and update PTR to point to the IX'th
1259 element of this vector. Use this to iterate over the elements of a
1260 vector as follows,
1261
1262 for (ix = 0; v.iterate (ix, &ptr); ix++)
1263 continue; */
1264
1265 template<typename T>
1266 inline bool
1267 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1268 {
1269 if (m_vec)
1270 return m_vec->iterate (ix, ptr);
1271 else
1272 {
1273 *ptr = 0;
1274 return false;
1275 }
1276 }
1277
1278
1279 /* Return iteration condition and update *PTR to point to the
1280 IX'th element of this vector. Use this to iterate over the
1281 elements of a vector as follows,
1282
1283 for (ix = 0; v->iterate (ix, &ptr); ix++)
1284 continue;
1285
1286 This variant is for vectors of objects. */
1287
1288 template<typename T>
1289 inline bool
1290 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1291 {
1292 if (m_vec)
1293 return m_vec->iterate (ix, ptr);
1294 else
1295 {
1296 *ptr = 0;
1297 return false;
1298 }
1299 }
1300
1301
1302 /* Convenience macro for forward iteration. */
1303 #define FOR_EACH_VEC_ELT(V, I, P) \
1304 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1305
1306 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1307 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1308
1309 /* Likewise, but start from FROM rather than 0. */
1310 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1311 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1312
1313 /* Convenience macro for reverse iteration. */
1314 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1315 for (I = (V).length () - 1; \
1316 (V).iterate ((I), &(P)); \
1317 (I)--)
1318
1319 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1320 for (I = vec_safe_length (V) - 1; \
1321 vec_safe_iterate ((V), (I), &(P)); \
1322 (I)--)
1323
1324
1325 /* Return a copy of this vector. */
1326
1327 template<typename T>
1328 inline vec<T, va_heap, vl_ptr>
1329 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1330 {
1331 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1332 if (length ())
1333 new_vec.m_vec = m_vec->copy ();
1334 return new_vec;
1335 }
1336
1337
1338 /* Ensure that the vector has at least RESERVE slots available (if
1339 EXACT is false), or exactly RESERVE slots available (if EXACT is
1340 true).
1341
1342 This may create additional headroom if EXACT is false.
1343
1344 Note that this can cause the embedded vector to be reallocated.
1345 Returns true iff reallocation actually occurred. */
1346
1347 template<typename T>
1348 inline bool
1349 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1350 {
1351 if (!nelems || space (nelems))
1352 return false;
1353
1354 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1355 this is necessary because it doesn't have enough information to know the
1356 embedded vector is in auto storage, and so should not be freed. */
1357 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1358 unsigned int oldsize = 0;
1359 bool handle_auto_vec = m_vec && using_auto_storage ();
1360 if (handle_auto_vec)
1361 {
1362 m_vec = NULL;
1363 oldsize = oldvec->length ();
1364 nelems += oldsize;
1365 }
1366
1367 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1368 if (handle_auto_vec)
1369 {
1370 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1371 m_vec->m_vecpfx.m_num = oldsize;
1372 }
1373
1374 return true;
1375 }
1376
1377
1378 /* Ensure that this vector has exactly NELEMS slots available. This
1379 will not create additional headroom. Note this can cause the
1380 embedded vector to be reallocated. Returns true iff reallocation
1381 actually occurred. */
1382
1383 template<typename T>
1384 inline bool
1385 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1386 {
1387 return reserve (nelems, true PASS_MEM_STAT);
1388 }
1389
1390
1391 /* Create the internal vector and reserve NELEMS for it. This is
1392 exactly like vec::reserve, but the internal vector is
1393 unconditionally allocated from scratch. The old one, if it
1394 existed, is lost. */
1395
1396 template<typename T>
1397 inline void
1398 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1399 {
1400 m_vec = NULL;
1401 if (nelems > 0)
1402 reserve_exact (nelems PASS_MEM_STAT);
1403 }
1404
1405
1406 /* Free the memory occupied by the embedded vector. */
1407
1408 template<typename T>
1409 inline void
1410 vec<T, va_heap, vl_ptr>::release (void)
1411 {
1412 if (!m_vec)
1413 return;
1414
1415 if (using_auto_storage ())
1416 {
1417 static_cast<stack_vec<T, 1> *> (this)->m_header.m_num = 0;
1418 return;
1419 }
1420
1421 va_heap::release (m_vec);
1422 }
1423
1424 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1425 SRC and this vector must be allocated with the same memory
1426 allocation mechanism. This vector is assumed to have sufficient
1427 headroom available. */
1428
1429 template<typename T>
1430 inline void
1431 vec<T, va_heap, vl_ptr>::splice (vec<T, va_heap, vl_ptr> &src)
1432 {
1433 if (src.m_vec)
1434 m_vec->splice (*(src.m_vec));
1435 }
1436
1437
1438 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1439 SRC and this vector must be allocated with the same mechanism.
1440 If there is not enough headroom in this vector, it will be reallocated
1441 as needed. */
1442
1443 template<typename T>
1444 inline void
1445 vec<T, va_heap, vl_ptr>::safe_splice (vec<T, va_heap, vl_ptr> &src
1446 MEM_STAT_DECL)
1447 {
1448 if (src.length ())
1449 {
1450 reserve_exact (src.length ());
1451 splice (src);
1452 }
1453 }
1454
1455
1456 /* Push OBJ (a new element) onto the end of the vector. There must be
1457 sufficient space in the vector. Return a pointer to the slot
1458 where OBJ was inserted. */
1459
1460 template<typename T>
1461 inline T *
1462 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1463 {
1464 return m_vec->quick_push (obj);
1465 }
1466
1467
1468 /* Push a new element OBJ onto the end of this vector. Reallocates
1469 the embedded vector, if needed. Return a pointer to the slot where
1470 OBJ was inserted. */
1471
1472 template<typename T>
1473 inline T *
1474 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1475 {
1476 reserve (1, false PASS_MEM_STAT);
1477 return quick_push (obj);
1478 }
1479
1480
1481 /* Pop and return the last element off the end of the vector. */
1482
1483 template<typename T>
1484 inline T &
1485 vec<T, va_heap, vl_ptr>::pop (void)
1486 {
1487 return m_vec->pop ();
1488 }
1489
1490
1491 /* Set the length of the vector to LEN. The new length must be less
1492 than or equal to the current length. This is an O(1) operation. */
1493
1494 template<typename T>
1495 inline void
1496 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1497 {
1498 if (m_vec)
1499 m_vec->truncate (size);
1500 else
1501 gcc_checking_assert (size == 0);
1502 }
1503
1504
1505 /* Grow the vector to a specific length. LEN must be as long or
1506 longer than the current length. The new elements are
1507 uninitialized. Reallocate the internal vector, if needed. */
1508
1509 template<typename T>
1510 inline void
1511 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1512 {
1513 unsigned oldlen = length ();
1514 gcc_checking_assert (oldlen <= len);
1515 reserve_exact (len - oldlen PASS_MEM_STAT);
1516 m_vec->quick_grow (len);
1517 }
1518
1519
1520 /* Grow the embedded vector to a specific length. LEN must be as
1521 long or longer than the current length. The new elements are
1522 initialized to zero. Reallocate the internal vector, if needed. */
1523
1524 template<typename T>
1525 inline void
1526 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1527 {
1528 unsigned oldlen = length ();
1529 safe_grow (len PASS_MEM_STAT);
1530 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1531 }
1532
1533
1534 /* Same as vec::safe_grow but without reallocation of the internal vector.
1535 If the vector cannot be extended, a runtime assertion will be triggered. */
1536
1537 template<typename T>
1538 inline void
1539 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1540 {
1541 gcc_checking_assert (m_vec);
1542 m_vec->quick_grow (len);
1543 }
1544
1545
1546 /* Same as vec::quick_grow_cleared but without reallocation of the
1547 internal vector. If the vector cannot be extended, a runtime
1548 assertion will be triggered. */
1549
1550 template<typename T>
1551 inline void
1552 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1553 {
1554 gcc_checking_assert (m_vec);
1555 m_vec->quick_grow_cleared (len);
1556 }
1557
1558
1559 /* Insert an element, OBJ, at the IXth position of this vector. There
1560 must be sufficient space. */
1561
1562 template<typename T>
1563 inline void
1564 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1565 {
1566 m_vec->quick_insert (ix, obj);
1567 }
1568
1569
1570 /* Insert an element, OBJ, at the IXth position of the vector.
1571 Reallocate the embedded vector, if necessary. */
1572
1573 template<typename T>
1574 inline void
1575 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1576 {
1577 reserve (1, false PASS_MEM_STAT);
1578 quick_insert (ix, obj);
1579 }
1580
1581
1582 /* Remove an element from the IXth position of this vector. Ordering of
1583 remaining elements is preserved. This is an O(N) operation due to
1584 a memmove. */
1585
1586 template<typename T>
1587 inline void
1588 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1589 {
1590 m_vec->ordered_remove (ix);
1591 }
1592
1593
1594 /* Remove an element from the IXth position of this vector. Ordering
1595 of remaining elements is destroyed. This is an O(1) operation. */
1596
1597 template<typename T>
1598 inline void
1599 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1600 {
1601 m_vec->unordered_remove (ix);
1602 }
1603
1604
1605 /* Remove LEN elements starting at the IXth. Ordering is retained.
1606 This is an O(N) operation due to memmove. */
1607
1608 template<typename T>
1609 inline void
1610 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1611 {
1612 m_vec->block_remove (ix, len);
1613 }
1614
1615
1616 /* Sort the contents of this vector with qsort. CMP is the comparison
1617 function to pass to qsort. */
1618
1619 template<typename T>
1620 inline void
1621 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1622 {
1623 if (m_vec)
1624 m_vec->qsort (cmp);
1625 }
1626
1627
1628 /* Find and return the first position in which OBJ could be inserted
1629 without changing the ordering of this vector. LESSTHAN is a
1630 function that returns true if the first argument is strictly less
1631 than the second. */
1632
1633 template<typename T>
1634 inline unsigned
1635 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1636 bool (*lessthan)(const T &, const T &))
1637 const
1638 {
1639 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1640 }
1641
1642 template<typename T>
1643 inline bool
1644 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1645 {
1646 if (!m_vec->m_vecpfx.m_has_auto_buf)
1647 return false;
1648
1649 const vec_prefix *auto_header
1650 = &static_cast<const stack_vec<T, 1> *> (this)->m_header;
1651 return reinterpret_cast<vec_prefix *> (m_vec) == auto_header;
1652 }
1653
1654 #if (GCC_VERSION >= 3000)
1655 # pragma GCC poison m_vec m_vecpfx m_vecdata
1656 #endif
1657
1658 #endif // GCC_VEC_H