vec.h (vnull::operator vec): Add constexpr keyword for C++11 and later.
[gcc.git] / gcc / vec.h
1 /* Vector API for GNU compiler.
2 Copyright (C) 2004-2016 Free Software Foundation, Inc.
3 Contributed by Nathan Sidwell <nathan@codesourcery.com>
4 Re-implemented in C++ by Diego Novillo <dnovillo@google.com>
5
6 This file is part of GCC.
7
8 GCC is free software; you can redistribute it and/or modify it under
9 the terms of the GNU General Public License as published by the Free
10 Software Foundation; either version 3, or (at your option) any later
11 version.
12
13 GCC is distributed in the hope that it will be useful, but WITHOUT ANY
14 WARRANTY; without even the implied warranty of MERCHANTABILITY or
15 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
16 for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GCC; see the file COPYING3. If not see
20 <http://www.gnu.org/licenses/>. */
21
22 #ifndef GCC_VEC_H
23 #define GCC_VEC_H
24
25 /* Some gen* file have no ggc support as the header file gtype-desc.h is
26 missing. Provide these definitions in case ggc.h has not been included.
27 This is not a problem because any code that runs before gengtype is built
28 will never need to use GC vectors.*/
29
30 extern void ggc_free (void *);
31 extern size_t ggc_round_alloc_size (size_t requested_size);
32 extern void *ggc_realloc (void *, size_t MEM_STAT_DECL);
33
34 /* Templated vector type and associated interfaces.
35
36 The interface functions are typesafe and use inline functions,
37 sometimes backed by out-of-line generic functions. The vectors are
38 designed to interoperate with the GTY machinery.
39
40 There are both 'index' and 'iterate' accessors. The index accessor
41 is implemented by operator[]. The iterator returns a boolean
42 iteration condition and updates the iteration variable passed by
43 reference. Because the iterator will be inlined, the address-of
44 can be optimized away.
45
46 Each operation that increases the number of active elements is
47 available in 'quick' and 'safe' variants. The former presumes that
48 there is sufficient allocated space for the operation to succeed
49 (it dies if there is not). The latter will reallocate the
50 vector, if needed. Reallocation causes an exponential increase in
51 vector size. If you know you will be adding N elements, it would
52 be more efficient to use the reserve operation before adding the
53 elements with the 'quick' operation. This will ensure there are at
54 least as many elements as you ask for, it will exponentially
55 increase if there are too few spare slots. If you want reserve a
56 specific number of slots, but do not want the exponential increase
57 (for instance, you know this is the last allocation), use the
58 reserve_exact operation. You can also create a vector of a
59 specific size from the get go.
60
61 You should prefer the push and pop operations, as they append and
62 remove from the end of the vector. If you need to remove several
63 items in one go, use the truncate operation. The insert and remove
64 operations allow you to change elements in the middle of the
65 vector. There are two remove operations, one which preserves the
66 element ordering 'ordered_remove', and one which does not
67 'unordered_remove'. The latter function copies the end element
68 into the removed slot, rather than invoke a memmove operation. The
69 'lower_bound' function will determine where to place an item in the
70 array using insert that will maintain sorted order.
71
72 Vectors are template types with three arguments: the type of the
73 elements in the vector, the allocation strategy, and the physical
74 layout to use
75
76 Four allocation strategies are supported:
77
78 - Heap: allocation is done using malloc/free. This is the
79 default allocation strategy.
80
81 - GC: allocation is done using ggc_alloc/ggc_free.
82
83 - GC atomic: same as GC with the exception that the elements
84 themselves are assumed to be of an atomic type that does
85 not need to be garbage collected. This means that marking
86 routines do not need to traverse the array marking the
87 individual elements. This increases the performance of
88 GC activities.
89
90 Two physical layouts are supported:
91
92 - Embedded: The vector is structured using the trailing array
93 idiom. The last member of the structure is an array of size
94 1. When the vector is initially allocated, a single memory
95 block is created to hold the vector's control data and the
96 array of elements. These vectors cannot grow without
97 reallocation (see discussion on embeddable vectors below).
98
99 - Space efficient: The vector is structured as a pointer to an
100 embedded vector. This is the default layout. It means that
101 vectors occupy a single word of storage before initial
102 allocation. Vectors are allowed to grow (the internal
103 pointer is reallocated but the main vector instance does not
104 need to relocate).
105
106 The type, allocation and layout are specified when the vector is
107 declared.
108
109 If you need to directly manipulate a vector, then the 'address'
110 accessor will return the address of the start of the vector. Also
111 the 'space' predicate will tell you whether there is spare capacity
112 in the vector. You will not normally need to use these two functions.
113
114 Notes on the different layout strategies
115
116 * Embeddable vectors (vec<T, A, vl_embed>)
117
118 These vectors are suitable to be embedded in other data
119 structures so that they can be pre-allocated in a contiguous
120 memory block.
121
122 Embeddable vectors are implemented using the trailing array
123 idiom, thus they are not resizeable without changing the address
124 of the vector object itself. This means you cannot have
125 variables or fields of embeddable vector type -- always use a
126 pointer to a vector. The one exception is the final field of a
127 structure, which could be a vector type.
128
129 You will have to use the embedded_size & embedded_init calls to
130 create such objects, and they will not be resizeable (so the
131 'safe' allocation variants are not available).
132
133 Properties of embeddable vectors:
134
135 - The whole vector and control data are allocated in a single
136 contiguous block. It uses the trailing-vector idiom, so
137 allocation must reserve enough space for all the elements
138 in the vector plus its control data.
139 - The vector cannot be re-allocated.
140 - The vector cannot grow nor shrink.
141 - No indirections needed for access/manipulation.
142 - It requires 2 words of storage (prior to vector allocation).
143
144
145 * Space efficient vector (vec<T, A, vl_ptr>)
146
147 These vectors can grow dynamically and are allocated together
148 with their control data. They are suited to be included in data
149 structures. Prior to initial allocation, they only take a single
150 word of storage.
151
152 These vectors are implemented as a pointer to embeddable vectors.
153 The semantics allow for this pointer to be NULL to represent
154 empty vectors. This way, empty vectors occupy minimal space in
155 the structure containing them.
156
157 Properties:
158
159 - The whole vector and control data are allocated in a single
160 contiguous block.
161 - The whole vector may be re-allocated.
162 - Vector data may grow and shrink.
163 - Access and manipulation requires a pointer test and
164 indirection.
165 - It requires 1 word of storage (prior to vector allocation).
166
167 An example of their use would be,
168
169 struct my_struct {
170 // A space-efficient vector of tree pointers in GC memory.
171 vec<tree, va_gc, vl_ptr> v;
172 };
173
174 struct my_struct *s;
175
176 if (s->v.length ()) { we have some contents }
177 s->v.safe_push (decl); // append some decl onto the end
178 for (ix = 0; s->v.iterate (ix, &elt); ix++)
179 { do something with elt }
180 */
181
182 /* Support function for statistics. */
183 extern void dump_vec_loc_statistics (void);
184
185 /* Hashtable mapping vec addresses to descriptors. */
186 extern htab_t vec_mem_usage_hash;
187
188 /* Control data for vectors. This contains the number of allocated
189 and used slots inside a vector. */
190
191 struct vec_prefix
192 {
193 /* FIXME - These fields should be private, but we need to cater to
194 compilers that have stricter notions of PODness for types. */
195
196 /* Memory allocation support routines in vec.c. */
197 void register_overhead (void *, size_t, size_t CXX_MEM_STAT_INFO);
198 void release_overhead (void *, size_t, bool CXX_MEM_STAT_INFO);
199 static unsigned calculate_allocation (vec_prefix *, unsigned, bool);
200 static unsigned calculate_allocation_1 (unsigned, unsigned);
201
202 /* Note that vec_prefix should be a base class for vec, but we use
203 offsetof() on vector fields of tree structures (e.g.,
204 tree_binfo::base_binfos), and offsetof only supports base types.
205
206 To compensate, we make vec_prefix a field inside vec and make
207 vec a friend class of vec_prefix so it can access its fields. */
208 template <typename, typename, typename> friend struct vec;
209
210 /* The allocator types also need access to our internals. */
211 friend struct va_gc;
212 friend struct va_gc_atomic;
213 friend struct va_heap;
214
215 unsigned m_alloc : 31;
216 unsigned m_using_auto_storage : 1;
217 unsigned m_num;
218 };
219
220 /* Calculate the number of slots to reserve a vector, making sure that
221 RESERVE slots are free. If EXACT grow exactly, otherwise grow
222 exponentially. PFX is the control data for the vector. */
223
224 inline unsigned
225 vec_prefix::calculate_allocation (vec_prefix *pfx, unsigned reserve,
226 bool exact)
227 {
228 if (exact)
229 return (pfx ? pfx->m_num : 0) + reserve;
230 else if (!pfx)
231 return MAX (4, reserve);
232 return calculate_allocation_1 (pfx->m_alloc, pfx->m_num + reserve);
233 }
234
235 template<typename, typename, typename> struct vec;
236
237 /* Valid vector layouts
238
239 vl_embed - Embeddable vector that uses the trailing array idiom.
240 vl_ptr - Space efficient vector that uses a pointer to an
241 embeddable vector. */
242 struct vl_embed { };
243 struct vl_ptr { };
244
245
246 /* Types of supported allocations
247
248 va_heap - Allocation uses malloc/free.
249 va_gc - Allocation uses ggc_alloc.
250 va_gc_atomic - Same as GC, but individual elements of the array
251 do not need to be marked during collection. */
252
253 /* Allocator type for heap vectors. */
254 struct va_heap
255 {
256 /* Heap vectors are frequently regular instances, so use the vl_ptr
257 layout for them. */
258 typedef vl_ptr default_layout;
259
260 template<typename T>
261 static void reserve (vec<T, va_heap, vl_embed> *&, unsigned, bool
262 CXX_MEM_STAT_INFO);
263
264 template<typename T>
265 static void release (vec<T, va_heap, vl_embed> *&);
266 };
267
268
269 /* Allocator for heap memory. Ensure there are at least RESERVE free
270 slots in V. If EXACT is true, grow exactly, else grow
271 exponentially. As a special case, if the vector had not been
272 allocated and RESERVE is 0, no vector will be created. */
273
274 template<typename T>
275 inline void
276 va_heap::reserve (vec<T, va_heap, vl_embed> *&v, unsigned reserve, bool exact
277 MEM_STAT_DECL)
278 {
279 unsigned alloc
280 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
281 gcc_checking_assert (alloc);
282
283 if (GATHER_STATISTICS && v)
284 v->m_vecpfx.release_overhead (v, v->allocated (), false);
285
286 size_t size = vec<T, va_heap, vl_embed>::embedded_size (alloc);
287 unsigned nelem = v ? v->length () : 0;
288 v = static_cast <vec<T, va_heap, vl_embed> *> (xrealloc (v, size));
289 v->embedded_init (alloc, nelem);
290
291 if (GATHER_STATISTICS)
292 v->m_vecpfx.register_overhead (v, alloc, nelem PASS_MEM_STAT);
293 }
294
295
296 /* Free the heap space allocated for vector V. */
297
298 template<typename T>
299 void
300 va_heap::release (vec<T, va_heap, vl_embed> *&v)
301 {
302 if (v == NULL)
303 return;
304
305 if (GATHER_STATISTICS)
306 v->m_vecpfx.release_overhead (v, v->allocated (), true);
307 ::free (v);
308 v = NULL;
309 }
310
311
312 /* Allocator type for GC vectors. Notice that we need the structure
313 declaration even if GC is not enabled. */
314
315 struct va_gc
316 {
317 /* Use vl_embed as the default layout for GC vectors. Due to GTY
318 limitations, GC vectors must always be pointers, so it is more
319 efficient to use a pointer to the vl_embed layout, rather than
320 using a pointer to a pointer as would be the case with vl_ptr. */
321 typedef vl_embed default_layout;
322
323 template<typename T, typename A>
324 static void reserve (vec<T, A, vl_embed> *&, unsigned, bool
325 CXX_MEM_STAT_INFO);
326
327 template<typename T, typename A>
328 static void release (vec<T, A, vl_embed> *&v);
329 };
330
331
332 /* Free GC memory used by V and reset V to NULL. */
333
334 template<typename T, typename A>
335 inline void
336 va_gc::release (vec<T, A, vl_embed> *&v)
337 {
338 if (v)
339 ::ggc_free (v);
340 v = NULL;
341 }
342
343
344 /* Allocator for GC memory. Ensure there are at least RESERVE free
345 slots in V. If EXACT is true, grow exactly, else grow
346 exponentially. As a special case, if the vector had not been
347 allocated and RESERVE is 0, no vector will be created. */
348
349 template<typename T, typename A>
350 void
351 va_gc::reserve (vec<T, A, vl_embed> *&v, unsigned reserve, bool exact
352 MEM_STAT_DECL)
353 {
354 unsigned alloc
355 = vec_prefix::calculate_allocation (v ? &v->m_vecpfx : 0, reserve, exact);
356 if (!alloc)
357 {
358 ::ggc_free (v);
359 v = NULL;
360 return;
361 }
362
363 /* Calculate the amount of space we want. */
364 size_t size = vec<T, A, vl_embed>::embedded_size (alloc);
365
366 /* Ask the allocator how much space it will really give us. */
367 size = ::ggc_round_alloc_size (size);
368
369 /* Adjust the number of slots accordingly. */
370 size_t vec_offset = sizeof (vec_prefix);
371 size_t elt_size = sizeof (T);
372 alloc = (size - vec_offset) / elt_size;
373
374 /* And finally, recalculate the amount of space we ask for. */
375 size = vec_offset + alloc * elt_size;
376
377 unsigned nelem = v ? v->length () : 0;
378 v = static_cast <vec<T, A, vl_embed> *> (::ggc_realloc (v, size
379 PASS_MEM_STAT));
380 v->embedded_init (alloc, nelem);
381 }
382
383
384 /* Allocator type for GC vectors. This is for vectors of types
385 atomics w.r.t. collection, so allocation and deallocation is
386 completely inherited from va_gc. */
387 struct va_gc_atomic : va_gc
388 {
389 };
390
391
392 /* Generic vector template. Default values for A and L indicate the
393 most commonly used strategies.
394
395 FIXME - Ideally, they would all be vl_ptr to encourage using regular
396 instances for vectors, but the existing GTY machinery is limited
397 in that it can only deal with GC objects that are pointers
398 themselves.
399
400 This means that vector operations that need to deal with
401 potentially NULL pointers, must be provided as free
402 functions (see the vec_safe_* functions above). */
403 template<typename T,
404 typename A = va_heap,
405 typename L = typename A::default_layout>
406 struct GTY((user)) vec
407 {
408 };
409
410 /* Type to provide NULL values for vec<T, A, L>. This is used to
411 provide nil initializers for vec instances. Since vec must be
412 a POD, we cannot have proper ctor/dtor for it. To initialize
413 a vec instance, you can assign it the value vNULL. */
414 struct vnull
415 {
416 template <typename T, typename A, typename L>
417 #if __cpp_constexpr >= 200704
418 constexpr
419 #endif
420 operator vec<T, A, L> () { return vec<T, A, L>(); }
421 };
422 extern vnull vNULL;
423
424
425 /* Embeddable vector. These vectors are suitable to be embedded
426 in other data structures so that they can be pre-allocated in a
427 contiguous memory block.
428
429 Embeddable vectors are implemented using the trailing array idiom,
430 thus they are not resizeable without changing the address of the
431 vector object itself. This means you cannot have variables or
432 fields of embeddable vector type -- always use a pointer to a
433 vector. The one exception is the final field of a structure, which
434 could be a vector type.
435
436 You will have to use the embedded_size & embedded_init calls to
437 create such objects, and they will not be resizeable (so the 'safe'
438 allocation variants are not available).
439
440 Properties:
441
442 - The whole vector and control data are allocated in a single
443 contiguous block. It uses the trailing-vector idiom, so
444 allocation must reserve enough space for all the elements
445 in the vector plus its control data.
446 - The vector cannot be re-allocated.
447 - The vector cannot grow nor shrink.
448 - No indirections needed for access/manipulation.
449 - It requires 2 words of storage (prior to vector allocation). */
450
451 template<typename T, typename A>
452 struct GTY((user)) vec<T, A, vl_embed>
453 {
454 public:
455 unsigned allocated (void) const { return m_vecpfx.m_alloc; }
456 unsigned length (void) const { return m_vecpfx.m_num; }
457 bool is_empty (void) const { return m_vecpfx.m_num == 0; }
458 T *address (void) { return m_vecdata; }
459 const T *address (void) const { return m_vecdata; }
460 T *begin () { return address (); }
461 const T *begin () const { return address (); }
462 T *end () { return address () + length (); }
463 const T *end () const { return address () + length (); }
464 const T &operator[] (unsigned) const;
465 T &operator[] (unsigned);
466 T &last (void);
467 bool space (unsigned) const;
468 bool iterate (unsigned, T *) const;
469 bool iterate (unsigned, T **) const;
470 vec *copy (ALONE_CXX_MEM_STAT_INFO) const;
471 void splice (const vec &);
472 void splice (const vec *src);
473 T *quick_push (const T &);
474 T &pop (void);
475 void truncate (unsigned);
476 void quick_insert (unsigned, const T &);
477 void ordered_remove (unsigned);
478 void unordered_remove (unsigned);
479 void block_remove (unsigned, unsigned);
480 void qsort (int (*) (const void *, const void *));
481 T *bsearch (const void *key, int (*compar)(const void *, const void *));
482 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
483 bool contains (const T &search) const;
484 static size_t embedded_size (unsigned);
485 void embedded_init (unsigned, unsigned = 0, unsigned = 0);
486 void quick_grow (unsigned len);
487 void quick_grow_cleared (unsigned len);
488
489 /* vec class can access our internal data and functions. */
490 template <typename, typename, typename> friend struct vec;
491
492 /* The allocator types also need access to our internals. */
493 friend struct va_gc;
494 friend struct va_gc_atomic;
495 friend struct va_heap;
496
497 /* FIXME - These fields should be private, but we need to cater to
498 compilers that have stricter notions of PODness for types. */
499 vec_prefix m_vecpfx;
500 T m_vecdata[1];
501 };
502
503
504 /* Convenience wrapper functions to use when dealing with pointers to
505 embedded vectors. Some functionality for these vectors must be
506 provided via free functions for these reasons:
507
508 1- The pointer may be NULL (e.g., before initial allocation).
509
510 2- When the vector needs to grow, it must be reallocated, so
511 the pointer will change its value.
512
513 Because of limitations with the current GC machinery, all vectors
514 in GC memory *must* be pointers. */
515
516
517 /* If V contains no room for NELEMS elements, return false. Otherwise,
518 return true. */
519 template<typename T, typename A>
520 inline bool
521 vec_safe_space (const vec<T, A, vl_embed> *v, unsigned nelems)
522 {
523 return v ? v->space (nelems) : nelems == 0;
524 }
525
526
527 /* If V is NULL, return 0. Otherwise, return V->length(). */
528 template<typename T, typename A>
529 inline unsigned
530 vec_safe_length (const vec<T, A, vl_embed> *v)
531 {
532 return v ? v->length () : 0;
533 }
534
535
536 /* If V is NULL, return NULL. Otherwise, return V->address(). */
537 template<typename T, typename A>
538 inline T *
539 vec_safe_address (vec<T, A, vl_embed> *v)
540 {
541 return v ? v->address () : NULL;
542 }
543
544
545 /* If V is NULL, return true. Otherwise, return V->is_empty(). */
546 template<typename T, typename A>
547 inline bool
548 vec_safe_is_empty (vec<T, A, vl_embed> *v)
549 {
550 return v ? v->is_empty () : true;
551 }
552
553 /* If V does not have space for NELEMS elements, call
554 V->reserve(NELEMS, EXACT). */
555 template<typename T, typename A>
556 inline bool
557 vec_safe_reserve (vec<T, A, vl_embed> *&v, unsigned nelems, bool exact = false
558 CXX_MEM_STAT_INFO)
559 {
560 bool extend = nelems ? !vec_safe_space (v, nelems) : false;
561 if (extend)
562 A::reserve (v, nelems, exact PASS_MEM_STAT);
563 return extend;
564 }
565
566 template<typename T, typename A>
567 inline bool
568 vec_safe_reserve_exact (vec<T, A, vl_embed> *&v, unsigned nelems
569 CXX_MEM_STAT_INFO)
570 {
571 return vec_safe_reserve (v, nelems, true PASS_MEM_STAT);
572 }
573
574
575 /* Allocate GC memory for V with space for NELEMS slots. If NELEMS
576 is 0, V is initialized to NULL. */
577
578 template<typename T, typename A>
579 inline void
580 vec_alloc (vec<T, A, vl_embed> *&v, unsigned nelems CXX_MEM_STAT_INFO)
581 {
582 v = NULL;
583 vec_safe_reserve (v, nelems, false PASS_MEM_STAT);
584 }
585
586
587 /* Free the GC memory allocated by vector V and set it to NULL. */
588
589 template<typename T, typename A>
590 inline void
591 vec_free (vec<T, A, vl_embed> *&v)
592 {
593 A::release (v);
594 }
595
596
597 /* Grow V to length LEN. Allocate it, if necessary. */
598 template<typename T, typename A>
599 inline void
600 vec_safe_grow (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
601 {
602 unsigned oldlen = vec_safe_length (v);
603 gcc_checking_assert (len >= oldlen);
604 vec_safe_reserve_exact (v, len - oldlen PASS_MEM_STAT);
605 v->quick_grow (len);
606 }
607
608
609 /* If V is NULL, allocate it. Call V->safe_grow_cleared(LEN). */
610 template<typename T, typename A>
611 inline void
612 vec_safe_grow_cleared (vec<T, A, vl_embed> *&v, unsigned len CXX_MEM_STAT_INFO)
613 {
614 unsigned oldlen = vec_safe_length (v);
615 vec_safe_grow (v, len PASS_MEM_STAT);
616 memset (&(v->address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
617 }
618
619
620 /* If V is NULL return false, otherwise return V->iterate(IX, PTR). */
621 template<typename T, typename A>
622 inline bool
623 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T **ptr)
624 {
625 if (v)
626 return v->iterate (ix, ptr);
627 else
628 {
629 *ptr = 0;
630 return false;
631 }
632 }
633
634 template<typename T, typename A>
635 inline bool
636 vec_safe_iterate (const vec<T, A, vl_embed> *v, unsigned ix, T *ptr)
637 {
638 if (v)
639 return v->iterate (ix, ptr);
640 else
641 {
642 *ptr = 0;
643 return false;
644 }
645 }
646
647
648 /* If V has no room for one more element, reallocate it. Then call
649 V->quick_push(OBJ). */
650 template<typename T, typename A>
651 inline T *
652 vec_safe_push (vec<T, A, vl_embed> *&v, const T &obj CXX_MEM_STAT_INFO)
653 {
654 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
655 return v->quick_push (obj);
656 }
657
658
659 /* if V has no room for one more element, reallocate it. Then call
660 V->quick_insert(IX, OBJ). */
661 template<typename T, typename A>
662 inline void
663 vec_safe_insert (vec<T, A, vl_embed> *&v, unsigned ix, const T &obj
664 CXX_MEM_STAT_INFO)
665 {
666 vec_safe_reserve (v, 1, false PASS_MEM_STAT);
667 v->quick_insert (ix, obj);
668 }
669
670
671 /* If V is NULL, do nothing. Otherwise, call V->truncate(SIZE). */
672 template<typename T, typename A>
673 inline void
674 vec_safe_truncate (vec<T, A, vl_embed> *v, unsigned size)
675 {
676 if (v)
677 v->truncate (size);
678 }
679
680
681 /* If SRC is not NULL, return a pointer to a copy of it. */
682 template<typename T, typename A>
683 inline vec<T, A, vl_embed> *
684 vec_safe_copy (vec<T, A, vl_embed> *src CXX_MEM_STAT_INFO)
685 {
686 return src ? src->copy (ALONE_PASS_MEM_STAT) : NULL;
687 }
688
689 /* Copy the elements from SRC to the end of DST as if by memcpy.
690 Reallocate DST, if necessary. */
691 template<typename T, typename A>
692 inline void
693 vec_safe_splice (vec<T, A, vl_embed> *&dst, const vec<T, A, vl_embed> *src
694 CXX_MEM_STAT_INFO)
695 {
696 unsigned src_len = vec_safe_length (src);
697 if (src_len)
698 {
699 vec_safe_reserve_exact (dst, vec_safe_length (dst) + src_len
700 PASS_MEM_STAT);
701 dst->splice (*src);
702 }
703 }
704
705 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
706 size of the vector and so should be used with care. */
707
708 template<typename T, typename A>
709 inline bool
710 vec_safe_contains (vec<T, A, vl_embed> *v, const T &search)
711 {
712 return v ? v->contains (search) : false;
713 }
714
715 /* Index into vector. Return the IX'th element. IX must be in the
716 domain of the vector. */
717
718 template<typename T, typename A>
719 inline const T &
720 vec<T, A, vl_embed>::operator[] (unsigned ix) const
721 {
722 gcc_checking_assert (ix < m_vecpfx.m_num);
723 return m_vecdata[ix];
724 }
725
726 template<typename T, typename A>
727 inline T &
728 vec<T, A, vl_embed>::operator[] (unsigned ix)
729 {
730 gcc_checking_assert (ix < m_vecpfx.m_num);
731 return m_vecdata[ix];
732 }
733
734
735 /* Get the final element of the vector, which must not be empty. */
736
737 template<typename T, typename A>
738 inline T &
739 vec<T, A, vl_embed>::last (void)
740 {
741 gcc_checking_assert (m_vecpfx.m_num > 0);
742 return (*this)[m_vecpfx.m_num - 1];
743 }
744
745
746 /* If this vector has space for NELEMS additional entries, return
747 true. You usually only need to use this if you are doing your
748 own vector reallocation, for instance on an embedded vector. This
749 returns true in exactly the same circumstances that vec::reserve
750 will. */
751
752 template<typename T, typename A>
753 inline bool
754 vec<T, A, vl_embed>::space (unsigned nelems) const
755 {
756 return m_vecpfx.m_alloc - m_vecpfx.m_num >= nelems;
757 }
758
759
760 /* Return iteration condition and update PTR to point to the IX'th
761 element of this vector. Use this to iterate over the elements of a
762 vector as follows,
763
764 for (ix = 0; vec<T, A>::iterate (v, ix, &ptr); ix++)
765 continue; */
766
767 template<typename T, typename A>
768 inline bool
769 vec<T, A, vl_embed>::iterate (unsigned ix, T *ptr) const
770 {
771 if (ix < m_vecpfx.m_num)
772 {
773 *ptr = m_vecdata[ix];
774 return true;
775 }
776 else
777 {
778 *ptr = 0;
779 return false;
780 }
781 }
782
783
784 /* Return iteration condition and update *PTR to point to the
785 IX'th element of this vector. Use this to iterate over the
786 elements of a vector as follows,
787
788 for (ix = 0; v->iterate (ix, &ptr); ix++)
789 continue;
790
791 This variant is for vectors of objects. */
792
793 template<typename T, typename A>
794 inline bool
795 vec<T, A, vl_embed>::iterate (unsigned ix, T **ptr) const
796 {
797 if (ix < m_vecpfx.m_num)
798 {
799 *ptr = CONST_CAST (T *, &m_vecdata[ix]);
800 return true;
801 }
802 else
803 {
804 *ptr = 0;
805 return false;
806 }
807 }
808
809
810 /* Return a pointer to a copy of this vector. */
811
812 template<typename T, typename A>
813 inline vec<T, A, vl_embed> *
814 vec<T, A, vl_embed>::copy (ALONE_MEM_STAT_DECL) const
815 {
816 vec<T, A, vl_embed> *new_vec = NULL;
817 unsigned len = length ();
818 if (len)
819 {
820 vec_alloc (new_vec, len PASS_MEM_STAT);
821 new_vec->embedded_init (len, len);
822 memcpy (new_vec->address (), m_vecdata, sizeof (T) * len);
823 }
824 return new_vec;
825 }
826
827
828 /* Copy the elements from SRC to the end of this vector as if by memcpy.
829 The vector must have sufficient headroom available. */
830
831 template<typename T, typename A>
832 inline void
833 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> &src)
834 {
835 unsigned len = src.length ();
836 if (len)
837 {
838 gcc_checking_assert (space (len));
839 memcpy (address () + length (), src.address (), len * sizeof (T));
840 m_vecpfx.m_num += len;
841 }
842 }
843
844 template<typename T, typename A>
845 inline void
846 vec<T, A, vl_embed>::splice (const vec<T, A, vl_embed> *src)
847 {
848 if (src)
849 splice (*src);
850 }
851
852
853 /* Push OBJ (a new element) onto the end of the vector. There must be
854 sufficient space in the vector. Return a pointer to the slot
855 where OBJ was inserted. */
856
857 template<typename T, typename A>
858 inline T *
859 vec<T, A, vl_embed>::quick_push (const T &obj)
860 {
861 gcc_checking_assert (space (1));
862 T *slot = &m_vecdata[m_vecpfx.m_num++];
863 *slot = obj;
864 return slot;
865 }
866
867
868 /* Pop and return the last element off the end of the vector. */
869
870 template<typename T, typename A>
871 inline T &
872 vec<T, A, vl_embed>::pop (void)
873 {
874 gcc_checking_assert (length () > 0);
875 return m_vecdata[--m_vecpfx.m_num];
876 }
877
878
879 /* Set the length of the vector to SIZE. The new length must be less
880 than or equal to the current length. This is an O(1) operation. */
881
882 template<typename T, typename A>
883 inline void
884 vec<T, A, vl_embed>::truncate (unsigned size)
885 {
886 gcc_checking_assert (length () >= size);
887 m_vecpfx.m_num = size;
888 }
889
890
891 /* Insert an element, OBJ, at the IXth position of this vector. There
892 must be sufficient space. */
893
894 template<typename T, typename A>
895 inline void
896 vec<T, A, vl_embed>::quick_insert (unsigned ix, const T &obj)
897 {
898 gcc_checking_assert (length () < allocated ());
899 gcc_checking_assert (ix <= length ());
900 T *slot = &m_vecdata[ix];
901 memmove (slot + 1, slot, (m_vecpfx.m_num++ - ix) * sizeof (T));
902 *slot = obj;
903 }
904
905
906 /* Remove an element from the IXth position of this vector. Ordering of
907 remaining elements is preserved. This is an O(N) operation due to
908 memmove. */
909
910 template<typename T, typename A>
911 inline void
912 vec<T, A, vl_embed>::ordered_remove (unsigned ix)
913 {
914 gcc_checking_assert (ix < length ());
915 T *slot = &m_vecdata[ix];
916 memmove (slot, slot + 1, (--m_vecpfx.m_num - ix) * sizeof (T));
917 }
918
919
920 /* Remove an element from the IXth position of this vector. Ordering of
921 remaining elements is destroyed. This is an O(1) operation. */
922
923 template<typename T, typename A>
924 inline void
925 vec<T, A, vl_embed>::unordered_remove (unsigned ix)
926 {
927 gcc_checking_assert (ix < length ());
928 m_vecdata[ix] = m_vecdata[--m_vecpfx.m_num];
929 }
930
931
932 /* Remove LEN elements starting at the IXth. Ordering is retained.
933 This is an O(N) operation due to memmove. */
934
935 template<typename T, typename A>
936 inline void
937 vec<T, A, vl_embed>::block_remove (unsigned ix, unsigned len)
938 {
939 gcc_checking_assert (ix + len <= length ());
940 T *slot = &m_vecdata[ix];
941 m_vecpfx.m_num -= len;
942 memmove (slot, slot + len, (m_vecpfx.m_num - ix) * sizeof (T));
943 }
944
945
946 /* Sort the contents of this vector with qsort. CMP is the comparison
947 function to pass to qsort. */
948
949 template<typename T, typename A>
950 inline void
951 vec<T, A, vl_embed>::qsort (int (*cmp) (const void *, const void *))
952 {
953 if (length () > 1)
954 ::qsort (address (), length (), sizeof (T), cmp);
955 }
956
957
958 /* Search the contents of the sorted vector with a binary search.
959 CMP is the comparison function to pass to bsearch. */
960
961 template<typename T, typename A>
962 inline T *
963 vec<T, A, vl_embed>::bsearch (const void *key,
964 int (*compar) (const void *, const void *))
965 {
966 const void *base = this->address ();
967 size_t nmemb = this->length ();
968 size_t size = sizeof (T);
969 /* The following is a copy of glibc stdlib-bsearch.h. */
970 size_t l, u, idx;
971 const void *p;
972 int comparison;
973
974 l = 0;
975 u = nmemb;
976 while (l < u)
977 {
978 idx = (l + u) / 2;
979 p = (const void *) (((const char *) base) + (idx * size));
980 comparison = (*compar) (key, p);
981 if (comparison < 0)
982 u = idx;
983 else if (comparison > 0)
984 l = idx + 1;
985 else
986 return (T *)const_cast<void *>(p);
987 }
988
989 return NULL;
990 }
991
992 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
993 size of the vector and so should be used with care. */
994
995 template<typename T, typename A>
996 inline bool
997 vec<T, A, vl_embed>::contains (const T &search) const
998 {
999 unsigned int len = length ();
1000 for (unsigned int i = 0; i < len; i++)
1001 if ((*this)[i] == search)
1002 return true;
1003
1004 return false;
1005 }
1006
1007 /* Find and return the first position in which OBJ could be inserted
1008 without changing the ordering of this vector. LESSTHAN is a
1009 function that returns true if the first argument is strictly less
1010 than the second. */
1011
1012 template<typename T, typename A>
1013 unsigned
1014 vec<T, A, vl_embed>::lower_bound (T obj, bool (*lessthan)(const T &, const T &))
1015 const
1016 {
1017 unsigned int len = length ();
1018 unsigned int half, middle;
1019 unsigned int first = 0;
1020 while (len > 0)
1021 {
1022 half = len / 2;
1023 middle = first;
1024 middle += half;
1025 T middle_elem = (*this)[middle];
1026 if (lessthan (middle_elem, obj))
1027 {
1028 first = middle;
1029 ++first;
1030 len = len - half - 1;
1031 }
1032 else
1033 len = half;
1034 }
1035 return first;
1036 }
1037
1038
1039 /* Return the number of bytes needed to embed an instance of an
1040 embeddable vec inside another data structure.
1041
1042 Use these methods to determine the required size and initialization
1043 of a vector V of type T embedded within another structure (as the
1044 final member):
1045
1046 size_t vec<T, A, vl_embed>::embedded_size (unsigned alloc);
1047 void v->embedded_init (unsigned alloc, unsigned num);
1048
1049 These allow the caller to perform the memory allocation. */
1050
1051 template<typename T, typename A>
1052 inline size_t
1053 vec<T, A, vl_embed>::embedded_size (unsigned alloc)
1054 {
1055 typedef vec<T, A, vl_embed> vec_embedded;
1056 return offsetof (vec_embedded, m_vecdata) + alloc * sizeof (T);
1057 }
1058
1059
1060 /* Initialize the vector to contain room for ALLOC elements and
1061 NUM active elements. */
1062
1063 template<typename T, typename A>
1064 inline void
1065 vec<T, A, vl_embed>::embedded_init (unsigned alloc, unsigned num, unsigned aut)
1066 {
1067 m_vecpfx.m_alloc = alloc;
1068 m_vecpfx.m_using_auto_storage = aut;
1069 m_vecpfx.m_num = num;
1070 }
1071
1072
1073 /* Grow the vector to a specific length. LEN must be as long or longer than
1074 the current length. The new elements are uninitialized. */
1075
1076 template<typename T, typename A>
1077 inline void
1078 vec<T, A, vl_embed>::quick_grow (unsigned len)
1079 {
1080 gcc_checking_assert (length () <= len && len <= m_vecpfx.m_alloc);
1081 m_vecpfx.m_num = len;
1082 }
1083
1084
1085 /* Grow the vector to a specific length. LEN must be as long or longer than
1086 the current length. The new elements are initialized to zero. */
1087
1088 template<typename T, typename A>
1089 inline void
1090 vec<T, A, vl_embed>::quick_grow_cleared (unsigned len)
1091 {
1092 unsigned oldlen = length ();
1093 quick_grow (len);
1094 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1095 }
1096
1097
1098 /* Garbage collection support for vec<T, A, vl_embed>. */
1099
1100 template<typename T>
1101 void
1102 gt_ggc_mx (vec<T, va_gc> *v)
1103 {
1104 extern void gt_ggc_mx (T &);
1105 for (unsigned i = 0; i < v->length (); i++)
1106 gt_ggc_mx ((*v)[i]);
1107 }
1108
1109 template<typename T>
1110 void
1111 gt_ggc_mx (vec<T, va_gc_atomic, vl_embed> *v ATTRIBUTE_UNUSED)
1112 {
1113 /* Nothing to do. Vectors of atomic types wrt GC do not need to
1114 be traversed. */
1115 }
1116
1117
1118 /* PCH support for vec<T, A, vl_embed>. */
1119
1120 template<typename T, typename A>
1121 void
1122 gt_pch_nx (vec<T, A, vl_embed> *v)
1123 {
1124 extern void gt_pch_nx (T &);
1125 for (unsigned i = 0; i < v->length (); i++)
1126 gt_pch_nx ((*v)[i]);
1127 }
1128
1129 template<typename T, typename A>
1130 void
1131 gt_pch_nx (vec<T *, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1132 {
1133 for (unsigned i = 0; i < v->length (); i++)
1134 op (&((*v)[i]), cookie);
1135 }
1136
1137 template<typename T, typename A>
1138 void
1139 gt_pch_nx (vec<T, A, vl_embed> *v, gt_pointer_operator op, void *cookie)
1140 {
1141 extern void gt_pch_nx (T *, gt_pointer_operator, void *);
1142 for (unsigned i = 0; i < v->length (); i++)
1143 gt_pch_nx (&((*v)[i]), op, cookie);
1144 }
1145
1146
1147 /* Space efficient vector. These vectors can grow dynamically and are
1148 allocated together with their control data. They are suited to be
1149 included in data structures. Prior to initial allocation, they
1150 only take a single word of storage.
1151
1152 These vectors are implemented as a pointer to an embeddable vector.
1153 The semantics allow for this pointer to be NULL to represent empty
1154 vectors. This way, empty vectors occupy minimal space in the
1155 structure containing them.
1156
1157 Properties:
1158
1159 - The whole vector and control data are allocated in a single
1160 contiguous block.
1161 - The whole vector may be re-allocated.
1162 - Vector data may grow and shrink.
1163 - Access and manipulation requires a pointer test and
1164 indirection.
1165 - It requires 1 word of storage (prior to vector allocation).
1166
1167
1168 Limitations:
1169
1170 These vectors must be PODs because they are stored in unions.
1171 (http://en.wikipedia.org/wiki/Plain_old_data_structures).
1172 As long as we use C++03, we cannot have constructors nor
1173 destructors in classes that are stored in unions. */
1174
1175 template<typename T>
1176 struct vec<T, va_heap, vl_ptr>
1177 {
1178 public:
1179 /* Memory allocation and deallocation for the embedded vector.
1180 Needed because we cannot have proper ctors/dtors defined. */
1181 void create (unsigned nelems CXX_MEM_STAT_INFO);
1182 void release (void);
1183
1184 /* Vector operations. */
1185 bool exists (void) const
1186 { return m_vec != NULL; }
1187
1188 bool is_empty (void) const
1189 { return m_vec ? m_vec->is_empty () : true; }
1190
1191 unsigned length (void) const
1192 { return m_vec ? m_vec->length () : 0; }
1193
1194 T *address (void)
1195 { return m_vec ? m_vec->m_vecdata : NULL; }
1196
1197 const T *address (void) const
1198 { return m_vec ? m_vec->m_vecdata : NULL; }
1199
1200 T *begin () { return address (); }
1201 const T *begin () const { return address (); }
1202 T *end () { return begin () + length (); }
1203 const T *end () const { return begin () + length (); }
1204 const T &operator[] (unsigned ix) const
1205 { return (*m_vec)[ix]; }
1206
1207 bool operator!=(const vec &other) const
1208 { return !(*this == other); }
1209
1210 bool operator==(const vec &other) const
1211 { return address () == other.address (); }
1212
1213 T &operator[] (unsigned ix)
1214 { return (*m_vec)[ix]; }
1215
1216 T &last (void)
1217 { return m_vec->last (); }
1218
1219 bool space (int nelems) const
1220 { return m_vec ? m_vec->space (nelems) : nelems == 0; }
1221
1222 bool iterate (unsigned ix, T *p) const;
1223 bool iterate (unsigned ix, T **p) const;
1224 vec copy (ALONE_CXX_MEM_STAT_INFO) const;
1225 bool reserve (unsigned, bool = false CXX_MEM_STAT_INFO);
1226 bool reserve_exact (unsigned CXX_MEM_STAT_INFO);
1227 void splice (const vec &);
1228 void safe_splice (const vec & CXX_MEM_STAT_INFO);
1229 T *quick_push (const T &);
1230 T *safe_push (const T &CXX_MEM_STAT_INFO);
1231 T &pop (void);
1232 void truncate (unsigned);
1233 void safe_grow (unsigned CXX_MEM_STAT_INFO);
1234 void safe_grow_cleared (unsigned CXX_MEM_STAT_INFO);
1235 void quick_grow (unsigned);
1236 void quick_grow_cleared (unsigned);
1237 void quick_insert (unsigned, const T &);
1238 void safe_insert (unsigned, const T & CXX_MEM_STAT_INFO);
1239 void ordered_remove (unsigned);
1240 void unordered_remove (unsigned);
1241 void block_remove (unsigned, unsigned);
1242 void qsort (int (*) (const void *, const void *));
1243 T *bsearch (const void *key, int (*compar)(const void *, const void *));
1244 unsigned lower_bound (T, bool (*)(const T &, const T &)) const;
1245 bool contains (const T &search) const;
1246
1247 bool using_auto_storage () const;
1248
1249 /* FIXME - This field should be private, but we need to cater to
1250 compilers that have stricter notions of PODness for types. */
1251 vec<T, va_heap, vl_embed> *m_vec;
1252 };
1253
1254
1255 /* auto_vec is a subclass of vec that automatically manages creating and
1256 releasing the internal vector. If N is non zero then it has N elements of
1257 internal storage. The default is no internal storage, and you probably only
1258 want to ask for internal storage for vectors on the stack because if the
1259 size of the vector is larger than the internal storage that space is wasted.
1260 */
1261 template<typename T, size_t N = 0>
1262 class auto_vec : public vec<T, va_heap>
1263 {
1264 public:
1265 auto_vec ()
1266 {
1267 m_auto.embedded_init (MAX (N, 2), 0, 1);
1268 this->m_vec = &m_auto;
1269 }
1270
1271 ~auto_vec ()
1272 {
1273 this->release ();
1274 }
1275
1276 private:
1277 vec<T, va_heap, vl_embed> m_auto;
1278 T m_data[MAX (N - 1, 1)];
1279 };
1280
1281 /* auto_vec is a sub class of vec whose storage is released when it is
1282 destroyed. */
1283 template<typename T>
1284 class auto_vec<T, 0> : public vec<T, va_heap>
1285 {
1286 public:
1287 auto_vec () { this->m_vec = NULL; }
1288 auto_vec (size_t n) { this->create (n); }
1289 ~auto_vec () { this->release (); }
1290 };
1291
1292
1293 /* Allocate heap memory for pointer V and create the internal vector
1294 with space for NELEMS elements. If NELEMS is 0, the internal
1295 vector is initialized to empty. */
1296
1297 template<typename T>
1298 inline void
1299 vec_alloc (vec<T> *&v, unsigned nelems CXX_MEM_STAT_INFO)
1300 {
1301 v = new vec<T>;
1302 v->create (nelems PASS_MEM_STAT);
1303 }
1304
1305
1306 /* Conditionally allocate heap memory for VEC and its internal vector. */
1307
1308 template<typename T>
1309 inline void
1310 vec_check_alloc (vec<T, va_heap> *&vec, unsigned nelems CXX_MEM_STAT_INFO)
1311 {
1312 if (!vec)
1313 vec_alloc (vec, nelems PASS_MEM_STAT);
1314 }
1315
1316
1317 /* Free the heap memory allocated by vector V and set it to NULL. */
1318
1319 template<typename T>
1320 inline void
1321 vec_free (vec<T> *&v)
1322 {
1323 if (v == NULL)
1324 return;
1325
1326 v->release ();
1327 delete v;
1328 v = NULL;
1329 }
1330
1331
1332 /* Return iteration condition and update PTR to point to the IX'th
1333 element of this vector. Use this to iterate over the elements of a
1334 vector as follows,
1335
1336 for (ix = 0; v.iterate (ix, &ptr); ix++)
1337 continue; */
1338
1339 template<typename T>
1340 inline bool
1341 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T *ptr) const
1342 {
1343 if (m_vec)
1344 return m_vec->iterate (ix, ptr);
1345 else
1346 {
1347 *ptr = 0;
1348 return false;
1349 }
1350 }
1351
1352
1353 /* Return iteration condition and update *PTR to point to the
1354 IX'th element of this vector. Use this to iterate over the
1355 elements of a vector as follows,
1356
1357 for (ix = 0; v->iterate (ix, &ptr); ix++)
1358 continue;
1359
1360 This variant is for vectors of objects. */
1361
1362 template<typename T>
1363 inline bool
1364 vec<T, va_heap, vl_ptr>::iterate (unsigned ix, T **ptr) const
1365 {
1366 if (m_vec)
1367 return m_vec->iterate (ix, ptr);
1368 else
1369 {
1370 *ptr = 0;
1371 return false;
1372 }
1373 }
1374
1375
1376 /* Convenience macro for forward iteration. */
1377 #define FOR_EACH_VEC_ELT(V, I, P) \
1378 for (I = 0; (V).iterate ((I), &(P)); ++(I))
1379
1380 #define FOR_EACH_VEC_SAFE_ELT(V, I, P) \
1381 for (I = 0; vec_safe_iterate ((V), (I), &(P)); ++(I))
1382
1383 /* Likewise, but start from FROM rather than 0. */
1384 #define FOR_EACH_VEC_ELT_FROM(V, I, P, FROM) \
1385 for (I = (FROM); (V).iterate ((I), &(P)); ++(I))
1386
1387 /* Convenience macro for reverse iteration. */
1388 #define FOR_EACH_VEC_ELT_REVERSE(V, I, P) \
1389 for (I = (V).length () - 1; \
1390 (V).iterate ((I), &(P)); \
1391 (I)--)
1392
1393 #define FOR_EACH_VEC_SAFE_ELT_REVERSE(V, I, P) \
1394 for (I = vec_safe_length (V) - 1; \
1395 vec_safe_iterate ((V), (I), &(P)); \
1396 (I)--)
1397
1398
1399 /* Return a copy of this vector. */
1400
1401 template<typename T>
1402 inline vec<T, va_heap, vl_ptr>
1403 vec<T, va_heap, vl_ptr>::copy (ALONE_MEM_STAT_DECL) const
1404 {
1405 vec<T, va_heap, vl_ptr> new_vec = vNULL;
1406 if (length ())
1407 new_vec.m_vec = m_vec->copy ();
1408 return new_vec;
1409 }
1410
1411
1412 /* Ensure that the vector has at least RESERVE slots available (if
1413 EXACT is false), or exactly RESERVE slots available (if EXACT is
1414 true).
1415
1416 This may create additional headroom if EXACT is false.
1417
1418 Note that this can cause the embedded vector to be reallocated.
1419 Returns true iff reallocation actually occurred. */
1420
1421 template<typename T>
1422 inline bool
1423 vec<T, va_heap, vl_ptr>::reserve (unsigned nelems, bool exact MEM_STAT_DECL)
1424 {
1425 if (space (nelems))
1426 return false;
1427
1428 /* For now play a game with va_heap::reserve to hide our auto storage if any,
1429 this is necessary because it doesn't have enough information to know the
1430 embedded vector is in auto storage, and so should not be freed. */
1431 vec<T, va_heap, vl_embed> *oldvec = m_vec;
1432 unsigned int oldsize = 0;
1433 bool handle_auto_vec = m_vec && using_auto_storage ();
1434 if (handle_auto_vec)
1435 {
1436 m_vec = NULL;
1437 oldsize = oldvec->length ();
1438 nelems += oldsize;
1439 }
1440
1441 va_heap::reserve (m_vec, nelems, exact PASS_MEM_STAT);
1442 if (handle_auto_vec)
1443 {
1444 memcpy (m_vec->address (), oldvec->address (), sizeof (T) * oldsize);
1445 m_vec->m_vecpfx.m_num = oldsize;
1446 }
1447
1448 return true;
1449 }
1450
1451
1452 /* Ensure that this vector has exactly NELEMS slots available. This
1453 will not create additional headroom. Note this can cause the
1454 embedded vector to be reallocated. Returns true iff reallocation
1455 actually occurred. */
1456
1457 template<typename T>
1458 inline bool
1459 vec<T, va_heap, vl_ptr>::reserve_exact (unsigned nelems MEM_STAT_DECL)
1460 {
1461 return reserve (nelems, true PASS_MEM_STAT);
1462 }
1463
1464
1465 /* Create the internal vector and reserve NELEMS for it. This is
1466 exactly like vec::reserve, but the internal vector is
1467 unconditionally allocated from scratch. The old one, if it
1468 existed, is lost. */
1469
1470 template<typename T>
1471 inline void
1472 vec<T, va_heap, vl_ptr>::create (unsigned nelems MEM_STAT_DECL)
1473 {
1474 m_vec = NULL;
1475 if (nelems > 0)
1476 reserve_exact (nelems PASS_MEM_STAT);
1477 }
1478
1479
1480 /* Free the memory occupied by the embedded vector. */
1481
1482 template<typename T>
1483 inline void
1484 vec<T, va_heap, vl_ptr>::release (void)
1485 {
1486 if (!m_vec)
1487 return;
1488
1489 if (using_auto_storage ())
1490 {
1491 m_vec->m_vecpfx.m_num = 0;
1492 return;
1493 }
1494
1495 va_heap::release (m_vec);
1496 }
1497
1498 /* Copy the elements from SRC to the end of this vector as if by memcpy.
1499 SRC and this vector must be allocated with the same memory
1500 allocation mechanism. This vector is assumed to have sufficient
1501 headroom available. */
1502
1503 template<typename T>
1504 inline void
1505 vec<T, va_heap, vl_ptr>::splice (const vec<T, va_heap, vl_ptr> &src)
1506 {
1507 if (src.m_vec)
1508 m_vec->splice (*(src.m_vec));
1509 }
1510
1511
1512 /* Copy the elements in SRC to the end of this vector as if by memcpy.
1513 SRC and this vector must be allocated with the same mechanism.
1514 If there is not enough headroom in this vector, it will be reallocated
1515 as needed. */
1516
1517 template<typename T>
1518 inline void
1519 vec<T, va_heap, vl_ptr>::safe_splice (const vec<T, va_heap, vl_ptr> &src
1520 MEM_STAT_DECL)
1521 {
1522 if (src.length ())
1523 {
1524 reserve_exact (src.length ());
1525 splice (src);
1526 }
1527 }
1528
1529
1530 /* Push OBJ (a new element) onto the end of the vector. There must be
1531 sufficient space in the vector. Return a pointer to the slot
1532 where OBJ was inserted. */
1533
1534 template<typename T>
1535 inline T *
1536 vec<T, va_heap, vl_ptr>::quick_push (const T &obj)
1537 {
1538 return m_vec->quick_push (obj);
1539 }
1540
1541
1542 /* Push a new element OBJ onto the end of this vector. Reallocates
1543 the embedded vector, if needed. Return a pointer to the slot where
1544 OBJ was inserted. */
1545
1546 template<typename T>
1547 inline T *
1548 vec<T, va_heap, vl_ptr>::safe_push (const T &obj MEM_STAT_DECL)
1549 {
1550 reserve (1, false PASS_MEM_STAT);
1551 return quick_push (obj);
1552 }
1553
1554
1555 /* Pop and return the last element off the end of the vector. */
1556
1557 template<typename T>
1558 inline T &
1559 vec<T, va_heap, vl_ptr>::pop (void)
1560 {
1561 return m_vec->pop ();
1562 }
1563
1564
1565 /* Set the length of the vector to LEN. The new length must be less
1566 than or equal to the current length. This is an O(1) operation. */
1567
1568 template<typename T>
1569 inline void
1570 vec<T, va_heap, vl_ptr>::truncate (unsigned size)
1571 {
1572 if (m_vec)
1573 m_vec->truncate (size);
1574 else
1575 gcc_checking_assert (size == 0);
1576 }
1577
1578
1579 /* Grow the vector to a specific length. LEN must be as long or
1580 longer than the current length. The new elements are
1581 uninitialized. Reallocate the internal vector, if needed. */
1582
1583 template<typename T>
1584 inline void
1585 vec<T, va_heap, vl_ptr>::safe_grow (unsigned len MEM_STAT_DECL)
1586 {
1587 unsigned oldlen = length ();
1588 gcc_checking_assert (oldlen <= len);
1589 reserve_exact (len - oldlen PASS_MEM_STAT);
1590 if (m_vec)
1591 m_vec->quick_grow (len);
1592 else
1593 gcc_checking_assert (len == 0);
1594 }
1595
1596
1597 /* Grow the embedded vector to a specific length. LEN must be as
1598 long or longer than the current length. The new elements are
1599 initialized to zero. Reallocate the internal vector, if needed. */
1600
1601 template<typename T>
1602 inline void
1603 vec<T, va_heap, vl_ptr>::safe_grow_cleared (unsigned len MEM_STAT_DECL)
1604 {
1605 unsigned oldlen = length ();
1606 safe_grow (len PASS_MEM_STAT);
1607 memset (&(address ()[oldlen]), 0, sizeof (T) * (len - oldlen));
1608 }
1609
1610
1611 /* Same as vec::safe_grow but without reallocation of the internal vector.
1612 If the vector cannot be extended, a runtime assertion will be triggered. */
1613
1614 template<typename T>
1615 inline void
1616 vec<T, va_heap, vl_ptr>::quick_grow (unsigned len)
1617 {
1618 gcc_checking_assert (m_vec);
1619 m_vec->quick_grow (len);
1620 }
1621
1622
1623 /* Same as vec::quick_grow_cleared but without reallocation of the
1624 internal vector. If the vector cannot be extended, a runtime
1625 assertion will be triggered. */
1626
1627 template<typename T>
1628 inline void
1629 vec<T, va_heap, vl_ptr>::quick_grow_cleared (unsigned len)
1630 {
1631 gcc_checking_assert (m_vec);
1632 m_vec->quick_grow_cleared (len);
1633 }
1634
1635
1636 /* Insert an element, OBJ, at the IXth position of this vector. There
1637 must be sufficient space. */
1638
1639 template<typename T>
1640 inline void
1641 vec<T, va_heap, vl_ptr>::quick_insert (unsigned ix, const T &obj)
1642 {
1643 m_vec->quick_insert (ix, obj);
1644 }
1645
1646
1647 /* Insert an element, OBJ, at the IXth position of the vector.
1648 Reallocate the embedded vector, if necessary. */
1649
1650 template<typename T>
1651 inline void
1652 vec<T, va_heap, vl_ptr>::safe_insert (unsigned ix, const T &obj MEM_STAT_DECL)
1653 {
1654 reserve (1, false PASS_MEM_STAT);
1655 quick_insert (ix, obj);
1656 }
1657
1658
1659 /* Remove an element from the IXth position of this vector. Ordering of
1660 remaining elements is preserved. This is an O(N) operation due to
1661 a memmove. */
1662
1663 template<typename T>
1664 inline void
1665 vec<T, va_heap, vl_ptr>::ordered_remove (unsigned ix)
1666 {
1667 m_vec->ordered_remove (ix);
1668 }
1669
1670
1671 /* Remove an element from the IXth position of this vector. Ordering
1672 of remaining elements is destroyed. This is an O(1) operation. */
1673
1674 template<typename T>
1675 inline void
1676 vec<T, va_heap, vl_ptr>::unordered_remove (unsigned ix)
1677 {
1678 m_vec->unordered_remove (ix);
1679 }
1680
1681
1682 /* Remove LEN elements starting at the IXth. Ordering is retained.
1683 This is an O(N) operation due to memmove. */
1684
1685 template<typename T>
1686 inline void
1687 vec<T, va_heap, vl_ptr>::block_remove (unsigned ix, unsigned len)
1688 {
1689 m_vec->block_remove (ix, len);
1690 }
1691
1692
1693 /* Sort the contents of this vector with qsort. CMP is the comparison
1694 function to pass to qsort. */
1695
1696 template<typename T>
1697 inline void
1698 vec<T, va_heap, vl_ptr>::qsort (int (*cmp) (const void *, const void *))
1699 {
1700 if (m_vec)
1701 m_vec->qsort (cmp);
1702 }
1703
1704
1705 /* Search the contents of the sorted vector with a binary search.
1706 CMP is the comparison function to pass to bsearch. */
1707
1708 template<typename T>
1709 inline T *
1710 vec<T, va_heap, vl_ptr>::bsearch (const void *key,
1711 int (*cmp) (const void *, const void *))
1712 {
1713 if (m_vec)
1714 return m_vec->bsearch (key, cmp);
1715 return NULL;
1716 }
1717
1718
1719 /* Find and return the first position in which OBJ could be inserted
1720 without changing the ordering of this vector. LESSTHAN is a
1721 function that returns true if the first argument is strictly less
1722 than the second. */
1723
1724 template<typename T>
1725 inline unsigned
1726 vec<T, va_heap, vl_ptr>::lower_bound (T obj,
1727 bool (*lessthan)(const T &, const T &))
1728 const
1729 {
1730 return m_vec ? m_vec->lower_bound (obj, lessthan) : 0;
1731 }
1732
1733 /* Return true if SEARCH is an element of V. Note that this is O(N) in the
1734 size of the vector and so should be used with care. */
1735
1736 template<typename T>
1737 inline bool
1738 vec<T, va_heap, vl_ptr>::contains (const T &search) const
1739 {
1740 return m_vec ? m_vec->contains (search) : false;
1741 }
1742
1743 template<typename T>
1744 inline bool
1745 vec<T, va_heap, vl_ptr>::using_auto_storage () const
1746 {
1747 return m_vec->m_vecpfx.m_using_auto_storage;
1748 }
1749
1750 /* Release VEC and call release of all element vectors. */
1751
1752 template<typename T>
1753 inline void
1754 release_vec_vec (vec<vec<T> > &vec)
1755 {
1756 for (unsigned i = 0; i < vec.length (); i++)
1757 vec[i].release ();
1758
1759 vec.release ();
1760 }
1761
1762 #if (GCC_VERSION >= 3000)
1763 # pragma GCC poison m_vec m_vecpfx m_vecdata
1764 #endif
1765
1766 #endif // GCC_VEC_H