* doc/invoke.texi (Warning Options): Document -Winvalid-memory-model.
[gcc.git] / gcc / wide-int.cc
1 /* Operations with very long integers.
2 Copyright (C) 2012-2016 Free Software Foundation, Inc.
3 Contributed by Kenneth Zadeck <zadeck@naturalbridge.com>
4
5 This file is part of GCC.
6
7 GCC is free software; you can redistribute it and/or modify it
8 under the terms of the GNU General Public License as published by the
9 Free Software Foundation; either version 3, or (at your option) any
10 later version.
11
12 GCC is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License
15 for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with GCC; see the file COPYING3. If not see
19 <http://www.gnu.org/licenses/>. */
20
21 #include "config.h"
22 #include "system.h"
23 #include "coretypes.h"
24 #include "tm.h"
25 #include "tree.h"
26
27
28 #define HOST_BITS_PER_HALF_WIDE_INT 32
29 #if HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_LONG
30 # define HOST_HALF_WIDE_INT long
31 #elif HOST_BITS_PER_HALF_WIDE_INT == HOST_BITS_PER_INT
32 # define HOST_HALF_WIDE_INT int
33 #else
34 #error Please add support for HOST_HALF_WIDE_INT
35 #endif
36
37 #define W_TYPE_SIZE HOST_BITS_PER_WIDE_INT
38 /* Do not include longlong.h when compiler is clang-based. See PR61146. */
39 #if GCC_VERSION >= 3000 && (W_TYPE_SIZE == 32 || defined (__SIZEOF_INT128__)) && !defined(__clang__)
40 typedef unsigned HOST_HALF_WIDE_INT UHWtype;
41 typedef unsigned HOST_WIDE_INT UWtype;
42 typedef unsigned int UQItype __attribute__ ((mode (QI)));
43 typedef unsigned int USItype __attribute__ ((mode (SI)));
44 typedef unsigned int UDItype __attribute__ ((mode (DI)));
45 #if W_TYPE_SIZE == 32
46 typedef unsigned int UDWtype __attribute__ ((mode (DI)));
47 #else
48 typedef unsigned int UDWtype __attribute__ ((mode (TI)));
49 #endif
50 #include "longlong.h"
51 #endif
52
53 static const HOST_WIDE_INT zeros[WIDE_INT_MAX_ELTS] = {};
54
55 /*
56 * Internal utilities.
57 */
58
59 /* Quantities to deal with values that hold half of a wide int. Used
60 in multiply and divide. */
61 #define HALF_INT_MASK (((HOST_WIDE_INT) 1 << HOST_BITS_PER_HALF_WIDE_INT) - 1)
62
63 #define BLOCK_OF(TARGET) ((TARGET) / HOST_BITS_PER_WIDE_INT)
64 #define BLOCKS_NEEDED(PREC) \
65 (PREC ? (((PREC) + HOST_BITS_PER_WIDE_INT - 1) / HOST_BITS_PER_WIDE_INT) : 1)
66 #define SIGN_MASK(X) ((HOST_WIDE_INT) (X) < 0 ? -1 : 0)
67
68 /* Return the value a VAL[I] if I < LEN, otherwise, return 0 or -1
69 based on the top existing bit of VAL. */
70
71 static unsigned HOST_WIDE_INT
72 safe_uhwi (const HOST_WIDE_INT *val, unsigned int len, unsigned int i)
73 {
74 return i < len ? val[i] : val[len - 1] < 0 ? (HOST_WIDE_INT) -1 : 0;
75 }
76
77 /* Convert the integer in VAL to canonical form, returning its new length.
78 LEN is the number of blocks currently in VAL and PRECISION is the number
79 of bits in the integer it represents.
80
81 This function only changes the representation, not the value. */
82 static unsigned int
83 canonize (HOST_WIDE_INT *val, unsigned int len, unsigned int precision)
84 {
85 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
86 HOST_WIDE_INT top;
87 int i;
88
89 if (len > blocks_needed)
90 len = blocks_needed;
91
92 if (len == 1)
93 return len;
94
95 top = val[len - 1];
96 if (len * HOST_BITS_PER_WIDE_INT > precision)
97 val[len - 1] = top = sext_hwi (top, precision % HOST_BITS_PER_WIDE_INT);
98 if (top != 0 && top != (HOST_WIDE_INT)-1)
99 return len;
100
101 /* At this point we know that the top is either 0 or -1. Find the
102 first block that is not a copy of this. */
103 for (i = len - 2; i >= 0; i--)
104 {
105 HOST_WIDE_INT x = val[i];
106 if (x != top)
107 {
108 if (SIGN_MASK (x) == top)
109 return i + 1;
110
111 /* We need an extra block because the top bit block i does
112 not match the extension. */
113 return i + 2;
114 }
115 }
116
117 /* The number is 0 or -1. */
118 return 1;
119 }
120
121 /*
122 * Conversion routines in and out of wide_int.
123 */
124
125 /* Copy XLEN elements from XVAL to VAL. If NEED_CANON, canonize the
126 result for an integer with precision PRECISION. Return the length
127 of VAL (after any canonization. */
128 unsigned int
129 wi::from_array (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
130 unsigned int xlen, unsigned int precision, bool need_canon)
131 {
132 for (unsigned i = 0; i < xlen; i++)
133 val[i] = xval[i];
134 return need_canon ? canonize (val, xlen, precision) : xlen;
135 }
136
137 /* Construct a wide int from a buffer of length LEN. BUFFER will be
138 read according to byte endianess and word endianess of the target.
139 Only the lower BUFFER_LEN bytes of the result are set; the remaining
140 high bytes are cleared. */
141 wide_int
142 wi::from_buffer (const unsigned char *buffer, unsigned int buffer_len)
143 {
144 unsigned int precision = buffer_len * BITS_PER_UNIT;
145 wide_int result = wide_int::create (precision);
146 unsigned int words = buffer_len / UNITS_PER_WORD;
147
148 /* We have to clear all the bits ourself, as we merely or in values
149 below. */
150 unsigned int len = BLOCKS_NEEDED (precision);
151 HOST_WIDE_INT *val = result.write_val ();
152 for (unsigned int i = 0; i < len; ++i)
153 val[i] = 0;
154
155 for (unsigned int byte = 0; byte < buffer_len; byte++)
156 {
157 unsigned int offset;
158 unsigned int index;
159 unsigned int bitpos = byte * BITS_PER_UNIT;
160 unsigned HOST_WIDE_INT value;
161
162 if (buffer_len > UNITS_PER_WORD)
163 {
164 unsigned int word = byte / UNITS_PER_WORD;
165
166 if (WORDS_BIG_ENDIAN)
167 word = (words - 1) - word;
168
169 offset = word * UNITS_PER_WORD;
170
171 if (BYTES_BIG_ENDIAN)
172 offset += (UNITS_PER_WORD - 1) - (byte % UNITS_PER_WORD);
173 else
174 offset += byte % UNITS_PER_WORD;
175 }
176 else
177 offset = BYTES_BIG_ENDIAN ? (buffer_len - 1) - byte : byte;
178
179 value = (unsigned HOST_WIDE_INT) buffer[offset];
180
181 index = bitpos / HOST_BITS_PER_WIDE_INT;
182 val[index] |= value << (bitpos % HOST_BITS_PER_WIDE_INT);
183 }
184
185 result.set_len (canonize (val, len, precision));
186
187 return result;
188 }
189
190 /* Sets RESULT from X, the sign is taken according to SGN. */
191 void
192 wi::to_mpz (const wide_int_ref &x, mpz_t result, signop sgn)
193 {
194 int len = x.get_len ();
195 const HOST_WIDE_INT *v = x.get_val ();
196 int excess = len * HOST_BITS_PER_WIDE_INT - x.get_precision ();
197
198 if (wi::neg_p (x, sgn))
199 {
200 /* We use ones complement to avoid -x80..0 edge case that -
201 won't work on. */
202 HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
203 for (int i = 0; i < len; i++)
204 t[i] = ~v[i];
205 if (excess > 0)
206 t[len - 1] = (unsigned HOST_WIDE_INT) t[len - 1] << excess >> excess;
207 mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
208 mpz_com (result, result);
209 }
210 else if (excess > 0)
211 {
212 HOST_WIDE_INT *t = XALLOCAVEC (HOST_WIDE_INT, len);
213 for (int i = 0; i < len - 1; i++)
214 t[i] = v[i];
215 t[len - 1] = (unsigned HOST_WIDE_INT) v[len - 1] << excess >> excess;
216 mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, t);
217 }
218 else
219 mpz_import (result, len, -1, sizeof (HOST_WIDE_INT), 0, 0, v);
220 }
221
222 /* Returns X converted to TYPE. If WRAP is true, then out-of-range
223 values of VAL will be wrapped; otherwise, they will be set to the
224 appropriate minimum or maximum TYPE bound. */
225 wide_int
226 wi::from_mpz (const_tree type, mpz_t x, bool wrap)
227 {
228 size_t count, numb;
229 unsigned int prec = TYPE_PRECISION (type);
230 wide_int res = wide_int::create (prec);
231
232 if (!wrap)
233 {
234 mpz_t min, max;
235
236 mpz_init (min);
237 mpz_init (max);
238 get_type_static_bounds (type, min, max);
239
240 if (mpz_cmp (x, min) < 0)
241 mpz_set (x, min);
242 else if (mpz_cmp (x, max) > 0)
243 mpz_set (x, max);
244
245 mpz_clear (min);
246 mpz_clear (max);
247 }
248
249 /* Determine the number of unsigned HOST_WIDE_INTs that are required
250 for representing the absolute value. The code to calculate count is
251 extracted from the GMP manual, section "Integer Import and Export":
252 http://gmplib.org/manual/Integer-Import-and-Export.html */
253 numb = CHAR_BIT * sizeof (HOST_WIDE_INT);
254 count = (mpz_sizeinbase (x, 2) + numb - 1) / numb;
255 HOST_WIDE_INT *val = res.write_val ();
256 /* Read the absolute value.
257
258 Write directly to the wide_int storage if possible, otherwise leave
259 GMP to allocate the memory for us. It might be slightly more efficient
260 to use mpz_tdiv_r_2exp for the latter case, but the situation is
261 pathological and it seems safer to operate on the original mpz value
262 in all cases. */
263 void *valres = mpz_export (count <= WIDE_INT_MAX_ELTS ? val : 0,
264 &count, -1, sizeof (HOST_WIDE_INT), 0, 0, x);
265 if (count < 1)
266 {
267 val[0] = 0;
268 count = 1;
269 }
270 count = MIN (count, BLOCKS_NEEDED (prec));
271 if (valres != val)
272 {
273 memcpy (val, valres, count * sizeof (HOST_WIDE_INT));
274 free (valres);
275 }
276 /* Zero-extend the absolute value to PREC bits. */
277 if (count < BLOCKS_NEEDED (prec) && val[count - 1] < 0)
278 val[count++] = 0;
279 else
280 count = canonize (val, count, prec);
281 res.set_len (count);
282
283 if (mpz_sgn (x) < 0)
284 res = -res;
285
286 return res;
287 }
288
289 /*
290 * Largest and smallest values in a mode.
291 */
292
293 /* Return the largest SGNed number that is representable in PRECISION bits.
294
295 TODO: There is still code from the double_int era that trys to
296 make up for the fact that double int's could not represent the
297 min and max values of all types. This code should be removed
298 because the min and max values can always be represented in
299 wide_ints and int-csts. */
300 wide_int
301 wi::max_value (unsigned int precision, signop sgn)
302 {
303 gcc_checking_assert (precision != 0);
304 if (sgn == UNSIGNED)
305 /* The unsigned max is just all ones. */
306 return shwi (-1, precision);
307 else
308 /* The signed max is all ones except the top bit. This must be
309 explicitly represented. */
310 return mask (precision - 1, false, precision);
311 }
312
313 /* Return the largest SGNed number that is representable in PRECISION bits. */
314 wide_int
315 wi::min_value (unsigned int precision, signop sgn)
316 {
317 gcc_checking_assert (precision != 0);
318 if (sgn == UNSIGNED)
319 return uhwi (0, precision);
320 else
321 /* The signed min is all zeros except the top bit. This must be
322 explicitly represented. */
323 return wi::set_bit_in_zero (precision - 1, precision);
324 }
325
326 /*
327 * Public utilities.
328 */
329
330 /* Convert the number represented by XVAL, XLEN and XPRECISION, which has
331 signedness SGN, to an integer that has PRECISION bits. Store the blocks
332 in VAL and return the number of blocks used.
333
334 This function can handle both extension (PRECISION > XPRECISION)
335 and truncation (PRECISION < XPRECISION). */
336 unsigned int
337 wi::force_to_size (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
338 unsigned int xlen, unsigned int xprecision,
339 unsigned int precision, signop sgn)
340 {
341 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
342 unsigned int len = blocks_needed < xlen ? blocks_needed : xlen;
343 for (unsigned i = 0; i < len; i++)
344 val[i] = xval[i];
345
346 if (precision > xprecision)
347 {
348 unsigned int small_xprecision = xprecision % HOST_BITS_PER_WIDE_INT;
349
350 /* Expanding. */
351 if (sgn == UNSIGNED)
352 {
353 if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
354 val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
355 else if (val[len - 1] < 0)
356 {
357 while (len < BLOCKS_NEEDED (xprecision))
358 val[len++] = -1;
359 if (small_xprecision)
360 val[len - 1] = zext_hwi (val[len - 1], small_xprecision);
361 else
362 val[len++] = 0;
363 }
364 }
365 else
366 {
367 if (small_xprecision && len == BLOCKS_NEEDED (xprecision))
368 val[len - 1] = sext_hwi (val[len - 1], small_xprecision);
369 }
370 }
371 len = canonize (val, len, precision);
372
373 return len;
374 }
375
376 /* This function hides the fact that we cannot rely on the bits beyond
377 the precision. This issue comes up in the relational comparisions
378 where we do allow comparisons of values of different precisions. */
379 static inline HOST_WIDE_INT
380 selt (const HOST_WIDE_INT *a, unsigned int len,
381 unsigned int blocks_needed, unsigned int small_prec,
382 unsigned int index, signop sgn)
383 {
384 HOST_WIDE_INT val;
385 if (index < len)
386 val = a[index];
387 else if (index < blocks_needed || sgn == SIGNED)
388 /* Signed or within the precision. */
389 val = SIGN_MASK (a[len - 1]);
390 else
391 /* Unsigned extension beyond the precision. */
392 val = 0;
393
394 if (small_prec && index == blocks_needed - 1)
395 return (sgn == SIGNED
396 ? sext_hwi (val, small_prec)
397 : zext_hwi (val, small_prec));
398 else
399 return val;
400 }
401
402 /* Find the highest bit represented in a wide int. This will in
403 general have the same value as the sign bit. */
404 static inline HOST_WIDE_INT
405 top_bit_of (const HOST_WIDE_INT *a, unsigned int len, unsigned int prec)
406 {
407 int excess = len * HOST_BITS_PER_WIDE_INT - prec;
408 unsigned HOST_WIDE_INT val = a[len - 1];
409 if (excess > 0)
410 val <<= excess;
411 return val >> (HOST_BITS_PER_WIDE_INT - 1);
412 }
413
414 /*
415 * Comparisons, note that only equality is an operator. The other
416 * comparisons cannot be operators since they are inherently signed or
417 * unsigned and C++ has no such operators.
418 */
419
420 /* Return true if OP0 == OP1. */
421 bool
422 wi::eq_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
423 const HOST_WIDE_INT *op1, unsigned int op1len,
424 unsigned int prec)
425 {
426 int l0 = op0len - 1;
427 unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
428
429 if (op0len != op1len)
430 return false;
431
432 if (op0len == BLOCKS_NEEDED (prec) && small_prec)
433 {
434 /* It does not matter if we zext or sext here, we just have to
435 do both the same way. */
436 if (zext_hwi (op0 [l0], small_prec) != zext_hwi (op1 [l0], small_prec))
437 return false;
438 l0--;
439 }
440
441 while (l0 >= 0)
442 if (op0[l0] != op1[l0])
443 return false;
444 else
445 l0--;
446
447 return true;
448 }
449
450 /* Return true if OP0 < OP1 using signed comparisons. */
451 bool
452 wi::lts_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
453 unsigned int precision,
454 const HOST_WIDE_INT *op1, unsigned int op1len)
455 {
456 HOST_WIDE_INT s0, s1;
457 unsigned HOST_WIDE_INT u0, u1;
458 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
459 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
460 int l = MAX (op0len - 1, op1len - 1);
461
462 /* Only the top block is compared as signed. The rest are unsigned
463 comparisons. */
464 s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
465 s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
466 if (s0 < s1)
467 return true;
468 if (s0 > s1)
469 return false;
470
471 l--;
472 while (l >= 0)
473 {
474 u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
475 u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
476
477 if (u0 < u1)
478 return true;
479 if (u0 > u1)
480 return false;
481 l--;
482 }
483
484 return false;
485 }
486
487 /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
488 signed compares. */
489 int
490 wi::cmps_large (const HOST_WIDE_INT *op0, unsigned int op0len,
491 unsigned int precision,
492 const HOST_WIDE_INT *op1, unsigned int op1len)
493 {
494 HOST_WIDE_INT s0, s1;
495 unsigned HOST_WIDE_INT u0, u1;
496 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
497 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
498 int l = MAX (op0len - 1, op1len - 1);
499
500 /* Only the top block is compared as signed. The rest are unsigned
501 comparisons. */
502 s0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
503 s1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
504 if (s0 < s1)
505 return -1;
506 if (s0 > s1)
507 return 1;
508
509 l--;
510 while (l >= 0)
511 {
512 u0 = selt (op0, op0len, blocks_needed, small_prec, l, SIGNED);
513 u1 = selt (op1, op1len, blocks_needed, small_prec, l, SIGNED);
514
515 if (u0 < u1)
516 return -1;
517 if (u0 > u1)
518 return 1;
519 l--;
520 }
521
522 return 0;
523 }
524
525 /* Return true if OP0 < OP1 using unsigned comparisons. */
526 bool
527 wi::ltu_p_large (const HOST_WIDE_INT *op0, unsigned int op0len,
528 unsigned int precision,
529 const HOST_WIDE_INT *op1, unsigned int op1len)
530 {
531 unsigned HOST_WIDE_INT x0;
532 unsigned HOST_WIDE_INT x1;
533 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
534 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
535 int l = MAX (op0len - 1, op1len - 1);
536
537 while (l >= 0)
538 {
539 x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
540 x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
541 if (x0 < x1)
542 return true;
543 if (x0 > x1)
544 return false;
545 l--;
546 }
547
548 return false;
549 }
550
551 /* Returns -1 if OP0 < OP1, 0 if OP0 == OP1 and 1 if OP0 > OP1 using
552 unsigned compares. */
553 int
554 wi::cmpu_large (const HOST_WIDE_INT *op0, unsigned int op0len,
555 unsigned int precision,
556 const HOST_WIDE_INT *op1, unsigned int op1len)
557 {
558 unsigned HOST_WIDE_INT x0;
559 unsigned HOST_WIDE_INT x1;
560 unsigned int blocks_needed = BLOCKS_NEEDED (precision);
561 unsigned int small_prec = precision & (HOST_BITS_PER_WIDE_INT - 1);
562 int l = MAX (op0len - 1, op1len - 1);
563
564 while (l >= 0)
565 {
566 x0 = selt (op0, op0len, blocks_needed, small_prec, l, UNSIGNED);
567 x1 = selt (op1, op1len, blocks_needed, small_prec, l, UNSIGNED);
568 if (x0 < x1)
569 return -1;
570 if (x0 > x1)
571 return 1;
572 l--;
573 }
574
575 return 0;
576 }
577
578 /*
579 * Extension.
580 */
581
582 /* Sign-extend the number represented by XVAL and XLEN into VAL,
583 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
584 and VAL have PRECISION bits. */
585 unsigned int
586 wi::sext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
587 unsigned int xlen, unsigned int precision, unsigned int offset)
588 {
589 unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
590 /* Extending beyond the precision is a no-op. If we have only stored
591 OFFSET bits or fewer, the rest are already signs. */
592 if (offset >= precision || len >= xlen)
593 {
594 for (unsigned i = 0; i < xlen; ++i)
595 val[i] = xval[i];
596 return xlen;
597 }
598 unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
599 for (unsigned int i = 0; i < len; i++)
600 val[i] = xval[i];
601 if (suboffset > 0)
602 {
603 val[len] = sext_hwi (xval[len], suboffset);
604 len += 1;
605 }
606 return canonize (val, len, precision);
607 }
608
609 /* Zero-extend the number represented by XVAL and XLEN into VAL,
610 starting at OFFSET. Return the number of blocks in VAL. Both XVAL
611 and VAL have PRECISION bits. */
612 unsigned int
613 wi::zext_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
614 unsigned int xlen, unsigned int precision, unsigned int offset)
615 {
616 unsigned int len = offset / HOST_BITS_PER_WIDE_INT;
617 /* Extending beyond the precision is a no-op. If we have only stored
618 OFFSET bits or fewer, and the upper stored bit is zero, then there
619 is nothing to do. */
620 if (offset >= precision || (len >= xlen && xval[xlen - 1] >= 0))
621 {
622 for (unsigned i = 0; i < xlen; ++i)
623 val[i] = xval[i];
624 return xlen;
625 }
626 unsigned int suboffset = offset % HOST_BITS_PER_WIDE_INT;
627 for (unsigned int i = 0; i < len; i++)
628 val[i] = i < xlen ? xval[i] : -1;
629 if (suboffset > 0)
630 val[len] = zext_hwi (len < xlen ? xval[len] : -1, suboffset);
631 else
632 val[len] = 0;
633 return canonize (val, len + 1, precision);
634 }
635
636 /*
637 * Masking, inserting, shifting, rotating.
638 */
639
640 /* Insert WIDTH bits from Y into X starting at START. */
641 wide_int
642 wi::insert (const wide_int &x, const wide_int &y, unsigned int start,
643 unsigned int width)
644 {
645 wide_int result;
646 wide_int mask;
647 wide_int tmp;
648
649 unsigned int precision = x.get_precision ();
650 if (start >= precision)
651 return x;
652
653 gcc_checking_assert (precision >= width);
654
655 if (start + width >= precision)
656 width = precision - start;
657
658 mask = wi::shifted_mask (start, width, false, precision);
659 tmp = wi::lshift (wide_int::from (y, precision, UNSIGNED), start);
660 result = tmp & mask;
661
662 tmp = wi::bit_and_not (x, mask);
663 result = result | tmp;
664
665 return result;
666 }
667
668 /* Copy the number represented by XVAL and XLEN into VAL, setting bit BIT.
669 Return the number of blocks in VAL. Both XVAL and VAL have PRECISION
670 bits. */
671 unsigned int
672 wi::set_bit_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
673 unsigned int xlen, unsigned int precision, unsigned int bit)
674 {
675 unsigned int block = bit / HOST_BITS_PER_WIDE_INT;
676 unsigned int subbit = bit % HOST_BITS_PER_WIDE_INT;
677
678 if (block + 1 >= xlen)
679 {
680 /* The operation either affects the last current block or needs
681 a new block. */
682 unsigned int len = block + 1;
683 for (unsigned int i = 0; i < len; i++)
684 val[i] = safe_uhwi (xval, xlen, i);
685 val[block] |= (unsigned HOST_WIDE_INT) 1 << subbit;
686
687 /* If the bit we just set is at the msb of the block, make sure
688 that any higher bits are zeros. */
689 if (bit + 1 < precision && subbit == HOST_BITS_PER_WIDE_INT - 1)
690 val[len++] = 0;
691 return len;
692 }
693 else
694 {
695 for (unsigned int i = 0; i < xlen; i++)
696 val[i] = xval[i];
697 val[block] |= (unsigned HOST_WIDE_INT) 1 << subbit;
698 return canonize (val, xlen, precision);
699 }
700 }
701
702 /* bswap THIS. */
703 wide_int
704 wide_int_storage::bswap () const
705 {
706 wide_int result = wide_int::create (precision);
707 unsigned int i, s;
708 unsigned int len = BLOCKS_NEEDED (precision);
709 unsigned int xlen = get_len ();
710 const HOST_WIDE_INT *xval = get_val ();
711 HOST_WIDE_INT *val = result.write_val ();
712
713 /* This is not a well defined operation if the precision is not a
714 multiple of 8. */
715 gcc_assert ((precision & 0x7) == 0);
716
717 for (i = 0; i < len; i++)
718 val[i] = 0;
719
720 /* Only swap the bytes that are not the padding. */
721 for (s = 0; s < precision; s += 8)
722 {
723 unsigned int d = precision - s - 8;
724 unsigned HOST_WIDE_INT byte;
725
726 unsigned int block = s / HOST_BITS_PER_WIDE_INT;
727 unsigned int offset = s & (HOST_BITS_PER_WIDE_INT - 1);
728
729 byte = (safe_uhwi (xval, xlen, block) >> offset) & 0xff;
730
731 block = d / HOST_BITS_PER_WIDE_INT;
732 offset = d & (HOST_BITS_PER_WIDE_INT - 1);
733
734 val[block] |= byte << offset;
735 }
736
737 result.set_len (canonize (val, len, precision));
738 return result;
739 }
740
741 /* Fill VAL with a mask where the lower WIDTH bits are ones and the bits
742 above that up to PREC are zeros. The result is inverted if NEGATE
743 is true. Return the number of blocks in VAL. */
744 unsigned int
745 wi::mask (HOST_WIDE_INT *val, unsigned int width, bool negate,
746 unsigned int prec)
747 {
748 if (width >= prec)
749 {
750 val[0] = negate ? 0 : -1;
751 return 1;
752 }
753 else if (width == 0)
754 {
755 val[0] = negate ? -1 : 0;
756 return 1;
757 }
758
759 unsigned int i = 0;
760 while (i < width / HOST_BITS_PER_WIDE_INT)
761 val[i++] = negate ? 0 : -1;
762
763 unsigned int shift = width & (HOST_BITS_PER_WIDE_INT - 1);
764 if (shift != 0)
765 {
766 HOST_WIDE_INT last = ((unsigned HOST_WIDE_INT) 1 << shift) - 1;
767 val[i++] = negate ? ~last : last;
768 }
769 else
770 val[i++] = negate ? -1 : 0;
771
772 return i;
773 }
774
775 /* Fill VAL with a mask where the lower START bits are zeros, the next WIDTH
776 bits are ones, and the bits above that up to PREC are zeros. The result
777 is inverted if NEGATE is true. Return the number of blocks in VAL. */
778 unsigned int
779 wi::shifted_mask (HOST_WIDE_INT *val, unsigned int start, unsigned int width,
780 bool negate, unsigned int prec)
781 {
782 if (start >= prec || width == 0)
783 {
784 val[0] = negate ? -1 : 0;
785 return 1;
786 }
787
788 if (width > prec - start)
789 width = prec - start;
790 unsigned int end = start + width;
791
792 unsigned int i = 0;
793 while (i < start / HOST_BITS_PER_WIDE_INT)
794 val[i++] = negate ? -1 : 0;
795
796 unsigned int shift = start & (HOST_BITS_PER_WIDE_INT - 1);
797 if (shift)
798 {
799 HOST_WIDE_INT block = ((unsigned HOST_WIDE_INT) 1 << shift) - 1;
800 shift += width;
801 if (shift < HOST_BITS_PER_WIDE_INT)
802 {
803 /* case 000111000 */
804 block = ((unsigned HOST_WIDE_INT) 1 << shift) - block - 1;
805 val[i++] = negate ? ~block : block;
806 return i;
807 }
808 else
809 /* ...111000 */
810 val[i++] = negate ? block : ~block;
811 }
812
813 while (i < end / HOST_BITS_PER_WIDE_INT)
814 /* 1111111 */
815 val[i++] = negate ? 0 : -1;
816
817 shift = end & (HOST_BITS_PER_WIDE_INT - 1);
818 if (shift != 0)
819 {
820 /* 000011111 */
821 HOST_WIDE_INT block = ((unsigned HOST_WIDE_INT) 1 << shift) - 1;
822 val[i++] = negate ? ~block : block;
823 }
824 else if (end < prec)
825 val[i++] = negate ? -1 : 0;
826
827 return i;
828 }
829
830 /*
831 * logical operations.
832 */
833
834 /* Set VAL to OP0 & OP1. Return the number of blocks used. */
835 unsigned int
836 wi::and_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
837 unsigned int op0len, const HOST_WIDE_INT *op1,
838 unsigned int op1len, unsigned int prec)
839 {
840 int l0 = op0len - 1;
841 int l1 = op1len - 1;
842 bool need_canon = true;
843
844 unsigned int len = MAX (op0len, op1len);
845 if (l0 > l1)
846 {
847 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
848 if (op1mask == 0)
849 {
850 l0 = l1;
851 len = l1 + 1;
852 }
853 else
854 {
855 need_canon = false;
856 while (l0 > l1)
857 {
858 val[l0] = op0[l0];
859 l0--;
860 }
861 }
862 }
863 else if (l1 > l0)
864 {
865 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
866 if (op0mask == 0)
867 len = l0 + 1;
868 else
869 {
870 need_canon = false;
871 while (l1 > l0)
872 {
873 val[l1] = op1[l1];
874 l1--;
875 }
876 }
877 }
878
879 while (l0 >= 0)
880 {
881 val[l0] = op0[l0] & op1[l0];
882 l0--;
883 }
884
885 if (need_canon)
886 len = canonize (val, len, prec);
887
888 return len;
889 }
890
891 /* Set VAL to OP0 & ~OP1. Return the number of blocks used. */
892 unsigned int
893 wi::and_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
894 unsigned int op0len, const HOST_WIDE_INT *op1,
895 unsigned int op1len, unsigned int prec)
896 {
897 wide_int result;
898 int l0 = op0len - 1;
899 int l1 = op1len - 1;
900 bool need_canon = true;
901
902 unsigned int len = MAX (op0len, op1len);
903 if (l0 > l1)
904 {
905 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
906 if (op1mask != 0)
907 {
908 l0 = l1;
909 len = l1 + 1;
910 }
911 else
912 {
913 need_canon = false;
914 while (l0 > l1)
915 {
916 val[l0] = op0[l0];
917 l0--;
918 }
919 }
920 }
921 else if (l1 > l0)
922 {
923 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
924 if (op0mask == 0)
925 len = l0 + 1;
926 else
927 {
928 need_canon = false;
929 while (l1 > l0)
930 {
931 val[l1] = ~op1[l1];
932 l1--;
933 }
934 }
935 }
936
937 while (l0 >= 0)
938 {
939 val[l0] = op0[l0] & ~op1[l0];
940 l0--;
941 }
942
943 if (need_canon)
944 len = canonize (val, len, prec);
945
946 return len;
947 }
948
949 /* Set VAL to OP0 | OP1. Return the number of blocks used. */
950 unsigned int
951 wi::or_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
952 unsigned int op0len, const HOST_WIDE_INT *op1,
953 unsigned int op1len, unsigned int prec)
954 {
955 wide_int result;
956 int l0 = op0len - 1;
957 int l1 = op1len - 1;
958 bool need_canon = true;
959
960 unsigned int len = MAX (op0len, op1len);
961 if (l0 > l1)
962 {
963 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
964 if (op1mask != 0)
965 {
966 l0 = l1;
967 len = l1 + 1;
968 }
969 else
970 {
971 need_canon = false;
972 while (l0 > l1)
973 {
974 val[l0] = op0[l0];
975 l0--;
976 }
977 }
978 }
979 else if (l1 > l0)
980 {
981 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
982 if (op0mask != 0)
983 len = l0 + 1;
984 else
985 {
986 need_canon = false;
987 while (l1 > l0)
988 {
989 val[l1] = op1[l1];
990 l1--;
991 }
992 }
993 }
994
995 while (l0 >= 0)
996 {
997 val[l0] = op0[l0] | op1[l0];
998 l0--;
999 }
1000
1001 if (need_canon)
1002 len = canonize (val, len, prec);
1003
1004 return len;
1005 }
1006
1007 /* Set VAL to OP0 | ~OP1. Return the number of blocks used. */
1008 unsigned int
1009 wi::or_not_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1010 unsigned int op0len, const HOST_WIDE_INT *op1,
1011 unsigned int op1len, unsigned int prec)
1012 {
1013 wide_int result;
1014 int l0 = op0len - 1;
1015 int l1 = op1len - 1;
1016 bool need_canon = true;
1017
1018 unsigned int len = MAX (op0len, op1len);
1019 if (l0 > l1)
1020 {
1021 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
1022 if (op1mask == 0)
1023 {
1024 l0 = l1;
1025 len = l1 + 1;
1026 }
1027 else
1028 {
1029 need_canon = false;
1030 while (l0 > l1)
1031 {
1032 val[l0] = op0[l0];
1033 l0--;
1034 }
1035 }
1036 }
1037 else if (l1 > l0)
1038 {
1039 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
1040 if (op0mask != 0)
1041 len = l0 + 1;
1042 else
1043 {
1044 need_canon = false;
1045 while (l1 > l0)
1046 {
1047 val[l1] = ~op1[l1];
1048 l1--;
1049 }
1050 }
1051 }
1052
1053 while (l0 >= 0)
1054 {
1055 val[l0] = op0[l0] | ~op1[l0];
1056 l0--;
1057 }
1058
1059 if (need_canon)
1060 len = canonize (val, len, prec);
1061
1062 return len;
1063 }
1064
1065 /* Set VAL to OP0 ^ OP1. Return the number of blocks used. */
1066 unsigned int
1067 wi::xor_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1068 unsigned int op0len, const HOST_WIDE_INT *op1,
1069 unsigned int op1len, unsigned int prec)
1070 {
1071 wide_int result;
1072 int l0 = op0len - 1;
1073 int l1 = op1len - 1;
1074
1075 unsigned int len = MAX (op0len, op1len);
1076 if (l0 > l1)
1077 {
1078 HOST_WIDE_INT op1mask = -top_bit_of (op1, op1len, prec);
1079 while (l0 > l1)
1080 {
1081 val[l0] = op0[l0] ^ op1mask;
1082 l0--;
1083 }
1084 }
1085
1086 if (l1 > l0)
1087 {
1088 HOST_WIDE_INT op0mask = -top_bit_of (op0, op0len, prec);
1089 while (l1 > l0)
1090 {
1091 val[l1] = op0mask ^ op1[l1];
1092 l1--;
1093 }
1094 }
1095
1096 while (l0 >= 0)
1097 {
1098 val[l0] = op0[l0] ^ op1[l0];
1099 l0--;
1100 }
1101
1102 return canonize (val, len, prec);
1103 }
1104
1105 /*
1106 * math
1107 */
1108
1109 /* Set VAL to OP0 + OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1110 whether the result overflows when OP0 and OP1 are treated as having
1111 signedness SGN. Return the number of blocks in VAL. */
1112 unsigned int
1113 wi::add_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1114 unsigned int op0len, const HOST_WIDE_INT *op1,
1115 unsigned int op1len, unsigned int prec,
1116 signop sgn, bool *overflow)
1117 {
1118 unsigned HOST_WIDE_INT o0 = 0;
1119 unsigned HOST_WIDE_INT o1 = 0;
1120 unsigned HOST_WIDE_INT x = 0;
1121 unsigned HOST_WIDE_INT carry = 0;
1122 unsigned HOST_WIDE_INT old_carry = 0;
1123 unsigned HOST_WIDE_INT mask0, mask1;
1124 unsigned int i;
1125
1126 unsigned int len = MAX (op0len, op1len);
1127 mask0 = -top_bit_of (op0, op0len, prec);
1128 mask1 = -top_bit_of (op1, op1len, prec);
1129 /* Add all of the explicitly defined elements. */
1130
1131 for (i = 0; i < len; i++)
1132 {
1133 o0 = i < op0len ? (unsigned HOST_WIDE_INT) op0[i] : mask0;
1134 o1 = i < op1len ? (unsigned HOST_WIDE_INT) op1[i] : mask1;
1135 x = o0 + o1 + carry;
1136 val[i] = x;
1137 old_carry = carry;
1138 carry = carry == 0 ? x < o0 : x <= o0;
1139 }
1140
1141 if (len * HOST_BITS_PER_WIDE_INT < prec)
1142 {
1143 val[len] = mask0 + mask1 + carry;
1144 len++;
1145 if (overflow)
1146 *overflow = false;
1147 }
1148 else if (overflow)
1149 {
1150 unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
1151 if (sgn == SIGNED)
1152 {
1153 unsigned HOST_WIDE_INT x = (val[len - 1] ^ o0) & (val[len - 1] ^ o1);
1154 *overflow = (HOST_WIDE_INT) (x << shift) < 0;
1155 }
1156 else
1157 {
1158 /* Put the MSB of X and O0 and in the top of the HWI. */
1159 x <<= shift;
1160 o0 <<= shift;
1161 if (old_carry)
1162 *overflow = (x <= o0);
1163 else
1164 *overflow = (x < o0);
1165 }
1166 }
1167
1168 return canonize (val, len, prec);
1169 }
1170
1171 /* Subroutines of the multiplication and division operations. Unpack
1172 the first IN_LEN HOST_WIDE_INTs in INPUT into 2 * IN_LEN
1173 HOST_HALF_WIDE_INTs of RESULT. The rest of RESULT is filled by
1174 uncompressing the top bit of INPUT[IN_LEN - 1]. */
1175 static void
1176 wi_unpack (unsigned HOST_HALF_WIDE_INT *result, const HOST_WIDE_INT *input,
1177 unsigned int in_len, unsigned int out_len,
1178 unsigned int prec, signop sgn)
1179 {
1180 unsigned int i;
1181 unsigned int j = 0;
1182 unsigned int small_prec = prec & (HOST_BITS_PER_WIDE_INT - 1);
1183 unsigned int blocks_needed = BLOCKS_NEEDED (prec);
1184 HOST_WIDE_INT mask;
1185
1186 if (sgn == SIGNED)
1187 {
1188 mask = -top_bit_of ((const HOST_WIDE_INT *) input, in_len, prec);
1189 mask &= HALF_INT_MASK;
1190 }
1191 else
1192 mask = 0;
1193
1194 for (i = 0; i < blocks_needed - 1; i++)
1195 {
1196 HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
1197 result[j++] = x;
1198 result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
1199 }
1200
1201 HOST_WIDE_INT x = safe_uhwi (input, in_len, i);
1202 if (small_prec)
1203 {
1204 if (sgn == SIGNED)
1205 x = sext_hwi (x, small_prec);
1206 else
1207 x = zext_hwi (x, small_prec);
1208 }
1209 result[j++] = x;
1210 result[j++] = x >> HOST_BITS_PER_HALF_WIDE_INT;
1211
1212 /* Smear the sign bit. */
1213 while (j < out_len)
1214 result[j++] = mask;
1215 }
1216
1217 /* The inverse of wi_unpack. IN_LEN is the the number of input
1218 blocks. The number of output blocks will be half this amount. */
1219 static void
1220 wi_pack (unsigned HOST_WIDE_INT *result,
1221 const unsigned HOST_HALF_WIDE_INT *input,
1222 unsigned int in_len)
1223 {
1224 unsigned int i = 0;
1225 unsigned int j = 0;
1226
1227 while (i + 2 < in_len)
1228 {
1229 result[j++] = (unsigned HOST_WIDE_INT)input[i]
1230 | ((unsigned HOST_WIDE_INT)input[i + 1]
1231 << HOST_BITS_PER_HALF_WIDE_INT);
1232 i += 2;
1233 }
1234
1235 /* Handle the case where in_len is odd. For this we zero extend. */
1236 if (in_len & 1)
1237 result[j++] = (unsigned HOST_WIDE_INT)input[i];
1238 else
1239 result[j++] = (unsigned HOST_WIDE_INT)input[i]
1240 | ((unsigned HOST_WIDE_INT)input[i + 1] << HOST_BITS_PER_HALF_WIDE_INT);
1241 }
1242
1243 /* Multiply Op1 by Op2. If HIGH is set, only the upper half of the
1244 result is returned.
1245
1246 If HIGH is not set, throw away the upper half after the check is
1247 made to see if it overflows. Unfortunately there is no better way
1248 to check for overflow than to do this. If OVERFLOW is nonnull,
1249 record in *OVERFLOW whether the result overflowed. SGN controls
1250 the signedness and is used to check overflow or if HIGH is set. */
1251 unsigned int
1252 wi::mul_internal (HOST_WIDE_INT *val, const HOST_WIDE_INT *op1val,
1253 unsigned int op1len, const HOST_WIDE_INT *op2val,
1254 unsigned int op2len, unsigned int prec, signop sgn,
1255 bool *overflow, bool high)
1256 {
1257 unsigned HOST_WIDE_INT o0, o1, k, t;
1258 unsigned int i;
1259 unsigned int j;
1260 unsigned int blocks_needed = BLOCKS_NEEDED (prec);
1261 unsigned int half_blocks_needed = blocks_needed * 2;
1262 /* The sizes here are scaled to support a 2x largest mode by 2x
1263 largest mode yielding a 4x largest mode result. This is what is
1264 needed by vpn. */
1265
1266 unsigned HOST_HALF_WIDE_INT
1267 u[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1268 unsigned HOST_HALF_WIDE_INT
1269 v[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1270 /* The '2' in 'R' is because we are internally doing a full
1271 multiply. */
1272 unsigned HOST_HALF_WIDE_INT
1273 r[2 * 4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1274 HOST_WIDE_INT mask = ((HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT) - 1;
1275
1276 /* If the top level routine did not really pass in an overflow, then
1277 just make sure that we never attempt to set it. */
1278 bool needs_overflow = (overflow != 0);
1279 if (needs_overflow)
1280 *overflow = false;
1281
1282 wide_int_ref op1 = wi::storage_ref (op1val, op1len, prec);
1283 wide_int_ref op2 = wi::storage_ref (op2val, op2len, prec);
1284
1285 /* This is a surprisingly common case, so do it first. */
1286 if (op1 == 0 || op2 == 0)
1287 {
1288 val[0] = 0;
1289 return 1;
1290 }
1291
1292 #ifdef umul_ppmm
1293 if (sgn == UNSIGNED)
1294 {
1295 /* If the inputs are single HWIs and the output has room for at
1296 least two HWIs, we can use umul_ppmm directly. */
1297 if (prec >= HOST_BITS_PER_WIDE_INT * 2
1298 && wi::fits_uhwi_p (op1)
1299 && wi::fits_uhwi_p (op2))
1300 {
1301 /* This case never overflows. */
1302 if (high)
1303 {
1304 val[0] = 0;
1305 return 1;
1306 }
1307 umul_ppmm (val[1], val[0], op1.ulow (), op2.ulow ());
1308 if (val[1] < 0 && prec > HOST_BITS_PER_WIDE_INT * 2)
1309 {
1310 val[2] = 0;
1311 return 3;
1312 }
1313 return 1 + (val[1] != 0 || val[0] < 0);
1314 }
1315 /* Likewise if the output is a full single HWI, except that the
1316 upper HWI of the result is only used for determining overflow.
1317 (We handle this case inline when overflow isn't needed.) */
1318 else if (prec == HOST_BITS_PER_WIDE_INT)
1319 {
1320 unsigned HOST_WIDE_INT upper;
1321 umul_ppmm (upper, val[0], op1.ulow (), op2.ulow ());
1322 if (needs_overflow)
1323 *overflow = (upper != 0);
1324 if (high)
1325 val[0] = upper;
1326 return 1;
1327 }
1328 }
1329 #endif
1330
1331 /* Handle multiplications by 1. */
1332 if (op1 == 1)
1333 {
1334 if (high)
1335 {
1336 val[0] = wi::neg_p (op2, sgn) ? -1 : 0;
1337 return 1;
1338 }
1339 for (i = 0; i < op2len; i++)
1340 val[i] = op2val[i];
1341 return op2len;
1342 }
1343 if (op2 == 1)
1344 {
1345 if (high)
1346 {
1347 val[0] = wi::neg_p (op1, sgn) ? -1 : 0;
1348 return 1;
1349 }
1350 for (i = 0; i < op1len; i++)
1351 val[i] = op1val[i];
1352 return op1len;
1353 }
1354
1355 /* If we need to check for overflow, we can only do half wide
1356 multiplies quickly because we need to look at the top bits to
1357 check for the overflow. */
1358 if ((high || needs_overflow)
1359 && (prec <= HOST_BITS_PER_HALF_WIDE_INT))
1360 {
1361 unsigned HOST_WIDE_INT r;
1362
1363 if (sgn == SIGNED)
1364 {
1365 o0 = op1.to_shwi ();
1366 o1 = op2.to_shwi ();
1367 }
1368 else
1369 {
1370 o0 = op1.to_uhwi ();
1371 o1 = op2.to_uhwi ();
1372 }
1373
1374 r = o0 * o1;
1375 if (needs_overflow)
1376 {
1377 if (sgn == SIGNED)
1378 {
1379 if ((HOST_WIDE_INT) r != sext_hwi (r, prec))
1380 *overflow = true;
1381 }
1382 else
1383 {
1384 if ((r >> prec) != 0)
1385 *overflow = true;
1386 }
1387 }
1388 val[0] = high ? r >> prec : r;
1389 return 1;
1390 }
1391
1392 /* We do unsigned mul and then correct it. */
1393 wi_unpack (u, op1val, op1len, half_blocks_needed, prec, SIGNED);
1394 wi_unpack (v, op2val, op2len, half_blocks_needed, prec, SIGNED);
1395
1396 /* The 2 is for a full mult. */
1397 memset (r, 0, half_blocks_needed * 2
1398 * HOST_BITS_PER_HALF_WIDE_INT / CHAR_BIT);
1399
1400 for (j = 0; j < half_blocks_needed; j++)
1401 {
1402 k = 0;
1403 for (i = 0; i < half_blocks_needed; i++)
1404 {
1405 t = ((unsigned HOST_WIDE_INT)u[i] * (unsigned HOST_WIDE_INT)v[j]
1406 + r[i + j] + k);
1407 r[i + j] = t & HALF_INT_MASK;
1408 k = t >> HOST_BITS_PER_HALF_WIDE_INT;
1409 }
1410 r[j + half_blocks_needed] = k;
1411 }
1412
1413 /* We did unsigned math above. For signed we must adjust the
1414 product (assuming we need to see that). */
1415 if (sgn == SIGNED && (high || needs_overflow))
1416 {
1417 unsigned HOST_WIDE_INT b;
1418 if (wi::neg_p (op1))
1419 {
1420 b = 0;
1421 for (i = 0; i < half_blocks_needed; i++)
1422 {
1423 t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
1424 - (unsigned HOST_WIDE_INT)v[i] - b;
1425 r[i + half_blocks_needed] = t & HALF_INT_MASK;
1426 b = t >> (HOST_BITS_PER_WIDE_INT - 1);
1427 }
1428 }
1429 if (wi::neg_p (op2))
1430 {
1431 b = 0;
1432 for (i = 0; i < half_blocks_needed; i++)
1433 {
1434 t = (unsigned HOST_WIDE_INT)r[i + half_blocks_needed]
1435 - (unsigned HOST_WIDE_INT)u[i] - b;
1436 r[i + half_blocks_needed] = t & HALF_INT_MASK;
1437 b = t >> (HOST_BITS_PER_WIDE_INT - 1);
1438 }
1439 }
1440 }
1441
1442 if (needs_overflow)
1443 {
1444 HOST_WIDE_INT top;
1445
1446 /* For unsigned, overflow is true if any of the top bits are set.
1447 For signed, overflow is true if any of the top bits are not equal
1448 to the sign bit. */
1449 if (sgn == UNSIGNED)
1450 top = 0;
1451 else
1452 {
1453 top = r[(half_blocks_needed) - 1];
1454 top = SIGN_MASK (top << (HOST_BITS_PER_WIDE_INT / 2));
1455 top &= mask;
1456 }
1457
1458 for (i = half_blocks_needed; i < half_blocks_needed * 2; i++)
1459 if (((HOST_WIDE_INT)(r[i] & mask)) != top)
1460 *overflow = true;
1461 }
1462
1463 if (high)
1464 {
1465 /* compute [prec] <- ([prec] * [prec]) >> [prec] */
1466 wi_pack ((unsigned HOST_WIDE_INT *) val,
1467 &r[half_blocks_needed], half_blocks_needed);
1468 return canonize (val, blocks_needed, prec);
1469 }
1470 else
1471 {
1472 /* compute [prec] <- ([prec] * [prec]) && ((1 << [prec]) - 1) */
1473 wi_pack ((unsigned HOST_WIDE_INT *) val, r, half_blocks_needed);
1474 return canonize (val, blocks_needed, prec);
1475 }
1476 }
1477
1478 /* Compute the population count of X. */
1479 int
1480 wi::popcount (const wide_int_ref &x)
1481 {
1482 unsigned int i;
1483 int count;
1484
1485 /* The high order block is special if it is the last block and the
1486 precision is not an even multiple of HOST_BITS_PER_WIDE_INT. We
1487 have to clear out any ones above the precision before doing
1488 popcount on this block. */
1489 count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
1490 unsigned int stop = x.len;
1491 if (count < 0)
1492 {
1493 count = popcount_hwi (x.uhigh () << -count);
1494 stop -= 1;
1495 }
1496 else
1497 {
1498 if (x.sign_mask () >= 0)
1499 count = 0;
1500 }
1501
1502 for (i = 0; i < stop; ++i)
1503 count += popcount_hwi (x.val[i]);
1504
1505 return count;
1506 }
1507
1508 /* Set VAL to OP0 - OP1. If OVERFLOW is nonnull, record in *OVERFLOW
1509 whether the result overflows when OP0 and OP1 are treated as having
1510 signedness SGN. Return the number of blocks in VAL. */
1511 unsigned int
1512 wi::sub_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *op0,
1513 unsigned int op0len, const HOST_WIDE_INT *op1,
1514 unsigned int op1len, unsigned int prec,
1515 signop sgn, bool *overflow)
1516 {
1517 unsigned HOST_WIDE_INT o0 = 0;
1518 unsigned HOST_WIDE_INT o1 = 0;
1519 unsigned HOST_WIDE_INT x = 0;
1520 /* We implement subtraction as an in place negate and add. Negation
1521 is just inversion and add 1, so we can do the add of 1 by just
1522 starting the borrow in of the first element at 1. */
1523 unsigned HOST_WIDE_INT borrow = 0;
1524 unsigned HOST_WIDE_INT old_borrow = 0;
1525
1526 unsigned HOST_WIDE_INT mask0, mask1;
1527 unsigned int i;
1528
1529 unsigned int len = MAX (op0len, op1len);
1530 mask0 = -top_bit_of (op0, op0len, prec);
1531 mask1 = -top_bit_of (op1, op1len, prec);
1532
1533 /* Subtract all of the explicitly defined elements. */
1534 for (i = 0; i < len; i++)
1535 {
1536 o0 = i < op0len ? (unsigned HOST_WIDE_INT)op0[i] : mask0;
1537 o1 = i < op1len ? (unsigned HOST_WIDE_INT)op1[i] : mask1;
1538 x = o0 - o1 - borrow;
1539 val[i] = x;
1540 old_borrow = borrow;
1541 borrow = borrow == 0 ? o0 < o1 : o0 <= o1;
1542 }
1543
1544 if (len * HOST_BITS_PER_WIDE_INT < prec)
1545 {
1546 val[len] = mask0 - mask1 - borrow;
1547 len++;
1548 if (overflow)
1549 *overflow = false;
1550 }
1551 else if (overflow)
1552 {
1553 unsigned int shift = -prec % HOST_BITS_PER_WIDE_INT;
1554 if (sgn == SIGNED)
1555 {
1556 unsigned HOST_WIDE_INT x = (o0 ^ o1) & (val[len - 1] ^ o0);
1557 *overflow = (HOST_WIDE_INT) (x << shift) < 0;
1558 }
1559 else
1560 {
1561 /* Put the MSB of X and O0 and in the top of the HWI. */
1562 x <<= shift;
1563 o0 <<= shift;
1564 if (old_borrow)
1565 *overflow = (x >= o0);
1566 else
1567 *overflow = (x > o0);
1568 }
1569 }
1570
1571 return canonize (val, len, prec);
1572 }
1573
1574
1575 /*
1576 * Division and Mod
1577 */
1578
1579 /* Compute B_QUOTIENT and B_REMAINDER from B_DIVIDEND/B_DIVISOR. The
1580 algorithm is a small modification of the algorithm in Hacker's
1581 Delight by Warren, which itself is a small modification of Knuth's
1582 algorithm. M is the number of significant elements of U however
1583 there needs to be at least one extra element of B_DIVIDEND
1584 allocated, N is the number of elements of B_DIVISOR. */
1585 static void
1586 divmod_internal_2 (unsigned HOST_HALF_WIDE_INT *b_quotient,
1587 unsigned HOST_HALF_WIDE_INT *b_remainder,
1588 unsigned HOST_HALF_WIDE_INT *b_dividend,
1589 unsigned HOST_HALF_WIDE_INT *b_divisor,
1590 int m, int n)
1591 {
1592 /* The "digits" are a HOST_HALF_WIDE_INT which the size of half of a
1593 HOST_WIDE_INT and stored in the lower bits of each word. This
1594 algorithm should work properly on both 32 and 64 bit
1595 machines. */
1596 unsigned HOST_WIDE_INT b
1597 = (unsigned HOST_WIDE_INT)1 << HOST_BITS_PER_HALF_WIDE_INT;
1598 unsigned HOST_WIDE_INT qhat; /* Estimate of quotient digit. */
1599 unsigned HOST_WIDE_INT rhat; /* A remainder. */
1600 unsigned HOST_WIDE_INT p; /* Product of two digits. */
1601 HOST_WIDE_INT t, k;
1602 int i, j, s;
1603
1604 /* Single digit divisor. */
1605 if (n == 1)
1606 {
1607 k = 0;
1608 for (j = m - 1; j >= 0; j--)
1609 {
1610 b_quotient[j] = (k * b + b_dividend[j])/b_divisor[0];
1611 k = ((k * b + b_dividend[j])
1612 - ((unsigned HOST_WIDE_INT)b_quotient[j]
1613 * (unsigned HOST_WIDE_INT)b_divisor[0]));
1614 }
1615 b_remainder[0] = k;
1616 return;
1617 }
1618
1619 s = clz_hwi (b_divisor[n-1]) - HOST_BITS_PER_HALF_WIDE_INT; /* CHECK clz */
1620
1621 if (s)
1622 {
1623 /* Normalize B_DIVIDEND and B_DIVISOR. Unlike the published
1624 algorithm, we can overwrite b_dividend and b_divisor, so we do
1625 that. */
1626 for (i = n - 1; i > 0; i--)
1627 b_divisor[i] = (b_divisor[i] << s)
1628 | (b_divisor[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
1629 b_divisor[0] = b_divisor[0] << s;
1630
1631 b_dividend[m] = b_dividend[m-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s);
1632 for (i = m - 1; i > 0; i--)
1633 b_dividend[i] = (b_dividend[i] << s)
1634 | (b_dividend[i-1] >> (HOST_BITS_PER_HALF_WIDE_INT - s));
1635 b_dividend[0] = b_dividend[0] << s;
1636 }
1637
1638 /* Main loop. */
1639 for (j = m - n; j >= 0; j--)
1640 {
1641 qhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) / b_divisor[n-1];
1642 rhat = (b_dividend[j+n] * b + b_dividend[j+n-1]) - qhat * b_divisor[n-1];
1643 again:
1644 if (qhat >= b || qhat * b_divisor[n-2] > b * rhat + b_dividend[j+n-2])
1645 {
1646 qhat -= 1;
1647 rhat += b_divisor[n-1];
1648 if (rhat < b)
1649 goto again;
1650 }
1651
1652 /* Multiply and subtract. */
1653 k = 0;
1654 for (i = 0; i < n; i++)
1655 {
1656 p = qhat * b_divisor[i];
1657 t = b_dividend[i+j] - k - (p & HALF_INT_MASK);
1658 b_dividend[i + j] = t;
1659 k = ((p >> HOST_BITS_PER_HALF_WIDE_INT)
1660 - (t >> HOST_BITS_PER_HALF_WIDE_INT));
1661 }
1662 t = b_dividend[j+n] - k;
1663 b_dividend[j+n] = t;
1664
1665 b_quotient[j] = qhat;
1666 if (t < 0)
1667 {
1668 b_quotient[j] -= 1;
1669 k = 0;
1670 for (i = 0; i < n; i++)
1671 {
1672 t = (HOST_WIDE_INT)b_dividend[i+j] + b_divisor[i] + k;
1673 b_dividend[i+j] = t;
1674 k = t >> HOST_BITS_PER_HALF_WIDE_INT;
1675 }
1676 b_dividend[j+n] += k;
1677 }
1678 }
1679 if (s)
1680 for (i = 0; i < n; i++)
1681 b_remainder[i] = (b_dividend[i] >> s)
1682 | (b_dividend[i+1] << (HOST_BITS_PER_HALF_WIDE_INT - s));
1683 else
1684 for (i = 0; i < n; i++)
1685 b_remainder[i] = b_dividend[i];
1686 }
1687
1688
1689 /* Divide DIVIDEND by DIVISOR, which have signedness SGN, and truncate
1690 the result. If QUOTIENT is nonnull, store the value of the quotient
1691 there and return the number of blocks in it. The return value is
1692 not defined otherwise. If REMAINDER is nonnull, store the value
1693 of the remainder there and store the number of blocks in
1694 *REMAINDER_LEN. If OFLOW is not null, store in *OFLOW whether
1695 the division overflowed. */
1696 unsigned int
1697 wi::divmod_internal (HOST_WIDE_INT *quotient, unsigned int *remainder_len,
1698 HOST_WIDE_INT *remainder,
1699 const HOST_WIDE_INT *dividend_val,
1700 unsigned int dividend_len, unsigned int dividend_prec,
1701 const HOST_WIDE_INT *divisor_val, unsigned int divisor_len,
1702 unsigned int divisor_prec, signop sgn,
1703 bool *oflow)
1704 {
1705 unsigned int dividend_blocks_needed = 2 * BLOCKS_NEEDED (dividend_prec);
1706 unsigned int divisor_blocks_needed = 2 * BLOCKS_NEEDED (divisor_prec);
1707 unsigned HOST_HALF_WIDE_INT
1708 b_quotient[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1709 unsigned HOST_HALF_WIDE_INT
1710 b_remainder[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1711 unsigned HOST_HALF_WIDE_INT
1712 b_dividend[(4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT) + 1];
1713 unsigned HOST_HALF_WIDE_INT
1714 b_divisor[4 * MAX_BITSIZE_MODE_ANY_INT / HOST_BITS_PER_HALF_WIDE_INT];
1715 unsigned int m, n;
1716 bool dividend_neg = false;
1717 bool divisor_neg = false;
1718 bool overflow = false;
1719 wide_int neg_dividend, neg_divisor;
1720
1721 wide_int_ref dividend = wi::storage_ref (dividend_val, dividend_len,
1722 dividend_prec);
1723 wide_int_ref divisor = wi::storage_ref (divisor_val, divisor_len,
1724 divisor_prec);
1725 if (divisor == 0)
1726 overflow = true;
1727
1728 /* The smallest signed number / -1 causes overflow. The dividend_len
1729 check is for speed rather than correctness. */
1730 if (sgn == SIGNED
1731 && dividend_len == BLOCKS_NEEDED (dividend_prec)
1732 && divisor == -1
1733 && wi::only_sign_bit_p (dividend))
1734 overflow = true;
1735
1736 /* Handle the overflow cases. Viewed as unsigned value, the quotient of
1737 (signed min / -1) has the same representation as the orignal dividend.
1738 We have traditionally made division by zero act as division by one,
1739 so there too we use the original dividend. */
1740 if (overflow)
1741 {
1742 if (remainder)
1743 {
1744 *remainder_len = 1;
1745 remainder[0] = 0;
1746 }
1747 if (oflow != 0)
1748 *oflow = true;
1749 if (quotient)
1750 for (unsigned int i = 0; i < dividend_len; ++i)
1751 quotient[i] = dividend_val[i];
1752 return dividend_len;
1753 }
1754
1755 if (oflow)
1756 *oflow = false;
1757
1758 /* Do it on the host if you can. */
1759 if (sgn == SIGNED
1760 && wi::fits_shwi_p (dividend)
1761 && wi::fits_shwi_p (divisor))
1762 {
1763 HOST_WIDE_INT o0 = dividend.to_shwi ();
1764 HOST_WIDE_INT o1 = divisor.to_shwi ();
1765
1766 if (o0 == HOST_WIDE_INT_MIN && o1 == -1)
1767 {
1768 gcc_checking_assert (dividend_prec > HOST_BITS_PER_WIDE_INT);
1769 if (quotient)
1770 {
1771 quotient[0] = HOST_WIDE_INT_MIN;
1772 quotient[1] = 0;
1773 }
1774 if (remainder)
1775 {
1776 remainder[0] = 0;
1777 *remainder_len = 1;
1778 }
1779 return 2;
1780 }
1781 else
1782 {
1783 if (quotient)
1784 quotient[0] = o0 / o1;
1785 if (remainder)
1786 {
1787 remainder[0] = o0 % o1;
1788 *remainder_len = 1;
1789 }
1790 return 1;
1791 }
1792 }
1793
1794 if (sgn == UNSIGNED
1795 && wi::fits_uhwi_p (dividend)
1796 && wi::fits_uhwi_p (divisor))
1797 {
1798 unsigned HOST_WIDE_INT o0 = dividend.to_uhwi ();
1799 unsigned HOST_WIDE_INT o1 = divisor.to_uhwi ();
1800
1801 if (quotient)
1802 quotient[0] = o0 / o1;
1803 if (remainder)
1804 {
1805 remainder[0] = o0 % o1;
1806 *remainder_len = 1;
1807 }
1808 return 1;
1809 }
1810
1811 /* Make the divisor and dividend positive and remember what we
1812 did. */
1813 if (sgn == SIGNED)
1814 {
1815 if (wi::neg_p (dividend))
1816 {
1817 neg_dividend = -dividend;
1818 dividend = neg_dividend;
1819 dividend_neg = true;
1820 }
1821 if (wi::neg_p (divisor))
1822 {
1823 neg_divisor = -divisor;
1824 divisor = neg_divisor;
1825 divisor_neg = true;
1826 }
1827 }
1828
1829 wi_unpack (b_dividend, dividend.get_val (), dividend.get_len (),
1830 dividend_blocks_needed, dividend_prec, sgn);
1831 wi_unpack (b_divisor, divisor.get_val (), divisor.get_len (),
1832 divisor_blocks_needed, divisor_prec, sgn);
1833
1834 m = dividend_blocks_needed;
1835 b_dividend[m] = 0;
1836 while (m > 1 && b_dividend[m - 1] == 0)
1837 m--;
1838
1839 n = divisor_blocks_needed;
1840 while (n > 1 && b_divisor[n - 1] == 0)
1841 n--;
1842
1843 memset (b_quotient, 0, sizeof (b_quotient));
1844
1845 divmod_internal_2 (b_quotient, b_remainder, b_dividend, b_divisor, m, n);
1846
1847 unsigned int quotient_len = 0;
1848 if (quotient)
1849 {
1850 wi_pack ((unsigned HOST_WIDE_INT *) quotient, b_quotient, m);
1851 quotient_len = canonize (quotient, (m + 1) / 2, dividend_prec);
1852 /* The quotient is neg if exactly one of the divisor or dividend is
1853 neg. */
1854 if (dividend_neg != divisor_neg)
1855 quotient_len = wi::sub_large (quotient, zeros, 1, quotient,
1856 quotient_len, dividend_prec,
1857 UNSIGNED, 0);
1858 }
1859
1860 if (remainder)
1861 {
1862 wi_pack ((unsigned HOST_WIDE_INT *) remainder, b_remainder, n);
1863 *remainder_len = canonize (remainder, (n + 1) / 2, dividend_prec);
1864 /* The remainder is always the same sign as the dividend. */
1865 if (dividend_neg)
1866 *remainder_len = wi::sub_large (remainder, zeros, 1, remainder,
1867 *remainder_len, dividend_prec,
1868 UNSIGNED, 0);
1869 }
1870
1871 return quotient_len;
1872 }
1873
1874 /*
1875 * Shifting, rotating and extraction.
1876 */
1877
1878 /* Left shift XVAL by SHIFT and store the result in VAL. Return the
1879 number of blocks in VAL. Both XVAL and VAL have PRECISION bits. */
1880 unsigned int
1881 wi::lshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
1882 unsigned int xlen, unsigned int precision,
1883 unsigned int shift)
1884 {
1885 /* Split the shift into a whole-block shift and a subblock shift. */
1886 unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
1887 unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
1888
1889 /* The whole-block shift fills with zeros. */
1890 unsigned int len = BLOCKS_NEEDED (precision);
1891 for (unsigned int i = 0; i < skip; ++i)
1892 val[i] = 0;
1893
1894 /* It's easier to handle the simple block case specially. */
1895 if (small_shift == 0)
1896 for (unsigned int i = skip; i < len; ++i)
1897 val[i] = safe_uhwi (xval, xlen, i - skip);
1898 else
1899 {
1900 /* The first unfilled output block is a left shift of the first
1901 block in XVAL. The other output blocks contain bits from two
1902 consecutive input blocks. */
1903 unsigned HOST_WIDE_INT carry = 0;
1904 for (unsigned int i = skip; i < len; ++i)
1905 {
1906 unsigned HOST_WIDE_INT x = safe_uhwi (xval, xlen, i - skip);
1907 val[i] = (x << small_shift) | carry;
1908 carry = x >> (-small_shift % HOST_BITS_PER_WIDE_INT);
1909 }
1910 }
1911 return canonize (val, len, precision);
1912 }
1913
1914 /* Right shift XVAL by SHIFT and store the result in VAL. Return the
1915 number of blocks in VAL. The input has XPRECISION bits and the
1916 output has XPRECISION - SHIFT bits. */
1917 static unsigned int
1918 rshift_large_common (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
1919 unsigned int xlen, unsigned int xprecision,
1920 unsigned int shift)
1921 {
1922 /* Split the shift into a whole-block shift and a subblock shift. */
1923 unsigned int skip = shift / HOST_BITS_PER_WIDE_INT;
1924 unsigned int small_shift = shift % HOST_BITS_PER_WIDE_INT;
1925
1926 /* Work out how many blocks are needed to store the significant bits
1927 (excluding the upper zeros or signs). */
1928 unsigned int len = BLOCKS_NEEDED (xprecision - shift);
1929
1930 /* It's easier to handle the simple block case specially. */
1931 if (small_shift == 0)
1932 for (unsigned int i = 0; i < len; ++i)
1933 val[i] = safe_uhwi (xval, xlen, i + skip);
1934 else
1935 {
1936 /* Each output block but the last is a combination of two input blocks.
1937 The last block is a right shift of the last block in XVAL. */
1938 unsigned HOST_WIDE_INT curr = safe_uhwi (xval, xlen, skip);
1939 for (unsigned int i = 0; i < len; ++i)
1940 {
1941 val[i] = curr >> small_shift;
1942 curr = safe_uhwi (xval, xlen, i + skip + 1);
1943 val[i] |= curr << (-small_shift % HOST_BITS_PER_WIDE_INT);
1944 }
1945 }
1946 return len;
1947 }
1948
1949 /* Logically right shift XVAL by SHIFT and store the result in VAL.
1950 Return the number of blocks in VAL. XVAL has XPRECISION bits and
1951 VAL has PRECISION bits. */
1952 unsigned int
1953 wi::lrshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
1954 unsigned int xlen, unsigned int xprecision,
1955 unsigned int precision, unsigned int shift)
1956 {
1957 unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
1958
1959 /* The value we just created has precision XPRECISION - SHIFT.
1960 Zero-extend it to wider precisions. */
1961 if (precision > xprecision - shift)
1962 {
1963 unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
1964 if (small_prec)
1965 val[len - 1] = zext_hwi (val[len - 1], small_prec);
1966 else if (val[len - 1] < 0)
1967 {
1968 /* Add a new block with a zero. */
1969 val[len++] = 0;
1970 return len;
1971 }
1972 }
1973 return canonize (val, len, precision);
1974 }
1975
1976 /* Arithmetically right shift XVAL by SHIFT and store the result in VAL.
1977 Return the number of blocks in VAL. XVAL has XPRECISION bits and
1978 VAL has PRECISION bits. */
1979 unsigned int
1980 wi::arshift_large (HOST_WIDE_INT *val, const HOST_WIDE_INT *xval,
1981 unsigned int xlen, unsigned int xprecision,
1982 unsigned int precision, unsigned int shift)
1983 {
1984 unsigned int len = rshift_large_common (val, xval, xlen, xprecision, shift);
1985
1986 /* The value we just created has precision XPRECISION - SHIFT.
1987 Sign-extend it to wider types. */
1988 if (precision > xprecision - shift)
1989 {
1990 unsigned int small_prec = (xprecision - shift) % HOST_BITS_PER_WIDE_INT;
1991 if (small_prec)
1992 val[len - 1] = sext_hwi (val[len - 1], small_prec);
1993 }
1994 return canonize (val, len, precision);
1995 }
1996
1997 /* Return the number of leading (upper) zeros in X. */
1998 int
1999 wi::clz (const wide_int_ref &x)
2000 {
2001 /* Calculate how many bits there above the highest represented block. */
2002 int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
2003
2004 unsigned HOST_WIDE_INT high = x.uhigh ();
2005 if (count < 0)
2006 /* The upper -COUNT bits of HIGH are not part of the value.
2007 Clear them out. */
2008 high = (high << -count) >> -count;
2009 else if (x.sign_mask () < 0)
2010 /* The upper bit is set, so there are no leading zeros. */
2011 return 0;
2012
2013 /* We don't need to look below HIGH. Either HIGH is nonzero,
2014 or the top bit of the block below is nonzero; clz_hwi is
2015 HOST_BITS_PER_WIDE_INT in the latter case. */
2016 return count + clz_hwi (high);
2017 }
2018
2019 /* Return the number of redundant sign bits in X. (That is, the number
2020 of bits immediately below the sign bit that have the same value as
2021 the sign bit.) */
2022 int
2023 wi::clrsb (const wide_int_ref &x)
2024 {
2025 /* Calculate how many bits there above the highest represented block. */
2026 int count = x.precision - x.len * HOST_BITS_PER_WIDE_INT;
2027
2028 unsigned HOST_WIDE_INT high = x.uhigh ();
2029 unsigned HOST_WIDE_INT mask = -1;
2030 if (count < 0)
2031 {
2032 /* The upper -COUNT bits of HIGH are not part of the value.
2033 Clear them from both MASK and HIGH. */
2034 mask >>= -count;
2035 high &= mask;
2036 }
2037
2038 /* If the top bit is 1, count the number of leading 1s. If the top
2039 bit is zero, count the number of leading zeros. */
2040 if (high > mask / 2)
2041 high ^= mask;
2042
2043 /* There are no sign bits below the top block, so we don't need to look
2044 beyond HIGH. Note that clz_hwi is HOST_BITS_PER_WIDE_INT when
2045 HIGH is 0. */
2046 return count + clz_hwi (high) - 1;
2047 }
2048
2049 /* Return the number of trailing (lower) zeros in X. */
2050 int
2051 wi::ctz (const wide_int_ref &x)
2052 {
2053 if (x.len == 1 && x.ulow () == 0)
2054 return x.precision;
2055
2056 /* Having dealt with the zero case, there must be a block with a
2057 nonzero bit. We don't care about the bits above the first 1. */
2058 unsigned int i = 0;
2059 while (x.val[i] == 0)
2060 ++i;
2061 return i * HOST_BITS_PER_WIDE_INT + ctz_hwi (x.val[i]);
2062 }
2063
2064 /* If X is an exact power of 2, return the base-2 logarithm, otherwise
2065 return -1. */
2066 int
2067 wi::exact_log2 (const wide_int_ref &x)
2068 {
2069 /* Reject cases where there are implicit -1 blocks above HIGH. */
2070 if (x.len * HOST_BITS_PER_WIDE_INT < x.precision && x.sign_mask () < 0)
2071 return -1;
2072
2073 /* Set CRUX to the index of the entry that should be nonzero.
2074 If the top block is zero then the next lowest block (if any)
2075 must have the high bit set. */
2076 unsigned int crux = x.len - 1;
2077 if (crux > 0 && x.val[crux] == 0)
2078 crux -= 1;
2079
2080 /* Check that all lower blocks are zero. */
2081 for (unsigned int i = 0; i < crux; ++i)
2082 if (x.val[i] != 0)
2083 return -1;
2084
2085 /* Get a zero-extended form of block CRUX. */
2086 unsigned HOST_WIDE_INT hwi = x.val[crux];
2087 if ((crux + 1) * HOST_BITS_PER_WIDE_INT > x.precision)
2088 hwi = zext_hwi (hwi, x.precision % HOST_BITS_PER_WIDE_INT);
2089
2090 /* Now it's down to whether HWI is a power of 2. */
2091 int res = ::exact_log2 (hwi);
2092 if (res >= 0)
2093 res += crux * HOST_BITS_PER_WIDE_INT;
2094 return res;
2095 }
2096
2097 /* Return the base-2 logarithm of X, rounding down. Return -1 if X is 0. */
2098 int
2099 wi::floor_log2 (const wide_int_ref &x)
2100 {
2101 return x.precision - 1 - clz (x);
2102 }
2103
2104 /* Return the index of the first (lowest) set bit in X, counting from 1.
2105 Return 0 if X is 0. */
2106 int
2107 wi::ffs (const wide_int_ref &x)
2108 {
2109 return eq_p (x, 0) ? 0 : ctz (x) + 1;
2110 }
2111
2112 /* Return true if sign-extending X to have precision PRECISION would give
2113 the minimum signed value at that precision. */
2114 bool
2115 wi::only_sign_bit_p (const wide_int_ref &x, unsigned int precision)
2116 {
2117 return ctz (x) + 1 == int (precision);
2118 }
2119
2120 /* Return true if X represents the minimum signed value. */
2121 bool
2122 wi::only_sign_bit_p (const wide_int_ref &x)
2123 {
2124 return only_sign_bit_p (x, x.precision);
2125 }
2126
2127 /*
2128 * Private utilities.
2129 */
2130
2131 void gt_ggc_mx (widest_int *) { }
2132 void gt_pch_nx (widest_int *, void (*) (void *, void *), void *) { }
2133 void gt_pch_nx (widest_int *) { }
2134
2135 template void wide_int::dump () const;
2136 template void generic_wide_int <wide_int_ref_storage <false> >::dump () const;
2137 template void generic_wide_int <wide_int_ref_storage <true> >::dump () const;
2138 template void offset_int::dump () const;
2139 template void widest_int::dump () const;