* a29k-tdep.c (push_dummy_frame): Add comment about saving lr0.
[binutils-gdb.git] / gdb / a29k-tdep.c
1 /* Target-machine dependent code for the AMD 29000
2 Copyright 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc.
3 Contributed by Cygnus Support. Written by Jim Kingdon.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 2 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; if not, write to the Free Software
19 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
20
21 #include "defs.h"
22 #include "gdbcore.h"
23 #include "frame.h"
24 #include "value.h"
25 #include "symtab.h"
26 #include "inferior.h"
27 #include "gdbcmd.h"
28
29 /* If all these bits in an instruction word are zero, it is a "tag word"
30 which precedes a function entry point and gives stack traceback info.
31 This used to be defined as 0xff000000, but that treated 0x00000deb as
32 a tag word, while it is really used as a breakpoint. */
33 #define TAGWORD_ZERO_MASK 0xff00f800
34
35 extern CORE_ADDR text_start; /* FIXME, kludge... */
36
37 /* The user-settable top of the register stack in virtual memory. We
38 won't attempt to access any stored registers above this address, if set
39 nonzero. */
40
41 static CORE_ADDR rstack_high_address = UINT_MAX;
42
43 /* Structure to hold cached info about function prologues. */
44 struct prologue_info
45 {
46 CORE_ADDR pc; /* First addr after fn prologue */
47 unsigned rsize, msize; /* register stack frame size, mem stack ditto */
48 unsigned mfp_used : 1; /* memory frame pointer used */
49 unsigned rsize_valid : 1; /* Validity bits for the above */
50 unsigned msize_valid : 1;
51 unsigned mfp_valid : 1;
52 };
53
54 /* Examine the prologue of a function which starts at PC. Return
55 the first addess past the prologue. If MSIZE is non-NULL, then
56 set *MSIZE to the memory stack frame size. If RSIZE is non-NULL,
57 then set *RSIZE to the register stack frame size (not including
58 incoming arguments and the return address & frame pointer stored
59 with them). If no prologue is found, *RSIZE is set to zero.
60 If no prologue is found, or a prologue which doesn't involve
61 allocating a memory stack frame, then set *MSIZE to zero.
62
63 Note that both msize and rsize are in bytes. This is not consistent
64 with the _User's Manual_ with respect to rsize, but it is much more
65 convenient.
66
67 If MFP_USED is non-NULL, *MFP_USED is set to nonzero if a memory
68 frame pointer is being used. */
69 CORE_ADDR
70 examine_prologue (pc, rsize, msize, mfp_used)
71 CORE_ADDR pc;
72 unsigned *msize;
73 unsigned *rsize;
74 int *mfp_used;
75 {
76 long insn;
77 CORE_ADDR p = pc;
78 struct minimal_symbol *msymbol = lookup_minimal_symbol_by_pc (pc);
79 struct prologue_info *mi = 0;
80
81 if (msymbol != NULL)
82 mi = (struct prologue_info *) msymbol -> info;
83
84 if (mi != 0)
85 {
86 int valid = 1;
87 if (rsize != NULL)
88 {
89 *rsize = mi->rsize;
90 valid &= mi->rsize_valid;
91 }
92 if (msize != NULL)
93 {
94 *msize = mi->msize;
95 valid &= mi->msize_valid;
96 }
97 if (mfp_used != NULL)
98 {
99 *mfp_used = mi->mfp_used;
100 valid &= mi->mfp_valid;
101 }
102 if (valid)
103 return mi->pc;
104 }
105
106 if (rsize != NULL)
107 *rsize = 0;
108 if (msize != NULL)
109 *msize = 0;
110 if (mfp_used != NULL)
111 *mfp_used = 0;
112
113 /* Prologue must start with subtracting a constant from gr1.
114 Normally this is sub gr1,gr1,<rsize * 4>. */
115 insn = read_memory_integer (p, 4);
116 if ((insn & 0xffffff00) != 0x25010100)
117 {
118 /* If the frame is large, instead of a single instruction it
119 might be a pair of instructions:
120 const <reg>, <rsize * 4>
121 sub gr1,gr1,<reg>
122 */
123 int reg;
124 /* Possible value for rsize. */
125 unsigned int rsize0;
126
127 if ((insn & 0xff000000) != 0x03000000)
128 {
129 p = pc;
130 goto done;
131 }
132 reg = (insn >> 8) & 0xff;
133 rsize0 = (((insn >> 8) & 0xff00) | (insn & 0xff));
134 p += 4;
135 insn = read_memory_integer (p, 4);
136 if ((insn & 0xffffff00) != 0x24010100
137 || (insn & 0xff) != reg)
138 {
139 p = pc;
140 goto done;
141 }
142 if (rsize != NULL)
143 *rsize = rsize0;
144 }
145 else
146 {
147 if (rsize != NULL)
148 *rsize = (insn & 0xff);
149 }
150 p += 4;
151
152 /* Next instruction ought to be asgeu V_SPILL,gr1,rab.
153 * We don't check the vector number to allow for kernel debugging. The
154 * kernel will use a different trap number.
155 * If this insn is missing, we just keep going; Metaware R2.3u compiler
156 * generates prologue that intermixes initializations and puts the asgeu
157 * way down.
158 */
159 insn = read_memory_integer (p, 4);
160 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
161 {
162 p += 4;
163 }
164
165 /* Next instruction usually sets the frame pointer (lr1) by adding
166 <size * 4> from gr1. However, this can (and high C does) be
167 deferred until anytime before the first function call. So it is
168 OK if we don't see anything which sets lr1.
169 To allow for alternate register sets (gcc -mkernel-registers) the msp
170 register number is a compile time constant. */
171
172 /* Normally this is just add lr1,gr1,<size * 4>. */
173 insn = read_memory_integer (p, 4);
174 if ((insn & 0xffffff00) == 0x15810100)
175 p += 4;
176 else
177 {
178 /* However, for large frames it can be
179 const <reg>, <size *4>
180 add lr1,gr1,<reg>
181 */
182 int reg;
183 CORE_ADDR q;
184
185 if ((insn & 0xff000000) == 0x03000000)
186 {
187 reg = (insn >> 8) & 0xff;
188 q = p + 4;
189 insn = read_memory_integer (q, 4);
190 if ((insn & 0xffffff00) == 0x14810100
191 && (insn & 0xff) == reg)
192 p = q;
193 }
194 }
195
196 /* Next comes "add lr{<rsize-1>},msp,0", but only if a memory
197 frame pointer is in use. We just check for add lr<anything>,msp,0;
198 we don't check this rsize against the first instruction, and
199 we don't check that the trace-back tag indicates a memory frame pointer
200 is in use.
201 To allow for alternate register sets (gcc -mkernel-registers) the msp
202 register number is a compile time constant.
203
204 The recommended instruction is actually "sll lr<whatever>,msp,0".
205 We check for that, too. Originally Jim Kingdon's code seemed
206 to be looking for a "sub" instruction here, but the mask was set
207 up to lose all the time. */
208 insn = read_memory_integer (p, 4);
209 if (((insn & 0xff80ffff) == (0x15800000|(MSP_HW_REGNUM<<8))) /* add */
210 || ((insn & 0xff80ffff) == (0x81800000|(MSP_HW_REGNUM<<8)))) /* sll */
211 {
212 p += 4;
213 if (mfp_used != NULL)
214 *mfp_used = 1;
215 }
216
217 /* Next comes a subtraction from msp to allocate a memory frame,
218 but only if a memory frame is
219 being used. We don't check msize against the trace-back tag.
220
221 To allow for alternate register sets (gcc -mkernel-registers) the msp
222 register number is a compile time constant.
223
224 Normally this is just
225 sub msp,msp,<msize>
226 */
227 insn = read_memory_integer (p, 4);
228 if ((insn & 0xffffff00) ==
229 (0x25000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8)))
230 {
231 p += 4;
232 if (msize != NULL)
233 *msize = insn & 0xff;
234 }
235 else
236 {
237 /* For large frames, instead of a single instruction it might
238 be
239
240 const <reg>, <msize>
241 consth <reg>, <msize> ; optional
242 sub msp,msp,<reg>
243 */
244 int reg;
245 unsigned msize0;
246 CORE_ADDR q = p;
247
248 if ((insn & 0xff000000) == 0x03000000)
249 {
250 reg = (insn >> 8) & 0xff;
251 msize0 = ((insn >> 8) & 0xff00) | (insn & 0xff);
252 q += 4;
253 insn = read_memory_integer (q, 4);
254 /* Check for consth. */
255 if ((insn & 0xff000000) == 0x02000000
256 && (insn & 0x0000ff00) == reg)
257 {
258 msize0 |= (insn << 8) & 0xff000000;
259 msize0 |= (insn << 16) & 0x00ff0000;
260 q += 4;
261 insn = read_memory_integer (q, 4);
262 }
263 /* Check for sub msp,msp,<reg>. */
264 if ((insn & 0xffffff00) ==
265 (0x24000000|(MSP_HW_REGNUM<<16)|(MSP_HW_REGNUM<<8))
266 && (insn & 0xff) == reg)
267 {
268 p = q + 4;
269 if (msize != NULL)
270 *msize = msize0;
271 }
272 }
273 }
274
275 /* Next instruction might be asgeu V_SPILL,gr1,rab.
276 * We don't check the vector number to allow for kernel debugging. The
277 * kernel will use a different trap number.
278 * Metaware R2.3u compiler
279 * generates prologue that intermixes initializations and puts the asgeu
280 * way down after everything else.
281 */
282 insn = read_memory_integer (p, 4);
283 if ((insn & 0xff00ffff) == (0x5e000100|RAB_HW_REGNUM))
284 {
285 p += 4;
286 }
287
288 done:
289 if (msymbol != NULL)
290 {
291 if (mi == 0)
292 {
293 /* Add a new cache entry. */
294 mi = (struct prologue_info *)xmalloc (sizeof (struct prologue_info));
295 msymbol -> info = (char *)mi;
296 mi->rsize_valid = 0;
297 mi->msize_valid = 0;
298 mi->mfp_valid = 0;
299 }
300 /* else, cache entry exists, but info is incomplete. */
301 mi->pc = p;
302 if (rsize != NULL)
303 {
304 mi->rsize = *rsize;
305 mi->rsize_valid = 1;
306 }
307 if (msize != NULL)
308 {
309 mi->msize = *msize;
310 mi->msize_valid = 1;
311 }
312 if (mfp_used != NULL)
313 {
314 mi->mfp_used = *mfp_used;
315 mi->mfp_valid = 1;
316 }
317 }
318 return p;
319 }
320
321 /* Advance PC across any function entry prologue instructions
322 to reach some "real" code. */
323
324 CORE_ADDR
325 skip_prologue (pc)
326 CORE_ADDR pc;
327 {
328 return examine_prologue (pc, (unsigned *)NULL, (unsigned *)NULL,
329 (int *)NULL);
330 }
331 /*
332 * Examine the one or two word tag at the beginning of a function.
333 * The tag word is expect to be at 'p', if it is not there, we fail
334 * by returning 0. The documentation for the tag word was taken from
335 * page 7-15 of the 29050 User's Manual. We are assuming that the
336 * m bit is in bit 22 of the tag word, which seems to be the agreed upon
337 * convention today (1/15/92).
338 * msize is return in bytes.
339 */
340 static int /* 0/1 - failure/success of finding the tag word */
341 examine_tag(p, is_trans, argcount, msize, mfp_used)
342 CORE_ADDR p;
343 int *is_trans;
344 int *argcount;
345 unsigned *msize;
346 int *mfp_used;
347 {
348 unsigned int tag1, tag2;
349
350 tag1 = read_memory_integer (p, 4);
351 if ((tag1 & TAGWORD_ZERO_MASK) != 0) /* Not a tag word */
352 return 0;
353 if (tag1 & (1<<23)) /* A two word tag */
354 {
355 tag2 = read_memory_integer (p+4, 4);
356 if (msize)
357 *msize = tag2;
358 }
359 else /* A one word tag */
360 {
361 if (msize)
362 *msize = tag1 & 0x7ff;
363 }
364 if (is_trans)
365 *is_trans = ((tag1 & (1<<21)) ? 1 : 0);
366 if (argcount)
367 *argcount = (tag1 >> 16) & 0x1f;
368 if (mfp_used)
369 *mfp_used = ((tag1 & (1<<22)) ? 1 : 0);
370 return(1);
371 }
372
373 /* Initialize the frame. In addition to setting "extra" frame info,
374 we also set ->frame because we use it in a nonstandard way, and ->pc
375 because we need to know it to get the other stuff. See the diagram
376 of stacks and the frame cache in tm-a29k.h for more detail. */
377 static void
378 init_frame_info (innermost_frame, fci)
379 int innermost_frame;
380 struct frame_info *fci;
381 {
382 CORE_ADDR p;
383 long insn;
384 unsigned rsize;
385 unsigned msize;
386 int mfp_used, trans;
387 struct symbol *func;
388
389 p = fci->pc;
390
391 if (innermost_frame)
392 fci->frame = read_register (GR1_REGNUM);
393 else
394 fci->frame = fci->next->frame + fci->next->rsize;
395
396 #if CALL_DUMMY_LOCATION == ON_STACK
397 This wont work;
398 #else
399 if (PC_IN_CALL_DUMMY (p, 0, 0))
400 #endif
401 {
402 fci->rsize = DUMMY_FRAME_RSIZE;
403 /* This doesn't matter since we never try to get locals or args
404 from a dummy frame. */
405 fci->msize = 0;
406 /* Dummy frames always use a memory frame pointer. */
407 fci->saved_msp =
408 read_register_stack_integer (fci->frame + DUMMY_FRAME_RSIZE - 4, 4);
409 fci->flags |= (TRANSPARENT|MFP_USED);
410 return;
411 }
412
413 func = find_pc_function (p);
414 if (func != NULL)
415 p = BLOCK_START (SYMBOL_BLOCK_VALUE (func));
416 else
417 {
418 /* Search backward to find the trace-back tag. However,
419 do not trace back beyond the start of the text segment
420 (just as a sanity check to avoid going into never-never land). */
421 while (p >= text_start
422 && ((insn = read_memory_integer (p, 4)) & TAGWORD_ZERO_MASK) != 0)
423 p -= 4;
424
425 if (p < text_start)
426 {
427 /* Couldn't find the trace-back tag.
428 Something strange is going on. */
429 fci->saved_msp = 0;
430 fci->rsize = 0;
431 fci->msize = 0;
432 fci->flags = TRANSPARENT;
433 return;
434 }
435 else
436 /* Advance to the first word of the function, i.e. the word
437 after the trace-back tag. */
438 p += 4;
439 }
440
441 /* We've found the start of the function.
442 Try looking for a tag word that indicates whether there is a
443 memory frame pointer and what the memory stack allocation is.
444 If one doesn't exist, try using a more exhaustive search of
445 the prologue. */
446
447 if (examine_tag(p-4,&trans,(int *)NULL,&msize,&mfp_used)) /* Found good tag */
448 examine_prologue (p, &rsize, 0, 0);
449 else /* No tag try prologue */
450 examine_prologue (p, &rsize, &msize, &mfp_used);
451
452 fci->rsize = rsize;
453 fci->msize = msize;
454 fci->flags = 0;
455 if (mfp_used)
456 fci->flags |= MFP_USED;
457 if (trans)
458 fci->flags |= TRANSPARENT;
459 if (innermost_frame)
460 {
461 fci->saved_msp = read_register (MSP_REGNUM) + msize;
462 }
463 else
464 {
465 if (mfp_used)
466 fci->saved_msp =
467 read_register_stack_integer (fci->frame + rsize - 4, 4);
468 else
469 fci->saved_msp = fci->next->saved_msp + msize;
470 }
471 }
472
473 void
474 init_extra_frame_info (fci)
475 struct frame_info *fci;
476 {
477 if (fci->next == 0)
478 /* Assume innermost frame. May produce strange results for "info frame"
479 but there isn't any way to tell the difference. */
480 init_frame_info (1, fci);
481 else {
482 /* We're in get_prev_frame_info.
483 Take care of everything in init_frame_pc. */
484 ;
485 }
486 }
487
488 void
489 init_frame_pc (fromleaf, fci)
490 int fromleaf;
491 struct frame_info *fci;
492 {
493 fci->pc = (fromleaf ? SAVED_PC_AFTER_CALL (fci->next) :
494 fci->next ? FRAME_SAVED_PC (fci->next) : read_pc ());
495 init_frame_info (fromleaf, fci);
496 }
497 \f
498 /* Local variables (i.e. LOC_LOCAL) are on the memory stack, with their
499 offsets being relative to the memory stack pointer (high C) or
500 saved_msp (gcc). */
501
502 CORE_ADDR
503 frame_locals_address (fi)
504 struct frame_info *fi;
505 {
506 if (fi->flags & MFP_USED)
507 return fi->saved_msp;
508 else
509 return fi->saved_msp - fi->msize;
510 }
511 \f
512 /* Routines for reading the register stack. The caller gets to treat
513 the register stack as a uniform stack in memory, from address $gr1
514 straight through $rfb and beyond. */
515
516 /* Analogous to read_memory except the length is understood to be 4.
517 Also, myaddr can be NULL (meaning don't bother to read), and
518 if actual_mem_addr is non-NULL, store there the address that it
519 was fetched from (or if from a register the offset within
520 registers). Set *LVAL to lval_memory or lval_register, depending
521 on where it came from. The contents written into MYADDR are in
522 target format. */
523 void
524 read_register_stack (memaddr, myaddr, actual_mem_addr, lval)
525 CORE_ADDR memaddr;
526 char *myaddr;
527 CORE_ADDR *actual_mem_addr;
528 enum lval_type *lval;
529 {
530 long rfb = read_register (RFB_REGNUM);
531 long rsp = read_register (RSP_REGNUM);
532
533 /* If we don't do this 'info register' stops in the middle. */
534 if (memaddr >= rstack_high_address)
535 {
536 /* a bogus value */
537 static char val[] = {~0, ~0, ~0, ~0};
538 /* It's in a local register, but off the end of the stack. */
539 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
540 if (myaddr != NULL)
541 {
542 /* Provide bogusness */
543 memcpy (myaddr, val, 4);
544 }
545 supply_register(regnum, val); /* More bogusness */
546 if (lval != NULL)
547 *lval = lval_register;
548 if (actual_mem_addr != NULL)
549 *actual_mem_addr = REGISTER_BYTE (regnum);
550 }
551 /* If it's in the part of the register stack that's in real registers,
552 get the value from the registers. If it's anywhere else in memory
553 (e.g. in another thread's saved stack), skip this part and get
554 it from real live memory. */
555 else if (memaddr < rfb && memaddr >= rsp)
556 {
557 /* It's in a register. */
558 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
559 if (regnum > LR0_REGNUM + 127)
560 error ("Attempt to read register stack out of range.");
561 if (myaddr != NULL)
562 read_register_gen (regnum, myaddr);
563 if (lval != NULL)
564 *lval = lval_register;
565 if (actual_mem_addr != NULL)
566 *actual_mem_addr = REGISTER_BYTE (regnum);
567 }
568 else
569 {
570 /* It's in the memory portion of the register stack. */
571 if (myaddr != NULL)
572 read_memory (memaddr, myaddr, 4);
573 if (lval != NULL)
574 *lval = lval_memory;
575 if (actual_mem_addr != NULL)
576 *actual_mem_addr = memaddr;
577 }
578 }
579
580 /* Analogous to read_memory_integer
581 except the length is understood to be 4. */
582 long
583 read_register_stack_integer (memaddr, len)
584 CORE_ADDR memaddr;
585 int len;
586 {
587 char buf[4];
588 read_register_stack (memaddr, buf, NULL, NULL);
589 return extract_signed_integer (buf, 4);
590 }
591
592 /* Copy 4 bytes from GDB memory at MYADDR into inferior memory
593 at MEMADDR and put the actual address written into in
594 *ACTUAL_MEM_ADDR. */
595 static void
596 write_register_stack (memaddr, myaddr, actual_mem_addr)
597 CORE_ADDR memaddr;
598 char *myaddr;
599 CORE_ADDR *actual_mem_addr;
600 {
601 long rfb = read_register (RFB_REGNUM);
602 long rsp = read_register (RSP_REGNUM);
603 /* If we don't do this 'info register' stops in the middle. */
604 if (memaddr >= rstack_high_address)
605 {
606 /* It's in a register, but off the end of the stack. */
607 if (actual_mem_addr != NULL)
608 *actual_mem_addr = 0;
609 }
610 else if (memaddr < rfb)
611 {
612 /* It's in a register. */
613 int regnum = (memaddr - rsp) / 4 + LR0_REGNUM;
614 if (regnum < LR0_REGNUM || regnum > LR0_REGNUM + 127)
615 error ("Attempt to read register stack out of range.");
616 if (myaddr != NULL)
617 write_register (regnum, *(long *)myaddr);
618 if (actual_mem_addr != NULL)
619 *actual_mem_addr = 0;
620 }
621 else
622 {
623 /* It's in the memory portion of the register stack. */
624 if (myaddr != NULL)
625 write_memory (memaddr, myaddr, 4);
626 if (actual_mem_addr != NULL)
627 *actual_mem_addr = memaddr;
628 }
629 }
630 \f
631 /* Find register number REGNUM relative to FRAME and put its
632 (raw) contents in *RAW_BUFFER. Set *OPTIMIZED if the variable
633 was optimized out (and thus can't be fetched). If the variable
634 was fetched from memory, set *ADDRP to where it was fetched from,
635 otherwise it was fetched from a register.
636
637 The argument RAW_BUFFER must point to aligned memory. */
638 void
639 get_saved_register (raw_buffer, optimized, addrp, frame, regnum, lvalp)
640 char *raw_buffer;
641 int *optimized;
642 CORE_ADDR *addrp;
643 FRAME frame;
644 int regnum;
645 enum lval_type *lvalp;
646 {
647 struct frame_info *fi;
648 CORE_ADDR addr;
649 enum lval_type lval;
650
651 if (frame == 0)
652 return;
653
654 fi = get_frame_info (frame);
655
656 /* Once something has a register number, it doesn't get optimized out. */
657 if (optimized != NULL)
658 *optimized = 0;
659 if (regnum == RSP_REGNUM)
660 {
661 if (raw_buffer != NULL)
662 {
663 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->frame);
664 }
665 if (lvalp != NULL)
666 *lvalp = not_lval;
667 return;
668 }
669 else if (regnum == PC_REGNUM)
670 {
671 if (raw_buffer != NULL)
672 {
673 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum), fi->pc);
674 }
675
676 /* Not sure we have to do this. */
677 if (lvalp != NULL)
678 *lvalp = not_lval;
679
680 return;
681 }
682 else if (regnum == MSP_REGNUM)
683 {
684 if (raw_buffer != NULL)
685 {
686 if (fi->next != NULL)
687 {
688 store_address (raw_buffer, REGISTER_RAW_SIZE (regnum),
689 fi->next->saved_msp);
690 }
691 else
692 read_register_gen (MSP_REGNUM, raw_buffer);
693 }
694 /* The value may have been computed, not fetched. */
695 if (lvalp != NULL)
696 *lvalp = not_lval;
697 return;
698 }
699 else if (regnum < LR0_REGNUM || regnum >= LR0_REGNUM + 128)
700 {
701 /* These registers are not saved over procedure calls,
702 so just print out the current values. */
703 if (raw_buffer != NULL)
704 read_register_gen (regnum, raw_buffer);
705 if (lvalp != NULL)
706 *lvalp = lval_register;
707 if (addrp != NULL)
708 *addrp = REGISTER_BYTE (regnum);
709 return;
710 }
711
712 addr = fi->frame + (regnum - LR0_REGNUM) * 4;
713 if (raw_buffer != NULL)
714 read_register_stack (addr, raw_buffer, &addr, &lval);
715 if (lvalp != NULL)
716 *lvalp = lval;
717 if (addrp != NULL)
718 *addrp = addr;
719 }
720 \f
721
722 /* Discard from the stack the innermost frame,
723 restoring all saved registers. */
724
725 void
726 pop_frame ()
727 {
728 FRAME frame = get_current_frame ();
729 struct frame_info *fi = get_frame_info (frame);
730 CORE_ADDR rfb = read_register (RFB_REGNUM);
731 CORE_ADDR gr1 = fi->frame + fi->rsize;
732 CORE_ADDR lr1;
733 CORE_ADDR original_lr0;
734 int must_fix_lr0 = 0;
735 int i;
736
737 /* If popping a dummy frame, need to restore registers. */
738 if (PC_IN_CALL_DUMMY (read_register (PC_REGNUM),
739 read_register (SP_REGNUM),
740 FRAME_FP (fi)))
741 {
742 int lrnum = LR0_REGNUM + DUMMY_ARG/4;
743 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
744 write_register (SR_REGNUM (i + 128),read_register (lrnum++));
745 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
746 write_register (SR_REGNUM(i+160), read_register (lrnum++));
747 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
748 write_register (RETURN_REGNUM + i, read_register (lrnum++));
749 /* Restore the PCs and prepare to restore LR0. */
750 write_register(PC_REGNUM, read_register (lrnum++));
751 write_register(NPC_REGNUM, read_register (lrnum++));
752 write_register(PC2_REGNUM, read_register (lrnum++));
753 original_lr0 = read_register (lrnum++);
754 must_fix_lr0 = 1;
755 }
756
757 /* Restore the memory stack pointer. */
758 write_register (MSP_REGNUM, fi->saved_msp);
759 /* Restore the register stack pointer. */
760 write_register (GR1_REGNUM, gr1);
761
762 /* If we popped a dummy frame, restore lr0 now that gr1 has been restored. */
763 if (must_fix_lr0)
764 write_register (LR0_REGNUM, original_lr0);
765
766 /* Check whether we need to fill registers. */
767 lr1 = read_register (LR0_REGNUM + 1);
768 if (lr1 > rfb)
769 {
770 /* Fill. */
771 int num_bytes = lr1 - rfb;
772 int i;
773 long word;
774 write_register (RAB_REGNUM, read_register (RAB_REGNUM) + num_bytes);
775 write_register (RFB_REGNUM, lr1);
776 for (i = 0; i < num_bytes; i += 4)
777 {
778 /* Note: word is in host byte order. */
779 word = read_memory_integer (rfb + i, 4);
780 write_register (LR0_REGNUM + ((rfb - gr1) % 0x80) + i / 4, word);
781 }
782 }
783 flush_cached_frames ();
784 set_current_frame (create_new_frame (0, read_pc()));
785 }
786
787 /* Push an empty stack frame, to record the current PC, etc. */
788
789 void
790 push_dummy_frame ()
791 {
792 long w;
793 CORE_ADDR rab, gr1;
794 CORE_ADDR msp = read_register (MSP_REGNUM);
795 int lrnum, i;
796 CORE_ADDR original_lr0;
797
798 /* Read original lr0 before changing gr1. This order isn't really needed
799 since GDB happens to have a snapshot of all the regs and doesn't toss
800 it when gr1 is changed. But it's The Right Thing To Do. */
801 original_lr0 = read_register (LR0_REGNUM);
802
803 /* Allocate the new frame. */
804 gr1 = read_register (GR1_REGNUM) - DUMMY_FRAME_RSIZE;
805 write_register (GR1_REGNUM, gr1);
806
807 rab = read_register (RAB_REGNUM);
808 if (gr1 < rab)
809 {
810 /* We need to spill registers. */
811 int num_bytes = rab - gr1;
812 CORE_ADDR rfb = read_register (RFB_REGNUM);
813 int i;
814 long word;
815
816 write_register (RFB_REGNUM, rfb - num_bytes);
817 write_register (RAB_REGNUM, gr1);
818 for (i = 0; i < num_bytes; i += 4)
819 {
820 /* Note: word is in target byte order. */
821 read_register_gen (LR0_REGNUM + i / 4, (char *) &word);
822 write_memory (rfb - num_bytes + i, (char *) &word, 4);
823 }
824 }
825
826 /* There are no arguments in to the dummy frame, so we don't need
827 more than rsize plus the return address and lr1. */
828 write_register (LR0_REGNUM + 1, gr1 + DUMMY_FRAME_RSIZE + 2 * 4);
829
830 /* Set the memory frame pointer. */
831 write_register (LR0_REGNUM + DUMMY_FRAME_RSIZE / 4 - 1, msp);
832
833 /* Allocate arg_slop. */
834 write_register (MSP_REGNUM, msp - 16 * 4);
835
836 /* Save registers. */
837 lrnum = LR0_REGNUM + DUMMY_ARG/4;
838 for (i = 0; i < DUMMY_SAVE_SR128; ++i)
839 write_register (lrnum++, read_register (SR_REGNUM (i + 128)));
840 for (i = 0; i < DUMMY_SAVE_SR160; ++i)
841 write_register (lrnum++, read_register (SR_REGNUM (i + 160)));
842 for (i = 0; i < DUMMY_SAVE_GREGS; ++i)
843 write_register (lrnum++, read_register (RETURN_REGNUM + i));
844 /* Save the PCs and LR0. */
845 write_register (lrnum++, read_register (PC_REGNUM));
846 write_register (lrnum++, read_register (NPC_REGNUM));
847 write_register (lrnum++, read_register (PC2_REGNUM));
848
849 /* Why are we saving LR0? What would clobber it? (the dummy frame should
850 be below it on the register stack, no?). */
851 write_register (lrnum++, original_lr0);
852 }
853
854
855
856 /*
857 This routine takes three arguments and makes the cached frames look
858 as if these arguments defined a frame on the cache. This allows the
859 rest of `info frame' to extract the important arguments without much
860 difficulty. Since an individual frame on the 29K is determined by
861 three values (FP, PC, and MSP), we really need all three to do a
862 good job. */
863
864 FRAME
865 setup_arbitrary_frame (argc, argv)
866 int argc;
867 FRAME_ADDR *argv;
868 {
869 FRAME fid;
870
871 if (argc != 3)
872 error ("AMD 29k frame specifications require three arguments: rsp pc msp");
873
874 fid = create_new_frame (argv[0], argv[1]);
875
876 if (!fid)
877 fatal ("internal: create_new_frame returned invalid frame id");
878
879 /* Creating a new frame munges the `frame' value from the current
880 GR1, so we restore it again here. FIXME, untangle all this
881 29K frame stuff... */
882 fid->frame = argv[0];
883
884 /* Our MSP is in argv[2]. It'd be intelligent if we could just
885 save this value in the FRAME. But the way it's set up (FIXME),
886 we must save our caller's MSP. We compute that by adding our
887 memory stack frame size to our MSP. */
888 fid->saved_msp = argv[2] + fid->msize;
889
890 return fid;
891 }
892
893
894
895 enum a29k_processor_types processor_type = a29k_unknown;
896
897 void
898 a29k_get_processor_type ()
899 {
900 unsigned int cfg_reg = (unsigned int) read_register (CFG_REGNUM);
901
902 /* Most of these don't have freeze mode. */
903 processor_type = a29k_no_freeze_mode;
904
905 switch ((cfg_reg >> 28) & 0xf)
906 {
907 case 0:
908 fprintf_filtered (gdb_stderr, "Remote debugging an Am29000");
909 break;
910 case 1:
911 fprintf_filtered (gdb_stderr, "Remote debugging an Am29005");
912 break;
913 case 2:
914 fprintf_filtered (gdb_stderr, "Remote debugging an Am29050");
915 processor_type = a29k_freeze_mode;
916 break;
917 case 3:
918 fprintf_filtered (gdb_stderr, "Remote debugging an Am29035");
919 break;
920 case 4:
921 fprintf_filtered (gdb_stderr, "Remote debugging an Am29030");
922 break;
923 case 5:
924 fprintf_filtered (gdb_stderr, "Remote debugging an Am2920*");
925 break;
926 case 6:
927 fprintf_filtered (gdb_stderr, "Remote debugging an Am2924*");
928 break;
929 case 7:
930 fprintf_filtered (gdb_stderr, "Remote debugging an Am29040");
931 break;
932 default:
933 fprintf_filtered (gdb_stderr, "Remote debugging an unknown Am29k\n");
934 /* Don't bother to print the revision. */
935 return;
936 }
937 fprintf_filtered (gdb_stderr, " revision %c\n", 'A' + ((cfg_reg >> 24) & 0x0f));
938 }
939
940 void
941 _initialize_29k()
942 {
943 extern CORE_ADDR text_end;
944
945 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
946 add_show_from_set
947 (add_set_cmd ("rstack_high_address", class_support, var_uinteger,
948 (char *)&rstack_high_address,
949 "Set top address in memory of the register stack.\n\
950 Attempts to access registers saved above this address will be ignored\n\
951 or will produce the value -1.", &setlist),
952 &showlist);
953
954 /* FIXME, there should be a way to make a CORE_ADDR variable settable. */
955 add_show_from_set
956 (add_set_cmd ("call_scratch_address", class_support, var_uinteger,
957 (char *)&text_end,
958 "Set address in memory where small amounts of RAM can be used\n\
959 when making function calls into the inferior.", &setlist),
960 &showlist);
961 }