gdb: make gdbarch_displaced_step_hw_singlestep return bool
[binutils-gdb.git] / gdb / aarch64-tdep.c
1 /* Common target dependent code for GDB on AArch64 systems.
2
3 Copyright (C) 2009-2020 Free Software Foundation, Inc.
4 Contributed by ARM Ltd.
5
6 This file is part of GDB.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include "defs.h"
22
23 #include "frame.h"
24 #include "gdbcmd.h"
25 #include "gdbcore.h"
26 #include "dis-asm.h"
27 #include "regcache.h"
28 #include "reggroups.h"
29 #include "value.h"
30 #include "arch-utils.h"
31 #include "osabi.h"
32 #include "frame-unwind.h"
33 #include "frame-base.h"
34 #include "trad-frame.h"
35 #include "objfiles.h"
36 #include "dwarf2.h"
37 #include "dwarf2/frame.h"
38 #include "gdbtypes.h"
39 #include "prologue-value.h"
40 #include "target-descriptions.h"
41 #include "user-regs.h"
42 #include "ax-gdb.h"
43 #include "gdbsupport/selftest.h"
44
45 #include "aarch64-tdep.h"
46 #include "aarch64-ravenscar-thread.h"
47
48 #include "record.h"
49 #include "record-full.h"
50 #include "arch/aarch64-insn.h"
51 #include "gdbarch.h"
52
53 #include "opcode/aarch64.h"
54 #include <algorithm>
55
56 #define submask(x) ((1L << ((x) + 1)) - 1)
57 #define bit(obj,st) (((obj) >> (st)) & 1)
58 #define bits(obj,st,fn) (((obj) >> (st)) & submask ((fn) - (st)))
59
60 /* A Homogeneous Floating-Point or Short-Vector Aggregate may have at most
61 four members. */
62 #define HA_MAX_NUM_FLDS 4
63
64 /* All possible aarch64 target descriptors. */
65 struct target_desc *tdesc_aarch64_list[AARCH64_MAX_SVE_VQ + 1][2/*pauth*/];
66
67 /* The standard register names, and all the valid aliases for them. */
68 static const struct
69 {
70 const char *const name;
71 int regnum;
72 } aarch64_register_aliases[] =
73 {
74 /* 64-bit register names. */
75 {"fp", AARCH64_FP_REGNUM},
76 {"lr", AARCH64_LR_REGNUM},
77 {"sp", AARCH64_SP_REGNUM},
78
79 /* 32-bit register names. */
80 {"w0", AARCH64_X0_REGNUM + 0},
81 {"w1", AARCH64_X0_REGNUM + 1},
82 {"w2", AARCH64_X0_REGNUM + 2},
83 {"w3", AARCH64_X0_REGNUM + 3},
84 {"w4", AARCH64_X0_REGNUM + 4},
85 {"w5", AARCH64_X0_REGNUM + 5},
86 {"w6", AARCH64_X0_REGNUM + 6},
87 {"w7", AARCH64_X0_REGNUM + 7},
88 {"w8", AARCH64_X0_REGNUM + 8},
89 {"w9", AARCH64_X0_REGNUM + 9},
90 {"w10", AARCH64_X0_REGNUM + 10},
91 {"w11", AARCH64_X0_REGNUM + 11},
92 {"w12", AARCH64_X0_REGNUM + 12},
93 {"w13", AARCH64_X0_REGNUM + 13},
94 {"w14", AARCH64_X0_REGNUM + 14},
95 {"w15", AARCH64_X0_REGNUM + 15},
96 {"w16", AARCH64_X0_REGNUM + 16},
97 {"w17", AARCH64_X0_REGNUM + 17},
98 {"w18", AARCH64_X0_REGNUM + 18},
99 {"w19", AARCH64_X0_REGNUM + 19},
100 {"w20", AARCH64_X0_REGNUM + 20},
101 {"w21", AARCH64_X0_REGNUM + 21},
102 {"w22", AARCH64_X0_REGNUM + 22},
103 {"w23", AARCH64_X0_REGNUM + 23},
104 {"w24", AARCH64_X0_REGNUM + 24},
105 {"w25", AARCH64_X0_REGNUM + 25},
106 {"w26", AARCH64_X0_REGNUM + 26},
107 {"w27", AARCH64_X0_REGNUM + 27},
108 {"w28", AARCH64_X0_REGNUM + 28},
109 {"w29", AARCH64_X0_REGNUM + 29},
110 {"w30", AARCH64_X0_REGNUM + 30},
111
112 /* specials */
113 {"ip0", AARCH64_X0_REGNUM + 16},
114 {"ip1", AARCH64_X0_REGNUM + 17}
115 };
116
117 /* The required core 'R' registers. */
118 static const char *const aarch64_r_register_names[] =
119 {
120 /* These registers must appear in consecutive RAW register number
121 order and they must begin with AARCH64_X0_REGNUM! */
122 "x0", "x1", "x2", "x3",
123 "x4", "x5", "x6", "x7",
124 "x8", "x9", "x10", "x11",
125 "x12", "x13", "x14", "x15",
126 "x16", "x17", "x18", "x19",
127 "x20", "x21", "x22", "x23",
128 "x24", "x25", "x26", "x27",
129 "x28", "x29", "x30", "sp",
130 "pc", "cpsr"
131 };
132
133 /* The FP/SIMD 'V' registers. */
134 static const char *const aarch64_v_register_names[] =
135 {
136 /* These registers must appear in consecutive RAW register number
137 order and they must begin with AARCH64_V0_REGNUM! */
138 "v0", "v1", "v2", "v3",
139 "v4", "v5", "v6", "v7",
140 "v8", "v9", "v10", "v11",
141 "v12", "v13", "v14", "v15",
142 "v16", "v17", "v18", "v19",
143 "v20", "v21", "v22", "v23",
144 "v24", "v25", "v26", "v27",
145 "v28", "v29", "v30", "v31",
146 "fpsr",
147 "fpcr"
148 };
149
150 /* The SVE 'Z' and 'P' registers. */
151 static const char *const aarch64_sve_register_names[] =
152 {
153 /* These registers must appear in consecutive RAW register number
154 order and they must begin with AARCH64_SVE_Z0_REGNUM! */
155 "z0", "z1", "z2", "z3",
156 "z4", "z5", "z6", "z7",
157 "z8", "z9", "z10", "z11",
158 "z12", "z13", "z14", "z15",
159 "z16", "z17", "z18", "z19",
160 "z20", "z21", "z22", "z23",
161 "z24", "z25", "z26", "z27",
162 "z28", "z29", "z30", "z31",
163 "fpsr", "fpcr",
164 "p0", "p1", "p2", "p3",
165 "p4", "p5", "p6", "p7",
166 "p8", "p9", "p10", "p11",
167 "p12", "p13", "p14", "p15",
168 "ffr", "vg"
169 };
170
171 static const char *const aarch64_pauth_register_names[] =
172 {
173 /* Authentication mask for data pointer. */
174 "pauth_dmask",
175 /* Authentication mask for code pointer. */
176 "pauth_cmask"
177 };
178
179 /* AArch64 prologue cache structure. */
180 struct aarch64_prologue_cache
181 {
182 /* The program counter at the start of the function. It is used to
183 identify this frame as a prologue frame. */
184 CORE_ADDR func;
185
186 /* The program counter at the time this frame was created; i.e. where
187 this function was called from. It is used to identify this frame as a
188 stub frame. */
189 CORE_ADDR prev_pc;
190
191 /* The stack pointer at the time this frame was created; i.e. the
192 caller's stack pointer when this function was called. It is used
193 to identify this frame. */
194 CORE_ADDR prev_sp;
195
196 /* Is the target available to read from? */
197 int available_p;
198
199 /* The frame base for this frame is just prev_sp - frame size.
200 FRAMESIZE is the distance from the frame pointer to the
201 initial stack pointer. */
202 int framesize;
203
204 /* The register used to hold the frame pointer for this frame. */
205 int framereg;
206
207 /* Saved register offsets. */
208 struct trad_frame_saved_reg *saved_regs;
209 };
210
211 static void
212 show_aarch64_debug (struct ui_file *file, int from_tty,
213 struct cmd_list_element *c, const char *value)
214 {
215 fprintf_filtered (file, _("AArch64 debugging is %s.\n"), value);
216 }
217
218 namespace {
219
220 /* Abstract instruction reader. */
221
222 class abstract_instruction_reader
223 {
224 public:
225 /* Read in one instruction. */
226 virtual ULONGEST read (CORE_ADDR memaddr, int len,
227 enum bfd_endian byte_order) = 0;
228 };
229
230 /* Instruction reader from real target. */
231
232 class instruction_reader : public abstract_instruction_reader
233 {
234 public:
235 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
236 override
237 {
238 return read_code_unsigned_integer (memaddr, len, byte_order);
239 }
240 };
241
242 } // namespace
243
244 /* If address signing is enabled, mask off the signature bits from the link
245 register, which is passed by value in ADDR, using the register values in
246 THIS_FRAME. */
247
248 static CORE_ADDR
249 aarch64_frame_unmask_lr (struct gdbarch_tdep *tdep,
250 struct frame_info *this_frame, CORE_ADDR addr)
251 {
252 if (tdep->has_pauth ()
253 && frame_unwind_register_unsigned (this_frame,
254 tdep->pauth_ra_state_regnum))
255 {
256 int cmask_num = AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base);
257 CORE_ADDR cmask = frame_unwind_register_unsigned (this_frame, cmask_num);
258 addr = addr & ~cmask;
259
260 /* Record in the frame that the link register required unmasking. */
261 set_frame_previous_pc_masked (this_frame);
262 }
263
264 return addr;
265 }
266
267 /* Implement the "get_pc_address_flags" gdbarch method. */
268
269 static std::string
270 aarch64_get_pc_address_flags (frame_info *frame, CORE_ADDR pc)
271 {
272 if (pc != 0 && get_frame_pc_masked (frame))
273 return "PAC";
274
275 return "";
276 }
277
278 /* Analyze a prologue, looking for a recognizable stack frame
279 and frame pointer. Scan until we encounter a store that could
280 clobber the stack frame unexpectedly, or an unknown instruction. */
281
282 static CORE_ADDR
283 aarch64_analyze_prologue (struct gdbarch *gdbarch,
284 CORE_ADDR start, CORE_ADDR limit,
285 struct aarch64_prologue_cache *cache,
286 abstract_instruction_reader& reader)
287 {
288 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
289 int i;
290
291 /* Whether the stack has been set. This should be true when we notice a SP
292 to FP move or if we are using the SP as the base register for storing
293 data, in case the FP is ommitted. */
294 bool seen_stack_set = false;
295
296 /* Track X registers and D registers in prologue. */
297 pv_t regs[AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT];
298
299 for (i = 0; i < AARCH64_X_REGISTER_COUNT + AARCH64_D_REGISTER_COUNT; i++)
300 regs[i] = pv_register (i, 0);
301 pv_area stack (AARCH64_SP_REGNUM, gdbarch_addr_bit (gdbarch));
302
303 for (; start < limit; start += 4)
304 {
305 uint32_t insn;
306 aarch64_inst inst;
307
308 insn = reader.read (start, 4, byte_order_for_code);
309
310 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
311 break;
312
313 if (inst.opcode->iclass == addsub_imm
314 && (inst.opcode->op == OP_ADD
315 || strcmp ("sub", inst.opcode->name) == 0))
316 {
317 unsigned rd = inst.operands[0].reg.regno;
318 unsigned rn = inst.operands[1].reg.regno;
319
320 gdb_assert (aarch64_num_of_operands (inst.opcode) == 3);
321 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd_SP);
322 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn_SP);
323 gdb_assert (inst.operands[2].type == AARCH64_OPND_AIMM);
324
325 if (inst.opcode->op == OP_ADD)
326 {
327 regs[rd] = pv_add_constant (regs[rn],
328 inst.operands[2].imm.value);
329 }
330 else
331 {
332 regs[rd] = pv_add_constant (regs[rn],
333 -inst.operands[2].imm.value);
334 }
335
336 /* Did we move SP to FP? */
337 if (rn == AARCH64_SP_REGNUM && rd == AARCH64_FP_REGNUM)
338 seen_stack_set = true;
339 }
340 else if (inst.opcode->iclass == pcreladdr
341 && inst.operands[1].type == AARCH64_OPND_ADDR_ADRP)
342 {
343 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
344 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
345
346 regs[inst.operands[0].reg.regno] = pv_unknown ();
347 }
348 else if (inst.opcode->iclass == branch_imm)
349 {
350 /* Stop analysis on branch. */
351 break;
352 }
353 else if (inst.opcode->iclass == condbranch)
354 {
355 /* Stop analysis on branch. */
356 break;
357 }
358 else if (inst.opcode->iclass == branch_reg)
359 {
360 /* Stop analysis on branch. */
361 break;
362 }
363 else if (inst.opcode->iclass == compbranch)
364 {
365 /* Stop analysis on branch. */
366 break;
367 }
368 else if (inst.opcode->op == OP_MOVZ)
369 {
370 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
371
372 /* If this shows up before we set the stack, keep going. Otherwise
373 stop the analysis. */
374 if (seen_stack_set)
375 break;
376
377 regs[inst.operands[0].reg.regno] = pv_unknown ();
378 }
379 else if (inst.opcode->iclass == log_shift
380 && strcmp (inst.opcode->name, "orr") == 0)
381 {
382 unsigned rd = inst.operands[0].reg.regno;
383 unsigned rn = inst.operands[1].reg.regno;
384 unsigned rm = inst.operands[2].reg.regno;
385
386 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rd);
387 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rn);
388 gdb_assert (inst.operands[2].type == AARCH64_OPND_Rm_SFT);
389
390 if (inst.operands[2].shifter.amount == 0
391 && rn == AARCH64_SP_REGNUM)
392 regs[rd] = regs[rm];
393 else
394 {
395 if (aarch64_debug)
396 {
397 debug_printf ("aarch64: prologue analysis gave up "
398 "addr=%s opcode=0x%x (orr x register)\n",
399 core_addr_to_string_nz (start), insn);
400 }
401 break;
402 }
403 }
404 else if (inst.opcode->op == OP_STUR)
405 {
406 unsigned rt = inst.operands[0].reg.regno;
407 unsigned rn = inst.operands[1].addr.base_regno;
408 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
409
410 gdb_assert (aarch64_num_of_operands (inst.opcode) == 2);
411 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt);
412 gdb_assert (inst.operands[1].type == AARCH64_OPND_ADDR_SIMM9);
413 gdb_assert (!inst.operands[1].addr.offset.is_reg);
414
415 stack.store
416 (pv_add_constant (regs[rn], inst.operands[1].addr.offset.imm),
417 size, regs[rt]);
418
419 /* Are we storing with SP as a base? */
420 if (rn == AARCH64_SP_REGNUM)
421 seen_stack_set = true;
422 }
423 else if ((inst.opcode->iclass == ldstpair_off
424 || (inst.opcode->iclass == ldstpair_indexed
425 && inst.operands[2].addr.preind))
426 && strcmp ("stp", inst.opcode->name) == 0)
427 {
428 /* STP with addressing mode Pre-indexed and Base register. */
429 unsigned rt1;
430 unsigned rt2;
431 unsigned rn = inst.operands[2].addr.base_regno;
432 int32_t imm = inst.operands[2].addr.offset.imm;
433 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
434
435 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
436 || inst.operands[0].type == AARCH64_OPND_Ft);
437 gdb_assert (inst.operands[1].type == AARCH64_OPND_Rt2
438 || inst.operands[1].type == AARCH64_OPND_Ft2);
439 gdb_assert (inst.operands[2].type == AARCH64_OPND_ADDR_SIMM7);
440 gdb_assert (!inst.operands[2].addr.offset.is_reg);
441
442 /* If recording this store would invalidate the store area
443 (perhaps because rn is not known) then we should abandon
444 further prologue analysis. */
445 if (stack.store_would_trash (pv_add_constant (regs[rn], imm)))
446 break;
447
448 if (stack.store_would_trash (pv_add_constant (regs[rn], imm + 8)))
449 break;
450
451 rt1 = inst.operands[0].reg.regno;
452 rt2 = inst.operands[1].reg.regno;
453 if (inst.operands[0].type == AARCH64_OPND_Ft)
454 {
455 rt1 += AARCH64_X_REGISTER_COUNT;
456 rt2 += AARCH64_X_REGISTER_COUNT;
457 }
458
459 stack.store (pv_add_constant (regs[rn], imm), size, regs[rt1]);
460 stack.store (pv_add_constant (regs[rn], imm + size), size, regs[rt2]);
461
462 if (inst.operands[2].addr.writeback)
463 regs[rn] = pv_add_constant (regs[rn], imm);
464
465 /* Ignore the instruction that allocates stack space and sets
466 the SP. */
467 if (rn == AARCH64_SP_REGNUM && !inst.operands[2].addr.writeback)
468 seen_stack_set = true;
469 }
470 else if ((inst.opcode->iclass == ldst_imm9 /* Signed immediate. */
471 || (inst.opcode->iclass == ldst_pos /* Unsigned immediate. */
472 && (inst.opcode->op == OP_STR_POS
473 || inst.opcode->op == OP_STRF_POS)))
474 && inst.operands[1].addr.base_regno == AARCH64_SP_REGNUM
475 && strcmp ("str", inst.opcode->name) == 0)
476 {
477 /* STR (immediate) */
478 unsigned int rt = inst.operands[0].reg.regno;
479 int32_t imm = inst.operands[1].addr.offset.imm;
480 unsigned int rn = inst.operands[1].addr.base_regno;
481 int size = aarch64_get_qualifier_esize (inst.operands[0].qualifier);
482 gdb_assert (inst.operands[0].type == AARCH64_OPND_Rt
483 || inst.operands[0].type == AARCH64_OPND_Ft);
484
485 if (inst.operands[0].type == AARCH64_OPND_Ft)
486 rt += AARCH64_X_REGISTER_COUNT;
487
488 stack.store (pv_add_constant (regs[rn], imm), size, regs[rt]);
489 if (inst.operands[1].addr.writeback)
490 regs[rn] = pv_add_constant (regs[rn], imm);
491
492 /* Are we storing with SP as a base? */
493 if (rn == AARCH64_SP_REGNUM)
494 seen_stack_set = true;
495 }
496 else if (inst.opcode->iclass == testbranch)
497 {
498 /* Stop analysis on branch. */
499 break;
500 }
501 else if (inst.opcode->iclass == ic_system)
502 {
503 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
504 int ra_state_val = 0;
505
506 if (insn == 0xd503233f /* paciasp. */
507 || insn == 0xd503237f /* pacibsp. */)
508 {
509 /* Return addresses are mangled. */
510 ra_state_val = 1;
511 }
512 else if (insn == 0xd50323bf /* autiasp. */
513 || insn == 0xd50323ff /* autibsp. */)
514 {
515 /* Return addresses are not mangled. */
516 ra_state_val = 0;
517 }
518 else
519 {
520 if (aarch64_debug)
521 debug_printf ("aarch64: prologue analysis gave up addr=%s"
522 " opcode=0x%x (iclass)\n",
523 core_addr_to_string_nz (start), insn);
524 break;
525 }
526
527 if (tdep->has_pauth () && cache != nullptr)
528 trad_frame_set_value (cache->saved_regs,
529 tdep->pauth_ra_state_regnum,
530 ra_state_val);
531 }
532 else
533 {
534 if (aarch64_debug)
535 {
536 debug_printf ("aarch64: prologue analysis gave up addr=%s"
537 " opcode=0x%x\n",
538 core_addr_to_string_nz (start), insn);
539 }
540 break;
541 }
542 }
543
544 if (cache == NULL)
545 return start;
546
547 if (pv_is_register (regs[AARCH64_FP_REGNUM], AARCH64_SP_REGNUM))
548 {
549 /* Frame pointer is fp. Frame size is constant. */
550 cache->framereg = AARCH64_FP_REGNUM;
551 cache->framesize = -regs[AARCH64_FP_REGNUM].k;
552 }
553 else if (pv_is_register (regs[AARCH64_SP_REGNUM], AARCH64_SP_REGNUM))
554 {
555 /* Try the stack pointer. */
556 cache->framesize = -regs[AARCH64_SP_REGNUM].k;
557 cache->framereg = AARCH64_SP_REGNUM;
558 }
559 else
560 {
561 /* We're just out of luck. We don't know where the frame is. */
562 cache->framereg = -1;
563 cache->framesize = 0;
564 }
565
566 for (i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
567 {
568 CORE_ADDR offset;
569
570 if (stack.find_reg (gdbarch, i, &offset))
571 cache->saved_regs[i].addr = offset;
572 }
573
574 for (i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
575 {
576 int regnum = gdbarch_num_regs (gdbarch);
577 CORE_ADDR offset;
578
579 if (stack.find_reg (gdbarch, i + AARCH64_X_REGISTER_COUNT,
580 &offset))
581 cache->saved_regs[i + regnum + AARCH64_D0_REGNUM].addr = offset;
582 }
583
584 return start;
585 }
586
587 static CORE_ADDR
588 aarch64_analyze_prologue (struct gdbarch *gdbarch,
589 CORE_ADDR start, CORE_ADDR limit,
590 struct aarch64_prologue_cache *cache)
591 {
592 instruction_reader reader;
593
594 return aarch64_analyze_prologue (gdbarch, start, limit, cache,
595 reader);
596 }
597
598 #if GDB_SELF_TEST
599
600 namespace selftests {
601
602 /* Instruction reader from manually cooked instruction sequences. */
603
604 class instruction_reader_test : public abstract_instruction_reader
605 {
606 public:
607 template<size_t SIZE>
608 explicit instruction_reader_test (const uint32_t (&insns)[SIZE])
609 : m_insns (insns), m_insns_size (SIZE)
610 {}
611
612 ULONGEST read (CORE_ADDR memaddr, int len, enum bfd_endian byte_order)
613 override
614 {
615 SELF_CHECK (len == 4);
616 SELF_CHECK (memaddr % 4 == 0);
617 SELF_CHECK (memaddr / 4 < m_insns_size);
618
619 return m_insns[memaddr / 4];
620 }
621
622 private:
623 const uint32_t *m_insns;
624 size_t m_insns_size;
625 };
626
627 static void
628 aarch64_analyze_prologue_test (void)
629 {
630 struct gdbarch_info info;
631
632 gdbarch_info_init (&info);
633 info.bfd_arch_info = bfd_scan_arch ("aarch64");
634
635 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
636 SELF_CHECK (gdbarch != NULL);
637
638 struct aarch64_prologue_cache cache;
639 cache.saved_regs = trad_frame_alloc_saved_regs (gdbarch);
640
641 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
642
643 /* Test the simple prologue in which frame pointer is used. */
644 {
645 static const uint32_t insns[] = {
646 0xa9af7bfd, /* stp x29, x30, [sp,#-272]! */
647 0x910003fd, /* mov x29, sp */
648 0x97ffffe6, /* bl 0x400580 */
649 };
650 instruction_reader_test reader (insns);
651
652 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
653 SELF_CHECK (end == 4 * 2);
654
655 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
656 SELF_CHECK (cache.framesize == 272);
657
658 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
659 {
660 if (i == AARCH64_FP_REGNUM)
661 SELF_CHECK (cache.saved_regs[i].addr == -272);
662 else if (i == AARCH64_LR_REGNUM)
663 SELF_CHECK (cache.saved_regs[i].addr == -264);
664 else
665 SELF_CHECK (cache.saved_regs[i].addr == -1);
666 }
667
668 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
669 {
670 int regnum = gdbarch_num_regs (gdbarch);
671
672 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
673 == -1);
674 }
675 }
676
677 /* Test a prologue in which STR is used and frame pointer is not
678 used. */
679 {
680 static const uint32_t insns[] = {
681 0xf81d0ff3, /* str x19, [sp, #-48]! */
682 0xb9002fe0, /* str w0, [sp, #44] */
683 0xf90013e1, /* str x1, [sp, #32]*/
684 0xfd000fe0, /* str d0, [sp, #24] */
685 0xaa0203f3, /* mov x19, x2 */
686 0xf94013e0, /* ldr x0, [sp, #32] */
687 };
688 instruction_reader_test reader (insns);
689
690 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
691 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
692
693 SELF_CHECK (end == 4 * 5);
694
695 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
696 SELF_CHECK (cache.framesize == 48);
697
698 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
699 {
700 if (i == 1)
701 SELF_CHECK (cache.saved_regs[i].addr == -16);
702 else if (i == 19)
703 SELF_CHECK (cache.saved_regs[i].addr == -48);
704 else
705 SELF_CHECK (cache.saved_regs[i].addr == -1);
706 }
707
708 for (int i = 0; i < AARCH64_D_REGISTER_COUNT; i++)
709 {
710 int regnum = gdbarch_num_regs (gdbarch);
711
712 if (i == 0)
713 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
714 == -24);
715 else
716 SELF_CHECK (cache.saved_regs[i + regnum + AARCH64_D0_REGNUM].addr
717 == -1);
718 }
719 }
720
721 /* Test handling of movz before setting the frame pointer. */
722 {
723 static const uint32_t insns[] = {
724 0xa9bf7bfd, /* stp x29, x30, [sp, #-16]! */
725 0x52800020, /* mov w0, #0x1 */
726 0x910003fd, /* mov x29, sp */
727 0x528000a2, /* mov w2, #0x5 */
728 0x97fffff8, /* bl 6e4 */
729 };
730
731 instruction_reader_test reader (insns);
732
733 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
734 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
735
736 /* We should stop at the 4th instruction. */
737 SELF_CHECK (end == (4 - 1) * 4);
738 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
739 SELF_CHECK (cache.framesize == 16);
740 }
741
742 /* Test handling of movz/stp when using the stack pointer as frame
743 pointer. */
744 {
745 static const uint32_t insns[] = {
746 0xa9bc7bfd, /* stp x29, x30, [sp, #-64]! */
747 0x52800020, /* mov w0, #0x1 */
748 0x290207e0, /* stp w0, w1, [sp, #16] */
749 0xa9018fe2, /* stp x2, x3, [sp, #24] */
750 0x528000a2, /* mov w2, #0x5 */
751 0x97fffff8, /* bl 6e4 */
752 };
753
754 instruction_reader_test reader (insns);
755
756 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
757 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
758
759 /* We should stop at the 5th instruction. */
760 SELF_CHECK (end == (5 - 1) * 4);
761 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
762 SELF_CHECK (cache.framesize == 64);
763 }
764
765 /* Test handling of movz/str when using the stack pointer as frame
766 pointer */
767 {
768 static const uint32_t insns[] = {
769 0xa9bc7bfd, /* stp x29, x30, [sp, #-64]! */
770 0x52800020, /* mov w0, #0x1 */
771 0xb9002be4, /* str w4, [sp, #40] */
772 0xf9001be5, /* str x5, [sp, #48] */
773 0x528000a2, /* mov w2, #0x5 */
774 0x97fffff8, /* bl 6e4 */
775 };
776
777 instruction_reader_test reader (insns);
778
779 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
780 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
781
782 /* We should stop at the 5th instruction. */
783 SELF_CHECK (end == (5 - 1) * 4);
784 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
785 SELF_CHECK (cache.framesize == 64);
786 }
787
788 /* Test handling of movz/stur when using the stack pointer as frame
789 pointer. */
790 {
791 static const uint32_t insns[] = {
792 0xa9bc7bfd, /* stp x29, x30, [sp, #-64]! */
793 0x52800020, /* mov w0, #0x1 */
794 0xb80343e6, /* stur w6, [sp, #52] */
795 0xf80383e7, /* stur x7, [sp, #56] */
796 0x528000a2, /* mov w2, #0x5 */
797 0x97fffff8, /* bl 6e4 */
798 };
799
800 instruction_reader_test reader (insns);
801
802 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
803 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
804
805 /* We should stop at the 5th instruction. */
806 SELF_CHECK (end == (5 - 1) * 4);
807 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
808 SELF_CHECK (cache.framesize == 64);
809 }
810
811 /* Test handling of movz when there is no frame pointer set or no stack
812 pointer used. */
813 {
814 static const uint32_t insns[] = {
815 0xa9bf7bfd, /* stp x29, x30, [sp, #-16]! */
816 0x52800020, /* mov w0, #0x1 */
817 0x528000a2, /* mov w2, #0x5 */
818 0x97fffff8, /* bl 6e4 */
819 };
820
821 instruction_reader_test reader (insns);
822
823 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
824 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache, reader);
825
826 /* We should stop at the 4th instruction. */
827 SELF_CHECK (end == (4 - 1) * 4);
828 SELF_CHECK (cache.framereg == AARCH64_SP_REGNUM);
829 SELF_CHECK (cache.framesize == 16);
830 }
831
832 /* Test a prologue in which there is a return address signing instruction. */
833 if (tdep->has_pauth ())
834 {
835 static const uint32_t insns[] = {
836 0xd503233f, /* paciasp */
837 0xa9bd7bfd, /* stp x29, x30, [sp, #-48]! */
838 0x910003fd, /* mov x29, sp */
839 0xf801c3f3, /* str x19, [sp, #28] */
840 0xb9401fa0, /* ldr x19, [x29, #28] */
841 };
842 instruction_reader_test reader (insns);
843
844 trad_frame_reset_saved_regs (gdbarch, cache.saved_regs);
845 CORE_ADDR end = aarch64_analyze_prologue (gdbarch, 0, 128, &cache,
846 reader);
847
848 SELF_CHECK (end == 4 * 4);
849 SELF_CHECK (cache.framereg == AARCH64_FP_REGNUM);
850 SELF_CHECK (cache.framesize == 48);
851
852 for (int i = 0; i < AARCH64_X_REGISTER_COUNT; i++)
853 {
854 if (i == 19)
855 SELF_CHECK (cache.saved_regs[i].addr == -20);
856 else if (i == AARCH64_FP_REGNUM)
857 SELF_CHECK (cache.saved_regs[i].addr == -48);
858 else if (i == AARCH64_LR_REGNUM)
859 SELF_CHECK (cache.saved_regs[i].addr == -40);
860 else
861 SELF_CHECK (cache.saved_regs[i].addr == -1);
862 }
863
864 if (tdep->has_pauth ())
865 {
866 SELF_CHECK (trad_frame_value_p (cache.saved_regs,
867 tdep->pauth_ra_state_regnum));
868 SELF_CHECK (cache.saved_regs[tdep->pauth_ra_state_regnum].addr == 1);
869 }
870 }
871 }
872 } // namespace selftests
873 #endif /* GDB_SELF_TEST */
874
875 /* Implement the "skip_prologue" gdbarch method. */
876
877 static CORE_ADDR
878 aarch64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR pc)
879 {
880 CORE_ADDR func_addr, limit_pc;
881
882 /* See if we can determine the end of the prologue via the symbol
883 table. If so, then return either PC, or the PC after the
884 prologue, whichever is greater. */
885 if (find_pc_partial_function (pc, NULL, &func_addr, NULL))
886 {
887 CORE_ADDR post_prologue_pc
888 = skip_prologue_using_sal (gdbarch, func_addr);
889
890 if (post_prologue_pc != 0)
891 return std::max (pc, post_prologue_pc);
892 }
893
894 /* Can't determine prologue from the symbol table, need to examine
895 instructions. */
896
897 /* Find an upper limit on the function prologue using the debug
898 information. If the debug information could not be used to
899 provide that bound, then use an arbitrary large number as the
900 upper bound. */
901 limit_pc = skip_prologue_using_sal (gdbarch, pc);
902 if (limit_pc == 0)
903 limit_pc = pc + 128; /* Magic. */
904
905 /* Try disassembling prologue. */
906 return aarch64_analyze_prologue (gdbarch, pc, limit_pc, NULL);
907 }
908
909 /* Scan the function prologue for THIS_FRAME and populate the prologue
910 cache CACHE. */
911
912 static void
913 aarch64_scan_prologue (struct frame_info *this_frame,
914 struct aarch64_prologue_cache *cache)
915 {
916 CORE_ADDR block_addr = get_frame_address_in_block (this_frame);
917 CORE_ADDR prologue_start;
918 CORE_ADDR prologue_end;
919 CORE_ADDR prev_pc = get_frame_pc (this_frame);
920 struct gdbarch *gdbarch = get_frame_arch (this_frame);
921
922 cache->prev_pc = prev_pc;
923
924 /* Assume we do not find a frame. */
925 cache->framereg = -1;
926 cache->framesize = 0;
927
928 if (find_pc_partial_function (block_addr, NULL, &prologue_start,
929 &prologue_end))
930 {
931 struct symtab_and_line sal = find_pc_line (prologue_start, 0);
932
933 if (sal.line == 0)
934 {
935 /* No line info so use the current PC. */
936 prologue_end = prev_pc;
937 }
938 else if (sal.end < prologue_end)
939 {
940 /* The next line begins after the function end. */
941 prologue_end = sal.end;
942 }
943
944 prologue_end = std::min (prologue_end, prev_pc);
945 aarch64_analyze_prologue (gdbarch, prologue_start, prologue_end, cache);
946 }
947 else
948 {
949 CORE_ADDR frame_loc;
950
951 frame_loc = get_frame_register_unsigned (this_frame, AARCH64_FP_REGNUM);
952 if (frame_loc == 0)
953 return;
954
955 cache->framereg = AARCH64_FP_REGNUM;
956 cache->framesize = 16;
957 cache->saved_regs[29].addr = 0;
958 cache->saved_regs[30].addr = 8;
959 }
960 }
961
962 /* Fill in *CACHE with information about the prologue of *THIS_FRAME. This
963 function may throw an exception if the inferior's registers or memory is
964 not available. */
965
966 static void
967 aarch64_make_prologue_cache_1 (struct frame_info *this_frame,
968 struct aarch64_prologue_cache *cache)
969 {
970 CORE_ADDR unwound_fp;
971 int reg;
972
973 aarch64_scan_prologue (this_frame, cache);
974
975 if (cache->framereg == -1)
976 return;
977
978 unwound_fp = get_frame_register_unsigned (this_frame, cache->framereg);
979 if (unwound_fp == 0)
980 return;
981
982 cache->prev_sp = unwound_fp + cache->framesize;
983
984 /* Calculate actual addresses of saved registers using offsets
985 determined by aarch64_analyze_prologue. */
986 for (reg = 0; reg < gdbarch_num_regs (get_frame_arch (this_frame)); reg++)
987 if (trad_frame_addr_p (cache->saved_regs, reg))
988 cache->saved_regs[reg].addr += cache->prev_sp;
989
990 cache->func = get_frame_func (this_frame);
991
992 cache->available_p = 1;
993 }
994
995 /* Allocate and fill in *THIS_CACHE with information about the prologue of
996 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
997 Return a pointer to the current aarch64_prologue_cache in
998 *THIS_CACHE. */
999
1000 static struct aarch64_prologue_cache *
1001 aarch64_make_prologue_cache (struct frame_info *this_frame, void **this_cache)
1002 {
1003 struct aarch64_prologue_cache *cache;
1004
1005 if (*this_cache != NULL)
1006 return (struct aarch64_prologue_cache *) *this_cache;
1007
1008 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1009 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1010 *this_cache = cache;
1011
1012 try
1013 {
1014 aarch64_make_prologue_cache_1 (this_frame, cache);
1015 }
1016 catch (const gdb_exception_error &ex)
1017 {
1018 if (ex.error != NOT_AVAILABLE_ERROR)
1019 throw;
1020 }
1021
1022 return cache;
1023 }
1024
1025 /* Implement the "stop_reason" frame_unwind method. */
1026
1027 static enum unwind_stop_reason
1028 aarch64_prologue_frame_unwind_stop_reason (struct frame_info *this_frame,
1029 void **this_cache)
1030 {
1031 struct aarch64_prologue_cache *cache
1032 = aarch64_make_prologue_cache (this_frame, this_cache);
1033
1034 if (!cache->available_p)
1035 return UNWIND_UNAVAILABLE;
1036
1037 /* Halt the backtrace at "_start". */
1038 if (cache->prev_pc <= gdbarch_tdep (get_frame_arch (this_frame))->lowest_pc)
1039 return UNWIND_OUTERMOST;
1040
1041 /* We've hit a wall, stop. */
1042 if (cache->prev_sp == 0)
1043 return UNWIND_OUTERMOST;
1044
1045 return UNWIND_NO_REASON;
1046 }
1047
1048 /* Our frame ID for a normal frame is the current function's starting
1049 PC and the caller's SP when we were called. */
1050
1051 static void
1052 aarch64_prologue_this_id (struct frame_info *this_frame,
1053 void **this_cache, struct frame_id *this_id)
1054 {
1055 struct aarch64_prologue_cache *cache
1056 = aarch64_make_prologue_cache (this_frame, this_cache);
1057
1058 if (!cache->available_p)
1059 *this_id = frame_id_build_unavailable_stack (cache->func);
1060 else
1061 *this_id = frame_id_build (cache->prev_sp, cache->func);
1062 }
1063
1064 /* Implement the "prev_register" frame_unwind method. */
1065
1066 static struct value *
1067 aarch64_prologue_prev_register (struct frame_info *this_frame,
1068 void **this_cache, int prev_regnum)
1069 {
1070 struct aarch64_prologue_cache *cache
1071 = aarch64_make_prologue_cache (this_frame, this_cache);
1072
1073 /* If we are asked to unwind the PC, then we need to return the LR
1074 instead. The prologue may save PC, but it will point into this
1075 frame's prologue, not the next frame's resume location. */
1076 if (prev_regnum == AARCH64_PC_REGNUM)
1077 {
1078 CORE_ADDR lr;
1079 struct gdbarch *gdbarch = get_frame_arch (this_frame);
1080 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1081
1082 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1083
1084 if (tdep->has_pauth ()
1085 && trad_frame_value_p (cache->saved_regs,
1086 tdep->pauth_ra_state_regnum))
1087 lr = aarch64_frame_unmask_lr (tdep, this_frame, lr);
1088
1089 return frame_unwind_got_constant (this_frame, prev_regnum, lr);
1090 }
1091
1092 /* SP is generally not saved to the stack, but this frame is
1093 identified by the next frame's stack pointer at the time of the
1094 call. The value was already reconstructed into PREV_SP. */
1095 /*
1096 +----------+ ^
1097 | saved lr | |
1098 +->| saved fp |--+
1099 | | |
1100 | | | <- Previous SP
1101 | +----------+
1102 | | saved lr |
1103 +--| saved fp |<- FP
1104 | |
1105 | |<- SP
1106 +----------+ */
1107 if (prev_regnum == AARCH64_SP_REGNUM)
1108 return frame_unwind_got_constant (this_frame, prev_regnum,
1109 cache->prev_sp);
1110
1111 return trad_frame_get_prev_register (this_frame, cache->saved_regs,
1112 prev_regnum);
1113 }
1114
1115 /* AArch64 prologue unwinder. */
1116 struct frame_unwind aarch64_prologue_unwind =
1117 {
1118 NORMAL_FRAME,
1119 aarch64_prologue_frame_unwind_stop_reason,
1120 aarch64_prologue_this_id,
1121 aarch64_prologue_prev_register,
1122 NULL,
1123 default_frame_sniffer
1124 };
1125
1126 /* Allocate and fill in *THIS_CACHE with information about the prologue of
1127 *THIS_FRAME. Do not do this is if *THIS_CACHE was already allocated.
1128 Return a pointer to the current aarch64_prologue_cache in
1129 *THIS_CACHE. */
1130
1131 static struct aarch64_prologue_cache *
1132 aarch64_make_stub_cache (struct frame_info *this_frame, void **this_cache)
1133 {
1134 struct aarch64_prologue_cache *cache;
1135
1136 if (*this_cache != NULL)
1137 return (struct aarch64_prologue_cache *) *this_cache;
1138
1139 cache = FRAME_OBSTACK_ZALLOC (struct aarch64_prologue_cache);
1140 cache->saved_regs = trad_frame_alloc_saved_regs (this_frame);
1141 *this_cache = cache;
1142
1143 try
1144 {
1145 cache->prev_sp = get_frame_register_unsigned (this_frame,
1146 AARCH64_SP_REGNUM);
1147 cache->prev_pc = get_frame_pc (this_frame);
1148 cache->available_p = 1;
1149 }
1150 catch (const gdb_exception_error &ex)
1151 {
1152 if (ex.error != NOT_AVAILABLE_ERROR)
1153 throw;
1154 }
1155
1156 return cache;
1157 }
1158
1159 /* Implement the "stop_reason" frame_unwind method. */
1160
1161 static enum unwind_stop_reason
1162 aarch64_stub_frame_unwind_stop_reason (struct frame_info *this_frame,
1163 void **this_cache)
1164 {
1165 struct aarch64_prologue_cache *cache
1166 = aarch64_make_stub_cache (this_frame, this_cache);
1167
1168 if (!cache->available_p)
1169 return UNWIND_UNAVAILABLE;
1170
1171 return UNWIND_NO_REASON;
1172 }
1173
1174 /* Our frame ID for a stub frame is the current SP and LR. */
1175
1176 static void
1177 aarch64_stub_this_id (struct frame_info *this_frame,
1178 void **this_cache, struct frame_id *this_id)
1179 {
1180 struct aarch64_prologue_cache *cache
1181 = aarch64_make_stub_cache (this_frame, this_cache);
1182
1183 if (cache->available_p)
1184 *this_id = frame_id_build (cache->prev_sp, cache->prev_pc);
1185 else
1186 *this_id = frame_id_build_unavailable_stack (cache->prev_pc);
1187 }
1188
1189 /* Implement the "sniffer" frame_unwind method. */
1190
1191 static int
1192 aarch64_stub_unwind_sniffer (const struct frame_unwind *self,
1193 struct frame_info *this_frame,
1194 void **this_prologue_cache)
1195 {
1196 CORE_ADDR addr_in_block;
1197 gdb_byte dummy[4];
1198
1199 addr_in_block = get_frame_address_in_block (this_frame);
1200 if (in_plt_section (addr_in_block)
1201 /* We also use the stub winder if the target memory is unreadable
1202 to avoid having the prologue unwinder trying to read it. */
1203 || target_read_memory (get_frame_pc (this_frame), dummy, 4) != 0)
1204 return 1;
1205
1206 return 0;
1207 }
1208
1209 /* AArch64 stub unwinder. */
1210 struct frame_unwind aarch64_stub_unwind =
1211 {
1212 NORMAL_FRAME,
1213 aarch64_stub_frame_unwind_stop_reason,
1214 aarch64_stub_this_id,
1215 aarch64_prologue_prev_register,
1216 NULL,
1217 aarch64_stub_unwind_sniffer
1218 };
1219
1220 /* Return the frame base address of *THIS_FRAME. */
1221
1222 static CORE_ADDR
1223 aarch64_normal_frame_base (struct frame_info *this_frame, void **this_cache)
1224 {
1225 struct aarch64_prologue_cache *cache
1226 = aarch64_make_prologue_cache (this_frame, this_cache);
1227
1228 return cache->prev_sp - cache->framesize;
1229 }
1230
1231 /* AArch64 default frame base information. */
1232 struct frame_base aarch64_normal_base =
1233 {
1234 &aarch64_prologue_unwind,
1235 aarch64_normal_frame_base,
1236 aarch64_normal_frame_base,
1237 aarch64_normal_frame_base
1238 };
1239
1240 /* Return the value of the REGNUM register in the previous frame of
1241 *THIS_FRAME. */
1242
1243 static struct value *
1244 aarch64_dwarf2_prev_register (struct frame_info *this_frame,
1245 void **this_cache, int regnum)
1246 {
1247 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
1248 CORE_ADDR lr;
1249
1250 switch (regnum)
1251 {
1252 case AARCH64_PC_REGNUM:
1253 lr = frame_unwind_register_unsigned (this_frame, AARCH64_LR_REGNUM);
1254 lr = aarch64_frame_unmask_lr (tdep, this_frame, lr);
1255 return frame_unwind_got_constant (this_frame, regnum, lr);
1256
1257 default:
1258 internal_error (__FILE__, __LINE__,
1259 _("Unexpected register %d"), regnum);
1260 }
1261 }
1262
1263 static const unsigned char op_lit0 = DW_OP_lit0;
1264 static const unsigned char op_lit1 = DW_OP_lit1;
1265
1266 /* Implement the "init_reg" dwarf2_frame_ops method. */
1267
1268 static void
1269 aarch64_dwarf2_frame_init_reg (struct gdbarch *gdbarch, int regnum,
1270 struct dwarf2_frame_state_reg *reg,
1271 struct frame_info *this_frame)
1272 {
1273 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1274
1275 switch (regnum)
1276 {
1277 case AARCH64_PC_REGNUM:
1278 reg->how = DWARF2_FRAME_REG_FN;
1279 reg->loc.fn = aarch64_dwarf2_prev_register;
1280 return;
1281
1282 case AARCH64_SP_REGNUM:
1283 reg->how = DWARF2_FRAME_REG_CFA;
1284 return;
1285 }
1286
1287 /* Init pauth registers. */
1288 if (tdep->has_pauth ())
1289 {
1290 if (regnum == tdep->pauth_ra_state_regnum)
1291 {
1292 /* Initialize RA_STATE to zero. */
1293 reg->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1294 reg->loc.exp.start = &op_lit0;
1295 reg->loc.exp.len = 1;
1296 return;
1297 }
1298 else if (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
1299 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base))
1300 {
1301 reg->how = DWARF2_FRAME_REG_SAME_VALUE;
1302 return;
1303 }
1304 }
1305 }
1306
1307 /* Implement the execute_dwarf_cfa_vendor_op method. */
1308
1309 static bool
1310 aarch64_execute_dwarf_cfa_vendor_op (struct gdbarch *gdbarch, gdb_byte op,
1311 struct dwarf2_frame_state *fs)
1312 {
1313 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1314 struct dwarf2_frame_state_reg *ra_state;
1315
1316 if (op == DW_CFA_AARCH64_negate_ra_state)
1317 {
1318 /* On systems without pauth, treat as a nop. */
1319 if (!tdep->has_pauth ())
1320 return true;
1321
1322 /* Allocate RA_STATE column if it's not allocated yet. */
1323 fs->regs.alloc_regs (AARCH64_DWARF_PAUTH_RA_STATE + 1);
1324
1325 /* Toggle the status of RA_STATE between 0 and 1. */
1326 ra_state = &(fs->regs.reg[AARCH64_DWARF_PAUTH_RA_STATE]);
1327 ra_state->how = DWARF2_FRAME_REG_SAVED_VAL_EXP;
1328
1329 if (ra_state->loc.exp.start == nullptr
1330 || ra_state->loc.exp.start == &op_lit0)
1331 ra_state->loc.exp.start = &op_lit1;
1332 else
1333 ra_state->loc.exp.start = &op_lit0;
1334
1335 ra_state->loc.exp.len = 1;
1336
1337 return true;
1338 }
1339
1340 return false;
1341 }
1342
1343 /* Used for matching BRK instructions for AArch64. */
1344 static constexpr uint32_t BRK_INSN_MASK = 0xffe0001f;
1345 static constexpr uint32_t BRK_INSN_BASE = 0xd4200000;
1346
1347 /* Implementation of gdbarch_program_breakpoint_here_p for aarch64. */
1348
1349 static bool
1350 aarch64_program_breakpoint_here_p (gdbarch *gdbarch, CORE_ADDR address)
1351 {
1352 const uint32_t insn_len = 4;
1353 gdb_byte target_mem[4];
1354
1355 /* Enable the automatic memory restoration from breakpoints while
1356 we read the memory. Otherwise we may find temporary breakpoints, ones
1357 inserted by GDB, and flag them as permanent breakpoints. */
1358 scoped_restore restore_memory
1359 = make_scoped_restore_show_memory_breakpoints (0);
1360
1361 if (target_read_memory (address, target_mem, insn_len) == 0)
1362 {
1363 uint32_t insn =
1364 (uint32_t) extract_unsigned_integer (target_mem, insn_len,
1365 gdbarch_byte_order_for_code (gdbarch));
1366
1367 /* Check if INSN is a BRK instruction pattern. There are multiple choices
1368 of such instructions with different immediate values. Different OS'
1369 may use a different variation, but they have the same outcome. */
1370 return ((insn & BRK_INSN_MASK) == BRK_INSN_BASE);
1371 }
1372
1373 return false;
1374 }
1375
1376 /* When arguments must be pushed onto the stack, they go on in reverse
1377 order. The code below implements a FILO (stack) to do this. */
1378
1379 struct stack_item_t
1380 {
1381 /* Value to pass on stack. It can be NULL if this item is for stack
1382 padding. */
1383 const gdb_byte *data;
1384
1385 /* Size in bytes of value to pass on stack. */
1386 int len;
1387 };
1388
1389 /* Implement the gdbarch type alignment method, overrides the generic
1390 alignment algorithm for anything that is aarch64 specific. */
1391
1392 static ULONGEST
1393 aarch64_type_align (gdbarch *gdbarch, struct type *t)
1394 {
1395 t = check_typedef (t);
1396 if (t->code () == TYPE_CODE_ARRAY && t->is_vector ())
1397 {
1398 /* Use the natural alignment for vector types (the same for
1399 scalar type), but the maximum alignment is 128-bit. */
1400 if (TYPE_LENGTH (t) > 16)
1401 return 16;
1402 else
1403 return TYPE_LENGTH (t);
1404 }
1405
1406 /* Allow the common code to calculate the alignment. */
1407 return 0;
1408 }
1409
1410 /* Worker function for aapcs_is_vfp_call_or_return_candidate.
1411
1412 Return the number of register required, or -1 on failure.
1413
1414 When encountering a base element, if FUNDAMENTAL_TYPE is not set then set it
1415 to the element, else fail if the type of this element does not match the
1416 existing value. */
1417
1418 static int
1419 aapcs_is_vfp_call_or_return_candidate_1 (struct type *type,
1420 struct type **fundamental_type)
1421 {
1422 if (type == nullptr)
1423 return -1;
1424
1425 switch (type->code ())
1426 {
1427 case TYPE_CODE_FLT:
1428 if (TYPE_LENGTH (type) > 16)
1429 return -1;
1430
1431 if (*fundamental_type == nullptr)
1432 *fundamental_type = type;
1433 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1434 || type->code () != (*fundamental_type)->code ())
1435 return -1;
1436
1437 return 1;
1438
1439 case TYPE_CODE_COMPLEX:
1440 {
1441 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1442 if (TYPE_LENGTH (target_type) > 16)
1443 return -1;
1444
1445 if (*fundamental_type == nullptr)
1446 *fundamental_type = target_type;
1447 else if (TYPE_LENGTH (target_type) != TYPE_LENGTH (*fundamental_type)
1448 || target_type->code () != (*fundamental_type)->code ())
1449 return -1;
1450
1451 return 2;
1452 }
1453
1454 case TYPE_CODE_ARRAY:
1455 {
1456 if (type->is_vector ())
1457 {
1458 if (TYPE_LENGTH (type) != 8 && TYPE_LENGTH (type) != 16)
1459 return -1;
1460
1461 if (*fundamental_type == nullptr)
1462 *fundamental_type = type;
1463 else if (TYPE_LENGTH (type) != TYPE_LENGTH (*fundamental_type)
1464 || type->code () != (*fundamental_type)->code ())
1465 return -1;
1466
1467 return 1;
1468 }
1469 else
1470 {
1471 struct type *target_type = TYPE_TARGET_TYPE (type);
1472 int count = aapcs_is_vfp_call_or_return_candidate_1
1473 (target_type, fundamental_type);
1474
1475 if (count == -1)
1476 return count;
1477
1478 count *= (TYPE_LENGTH (type) / TYPE_LENGTH (target_type));
1479 return count;
1480 }
1481 }
1482
1483 case TYPE_CODE_STRUCT:
1484 case TYPE_CODE_UNION:
1485 {
1486 int count = 0;
1487
1488 for (int i = 0; i < type->num_fields (); i++)
1489 {
1490 /* Ignore any static fields. */
1491 if (field_is_static (&type->field (i)))
1492 continue;
1493
1494 struct type *member = check_typedef (type->field (i).type ());
1495
1496 int sub_count = aapcs_is_vfp_call_or_return_candidate_1
1497 (member, fundamental_type);
1498 if (sub_count == -1)
1499 return -1;
1500 count += sub_count;
1501 }
1502
1503 /* Ensure there is no padding between the fields (allowing for empty
1504 zero length structs) */
1505 int ftype_length = (*fundamental_type == nullptr)
1506 ? 0 : TYPE_LENGTH (*fundamental_type);
1507 if (count * ftype_length != TYPE_LENGTH (type))
1508 return -1;
1509
1510 return count;
1511 }
1512
1513 default:
1514 break;
1515 }
1516
1517 return -1;
1518 }
1519
1520 /* Return true if an argument, whose type is described by TYPE, can be passed or
1521 returned in simd/fp registers, providing enough parameter passing registers
1522 are available. This is as described in the AAPCS64.
1523
1524 Upon successful return, *COUNT returns the number of needed registers,
1525 *FUNDAMENTAL_TYPE contains the type of those registers.
1526
1527 Candidate as per the AAPCS64 5.4.2.C is either a:
1528 - float.
1529 - short-vector.
1530 - HFA (Homogeneous Floating-point Aggregate, 4.3.5.1). A Composite type where
1531 all the members are floats and has at most 4 members.
1532 - HVA (Homogeneous Short-vector Aggregate, 4.3.5.2). A Composite type where
1533 all the members are short vectors and has at most 4 members.
1534 - Complex (7.1.1)
1535
1536 Note that HFAs and HVAs can include nested structures and arrays. */
1537
1538 static bool
1539 aapcs_is_vfp_call_or_return_candidate (struct type *type, int *count,
1540 struct type **fundamental_type)
1541 {
1542 if (type == nullptr)
1543 return false;
1544
1545 *fundamental_type = nullptr;
1546
1547 int ag_count = aapcs_is_vfp_call_or_return_candidate_1 (type,
1548 fundamental_type);
1549
1550 if (ag_count > 0 && ag_count <= HA_MAX_NUM_FLDS)
1551 {
1552 *count = ag_count;
1553 return true;
1554 }
1555 else
1556 return false;
1557 }
1558
1559 /* AArch64 function call information structure. */
1560 struct aarch64_call_info
1561 {
1562 /* the current argument number. */
1563 unsigned argnum = 0;
1564
1565 /* The next general purpose register number, equivalent to NGRN as
1566 described in the AArch64 Procedure Call Standard. */
1567 unsigned ngrn = 0;
1568
1569 /* The next SIMD and floating point register number, equivalent to
1570 NSRN as described in the AArch64 Procedure Call Standard. */
1571 unsigned nsrn = 0;
1572
1573 /* The next stacked argument address, equivalent to NSAA as
1574 described in the AArch64 Procedure Call Standard. */
1575 unsigned nsaa = 0;
1576
1577 /* Stack item vector. */
1578 std::vector<stack_item_t> si;
1579 };
1580
1581 /* Pass a value in a sequence of consecutive X registers. The caller
1582 is responsible for ensuring sufficient registers are available. */
1583
1584 static void
1585 pass_in_x (struct gdbarch *gdbarch, struct regcache *regcache,
1586 struct aarch64_call_info *info, struct type *type,
1587 struct value *arg)
1588 {
1589 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1590 int len = TYPE_LENGTH (type);
1591 enum type_code typecode = type->code ();
1592 int regnum = AARCH64_X0_REGNUM + info->ngrn;
1593 const bfd_byte *buf = value_contents (arg);
1594
1595 info->argnum++;
1596
1597 while (len > 0)
1598 {
1599 int partial_len = len < X_REGISTER_SIZE ? len : X_REGISTER_SIZE;
1600 CORE_ADDR regval = extract_unsigned_integer (buf, partial_len,
1601 byte_order);
1602
1603
1604 /* Adjust sub-word struct/union args when big-endian. */
1605 if (byte_order == BFD_ENDIAN_BIG
1606 && partial_len < X_REGISTER_SIZE
1607 && (typecode == TYPE_CODE_STRUCT || typecode == TYPE_CODE_UNION))
1608 regval <<= ((X_REGISTER_SIZE - partial_len) * TARGET_CHAR_BIT);
1609
1610 if (aarch64_debug)
1611 {
1612 debug_printf ("arg %d in %s = 0x%s\n", info->argnum,
1613 gdbarch_register_name (gdbarch, regnum),
1614 phex (regval, X_REGISTER_SIZE));
1615 }
1616 regcache_cooked_write_unsigned (regcache, regnum, regval);
1617 len -= partial_len;
1618 buf += partial_len;
1619 regnum++;
1620 }
1621 }
1622
1623 /* Attempt to marshall a value in a V register. Return 1 if
1624 successful, or 0 if insufficient registers are available. This
1625 function, unlike the equivalent pass_in_x() function does not
1626 handle arguments spread across multiple registers. */
1627
1628 static int
1629 pass_in_v (struct gdbarch *gdbarch,
1630 struct regcache *regcache,
1631 struct aarch64_call_info *info,
1632 int len, const bfd_byte *buf)
1633 {
1634 if (info->nsrn < 8)
1635 {
1636 int regnum = AARCH64_V0_REGNUM + info->nsrn;
1637 /* Enough space for a full vector register. */
1638 gdb_byte reg[register_size (gdbarch, regnum)];
1639 gdb_assert (len <= sizeof (reg));
1640
1641 info->argnum++;
1642 info->nsrn++;
1643
1644 memset (reg, 0, sizeof (reg));
1645 /* PCS C.1, the argument is allocated to the least significant
1646 bits of V register. */
1647 memcpy (reg, buf, len);
1648 regcache->cooked_write (regnum, reg);
1649
1650 if (aarch64_debug)
1651 {
1652 debug_printf ("arg %d in %s\n", info->argnum,
1653 gdbarch_register_name (gdbarch, regnum));
1654 }
1655 return 1;
1656 }
1657 info->nsrn = 8;
1658 return 0;
1659 }
1660
1661 /* Marshall an argument onto the stack. */
1662
1663 static void
1664 pass_on_stack (struct aarch64_call_info *info, struct type *type,
1665 struct value *arg)
1666 {
1667 const bfd_byte *buf = value_contents (arg);
1668 int len = TYPE_LENGTH (type);
1669 int align;
1670 stack_item_t item;
1671
1672 info->argnum++;
1673
1674 align = type_align (type);
1675
1676 /* PCS C.17 Stack should be aligned to the larger of 8 bytes or the
1677 Natural alignment of the argument's type. */
1678 align = align_up (align, 8);
1679
1680 /* The AArch64 PCS requires at most doubleword alignment. */
1681 if (align > 16)
1682 align = 16;
1683
1684 if (aarch64_debug)
1685 {
1686 debug_printf ("arg %d len=%d @ sp + %d\n", info->argnum, len,
1687 info->nsaa);
1688 }
1689
1690 item.len = len;
1691 item.data = buf;
1692 info->si.push_back (item);
1693
1694 info->nsaa += len;
1695 if (info->nsaa & (align - 1))
1696 {
1697 /* Push stack alignment padding. */
1698 int pad = align - (info->nsaa & (align - 1));
1699
1700 item.len = pad;
1701 item.data = NULL;
1702
1703 info->si.push_back (item);
1704 info->nsaa += pad;
1705 }
1706 }
1707
1708 /* Marshall an argument into a sequence of one or more consecutive X
1709 registers or, if insufficient X registers are available then onto
1710 the stack. */
1711
1712 static void
1713 pass_in_x_or_stack (struct gdbarch *gdbarch, struct regcache *regcache,
1714 struct aarch64_call_info *info, struct type *type,
1715 struct value *arg)
1716 {
1717 int len = TYPE_LENGTH (type);
1718 int nregs = (len + X_REGISTER_SIZE - 1) / X_REGISTER_SIZE;
1719
1720 /* PCS C.13 - Pass in registers if we have enough spare */
1721 if (info->ngrn + nregs <= 8)
1722 {
1723 pass_in_x (gdbarch, regcache, info, type, arg);
1724 info->ngrn += nregs;
1725 }
1726 else
1727 {
1728 info->ngrn = 8;
1729 pass_on_stack (info, type, arg);
1730 }
1731 }
1732
1733 /* Pass a value, which is of type arg_type, in a V register. Assumes value is a
1734 aapcs_is_vfp_call_or_return_candidate and there are enough spare V
1735 registers. A return value of false is an error state as the value will have
1736 been partially passed to the stack. */
1737 static bool
1738 pass_in_v_vfp_candidate (struct gdbarch *gdbarch, struct regcache *regcache,
1739 struct aarch64_call_info *info, struct type *arg_type,
1740 struct value *arg)
1741 {
1742 switch (arg_type->code ())
1743 {
1744 case TYPE_CODE_FLT:
1745 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1746 value_contents (arg));
1747 break;
1748
1749 case TYPE_CODE_COMPLEX:
1750 {
1751 const bfd_byte *buf = value_contents (arg);
1752 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
1753
1754 if (!pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1755 buf))
1756 return false;
1757
1758 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (target_type),
1759 buf + TYPE_LENGTH (target_type));
1760 }
1761
1762 case TYPE_CODE_ARRAY:
1763 if (arg_type->is_vector ())
1764 return pass_in_v (gdbarch, regcache, info, TYPE_LENGTH (arg_type),
1765 value_contents (arg));
1766 /* fall through. */
1767
1768 case TYPE_CODE_STRUCT:
1769 case TYPE_CODE_UNION:
1770 for (int i = 0; i < arg_type->num_fields (); i++)
1771 {
1772 /* Don't include static fields. */
1773 if (field_is_static (&arg_type->field (i)))
1774 continue;
1775
1776 struct value *field = value_primitive_field (arg, 0, i, arg_type);
1777 struct type *field_type = check_typedef (value_type (field));
1778
1779 if (!pass_in_v_vfp_candidate (gdbarch, regcache, info, field_type,
1780 field))
1781 return false;
1782 }
1783 return true;
1784
1785 default:
1786 return false;
1787 }
1788 }
1789
1790 /* Implement the "push_dummy_call" gdbarch method. */
1791
1792 static CORE_ADDR
1793 aarch64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1794 struct regcache *regcache, CORE_ADDR bp_addr,
1795 int nargs,
1796 struct value **args, CORE_ADDR sp,
1797 function_call_return_method return_method,
1798 CORE_ADDR struct_addr)
1799 {
1800 int argnum;
1801 struct aarch64_call_info info;
1802
1803 /* We need to know what the type of the called function is in order
1804 to determine the number of named/anonymous arguments for the
1805 actual argument placement, and the return type in order to handle
1806 return value correctly.
1807
1808 The generic code above us views the decision of return in memory
1809 or return in registers as a two stage processes. The language
1810 handler is consulted first and may decide to return in memory (eg
1811 class with copy constructor returned by value), this will cause
1812 the generic code to allocate space AND insert an initial leading
1813 argument.
1814
1815 If the language code does not decide to pass in memory then the
1816 target code is consulted.
1817
1818 If the language code decides to pass in memory we want to move
1819 the pointer inserted as the initial argument from the argument
1820 list and into X8, the conventional AArch64 struct return pointer
1821 register. */
1822
1823 /* Set the return address. For the AArch64, the return breakpoint
1824 is always at BP_ADDR. */
1825 regcache_cooked_write_unsigned (regcache, AARCH64_LR_REGNUM, bp_addr);
1826
1827 /* If we were given an initial argument for the return slot, lose it. */
1828 if (return_method == return_method_hidden_param)
1829 {
1830 args++;
1831 nargs--;
1832 }
1833
1834 /* The struct_return pointer occupies X8. */
1835 if (return_method != return_method_normal)
1836 {
1837 if (aarch64_debug)
1838 {
1839 debug_printf ("struct return in %s = 0x%s\n",
1840 gdbarch_register_name (gdbarch,
1841 AARCH64_STRUCT_RETURN_REGNUM),
1842 paddress (gdbarch, struct_addr));
1843 }
1844 regcache_cooked_write_unsigned (regcache, AARCH64_STRUCT_RETURN_REGNUM,
1845 struct_addr);
1846 }
1847
1848 for (argnum = 0; argnum < nargs; argnum++)
1849 {
1850 struct value *arg = args[argnum];
1851 struct type *arg_type, *fundamental_type;
1852 int len, elements;
1853
1854 arg_type = check_typedef (value_type (arg));
1855 len = TYPE_LENGTH (arg_type);
1856
1857 /* If arg can be passed in v registers as per the AAPCS64, then do so if
1858 if there are enough spare registers. */
1859 if (aapcs_is_vfp_call_or_return_candidate (arg_type, &elements,
1860 &fundamental_type))
1861 {
1862 if (info.nsrn + elements <= 8)
1863 {
1864 /* We know that we have sufficient registers available therefore
1865 this will never need to fallback to the stack. */
1866 if (!pass_in_v_vfp_candidate (gdbarch, regcache, &info, arg_type,
1867 arg))
1868 gdb_assert_not_reached ("Failed to push args");
1869 }
1870 else
1871 {
1872 info.nsrn = 8;
1873 pass_on_stack (&info, arg_type, arg);
1874 }
1875 continue;
1876 }
1877
1878 switch (arg_type->code ())
1879 {
1880 case TYPE_CODE_INT:
1881 case TYPE_CODE_BOOL:
1882 case TYPE_CODE_CHAR:
1883 case TYPE_CODE_RANGE:
1884 case TYPE_CODE_ENUM:
1885 if (len < 4)
1886 {
1887 /* Promote to 32 bit integer. */
1888 if (arg_type->is_unsigned ())
1889 arg_type = builtin_type (gdbarch)->builtin_uint32;
1890 else
1891 arg_type = builtin_type (gdbarch)->builtin_int32;
1892 arg = value_cast (arg_type, arg);
1893 }
1894 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1895 break;
1896
1897 case TYPE_CODE_STRUCT:
1898 case TYPE_CODE_ARRAY:
1899 case TYPE_CODE_UNION:
1900 if (len > 16)
1901 {
1902 /* PCS B.7 Aggregates larger than 16 bytes are passed by
1903 invisible reference. */
1904
1905 /* Allocate aligned storage. */
1906 sp = align_down (sp - len, 16);
1907
1908 /* Write the real data into the stack. */
1909 write_memory (sp, value_contents (arg), len);
1910
1911 /* Construct the indirection. */
1912 arg_type = lookup_pointer_type (arg_type);
1913 arg = value_from_pointer (arg_type, sp);
1914 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1915 }
1916 else
1917 /* PCS C.15 / C.18 multiple values pass. */
1918 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1919 break;
1920
1921 default:
1922 pass_in_x_or_stack (gdbarch, regcache, &info, arg_type, arg);
1923 break;
1924 }
1925 }
1926
1927 /* Make sure stack retains 16 byte alignment. */
1928 if (info.nsaa & 15)
1929 sp -= 16 - (info.nsaa & 15);
1930
1931 while (!info.si.empty ())
1932 {
1933 const stack_item_t &si = info.si.back ();
1934
1935 sp -= si.len;
1936 if (si.data != NULL)
1937 write_memory (sp, si.data, si.len);
1938 info.si.pop_back ();
1939 }
1940
1941 /* Finally, update the SP register. */
1942 regcache_cooked_write_unsigned (regcache, AARCH64_SP_REGNUM, sp);
1943
1944 return sp;
1945 }
1946
1947 /* Implement the "frame_align" gdbarch method. */
1948
1949 static CORE_ADDR
1950 aarch64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
1951 {
1952 /* Align the stack to sixteen bytes. */
1953 return sp & ~(CORE_ADDR) 15;
1954 }
1955
1956 /* Return the type for an AdvSISD Q register. */
1957
1958 static struct type *
1959 aarch64_vnq_type (struct gdbarch *gdbarch)
1960 {
1961 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1962
1963 if (tdep->vnq_type == NULL)
1964 {
1965 struct type *t;
1966 struct type *elem;
1967
1968 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
1969 TYPE_CODE_UNION);
1970
1971 elem = builtin_type (gdbarch)->builtin_uint128;
1972 append_composite_type_field (t, "u", elem);
1973
1974 elem = builtin_type (gdbarch)->builtin_int128;
1975 append_composite_type_field (t, "s", elem);
1976
1977 tdep->vnq_type = t;
1978 }
1979
1980 return tdep->vnq_type;
1981 }
1982
1983 /* Return the type for an AdvSISD D register. */
1984
1985 static struct type *
1986 aarch64_vnd_type (struct gdbarch *gdbarch)
1987 {
1988 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
1989
1990 if (tdep->vnd_type == NULL)
1991 {
1992 struct type *t;
1993 struct type *elem;
1994
1995 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
1996 TYPE_CODE_UNION);
1997
1998 elem = builtin_type (gdbarch)->builtin_double;
1999 append_composite_type_field (t, "f", elem);
2000
2001 elem = builtin_type (gdbarch)->builtin_uint64;
2002 append_composite_type_field (t, "u", elem);
2003
2004 elem = builtin_type (gdbarch)->builtin_int64;
2005 append_composite_type_field (t, "s", elem);
2006
2007 tdep->vnd_type = t;
2008 }
2009
2010 return tdep->vnd_type;
2011 }
2012
2013 /* Return the type for an AdvSISD S register. */
2014
2015 static struct type *
2016 aarch64_vns_type (struct gdbarch *gdbarch)
2017 {
2018 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2019
2020 if (tdep->vns_type == NULL)
2021 {
2022 struct type *t;
2023 struct type *elem;
2024
2025 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
2026 TYPE_CODE_UNION);
2027
2028 elem = builtin_type (gdbarch)->builtin_float;
2029 append_composite_type_field (t, "f", elem);
2030
2031 elem = builtin_type (gdbarch)->builtin_uint32;
2032 append_composite_type_field (t, "u", elem);
2033
2034 elem = builtin_type (gdbarch)->builtin_int32;
2035 append_composite_type_field (t, "s", elem);
2036
2037 tdep->vns_type = t;
2038 }
2039
2040 return tdep->vns_type;
2041 }
2042
2043 /* Return the type for an AdvSISD H register. */
2044
2045 static struct type *
2046 aarch64_vnh_type (struct gdbarch *gdbarch)
2047 {
2048 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2049
2050 if (tdep->vnh_type == NULL)
2051 {
2052 struct type *t;
2053 struct type *elem;
2054
2055 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
2056 TYPE_CODE_UNION);
2057
2058 elem = builtin_type (gdbarch)->builtin_half;
2059 append_composite_type_field (t, "f", elem);
2060
2061 elem = builtin_type (gdbarch)->builtin_uint16;
2062 append_composite_type_field (t, "u", elem);
2063
2064 elem = builtin_type (gdbarch)->builtin_int16;
2065 append_composite_type_field (t, "s", elem);
2066
2067 tdep->vnh_type = t;
2068 }
2069
2070 return tdep->vnh_type;
2071 }
2072
2073 /* Return the type for an AdvSISD B register. */
2074
2075 static struct type *
2076 aarch64_vnb_type (struct gdbarch *gdbarch)
2077 {
2078 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2079
2080 if (tdep->vnb_type == NULL)
2081 {
2082 struct type *t;
2083 struct type *elem;
2084
2085 t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
2086 TYPE_CODE_UNION);
2087
2088 elem = builtin_type (gdbarch)->builtin_uint8;
2089 append_composite_type_field (t, "u", elem);
2090
2091 elem = builtin_type (gdbarch)->builtin_int8;
2092 append_composite_type_field (t, "s", elem);
2093
2094 tdep->vnb_type = t;
2095 }
2096
2097 return tdep->vnb_type;
2098 }
2099
2100 /* Return the type for an AdvSISD V register. */
2101
2102 static struct type *
2103 aarch64_vnv_type (struct gdbarch *gdbarch)
2104 {
2105 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2106
2107 if (tdep->vnv_type == NULL)
2108 {
2109 /* The other AArch64 pseudo registers (Q,D,H,S,B) refer to a single value
2110 slice from the non-pseudo vector registers. However NEON V registers
2111 are always vector registers, and need constructing as such. */
2112 const struct builtin_type *bt = builtin_type (gdbarch);
2113
2114 struct type *t = arch_composite_type (gdbarch, "__gdb_builtin_type_vnv",
2115 TYPE_CODE_UNION);
2116
2117 struct type *sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnd",
2118 TYPE_CODE_UNION);
2119 append_composite_type_field (sub, "f",
2120 init_vector_type (bt->builtin_double, 2));
2121 append_composite_type_field (sub, "u",
2122 init_vector_type (bt->builtin_uint64, 2));
2123 append_composite_type_field (sub, "s",
2124 init_vector_type (bt->builtin_int64, 2));
2125 append_composite_type_field (t, "d", sub);
2126
2127 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vns",
2128 TYPE_CODE_UNION);
2129 append_composite_type_field (sub, "f",
2130 init_vector_type (bt->builtin_float, 4));
2131 append_composite_type_field (sub, "u",
2132 init_vector_type (bt->builtin_uint32, 4));
2133 append_composite_type_field (sub, "s",
2134 init_vector_type (bt->builtin_int32, 4));
2135 append_composite_type_field (t, "s", sub);
2136
2137 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnh",
2138 TYPE_CODE_UNION);
2139 append_composite_type_field (sub, "f",
2140 init_vector_type (bt->builtin_half, 8));
2141 append_composite_type_field (sub, "u",
2142 init_vector_type (bt->builtin_uint16, 8));
2143 append_composite_type_field (sub, "s",
2144 init_vector_type (bt->builtin_int16, 8));
2145 append_composite_type_field (t, "h", sub);
2146
2147 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnb",
2148 TYPE_CODE_UNION);
2149 append_composite_type_field (sub, "u",
2150 init_vector_type (bt->builtin_uint8, 16));
2151 append_composite_type_field (sub, "s",
2152 init_vector_type (bt->builtin_int8, 16));
2153 append_composite_type_field (t, "b", sub);
2154
2155 sub = arch_composite_type (gdbarch, "__gdb_builtin_type_vnq",
2156 TYPE_CODE_UNION);
2157 append_composite_type_field (sub, "u",
2158 init_vector_type (bt->builtin_uint128, 1));
2159 append_composite_type_field (sub, "s",
2160 init_vector_type (bt->builtin_int128, 1));
2161 append_composite_type_field (t, "q", sub);
2162
2163 tdep->vnv_type = t;
2164 }
2165
2166 return tdep->vnv_type;
2167 }
2168
2169 /* Implement the "dwarf2_reg_to_regnum" gdbarch method. */
2170
2171 static int
2172 aarch64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
2173 {
2174 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2175
2176 if (reg >= AARCH64_DWARF_X0 && reg <= AARCH64_DWARF_X0 + 30)
2177 return AARCH64_X0_REGNUM + reg - AARCH64_DWARF_X0;
2178
2179 if (reg == AARCH64_DWARF_SP)
2180 return AARCH64_SP_REGNUM;
2181
2182 if (reg >= AARCH64_DWARF_V0 && reg <= AARCH64_DWARF_V0 + 31)
2183 return AARCH64_V0_REGNUM + reg - AARCH64_DWARF_V0;
2184
2185 if (reg == AARCH64_DWARF_SVE_VG)
2186 return AARCH64_SVE_VG_REGNUM;
2187
2188 if (reg == AARCH64_DWARF_SVE_FFR)
2189 return AARCH64_SVE_FFR_REGNUM;
2190
2191 if (reg >= AARCH64_DWARF_SVE_P0 && reg <= AARCH64_DWARF_SVE_P0 + 15)
2192 return AARCH64_SVE_P0_REGNUM + reg - AARCH64_DWARF_SVE_P0;
2193
2194 if (reg >= AARCH64_DWARF_SVE_Z0 && reg <= AARCH64_DWARF_SVE_Z0 + 15)
2195 return AARCH64_SVE_Z0_REGNUM + reg - AARCH64_DWARF_SVE_Z0;
2196
2197 if (tdep->has_pauth ())
2198 {
2199 if (reg >= AARCH64_DWARF_PAUTH_DMASK && reg <= AARCH64_DWARF_PAUTH_CMASK)
2200 return tdep->pauth_reg_base + reg - AARCH64_DWARF_PAUTH_DMASK;
2201
2202 if (reg == AARCH64_DWARF_PAUTH_RA_STATE)
2203 return tdep->pauth_ra_state_regnum;
2204 }
2205
2206 return -1;
2207 }
2208
2209 /* Implement the "print_insn" gdbarch method. */
2210
2211 static int
2212 aarch64_gdb_print_insn (bfd_vma memaddr, disassemble_info *info)
2213 {
2214 info->symbols = NULL;
2215 return default_print_insn (memaddr, info);
2216 }
2217
2218 /* AArch64 BRK software debug mode instruction.
2219 Note that AArch64 code is always little-endian.
2220 1101.0100.0010.0000.0000.0000.0000.0000 = 0xd4200000. */
2221 constexpr gdb_byte aarch64_default_breakpoint[] = {0x00, 0x00, 0x20, 0xd4};
2222
2223 typedef BP_MANIPULATION (aarch64_default_breakpoint) aarch64_breakpoint;
2224
2225 /* Extract from an array REGS containing the (raw) register state a
2226 function return value of type TYPE, and copy that, in virtual
2227 format, into VALBUF. */
2228
2229 static void
2230 aarch64_extract_return_value (struct type *type, struct regcache *regs,
2231 gdb_byte *valbuf)
2232 {
2233 struct gdbarch *gdbarch = regs->arch ();
2234 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2235 int elements;
2236 struct type *fundamental_type;
2237
2238 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2239 &fundamental_type))
2240 {
2241 int len = TYPE_LENGTH (fundamental_type);
2242
2243 for (int i = 0; i < elements; i++)
2244 {
2245 int regno = AARCH64_V0_REGNUM + i;
2246 /* Enough space for a full vector register. */
2247 gdb_byte buf[register_size (gdbarch, regno)];
2248 gdb_assert (len <= sizeof (buf));
2249
2250 if (aarch64_debug)
2251 {
2252 debug_printf ("read HFA or HVA return value element %d from %s\n",
2253 i + 1,
2254 gdbarch_register_name (gdbarch, regno));
2255 }
2256 regs->cooked_read (regno, buf);
2257
2258 memcpy (valbuf, buf, len);
2259 valbuf += len;
2260 }
2261 }
2262 else if (type->code () == TYPE_CODE_INT
2263 || type->code () == TYPE_CODE_CHAR
2264 || type->code () == TYPE_CODE_BOOL
2265 || type->code () == TYPE_CODE_PTR
2266 || TYPE_IS_REFERENCE (type)
2267 || type->code () == TYPE_CODE_ENUM)
2268 {
2269 /* If the type is a plain integer, then the access is
2270 straight-forward. Otherwise we have to play around a bit
2271 more. */
2272 int len = TYPE_LENGTH (type);
2273 int regno = AARCH64_X0_REGNUM;
2274 ULONGEST tmp;
2275
2276 while (len > 0)
2277 {
2278 /* By using store_unsigned_integer we avoid having to do
2279 anything special for small big-endian values. */
2280 regcache_cooked_read_unsigned (regs, regno++, &tmp);
2281 store_unsigned_integer (valbuf,
2282 (len > X_REGISTER_SIZE
2283 ? X_REGISTER_SIZE : len), byte_order, tmp);
2284 len -= X_REGISTER_SIZE;
2285 valbuf += X_REGISTER_SIZE;
2286 }
2287 }
2288 else
2289 {
2290 /* For a structure or union the behaviour is as if the value had
2291 been stored to word-aligned memory and then loaded into
2292 registers with 64-bit load instruction(s). */
2293 int len = TYPE_LENGTH (type);
2294 int regno = AARCH64_X0_REGNUM;
2295 bfd_byte buf[X_REGISTER_SIZE];
2296
2297 while (len > 0)
2298 {
2299 regs->cooked_read (regno++, buf);
2300 memcpy (valbuf, buf, len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2301 len -= X_REGISTER_SIZE;
2302 valbuf += X_REGISTER_SIZE;
2303 }
2304 }
2305 }
2306
2307
2308 /* Will a function return an aggregate type in memory or in a
2309 register? Return 0 if an aggregate type can be returned in a
2310 register, 1 if it must be returned in memory. */
2311
2312 static int
2313 aarch64_return_in_memory (struct gdbarch *gdbarch, struct type *type)
2314 {
2315 type = check_typedef (type);
2316 int elements;
2317 struct type *fundamental_type;
2318
2319 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2320 &fundamental_type))
2321 {
2322 /* v0-v7 are used to return values and one register is allocated
2323 for one member. However, HFA or HVA has at most four members. */
2324 return 0;
2325 }
2326
2327 if (TYPE_LENGTH (type) > 16)
2328 {
2329 /* PCS B.6 Aggregates larger than 16 bytes are passed by
2330 invisible reference. */
2331
2332 return 1;
2333 }
2334
2335 return 0;
2336 }
2337
2338 /* Write into appropriate registers a function return value of type
2339 TYPE, given in virtual format. */
2340
2341 static void
2342 aarch64_store_return_value (struct type *type, struct regcache *regs,
2343 const gdb_byte *valbuf)
2344 {
2345 struct gdbarch *gdbarch = regs->arch ();
2346 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2347 int elements;
2348 struct type *fundamental_type;
2349
2350 if (aapcs_is_vfp_call_or_return_candidate (type, &elements,
2351 &fundamental_type))
2352 {
2353 int len = TYPE_LENGTH (fundamental_type);
2354
2355 for (int i = 0; i < elements; i++)
2356 {
2357 int regno = AARCH64_V0_REGNUM + i;
2358 /* Enough space for a full vector register. */
2359 gdb_byte tmpbuf[register_size (gdbarch, regno)];
2360 gdb_assert (len <= sizeof (tmpbuf));
2361
2362 if (aarch64_debug)
2363 {
2364 debug_printf ("write HFA or HVA return value element %d to %s\n",
2365 i + 1,
2366 gdbarch_register_name (gdbarch, regno));
2367 }
2368
2369 memcpy (tmpbuf, valbuf,
2370 len > V_REGISTER_SIZE ? V_REGISTER_SIZE : len);
2371 regs->cooked_write (regno, tmpbuf);
2372 valbuf += len;
2373 }
2374 }
2375 else if (type->code () == TYPE_CODE_INT
2376 || type->code () == TYPE_CODE_CHAR
2377 || type->code () == TYPE_CODE_BOOL
2378 || type->code () == TYPE_CODE_PTR
2379 || TYPE_IS_REFERENCE (type)
2380 || type->code () == TYPE_CODE_ENUM)
2381 {
2382 if (TYPE_LENGTH (type) <= X_REGISTER_SIZE)
2383 {
2384 /* Values of one word or less are zero/sign-extended and
2385 returned in r0. */
2386 bfd_byte tmpbuf[X_REGISTER_SIZE];
2387 LONGEST val = unpack_long (type, valbuf);
2388
2389 store_signed_integer (tmpbuf, X_REGISTER_SIZE, byte_order, val);
2390 regs->cooked_write (AARCH64_X0_REGNUM, tmpbuf);
2391 }
2392 else
2393 {
2394 /* Integral values greater than one word are stored in
2395 consecutive registers starting with r0. This will always
2396 be a multiple of the regiser size. */
2397 int len = TYPE_LENGTH (type);
2398 int regno = AARCH64_X0_REGNUM;
2399
2400 while (len > 0)
2401 {
2402 regs->cooked_write (regno++, valbuf);
2403 len -= X_REGISTER_SIZE;
2404 valbuf += X_REGISTER_SIZE;
2405 }
2406 }
2407 }
2408 else
2409 {
2410 /* For a structure or union the behaviour is as if the value had
2411 been stored to word-aligned memory and then loaded into
2412 registers with 64-bit load instruction(s). */
2413 int len = TYPE_LENGTH (type);
2414 int regno = AARCH64_X0_REGNUM;
2415 bfd_byte tmpbuf[X_REGISTER_SIZE];
2416
2417 while (len > 0)
2418 {
2419 memcpy (tmpbuf, valbuf,
2420 len > X_REGISTER_SIZE ? X_REGISTER_SIZE : len);
2421 regs->cooked_write (regno++, tmpbuf);
2422 len -= X_REGISTER_SIZE;
2423 valbuf += X_REGISTER_SIZE;
2424 }
2425 }
2426 }
2427
2428 /* Implement the "return_value" gdbarch method. */
2429
2430 static enum return_value_convention
2431 aarch64_return_value (struct gdbarch *gdbarch, struct value *func_value,
2432 struct type *valtype, struct regcache *regcache,
2433 gdb_byte *readbuf, const gdb_byte *writebuf)
2434 {
2435
2436 if (valtype->code () == TYPE_CODE_STRUCT
2437 || valtype->code () == TYPE_CODE_UNION
2438 || valtype->code () == TYPE_CODE_ARRAY)
2439 {
2440 if (aarch64_return_in_memory (gdbarch, valtype))
2441 {
2442 if (aarch64_debug)
2443 debug_printf ("return value in memory\n");
2444 return RETURN_VALUE_STRUCT_CONVENTION;
2445 }
2446 }
2447
2448 if (writebuf)
2449 aarch64_store_return_value (valtype, regcache, writebuf);
2450
2451 if (readbuf)
2452 aarch64_extract_return_value (valtype, regcache, readbuf);
2453
2454 if (aarch64_debug)
2455 debug_printf ("return value in registers\n");
2456
2457 return RETURN_VALUE_REGISTER_CONVENTION;
2458 }
2459
2460 /* Implement the "get_longjmp_target" gdbarch method. */
2461
2462 static int
2463 aarch64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
2464 {
2465 CORE_ADDR jb_addr;
2466 gdb_byte buf[X_REGISTER_SIZE];
2467 struct gdbarch *gdbarch = get_frame_arch (frame);
2468 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2469 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2470
2471 jb_addr = get_frame_register_unsigned (frame, AARCH64_X0_REGNUM);
2472
2473 if (target_read_memory (jb_addr + tdep->jb_pc * tdep->jb_elt_size, buf,
2474 X_REGISTER_SIZE))
2475 return 0;
2476
2477 *pc = extract_unsigned_integer (buf, X_REGISTER_SIZE, byte_order);
2478 return 1;
2479 }
2480
2481 /* Implement the "gen_return_address" gdbarch method. */
2482
2483 static void
2484 aarch64_gen_return_address (struct gdbarch *gdbarch,
2485 struct agent_expr *ax, struct axs_value *value,
2486 CORE_ADDR scope)
2487 {
2488 value->type = register_type (gdbarch, AARCH64_LR_REGNUM);
2489 value->kind = axs_lvalue_register;
2490 value->u.reg = AARCH64_LR_REGNUM;
2491 }
2492 \f
2493
2494 /* Return the pseudo register name corresponding to register regnum. */
2495
2496 static const char *
2497 aarch64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
2498 {
2499 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2500
2501 static const char *const q_name[] =
2502 {
2503 "q0", "q1", "q2", "q3",
2504 "q4", "q5", "q6", "q7",
2505 "q8", "q9", "q10", "q11",
2506 "q12", "q13", "q14", "q15",
2507 "q16", "q17", "q18", "q19",
2508 "q20", "q21", "q22", "q23",
2509 "q24", "q25", "q26", "q27",
2510 "q28", "q29", "q30", "q31",
2511 };
2512
2513 static const char *const d_name[] =
2514 {
2515 "d0", "d1", "d2", "d3",
2516 "d4", "d5", "d6", "d7",
2517 "d8", "d9", "d10", "d11",
2518 "d12", "d13", "d14", "d15",
2519 "d16", "d17", "d18", "d19",
2520 "d20", "d21", "d22", "d23",
2521 "d24", "d25", "d26", "d27",
2522 "d28", "d29", "d30", "d31",
2523 };
2524
2525 static const char *const s_name[] =
2526 {
2527 "s0", "s1", "s2", "s3",
2528 "s4", "s5", "s6", "s7",
2529 "s8", "s9", "s10", "s11",
2530 "s12", "s13", "s14", "s15",
2531 "s16", "s17", "s18", "s19",
2532 "s20", "s21", "s22", "s23",
2533 "s24", "s25", "s26", "s27",
2534 "s28", "s29", "s30", "s31",
2535 };
2536
2537 static const char *const h_name[] =
2538 {
2539 "h0", "h1", "h2", "h3",
2540 "h4", "h5", "h6", "h7",
2541 "h8", "h9", "h10", "h11",
2542 "h12", "h13", "h14", "h15",
2543 "h16", "h17", "h18", "h19",
2544 "h20", "h21", "h22", "h23",
2545 "h24", "h25", "h26", "h27",
2546 "h28", "h29", "h30", "h31",
2547 };
2548
2549 static const char *const b_name[] =
2550 {
2551 "b0", "b1", "b2", "b3",
2552 "b4", "b5", "b6", "b7",
2553 "b8", "b9", "b10", "b11",
2554 "b12", "b13", "b14", "b15",
2555 "b16", "b17", "b18", "b19",
2556 "b20", "b21", "b22", "b23",
2557 "b24", "b25", "b26", "b27",
2558 "b28", "b29", "b30", "b31",
2559 };
2560
2561 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2562
2563 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2564 return q_name[p_regnum - AARCH64_Q0_REGNUM];
2565
2566 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2567 return d_name[p_regnum - AARCH64_D0_REGNUM];
2568
2569 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2570 return s_name[p_regnum - AARCH64_S0_REGNUM];
2571
2572 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2573 return h_name[p_regnum - AARCH64_H0_REGNUM];
2574
2575 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2576 return b_name[p_regnum - AARCH64_B0_REGNUM];
2577
2578 if (tdep->has_sve ())
2579 {
2580 static const char *const sve_v_name[] =
2581 {
2582 "v0", "v1", "v2", "v3",
2583 "v4", "v5", "v6", "v7",
2584 "v8", "v9", "v10", "v11",
2585 "v12", "v13", "v14", "v15",
2586 "v16", "v17", "v18", "v19",
2587 "v20", "v21", "v22", "v23",
2588 "v24", "v25", "v26", "v27",
2589 "v28", "v29", "v30", "v31",
2590 };
2591
2592 if (p_regnum >= AARCH64_SVE_V0_REGNUM
2593 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2594 return sve_v_name[p_regnum - AARCH64_SVE_V0_REGNUM];
2595 }
2596
2597 /* RA_STATE is used for unwinding only. Do not assign it a name - this
2598 prevents it from being read by methods such as
2599 mi_cmd_trace_frame_collected. */
2600 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2601 return "";
2602
2603 internal_error (__FILE__, __LINE__,
2604 _("aarch64_pseudo_register_name: bad register number %d"),
2605 p_regnum);
2606 }
2607
2608 /* Implement the "pseudo_register_type" tdesc_arch_data method. */
2609
2610 static struct type *
2611 aarch64_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
2612 {
2613 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2614
2615 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2616
2617 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2618 return aarch64_vnq_type (gdbarch);
2619
2620 if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2621 return aarch64_vnd_type (gdbarch);
2622
2623 if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2624 return aarch64_vns_type (gdbarch);
2625
2626 if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2627 return aarch64_vnh_type (gdbarch);
2628
2629 if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2630 return aarch64_vnb_type (gdbarch);
2631
2632 if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2633 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2634 return aarch64_vnv_type (gdbarch);
2635
2636 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2637 return builtin_type (gdbarch)->builtin_uint64;
2638
2639 internal_error (__FILE__, __LINE__,
2640 _("aarch64_pseudo_register_type: bad register number %d"),
2641 p_regnum);
2642 }
2643
2644 /* Implement the "pseudo_register_reggroup_p" tdesc_arch_data method. */
2645
2646 static int
2647 aarch64_pseudo_register_reggroup_p (struct gdbarch *gdbarch, int regnum,
2648 struct reggroup *group)
2649 {
2650 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2651
2652 int p_regnum = regnum - gdbarch_num_regs (gdbarch);
2653
2654 if (p_regnum >= AARCH64_Q0_REGNUM && p_regnum < AARCH64_Q0_REGNUM + 32)
2655 return group == all_reggroup || group == vector_reggroup;
2656 else if (p_regnum >= AARCH64_D0_REGNUM && p_regnum < AARCH64_D0_REGNUM + 32)
2657 return (group == all_reggroup || group == vector_reggroup
2658 || group == float_reggroup);
2659 else if (p_regnum >= AARCH64_S0_REGNUM && p_regnum < AARCH64_S0_REGNUM + 32)
2660 return (group == all_reggroup || group == vector_reggroup
2661 || group == float_reggroup);
2662 else if (p_regnum >= AARCH64_H0_REGNUM && p_regnum < AARCH64_H0_REGNUM + 32)
2663 return group == all_reggroup || group == vector_reggroup;
2664 else if (p_regnum >= AARCH64_B0_REGNUM && p_regnum < AARCH64_B0_REGNUM + 32)
2665 return group == all_reggroup || group == vector_reggroup;
2666 else if (tdep->has_sve () && p_regnum >= AARCH64_SVE_V0_REGNUM
2667 && p_regnum < AARCH64_SVE_V0_REGNUM + AARCH64_V_REGS_NUM)
2668 return group == all_reggroup || group == vector_reggroup;
2669 /* RA_STATE is used for unwinding only. Do not assign it to any groups. */
2670 if (tdep->has_pauth () && regnum == tdep->pauth_ra_state_regnum)
2671 return 0;
2672
2673 return group == all_reggroup;
2674 }
2675
2676 /* Helper for aarch64_pseudo_read_value. */
2677
2678 static struct value *
2679 aarch64_pseudo_read_value_1 (struct gdbarch *gdbarch,
2680 readable_regcache *regcache, int regnum_offset,
2681 int regsize, struct value *result_value)
2682 {
2683 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2684
2685 /* Enough space for a full vector register. */
2686 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2687 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2688
2689 if (regcache->raw_read (v_regnum, reg_buf) != REG_VALID)
2690 mark_value_bytes_unavailable (result_value, 0,
2691 TYPE_LENGTH (value_type (result_value)));
2692 else
2693 memcpy (value_contents_raw (result_value), reg_buf, regsize);
2694
2695 return result_value;
2696 }
2697
2698 /* Implement the "pseudo_register_read_value" gdbarch method. */
2699
2700 static struct value *
2701 aarch64_pseudo_read_value (struct gdbarch *gdbarch, readable_regcache *regcache,
2702 int regnum)
2703 {
2704 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2705 struct value *result_value = allocate_value (register_type (gdbarch, regnum));
2706
2707 VALUE_LVAL (result_value) = lval_register;
2708 VALUE_REGNUM (result_value) = regnum;
2709
2710 regnum -= gdbarch_num_regs (gdbarch);
2711
2712 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2713 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2714 regnum - AARCH64_Q0_REGNUM,
2715 Q_REGISTER_SIZE, result_value);
2716
2717 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2718 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2719 regnum - AARCH64_D0_REGNUM,
2720 D_REGISTER_SIZE, result_value);
2721
2722 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2723 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2724 regnum - AARCH64_S0_REGNUM,
2725 S_REGISTER_SIZE, result_value);
2726
2727 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2728 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2729 regnum - AARCH64_H0_REGNUM,
2730 H_REGISTER_SIZE, result_value);
2731
2732 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2733 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2734 regnum - AARCH64_B0_REGNUM,
2735 B_REGISTER_SIZE, result_value);
2736
2737 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2738 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2739 return aarch64_pseudo_read_value_1 (gdbarch, regcache,
2740 regnum - AARCH64_SVE_V0_REGNUM,
2741 V_REGISTER_SIZE, result_value);
2742
2743 gdb_assert_not_reached ("regnum out of bound");
2744 }
2745
2746 /* Helper for aarch64_pseudo_write. */
2747
2748 static void
2749 aarch64_pseudo_write_1 (struct gdbarch *gdbarch, struct regcache *regcache,
2750 int regnum_offset, int regsize, const gdb_byte *buf)
2751 {
2752 unsigned v_regnum = AARCH64_V0_REGNUM + regnum_offset;
2753
2754 /* Enough space for a full vector register. */
2755 gdb_byte reg_buf[register_size (gdbarch, AARCH64_V0_REGNUM)];
2756 gdb_static_assert (AARCH64_V0_REGNUM == AARCH64_SVE_Z0_REGNUM);
2757
2758 /* Ensure the register buffer is zero, we want gdb writes of the
2759 various 'scalar' pseudo registers to behavior like architectural
2760 writes, register width bytes are written the remainder are set to
2761 zero. */
2762 memset (reg_buf, 0, register_size (gdbarch, AARCH64_V0_REGNUM));
2763
2764 memcpy (reg_buf, buf, regsize);
2765 regcache->raw_write (v_regnum, reg_buf);
2766 }
2767
2768 /* Implement the "pseudo_register_write" gdbarch method. */
2769
2770 static void
2771 aarch64_pseudo_write (struct gdbarch *gdbarch, struct regcache *regcache,
2772 int regnum, const gdb_byte *buf)
2773 {
2774 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2775 regnum -= gdbarch_num_regs (gdbarch);
2776
2777 if (regnum >= AARCH64_Q0_REGNUM && regnum < AARCH64_Q0_REGNUM + 32)
2778 return aarch64_pseudo_write_1 (gdbarch, regcache,
2779 regnum - AARCH64_Q0_REGNUM, Q_REGISTER_SIZE,
2780 buf);
2781
2782 if (regnum >= AARCH64_D0_REGNUM && regnum < AARCH64_D0_REGNUM + 32)
2783 return aarch64_pseudo_write_1 (gdbarch, regcache,
2784 regnum - AARCH64_D0_REGNUM, D_REGISTER_SIZE,
2785 buf);
2786
2787 if (regnum >= AARCH64_S0_REGNUM && regnum < AARCH64_S0_REGNUM + 32)
2788 return aarch64_pseudo_write_1 (gdbarch, regcache,
2789 regnum - AARCH64_S0_REGNUM, S_REGISTER_SIZE,
2790 buf);
2791
2792 if (regnum >= AARCH64_H0_REGNUM && regnum < AARCH64_H0_REGNUM + 32)
2793 return aarch64_pseudo_write_1 (gdbarch, regcache,
2794 regnum - AARCH64_H0_REGNUM, H_REGISTER_SIZE,
2795 buf);
2796
2797 if (regnum >= AARCH64_B0_REGNUM && regnum < AARCH64_B0_REGNUM + 32)
2798 return aarch64_pseudo_write_1 (gdbarch, regcache,
2799 regnum - AARCH64_B0_REGNUM, B_REGISTER_SIZE,
2800 buf);
2801
2802 if (tdep->has_sve () && regnum >= AARCH64_SVE_V0_REGNUM
2803 && regnum < AARCH64_SVE_V0_REGNUM + 32)
2804 return aarch64_pseudo_write_1 (gdbarch, regcache,
2805 regnum - AARCH64_SVE_V0_REGNUM,
2806 V_REGISTER_SIZE, buf);
2807
2808 gdb_assert_not_reached ("regnum out of bound");
2809 }
2810
2811 /* Callback function for user_reg_add. */
2812
2813 static struct value *
2814 value_of_aarch64_user_reg (struct frame_info *frame, const void *baton)
2815 {
2816 const int *reg_p = (const int *) baton;
2817
2818 return value_of_register (*reg_p, frame);
2819 }
2820 \f
2821
2822 /* Implement the "software_single_step" gdbarch method, needed to
2823 single step through atomic sequences on AArch64. */
2824
2825 static std::vector<CORE_ADDR>
2826 aarch64_software_single_step (struct regcache *regcache)
2827 {
2828 struct gdbarch *gdbarch = regcache->arch ();
2829 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
2830 const int insn_size = 4;
2831 const int atomic_sequence_length = 16; /* Instruction sequence length. */
2832 CORE_ADDR pc = regcache_read_pc (regcache);
2833 CORE_ADDR breaks[2] = { CORE_ADDR_MAX, CORE_ADDR_MAX };
2834 CORE_ADDR loc = pc;
2835 CORE_ADDR closing_insn = 0;
2836 uint32_t insn = read_memory_unsigned_integer (loc, insn_size,
2837 byte_order_for_code);
2838 int index;
2839 int insn_count;
2840 int bc_insn_count = 0; /* Conditional branch instruction count. */
2841 int last_breakpoint = 0; /* Defaults to 0 (no breakpoints placed). */
2842 aarch64_inst inst;
2843
2844 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2845 return {};
2846
2847 /* Look for a Load Exclusive instruction which begins the sequence. */
2848 if (inst.opcode->iclass != ldstexcl || bit (insn, 22) == 0)
2849 return {};
2850
2851 for (insn_count = 0; insn_count < atomic_sequence_length; ++insn_count)
2852 {
2853 loc += insn_size;
2854 insn = read_memory_unsigned_integer (loc, insn_size,
2855 byte_order_for_code);
2856
2857 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
2858 return {};
2859 /* Check if the instruction is a conditional branch. */
2860 if (inst.opcode->iclass == condbranch)
2861 {
2862 gdb_assert (inst.operands[0].type == AARCH64_OPND_ADDR_PCREL19);
2863
2864 if (bc_insn_count >= 1)
2865 return {};
2866
2867 /* It is, so we'll try to set a breakpoint at the destination. */
2868 breaks[1] = loc + inst.operands[0].imm.value;
2869
2870 bc_insn_count++;
2871 last_breakpoint++;
2872 }
2873
2874 /* Look for the Store Exclusive which closes the atomic sequence. */
2875 if (inst.opcode->iclass == ldstexcl && bit (insn, 22) == 0)
2876 {
2877 closing_insn = loc;
2878 break;
2879 }
2880 }
2881
2882 /* We didn't find a closing Store Exclusive instruction, fall back. */
2883 if (!closing_insn)
2884 return {};
2885
2886 /* Insert breakpoint after the end of the atomic sequence. */
2887 breaks[0] = loc + insn_size;
2888
2889 /* Check for duplicated breakpoints, and also check that the second
2890 breakpoint is not within the atomic sequence. */
2891 if (last_breakpoint
2892 && (breaks[1] == breaks[0]
2893 || (breaks[1] >= pc && breaks[1] <= closing_insn)))
2894 last_breakpoint = 0;
2895
2896 std::vector<CORE_ADDR> next_pcs;
2897
2898 /* Insert the breakpoint at the end of the sequence, and one at the
2899 destination of the conditional branch, if it exists. */
2900 for (index = 0; index <= last_breakpoint; index++)
2901 next_pcs.push_back (breaks[index]);
2902
2903 return next_pcs;
2904 }
2905
2906 struct aarch64_displaced_step_closure : public displaced_step_closure
2907 {
2908 /* It is true when condition instruction, such as B.CON, TBZ, etc,
2909 is being displaced stepping. */
2910 bool cond = false;
2911
2912 /* PC adjustment offset after displaced stepping. If 0, then we don't
2913 write the PC back, assuming the PC is already the right address. */
2914 int32_t pc_adjust = 0;
2915 };
2916
2917 /* Data when visiting instructions for displaced stepping. */
2918
2919 struct aarch64_displaced_step_data
2920 {
2921 struct aarch64_insn_data base;
2922
2923 /* The address where the instruction will be executed at. */
2924 CORE_ADDR new_addr;
2925 /* Buffer of instructions to be copied to NEW_ADDR to execute. */
2926 uint32_t insn_buf[AARCH64_DISPLACED_MODIFIED_INSNS];
2927 /* Number of instructions in INSN_BUF. */
2928 unsigned insn_count;
2929 /* Registers when doing displaced stepping. */
2930 struct regcache *regs;
2931
2932 aarch64_displaced_step_closure *dsc;
2933 };
2934
2935 /* Implementation of aarch64_insn_visitor method "b". */
2936
2937 static void
2938 aarch64_displaced_step_b (const int is_bl, const int32_t offset,
2939 struct aarch64_insn_data *data)
2940 {
2941 struct aarch64_displaced_step_data *dsd
2942 = (struct aarch64_displaced_step_data *) data;
2943 int64_t new_offset = data->insn_addr - dsd->new_addr + offset;
2944
2945 if (can_encode_int32 (new_offset, 28))
2946 {
2947 /* Emit B rather than BL, because executing BL on a new address
2948 will get the wrong address into LR. In order to avoid this,
2949 we emit B, and update LR if the instruction is BL. */
2950 emit_b (dsd->insn_buf, 0, new_offset);
2951 dsd->insn_count++;
2952 }
2953 else
2954 {
2955 /* Write NOP. */
2956 emit_nop (dsd->insn_buf);
2957 dsd->insn_count++;
2958 dsd->dsc->pc_adjust = offset;
2959 }
2960
2961 if (is_bl)
2962 {
2963 /* Update LR. */
2964 regcache_cooked_write_unsigned (dsd->regs, AARCH64_LR_REGNUM,
2965 data->insn_addr + 4);
2966 }
2967 }
2968
2969 /* Implementation of aarch64_insn_visitor method "b_cond". */
2970
2971 static void
2972 aarch64_displaced_step_b_cond (const unsigned cond, const int32_t offset,
2973 struct aarch64_insn_data *data)
2974 {
2975 struct aarch64_displaced_step_data *dsd
2976 = (struct aarch64_displaced_step_data *) data;
2977
2978 /* GDB has to fix up PC after displaced step this instruction
2979 differently according to the condition is true or false. Instead
2980 of checking COND against conditional flags, we can use
2981 the following instructions, and GDB can tell how to fix up PC
2982 according to the PC value.
2983
2984 B.COND TAKEN ; If cond is true, then jump to TAKEN.
2985 INSN1 ;
2986 TAKEN:
2987 INSN2
2988 */
2989
2990 emit_bcond (dsd->insn_buf, cond, 8);
2991 dsd->dsc->cond = true;
2992 dsd->dsc->pc_adjust = offset;
2993 dsd->insn_count = 1;
2994 }
2995
2996 /* Dynamically allocate a new register. If we know the register
2997 statically, we should make it a global as above instead of using this
2998 helper function. */
2999
3000 static struct aarch64_register
3001 aarch64_register (unsigned num, int is64)
3002 {
3003 return (struct aarch64_register) { num, is64 };
3004 }
3005
3006 /* Implementation of aarch64_insn_visitor method "cb". */
3007
3008 static void
3009 aarch64_displaced_step_cb (const int32_t offset, const int is_cbnz,
3010 const unsigned rn, int is64,
3011 struct aarch64_insn_data *data)
3012 {
3013 struct aarch64_displaced_step_data *dsd
3014 = (struct aarch64_displaced_step_data *) data;
3015
3016 /* The offset is out of range for a compare and branch
3017 instruction. We can use the following instructions instead:
3018
3019 CBZ xn, TAKEN ; xn == 0, then jump to TAKEN.
3020 INSN1 ;
3021 TAKEN:
3022 INSN2
3023 */
3024 emit_cb (dsd->insn_buf, is_cbnz, aarch64_register (rn, is64), 8);
3025 dsd->insn_count = 1;
3026 dsd->dsc->cond = true;
3027 dsd->dsc->pc_adjust = offset;
3028 }
3029
3030 /* Implementation of aarch64_insn_visitor method "tb". */
3031
3032 static void
3033 aarch64_displaced_step_tb (const int32_t offset, int is_tbnz,
3034 const unsigned rt, unsigned bit,
3035 struct aarch64_insn_data *data)
3036 {
3037 struct aarch64_displaced_step_data *dsd
3038 = (struct aarch64_displaced_step_data *) data;
3039
3040 /* The offset is out of range for a test bit and branch
3041 instruction We can use the following instructions instead:
3042
3043 TBZ xn, #bit, TAKEN ; xn[bit] == 0, then jump to TAKEN.
3044 INSN1 ;
3045 TAKEN:
3046 INSN2
3047
3048 */
3049 emit_tb (dsd->insn_buf, is_tbnz, bit, aarch64_register (rt, 1), 8);
3050 dsd->insn_count = 1;
3051 dsd->dsc->cond = true;
3052 dsd->dsc->pc_adjust = offset;
3053 }
3054
3055 /* Implementation of aarch64_insn_visitor method "adr". */
3056
3057 static void
3058 aarch64_displaced_step_adr (const int32_t offset, const unsigned rd,
3059 const int is_adrp, struct aarch64_insn_data *data)
3060 {
3061 struct aarch64_displaced_step_data *dsd
3062 = (struct aarch64_displaced_step_data *) data;
3063 /* We know exactly the address the ADR{P,} instruction will compute.
3064 We can just write it to the destination register. */
3065 CORE_ADDR address = data->insn_addr + offset;
3066
3067 if (is_adrp)
3068 {
3069 /* Clear the lower 12 bits of the offset to get the 4K page. */
3070 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
3071 address & ~0xfff);
3072 }
3073 else
3074 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rd,
3075 address);
3076
3077 dsd->dsc->pc_adjust = 4;
3078 emit_nop (dsd->insn_buf);
3079 dsd->insn_count = 1;
3080 }
3081
3082 /* Implementation of aarch64_insn_visitor method "ldr_literal". */
3083
3084 static void
3085 aarch64_displaced_step_ldr_literal (const int32_t offset, const int is_sw,
3086 const unsigned rt, const int is64,
3087 struct aarch64_insn_data *data)
3088 {
3089 struct aarch64_displaced_step_data *dsd
3090 = (struct aarch64_displaced_step_data *) data;
3091 CORE_ADDR address = data->insn_addr + offset;
3092 struct aarch64_memory_operand zero = { MEMORY_OPERAND_OFFSET, 0 };
3093
3094 regcache_cooked_write_unsigned (dsd->regs, AARCH64_X0_REGNUM + rt,
3095 address);
3096
3097 if (is_sw)
3098 dsd->insn_count = emit_ldrsw (dsd->insn_buf, aarch64_register (rt, 1),
3099 aarch64_register (rt, 1), zero);
3100 else
3101 dsd->insn_count = emit_ldr (dsd->insn_buf, aarch64_register (rt, is64),
3102 aarch64_register (rt, 1), zero);
3103
3104 dsd->dsc->pc_adjust = 4;
3105 }
3106
3107 /* Implementation of aarch64_insn_visitor method "others". */
3108
3109 static void
3110 aarch64_displaced_step_others (const uint32_t insn,
3111 struct aarch64_insn_data *data)
3112 {
3113 struct aarch64_displaced_step_data *dsd
3114 = (struct aarch64_displaced_step_data *) data;
3115
3116 aarch64_emit_insn (dsd->insn_buf, insn);
3117 dsd->insn_count = 1;
3118
3119 if ((insn & 0xfffffc1f) == 0xd65f0000)
3120 {
3121 /* RET */
3122 dsd->dsc->pc_adjust = 0;
3123 }
3124 else
3125 dsd->dsc->pc_adjust = 4;
3126 }
3127
3128 static const struct aarch64_insn_visitor visitor =
3129 {
3130 aarch64_displaced_step_b,
3131 aarch64_displaced_step_b_cond,
3132 aarch64_displaced_step_cb,
3133 aarch64_displaced_step_tb,
3134 aarch64_displaced_step_adr,
3135 aarch64_displaced_step_ldr_literal,
3136 aarch64_displaced_step_others,
3137 };
3138
3139 /* Implement the "displaced_step_copy_insn" gdbarch method. */
3140
3141 displaced_step_closure_up
3142 aarch64_displaced_step_copy_insn (struct gdbarch *gdbarch,
3143 CORE_ADDR from, CORE_ADDR to,
3144 struct regcache *regs)
3145 {
3146 enum bfd_endian byte_order_for_code = gdbarch_byte_order_for_code (gdbarch);
3147 uint32_t insn = read_memory_unsigned_integer (from, 4, byte_order_for_code);
3148 struct aarch64_displaced_step_data dsd;
3149 aarch64_inst inst;
3150
3151 if (aarch64_decode_insn (insn, &inst, 1, NULL) != 0)
3152 return NULL;
3153
3154 /* Look for a Load Exclusive instruction which begins the sequence. */
3155 if (inst.opcode->iclass == ldstexcl && bit (insn, 22))
3156 {
3157 /* We can't displaced step atomic sequences. */
3158 return NULL;
3159 }
3160
3161 std::unique_ptr<aarch64_displaced_step_closure> dsc
3162 (new aarch64_displaced_step_closure);
3163 dsd.base.insn_addr = from;
3164 dsd.new_addr = to;
3165 dsd.regs = regs;
3166 dsd.dsc = dsc.get ();
3167 dsd.insn_count = 0;
3168 aarch64_relocate_instruction (insn, &visitor,
3169 (struct aarch64_insn_data *) &dsd);
3170 gdb_assert (dsd.insn_count <= AARCH64_DISPLACED_MODIFIED_INSNS);
3171
3172 if (dsd.insn_count != 0)
3173 {
3174 int i;
3175
3176 /* Instruction can be relocated to scratch pad. Copy
3177 relocated instruction(s) there. */
3178 for (i = 0; i < dsd.insn_count; i++)
3179 {
3180 if (debug_displaced)
3181 {
3182 debug_printf ("displaced: writing insn ");
3183 debug_printf ("%.8x", dsd.insn_buf[i]);
3184 debug_printf (" at %s\n", paddress (gdbarch, to + i * 4));
3185 }
3186 write_memory_unsigned_integer (to + i * 4, 4, byte_order_for_code,
3187 (ULONGEST) dsd.insn_buf[i]);
3188 }
3189 }
3190 else
3191 {
3192 dsc = NULL;
3193 }
3194
3195 /* This is a work around for a problem with g++ 4.8. */
3196 return displaced_step_closure_up (dsc.release ());
3197 }
3198
3199 /* Implement the "displaced_step_fixup" gdbarch method. */
3200
3201 void
3202 aarch64_displaced_step_fixup (struct gdbarch *gdbarch,
3203 struct displaced_step_closure *dsc_,
3204 CORE_ADDR from, CORE_ADDR to,
3205 struct regcache *regs)
3206 {
3207 aarch64_displaced_step_closure *dsc = (aarch64_displaced_step_closure *) dsc_;
3208
3209 ULONGEST pc;
3210
3211 regcache_cooked_read_unsigned (regs, AARCH64_PC_REGNUM, &pc);
3212
3213 if (debug_displaced)
3214 debug_printf ("Displaced: PC after stepping: %s (was %s).\n",
3215 paddress (gdbarch, pc), paddress (gdbarch, to));
3216
3217 if (dsc->cond)
3218 {
3219 if (debug_displaced)
3220 debug_printf ("Displaced: [Conditional] pc_adjust before: %d\n",
3221 dsc->pc_adjust);
3222
3223 if (pc - to == 8)
3224 {
3225 /* Condition is true. */
3226 }
3227 else if (pc - to == 4)
3228 {
3229 /* Condition is false. */
3230 dsc->pc_adjust = 4;
3231 }
3232 else
3233 gdb_assert_not_reached ("Unexpected PC value after displaced stepping");
3234
3235 if (debug_displaced)
3236 debug_printf ("Displaced: [Conditional] pc_adjust after: %d\n",
3237 dsc->pc_adjust);
3238 }
3239
3240 if (debug_displaced)
3241 debug_printf ("Displaced: %s PC by %d\n",
3242 dsc->pc_adjust? "adjusting" : "not adjusting",
3243 dsc->pc_adjust);
3244
3245
3246 if (dsc->pc_adjust != 0)
3247 {
3248 /* Make sure the previous instruction was executed (that is, the PC
3249 has changed). If the PC didn't change, then discard the adjustment
3250 offset. Otherwise we may skip an instruction before its execution
3251 took place. */
3252 if ((pc - to) == 0)
3253 {
3254 if (debug_displaced)
3255 debug_printf ("Displaced: PC did not move. Discarding PC "
3256 "adjustment.\n");
3257 dsc->pc_adjust = 0;
3258 }
3259
3260 if (debug_displaced)
3261 {
3262 debug_printf ("Displaced: fixup: set PC to %s:%d\n",
3263 paddress (gdbarch, from), dsc->pc_adjust);
3264 }
3265 regcache_cooked_write_unsigned (regs, AARCH64_PC_REGNUM,
3266 from + dsc->pc_adjust);
3267 }
3268 }
3269
3270 /* Implement the "displaced_step_hw_singlestep" gdbarch method. */
3271
3272 bool
3273 aarch64_displaced_step_hw_singlestep (struct gdbarch *gdbarch,
3274 struct displaced_step_closure *closure)
3275 {
3276 return true;
3277 }
3278
3279 /* Get the correct target description for the given VQ value.
3280 If VQ is zero then it is assumed SVE is not supported.
3281 (It is not possible to set VQ to zero on an SVE system). */
3282
3283 const target_desc *
3284 aarch64_read_description (uint64_t vq, bool pauth_p)
3285 {
3286 if (vq > AARCH64_MAX_SVE_VQ)
3287 error (_("VQ is %" PRIu64 ", maximum supported value is %d"), vq,
3288 AARCH64_MAX_SVE_VQ);
3289
3290 struct target_desc *tdesc = tdesc_aarch64_list[vq][pauth_p];
3291
3292 if (tdesc == NULL)
3293 {
3294 tdesc = aarch64_create_target_description (vq, pauth_p);
3295 tdesc_aarch64_list[vq][pauth_p] = tdesc;
3296 }
3297
3298 return tdesc;
3299 }
3300
3301 /* Return the VQ used when creating the target description TDESC. */
3302
3303 static uint64_t
3304 aarch64_get_tdesc_vq (const struct target_desc *tdesc)
3305 {
3306 const struct tdesc_feature *feature_sve;
3307
3308 if (!tdesc_has_registers (tdesc))
3309 return 0;
3310
3311 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3312
3313 if (feature_sve == nullptr)
3314 return 0;
3315
3316 uint64_t vl = tdesc_register_bitsize (feature_sve,
3317 aarch64_sve_register_names[0]) / 8;
3318 return sve_vq_from_vl (vl);
3319 }
3320
3321 /* Add all the expected register sets into GDBARCH. */
3322
3323 static void
3324 aarch64_add_reggroups (struct gdbarch *gdbarch)
3325 {
3326 reggroup_add (gdbarch, general_reggroup);
3327 reggroup_add (gdbarch, float_reggroup);
3328 reggroup_add (gdbarch, system_reggroup);
3329 reggroup_add (gdbarch, vector_reggroup);
3330 reggroup_add (gdbarch, all_reggroup);
3331 reggroup_add (gdbarch, save_reggroup);
3332 reggroup_add (gdbarch, restore_reggroup);
3333 }
3334
3335 /* Implement the "cannot_store_register" gdbarch method. */
3336
3337 static int
3338 aarch64_cannot_store_register (struct gdbarch *gdbarch, int regnum)
3339 {
3340 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3341
3342 if (!tdep->has_pauth ())
3343 return 0;
3344
3345 /* Pointer authentication registers are read-only. */
3346 return (regnum == AARCH64_PAUTH_DMASK_REGNUM (tdep->pauth_reg_base)
3347 || regnum == AARCH64_PAUTH_CMASK_REGNUM (tdep->pauth_reg_base));
3348 }
3349
3350 /* Initialize the current architecture based on INFO. If possible,
3351 re-use an architecture from ARCHES, which is a list of
3352 architectures already created during this debugging session.
3353
3354 Called e.g. at program startup, when reading a core file, and when
3355 reading a binary file. */
3356
3357 static struct gdbarch *
3358 aarch64_gdbarch_init (struct gdbarch_info info, struct gdbarch_list *arches)
3359 {
3360 const struct tdesc_feature *feature_core, *feature_fpu, *feature_sve;
3361 const struct tdesc_feature *feature_pauth;
3362 bool valid_p = true;
3363 int i, num_regs = 0, num_pseudo_regs = 0;
3364 int first_pauth_regnum = -1, pauth_ra_state_offset = -1;
3365
3366 /* Use the vector length passed via the target info. Here -1 is used for no
3367 SVE, and 0 is unset. If unset then use the vector length from the existing
3368 tdesc. */
3369 uint64_t vq = 0;
3370 if (info.id == (int *) -1)
3371 vq = 0;
3372 else if (info.id != 0)
3373 vq = (uint64_t) info.id;
3374 else
3375 vq = aarch64_get_tdesc_vq (info.target_desc);
3376
3377 if (vq > AARCH64_MAX_SVE_VQ)
3378 internal_error (__FILE__, __LINE__, _("VQ out of bounds: %s (max %d)"),
3379 pulongest (vq), AARCH64_MAX_SVE_VQ);
3380
3381 /* If there is already a candidate, use it. */
3382 for (gdbarch_list *best_arch = gdbarch_list_lookup_by_info (arches, &info);
3383 best_arch != nullptr;
3384 best_arch = gdbarch_list_lookup_by_info (best_arch->next, &info))
3385 {
3386 struct gdbarch_tdep *tdep = gdbarch_tdep (best_arch->gdbarch);
3387 if (tdep && tdep->vq == vq)
3388 return best_arch->gdbarch;
3389 }
3390
3391 /* Ensure we always have a target descriptor, and that it is for the given VQ
3392 value. */
3393 const struct target_desc *tdesc = info.target_desc;
3394 if (!tdesc_has_registers (tdesc) || vq != aarch64_get_tdesc_vq (tdesc))
3395 tdesc = aarch64_read_description (vq, false);
3396 gdb_assert (tdesc);
3397
3398 feature_core = tdesc_find_feature (tdesc,"org.gnu.gdb.aarch64.core");
3399 feature_fpu = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.fpu");
3400 feature_sve = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.sve");
3401 feature_pauth = tdesc_find_feature (tdesc, "org.gnu.gdb.aarch64.pauth");
3402
3403 if (feature_core == nullptr)
3404 return nullptr;
3405
3406 tdesc_arch_data_up tdesc_data = tdesc_data_alloc ();
3407
3408 /* Validate the description provides the mandatory core R registers
3409 and allocate their numbers. */
3410 for (i = 0; i < ARRAY_SIZE (aarch64_r_register_names); i++)
3411 valid_p &= tdesc_numbered_register (feature_core, tdesc_data.get (),
3412 AARCH64_X0_REGNUM + i,
3413 aarch64_r_register_names[i]);
3414
3415 num_regs = AARCH64_X0_REGNUM + i;
3416
3417 /* Add the V registers. */
3418 if (feature_fpu != nullptr)
3419 {
3420 if (feature_sve != nullptr)
3421 error (_("Program contains both fpu and SVE features."));
3422
3423 /* Validate the description provides the mandatory V registers
3424 and allocate their numbers. */
3425 for (i = 0; i < ARRAY_SIZE (aarch64_v_register_names); i++)
3426 valid_p &= tdesc_numbered_register (feature_fpu, tdesc_data.get (),
3427 AARCH64_V0_REGNUM + i,
3428 aarch64_v_register_names[i]);
3429
3430 num_regs = AARCH64_V0_REGNUM + i;
3431 }
3432
3433 /* Add the SVE registers. */
3434 if (feature_sve != nullptr)
3435 {
3436 /* Validate the description provides the mandatory SVE registers
3437 and allocate their numbers. */
3438 for (i = 0; i < ARRAY_SIZE (aarch64_sve_register_names); i++)
3439 valid_p &= tdesc_numbered_register (feature_sve, tdesc_data.get (),
3440 AARCH64_SVE_Z0_REGNUM + i,
3441 aarch64_sve_register_names[i]);
3442
3443 num_regs = AARCH64_SVE_Z0_REGNUM + i;
3444 num_pseudo_regs += 32; /* add the Vn register pseudos. */
3445 }
3446
3447 if (feature_fpu != nullptr || feature_sve != nullptr)
3448 {
3449 num_pseudo_regs += 32; /* add the Qn scalar register pseudos */
3450 num_pseudo_regs += 32; /* add the Dn scalar register pseudos */
3451 num_pseudo_regs += 32; /* add the Sn scalar register pseudos */
3452 num_pseudo_regs += 32; /* add the Hn scalar register pseudos */
3453 num_pseudo_regs += 32; /* add the Bn scalar register pseudos */
3454 }
3455
3456 /* Add the pauth registers. */
3457 if (feature_pauth != NULL)
3458 {
3459 first_pauth_regnum = num_regs;
3460 pauth_ra_state_offset = num_pseudo_regs;
3461 /* Validate the descriptor provides the mandatory PAUTH registers and
3462 allocate their numbers. */
3463 for (i = 0; i < ARRAY_SIZE (aarch64_pauth_register_names); i++)
3464 valid_p &= tdesc_numbered_register (feature_pauth, tdesc_data.get (),
3465 first_pauth_regnum + i,
3466 aarch64_pauth_register_names[i]);
3467
3468 num_regs += i;
3469 num_pseudo_regs += 1; /* Count RA_STATE pseudo register. */
3470 }
3471
3472 if (!valid_p)
3473 return nullptr;
3474
3475 /* AArch64 code is always little-endian. */
3476 info.byte_order_for_code = BFD_ENDIAN_LITTLE;
3477
3478 struct gdbarch_tdep *tdep = XCNEW (struct gdbarch_tdep);
3479 struct gdbarch *gdbarch = gdbarch_alloc (&info, tdep);
3480
3481 /* This should be low enough for everything. */
3482 tdep->lowest_pc = 0x20;
3483 tdep->jb_pc = -1; /* Longjump support not enabled by default. */
3484 tdep->jb_elt_size = 8;
3485 tdep->vq = vq;
3486 tdep->pauth_reg_base = first_pauth_regnum;
3487 tdep->pauth_ra_state_regnum = (feature_pauth == NULL) ? -1
3488 : pauth_ra_state_offset + num_regs;
3489
3490 set_gdbarch_push_dummy_call (gdbarch, aarch64_push_dummy_call);
3491 set_gdbarch_frame_align (gdbarch, aarch64_frame_align);
3492
3493 /* Advance PC across function entry code. */
3494 set_gdbarch_skip_prologue (gdbarch, aarch64_skip_prologue);
3495
3496 /* The stack grows downward. */
3497 set_gdbarch_inner_than (gdbarch, core_addr_lessthan);
3498
3499 /* Breakpoint manipulation. */
3500 set_gdbarch_breakpoint_kind_from_pc (gdbarch,
3501 aarch64_breakpoint::kind_from_pc);
3502 set_gdbarch_sw_breakpoint_from_kind (gdbarch,
3503 aarch64_breakpoint::bp_from_kind);
3504 set_gdbarch_have_nonsteppable_watchpoint (gdbarch, 1);
3505 set_gdbarch_software_single_step (gdbarch, aarch64_software_single_step);
3506
3507 /* Information about registers, etc. */
3508 set_gdbarch_sp_regnum (gdbarch, AARCH64_SP_REGNUM);
3509 set_gdbarch_pc_regnum (gdbarch, AARCH64_PC_REGNUM);
3510 set_gdbarch_num_regs (gdbarch, num_regs);
3511
3512 set_gdbarch_num_pseudo_regs (gdbarch, num_pseudo_regs);
3513 set_gdbarch_pseudo_register_read_value (gdbarch, aarch64_pseudo_read_value);
3514 set_gdbarch_pseudo_register_write (gdbarch, aarch64_pseudo_write);
3515 set_tdesc_pseudo_register_name (gdbarch, aarch64_pseudo_register_name);
3516 set_tdesc_pseudo_register_type (gdbarch, aarch64_pseudo_register_type);
3517 set_tdesc_pseudo_register_reggroup_p (gdbarch,
3518 aarch64_pseudo_register_reggroup_p);
3519 set_gdbarch_cannot_store_register (gdbarch, aarch64_cannot_store_register);
3520
3521 /* ABI */
3522 set_gdbarch_short_bit (gdbarch, 16);
3523 set_gdbarch_int_bit (gdbarch, 32);
3524 set_gdbarch_float_bit (gdbarch, 32);
3525 set_gdbarch_double_bit (gdbarch, 64);
3526 set_gdbarch_long_double_bit (gdbarch, 128);
3527 set_gdbarch_long_bit (gdbarch, 64);
3528 set_gdbarch_long_long_bit (gdbarch, 64);
3529 set_gdbarch_ptr_bit (gdbarch, 64);
3530 set_gdbarch_char_signed (gdbarch, 0);
3531 set_gdbarch_wchar_signed (gdbarch, 0);
3532 set_gdbarch_float_format (gdbarch, floatformats_ieee_single);
3533 set_gdbarch_double_format (gdbarch, floatformats_ieee_double);
3534 set_gdbarch_long_double_format (gdbarch, floatformats_ia64_quad);
3535 set_gdbarch_type_align (gdbarch, aarch64_type_align);
3536
3537 /* Internal <-> external register number maps. */
3538 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, aarch64_dwarf_reg_to_regnum);
3539
3540 /* Returning results. */
3541 set_gdbarch_return_value (gdbarch, aarch64_return_value);
3542
3543 /* Disassembly. */
3544 set_gdbarch_print_insn (gdbarch, aarch64_gdb_print_insn);
3545
3546 /* Virtual tables. */
3547 set_gdbarch_vbit_in_delta (gdbarch, 1);
3548
3549 /* Register architecture. */
3550 aarch64_add_reggroups (gdbarch);
3551
3552 /* Hook in the ABI-specific overrides, if they have been registered. */
3553 info.target_desc = tdesc;
3554 info.tdesc_data = tdesc_data.get ();
3555 gdbarch_init_osabi (info, gdbarch);
3556
3557 dwarf2_frame_set_init_reg (gdbarch, aarch64_dwarf2_frame_init_reg);
3558 /* Register DWARF CFA vendor handler. */
3559 set_gdbarch_execute_dwarf_cfa_vendor_op (gdbarch,
3560 aarch64_execute_dwarf_cfa_vendor_op);
3561
3562 /* Permanent/Program breakpoint handling. */
3563 set_gdbarch_program_breakpoint_here_p (gdbarch,
3564 aarch64_program_breakpoint_here_p);
3565
3566 /* Add some default predicates. */
3567 frame_unwind_append_unwinder (gdbarch, &aarch64_stub_unwind);
3568 dwarf2_append_unwinders (gdbarch);
3569 frame_unwind_append_unwinder (gdbarch, &aarch64_prologue_unwind);
3570
3571 frame_base_set_default (gdbarch, &aarch64_normal_base);
3572
3573 /* Now we have tuned the configuration, set a few final things,
3574 based on what the OS ABI has told us. */
3575
3576 if (tdep->jb_pc >= 0)
3577 set_gdbarch_get_longjmp_target (gdbarch, aarch64_get_longjmp_target);
3578
3579 set_gdbarch_gen_return_address (gdbarch, aarch64_gen_return_address);
3580
3581 set_gdbarch_get_pc_address_flags (gdbarch, aarch64_get_pc_address_flags);
3582
3583 tdesc_use_registers (gdbarch, tdesc, std::move (tdesc_data));
3584
3585 /* Add standard register aliases. */
3586 for (i = 0; i < ARRAY_SIZE (aarch64_register_aliases); i++)
3587 user_reg_add (gdbarch, aarch64_register_aliases[i].name,
3588 value_of_aarch64_user_reg,
3589 &aarch64_register_aliases[i].regnum);
3590
3591 register_aarch64_ravenscar_ops (gdbarch);
3592
3593 return gdbarch;
3594 }
3595
3596 static void
3597 aarch64_dump_tdep (struct gdbarch *gdbarch, struct ui_file *file)
3598 {
3599 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3600
3601 if (tdep == NULL)
3602 return;
3603
3604 fprintf_unfiltered (file, _("aarch64_dump_tdep: Lowest pc = 0x%s"),
3605 paddress (gdbarch, tdep->lowest_pc));
3606 }
3607
3608 #if GDB_SELF_TEST
3609 namespace selftests
3610 {
3611 static void aarch64_process_record_test (void);
3612 }
3613 #endif
3614
3615 void _initialize_aarch64_tdep ();
3616 void
3617 _initialize_aarch64_tdep ()
3618 {
3619 gdbarch_register (bfd_arch_aarch64, aarch64_gdbarch_init,
3620 aarch64_dump_tdep);
3621
3622 /* Debug this file's internals. */
3623 add_setshow_boolean_cmd ("aarch64", class_maintenance, &aarch64_debug, _("\
3624 Set AArch64 debugging."), _("\
3625 Show AArch64 debugging."), _("\
3626 When on, AArch64 specific debugging is enabled."),
3627 NULL,
3628 show_aarch64_debug,
3629 &setdebuglist, &showdebuglist);
3630
3631 #if GDB_SELF_TEST
3632 selftests::register_test ("aarch64-analyze-prologue",
3633 selftests::aarch64_analyze_prologue_test);
3634 selftests::register_test ("aarch64-process-record",
3635 selftests::aarch64_process_record_test);
3636 #endif
3637 }
3638
3639 /* AArch64 process record-replay related structures, defines etc. */
3640
3641 #define REG_ALLOC(REGS, LENGTH, RECORD_BUF) \
3642 do \
3643 { \
3644 unsigned int reg_len = LENGTH; \
3645 if (reg_len) \
3646 { \
3647 REGS = XNEWVEC (uint32_t, reg_len); \
3648 memcpy(&REGS[0], &RECORD_BUF[0], sizeof(uint32_t)*LENGTH); \
3649 } \
3650 } \
3651 while (0)
3652
3653 #define MEM_ALLOC(MEMS, LENGTH, RECORD_BUF) \
3654 do \
3655 { \
3656 unsigned int mem_len = LENGTH; \
3657 if (mem_len) \
3658 { \
3659 MEMS = XNEWVEC (struct aarch64_mem_r, mem_len); \
3660 memcpy(&MEMS->len, &RECORD_BUF[0], \
3661 sizeof(struct aarch64_mem_r) * LENGTH); \
3662 } \
3663 } \
3664 while (0)
3665
3666 /* AArch64 record/replay structures and enumerations. */
3667
3668 struct aarch64_mem_r
3669 {
3670 uint64_t len; /* Record length. */
3671 uint64_t addr; /* Memory address. */
3672 };
3673
3674 enum aarch64_record_result
3675 {
3676 AARCH64_RECORD_SUCCESS,
3677 AARCH64_RECORD_UNSUPPORTED,
3678 AARCH64_RECORD_UNKNOWN
3679 };
3680
3681 typedef struct insn_decode_record_t
3682 {
3683 struct gdbarch *gdbarch;
3684 struct regcache *regcache;
3685 CORE_ADDR this_addr; /* Address of insn to be recorded. */
3686 uint32_t aarch64_insn; /* Insn to be recorded. */
3687 uint32_t mem_rec_count; /* Count of memory records. */
3688 uint32_t reg_rec_count; /* Count of register records. */
3689 uint32_t *aarch64_regs; /* Registers to be recorded. */
3690 struct aarch64_mem_r *aarch64_mems; /* Memory locations to be recorded. */
3691 } insn_decode_record;
3692
3693 /* Record handler for data processing - register instructions. */
3694
3695 static unsigned int
3696 aarch64_record_data_proc_reg (insn_decode_record *aarch64_insn_r)
3697 {
3698 uint8_t reg_rd, insn_bits24_27, insn_bits21_23;
3699 uint32_t record_buf[4];
3700
3701 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3702 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3703 insn_bits21_23 = bits (aarch64_insn_r->aarch64_insn, 21, 23);
3704
3705 if (!bit (aarch64_insn_r->aarch64_insn, 28))
3706 {
3707 uint8_t setflags;
3708
3709 /* Logical (shifted register). */
3710 if (insn_bits24_27 == 0x0a)
3711 setflags = (bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03);
3712 /* Add/subtract. */
3713 else if (insn_bits24_27 == 0x0b)
3714 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3715 else
3716 return AARCH64_RECORD_UNKNOWN;
3717
3718 record_buf[0] = reg_rd;
3719 aarch64_insn_r->reg_rec_count = 1;
3720 if (setflags)
3721 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3722 }
3723 else
3724 {
3725 if (insn_bits24_27 == 0x0b)
3726 {
3727 /* Data-processing (3 source). */
3728 record_buf[0] = reg_rd;
3729 aarch64_insn_r->reg_rec_count = 1;
3730 }
3731 else if (insn_bits24_27 == 0x0a)
3732 {
3733 if (insn_bits21_23 == 0x00)
3734 {
3735 /* Add/subtract (with carry). */
3736 record_buf[0] = reg_rd;
3737 aarch64_insn_r->reg_rec_count = 1;
3738 if (bit (aarch64_insn_r->aarch64_insn, 29))
3739 {
3740 record_buf[1] = AARCH64_CPSR_REGNUM;
3741 aarch64_insn_r->reg_rec_count = 2;
3742 }
3743 }
3744 else if (insn_bits21_23 == 0x02)
3745 {
3746 /* Conditional compare (register) and conditional compare
3747 (immediate) instructions. */
3748 record_buf[0] = AARCH64_CPSR_REGNUM;
3749 aarch64_insn_r->reg_rec_count = 1;
3750 }
3751 else if (insn_bits21_23 == 0x04 || insn_bits21_23 == 0x06)
3752 {
3753 /* Conditional select. */
3754 /* Data-processing (2 source). */
3755 /* Data-processing (1 source). */
3756 record_buf[0] = reg_rd;
3757 aarch64_insn_r->reg_rec_count = 1;
3758 }
3759 else
3760 return AARCH64_RECORD_UNKNOWN;
3761 }
3762 }
3763
3764 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3765 record_buf);
3766 return AARCH64_RECORD_SUCCESS;
3767 }
3768
3769 /* Record handler for data processing - immediate instructions. */
3770
3771 static unsigned int
3772 aarch64_record_data_proc_imm (insn_decode_record *aarch64_insn_r)
3773 {
3774 uint8_t reg_rd, insn_bit23, insn_bits24_27, setflags;
3775 uint32_t record_buf[4];
3776
3777 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3778 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
3779 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3780
3781 if (insn_bits24_27 == 0x00 /* PC rel addressing. */
3782 || insn_bits24_27 == 0x03 /* Bitfield and Extract. */
3783 || (insn_bits24_27 == 0x02 && insn_bit23)) /* Move wide (immediate). */
3784 {
3785 record_buf[0] = reg_rd;
3786 aarch64_insn_r->reg_rec_count = 1;
3787 }
3788 else if (insn_bits24_27 == 0x01)
3789 {
3790 /* Add/Subtract (immediate). */
3791 setflags = bit (aarch64_insn_r->aarch64_insn, 29);
3792 record_buf[0] = reg_rd;
3793 aarch64_insn_r->reg_rec_count = 1;
3794 if (setflags)
3795 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3796 }
3797 else if (insn_bits24_27 == 0x02 && !insn_bit23)
3798 {
3799 /* Logical (immediate). */
3800 setflags = bits (aarch64_insn_r->aarch64_insn, 29, 30) == 0x03;
3801 record_buf[0] = reg_rd;
3802 aarch64_insn_r->reg_rec_count = 1;
3803 if (setflags)
3804 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_CPSR_REGNUM;
3805 }
3806 else
3807 return AARCH64_RECORD_UNKNOWN;
3808
3809 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3810 record_buf);
3811 return AARCH64_RECORD_SUCCESS;
3812 }
3813
3814 /* Record handler for branch, exception generation and system instructions. */
3815
3816 static unsigned int
3817 aarch64_record_branch_except_sys (insn_decode_record *aarch64_insn_r)
3818 {
3819 struct gdbarch_tdep *tdep = gdbarch_tdep (aarch64_insn_r->gdbarch);
3820 uint8_t insn_bits24_27, insn_bits28_31, insn_bits22_23;
3821 uint32_t record_buf[4];
3822
3823 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
3824 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
3825 insn_bits22_23 = bits (aarch64_insn_r->aarch64_insn, 22, 23);
3826
3827 if (insn_bits28_31 == 0x0d)
3828 {
3829 /* Exception generation instructions. */
3830 if (insn_bits24_27 == 0x04)
3831 {
3832 if (!bits (aarch64_insn_r->aarch64_insn, 2, 4)
3833 && !bits (aarch64_insn_r->aarch64_insn, 21, 23)
3834 && bits (aarch64_insn_r->aarch64_insn, 0, 1) == 0x01)
3835 {
3836 ULONGEST svc_number;
3837
3838 regcache_raw_read_unsigned (aarch64_insn_r->regcache, 8,
3839 &svc_number);
3840 return tdep->aarch64_syscall_record (aarch64_insn_r->regcache,
3841 svc_number);
3842 }
3843 else
3844 return AARCH64_RECORD_UNSUPPORTED;
3845 }
3846 /* System instructions. */
3847 else if (insn_bits24_27 == 0x05 && insn_bits22_23 == 0x00)
3848 {
3849 uint32_t reg_rt, reg_crn;
3850
3851 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3852 reg_crn = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3853
3854 /* Record rt in case of sysl and mrs instructions. */
3855 if (bit (aarch64_insn_r->aarch64_insn, 21))
3856 {
3857 record_buf[0] = reg_rt;
3858 aarch64_insn_r->reg_rec_count = 1;
3859 }
3860 /* Record cpsr for hint and msr(immediate) instructions. */
3861 else if (reg_crn == 0x02 || reg_crn == 0x04)
3862 {
3863 record_buf[0] = AARCH64_CPSR_REGNUM;
3864 aarch64_insn_r->reg_rec_count = 1;
3865 }
3866 }
3867 /* Unconditional branch (register). */
3868 else if((insn_bits24_27 & 0x0e) == 0x06)
3869 {
3870 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3871 if (bits (aarch64_insn_r->aarch64_insn, 21, 22) == 0x01)
3872 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3873 }
3874 else
3875 return AARCH64_RECORD_UNKNOWN;
3876 }
3877 /* Unconditional branch (immediate). */
3878 else if ((insn_bits28_31 & 0x07) == 0x01 && (insn_bits24_27 & 0x0c) == 0x04)
3879 {
3880 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3881 if (bit (aarch64_insn_r->aarch64_insn, 31))
3882 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_LR_REGNUM;
3883 }
3884 else
3885 /* Compare & branch (immediate), Test & branch (immediate) and
3886 Conditional branch (immediate). */
3887 record_buf[aarch64_insn_r->reg_rec_count++] = AARCH64_PC_REGNUM;
3888
3889 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
3890 record_buf);
3891 return AARCH64_RECORD_SUCCESS;
3892 }
3893
3894 /* Record handler for advanced SIMD load and store instructions. */
3895
3896 static unsigned int
3897 aarch64_record_asimd_load_store (insn_decode_record *aarch64_insn_r)
3898 {
3899 CORE_ADDR address;
3900 uint64_t addr_offset = 0;
3901 uint32_t record_buf[24];
3902 uint64_t record_buf_mem[24];
3903 uint32_t reg_rn, reg_rt;
3904 uint32_t reg_index = 0, mem_index = 0;
3905 uint8_t opcode_bits, size_bits;
3906
3907 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
3908 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
3909 size_bits = bits (aarch64_insn_r->aarch64_insn, 10, 11);
3910 opcode_bits = bits (aarch64_insn_r->aarch64_insn, 12, 15);
3911 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn, &address);
3912
3913 if (record_debug)
3914 debug_printf ("Process record: Advanced SIMD load/store\n");
3915
3916 /* Load/store single structure. */
3917 if (bit (aarch64_insn_r->aarch64_insn, 24))
3918 {
3919 uint8_t sindex, scale, selem, esize, replicate = 0;
3920 scale = opcode_bits >> 2;
3921 selem = ((opcode_bits & 0x02) |
3922 bit (aarch64_insn_r->aarch64_insn, 21)) + 1;
3923 switch (scale)
3924 {
3925 case 1:
3926 if (size_bits & 0x01)
3927 return AARCH64_RECORD_UNKNOWN;
3928 break;
3929 case 2:
3930 if ((size_bits >> 1) & 0x01)
3931 return AARCH64_RECORD_UNKNOWN;
3932 if (size_bits & 0x01)
3933 {
3934 if (!((opcode_bits >> 1) & 0x01))
3935 scale = 3;
3936 else
3937 return AARCH64_RECORD_UNKNOWN;
3938 }
3939 break;
3940 case 3:
3941 if (bit (aarch64_insn_r->aarch64_insn, 22) && !(opcode_bits & 0x01))
3942 {
3943 scale = size_bits;
3944 replicate = 1;
3945 break;
3946 }
3947 else
3948 return AARCH64_RECORD_UNKNOWN;
3949 default:
3950 break;
3951 }
3952 esize = 8 << scale;
3953 if (replicate)
3954 for (sindex = 0; sindex < selem; sindex++)
3955 {
3956 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3957 reg_rt = (reg_rt + 1) % 32;
3958 }
3959 else
3960 {
3961 for (sindex = 0; sindex < selem; sindex++)
3962 {
3963 if (bit (aarch64_insn_r->aarch64_insn, 22))
3964 record_buf[reg_index++] = reg_rt + AARCH64_V0_REGNUM;
3965 else
3966 {
3967 record_buf_mem[mem_index++] = esize / 8;
3968 record_buf_mem[mem_index++] = address + addr_offset;
3969 }
3970 addr_offset = addr_offset + (esize / 8);
3971 reg_rt = (reg_rt + 1) % 32;
3972 }
3973 }
3974 }
3975 /* Load/store multiple structure. */
3976 else
3977 {
3978 uint8_t selem, esize, rpt, elements;
3979 uint8_t eindex, rindex;
3980
3981 esize = 8 << size_bits;
3982 if (bit (aarch64_insn_r->aarch64_insn, 30))
3983 elements = 128 / esize;
3984 else
3985 elements = 64 / esize;
3986
3987 switch (opcode_bits)
3988 {
3989 /*LD/ST4 (4 Registers). */
3990 case 0:
3991 rpt = 1;
3992 selem = 4;
3993 break;
3994 /*LD/ST1 (4 Registers). */
3995 case 2:
3996 rpt = 4;
3997 selem = 1;
3998 break;
3999 /*LD/ST3 (3 Registers). */
4000 case 4:
4001 rpt = 1;
4002 selem = 3;
4003 break;
4004 /*LD/ST1 (3 Registers). */
4005 case 6:
4006 rpt = 3;
4007 selem = 1;
4008 break;
4009 /*LD/ST1 (1 Register). */
4010 case 7:
4011 rpt = 1;
4012 selem = 1;
4013 break;
4014 /*LD/ST2 (2 Registers). */
4015 case 8:
4016 rpt = 1;
4017 selem = 2;
4018 break;
4019 /*LD/ST1 (2 Registers). */
4020 case 10:
4021 rpt = 2;
4022 selem = 1;
4023 break;
4024 default:
4025 return AARCH64_RECORD_UNSUPPORTED;
4026 break;
4027 }
4028 for (rindex = 0; rindex < rpt; rindex++)
4029 for (eindex = 0; eindex < elements; eindex++)
4030 {
4031 uint8_t reg_tt, sindex;
4032 reg_tt = (reg_rt + rindex) % 32;
4033 for (sindex = 0; sindex < selem; sindex++)
4034 {
4035 if (bit (aarch64_insn_r->aarch64_insn, 22))
4036 record_buf[reg_index++] = reg_tt + AARCH64_V0_REGNUM;
4037 else
4038 {
4039 record_buf_mem[mem_index++] = esize / 8;
4040 record_buf_mem[mem_index++] = address + addr_offset;
4041 }
4042 addr_offset = addr_offset + (esize / 8);
4043 reg_tt = (reg_tt + 1) % 32;
4044 }
4045 }
4046 }
4047
4048 if (bit (aarch64_insn_r->aarch64_insn, 23))
4049 record_buf[reg_index++] = reg_rn;
4050
4051 aarch64_insn_r->reg_rec_count = reg_index;
4052 aarch64_insn_r->mem_rec_count = mem_index / 2;
4053 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4054 record_buf_mem);
4055 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4056 record_buf);
4057 return AARCH64_RECORD_SUCCESS;
4058 }
4059
4060 /* Record handler for load and store instructions. */
4061
4062 static unsigned int
4063 aarch64_record_load_store (insn_decode_record *aarch64_insn_r)
4064 {
4065 uint8_t insn_bits24_27, insn_bits28_29, insn_bits10_11;
4066 uint8_t insn_bit23, insn_bit21;
4067 uint8_t opc, size_bits, ld_flag, vector_flag;
4068 uint32_t reg_rn, reg_rt, reg_rt2;
4069 uint64_t datasize, offset;
4070 uint32_t record_buf[8];
4071 uint64_t record_buf_mem[8];
4072 CORE_ADDR address;
4073
4074 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4075 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4076 insn_bits28_29 = bits (aarch64_insn_r->aarch64_insn, 28, 29);
4077 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4078 insn_bit23 = bit (aarch64_insn_r->aarch64_insn, 23);
4079 ld_flag = bit (aarch64_insn_r->aarch64_insn, 22);
4080 vector_flag = bit (aarch64_insn_r->aarch64_insn, 26);
4081 reg_rt = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4082 reg_rn = bits (aarch64_insn_r->aarch64_insn, 5, 9);
4083 reg_rt2 = bits (aarch64_insn_r->aarch64_insn, 10, 14);
4084 size_bits = bits (aarch64_insn_r->aarch64_insn, 30, 31);
4085
4086 /* Load/store exclusive. */
4087 if (insn_bits24_27 == 0x08 && insn_bits28_29 == 0x00)
4088 {
4089 if (record_debug)
4090 debug_printf ("Process record: load/store exclusive\n");
4091
4092 if (ld_flag)
4093 {
4094 record_buf[0] = reg_rt;
4095 aarch64_insn_r->reg_rec_count = 1;
4096 if (insn_bit21)
4097 {
4098 record_buf[1] = reg_rt2;
4099 aarch64_insn_r->reg_rec_count = 2;
4100 }
4101 }
4102 else
4103 {
4104 if (insn_bit21)
4105 datasize = (8 << size_bits) * 2;
4106 else
4107 datasize = (8 << size_bits);
4108 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4109 &address);
4110 record_buf_mem[0] = datasize / 8;
4111 record_buf_mem[1] = address;
4112 aarch64_insn_r->mem_rec_count = 1;
4113 if (!insn_bit23)
4114 {
4115 /* Save register rs. */
4116 record_buf[0] = bits (aarch64_insn_r->aarch64_insn, 16, 20);
4117 aarch64_insn_r->reg_rec_count = 1;
4118 }
4119 }
4120 }
4121 /* Load register (literal) instructions decoding. */
4122 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x01)
4123 {
4124 if (record_debug)
4125 debug_printf ("Process record: load register (literal)\n");
4126 if (vector_flag)
4127 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4128 else
4129 record_buf[0] = reg_rt;
4130 aarch64_insn_r->reg_rec_count = 1;
4131 }
4132 /* All types of load/store pair instructions decoding. */
4133 else if ((insn_bits24_27 & 0x0a) == 0x08 && insn_bits28_29 == 0x02)
4134 {
4135 if (record_debug)
4136 debug_printf ("Process record: load/store pair\n");
4137
4138 if (ld_flag)
4139 {
4140 if (vector_flag)
4141 {
4142 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4143 record_buf[1] = reg_rt2 + AARCH64_V0_REGNUM;
4144 }
4145 else
4146 {
4147 record_buf[0] = reg_rt;
4148 record_buf[1] = reg_rt2;
4149 }
4150 aarch64_insn_r->reg_rec_count = 2;
4151 }
4152 else
4153 {
4154 uint16_t imm7_off;
4155 imm7_off = bits (aarch64_insn_r->aarch64_insn, 15, 21);
4156 if (!vector_flag)
4157 size_bits = size_bits >> 1;
4158 datasize = 8 << (2 + size_bits);
4159 offset = (imm7_off & 0x40) ? (~imm7_off & 0x007f) + 1 : imm7_off;
4160 offset = offset << (2 + size_bits);
4161 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4162 &address);
4163 if (!((insn_bits24_27 & 0x0b) == 0x08 && insn_bit23))
4164 {
4165 if (imm7_off & 0x40)
4166 address = address - offset;
4167 else
4168 address = address + offset;
4169 }
4170
4171 record_buf_mem[0] = datasize / 8;
4172 record_buf_mem[1] = address;
4173 record_buf_mem[2] = datasize / 8;
4174 record_buf_mem[3] = address + (datasize / 8);
4175 aarch64_insn_r->mem_rec_count = 2;
4176 }
4177 if (bit (aarch64_insn_r->aarch64_insn, 23))
4178 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4179 }
4180 /* Load/store register (unsigned immediate) instructions. */
4181 else if ((insn_bits24_27 & 0x0b) == 0x09 && insn_bits28_29 == 0x03)
4182 {
4183 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4184 if (!(opc >> 1))
4185 {
4186 if (opc & 0x01)
4187 ld_flag = 0x01;
4188 else
4189 ld_flag = 0x0;
4190 }
4191 else
4192 {
4193 if (size_bits == 0x3 && vector_flag == 0x0 && opc == 0x2)
4194 {
4195 /* PRFM (immediate) */
4196 return AARCH64_RECORD_SUCCESS;
4197 }
4198 else if (size_bits == 0x2 && vector_flag == 0x0 && opc == 0x2)
4199 {
4200 /* LDRSW (immediate) */
4201 ld_flag = 0x1;
4202 }
4203 else
4204 {
4205 if (opc & 0x01)
4206 ld_flag = 0x01;
4207 else
4208 ld_flag = 0x0;
4209 }
4210 }
4211
4212 if (record_debug)
4213 {
4214 debug_printf ("Process record: load/store (unsigned immediate):"
4215 " size %x V %d opc %x\n", size_bits, vector_flag,
4216 opc);
4217 }
4218
4219 if (!ld_flag)
4220 {
4221 offset = bits (aarch64_insn_r->aarch64_insn, 10, 21);
4222 datasize = 8 << size_bits;
4223 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4224 &address);
4225 offset = offset << size_bits;
4226 address = address + offset;
4227
4228 record_buf_mem[0] = datasize >> 3;
4229 record_buf_mem[1] = address;
4230 aarch64_insn_r->mem_rec_count = 1;
4231 }
4232 else
4233 {
4234 if (vector_flag)
4235 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4236 else
4237 record_buf[0] = reg_rt;
4238 aarch64_insn_r->reg_rec_count = 1;
4239 }
4240 }
4241 /* Load/store register (register offset) instructions. */
4242 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4243 && insn_bits10_11 == 0x02 && insn_bit21)
4244 {
4245 if (record_debug)
4246 debug_printf ("Process record: load/store (register offset)\n");
4247 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4248 if (!(opc >> 1))
4249 if (opc & 0x01)
4250 ld_flag = 0x01;
4251 else
4252 ld_flag = 0x0;
4253 else
4254 if (size_bits != 0x03)
4255 ld_flag = 0x01;
4256 else
4257 return AARCH64_RECORD_UNKNOWN;
4258
4259 if (!ld_flag)
4260 {
4261 ULONGEST reg_rm_val;
4262
4263 regcache_raw_read_unsigned (aarch64_insn_r->regcache,
4264 bits (aarch64_insn_r->aarch64_insn, 16, 20), &reg_rm_val);
4265 if (bit (aarch64_insn_r->aarch64_insn, 12))
4266 offset = reg_rm_val << size_bits;
4267 else
4268 offset = reg_rm_val;
4269 datasize = 8 << size_bits;
4270 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4271 &address);
4272 address = address + offset;
4273 record_buf_mem[0] = datasize >> 3;
4274 record_buf_mem[1] = address;
4275 aarch64_insn_r->mem_rec_count = 1;
4276 }
4277 else
4278 {
4279 if (vector_flag)
4280 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4281 else
4282 record_buf[0] = reg_rt;
4283 aarch64_insn_r->reg_rec_count = 1;
4284 }
4285 }
4286 /* Load/store register (immediate and unprivileged) instructions. */
4287 else if ((insn_bits24_27 & 0x0b) == 0x08 && insn_bits28_29 == 0x03
4288 && !insn_bit21)
4289 {
4290 if (record_debug)
4291 {
4292 debug_printf ("Process record: load/store "
4293 "(immediate and unprivileged)\n");
4294 }
4295 opc = bits (aarch64_insn_r->aarch64_insn, 22, 23);
4296 if (!(opc >> 1))
4297 if (opc & 0x01)
4298 ld_flag = 0x01;
4299 else
4300 ld_flag = 0x0;
4301 else
4302 if (size_bits != 0x03)
4303 ld_flag = 0x01;
4304 else
4305 return AARCH64_RECORD_UNKNOWN;
4306
4307 if (!ld_flag)
4308 {
4309 uint16_t imm9_off;
4310 imm9_off = bits (aarch64_insn_r->aarch64_insn, 12, 20);
4311 offset = (imm9_off & 0x0100) ? (((~imm9_off) & 0x01ff) + 1) : imm9_off;
4312 datasize = 8 << size_bits;
4313 regcache_raw_read_unsigned (aarch64_insn_r->regcache, reg_rn,
4314 &address);
4315 if (insn_bits10_11 != 0x01)
4316 {
4317 if (imm9_off & 0x0100)
4318 address = address - offset;
4319 else
4320 address = address + offset;
4321 }
4322 record_buf_mem[0] = datasize >> 3;
4323 record_buf_mem[1] = address;
4324 aarch64_insn_r->mem_rec_count = 1;
4325 }
4326 else
4327 {
4328 if (vector_flag)
4329 record_buf[0] = reg_rt + AARCH64_V0_REGNUM;
4330 else
4331 record_buf[0] = reg_rt;
4332 aarch64_insn_r->reg_rec_count = 1;
4333 }
4334 if (insn_bits10_11 == 0x01 || insn_bits10_11 == 0x03)
4335 record_buf[aarch64_insn_r->reg_rec_count++] = reg_rn;
4336 }
4337 /* Advanced SIMD load/store instructions. */
4338 else
4339 return aarch64_record_asimd_load_store (aarch64_insn_r);
4340
4341 MEM_ALLOC (aarch64_insn_r->aarch64_mems, aarch64_insn_r->mem_rec_count,
4342 record_buf_mem);
4343 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4344 record_buf);
4345 return AARCH64_RECORD_SUCCESS;
4346 }
4347
4348 /* Record handler for data processing SIMD and floating point instructions. */
4349
4350 static unsigned int
4351 aarch64_record_data_proc_simd_fp (insn_decode_record *aarch64_insn_r)
4352 {
4353 uint8_t insn_bit21, opcode, rmode, reg_rd;
4354 uint8_t insn_bits24_27, insn_bits28_31, insn_bits10_11, insn_bits12_15;
4355 uint8_t insn_bits11_14;
4356 uint32_t record_buf[2];
4357
4358 insn_bits24_27 = bits (aarch64_insn_r->aarch64_insn, 24, 27);
4359 insn_bits28_31 = bits (aarch64_insn_r->aarch64_insn, 28, 31);
4360 insn_bits10_11 = bits (aarch64_insn_r->aarch64_insn, 10, 11);
4361 insn_bits12_15 = bits (aarch64_insn_r->aarch64_insn, 12, 15);
4362 insn_bits11_14 = bits (aarch64_insn_r->aarch64_insn, 11, 14);
4363 opcode = bits (aarch64_insn_r->aarch64_insn, 16, 18);
4364 rmode = bits (aarch64_insn_r->aarch64_insn, 19, 20);
4365 reg_rd = bits (aarch64_insn_r->aarch64_insn, 0, 4);
4366 insn_bit21 = bit (aarch64_insn_r->aarch64_insn, 21);
4367
4368 if (record_debug)
4369 debug_printf ("Process record: data processing SIMD/FP: ");
4370
4371 if ((insn_bits28_31 & 0x05) == 0x01 && insn_bits24_27 == 0x0e)
4372 {
4373 /* Floating point - fixed point conversion instructions. */
4374 if (!insn_bit21)
4375 {
4376 if (record_debug)
4377 debug_printf ("FP - fixed point conversion");
4378
4379 if ((opcode >> 1) == 0x0 && rmode == 0x03)
4380 record_buf[0] = reg_rd;
4381 else
4382 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4383 }
4384 /* Floating point - conditional compare instructions. */
4385 else if (insn_bits10_11 == 0x01)
4386 {
4387 if (record_debug)
4388 debug_printf ("FP - conditional compare");
4389
4390 record_buf[0] = AARCH64_CPSR_REGNUM;
4391 }
4392 /* Floating point - data processing (2-source) and
4393 conditional select instructions. */
4394 else if (insn_bits10_11 == 0x02 || insn_bits10_11 == 0x03)
4395 {
4396 if (record_debug)
4397 debug_printf ("FP - DP (2-source)");
4398
4399 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4400 }
4401 else if (insn_bits10_11 == 0x00)
4402 {
4403 /* Floating point - immediate instructions. */
4404 if ((insn_bits12_15 & 0x01) == 0x01
4405 || (insn_bits12_15 & 0x07) == 0x04)
4406 {
4407 if (record_debug)
4408 debug_printf ("FP - immediate");
4409 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4410 }
4411 /* Floating point - compare instructions. */
4412 else if ((insn_bits12_15 & 0x03) == 0x02)
4413 {
4414 if (record_debug)
4415 debug_printf ("FP - immediate");
4416 record_buf[0] = AARCH64_CPSR_REGNUM;
4417 }
4418 /* Floating point - integer conversions instructions. */
4419 else if (insn_bits12_15 == 0x00)
4420 {
4421 /* Convert float to integer instruction. */
4422 if (!(opcode >> 1) || ((opcode >> 1) == 0x02 && !rmode))
4423 {
4424 if (record_debug)
4425 debug_printf ("float to int conversion");
4426
4427 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4428 }
4429 /* Convert integer to float instruction. */
4430 else if ((opcode >> 1) == 0x01 && !rmode)
4431 {
4432 if (record_debug)
4433 debug_printf ("int to float conversion");
4434
4435 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4436 }
4437 /* Move float to integer instruction. */
4438 else if ((opcode >> 1) == 0x03)
4439 {
4440 if (record_debug)
4441 debug_printf ("move float to int");
4442
4443 if (!(opcode & 0x01))
4444 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4445 else
4446 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4447 }
4448 else
4449 return AARCH64_RECORD_UNKNOWN;
4450 }
4451 else
4452 return AARCH64_RECORD_UNKNOWN;
4453 }
4454 else
4455 return AARCH64_RECORD_UNKNOWN;
4456 }
4457 else if ((insn_bits28_31 & 0x09) == 0x00 && insn_bits24_27 == 0x0e)
4458 {
4459 if (record_debug)
4460 debug_printf ("SIMD copy");
4461
4462 /* Advanced SIMD copy instructions. */
4463 if (!bits (aarch64_insn_r->aarch64_insn, 21, 23)
4464 && !bit (aarch64_insn_r->aarch64_insn, 15)
4465 && bit (aarch64_insn_r->aarch64_insn, 10))
4466 {
4467 if (insn_bits11_14 == 0x05 || insn_bits11_14 == 0x07)
4468 record_buf[0] = reg_rd + AARCH64_X0_REGNUM;
4469 else
4470 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4471 }
4472 else
4473 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4474 }
4475 /* All remaining floating point or advanced SIMD instructions. */
4476 else
4477 {
4478 if (record_debug)
4479 debug_printf ("all remain");
4480
4481 record_buf[0] = reg_rd + AARCH64_V0_REGNUM;
4482 }
4483
4484 if (record_debug)
4485 debug_printf ("\n");
4486
4487 aarch64_insn_r->reg_rec_count++;
4488 gdb_assert (aarch64_insn_r->reg_rec_count == 1);
4489 REG_ALLOC (aarch64_insn_r->aarch64_regs, aarch64_insn_r->reg_rec_count,
4490 record_buf);
4491 return AARCH64_RECORD_SUCCESS;
4492 }
4493
4494 /* Decodes insns type and invokes its record handler. */
4495
4496 static unsigned int
4497 aarch64_record_decode_insn_handler (insn_decode_record *aarch64_insn_r)
4498 {
4499 uint32_t ins_bit25, ins_bit26, ins_bit27, ins_bit28;
4500
4501 ins_bit25 = bit (aarch64_insn_r->aarch64_insn, 25);
4502 ins_bit26 = bit (aarch64_insn_r->aarch64_insn, 26);
4503 ins_bit27 = bit (aarch64_insn_r->aarch64_insn, 27);
4504 ins_bit28 = bit (aarch64_insn_r->aarch64_insn, 28);
4505
4506 /* Data processing - immediate instructions. */
4507 if (!ins_bit26 && !ins_bit27 && ins_bit28)
4508 return aarch64_record_data_proc_imm (aarch64_insn_r);
4509
4510 /* Branch, exception generation and system instructions. */
4511 if (ins_bit26 && !ins_bit27 && ins_bit28)
4512 return aarch64_record_branch_except_sys (aarch64_insn_r);
4513
4514 /* Load and store instructions. */
4515 if (!ins_bit25 && ins_bit27)
4516 return aarch64_record_load_store (aarch64_insn_r);
4517
4518 /* Data processing - register instructions. */
4519 if (ins_bit25 && !ins_bit26 && ins_bit27)
4520 return aarch64_record_data_proc_reg (aarch64_insn_r);
4521
4522 /* Data processing - SIMD and floating point instructions. */
4523 if (ins_bit25 && ins_bit26 && ins_bit27)
4524 return aarch64_record_data_proc_simd_fp (aarch64_insn_r);
4525
4526 return AARCH64_RECORD_UNSUPPORTED;
4527 }
4528
4529 /* Cleans up local record registers and memory allocations. */
4530
4531 static void
4532 deallocate_reg_mem (insn_decode_record *record)
4533 {
4534 xfree (record->aarch64_regs);
4535 xfree (record->aarch64_mems);
4536 }
4537
4538 #if GDB_SELF_TEST
4539 namespace selftests {
4540
4541 static void
4542 aarch64_process_record_test (void)
4543 {
4544 struct gdbarch_info info;
4545 uint32_t ret;
4546
4547 gdbarch_info_init (&info);
4548 info.bfd_arch_info = bfd_scan_arch ("aarch64");
4549
4550 struct gdbarch *gdbarch = gdbarch_find_by_info (info);
4551 SELF_CHECK (gdbarch != NULL);
4552
4553 insn_decode_record aarch64_record;
4554
4555 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4556 aarch64_record.regcache = NULL;
4557 aarch64_record.this_addr = 0;
4558 aarch64_record.gdbarch = gdbarch;
4559
4560 /* 20 00 80 f9 prfm pldl1keep, [x1] */
4561 aarch64_record.aarch64_insn = 0xf9800020;
4562 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4563 SELF_CHECK (ret == AARCH64_RECORD_SUCCESS);
4564 SELF_CHECK (aarch64_record.reg_rec_count == 0);
4565 SELF_CHECK (aarch64_record.mem_rec_count == 0);
4566
4567 deallocate_reg_mem (&aarch64_record);
4568 }
4569
4570 } // namespace selftests
4571 #endif /* GDB_SELF_TEST */
4572
4573 /* Parse the current instruction and record the values of the registers and
4574 memory that will be changed in current instruction to record_arch_list
4575 return -1 if something is wrong. */
4576
4577 int
4578 aarch64_process_record (struct gdbarch *gdbarch, struct regcache *regcache,
4579 CORE_ADDR insn_addr)
4580 {
4581 uint32_t rec_no = 0;
4582 uint8_t insn_size = 4;
4583 uint32_t ret = 0;
4584 gdb_byte buf[insn_size];
4585 insn_decode_record aarch64_record;
4586
4587 memset (&buf[0], 0, insn_size);
4588 memset (&aarch64_record, 0, sizeof (insn_decode_record));
4589 target_read_memory (insn_addr, &buf[0], insn_size);
4590 aarch64_record.aarch64_insn
4591 = (uint32_t) extract_unsigned_integer (&buf[0],
4592 insn_size,
4593 gdbarch_byte_order (gdbarch));
4594 aarch64_record.regcache = regcache;
4595 aarch64_record.this_addr = insn_addr;
4596 aarch64_record.gdbarch = gdbarch;
4597
4598 ret = aarch64_record_decode_insn_handler (&aarch64_record);
4599 if (ret == AARCH64_RECORD_UNSUPPORTED)
4600 {
4601 printf_unfiltered (_("Process record does not support instruction "
4602 "0x%0x at address %s.\n"),
4603 aarch64_record.aarch64_insn,
4604 paddress (gdbarch, insn_addr));
4605 ret = -1;
4606 }
4607
4608 if (0 == ret)
4609 {
4610 /* Record registers. */
4611 record_full_arch_list_add_reg (aarch64_record.regcache,
4612 AARCH64_PC_REGNUM);
4613 /* Always record register CPSR. */
4614 record_full_arch_list_add_reg (aarch64_record.regcache,
4615 AARCH64_CPSR_REGNUM);
4616 if (aarch64_record.aarch64_regs)
4617 for (rec_no = 0; rec_no < aarch64_record.reg_rec_count; rec_no++)
4618 if (record_full_arch_list_add_reg (aarch64_record.regcache,
4619 aarch64_record.aarch64_regs[rec_no]))
4620 ret = -1;
4621
4622 /* Record memories. */
4623 if (aarch64_record.aarch64_mems)
4624 for (rec_no = 0; rec_no < aarch64_record.mem_rec_count; rec_no++)
4625 if (record_full_arch_list_add_mem
4626 ((CORE_ADDR)aarch64_record.aarch64_mems[rec_no].addr,
4627 aarch64_record.aarch64_mems[rec_no].len))
4628 ret = -1;
4629
4630 if (record_full_arch_list_add_end ())
4631 ret = -1;
4632 }
4633
4634 deallocate_reg_mem (&aarch64_record);
4635 return ret;
4636 }